Oracle® Rdb

Guide to Using the Oracle SQL/Services Client API

Release 7.3.1

March 2011

ORACLE

Guide to Using the Oracle SQL/Services Client API, Release 7.3.1

Copyright © 1993, 2011, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are aso
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problemsin the
documentation, please report them to usin writing. Oracle Corporation does not warrant that this document is error
free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercia technical data"
pursuant to the applicable Federa Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical
data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted
Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure the safe use of such applications if the Programs are used for such purposes, and Oracle
Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is aregistered trademark, and Oracle Rdb, Oracle SQL/Services, and Oracle Net are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracleis not responsible for the availability of, or any content provided on, third-party Web sites. You bear dl risks
associated with the use of such content. If you choose to purchase any products or services from athird party, the
relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party
products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of
products or services and warranty obligations related to purchased products or services. Oracle is not responsible
for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

SENA US YOUT COMMENTS ...ttt se et eeeee et et staeeeseseses e s et et ess et ereseessenseseesent et senenes Xiii
P B A ettt ettt ettt et et e ettt ettt et e e et et et ee et eeerr et e et et eenenes XV
1010010 (<10 N0 (o (=T oL TR XV
Operating SysStem INFOIMELTONc..oiii ettt ettt e e se e bes e e e es et e e e sbesrereens XV
SETUCTUI. ... ettt ee ettt e et e s ettt e e e ste e e sta e saeee st be e saseesebaesas s beseassae s shbes st bessasee e sbeee s bebesennnaessrrnees XVi
(RS = (=0 WY =T a LU E TR XVi
(00011775 0111 =TT XVii
Technical Changes and NeW FEALUIES ...t Xix

1 Overview

11
111
11.2
113
1.2
13
131
13.2
14
15

Introduction t0 Oracle SQL/SENVICESccue et st st sae s raen e sreen e 1-2
ClIENt COMPONENLS.eititeuieeeereetetie et et eetere et se e bes e ses e et esee st st ebesbessesbeseeseeseansesseens 1-3
NEWOIK COMPONENLSveeiieieeseereeeietee ettt se et se e es e e e eseet s aesaeebeseesaenteseeseeneenenees 1-4
Server System COMPONENESccoutiiireieirter e sterteesteesbeere e et e b e ere e s e ssessasseesaeesbesssenes 1-5

Supported Client PIatfOrmSc..o it ettt e e e e n e 1-5

Preparing Programmers to Use Oracle SQL/SEIVICES.c.uviueiereneeeeee et 1-9
What Programmers Must Know to Write AppliCations.........c.cccourerineneseesene e 1-9
Reading Path fOr Programmers...........cocie it e e s enens 1-9

Location of Oracle SQL/Services Error DOCUMENLatioNcccoceeveeieeeiesriesiectie e ereve e 1-10

What System Managers Must Know to Support Oracle SQL/Services.........ccooveeeereieeneennes 1-11

Developing Oracle SQL/Services Applications

2.1
2.2
22.1
22.2
2.3
23.1
2.3.2
2.3.3
2.3.4
235
2.4
24.1
24.2
243
24.4
245
25

2.6

2.7
27.1
2.7.2
27.2.1
2.7.2.2
2.7.2.3
2.7.3
2.7.4
275

Introduction to the Dynamic SQL Interface of Oracle RADccoocooeiiiiiiiis e 2-2
Overview of Dynamic SQL Interface Statements..........covoeeoe e eeincne e e s 2-2
EXECULTON SEALEMENTS.......c.ectiectireeteriet ettt et et s st st e ebe b e bbb beb e bebeeas 2-2
RESUIt TabIE SEAEEMENTS......c.eeceieceiiet ettt et et bbb ben e 2-3
Using the Dynamic SQL Interface of Oracle RAD.........cccco oo 2-4
ParaMELEr IMAIKEL'S ..o e e e 2-6
SEIECE LISt IEEMS ...ttt ettt 2-6
UNKNOWN SEALEIMENES.......cveveeetireetisietestetesbetesie et et se et et et se et e b seeseneebesbesesbeseneas 2-7
SQL Descriptor Area (SQLDA 0r SQLDAZ) ..ottt se e s s aneas 2-7
SQL Communications Area (SQLCA) ..o ettt ettt st s se e s seee s 2-8
Overview Of Client API ROULINES..........coiiiiiiie ettt s 2-8
ASSOCIALTION ROULTNES.......coeiiiieieiie ettt ettt st st e ettt st b et er e eb e 2-8
SQL StatemMENt ROULINES.........ccieie ettt st sttt e s teeateeae s be s e snesnesre s e sreas 2-9
RESUIt TaDIE ROULINES ..ot s 2-9
ULTHTIEY ROULINES ...ttt ettt ettt st et e s e e es e se et eneeeeseesneebeseennens 2-10
Functional INterface ROULINEScccoi ittt 2-11
OVENVIEW Of DA SITUCLUMESeeveiieiiie ittt ettt 2-13
Developing Applications with the Functional Interface Routinescccocviieiiiinncenne 2-13
Building Oracle SQL/Services Application Programs........c..cccvereeeveneeein s e 2-14
Building Applications on the OpenVM S Operating Systemc.cccceerrneienerienene 2-15
Building Applications on the MS Windows Operating System...........cocoeeererieeienieneens 2-16
Building 32-Bit Applications for Windows X86 Systems..........cccceeeeenereeenenenn. 2-16
Building 64-Bit Applications for Windows X64 Systems..........cccccceeenreeeenenenen. 2-16
Building 32-Bit or 64-Bit Applications for Windowscccceceveoeennicnenenenn. 2-16
Building Applications on the HP Tru64 UNIX Operating System........cccceoevereeenenens 2-17
Building Applications on the HP-UX Operating System..........cccvoeveeeernneeieseriene e 2-17
Building Applications on the Linux Operating SyStemcooeoeerrneeieeenenieee s 2-18

Sample Application Guidelines

3.1
3.2
3.21
3.2.2
3.2.3

SAMPIE APPIICELION ...ttt e e et es et ebeebe e e be e seeeaneas 3-1
Building the Sample APPIICATONc.coiii et e e e 3-2
Building the Sample Application on the OpenVMS Operating Systemcccccccvee e 3-2
Building the Sample Application on Windows X86 SyStems.........ccccuvvreenereveenieie e 3-2
Building the Sample Application on Windows X64 Systems.........cccceoeioerereveenieieseenenne 3-3

3.24
3.25
3.2.6
3.3

3.4

3.5
351
3.5.2
3521
3.5.2.2
3.5.2.3
3.5.24
3.5.25
3.5.2.6
3.5.2.7
3.5.2.8
3.5.2.9
3.5.2.10
3.5.2.11

Building the Sample Application on the HP Tru64 UNIX Operating System.................. 3-3

Building the Sample Application on the HP-UX Operating System..........cccccoeveneeeeeeene 3-4
Building the Sample Application on the Linux Operating System.........cccccoeeeereeveeneenene 3-4
Running the Sample APPliCELION ..o e 3-4
DIIVEN IMOOUI ...ttt e et e s s s 3-6
DYNAMIC MOAUIE. ..ot ettt e et et et eb et et b e e bt see e eneensnees 3-6
Creating 8N ASSOCIBHIONcc.iiuiie ettt ettt e et ese et et et seesaenbe st seeneanennes 3-6
Processing the Dynamic SQL SEALEMENEcceiuiirieiieeieie et enees 3-9
Declaring and Allocating SQLDA_ID Identifiers.......ccoceveeeinenine e 3-12
Executing SQL Statements Using the sglsrv_execute_ immediate APl Routine..... 3-12
Preparing the SQL StatemMentcoo et e 3-12
Allocating Data and Indicator Variablesoooiee e 3-13
Processing Parameter Markers...........oooooe i e 3-14

Testing for SELECT SEateMENTS.......c.eoeiiiiiie e et 3-18
Processing @ SELECT StatemeNt.........cccoeeiiiineie et e 3-18
Processing Executable StAemMeNtS..........cooo i e 3-19
Processing SElECt List HHEMSc.eiiiiie ettt e 3-20

o gl o F= oo (1T oo U 3-23
Releasing Prepared StatementsS..........oooeee it 3-25

Performance Considerations

4.1
4.2
4.3
4.4
4.5

BatChE EXECULION.c.eiviectiectere ettt e e 4-1
Improving ROW Fetch PerfOrmanCe............oeoieeiiririe et 4-4
USING SEOFEd PrOCEAUIESottt ettt ettt et e st s et et st e e eneaneeeen 4-7
Using ComMpPOUNG SEBEEMIENTS.......c.ue ittt ettt se e es e et ese st se e sbeseesnenbeseeseeneensnees 4-7
ReUSING SQL SEALEMENES.......ee ittt ettt et es e et es et sbe e nenbe e seeneansenes 4-8

Logging for Performance and Debugging

51
5.2
5.3
54

Enabling and Disabling LOGQING.......eoeeteuerereeie et et e esesee e see e e e eneeees 5-1
PN Te T o) ol ol o 1 0T EN BTSRRI 5-3
Lol W11 SN o o1 o SRRSO 5-4
M eSSagE ProtOCOl LOGGING .. .ecuvererreeueererteresiestersesteniesesseestesesses e eseetesaesaesteseeseansesesseeseansesessens 5-6

6 APIRoutines

Vi

6.1
6.1.1
6.1.2
6.1.3
6.2
6.3
6.3.1

6.3.2

6.3.3

6.3.4

6.3.5

DOCUMENTALTI ON FOMMBEttt ettt e ettt et aesbe st e se e seeseeneaneas 6-1
ROULTNE N@IME. ... ettt et eb et eb bbb e et en e e e e 6-1
RELUNN VB UES. ...ttt et et ettt b bbb e et en e e e 6-2
C FOIMEL SECHON. ...ttt ettt e st e es e st eae et et ae et seeseebeseeseeeanea 6-2

Oracle SQL/SErVICES DAta TYPES. .. ciuereeuteeerrereereeteriesteeeeseeseenteseeseeeesssseseesessessessenseseeseensesseses 6-2

APL ROULINES ... vttt e ettt eae ettt be et se e bes e se et esbeb et ae et e b e s mea e sbe seenben b see e ans 6-3
ASSOCIALION ROULINES.......cveiie ettt se et s et et eae st seesaen e seeseeneenee s 6-3

S0 (£ Yo o S S 6-4

S0 ([Y S S o Lo 1 TR 6-5

SOISIV_get_8SSOCIALE IMFO ...eveieiiiiie ettt et es b en e 6-10

S0 (S Y = 1= OSSP 6-13
SQL StatemMENt ROULINES......c..ccuicie ettt ettt st st ste st sbe et e teereanbesaeeaeanes 6-14

S0 (K Y o1 o= (TSR 6-15

SOISIV_EXECULE TN OUL ...ttt sttt sttt ettt e seen s e seeneesenb e e e neseeenesneneas 6-18

SOISIV_EXECULE IMIMEAIBLEeeeiee e ettt st e et se e sae b e ne e e 6-22

SOISIV_FEl@aSe SEALEIMENTttt ettt et et e b e eaees b e b b seesneneas 6-24
ReSUlt Table ROULINEScouiieiieeie ettt et e s sbe e e 6-26

SOISIV_AECIAIE CUISON ... ittt ettt et bttt e e e en s seeneebeeb e s e eaeseenseeneneas 6-27

o[£ gV o] 1< oI ol U = o TR RPPR 6-30

S o[£ Y = o o ST 6-33

SOISIV_FEECN MANY ...t e e e n b e en e 6-36

SOISIV_CIOSE CUISOK ...ttt et ettt et b et et et ee e bese e ee et es b e et aeee e s e sneneas 6-38
ULTHTIEY ROULINEScveeeiee ettt ettt ettt ettt et e e b se et enesbe e e snesbeseeneens 6-39

sglsrv_allocate sglda data or sglsrv_allocate sglda2_data..........coeeeeeveeneeieeeicnecinee, 6-40

sglsrv_free sglda dataor sglsrv_free sglda2_data..........ccoeeeeeveirecicie e 6-42

S oKV = o] 11 o T TSR 6-44
Functional INterface ROULINEScoiuiiiiieeiiie et 6-46

o[Vs | Lo = o (o] TSRS 6-48

o[Vs | Lo W= g (o] g (= SO ST 6-49

S0 (£ Vs | Lo N ot 11 | TSR PPR 6-50

SOISIV_SOICA SOIEITA ... ettt et et et sttt sb e ee e 6-51

o[Vs | Lo o £ = = USSR 6-52

sglsrv_sglda sgld or sqlsrv_sglda2 Sqld ... e 6-53
sglsrv_sglda sqld73 or sglsrv_sglda2_sgld73 ... e 6-54
sglsrv_sglda_column_name or sglsrv_sglda2_column_name...........ccccoeeieneneneencne e 6-55
sglsrv_sglda_column_name73 or sglsrv_sglda2_column_name73...........ccoceeerereenicie e 6-57
sglsrv_sglda_column_type or sglsrv_sglda2_column_type........ccccoveeeirencene e 6-59
sglsrv_sglda_column_type73 or sglsrv_sglda2_column_type73.........cccvevoieneneenicie e 6-61
sglsrv_sglda bind_dataor sglsrv_sqlda2 bind_data..........ccceeeeeeineeieiininie e 6-63
sglsrv_sglda bind_dataz3 or sglsrv_sglda2_bind datar3..........ccceeeeeeininiineceee e 6-66
sglsrv_sglda unbind_sglda or sglsrv_sglda2_unbind_sglda........ccooeeeeirinieieiincee e 6-70
sglsrv_sglda unbind_sglda73 or sglsrv_sglda2 _unbind_sqlda73ccccoeeeriineicie e, 6-71
sglsrv_sglda ref_dataor sglsrv_sqlda2 ref data........occooeeeveeeeeininieceecee e 6-73
sglsrv_sglda ref_data73 or sqlsrv_sglda2_ref data73 ... 6-76
sglsrv_sglda unref_dataor sglsrv_sglda2_unref_data.......coocooeeeeieieeieeinineeeee e 6-79
sglsrv_sglda unref_data73 or sglsrv_sglda2_unref _datar3ccooeoeiieiininnee e 6-80
sglsrv_sglda get_dataor sglsrv_sglda2 get data........coeeeveeeeeieieneeeene e e 6-82
sglsrv_sglda get_dataz3 or sglsrv_sglda2_get datar3ooooeeiereeieeinne e 6-85
sglsrv_sglda set dataor sglsrv_sqlda2 set dat@.......coeeeeeeeeeeeeeieiiceeee e e 6-88
sglsrv_sglda set data73 or sqlsrv_sglda2 set data73ooooeieiiieececinee e 6-90
sglsrv_sglda set sgllen or sglsrv_sglda2_set Sgllen......oovecieeiee e 6-93
sglsrv_sglda set sgllen73 or sglsrv_sqlda2_set_sgllen73.......ooeeeiceeiiineiee e 6-96
SOlsrv_sglda2_Char SEt INFO ... e 6-99
sglsrv_sglda2_char Set iNFOT3 et e 6-101

Data Structures

7.1
7.2
7.3
7.4
7.5
7.6
7.7

DOCUMENTALT ON FOMMAL........e ittt ettt ettt et et et es bbb e e bt see e eneeneeeen 7-1
ASSOCIATE_STR-ASSOCIation StIUCLUIE.coveeiie ettt ettt e et st e srees e e eneenns 7-3
SQLCA-SQL COMMUNICAIONS ATEA......cccceieeiieeerectieseetiesteettete e ateaeessesseesressrestessaesraenseens 7-10
SQLERRD-Part of SQLECA ..ottt sttt s ssess s s s s s s es s ses s ses e st e ssssessaneaes 7-12
SQLDA or SQLDA2-SQL DESCIHPLON AFEAeeuveieeieereeeie e seee et erestesee et seeseessenesseeseens 7-13
SQLVAR-Parameter Marker or Salect List HHEMcocoi i 7-17
SQLVAR2-Parameter Marker or Select List [teM.......cccoe e cvieiii e e 7-20

vii

Data Types

8.1 Dz = B Y/ 01T OSSPV ST 8-1
8.2 SQLSRV_ASCIH_STRING ..ottt ettt ettt et e e e sre ettt sae e e e e seeeaneas 8-2
8.3 SQLSRV_VARCHAR ...ttt ettt et e et sae ettt ebesbese e e e seeeeneas 8-2
8.4 SQLSRV_GENERALIZED_NUMBER.......coiititiiriee ettt e 8-3
8.5 SQLSRV_GENERALIZED _DATE ...ttt ettt et e ettt st e s see e 8-5
8.6 SQLSRV _INTERV AL ..ottt ettt ettt e bes e e sae bt aesbe st e e e e eeeneas 8-7
8.7 SQLSRV_VARBY TE ...ttt ettt et ettt st s e bes e e e et et e st saeabesbeseenbeseeseeeaneas 8-8
8.8 SQLSRV_LIST VARBYTE ...ttt ettt e es e et sae sttt st e e e seaeaneas 8-9
8.9 Deciding Whether to Use SQLDA 0r SQLDAZ ...ttt et e 8-10

A Obsolete Features

Al

All
Al1.2
Al1.3

Index

vii

ODSOIELE FEALUIES ...ttt ettt ettt sr e e see st e e st staet e sbeeabesbesnteneaneesnnenesnnesrnas A-1
Obsolete Network Communications SOftWare.........cceeeevveeiececieie e A-1
Obsolete Client PlatfOrMScoo ittt st st s er e e en e sae s A-2
Obsolete Server PlatfOrms.........coiee ettt A-2

List of Figures

1-1 Client/Server Model for Oracle SQL/SEIVICES.........ccueiecieie ettt sraene e

1-2 Oracle SQL /Services Architecture
3-1 Statement Execution Flow.............

List of Tables

PeTYRT
WNRPRRNR PR

|
N

|
= O 00 ~NO Ol

o

@@@@?@@@@

Network Transports Supported by Oracle SQL/Services Clients........ccoccooeeoeverene e seenennnne 1-2
SQL Statements That Can Be Processed Using Dynamic SQL Operations............cccecveeeene. 2-5
SQL Statements That Cannot Be Processed Using Dynamic SQL Operations.............cc.eu.... 2-5
Client Logging Flags and VaAUES..........coiriiiiiie ettt st e e 5-2
Sectionsin the ROULING TEMPIBLE.cociiuiie et sttt se e e e e 6-1
AP REIUMN VEIUES ...ttt s s s e 6-2
APl Parameter DEta TYPES.....ocueiueriiertieiieeuiete sttt et st et essee st seesbeesbe s besbesaeabesneesnesaeesaesseens 6-2
Valid Combinations of Buffer-Related Parameters for the sqlsrv_associate Routine.............. 6-6
Values of the info_type ParameEteroo ittt e 6-10
Values of the SQLSRV_INFO_SERVICE_ATTRS Bit MaSKSccccoenteenieeneerineereneereneenene 6-11
Values of the execute flag Parameter in sglsrv_execute in_ OUt..........ccccoeieieienencie e 6-19
Values of the scroll_option ParamMetercc.ooeiiiiieeee et e 6-33
Special Requirements of Data Types to Determine ExtraByte Lengthsto Allocate............. 6-41

Value Parameter Arguments If the Option Parameter Argument Is SQLSRY_OPT_SQLDA _
TYPE 6-44

Sectionsin the Data Structure TEeMPIAte.........coveoeie i e e 7-1
Dz = B Y/ 01T PR ORI 8-1
Oracle SQL/Services Date-Time Data TYPEScoueiuereireeie e seeeeeertese et seeseestesieseeseesiesesseseenens 8-6
Oracle SQL/SErVICES INLEIVEl TYPEeiiieieeeieereie sttt ettt st e e s seeeene e 8-7

Xi

Xii

Send Us Your Comments

Guide to Using the Oracle SQL/Services Client API, Release 7.3.1.0

Oracle welcomes your comments and suggestions on the quality and usefulness of this document. Your input is

an important part of the information used for revision.

« Didyou find any errors?

« Istheinformation clearly presented?

« Do you need more information? If so, where?

« Arethe examples correct? Do you need more examples?
» What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document title and
part number, and the chapter, section, and page number (if available). You can send commentsto usin the fol-
lowing ways:

« Electronic mail: nedc-doc_us@oracle.com
« FAX:603.897.3825 Attn: Oracle Rdb
« Postal service:

Oracle Corporation

Oracle Rdb Documentation

One Oracle Drive

Nashua, NH 03062-2804

USA

If you would like areply, please give your name, address, telephone number, and (optionally) electronic mail
address.

If you have problems with the software, please contact your local Oracle Support Services.

xiii

Xiv

Preface

Oracle SQL/Services, a client/server component of Oracle Rdb, enables a client application
program invoked on a client computer running on a supported operating system or transport,
to access Oracle Rdb databases on an OpenVMS server system. See the overview chapter
for acomplete list of supported clients.

This manual describes how to develop Oracle SQL/Services client application programs.

Intended Audience

Thismanual iswritten primarily for experienced applications programmers; however, some
sections are intended for the system manager responsible for maintaining and fine-tuning
Oracle SQL/Services. Both programmers and system managers should read Chapter 1 for a
recommended approach to the material in this guide and a discussion of the pertinent
sections. In addition, system managers should refer to the Oracle SQL/Services Installation
Guide, which provides information important to the installation of an Oracle SQL/Services
system, and to the Oracle SQL/Services Server Configuration Guide, which provides
information important to the configuration and maintenance of an Oracle SQL/Services
system.

Operating System Information

You can find information about the versions of the operating system and optional software
that are compatible with this release of Oracle Rdb and Oracle SQL/Servicesin the Oracle
Rdb Installation and Configuration Guide and the Oracle SQL/Services Installation Guide,
and also in the Oracle Rdb Release Notes and the Oracle SQL/Services Release Notes.

Contact your Oracle Corporation representative if you have other questions about product
reguirements or compatibility.

XV

Structure

Thismanual contains the following chapters and appendix.

Chapter 1

Chapter 2

Chapter 3

Chapter 4
Chapter 5

Chapter 6

Chapter 7

Chapter 8
Appendix A

Introduces Oracle SQL/Services. Provides areading path for programmers and
system managers.

Provides a condensed discussion of dynamic SQL, API routines, Oracle
SQL/Services data structures, recommendations for APl development, and
API application linking.

Provides guidelines for application development using the Oracle
SQL/Services sample application.

Explains how to enhance application performance.

Describes execution logging and how to use it for debugging and monitoring
application performance.

Presents detail ed reference descriptions of the Oracle SQL/Services API
routines.

Presents detail ed reference descriptions of the Oracle SQL/Services data
structures.

Describes the data types used in Oracle SQL/Services.

Lists and describes the obsol ete features for Oracle SQL/Services V7.3.0.3 and
higher.

Related Manuals

For more information, see the other manuals in this documentation set, especially the

XVi

following:

» Oracle Rdb7 Guide to SQL Programming
« Oracle Rdb SQL Reference Manual

» Oracle Rdb Release Notes

« Oracle SQL/Services Release Notes

» Oracle Rdb Installation and Configuration Guide
« Oracle SQL/Services Installation Guide

» Oracle SQL/Services Server Configuration Guide

The Oracle SQL/Services Release Notes and the Oracle SQL/Services Installation Guide are
provided as part of the software kit. Adobe Portable Document Format (.pdf) files for the
release notes are available in SY SSHELP.

The remaining manuals and Oracle Rdb documentation are available on the OTN web site.

Conventions
In this manual, Oracle Rdb refersto Oracle Rdb for OpenVMS software.

OpenVMS 164 refers to the HP OpenVMS Industry Standard 64 for Integrity Servers
operating system.

OpenVM S refers to the OpenVM S Alpha and OpenVMS 164 operating systems.

The SQL interface to Oracle Rdb isreferred to as SQL. Thisinterfaceis the Oracle Rdb
implementation of the SQL standard adopted in 1999, in general referred to as the
ANSI/ISO SQL standard or SQL:1999. See the Oracle Rdb Release Notes for additional
information about this SQL standard.

Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

The following conventions are also used in this manual:

Convention Meaning

Vertical ellipsis pointsin an example mean that information not directly related to

the example has been omitted.

[] In text, brackets enclose optional information from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command Language promptn OpenVMS.

boldfacetext Boldface type in text indicates aterm defined in the text.

Xvii

e f,t Index entriesin the printed manual may have alowercase g, f, or t following the
page number; the e, f, or t is areference to the example, figure, or table,
respectively, on that page.

xviii

Technical Changes and New Features

This section lists some of the new and changed features described in this manual sinceit was
last revised with Version 7.0. The Oracle SQL/Services Release Notes provide information
on al the new features and technical changesincluded in release 7.3.1.0 and 7.3.0.3. The
major new features described in this manual include the following:

New API Clients Supported

Several new client platforms are now supported by the Oracle SQL/Services client AP,
including 64-bit client platforms.

= Windows 2000, XP, Vista, Server 2003, Server 2008, 7, XP X64, Vista X64, Server
2003 X 64, Server 2008 X64 and 7 X64

« HP-UX
«» RedHat Linux and Oracle Linux
« OpenVMSI64

New SQLSRV_SQLCA_SQLSTATE Routine in Release 7.3.1

A new routine SQLSRV_SQLCA_SQL STATE has been added to the Oracle SQL/Services
client API. See Section 6.3.5 for more information about this routine.

New SQLSRV_SQLDA... Routines in Release 7.3.0.3

The following routines include an optional association ID parameter and are otherwise
identical to the similarly named routines without the “ 73" appended. The use of these
routines improves performance on Windows platforms. See Section 6.3.5 for more
information about these routines.

» sglsrv_sglda sqld73 and sqlsrv_sglda2_sqld73

Xix

XX

« sglsrv_sglda _column_name73 and sglsrv_sglda2_column_name73
» sglsrv_sglda column_type73 and sqlsrv_sglda2_column_type73

» sglsrv_sglda bind_data73 and sglsrv_sglda2_bind_data73

« sglsrv_sglda unbind_sglda73 and sglsrv_sglda?_unbind_sglda73

» sglsrv_sglda ref_data73 and sglsrv_sqlda2_ref data73

» sglsrv_sglda unref_data73 and sqlsrv_sglda2_unref_data73

« Sglsrv_sglda get data73 and sglsrv_sqlda2_get data73

» sglsrv_sglda set_data73 and sglsrv_sqlda2_set_datar3

» sglsrv_sglda set_sgllen73 and sqlsrv_sqlda2_set sqllen73

» Sglsrv_sglda2_char_set_info73

New Association Structure Version in Release 7.3.0.3

The association struction has been updated to include an optional TCPIP port id and DECnet
object name. Therefore the TCPIP port or DECnet object name can be specified during the
call to sglsrv_associate, making it possible to associate with multiple servers on the same
node in a multiversion SQL/Services environment. See Section 7.2 for more information.

Technical changes have been made where necessary to provide technical clarifications, to fix
errors of omission, and to make corrections.

1

Overview

Oracle SQL/Servicesis aclient/server system that enables client applications on PCs and
workstations to access datain Oracle Rdb databases on server systems. Oracle SQL/Services
follows the client/server model in which:

« Theclient requests a set of services from the server through an agreed upon interface.

« The server responds by accepting client requests, calling the server function to execute
requests, and sending results back to the client.

A simplified view of Oracle SQL/Servicesis shown in Figure 1-1.

Figure 1-1 Client/Server Model for Oracle SQL/Services

fle oy Lk

3] t----=
i i Databaze

AFl | Transport Functiot

Transport

44 --- Response

MU -20574 -R&

In itsimplementation of the client/server model, Oracle SQL/Services enables programmers
working on any of several computing platforms shown in Table 1-1 to develop client

Overview 1-1

Introduction to Oracle SQL/Services

applications that remotely access server databases stored on OpenVMS using an available*
network transport.

Table 1-1 Network Transports Supported by Oracle SQL/Services Clients

Clients DECnet TCP/IP Oracle Net

Windows 2000 -

Windows XP -

Windows Vista - -
Windows Server 2003 -
Windows Server 2008 -
Windows 7 -
Windows XP X64 -

Windows Vista X64 -

X X X X X X X X X
|

Windows Server 2003 -
X64

Windows Server 2008 -
X64

X
|

Windows 7 X64 -
HP Trué4 UNIX X
HP-UX -
Red Hat or Oracle Linux —
OpenVMS Alpha X
OpenVMS 164 X

X X X X X X

1.1 Introduction to Oracle SQL/Services

Remote application access through Oracle SQL/Servicesto databases on the server system
reguires a system configuration similar to the one illustrated in Figure 1-2. Although your
system may not exactly mirror the one shown, it must have at least client, network, and
server system components.

Section 1.1.1, Section 1.1.2, and Section 1.1.3 briefly describe the client, network, and
server system components respectively. Each section identifies the role the component plays
in allowing client application access to databases on the server system.

1-2 Guide to Using the Oracle SQL/Services Client API

Introduction to Oracle SQL/Services

Figure 1-2 Oracle SQL/Services Architecture

Client Server
A, A,
& Y Y
Monitor
Desktop Systems + * Canfiguration File |

‘:ﬁ Dispatcher |

Client Application [IR Y
Cracle ODEC
Crriver for Ficdk "

I

Service &
Executar Fool

SALSRV MANAGE[* 2

Cracle Rdk
clatabases

MU-35114-R&

1.1.1 Client Components

Client application programs access Oracle SQL/Services on a server node using the Oracle
SQL/Services client API. The Oracle SQL/Services client APl isalibrary of callable
routines that use layered communications software to communicate with the server node.

=« Client API routines

The Oracle SQL/Services client API routines provide an interface to client applications
that is functionally very similar to the dynamic SQL interface. This enables client
applications to execute SQL statements against data stored in a database on a server
node. The SQL statements can either be defined as string constants in the source code or
formulated at run time. The SQL statement syntax accepted by Oracle SQL/Servicesis
identical to that of the dynamic SQL interface of Oracle Rdb.

Overview 1-3

Introduction to Oracle SQL/Services

Communications software

Communications software facilitates the transfer of information between the client and
server systems. Using a request/response protocol that is virtually transparent to the
application, the APl accepts client application input, builds Oracle SQL/Services
request messages, and transmits them to the server system using DECnet, Transmission
Control Protocol/Internet Protocol (TCP/IP), or Oracle Net (SQL* Net) communications
protocol. (See Section 1.1.2 for descriptions of these network components.) Because the
Oracle SQL/Services client API provides an interface that is functionaly very similar to
the dynamic SQL interface, programmers need not understand the communications
software to devel op Oracle SQL/Services client applications.

Oracle SQL/Services currently supports API software for the client systems described in
Table 1-1. See Section 1.2 for more information on supported client platforms.

1.1.2 Network Components

The appropriate client APl software can communicate with the Oracle SQL/Services server
using DECnet, TCP/IP, or Oracle Net (SQL*Net) communications software:

DECnet software

The DECnet network transport is supported by the Oracle SQL/Services OpenVMS
server platform and HP Tru64 UNIX platforms.

TCP/IP software

The TCP/IP network transport is supported by all Oracle SQL/Services client and server
platforms.

Oracle Net (SQL* Net) software

The Oracle Net (SQL*Net) network transport is supported by the Oracle SQL/Services
OpenVMS server and client platforms.

Oracle SQL/Services uses Oracle Net as a network transport to send Oracle
SQL/Services protocol messages between Oracle SQL/Services clients and servers. The
following additional features are supported with Oracle SQL/Services using Oracle Net:

— Secure Network Services

Secure Network Services encrypts and performs security checks on data as it moves
across LANs and WANS, preventing any unauthorized user from viewing or
tampering with information. Specifically, Secure Network Services provides:

* Network authentication

* Tamper-proof data

1-4 Guide to Using the Oracle SQL/Services Client API

Supported Client Platforms

* High-speed global dataencryption

* Cross-protocol data security

— Diagnostic tools (tracing and logging)

Diagnostic tools include Oracle Trace and Oracle Net logging.

Regardless of the communi cations software used, Oracle SQL/Servicesrelieves application
programmers of any need to understand networking to develop Oracle SQL/Services
applications.

See the Oracle SQL/Services Installation Guide for network, transport, client, and server
operating system version information.

1.1.3 Server System Components

The server system accepts request messages from the application through network transport
software, processes the requests against a server system database, and sends response
messages back to the waiting application on the client system. For a detailed discussion of
the server and its components for the OpenVMS platform, see the Oracle SQL/Services
Server Configuration Guide.

1.2 Supported Client Platforms

Oracle SQL/Services supports the following client platforms:

MS Windows 2000, XP, Vista, Server 2003, Server 2008, 7, XP X64, Vista X64, Server
2003 X 64, Server 2008 X64 and 7 X64 clients

The Oracle SQL/Services client API is shipped asaDynamic Link Library (DLL) on all
Windows platforms. You use any C, C++ or C# on Windows to develop client
applications that you link against the DLL to access the Oracle SQL/Services client
API. The name of the DLL file for Windows 2000, XP, Vista, Server 2003, Server 2008
and 7 clientsis sgsapi32.dll. The name of the DLL file for Windows XP X64, Vista
X64, Server 2003 X64, Server 2008 X64 and 7 X64 clients is sgsapi64.dll.

The Windows platforms support the use of an .ini fileto customize various aspects of
Oracle SQL/Services client API operations including communications, client logging,
and so forth. The name of the .ini file for Windows 2000, XP, Vista, Server 2003, Server
2008 and 7 clientsis sgsapi 32.ini. The name of the .ini file for Windows XP X64, Vista
X64, Server 2003 X64, Server 2008 X64 and 7 X64 clientsis sgsapi64.ini. The .ini file
that is provided by the installation procedure has all the customizations commented out.
You can tailor the operation of the Oracle SQL/Services client API to your specific

Overview 1-5

Supported Client Platforms

requirements by reading the directions, then uncommenting and providing appropriate
values for the options you need to set.

The Oracle SQL/Services Windows 2000, XP, Vista, Server 2003, Server 2008, 7, XP
X64, Vista X64, Server 2003 X64, Server 2008 X64 and 7 X64 client API software
supports the TCPIP network transport.

Client applications on al Windows platforms select the TCP/IP transport using an
Oracle SQL/Servicesclient API service or using an .ini file. Specifying atransport in an
.ini file overrides a selection made using the Oracle SQL/Services client API service. If
you are connecting to a server node running multiple versions of Oracle SQL/Services,
then you must use an .ini file to select an alternate TCP/IP network port if the server
you are using does not use the default network ports. See the .ini file on your platform
for more information on setting Oracle SQL/Services client API options.

To use an alternate network port on server node A, define an alternate network port in
the section of the .ini file for server node A. The alternate network port parameter in the
.ini fileis TCPIPPortNumber. This parameters is defined under the nodename
subsection.

The TCPIPPortNumber should be specified as the TCP/IP port number of the sglsrv_
disp, or other user defined, dispatcher on the server side. To specify an aternate TCP/IP
port number, define the TCPIPPortNumber parameter, where the port number must be a
number:

1

; Use server TCP/I P port nunber 119 when connectiong to ROBSR/

[RDBSRV]
TGP PPor t Nunber =119

Alternate network ports can also be specified when calling the sglsrv_associate routine,
within the associate_str structure. Values passed to sqlsrv_associate supercede the
values specified in the .ini file.

= HPTru64 UNIX client

The Oracle SQL/Services HP Tru64 UNIX client API software is shipped as an object
library against which you link your client application programs.

The Oracle SQL/Services HP Tru64 UNIX client API software supports the DECnet
and TCP/IP network transports. If you are connecting to a server node running multiple
versions of Oracle SQL/Services and the server you are using does not use the default
network ports, then you can specify alternate network ports.

1-6 Guide to Using the Oracle SQL/Services Client API

Supported Client Platforms

To specify an alternate DECnet object, define the SQLSRV_DECNET_OBJECT
environment variable, where the DECnet object can be either a number or a name:

csh> setenv SQLSRV DEONET _(BIECT decnet 10

To specify an alternate TCP/IP port number, define the SQLSRV_TCPIP_PORT
environment variable, where the port number must be a number:

csh> setenv SQLSRV_TCPI P_PCRT 1234

The definition for alternate network ports is made on a per-client basis. Alternate
network ports can also be specified when calling the sglsrv_associate routine, within the
associate_str structure. Values passed to sqlsrv_associate supercede the values specified
in the environment variables.

HP-UX client

The Oracle SQL/Services HP-UX client API software is shipped as an object library
against which you link your client application programs.

The Oracle SQL/Services HP-UX client API software supports the TCP/IP network
transport. If you are connecting to a server node running multiple versions of Oracle
SQL/Services and the server you are using does not use the default network ports, then
you can specify alternate network ports.

To specify an alternate TCP/IP port number, define the SQLSRV_TCPIP_PORT
environment variable, where the port number must be a number:

csh> setenv SQLSRV_TCPI P_PCRT 1234

The definition for alternate network ports is made on a per-client basis. Alternate
network ports can also be specified when calling the sglsrv_associate routine, within the
associate_str structure. Values passed to sqlsrv_associate supercede the values specified
in the environment variables.

Linux client

The Oracle SQL/Services Linux client API software is shipped as an object library
against which you link your client application programs.

The Oracle SQL/Services Linux client API software supports the TCP/I P network
transport. If you are connecting to a server node running multiple versions of Oracle
SQL/Services and the server you are using does not use the default network ports, then
you can specify alternate network ports.

To specify an alternate TCP/IP port number, define the SQLSRV_TCPIP_PORT
environment variable, where the port number must be a number:

Overview 1-7

Supported Client Platforms

csh> setenv SQLSRV_TCPI P_PCRT 1234

The definition for alternate network ports is made on a per-client basis. Alternate
network ports can also be specified when calling the sglsrv_associate routine, within the
associate_str structure. Values passed to sqlsrv_associate supercede the values specified
in the environment variables.

« OpenVMSclients

The Oracle SQL/Services OpenVMS Alpha and OpenVMS 164 client API softwareis
shipped as shared images against which you link your client application programs.

The Oracle SQL/Services OpenVMS client API software supports the DECnet, TCP/IR,
and Oracle Net network transports. If you are connecting to a server node running
multiple versions of Oracle SQL/Services and the server you are using does not use the
default network ports, then you can specify alternate network ports.

To specify an alternate DECnet object, define the SQLSRV$SDECNET_OBJECT logica
name using the following syntax where the DECnet object can be either a number or a
name:

$ DEFl NE SQLSRVSDEONET_(BJECT “<nunber > | <nane>"

For example:
$ DEFl NE SQLSRVSDEONET_CBIECT “ 142"

or
$ DEFl NE SQLSRVSDEONET_(BIECT “ SQLSRV73”

To specify an alternate TCP/IP port number, define the SQLSRV$TCPIP_PORT logica
name using the following syntax where the TCPIP_PORT number must be a number:

$ DEFI NE SQLSRVSTCP P_PCRT “ <nunber >”

For example:

$ DEFl NE SQLSRVSTCPI P_PCRT “10042”

The definition for alternate network ports is made on a per-client-process basis.
Alternate network ports can also be specified when calling the sglsrv_associate routine,

within the associate_str structure. Values passed to sglsrv_associate supercede the
values specified by the logical names.

1-8 Guide to Using the Oracle SQL/Services Client API

Preparing Programmers to Use Oracle SQL/Services

1.3 Preparing Programmers to Use Oracle SQL/Services

This section describes what application programmers must know to devel op applications,
and provides arecommended reading path for learning how to develop applications.

1.3.1 What Programmers Must Know to Write Applications

Asaprogrammer creating Oracle SQL/Services applications, you must be familiar with the
following:

C, C++ or C# programming languages

Have experience in writing programs in the C, C++ or C# programming languages.
Know how to call Oracle SQL/Services client API routines from C, C++ or C#
programsto create Oracle SQL/Services applications.

OpenVMS client applications can be written in any language that supports the
OpenVMS Calling Standard.

Client system environment

Know how to invoke and use a text editor on your client system to create programming
source files. Be able to run your compiler and linker and run the resulting executable
image.

SQL language (and the dynamic SQL interface) concepts

Have a working knowledge of the SQL language. A conceptual familiarity with the
dynamic SQL interface of Oracle Rdb can help you understand the client API routines.

Oracle SQL/Services API

Understand how to use the client API routinesin your applications.

1.3.2 Reading Path for Programmers

Asaprogrammer assigned to write client applications, you can become familiar with the
process of developing applications using Oracle SQL/Services by reading this guide as
follows:

Chapter 2 helps you to understand the rel ationship between the dynamic SQL interface
and the client API routines, the function of the SQL Communications Area (SQLCA)
and the SQL Descriptor Area (SQLDA or SQLDA?2) data structuresin Oracle
SQL/Services, and how to build applications using the Oracle SQL/Services callable
API.

Overview 1-9

Location of Oracle SQL/Services Error Documentation

Chapter 3 introduces you to an Oracle SQL/Services sample application that illustrates
how to use the Oracle SQL/Services callable client API routines, and includes
information on how to compile, link and run the sample application on al the client
platforms supported by Oracle SQL/Services.

Chapter 6 helps you to understand the client API routines that you call from your
applications. The chapter provides detailed reference information about all routinesin
the API callable library.

Chapter 7 presents detailed reference descriptions of the Oracle SQL/Services data
structures.

Chapter 8 describes the data types used in Oracle SQL/Services.

Other chaptersin this guide will support you in your programming as you refine your
application development skills.

1.4 Location of Oracle SQL/Services Error Documentation

Programmers devel oping Oracle SQL/Services API client applications can encounter error
messages from a variety of sources:

Oracle SQL/Services

When error mnemonics are preceded by SQLSRV _, refer to the sglsrv.h file and Oracle
SQL/Services help for descriptions of errors generated by Oracle SQL/Services client
API routines and the Oracle SQL/Services server. Chapter 6 of this guide describes the
specific errorsthat can be returned by each Oracle SQL/Services client API routine.

SQL

When error mnemonics are preceded by SQL _, refer to the SQL documentation and
SQL help for further error information.

Oracle Rdb

When error mnemonics are preceded by SQL_RDBERR_, refer to the Oracle Rdb SQL
Reference Manual, the Oracle Rdb7 Guide to SQL Programming, and Oracle Rdb help
for pointersto error information.

Network

When you receive the primary SQLSRV_NETERR or SQLSRV_HOSTERR errors,
look at the network error documentation for the network error referred to in the
secondary error status. Refer to the Oracle SQL/Services Installation Guide for more
information.

1-10 Guide to Using the Oracle SQL/Services Client API

What System Managers Must Know to Support Oracle SQL/Services

1.5 What System Managers Must Know to Support Oracle SQL/Services

If you are the person responsible for managing Oracle SQL/Services at your site, see the
Oracle SQL/Services Installation Guide and the Oracle SQL/Services Server Configuration
Guide.

Information about installing the client API software for all interfaces supported by Oracle
SQL/Servicesis not included in this document. Refer to the Oracle SQL/Services
Installation Guide for instructions on installing the OpenVMS clients and to the readme and
install guide files provided on the Oracle SQL/Services Client kit for installing all other
clients described in Table 1-1.

Overview 1-11

What System Managers Must Know to Support Oracle SQL/Services

1-12 Guide to Using the Oracle SQL/Services Client API

2

Developing Oracle SQL/Services
Applications

This chapter describes a number of topics programmers must understand before writing
client applications. Topics covered in this chapter include:

A description of the dynamic SQL interface for Oracle Rdb

The Oracle SQL/Services client APl routines that programmers use in client
applications to access the dynamic SQL interface on the server system correspond
closely to the dynamic SQL interface statements. An understanding of the dynamic
SQL interface can help programmers understand the way the client API routines work.
See Section 2.1 to Section 2.3.

An overview of Oracle SQL/Services client API routines

Programmersinclude in their applications calls to the Oracle SQL/Services client API
routines to access Oracle SQL/Services functions on the server system. Client
applications link against the Oracle SQL/Services client API library, DLL, or shared
image to access these routines. See Section 2.4.

An overview of Oracle SQL/Services data structures

The Oracle SQL/Services client API routines use a set of data structures that allow
two-way communication between applications on the client system and SQL on the
server system. See Section 2.5.

A recommended approach to devel oping Oracle SQL/Services applications

Oracle Corporation recommends that you let Oracle SQL/Services allocate memory for
SQLCA, SQLDA, and SQLDA?2 data structures and that you use functional interface
routines to access these data structures. See Section 2.6.

Steps for building Oracle SQL/Services application programs

Developing Oracle SQL/Services Applications 2-1

Introduction to the Dynamic SQL Interface of Oracle Rdb

Programmers must compile and link their applications to create an executable image
that can access Oracle SQL/Services. The stepsto link an application program differ
from one client system to another and are thus provided for each client system. See
Section 2.7.

If you are already familiar with the dynamic SQL interface, you may want to skip to
Section 2.4, which describes the structures used by Oracle SQL/Services client API routines.

2.1 Introduction to the Dynamic SQL Interface of Oracle Rdb

The dynamic SQL interface of Oracle Rdb allows application programs to formulate and
execute SQL statements at run time. It consists of:

« Dynamic SQL statements

A set of SQL statements with which you can write applications using either the SQL
precompiler or the SQL module processor

. Data structures

A set of data structures that provides away for the dynamic SQL interface and
application programs to exchange data and metadata

Applications that use the dynamic SQL interface might, for example, trandate interactive
user input into SQL statements, or open, read, and execute files containing SQL statements.
The Oracle SQL/Services executor isitself adynamic SQL interface application.

For more detailed information on the dynamic SQL interface of Oracle Rdb, see the Oracle
Rdb7 Guide to SQL Programming and the Oracle Rdb SQL Reference Manual.

2.2 Overview of Dynamic SQL Interface Statements

The dynamic SQL interface statements are summarized in Section 2.2.1 and Section 2.2.2,
which group the statements according to function. For each dynamic SQL interface
statement, there is an Oracle SQL/Services client API routine that performs the same
function. Some client API routines, like sglsrv_prepare, combine the functions of two
dynamic SQL interface statements.

2.2.1 Execution Statements

Execution statements prepare and execute SQL statements and rel ease prepared SQL
statement resources.

« PREPARE

2-2 Guide to Using the Oracle SQL/Services Client API

Overview of Dynamic SQL Interface Statements

Compiles the SQL statement, checking it for errors, and returns a handle to the prepared
statement. The handle is subsequently used to reference the prepared statement.

DESCRIBE

Stores the number and metadata information of any select list items or parameter
markersin an SQLDA structure.

EXECUTE
Executes apreviously prepared SQL statement that is not a SELECT statement.
EXECUTE IMMEDIATE

Prepares and executes in one step any SQL statement (other than SELECT) that does
not contain parameter markers or select list items.

RELEASE
Releases all resources used by a prepared SQL statement.

Except for the DESCRIBE statement, each of these dynamic SQL statements has an
equivalent Oracle SQL/Services routine. In Oracle SQL/Services, the DESCRIBE and
PREPARE statements are combined in asingle routine, as shown in Table 2-2.

2.2.2 Result Table Statements

Result table statements allow your program to declare a cursor, open a cursor, fetch data
from an open cursor, and close an open cursor.

DECLARE CURSOR

Declares a cursor for a prepared SELECT statement.

OPEN

Opens a cursor declared for a prepared SELECT statement.

FETCH

Retrieves values from a cursor declared for a prepared SELECT statement.
CLOSE

Closes a cursor.

Developing Oracle SQL/Services Applications 2-3

Using the Dynamic SQL Interface of Oracle Rdb

2.3 Using the Dynamic SQL Interface of Oracle Rdb

Note: Thefollowing general discussion isrelevant only to the dynamic
SQL interface. Some of the functionality described in this section may not
be directly accessible to an Oracle SQL/Services client application.

You can execute the simplest SQL statements that neither accept variable data values from
nor return data values to your application using the EXECUTE IMMEDIATE dynamic SQL
statement. If you use EXECUTE IMMEDIATE to execute a statement, SQL automatically
prepares, executes, and releases the statement for you. However, if you need to execute the
same SQL statement more than once, using EXECUTE IMMEDIATE isinefficient because
SQL must prepare and rel ease the statement each time it is executed. In this situation, it is
more efficient for your application to prepare the statement, execute it as many times as
necessary, and release it only when it is no longer needed.

More complex SQL statements can accept variable data values from or return data values to
your application. Your application provides variable data values to SQL statements as
parameter markers, using a question mark character (?) to identify each parameter marker. A
SELECT statement will return a select list item for each column named in the select list
clause. In addition, you a so identify the data values returned by singleton-SELECT,
UPDATE . .. RETURNING, and CALL statements using a question mark character (?) for
each returned datavalue.

To process more complex SQL statements with parameter markers or select list items, and to
improve the efficiency of your application when processing SQL statements that are used
multiple times, you first use PREPARE to dynamically compile the statement. You then
optionally use DESCRIBE to obtain the metadata for any parameter markers or select list
items. You use the EXECUTE statement to process executable SQL statements, such as
INSERT, UPDATE, DELETE, singleton-SELECT, CALL, and compound statements. To
process aresult table formed by a SELECT statement, you first use DECLARE CURSOR
and OPEN to declare and open a cursor. You then use FETCH to retrieve rows from the
result table. Finally, you use CL OSE to close the cursor at the end. When a statement is no
longer needed, you free the resources used by the prepared statement using the RELEASE
statement.

Section 2.3.1 describes how to use dynamic SQL operations to process statements that
contain parameter markers. Section 2.3.2 describes how to access the data returned by
SELECT statements. Section 2.3.3 describes how to handle statements about which the
program has no prior information.

Table 2-1 lists the major SQL statements that can be processed using dynamic SQL.
However, certain SQL statements cannot be processed using dynamic SQL. Thisincludes all

2-4 Guide to Using the Oracle SQL/Services Client API

Using the Dynamic SQL Interface of Oracle Rdb

the SQL statements listed in Table 2—2 including those that comprise the dynamic SQL
interface itself. Furthermore, statements and commands such as SHOW that are processed
only by the interactive SQL utility cannot be processed using the dynamic SQL interface.

Table 2-1 SQL Statements That Can Be Processed Using Dynamic SQL Operations

Statement

SELECT

Associated Dynamic SQL Statements

PREPARE, Extended Dynamic DECLARE CURSOR,
DESCRIBE (optional), OPEN, FETCH, CLOSE, RELEASE

PREPARE, DESCRIBE (optional), EXECUTE and RELEASE,
or EXECUTE IMMEDIATE (if no parameter markers or select
list items)

INSERT, UPDATE, DELETE,
CALL, Singleton-SELECT,
ATTACH, CONNECT, SET
CONNECT, DISCONNECT

CREATE, ALTER, DROP,
DECLARE TRANSACTION,

PREPARE, EXECUTE and RELEASE, or EXECUTE
IMMEDIATE

SET TRANSACTION,
COMMIT, ROLLBACK,
GRANT, REVOKE,
COMMENT ON

Table 2-2 SQL Statements That Cannot Be Processed Using Dynamic SQL

Operations

SQL Statement

Related Oracle SQL/Services Routine

BEGIN DECLARE
CLOSE

DECLARE ALIAS
DECLARE CURSOR
DECLARE STATEMENT
DECLARE TABLE
DESCRIBE

END DECLARE
EXECUTE

EXECUTE IMMEDIATE
FETCH

INCLUDE

none

sglsrv_close_cursor

none
sglsrv_declare_cursor
none

none

sglsrv_prepare (implicit in)
none

sglsrv_execute in_out
sglsrv_execute_immediate
sglsrv_fetch

none

Developing Oracle SQL/Services Applications 2-5

Using the Dynamic SQL Interface of Oracle Rdb

Table 2-2 SQL Statements That Cannot Be Processed Using Dynamic SQL
Operations (Cont.)

SQL Statement Related Oracle SQL/Services Routine
OPEN sglsrv_open_cursor

PREPARE sglsrv_prepare

RELEASE sglsrv_release statement

WHENEVER none

2.3.1 Parameter Markers

Parameter markers represent variables that can be processed using dynamic SQL operations
with SQL SELECT, INSERT, UPDATE, DELETE, CALL, Singleton-SELECT, ATTACH,
CONNECT, SET CONNECT, and DISCONNECT statements. Question marks (?)
embedded in the statement string denote parameters that are to be replaced when the
statement is processed using the dynamic SQL interface. An example of an SQL statement
with parameter markersis:

I NSERT | NTO EMPLOYEES
(EMPLOYEE | D, FIRST_NAME, LAST NAME, ATY)
VALLES (2, 2, 2, ?);

The mechanism for mapping parameter markers to variables in application programsisa
data structure called the SQLDA or SQLDA?2 (see Section 2.3.4 and Section 7.5). The
DESCRIBE statement writes information about parameter markers into an SQL DA or
SQLDAZ2 structure. Your program examines the SQLDA or SQLDA?2 structure, allocates a
data variable and an indicator variable for each parameter marker, obtains values for each
parameter marker, and stores the values in the SQLDA or SQLDA?2 data variables before
processing the SQL statement using the dynamic SQL interface.

2.3.2 Select List Items

Programs that process SELECT statements using dynamic SQL operations must declare a
cursor to receive the result table, and must allocate memory for each select list item in the
SEL ECT statement. After the cursor is opened, FETCH statements return val ues for rows of
the result table.

INSERT . .. RETURNING, UPDATE. .. RETURNING, CALL, compound statements and
singleton-SELECT statements are executabl e statements that are processed using the
EXECUTE dynamic SQL statement that can return information in a select list SQLDA. For
example,

2-6 Guide to Using the Oracle SQL/Services Client API

Using the Dynamic SQL Interface of Oracle Rdb

UPDATE BEMPLOYEES SET SALARY=SALARY+? WHERE BADGE=? RETURN NG SALARY | NTO ?;

Aswith parameter markers, the mechanism for mapping select list items to host variablesis
adatastructure called the SQLDA or SQLDAZ2 (see Section 2.3.4 and Section 7.5). The
DESCRIBE statement writes select list information into the SQLDA or SQLDAZ2.

If the SQL statement contains parameter markersin addition to select list items, the program
must also set up host variables for the parameter markers and assign values to them.

2.3.3 Unknown Statements

It is possible to process SQL statements using the dynamic SQL interface about which the
program has no prior information. Such statements may contain parameter markers or select
list items or both. The program can use the DESCRIBE statement to obtain an SQLDA or
SQLDAZ2 structure containing information about the numbers and data types of select list
items and parameter markers. Then the program all ocates data and indicator variables as
appropriate and writes the addresses of those variables into the SQLDA or SQLDA2
structures before executing the statement.

2.3.4 SQL Descriptor Area (SQLDA or SQLDA2)

The SQL Descriptor Area (SQL DA) or Extended SQL Descriptor Area (SQLDA?2) isadata
structure that enables programs to communicate with SQL about parameter markers and
select list items.

Oracle Rdb SQL provides an extended version of the SQLDA structure, called the
SQLDAZ2, which supports additional fields and field sizes. Oracle SQL/Services supports
this SQLDA2 structure. For more information about the SQLDA?2 data structure and its use
with the SQL interface of Oracle Rdb, refer to Section 7.5 and to the appendix of the Oracle
Rdb SQL Reference Manual.

When SQL processes a DESCRIBE statement, it writes information about select list items
(for aDESCRIBE . . . SELECT LIST statement) or parameter markers (for a DESCRIBE . .
. MARKERS statement) of a prepared statement into an SQLDA or SQLDA2.

The host language program examines the SQLDA or SQLDA?2 to determine how many
select list items or parameter markers are present and the data type of each. The program
must provide memory for data and indicator variables for each parameter marker or select
list item, and write the address of each memory location into the SQL DA or SQLDA2.

For parameter markers, the program writes values into the SQLDA or SQLDA?2 before
processing the SQL statement using dynamic SQL operations. For select list items, the
program reads the data written into the SQLDA or SQLDA?2 by subsequent FETCH
statements.

Developing Oracle SQL/Services Applications 2-7

Overview of Client API Routines

The Oracle Rdb SQL Reference Manual contains an appendix on the SQLDA and SQLDA?2
and a section on the DESCRIBE statement that discusses the MARKERS and SELECT
LIST clauses of the DESCRIBE statement in more detail.

2.3.5 SQL Communications Area (SQLCA)

The SQL Communications Area (SQL CA) isa data structure that SQL usesto provide
information about the execution of SQL statements to application programs. SQL updates
the contents of the SQLCA after completion of every executable SQL statement. Fields of
interest in the SQLCA are the SQLCODE field and severa elements of the SQLERRD
array.

The SQLCODE field contains the completion status of every SQL request.

Both SQL and Oracle SQL/Services may storeinformation in one or more elements of the
SQLERRD array to provide additional details about the execution of a SQL statement. For
example, SQL stores the statement type in the SQLERRD array following a PREPARE
request; while Oracle SQL/Services stores additional network error information in the
SQLERRD array if an associate fails due to a network error.

See Section 7.4 for adescription of the other values of the SQLERRD array. Section 7.3
describes the SQLCA in detail. In addition, the Oracle Rdb SQL Reference Manual contains
an appendix on the SQL CA.

2.4 Overview of Client API Routines

The Oracle SQL/Services client application programming interface (APl) isaset of callable
routines that client appplications use to access Oracle SQL/Services functions. The client
API routines are grouped according to function and summarized in Section 2.4.1 through
Section 2.4.5.

2.4.1 Association Routines

Association routines create and terminate client/server associations and control the
association environment. These routines are:

« sglsrv_abort

Terminates a client/server association. Disconnects from the server and rel eases all
client resources related to the association.

« Sglsrv_associate

2-8 Guide to Using the Oracle SQL/Services Client API

Overview of Client API Routines

Creates a client/server association. Makes the remote connection to the server process
and negotiates association characteristics and attributes.

sglsrv_get_associate info
Gets association information.
sglsrv_release

Terminates a client/server association in an orderly fashion. Sends a message to the
server requesting termination of the association, disconnects the network link, and
releases all client resources related to the association.

2.4.2 SQL Statement Routines

SQL statement routines prepare and execute SQL statements, and release prepared SQL
statement resources. These routines map directly to the dynamic SQL interface. These
routines are:

sglsrv_prepare

Prepares adynamic SQL statement. It returns a statement identifier and SQLDA or
SQLDAZ2 metadatainformation. This routine maps to the dynamic SQL interface
PREPA RE and DESCRIBE statements.

sglsrv_execute in_out

Executes aprepared SQL statement. This routine maps to the dynamic SQL interface
EXECUTE statement.

sglsrv_execute immediate

Prepares and executes an SQL statement. This routine cannot be used if the SQL
statement contai ns parameter markers or select list items. This routine mapsto the
dynamic SQL interface EXECUTE IMMEDIATE statement.

sglsrv_release statement

Releases client and server statement resources associated with a prepared statement.
This routine maps to the dynamic SQL interface REL EASE statement.

2.4.3 Result Table Routines

Result table routines allow the caller to fetch data from the server by providing calls to open
acursor, fetch from an open cursor, and close an open cursor. These routines are:

sglsrv_declare cursor

Developing Oracle SQL/Services Applications 2-9

Overview of Client API Routines

Declares the type and mode of an extended dynamic cursor. Note that the cursor is
actually declared at the server when sglsrv_open_cursor is called the first time for a
specific cursor name. If you do not call the sglsrv_declare_cursor routine for a
particular cursor name before calling sglsrv_open_cursor, Oracle SQL/Services
implicitly declares the cursor as type table and mode update.

This routine conceptually maps to the dynamic SQL interface DECLARE CURSOR
statement.

sglsrv_open_cursor

Opens a cursor by associating a cursor name with a prepared statement identifier. The
cursor nameis used in each reference to the cursor. The sglsrv_open_cursor routine aso
declares the extended dynamic cursor at the server the first timeit is called for a specific
cursor name.

This routine conceptually maps to the dynamic SQL interface OPEN statement.
sglsrv_fetch

Fetches one row of data from an open cursor.

This routine maps to the dynamic SQL interface FETCH statement.
sglsrv_fetch many

Requests that multiple rows of data be fetched and transmitted to the client, which
frequently reduces the number of network messages.

This routine has no equivalent dynamic SQL interface statement. Rather, it controlsthe
way the server sends row data back to the client after it has been retrieved by the server
using the dynamic SQL interface FETCH statement.

sglsrv_close_cursor
Closes an open cursor.

This routine maps to the dynamic SQL interface CL OSE statement.

2.4.4 Utility Routines

Utility routines provide miscellaneous services to the caller. These routines are:

sglsrv_allocate sglda data or sglsrv_allocate sglda2_data

Allocates memory for the SQLDA or SQLDA?2 data buffer and indicator variable fields.
sglsrv_free sglda dataor sglsrv_free sglda?_data

Frees memory for the SQLDA or SQLDA?2 data buffer and indicator variable fields.

2-10 Guide to Using the Oracle SQL/Services Client API

Overview of Client API Routines

sglsrv_set_option
Sets the option that determines whether an SQLDA or SQLDAZ2 is used.

2.4.5 Functional Interface Routines

The functional interface routines provide access to data and metadata stored in the SQLCA,
SQLDA, and SQLDA?2 structures. These routines replace the need for making direct
references to structure fieldsin client applications. These routines are:

sglsrv_sglca error

Returns from the SQL CA structure the error codes for the last statement executed.
sglsrv_sqlca error_text

Returns from the SQL CA structure the error text for the last statement executed.
sglsrv_sglca_count

Returns from the SQL CA the number of rows processed by a statement and replaces
direct access to the SQL CA.SQLERRD[2] field.

sglsrv_sglca sglerrd

Returns to your application the contents of the entire SQL CA.SQL ERRD array which
includes, for example, optimizer information for a table cursor, and number of
segments, maximum segment length, and so forth for alist cursor, following a
successful call to sglsrv_open_cursor.

sglsrv_sglca sglstate
Returns the SQL STATE associated with the SQL CODE for the last statement executed.
sglsrv_sqglda sqld or sqlsrv_sglda2_sqgld, sglsrv_sglda sqld73 or sglsrv_sglda2_sgld73

Returns the number of parameter markers or select list itemsin the SQLDA or
SQLDA?2 and replaces direct access to the SQLD field in an SQLDA or SQLDA?2.

sglsrv_sglda_column_name or sglsrv_sglda2_column_name, sglsrv_sglda column_
name73 or sglsrv_sqlda2_column_name73

Copies the column name for a particular column from the SQLDA or SQLDA?2 into the
variable passed in thiscall.

sglsrv_sglda_column_type or sglsrv_sglda2_column_type, sglsrv_sglda_column_
type73 or sqlsrv_sglda2_column_type73

Returns from the SQLDA or SQLDA 2 information about the data type of a column.

Developing Oracle SQL/Services Applications 2-11

Overview of Client API Routines

» sglsrv_sglda bind_dataor sglsrv_sglda2_bind_data, sglsrv_sglda_bind_data73 or
sglsrv_sglda2_bind_data73

Allows programsto allocate their own storage for data and indicator variablesin an
SQLDA or SQLDAZ2.

» sglsrv_sglda unbind_sgldaor sglsrv_sglda?2_unbind_sglda, sqlsrv_sglda unbind_
sglda73 or sglsrv_sglda2_unbind_sgldar3

Releases al variables bound with the sglsrv_sglda bind_data, sglsrv_sglda bind
data73, sglsrv_sqlda2_bind_data or sglsrv_sglda2_bind_data73 routines.

» sglsrv_sglda ref_dataor sqlsrv_sqlda2_ref data, sqlsrv_sglda ref _data73 or sglsrv_
sglda2_ref data73

Returns from the SQLDA or SQLDA2 the type and length and addresses of the data and
indicator variables for a column.

» sglsrv_sglda unref_dataor sqlsrv_sglda2_unref_data, sglsrv_sglda_unref_data73 or
sglsrv_sqlda2_unref_data73

Frees resources tied up by the sglsrv_sglda ref _data, sqlsrv_sglda ref _data73, sglsrv_
sglda2_ref dataor sglsrv_sglda2_ref_data73 routines.

» sglsrv_sglda get dataor sglsrv_sqlda2 get data, sglsrv_sglda get_datarz3 or sqlsrv_
sglda2_get data73

Copies data and indicator values from the SQLDA or SQLDAZ2 to program variables
and provides access to SQLDA or SQLDA?2 information for languages that do not
support explicit type coercion.

» sglsrv_sglda set dataor sqlsrv_sglda2_set data, sqlsrv_sglda set data73 or sglsrv_
sglda2_set _data73

Copies data and indicator values from program variablesinto the SQLDA or SQLDA2.

» sglsrv_sglda set sgllen or sglsrv_sglda?_set sgllen, sglsrv_sglda set_sgllen73 or
sglsrv_sglda2_set_sgllen73

Sets the length of acolumn of type SQLSRV_ASCII_STRING, SQLSRV_VARCHAR,
and SQLSRV_VARBY TE by setting the SQLLEN field in an SQLDA or SQLDA2.
Sqlsrv_sglda2_set sqllen and sqlsrv_sqlda2_set sqllen73 aso set the SQLOCTET_
LEN inan SQLDA2.

» sglsrv_sglda2_char_set info, sglsrv_sglda2_char_set_info73
Returns SQL character set information from the SQLDA2.

2-12 Guide to Using the Oracle SQL/Services Client API

Developing Applications with the Functional Interface Routines

2.5 Overview of Data Structures

Oracle SQL/Services uses data structures to communicate with the client application. The
client API routines use the following data structures:

. ASSOCIATE_STR

This structure is passed as a parameter to sqlsrv_associate to set the characteristic of an
association. The sglsrv_associate routine opens the communications link between client
and server and creates an association. For more information, see Section 7.2.

. SQLCA

The SQLCA (SQL Communications Area) is used to store error messages and SQL
statement information returned by Oracle SQL/Services. When aclient API routine
returns a nonzero value indicating that an error occurred, the SQLCA contains
additional error information. For more information, see Section 7.3.

. SQLDA or SQLDA2

The SQLDA (SQL Descriptor Area) or SQLDA?2 (Extended SQL Descriptor Ared) is
used to exchange database metadata and data for parameter markers (input) and select
list items (output). The Oracle SQL/Services SQLDA or SQLDA2 isidentical to that
used by the dynamic SQL interface for Oracle Rdb. For more information, see
Section 2.3.4 and Section 7.5.

2.6 Developing Applications with the Functional Interface Routines

When designing an application, you must decide how to allocate memory for SQLCA,
SQLDA, and SQLDA?2 data structures and how to access these data structures.

Oracle Corporation recommends that you let Oracle SQL/Services allocate memory for
SQLCA, SQLDA, and SQLDA?2 data structures. To let Oracle SQL/Services alocate
memory for the SQL CA data structure, specify aNULL pointer in the call to sglsrv_
associate. To let Oracle SQL/Services alocate memory for SQLDA and SQLDA?2 data
structures, specify NULL SQLDA_ID pointersin the call to sglsrv_prepare. Note that you
can direct Oracle SQL/Services to use application-specific memory allocation and
deallocation routines by specifying their addresses in the associate data structure
(ASSOCIATE_STR) that you passto sqlsrv_associate. Alternatively, you can allocate
memory for SQLCA, SQLDA, and SQLDA?2 data structures prior to calling sglsrv_associate
and sqlsrv_prepare.

The Oracle SQL/Services client API provides a set of functional interface routines that allow
indirect accessto the SQLCA, SQLDA, and SQLDA?2 data structures. Oracle Corporation
recommends that you use the functional interface routines to access the SQLCA, SQL DA,

Developing Oracle SQL/Services Applications 2-13

Building Oracle SQL/Services Application Programs

and SQLDAZ2 data structures to facilitate portability across all supported client platforms.
See Section 2.4.5 for a complete list of the functional interface routines and a brief
description of each routine. Alternatively, you can directly access the SQLCA, SQLDA, and
SQLDAZ2 data structures. Direct accessto SQLCA, SQLDA, and SQLDA2 data structuresis
supported but is not recommended by Oracle Corporation.

2.7 Building Oracle SQL/Services Application Programs

The process of building Oracle SQL/Services application programs consists of these steps:

1.

Compile your code using the following #include compiler directive:

#i ncl ude <sql srv. h> /* Typedefs, function prototypes, error literal s*/

If your application accesses the SQLCA, SQLDA, or SQLDA?2 structures directly, also
include the sglsrvca.h or sqlsrvda.h header files as follows.

#i ncl ude <sgl srvca.h> /*SQCA structure */
#i ncl ude <sql srvda. h> /*SQDA and SQDA2 structures */
#i ncl ude <sql srv. h>

Compile errorswill result if the include files are not in this order.

On most operating systems, include files are kept in a standard location, indicated in C
by placing angle brackets around the name of thefile. If these directives do not work on
your system, ask the person who installed the Oracle SQL/Services APl wherethe
include files are located.

Note: Some C compilers have aproblem with %S and %D when
printing error messages (for example, %SQL SRV and %DBS).

To avoid this problem, Oracle Corporation recommends that you use either a printf or
puts statement when printing Oracle SQL /Services error messages:

printf ("9%", message);

or

puts (nessage);

Use a Jacket Header File When Calling the Oracle SQL/Services APl From C++

The Oracle SQL/Services header files, sglsrv.h, sglsrvcah, and sglsrvda.h, do not
provide built-in support for use with the C++ programming language. However, by

2-14 Guide to Using the Oracle SQL/Services Client API

Building Oracle SQL/Services Application Programs

providing ajacket header file, you may call the Oracle SQL/Services APl from C++ as
you would from C. To include the Oracle SQL/Services header filesin a C++
application, create the following header file, called sglsrv.hxx, and #include it in your
application program:

1

/1 Define W5 if conpiling on QpenWS to pick up the $ versions of
/] the service names.

1

#ifdef _ WB

#i f ndef W5

#defi ne WWB

#endi f

#endi f

1

/1 Include the headers files using C not C+. No need to include

/1 sqlsrvca. h or sqlsrvda.h unl ess the application directly accesses
/1 the SQLCA and SQ.DA structures.

I

extern "C'

{

/'l #include <sql srvca. h>
/'l #include <sql srvda. h>
#i ncl ude <sql srv. h>

}

3. Link your object module with the Oracle SQL/Services client API. Linking procedures
are system dependent and are thus discussed separately in the following sections.

Linking procedures can also depend on the network transport you want to use with
Oracle SQL/Services and the specific client.

2.7.1 Building Applications on the OpenVMS Operating System
The OpenVMS includefiles areinstalled in SY S3LIBRARY.

To link your program, enter the following command:
$ LINK obj ect . obj , SYSSLI BRARY: SQSRV$API / CPT

Replace object with the name of your object module.

Developing Oracle SQL/Services Applications 2-15

Building Oracle SQL/Services Application Programs

If you want to relink aclient application that was compiled with VAX C, you must create an
options file that specifies SY SSLIBRARY:VAXCRTL/SHARE and link against this new
options file as well as SY SSLIBRARY:SQL SRV$API.OFT.

2.7.2 Building Applications on the MS Windows Operating System

This section describes how to build and run applications for Windows 2000, XP, Vista,
Server 2003, Server 2008, 7, XP X 64, Vista X64, Server 2003 X64, Server 2008 X64 and 7
X64.

2.7.2.1 Building 32-Bit Applications for Windows X86 Systems

The Oracle SQL/Services client API for Windows 2000, XP, Vista, Server 2003, Server
2008 or 7 is supplied in the form of a Dynamic Link Library (DLL) called sgsapi32.dil,
together with alibrary file called sqsapi32.lib. Review your Windows documentation for
information about creating applications that link against aDLL. If you use sgsdyn32.mak as
atemplate, you will need to customize it to your application's particul ar requirements.

2.7.2.2 Building 64-Bit Applications for Windows X64 Systems

The Oracle SQL/Services client API for Windows XP X64, Vista X64, Server 2003 X 64,
Server 2008 X64 or 7 X64 is supplied in the form of a Dynamic Link Library (DLL) called
sgsapi64.dll, together with alibrary file called sqsapi64.lib. Review your Windows
documentation for information about creating applications that link against aDLL. If you
use sgsdyn64.mak as atemplate, you will need to customize it to your application's
particular requirements.

2.7.2.3 Building 32-Bit or 64-Bit Applications for Windows

See the Oracle SQL/Services Release Notes for a complete list of software products and their
versions that are required to support different network transports.

If you want to call Oracle SQL/Services using threads, you must be aware of the following:

» Oracle SQL/Services synchronizes calls to the Oracle SQL/Services client API routines
between threads. That is, only one Oracle SQL/Services call may be active per associate
at atime. All subsequent concurrent callsfor an association stall until all previous calls
complete.

» Theerror and error messages returned into the SQL CA data structure should not be
accessed or manipulated directly by the application programmer. This structure will
contain the message returned by the last thread that accessed it. Therefore, an error
received in one thread may be overwritten by another thread. This may cause the
application program to receive the wrong error and associated messages for the thread

2-16 Guide to Using the Oracle SQL/Services Client API

Building Oracle SQL/Services Application Programs

that initially received the error. To receive the correct error and messages, use the
following Oracle SQL/Services routines:

— gglsrv_sglca error

— gglsrv_sglca error_text
— gglsrv_sglca sglstate

— gglsrv_sglca sglerrd

2.7.3 Building Applications on the HP Tru64 UNIX Operating System
The HP Tru64 UNIX include files are installed in the /usr/include directory.

By default, the HP Tru64 UNIX C compiler compiles and links your program in one
command, including support for both DECnet and TCP/IP. For example:

%cc file -1sgs -lots -l1dnet -o nane
Replace file with the name of your source file and name with the name that you want for the

executable file. If your application uses the DECnet transport, include the optional — dnet
argument as shown; otherwise, replace —ldnet with —{dnet—stub.

You may find it useful to examine the makefile that builds the HP Tru64 UNIX API
Installation Verification Procedure (sgsivpu.mak) and the makefile that builds the sample
application, sgsdynu.mak (see Section 3.2.4).

2.7.4 Building Applications on the HP-UX Operating System
The HP-UX include files are installed in the /usr/include directory.

By default, the HP-UX C compiler compiles and links your program in one command,
including support for TCP/IP. For example:

%gcc -0 name file -nip64 - DSQALSRV_LOCAL_| NOLUDES -1 sgs
Replace file with the name of your source file and name with the name that you want for the
executablefile.

You may find it useful to examine the makefile that builds the HP-UX API Installation
Verification Procedure (sgsivpu.mak) and the makefile that builds the sample application,
sgsdynu.mak (see Section 3.2.5).

Developing Oracle SQL/Services Applications 2-17

Building Oracle SQL/Services Application Programs

2.7.5 Building Applications on the Linux Operating System
The Linux include files are installed in the /usr/include directory.

By default, the Linux C compiler compiles and links your program in one command,
including support for TCP/IP. For example:

%gcc -0 name file -nip64 - DSQALSRV_LOCAL_| NOLUDES -1 sgs
Replace file with the name of your source file and name with the name that you want for the
executablefile.

You may find it useful to examine the makefile that builds the Linux API Installation
Verification Procedure (sgsivpu.mak) and the makefile that builds the sample application,
sgsdynu.mak (see Section 3.2.6).

2-18 Guide to Using the Oracle SQL/Services Client API

3

Sample Application Guidelines

This chapter guides you through the Oracle SQL /Services sample application.

3.1 Sample Application

Section 3.1, Section 3.2, and Section 3.3 describe a sample interactive application that
accepts dynamic SQL statements and processes them using the Oracle SQL/Services client
API. The sample application consists of two or three modules, depending on your client
platform:

« A driver module named sgsdrv.c (on all Windows platforms), sgsdrvu.c (on the HP
Tru64 UNIX, HP-UX and Linux platforms) or sglsrv$driver.c (on all OpenVMS
platforms). This module accepts dynamic SQL statements from the user and calls the
dynamic SQL processing module to process the statements. It is described in
Section 3.4.

= A dynamic SQL processing module named sgsdyn.c (on al Windows platforms),
sgsdynu.c (on the HP Tru64 UNIX, HP-UX and Linux platforms) or sqlsrv$dynamic.c
(on al OpenVMSS platforms). This modul e accepts dynamic SQL statements from the
driver module and calls Oracle SQL/Services client API routines to process the
statements. It is described in Section 3.5.

« An1/O module named winivp.c for Windows platforms only. This module calls
Windows services to implement a basic Windows I/O interface and is not described in
this chapter.

The sample application is able to process any dynamic SQL statement, including executable
statements such as INSERT, UPDATE, DELETE, singleton-SELECT, and CALL
statements, as well as SELECT statements. To process a statement entered by the user, the
sample application first prepares the statement. If a statement contains parameter markers,

Sample Application Guidelines 3-1

Building the Sample Application

the sampl e application then prompts the user for parameter marker values. To process an
executable statement, the sample application executes the statement, then displays any
results that the statement might produce. To process a SELECT statement, the sample
application declares and opens a cursor, fetches and displays rows from the result table, then
closes the cursor when all rows have been fetched. Finally, the sample application rel eases
the statement to free the resources held by the prepared statement.

In some respects, the Oracle SQL /Services sample application resembles a limited, portable
implementation of the Oracle Rdb interactive SQL application. Like interactive SQL, the
driver modul e recognizes the semicolon (;) asan SQL statement terminator and thus accepts
multiline statements. However, unlike interactive SQL, it does not parse the SQL statements
entered by the user and thus cannot handle compound statements or the definition of stored
procedures. Input lines beginning with an exclamation point (!) are considered comments
and are not executed.

3.2 Building the Sample Application

This section describes how to build the sample application on the client platforms supported
by Oracle SQL/Services.

3.2.1 Building the Sample Application on the OpenVMS Operating System

The source code for the sample application is available on line in a directory under
SY SSEXAMPLES. To copy, compile, link, and run the sample application, enter the
following commands:

$ copy sys$common: [syshl p. exanpl es. sql srv]sql srv$*.c *
$ cc sql srv$dri ver, sqgl srv$dynam c

$ 1i nk/ exe=sql srv$dynanic sgl srv$driver, sql srv$dynanic, -
_$ sys$library: sqgl srv$api / opt

$ run sql srv$dynanic

3.2.2 Building the Sample Application on Windows X86 Systems

An executable form of the sample application is supplied when you install the Oracle
SQL/Services client kit. This executable program was built using the default settings and
switches in sgqsdyn32.mak, and so it might not be suitable for all environments and
transports. The executable is named sqsdyn32.exe; you may wish to copy or rename this file
if you rebuild the sample application locally.

The source files for the sample application are supplied in the directory where you installed
the Oracle SQL/Services client kit. The sqsdyn32.mak file uses the Microsoft C compiler to

3-2 Guide to Using the Oracle SQL/Services Client API

Building the Sample Application

create an executable named sgsdyn32.exe. Review sqsdyn32.mak as a sample guide and for
information on default settings and switches.

Use the following commands to build the sample application from the MS-DOS prompt.
Select the appropriate NMAKE command depending on whether or not you want to build a

debuggable executable.

> cd \[sql/services-install-dir] | Qacle SQ/Services installation directory
> nnake -a -f sqsdyn32. nak | To build a nodebug executabl e, or

> nnake -a -f sqgsdyn32. nak debug=1 | to build a debuggabl e executabl e

> sqgsdyn32 | I'nvoke sanpl e after successful build

3.2.3 Building the Sample Application on Windows X64 Systems

An executable form of the sample application is supplied when you install the Oracle
SQL/Services client kit. This executable program was built using the default settings and
switches in sgqsdyn64.mak, and so it might not be suitable for all environments and
transports. The executable is named sqsdyn64.exe; you may wish to copy or rename thisfile
if you rebuild the sample application locally.

The source files for the sample application are supplied in the directory where you installed
the Oracle SQL/Services client kit. The sqsdyn64.mak file uses the Microsoft C compiler to
create an executable named sgsdyn64.exe. Review sqsdyn64.mak as a sample guide and for
information on default settings and switches.

Use the following commands to build the sample application from the MS-DOS prompt.
Select the appropriate NMAKE command depending on whether or not you want to build a

debuggable executable.

> cd \[sql/services-install-dir] | Qacle SQ/Services installation directory
> nnake -a -f sqsdyn64. mak | To build a nodebug executabl e, or

> nnake -a -f sqsdyn64. nak debug=1 | to build a debuggabl e executabl e

> sqgsdyn64 | I'nvoke sanpl e after successful build

3.2.4 Building the Sample Application on the HP Tru64 UNIX Operating System

If DECnet is available on your system, you can build the HP Tru64 UNIX sample
application by issuing the following command:

nake " STUB=st ubdnet u. 0" "LIBSH i bsgs. a" "DNET=" "DNETLIB=-1dnet" -f sgsdynu. nak

If DECnet is not available on your system, you can build the HP Tru64 UNIX sample
application by issuing the following command:

nake " STUB=st ubdnet u. 0" "LIBS=l i bsgs. a" "DNET=" -f sqgsdynu. nak

Sample Application Guidelines 3-3

Running the Sample Application

To invoke the sample application after a successful build, issue the following command:

sgsdynu

See Section 2.7.3 for information on building applications on HP Tru64 UNIX systems.

3.2.5 Building the Sample Application on the HP-UX Operating System
You can build the HP-UX sample application by issuing the following command:
nake -f sqgsdynh. mak "LIB=libsgs.a" "DNET="

To invoke the sample application after a successful build, issue the following command:

sgsdynu

See Section 2.7.4 for information on building applications on HP-UX systems.

3.2.6 Building the Sample Application on the Linux Operating System
You can build the Linux sample application by issuing the following command:
nake " STUB=stubdnet.o" "LIB=libsgs.a" "DNET=" "DEFS= DSQLSRV_LOCAL_| NOLUEES' -f
sgsdynl . mak
To invoke the sample application after a successful build, issue the following command:

sgsdynu

See Section 2.7.5 for information on building applications on Linux systems.

3.3 Running the Sample Application

When the sample executable program starts up, it prompts you for the information required
to create an association with aremote system. When the association is made, the program
prompts for SQL statements to execute. For example, on the OpenV M S operating system,
thisis what you would see:

$ run sql srv$dynanic

Server node CR SQL*Net servi ce nare: MYNCDE
Net wor k Transport: DECNET

Server account name: MYNAME

Server account password: ****

Service nane [(ENER G :

3-4 Guide to Using the Oracle SQL/Services Client API

Running the Sample Application

Enter any dynamcal |y executabl e SQ statenent,
continuing it on successive |ines.

Termnate the statement with a semcol on.
Built-in coomands are: [no]echo and exit.

SQ > ATTACH ' FH LENAME sql _personnel ' ;

SQ> SHECT * FROM BEMPLOYEES WHERE F RST_NAME STARTING WTH ?;
Enter val ue for: F RST_NAME

Maxi mum |l ength is: 10

DATA> Nor nan

BEVPLOYEE | D 00168

LAST NAME Nash

H RST_NAME Nor nan
MDDLE INTI AL :

ADDRESS DATA 1 . 87 Vst Rd.
ADDRESS DATA 2 :

aTy . Meadows
STATE o NH

PCSTAL_ GCDE . 03587

SEX M

Bl RTHDAY :1932102300000000
STATUS OCCE 1

---------- END (OF RONV----------
---------- END (OF RON----------
BEVPLOYEE | D . 00245

LAST NAME . Roberts

H RST_NAME : Nor man
MDDLE INTI AL U

ADDRESS DATA 1 : 162 Tenby Dr.
ADDRESS DATA 2 :

aTy . Chocor ua
STATE o NH

PCSTAL_ GCDE . 03817

SEX M

Bl RTHDAY : 1949061100000000
STATUS OCCE 1

---------- END COF RON----------
------- END RESUT TABLE -------
SQ> exit;

Sample Application Guidelines 3-5

Driver Module

$

To select the network transport, type D or DECnet to select the DECnet transport; type T or
TCP to select the TCP/IP transport; type S or SQLNET to select the Oracle Net transport.
Note that not all these transports are supported on all the client platforms and that all the
transports supported by Oracle SQL/Services may not be installed on your node. See

Table 1-1 for alist of the network transports supported for each client platform.

3.4 Driver Module

When a user runs the sample application, the flow of control is as follows:

« Cdl aroutineto create an association. Although the driver creates only one association,
Oracle SQL/Services allows an application to have several associations active at any
given time.

« Enter aloop that inputs SQL statements and passes them to the execute_statement
function for processing.

= Cadl aroutine to close the association.

The implementation of the terminal input/output in the driver is unimportant. The module is
intended to be easily replaced.

3.5 Dynamic Module

This section describes how the sample application works and provides some examples that
illustrate how to call some of the more commonly used Oracle SQL/Services API routines.

3.5.1 Creating an Association
The sample program contains a function named create_association that does the following:
» Declares the variables required for creating an association.
— Association identifier

Most Oracle SQL/Services API routines require an association identifier that
specifies for which association acall isbeing made. An association identifier is
returned as an output argument during the successful completion of acall to the
sglsrv_associate API routine. The association identifier is then specified as an input
argument to most of the other Oracle SQL/Services APl routines and, optionally,
with the sglsrv_sglda xxx and sglsrv_sqlda2_xxx functiona interface routines.

3-6 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

In the sampl e application, the main routine in the driver module passesin the
address of the association identifier, which it declares as follows:

ASSQO ATE I D assoc_id;

Error message buffer

If you do not specify an alternate error message buffer, Oracle SQL/Services uses
the 70-byte SQLERRMC field in the SQLCA data structure. However, because the
SQLERRMC field may not be long enough to hold al the possible error messages
that can be returned by the Oracle SQL/Services server and Oracle Rdb, Oracle
Corporation recommends that you allocate a larger message buffer for each
association.

In the sampl e application, the main routine in the driver module passesin the
address of a 512-byte message buffer, which is sufficient for al possible messages.
The driver routine declares the error buffer asfollows:

unsi gned char error_buf[512];

Gets the node name, network transport, user name, password, and service name for the
server system from the argument vector; if any of these are missing, the create
association function prompts the user.

Sets up the association structure as follows:

associ ate_str. VERSI ON = SQLSRV_V730; /* Sructure version nunber */
associ ate_str. CLIENT_LGG = O; /* Dsable client logging. */
associ ate _str. SERVER LGG = 0; /* (bsol ete */
associ ate _str. LOCAL FLAG = 0; /* (bsol ete */
associ ate_str. MEMORY_ROJTI NE = NULL; [* Wse default nmenory rtns. */
associ ate_str. FREE MEMORY ROUTI NE = NULL; [* Wse default nmenory rtns. */
associ ate_str. ERRBUFLEN = error_buf | en; [* Aternate err buf length */
associ ate_str. ERRBUF = error_buf; /* Aternate error buffer */
associ ate_str.class_nane = ((HARPTR) servi ce_nane; /* Service nane */
associ ate_str.xpttyp = xpt; [* Transport type */
associ ate_str.port_id = 0; [* TCPIP port nunber */
associ ate _str.attach = NULL; /* No SQL ATTACH statenent */
associ ate_str.decl are = NULL; /* No SQL DEQLARE statenent */
associ ate_str. appnam= (CHARPTR "Sanpl e App"; /* Qur application name */
associ ate_str. obj nam= NJLL; /* DEOnet object nane */

This structure is described in detail in Section 7.2.

Calls the API routine sqlsrv_associate to create the association.

sts = sql srv_associ at e(

Sample Application Guidelines 3-7

Dynamic Module

node nane, /* node nane. */
user _nane, /* user nane. */
passwor d, /* password. */
NLLL, /* protocol read buffer. */
NLLL, [* protocol wite buffer. */
0, /* read buffer size. */
0, /* wite buffer size. */
NULL, /* Let SQ/ Services allocate SQLCA */
&associ ate_str, /* ASSQQJ ATE structure. */
assoc_id /* Associ ation handl e. */
E

By specifying the read and write buffer pointers as NULL and the read and write buffer
lengths as zero, the sample application directs Oracle SQL/Services to dlocate read and
write buffers of the default size. By specifyingaNULL SQLCA pointer, the sample
application directs Oracle SQL/Services to alocate memory for the SQL CA structure.
Note that by specifying the associate structure as Version 7.3, the sample application
directs Oracle SQL/Servicesto process extensions to the original structure, which
include the service (class) name, transport type, application name, TCPIP port number
and DECnet object name fields.

Creating an association is a multiphase process, which starts with the Oracle
SQL/Services client API validating the routine arguments, allocating memory for the
association, establishing a network connection to the server, and so forth. Because a
new association can fail for different reasons, client applications must be written to
handle different types of failure.

If the Oracle SQL/Services client API detects any invalid arguments, it does not allocate
any memory for the association, storesaNULL valuein the association ID variable, and
returns a single error status as the function return value. In this situation, the client
application need perform no additional work to clean up the association; however, no
additional error information is available.

If the routine arguments are valid, Oracle SQL/Services allocates memory for the
association and attempts to connect to the server. Once the routine arguments have been
successfully validated, Oracle SQL/Services always returns anon-NULL valuein the
association 1D, even if the connection to the server is not established successfully. For
example, perhaps a user typed an invalid password. In this situation, the client
application can obtain additional error information by calling the sqlsrv_sglca_error_
text , sglsrv_sglca _error and sglsrv_sqglca sglstate API routines. After retrieving any
additional error information, the client application must then clean up the association by
calling the sglsrv_release API routine.

3-8 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

The sample application uses the following logic to handle the situation where acall to
the sglsrv_associate API routine fails:

if (sts != SQ_SUOCESS)

{
if (*assoc_id = NUL)
{
report_error(*assoc_id);
sql srv_rel ease(
assoc_i d, / association |D. */
NULL /* reserved argunent. */
);
}
el se
{
report_sql svcs_error ((SQEB_LONGNRD) sts, 0, 0);
}
}

Thereport_error and report_sqlsves_error functions in the sample application are
described in Section 3.5.2.10.

3.5.2 Processing the Dynamic SQL Statement

The sample program contains a function named execute_statement that processes the
statement string passed to it by the driver module. As shown in Figure 3-1, the execute
statement function does the following:

» Checksfor statements, such as COMMIT and ROLLBACK, that can be executed using
the sglsrv_execute immediate API routine, processes them accordingly, and returns.

«» Cdlsthe sglsrv_prepare API routine, which prepares the SQL statement and returns a
statement ID.

«» Cdlsthe sglsrv_sglca sglerrd API routine to retrieve the SQLERRD array to obtain the
statement type from the SQLERRD[1] array element.

« |If the statement contains parameter markers, calls the sglsrv_sqlda allocate data API
routine to allocate memory for the data and indicator variables, then callsthe get
params function to prompt for parameter marker values.

« |If the statement contains select list items, calls the sglsrv_allocate sglda data API
routine to allocate memory for the data and indicator variables.

= If the statement isa SELECT statement:

Sample Application Guidelines 3-9

Dynamic Module

— Cadlsthesglsrv_open_cursor API routine to open a cursor

— For eachrow in the result table, callsthe sglsrv_fetch API routine to fetch the row
and callsthe display_select_list routine to display the data

— Callsthesglsrv_close _cursor API routine to close the cursor

« Ifthestatement is not a SELECT statement, callsthe sglsrv_execute_in_out API routine
to execute the statement. If the statement has output, such as a singleton-SELECT
statement or a CALL statement to a procedure with output or input/output arguments,
callsthe display_select_list function to display the data.

«» Cdlsthesglsrv_release statement API routine to release the prepared statement.

Section 3.5.2.1 through Section 3.5.2.10 explain the workings of the execute statement and
get_params functions in more detail.

3-10 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

Figure 3-1 Statement Execution Flow

Frepare

Fielease

[

Allocate -
SOL DA data = Get data
Select Allocate
list items? SOLDA data
SELECT Qpen o Fetch
staternent? cursor " Fow
Frocess
Execute o
statement
Statement - ¥ES Frocess
as output? output

i]a] End of
takle v

Yes

h
Close

staternent

CUrsor

ML —20494 -RA

Sample Application Guidelines 3-11

Dynamic Module

3.5.2.1 Declaring and Allocating SQLDA_ID Identifiers

The SQLDA structure contains SQL parameter marker and select list metadata as well as
pointersto the data and indicator variables. The SQLDA_ID identifiers are the means by
which your application and the Oracle SQL/Services APl communi cate about the SQL
statement being prepared for execution.

Oracle SQL/Services applications must allocate variables that point to the SQLDA_ID
identifiers. The execute_statement function contains the following declarations:

SQDAID par am sql da;
SQDAID sel ect _sql da;

3.5.2.2 Executing SQL Statements Using the sqlsrv_execute_immediate API
Routine

Simple SQL statements that do not contain parameter markers or select list items can be
executed using the sglsrv_execute_immediate API routine. The sample application checks
for statements such as COMMIT and ROLLBACK, and executes them using the sglsrv_
execute_immediate API routine as follows:

sts = sql srv_execut e_i medi at e(

assoc_id, /* association |ID */
0, /* database id, nust be zero. */
sqgl _st at enent /* SQ statenent. */

E

Note: The sample application uses the sglsrv_execute_ immediate API
routine to process SQL statements such as COMMIT and ROLLBACK in
order to demonstrate how to use the sglsrv_execute_immediate API
routine. However, in areal application, where such statements may be
used frequently, you should consider preparing such statements once and
executing the prepared statements as needed.

3.5.2.3 Preparing the SQL Statement

All applications call the sglsrv_prepare API routine to prepare an SQL statement. The
sample application lets Oracle SQL/Services allocate memory for the parameter marker and
select list SQLDA structures; therefore, it initializes the select_sglda and param_sglda
SQLDA_IDsto NULL. For example:

sel ect _sqgl da = NLL;
param sql da = NUL;

sts = sql srv_prepare(

3-12 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

assoc_id, /* association |ID */
0, /* database id, nust be zero. */
sqgl _st at erent, /* SQ statenent. */
&st at enent _i d, /* to receive prepared statenent id */
&par am sq| da, /* to recei ve paraneter narker SQDA */
&sel ect _sql da /* to receive select |ist SQDA */
)

If the server successfully prepares the statement, it returns a statement ID to the client,
which the Oracle SQL/Services client API storesin the statement_id variable. If an SQL
statement contains either parameter markers or select list items, then the Oracle
SQL/Services client APl allocates memory for one or both SQLDASs and returns the memory
pointer or handle to the application in the param_sglda or select_sglda variables.

The sample application calls the sglsrv_sqlca_sglerrd API routine to obtain the statement
type from the SQLERRD[1] array element as follows:

sts = sql srv_sql ca_sql errd(

assoc_id, /* association |ID */
sql errd_array /* to recei ve SQLERRD array */
)

statenent _type = sqglerrd_array[1];

3.5.2.4 Allocating Data and Indicator Variables

The sample application checks the param_sglda and select_sglda variables for non-NULL
valuesto determineif the SQL statement contains any parameter markers or select list items.
If any are present, the sample callsthe sglsrv_allocate sglda data API routine to allocate
memory for the data and indicator variables. For example, to allocate the data and indicator
variables for aselect list SQLDA:

if (select_sqglda != NJL)

{

sts = sql srv_al | ocat e_sql da_dat a(
assoc_id, /* association |D. */
sel ect _sql da /* Select |ist SQLDA */
)

}

Sample Application Guidelines 3-13

Dynamic Module

If any parameter markers are present, the sample application also calls the get_params
function, which is described in Section 3.5.2.5, to prompt the user for values for all
parameter markers.

3.5.2.5 Processing Parameter Markers

The sample program includes a function named get_params that prompts the user for
parameter markers. Asin the driver module, the implementation of the terminal input/output
is unimportant. As demonstrated in the get_params function, your application must perform
the following steps:

1.

Execute aloop that iterates once for each parameter marker in the SQL statement. The
sglsrv_sglda_sqld73 API routine returns the number of parameter markers.

for (i =0; i < sqlsrv_sqlda_sqgld73(paramsqglda, assoc_id); i++)

{

}
Within the loop, call the sqlsrv_sqglda ref data73 API routine to obtain the data type
and length, and pointersto the data and indicator variables for each parameter marker.

sts = sql srv_sql da_ref _data73(

par am sql da, [* paraneter narker SQDA */
i, /* col um i ndex nunber */
&col typ, /* to receive column data type */
&col | en, /* to recei ve colum | ength */
&col scl , /* to recei ve col unn scal e/ type */
&col dat a, /* to receive column data ptr. */
&nul | p, /* to receive colum ind. ptr. */
NLLL, /* reserved argunent */
assoc_id /* associate |ID */
)

Obtain avalue for each parameter marker. The sample application checks that the user
enters a data value that is not too long. To do so, it must check for certain data types and
adjust the length returned by the sglsrv_sglda ref _data73 API routine accordingly. For
example, the length for the SQLSRV_GENERALIZED DATE data type includes space
for the null-terminator, so the maximum length must be decreased by 1, whereasthe
length for the SQLSRV_GENERALIZED NUMBER data type does not include the
additional 5 bytesthat the sglsrv_allocate sqglda_data API routine allocates for integer
values expressed in scientific notation, so the maximum length must be increased by 5.

3-14 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

See Chapter 8 for more information on the data types supported by the Oracle
SQL/Services client API.

swi tch (col typ)

{

case SQLSRV_GENERALI ZED DATE
max| en--;
br eak;

case SQLSRV GENERALI ZED NUMBER
maxl en += 5;
br eak;

}

Set the indicator variable and store the value in the parameter marker's data variable
according to each parameter marker's data type.

To specify aNULL value for a parameter marker, store—1 in the indicator variable;
otherwise, store 0 in the indicator variable.

There are three fundamental data typesin Oracle SQL/Services: fixed-length strings,
null-terminated strings, and variable-length data with leading length field. Each Oracle
SQL/Services data type maps to one of these fundamental data types. The sample
application supports a subset of the full range of Oracle SQL/Services data types as
follows.

Fixed-length strings

There are two fixed-length data types: SQLSRV_LIST_VARBY TE (not supported
by the sample application) and SQLSRV_ASCII_STRING. To store afixed-length
string in a parameter marker, the sample uses the memcpy C library function to
copy the value, and the memset C library function to pad the value with spaces, if
necessary.

If your application calls the sglsrv_allocate sglda_data API routine to allocate
parameter marker variables, then Oracle SQL/Services allocates an extra byte of
memory for parameter marker variables of type SQLSRV_ASCII_STRING.
Therefore, your application can also use the strcpy C library function to copy a
value to a parameter marker variable, because there is sufficient space for the
trailing null-terminator. However, you should be aware that when Oracle
SQL/Services sends fixed-length string parameter marker values to the server, it
always sends the number of bytes specified by the parameter marker length in the
SQLDA, regardless of the possible presence of a null-terminator anywhere in the
string. Because Oracle SQL/Services does not treat fixed-length strings asa
null-terminated string, the sample application always pads these values with spaces.

Sample Application Guidelines 3-15

Dynamic Module

Note: The SQLSRV_LIST_VARBYTE, which is not supported by the
sample application, is another instance of afixed-length data type.
However, because values of this data type can contain binary values,
including null bytes, you should aways use the memcpy C library
function when processing values of this datatype.

Null-terminated strings

There are three null-terminated data types: SQLSRV_GENERALIZED NUMBER,
SQLSRV_GENERALIZED_DATE, and SQLSRV_INTERVAL. To storea
null-terminated string in a parameter marker, the sample simply uses the strcpy C
library function to copy the value and null-terminator.

If your application calls the sglsrv_allocate sglda_data API routine to allocate
parameter marker variables, Oracle SQL/Services aways all ocates the extra byte of
memory required for the null-terminator. When Oracle SQL/Services sends
null-terminated string parameter marker values to the server, it uses the strlen C
library function to determine how much data to send.

Variable-length data with leading length field

There are two variable-length data types: SQLSRV_VARBY TE (not supported by
the sample application) and SQLSRV_VARCHAR. To store a variable-length data
value in a parameter marker, the sample first stores the length in the leading
unsigned 16-bit length field, then uses the memcpy C library function to copy the
datavalue.

If your application calls the sglsrv_allocate sglda_data API routine to allocate
parameter marker variables, then Oracle SQL/Services allocates sufficient memory
to accomodate the leading length field and a data val ue of the maximum length;
however, it does not allocate space for a null-terminator. Therefore, your
application should not use the strepy C library function to copy a variable-length
data value. When Oracle SQL/Services sends a variable-length data value to the
server, it usesthe leading length field to determine how much data to send.

Note: If your application uses the SQLDA2 format, the leading length
field is an unsigned 32-bit integer.

See Chapter 8 for more information on the data types supported by the Oracle
SQL/Services client API.

3-16 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

The following code example illustrates how the sample application processes each
data type.

swi t ch(col typ)
{

case SQLSRV ASA1_STR NG

[* fixed-1ength string: copy the data to the */
/* SQDATA nenory; pad wth spaces if necessary */

mencpy((SCHARPTR)col data, Icldata, len);
if (len < naxl en)

{

nenset ((SCHARPTR col dataH en, ' ', naxlen-len);

}

br eak;

case SQSRV_ENERALI ZED NUMBER
case SQLSRV_GENERALI ZED DATE
case SQLSRV | NTERVAL:

/[* null-termnated strings: just use strcpy to */
/* copy the data val ue and the nul | -terninator */

strepy((SGHARPTR)col data, Icldata);

br eak;
case SQLSRV_VARCHAR

[* variable-length data with length field: wite */
/* the length into the leading 16-bit length field */

[* of the buffer, then advance the pointer over */
/* the length to the begi nning of the data and */
/* copy the data */

varchar_ptr = col dat a;

*(unsigned short int *)varchar_ptr = 1len;
varchar_ptr += si zeof (unsi gned short int);
nentpy((SCHARPTR)varchar_ptr, Icldata, len);
br eak;

} /* switch */

Sample Application Guidelines 3-17

Dynamic Module

5. After processing each parameter marker, call the sglsrv_sqlda_unref_data73 API routine
to de-reference the parameter marker's data and indicator variables.

sts = sql srv_sql da_unref _dat a73(

par am sql da, [* parameter narker SQDA */
i, /* col um i ndex nunber */
assoc_id /* associate |ID */
)

3.5.2.6 Testing for SELECT Statements

To test for a SELECT statement, the sample application checks the statement_type variable,
which it set previously using the SQLERRDJ[1] field of the SQL CA. Whenever Oracle Rdb
SQL prepares an SQL statement, it stores the statement type in the SQLERRD[1] field, as
follows:

» 0= executable statement, excluding CALL statements
« 1=SELECT statement
« 2=CALL statement

3.5.2.7 Processing a SELECT Statement

To process a SELECT statement, the sample application opens a cursor, fetches and displays
each row in the result table, then closes the cursor, asfollows:

« Cdlsthe sglsrv_open_cursor API routine to open the cursor. Note that the sample has
previously prompted the user for the values of any parameter marker values.

sts = sql srv_open_cursor (

assoc_id, /* association id */
cur sor _nane, /* cursor name */
statenent id, /* statenment 1D */
par am sql da [* paraneter narker SQDA */
E

« For each row in the result table, callsthe sglsrv_fetch API routine to fetch the row, then
callsthe display_select_list function to display the values. See Section 3.5.2.9 for more
information about the display_select_list function.

printf("------ BEG N RESULT TABLE ------ \n");
do
{
sts = sql srv_fetch(
assoc_id, /* association id */
cursor_nane, /* cursor name */

3-18 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

0, /* scroll option */
oL, /* position */
sel ect _sql da /* select |ist SQLDA */
E

switch (sts)

{
case S SUXCESS

sts = display_select_list(assoc_id, select_sqglda);
printf("---------- BEND OF ROV---------- \n");
br eak;

case QL _ECs
printf("------- BEND RESULT TABLE ------- \n");
br eak;

defaul t:
handl e_error(assoc_id);
br eak;

}
} while (sts == SQ_SUXCESS);

«» Cdlssglsrv_close _cursor API routine to close the cursor when all rows have been
fetched.

sts = sql srv_cl ose_cur sor (

assoc_id, /* association id */
cur sor _nane /* cursor nane */

3.5.2.8 Processing Executable Statements

To process an executable SQL statement, including CALL statements, the sample
application calls the sglsrv_execute in_out API routine asfollows:

sts = sql srv_execute_i n_out (

assoc_id, /* association |ID */
0, /* database id, nust be zero. */
statenent id, /* Prepared statenent id. */
SQASRY EXE WDATA /* Nornal nonbat ched execute node. */
par am sql da, [* Parameter narker SQDA */
sel ect _sql da /* Select |ist SQLDA */
);

The sqlsrv_execute_in_out API routine handles any executable statement, regardless of
whether the statement has any input in the form of parameter markers, or output in the form

Sample Application Guidelines 3-19

Dynamic Module

of select list items. See Chapter 4.1 for information on batched execution of executable
statements with parameter markers.

If the executable SQL statement has any output, the sample application callsthe display
select_list to display the values of the select list items.

3.5.2.9 Processing Select List ltems

The sample application includes a function named display_select list that displays the
values of any select list itemsin aselect list SQLDA. Asin the driver module, the
implementation of the terminal input/output is unimportant. As demonstrated in the display
select_list function, your application must perform the following steps.

1. Executealoop that iterates once for each select list item in the SQL statement. The
sglsrv_sglda_sqld73 API routine returns the number of select list items.

for (i =0; i < sqlsrv_sqlda_sqld73(select_sqglda, assoc_id); i++)

{

}
2. Within the loop, call the sglsrv_sglda ref_data73 API routine to obtain the data type
and length, and pointers to the data and indicator variables for each select list item.

sts = sql srv_sql da_ref _data73(

sel ect _sql da, /* select |ist SQDA */
i, /* col utm i ndex nunber */
&col typ, /* to receive colum data type */
&col | en, /* to receive colum | ength */
&col scl , /* to receive colum scal e/type */
&col dat a, /* to receive colum data ptr. */
&nul | p, /[* to receive colum ind. ptr. */
NLLL, /* reserved argunent */
assoc_id /* associate |ID */
);

3. Check the indicator variable and process the valuein each select list item's data variable
according to the data type.

If theindicator variable for a select list item is set to —1, indicating aNULL value, the
sample application displays "NULL" and proceeds to the next select list item.
Otherwise, the sample application displays the data val ue based on the data type of the
select list item.

3-20 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

There are three fundamental data typesin Oracle SQL/Services: fixed-length strings,
null-terminated strings, and variable-length data with leading length field. Each Oracle
SQL/Services data type maps to one of these fundamental data types. The sample
application supports a subset of the full range of Oracle SQL/Services data types as
follows.

Fixed-length strings

There are two fixed-length data types: SQLSRV_LIST_VARBY TE (not supported
by the sample application) and SQLSRV_ASCII_STRING. To process a
fixed-length string in a select list item's data variable, use the length and pointer
variables set by the sglsrv_sqlda _ref data73 API routine. The sample application
passes both the length and the pointer as argumentsto the printf C library function
using the format string "%-.*s\n". Alternatively, to copy the same valueto alocal
variable, the sample could call the memcpy C library function, again specifying the
length and pointer variables as arguments.

If your application calls the sglsrv_allocate sglda_data API routine to allocate
select list item variables, then Oracle SQL/Services all ocates an extra byte of
memory for select list item data variables of type SQLSRV_ASCII_STRING. This
allows Oracle SQL/Services to null-terminate a string value when it receives
fixed-length string select list item data values from the server. Therefore, you can
also treat variables of type SQLSRV_ASCII_STRING as null-terminated strings
using, for example, the strcpy C library function.

Note: The SQLSRV_LIST_VARBYTE, which is not supported by the
sample application, is another instance of afixed-length data type.
However, because values of this data type can contain binary values,
including null bytes, you should aways use the memcpy C library
function when processing values of this datatype.

Null-terminated strings

There are three null-terminated data types: SQLSRV_GENERALIZED NUMBER,
SQLSRV_GENERALIZED_DATE, and SQLSRV_INTERVAL. To display a
null-terminated string from a select list item's data variable, the sample simply
passes the data pointer as an argument to the printf C library function using the
format string "%s\n". Alternatively, to copy the same value to alocal variable, the
sample could simply call the strcpy C library function, again specifying the pointer
variable as an argument.

Variable-length data with leading length field

Sample Application Guidelines 3-21

Dynamic Module

There are two variable-length data types: SQLSRV_VARBY TE (not supported by
the sample application) and SQLSRV_VARCHAR. To process a variable-length
datavaluein aselect list item's data variable, the sample first uses a pointer to
retrieve the length from the leading unsigned 16-bit length field, then advances the
pointer past the length field to the data area of the variable. The sample application
passes both the length and the data pointer as arguments to the printf C library
function using the format string "%-.*s\n". Alternatively, to copy the same value to
alocal variable, the sample could call the memcpy C library function, again
specifying the length and data pointer variables as arguments.

If your application calls the sglsrv_allocate sglda_data API routine to allocate
parameter marker variables, then Oracle SQL/Services allocates sufficient memory
to accommodate the leading length field and a data value of the maximum length;
however, it does not allocate space for a null-terminator. Therefore, your
application should not use the strepy C library function to copy a variable-length
datavalue.

Note: If your application uses the SQLDA2 format, the leading length
field is an unsigned 32-bit integer.

See Chapter 8 for more information on the data types supported by the Oracle
SQL/Services client API.

The following code example illustrates how the sample application processes each
data type.

/* check the indicator variable for NULL val ue */

if (*nullp <0
{
printf("NLL\ n");
}

el se

swi tch (col typ)
{
case SQLSRV ASA | _STR NG
/* Fi xed-length character strings */

printf("%.*s\n", collen, coldata);
br eak;

3-22 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

case SQLSRV_ GENERALI ZED NUMBER
case SQLSRV_GENERALI ZED DATE
case SQLSRV | NTERVAL:

/[* Null-termnated strings */

printf("9%\n", coldata);
br eak;

case SQLSRV_VARCHAR

/[* Qounted string. The first 16-bit unsigned word of */
/* the data buffer is the length. Get length then */
/* advance the pointer to the data. */

/* Note: SQLSRV_VARCHAR data nay contain nonprintable */
/* binary data; a real application nmay not display the */
/* data value using printf. */

var char_ptr col dat a;

varchar_| en = *(unsigned short int *)varchar_ptr;
varchar_ptr += sizeof (unsi gned short int);
printf("%.*s\n", varchar_len, varchar_ptr);

br eak;

} /* switch */
} /* else */
4. After processing each select list item, call the sglsrv_sglda_unref _data73 APl routine to

de-reference the select list item's data and indicator variables.

sts = sql srv_sql da_unr ef _dat a73(
sel ect _sql da, /* select |ist SQDA */
i, /* col um i ndex nunber */
assoc_id /* associate |ID */

E

3.5.2.10 Error Handling
The sample application contains three functions that handle error conditions.

« handle_error function

The handle_error function is the main error handling routine for the sample application.
It first calls the report_error function to display an error message. It then checks the

Sample Application Guidelines 3-23

Dynamic Module

error status and terminates the application if a nonrecoverable error occurred, such asa
network error or if the server was shut down.

naj or_error = report_error(assoc_id);
if (major_error = SQLSRV_NETERR | |
naj or_error == SQALSRV INTERR | |
naj or_error == SQASRV BEXH NTERR | |
naj or _error == SQLSRV_CGONNTI MEQUT | |
naj or_error == SQSRV_SVC SHUTDOMNW)
{
sql srv_rel ease(assoc_id, NULL);
#if defined (_WNDO/)
I vpEXit();
#el se
exit(2);
#endi f
}

= report_error function

Thereport_error function is responsible for displaying an error message associated with
the most recent error. It is called by the handle_error function and by the create
association function if an error occurred trying to connect to the server. The report_error
function first callsthe sglsrv_sglca error_text APl routine to retrieve any error text that
might have been returned by the server or produced by the Oracle SQL/Services client

API.

sts = sql srv_sql ca error_text(
assoc_id, /* associate |ID */
&rr_nsg_| en, /* to receive error message length */
err_nsg_buf, /* error message buffer */
si zeof (err_nsg_buf) /* size of error message buffer */
);

If an error message is available, the report_error function displays the error message
text and returns. If no error message is available, the report_error function calls the
sglsrv_sglca error API routine to retrieve the major and minor error codes, then calls
the report_sglsves_error function to display an error message based on the error codes.

sts = sql srv_sql ca_error(

assoc_id, /* associate |ID */
&nmaj or _error, /* to recei ve najor error code */
&mnor_error_1, /* to receive first suberror */
&mnor_error_2 /* to receive second suberror */
)

3-24 Guide to Using the Oracle SQL/Services Client API

Dynamic Module

« report_sglsves_error function

Thereport_sglsves _error function accepts as input major and minor error codes, then
displays an error message based on those error codes. It is called by the report_error_
function if no error message is available and called by the create_association if an error
occurs trying to connect to the server and the sglsrv_associate API routine does not
return an association ID.

The execute_statement function checks the return status after calling every Oracle
SQL/Services client API routine. If acall fails, the execute statement function callsthe
handle_error function, callsthe sqlsrv_release_statement API routine to release the prepared
statement, then returns the failure status to the caller.

if (sts != SQ_SUOCESS)
{

handl e_error(assoc_id);
sql srv_rel ease_statenent (assoc_id, 1, &tatenent_id);
return sts;

}

Note that if acall to the sglsrv_execute_immediate or sglsrv_prepare APl routines fails,
thereis no prepared statement to release.

3.5.2.11 Releasing Prepared Statements

When a prepared statement is no longer needed, the execute_statement function calls the
API routine sglsrv_release statement to release the resources allocated for that statement:

sts = sql srv_rel ease_st at enent (

assoc_i d, /* associ ati on handl e. */
1, /* no. of statenent ids. */
&tatenent _id /* statenent id array. */

)

If your application prepares several statements at one time, you can release any or al of
them together by passing an array of statement identifiers to the API routine sqlsrv_release
statement. The sample application prepares only one statement at atime; therefore, it passes
the address of the statement ID variable to sglsrv_release statement. Effectively thisisan
array of one element.

Sample Application Guidelines 3-25

Dynamic Module

3-26 Guide to Using the Oracle SQL/Services Client API

A

Performance Considerations

This chapter describes how to improve the performance of your programming applications
by reducing the number of client/server network messages required to perform operations.

4.1 Batched Execution

When your application executes a prepared INSERT, UPDATE, or DELETE statement that
contains parameter markers, it can control whether the APl sends one row or several rows of
data at atime to the server for processing. Fregquently, batched execution reduces the number
of messages required to complete the operation.

The mechanism for controlling batched execution is the execute_flag parameter in the
sglsrv_execute in_out routine, which is described in sglsrv_execute in_out. The values of
the execute_flag parameter are shown in Table 6—7.

In batched execution, the API stores sets of parameter marker values in the message buffer
until your application signals the end of the batched execution. If the message buffer
becomes full during batched execution, the APl sends the message to the server and begins a
new message in a manner that is transparent to your application. In that case, when the
batched parameter marker values arrive at the server, the server stores the values in a buffer
until the application signals the end of the batched execution. If the application aborts the
batched execution, the API clears the buffers on both the client and the server. Thus, the
database remains consistent and there is no need to roll back the transaction.

In nonbatched execution, the API places each set of parameter marker values in the message
buffer and sends the message to the server for execution.

Performance Considerations 4-1

Batched Execution

Note: Onceyou initiate batched execution for a particular statement ID
by calling the sglsrv_execute_in_out API routine with the SQLSRV _
EXE_BATCH flag, you cannot call other API routines or execute other
statement | Ds until you end batched execution for the current statement ID
using the SQLSRV_EXE_WO_DATA, SQLSRV_EXE_W_DATA, or
SQLSRV_EXE_ABORT flag.

The following example illustrates how to use the batched execution mechanism. Note that
the error checking code has been removed from the example for brevity; however, your
application should always check for and handle error conditions.

In this example, the application calls the prompt_for_order_details application function to
prompt the user for new order details and to store the data into the parameter marker
variablesin the SQLDA.

Asthe user enters each line of the order, the application calls the sqlsrv_execute_in_out API
routine with the SQLSRV_EXE_BATCH flag. This flag directs the Oracle SQL/Services
client API to start or continue batched execution by queueing the row data for subseguent
execution.

When the user has finished the order, the application calls the sglsrv_execute_in_out API
routine with the SQLSRV_EXE_WO_DATA flag to end batched execution. Thisflag directs
the server to execute the previously queued requests, but does not send the datathat is
currently stored in the parameter marker SQLDA, which in this case would be the data from
the most recent order line.

If the user cancels the order, the application calls the sqlsrv_execute in_out API routine
with the SQLSRV_EXE_ABORT flag to cancel batched execution without executing any
previously queued requests.

sgl _statenent = "I NSERT INTO NEWCRDERS VALUES (?, ?, 2, 2, 2, 2, ?)";

sts = sql srv_prepare(

assoc_id, /* association |ID */
0, /* database id, nust be zero. */
sqgl _st at erent, /* SQ statenent. */
&st at enent _i d, /* to recei ve prepared statement id. */
&par am sq| da, /* to recei ve paraneter narker SQDA */
&sel ect _sql da /* to receive select list SQDA */
)

4-2 Guide to Using the Oracle SQL/Services Client API

Batched Execution

do
{

action = pronpt_for_order_details(paramsqlda);

switch (action)
{
case ADD CRDER LI NE
exec_flag = SQLSRV_BEXE BATCH /* Queue for later execution */
br eak;

case BEND OF (RDER
exec_flag = SQLSRV_ BEXE VO DATA, /* Execute queued requests */
br eak;

case CANCEL_CRDER

exec_flag = SQLSRV_BEXE_ABCHT; /* Cancel batched execution */
br eak;

sts = sql srv_execute_i n_out (

assoc_id, /* association | D */
0, /* reserved, nust be zero. */
statenent id, /* Prepared statenent id. */
exec_fl ag, /* Execute function flag. */
par am sql da, [* Paraneter narker SQLDA */
sel ect _sql da /* Select |ist SQDA */
);

} while (action == ADD CRDER LINE);

sts = sql srv_rel ease_st at enent (

assoc_id, /* association |D. */
1, /* nunber of statenent id's. */
&tatenent _id [* statenent id array. */
E

Performance Considerations 4-3

Improving Row Fetch Performance

Note: Alternatively, you can use the SQLSRV_EXE_W_DATA flag to
end a batched execution operation. This flag directs the server to execute
the previously queued requests, including the data that is currently stored
in the parameter marker SQLDA.

4.2 Improving Row Fetch Performance

You can improve row fetch performance of your application by setting appropriate read and
write buffer sizes for your client application based on the sizes of the data values. In
addition, you can improve row fetch performance using the sglsrv_fetch_many routine.

Setting Buffer Sizes

Oracle Corporation recommends that for a fetch-intensive application, in which you are
using the sglsrv_fetch_many routine and are working with large data val ues, such as images
stored in lists (segmented strings), that you specify values greater than 1300 bytes for the
read_buffer and write_buffer parametersin the sglsrv_associate routine. You do thisto
ensure optimal performance for moving data between the server and client.

If you specify values greater than 5000 bytes for these two parameters in your application
program, be sure to check that the server's dispatcher MAX_CLIENT_BUFFER_SIZE vaue
is greater than these two parameter values. The default and minimum value allowed for the
maximum client buffer size in a dispatcher processis 5000 bytes.

If the server's dispatcher MAX_CLIENT_BUFFER_SIZE isless than the read buffer and
write_buffer parameter values, the client picks the lower of the two sizes.

Fetching Multiple Rows

When your application fetches rows from aresult table, it can control whether the server
sends one row or several rows of data at atime to the API. Fetching multiple rows at atime
generally reduces the number of client/server messages required to compl ete the operation.

The mechanism for fetching multiple rows is the sglsrv_fetch_many routine, which is
described in sglsrv_fetch_many. Using the sglsrv_fetch_many API routine to initiate a fetch
many operation is as follows. Call the routine after calling the sqlsrv_open_cursor routine
before the first call to the sglsrv_fetch routine. The repeat_count parameter specifies the
number of rows that the server can send to the API the next time your application calls
sglsrv_fetch. When you specify a repeat count of 0, the server continously fetches rows from
the result table and transmits them to the client until all rows have been fetched. When you
specify arepeat_count other than 0, your application must call the sglsrv_fetch_many
routine again once the specified number of rows have been fetched. You can call the sglsrv_
close_cursor API routine at any time to end a multiple row fetch operation.

4-4 Guide to Using the Oracle SQL/Services Client API

Improving Row Fetch Performance

Oracle Corporation recommends that you set the repeat_count to O if all rows are to be
fetched. When the sglsrv_fetch_many routineis called with arepeat_count of 0, all rowsin
the result table can be accessed with successive callsto sglsrv_fetch. In thissituation, the
sglsrv_fetch_many routine does not need to be called again. Oracle SQL/Services manages
the message buffer transparently by filling each message buffer with as many rows as
possible whenever the data in the buffer is exhausted by a sglsrv_fetch call. Each successive
call to the sglsrv_fetch API routine retrieves the next row of data from the message buffer.
When all the rows have been read from the buffer, the client API posts a network receive to
read the next buffer from the server without having to send afetch request to the server.
When the specified number of rows has been fetched or when the last row in the table has
been fetched, the API returns to the default behavior.

The sqglsrv_fetch_many API routine isresponsible for configuring the Oracle SQL/Services
API to begin a multiple row fetch operation; however, it does not fetch any rows. The
multiple row fetch operation is not actually started until the application calls the sglsrv_fetch
API routine. Therefore, the sglsrv_fetch_many API routine returns a success status even if
no rows are in the result table.

Note: Onceyou initiate a multiple row fetch operation by calling the
sglsrv_fetch_many API routine, you cannot call other API routines until
the specified number of rows or all rows have been fetched. The only
exception isthe sqlsrv_close_cursor API routine, which you can cal to
end a multiple row fetch operation. For this reason, and because the
position of the cursor within the result table at the server is aways ahead
of the number of rows fetched by the client when a multiple row fetch
operation is active, you cannot call the sglsrv_execute in_out API routine
to execute statements such as INSERT . . . WHERE CURRENT OF
cursor_name, UPDATE . .. WHERE CURRENT OF cursor_name, or
DELETE. .. WHERE CURRENT OF cursor_name when a multiple row
fetchis active.

The following example extends the sample application described in Chapter 3 to use the
sglsrv_fetch_many API routine. In this example, note that the only change to the logic isthe
addition of the call to the sglsrv_fetch_many API routine; the rest of the routine remains the
same.

sts = sql srv_open_cursor (
assoc_id, /* association id */

Performance Considerations 4-5

Improving Row Fetch Performance

cur sor _nane, [*
statenent id, [*
par am sql da /*

E

sts = sql srv_fetch_nany(

assoc_id, [*
cur sor _nane, [*
1, /* Row i ncrenent
0 /* Fetch all rows
E
printf("------ BEA N RESULT TABLE -
do
{
sts = sql srv_fetch(
assoc_id, /*
cursor_nane, /*
o} /*
oL, /*
sel ect _sql da /*
E
switch (sts)

{
case S SUXCESS

sts = display_select_list(assoc_id, select_sqglda);

printf("---------- BEND
br eak;

case QL ECs

cursor name
statenent 1D
par arret er narker SQDA

association id
cursor nane
*/
*/

association id
cursor nane
direction

r ow nuniber

select list SQLDA

printf("------- END RESULT TABLE ------- \n"y;

br eak;

defaul t:
handl e_error(assoc_id);
br eak;

}
} while (sts == SQL_SUXCESS);

4-6 Guide to Using the Oracle SQL/Services Client API

*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

Using Compound Statements

sts = sql srv_cl ose_cur sor (
assoc_id, /* association id */
cur sor _nane /* cursor nane */

E

4.3 Using Stored Procedures

A stored procedure is a set of operations performed on an Oracle Rdb database by one or
more SQL statements that execute as a unit to perform awide variety of database operations.
The stored procedure resides within a stored module that is the object of compilation and
encapsulates an operation, such as updating, deleting, or adding information to atable. The
stored module resides as a schema object inside an Oracle Rdb database and defines at |east
one stored procedure. Stored procedures allow you to place an operation (or set of
operations) in the database for reference by other users.

With client/server processing, your client system applications can attain much better
performance by calling a set of stored procedures that reside on the server system. The
stored procedures perform an operation or a series of operations on the database from the
server side rather than locally storing and maintaining database requests containing the same
SQL statements from the client side. With stored procedures, multiple SQL statements can
be processed with asingle CALL statement. Thisisuseful if certain transactions are
executed frequently. In such a case, the stored procedure can be created in advance on the
server and called as needed by the client. Therefore, use stored procedures whenever
possible.

For more information on using stored procedures, see the Oracle Rdb7 Guide to SQL
Programming.

4.4 Using Compound Statements

You can dynamically prepare and execute compound statements using the dynamic SQL
interface. A compound statement is a set of one or more SQL statements delimited by
BEGIN and END statements. The SQL statements contained in a compound statement can
contain parameter markers, select list items, or both. For example:

BEG N

SET TRANSACTI ON READ WR TE;

INSERT INTOEMPLOYEES VALUES (2, 2, 2, 2, 2, 2, 2, 2, 2);

I NSERT | NTO SALARY HSTCRY VALUES (2, 2, 2, 2, 2);
SELECT AV SALARY), SUM SALARY) INTO ?, ? FROM EMPLOYESS;

Performance Considerations 4-7

Reusing SQL Statements

QOWT;
END

Compound statements have some of the same performance advantages as stored procedures,
because a series of SQL statements can be executed at the server with asingle call to the
sglsrv_execute in_out API routine. In some situations, compound statements have an
advantage over stored procedures because they can be constructed dynamically by an
application as and when required. However, it is more efficient to use a stored procedure if a
particular set of SQL statements are executed frequently. Furthermore, an application must
have precise knowledge of the order of all parameter markers and select list items because
parameter marker names and select list item names are not returned by Oracle Rdb when
you prepare a compound statement.

For more information on using compound statements, see the Oracle Rdb7 Guide to SQL
Programming.

4.5 Reusing SQL Statements

A prepared SQL statement should not be released when the statement can be reused. After a
statement is prepared, the statement can be executed many more times with the same
statement_id (see the sqlsrv_prepare and sqlsrv_execute in_out routines for more
information). This not only reduces the number of network messages, but also reduces
resource consumption by not performing extra sglsrv_prepare and sglsrv_release routine
calls. The only disadvantage is that extra memory will be needed to keep these prepared
statements before they are released. For example:

sts = sql srv_prepare(
assoc_id,
oL,
sql _statenent_1,
&tatenment id 1,
¶msql da_1,
&sel ect _sql da_1,

)

sts = sql srv_prepare(
assoc_id,
oL,

sql _stat enent_2,
&tatenment id 2,
¶m sql da_2,
&sel ect _sql da_2,
);

4-8 Guide to Using the Oracle SQL/Services Client API

Reusing SQL Statements

do {
Get User Choi ce(&hoi ce) ;
swi tch (choi ce)

case CHO CE 1.
sts = sql srv_execute_i n_out (
assoc_id,
oL,

statenent id 1,
execut e_fl ag,
par am sql da_1,
sel ect _sqglda_1

E
if (sts !=SQ SUAESS) {
/ *
error condition
*/
}
br eak;
case CHO CE 2:
sts = sql srv_execute_i n_out (
assoc_id,
oL,
statenent _id 2,
execut e_fl ag,
par am sql da_2,
sel ect _sqglda_2
E
if (sts !=SQ SUAESS) {
/ *
error condition
*/
}
br eak;
defaul t:

} /* switch (choice) */

Performance Considerations 4-9

Reusing SQL Statements

} while (choice '= END OF GHO (B);
sts = sql srv_rel ease_st at enent (

assoc_id,

1,

&tatenment id 1

¥

sts = sql srv_rel ease_st at enent (

assoc_id,

1,

&tatenent _id 2

¥

4-10 Guide to Using the Oracle SQL/Services Client API

D

Logging for Performance and Debugging

This chapter describes how to use client logging to help debug and monitor the performance
of Oracle SQL/Services applications. Logging can be useful in debugging an application to
verify that the application is sending the correct data to the server. Logging can be useful in
tuning the performance of an application to set the network buffer size so that frequently
sent messages fit into a single network packet and do not have to be split into multiple
packets.

5.1 Enabling and Disabling Logging

You enable client logging by setting one or more logging flagsinthe CLIENT_LOG field in
the association structure (see Section 7.2) before calling sglsrv_associate or by using one of
the following operating system-specific mechanisms:

32-Bit Windows operating systems

Set the ClientL ogging option to the appropriate value in the sgsapi32.ini file before
running the application. For example:

d i ent Loggi ng=7
64-Bit Windows operating systems

Set the ClientLogging option to the appropriate value in the sgsapi64.ini file before
running the application. For example:

d i ent Loggi ng=7

OpenVMS operating system

Define the SQLSRV$CLIENT_LOG logical name using the appropriate value before
running the application. For example:

$ DEFI NE SQLSRVSCLI ENT_LGG 7

Logging for Performance and Debugging 5-1

Enabling and Disabling Logging

« HPTru64, HP-UX and Linux operating systems

Set the SQLSRV_CLIENT_LOG environment variable to the appropriate value before
running the application. For example:

%setenv SLSRV CLIENT LGG 7

Table 5-1 shows all the logging flag names and their numeric values.

Table 5-1 Client Logging Flags and Values

Flag Name Value

Description

SQLSRV_LOG_DISABLED 0
SQLSRV_LOG_ASSOCIATION 1
SQLSRV_LOG_ROUTINE 2
SQLSRV_LOG_PROTOCOL 4

8

SQLSRV_LOG_SCREEN?

SQLSRV_LOG_OPNCLS 64
SQLSRV_LOG_FLUSH 128

SQLSRV_LOG_BINARY 256

Disables logging (default).
Enables association logging.
Enables API routine logging.
Enables message protocol logging.

Sends logging to standard output on the client
system as well asto the log file.

Opens and closes the log file around each log
file write and isuseful if aclient isterminating
abnormally while calling an Oracle
SQL/Services client API routine. If the client
process is terminating due to an unhandled
error condition in an Oracle SQL/Services
client AP service, then it may be necessary to
usethe SQLSRV_LOG_OPNCLSoptionin
order to write as much information as possible
to the log file during every call to an Oracle
SQL/Services client API service.

Flushes pending output to the log file only at
the end of each complete association-level,
routine-level, and protocol-level log entry and
isuseful if aclient application is terminating
abnormally while executing application code.
If the client processis terminating due to an
unhandled error condition in the client
application, use the SQLSRV_LOG_FLUSH
option to flush pending output to the client log
before each call to an Oracle SQL/Services
client APl service completes.

Dumps memory in structured format if data
contains nonprintable characters.

1 The SQLSRV_LOG_SCREEN flagisignored on all Windows platforms.

5-2 Guide to Using the Oracle SQL/Services Client API

Association Logging

To enable more than one type of logging, add the appropriate constants. For example:

associ ate_str. CLI ENT_LGG = SQSRV_LOG ROUTI NE + SQSRV LOG SCREEN

Most of the operating systems supported by the Oracle SQL/Services client API do not
support multiple versions of the same file. However, sometimes it is necessary or
advantageous to preserve the client log files produced by multiple associations. For example,
Microsoft Access frequently uses two associations to process user requests. Therefore,

Oracle SQL/Services uses the following algorithm to construct a unique client log file name
to retain multiple client log files:

1. Useclient.log if thereisno existing log file named client.log.

2. Using client<nn>.log as a template, increment nn from 00 to 99 looking for alog file
name for which there is no existing log file. For example client00.log, client01.log, and
so forth. Use thefirst available unused file name.

3. If client.log and client00.log through client99.log all exist, use client.log, overwriting
the existing client.log file.

Using this algorithm, Oracle SQL/Services can retain up to 101 client log files. Client log
files can consume large amounts of disk space, depending on the application. Therefore, you
may want to delete or archive log files once you have finished monitoring or debugging an
application.

5.2 Association Logging

Association logging occurs whenever a client/server association is created, terminated, or
aborted. Use thistype of logging to debug server access in application programs.

Depending on the API routine called, association log entries include some or all of the
following items:

A header that identifies the entry as ASSOCIATE LEVEL LOG
The name of the API routine

The association identifier

The name of the server node

The name of the user account on the server

The error status for the API routine

Qo6 O6OeC

The detailed error code for network or server errors

Logging for Performance and Debugging 5-3

Routine Logging

© Thetype of network transport used for client/server communication: DECnet, TCP/IP,
or Oracle Net

For example:

ASSOO ATE LBVEL LG @

---- SQSRV_ASSOO ATE @

........ SQLSRV_ASSOO ATE 1D 7ac50 ©

-------- NDE abcdef, @ WSERMAME xxxxxx, @ saore 0, @ SQER0] 0 @

These messages indicate that an association with a server system was created normally.

5.3 Routine Logging

Routine logging occurs whenever your application calls an Oracle SQL/Services API
routine. Use thistype of logging to debug execution flow in application programs.

Routine log entries include some or al of the following items:

A header that identifies the entry as ROUTINE LEVEL LOG and contains atimestamp
The name of the API routine

The length in bytes of the SQL statement string

The SQL statement string

The name of the cursor

The SQL statement identifier

(B I~ o R

The execution flag

For example:

ROUTI NE LEVEL LGG at 07: 57:08 on 15- DEG 2009 @

----SASRY PREPARE @

-------- SQ STATEMENT

------------ len: 45 6 value: Select * fromsglsrv_table
where ISERWVE = 2 @

ROUTI NE LEVEL LGG at 07: 57: 08 on 15- DEG 2009
---- SQASRV_CPEN ORSR
-------- QURSCR NAMVE
------------ sql srv_cursor 6
-------- STATEMENT | D
1199896 @

5-4 Guide to Using the Oracle SQL/Services Client API

Routine Logging

ROUTI NE LEVEL LOG at 07:57: 08 on 15- DEG 2009
---- SQLSRY_BXECUTE | N QT

............ 1199897
-------- EXEQUTE FLAG SQ.SRV BXE WDATA @

Routine log entries that follow the sglsrv_prepare routine al so include metadata:
The type of SQLDA (parameter marker or select list)

The number of parameter markers or select list items

The Oracle SQL/Services datatype

For character data types, the length of the data variable

00006

For numeric and date-time data types, the length of the data variable and the scale factor
or type of date or interval, respectively (see Section 7.6)

The name of the column

For example:

ROUTI NE LEVEL LQG at 07:57: 08 on 15- DEG 2009
----SELECT LIST saDA @

-------- Qo b4 @

........ [0].SQATYPE SQSRV/.ASOI_STRNG €@ salen 33 @
............ SQANAVE USERNAME

-------- [1]. SQTYPE SQSRV GENERALI ZED NMBER SIZE 11, SCAE 0 @
............ SANAVE |NTEGR VALLE @

........ [2]. SQTYPE SQSR/ GENERALI ZED NMBER S ZE 24, SCALE 0
............ SQNAVE DOBLE VALUE

........ [3]. SQTYPE SQSRV GENERALI ZED DATE, SIZE 17, TYPE O
............ SQNAVE DATE VALLE

Routine log entries that follow the sglsrv_fetch, sglsrv_open_cursor, and sglsrv_execute in_
out routines aso include data:

@ Thetype of SQLDA (parameter marker or select list)
® The number of parameter markers or select list items
© The Oracle SQL/Services datatype

O Thevaue of the indicator variable

© Thelength of the value of the data variable

Logging for Performance and Debugging 5-5

Message Protocol Logging

@ Thevdue of the datavariable

For example:

ROUTI NE LEVEL LGG at 07: 57:08 on 15- DEG 2009
----SALECT LIST SQDA @

-------- sa;x Qb4 @

............ [0].SQTYPE SQSR/.ASOI_STRNG © saino 0 @
................ len: 32, @ value: xxxxxx

............ [1].SQTYPE SQSRV_GENERALI ZED NMBER SQLIND 0
---------------- len: 1, value: 1

............ [2].SQTYPE SQSRV_GENERALI ZED NMBER SQLIND 0
................ len: 23, value: 1.280000000000000E+002
............ [3].SQATYPE SQSRV_GENERALI ZED DATE, SQLIND 0
................ len: 16, val ue: 1988070100000000

5.4 Message Protocol Logging

M essage protocol logging occurs whenever a message is transmitted between the client API
and the server process. Use thistype of logging to verify that the Oracle SQL/Services
client/server communications protocol isworking as expected and to determine if request or
response messages are being split into multiple network packets.

Protocol log entriesinclude some or all of the following items:
A header that identifies the entry as PROTOCOL LEVEL and contains a timestamp
Theword CLIENT to indicate where the log file was written

The word "read" or "write" to indicate whether the packet was received or transmitted,
respectively

The timestamp

The packet identification number, which isincremented from 0 from the beginning of
the association

© 66 o066

The packet sequence number, which is nonzero in the following instances:
« Batched execution

« Multiple row fetches

« Any messagethat istoo large for a single packet

@ The message tag, which indicates a function to be executed on the server, an
acknowledgment (ACK) that a function was executed successfully, or an error
(ERROR) message

© Tagsthat represent routine parameters, including:

5-6 Guide to Using the Oracle SQL/Services Client API

Message Protocol Logging

Thetota length in bytes of the data
The number of bytes of datain this packet
The data value

®6e 60

Subtags that describe SQL DA structures; indicates whether an SQLDA(1) or
SQLDAZ2 isbeing used

For example:

PROTOOO. LEVEL LGG @ QIENT: @ wite (logonly) @ at 07:57:08 on 15- DEG 2009 @
----PAKET ID 11, @ PAGKET SEQEENCE: 0

-------------------- len: 4, @ value: 1000001 @

PROTOOQL LEVEL LGG QLI ENT: read at 07:57:08 on 15- DEG 2009
----PACKET ID 11, PACKET SEQUEENCE O

.................... len: 4, value: 3

............ SELECT LI ST DATA @

................ len: 2, value: 4

............ SQLVAR | NDEX SQLDATA SQUI ND @
................ SQALSRV_ SQALVAR | NDEX @
.................... len: 2, value: 0
................ SASR/ SAVARSQAINDL @
.................... len: 2, value: 0
................ SASRV_SAVAR SQDATAL, len: 32 @
.................... len: 32, value: SMTH

................ SQLSRY_ SQALVAR SQLI NDL

.................... len: 2, value: 0
................ SQALSRY_SQLVAR SQDATAL, len: 1
.................... len: 1, value: 3

Logging for Performance and Debugging 5-7

Message Protocol Logging

To determine the data type of an SQLDATA value, review the SQLDA information from the
routine level log that iswritten at prepare time. For example:

RQUTI NE LEVEL LGG at 07:57: 08 on 15- DEG 2009
----SELECT LI ST SQDA

_____ [0]. SALTYPE SQSRV. ASC | _STRING SQLEN 15

--------- SQANAVE EMPLOYEE NAME

----- [1]. SQATYPE SQSR/ GNERALI ZED NMBER SIZE 6, SCALE 0
--------- SQNAMVE QOST_CENTER

The following information is logged in the ASSOCIATION ACK message for the protocol
level log:

00060600

A header that identifies the entry as PROTOCOL LEVEL LOG CLIENT and containsa
timestamp

The name of the API routine

The version of SQL used by the server

The version of Oracle Rdb used by the server
The server protocol version number

The version of the server

The process ID (PID) of the executor

A flag to indicate the service attributes

The maximum server buffer size

For example:

PROTGOCL LEVEL LGG CLI ENT: read 0 at 07:57: 08 on 15- DEC 2009
----PACKET ID 1, PACKET SEQUENCE O

----SQLSRV_ASSOO ATE AK @

............ SQSRV.ASAI_STRNG len: 8
................ len: 7, value: V7.2-400

5-8 Guide to Using the Oracle SQL/Services Client API

Message Protocol Logging

................ SQASRV/.ASAI_STRNG len: 8
.................... len: 7, value: V7.3-030
............ BEQUTR PD @

.................... len: 4, value: 727725642
............ SERVI CE ATTR BUTES @
................ len: 2, value: 0
............ MAXI MM SERVER BUFFER Sl ZE
................ len: 4, value: 5000 Q

These messages indicate that an association is made between aclient and a server with a
protocol of 14, using V7.2 of SQL and V7.2 of Oracle Rdb, using an executor whose process
ID is 727725642 (decimad), using a universal (nondatabase) service, and a maximum server
buffer size of 5000 bytes. Thisinformation can be beneficial in resolving server-related
environmental issues and protocol version issues.

Logging for Performance and Debugging 5-9

Message Protocol Logging

5-10 Guide to Using the Oracle SQL/Services Client API

6

API Routines

This chapter describes the routines in the Oracle SQL/Services client application
programming interface (API).

6.1 Documentation Format

Each Oracle SQL/Services API routineis documented using a structured format called the
routine template. Table 6-1 lists the sections of the routine template, along with the
information that is presented in each section and the format used to present the information.
Some sections require no further explanation beyond what is given in Table 6-1. Those that
require additional explanation are discussed in the subsections that follow the table.

Table 6-1 Sections in the Routine Template

Section Description

Routine Name Appears at the top of the page, followed by the English name of the routine

Overview Appears directly below the routine name and explains, usualy in one or
two sentences, what the routine does

C Format Shows the C function prototype from the include file sglsrv.h

Parameters Provides detailed information about each parameter

Notes Contains a_ddi tional pieces of information related to applications
programming

Errors Lists the Oracle SQL/Services errors that can occur in the routine

6.1.1 Routine Name

The Oracle SQL/Services API routine names are shown in the form sglsrv_xxx, sqlsrv_
sglca xxx, sglsrv_sglda xxx, or sglsrv_sqglda2_xxx, throughout the manual.

APl Routines 6-1

Oracle SQL/Services Data Types

6.1.2 Return Values

The Oracle SQL/Services routine template does not include a"Returns" section. Except
where explicitly noted, the Oracle SQL/Services API routines return a signed longword
integer containing one of the values shown in Table 6-2.

Table 6-2 API Return Values

Return Value Description
n=SQL_SUCCESS! The routine completed successfully.
n < SQL_SUCCESS An error occurred during processing. Refer to the

SQLCA.SQLCODE for the specific error.

n > SQL_SUCCESS A warning was issued during processing. Refer to the
SQLCA for additional information.

1 Thesymbol SQL_SUCCESS is defined as 0 in the include file sglsrv.h.

6.1.3 C Format Section

The C Format section shows the function prototypes for the Oracle SQL/Services API
routines exactly asthey are declared in the include file sglsrv.h.

6.2 Oracle SQL/Services Data Types

Table 6-3 lists the data types used in Oracle SQL/Services API routine calls and structures.
Table 6-3 APl Parameter Data Types

Data Type Description

ASSOCIATE_ID Anidentifier that uniquely distinguishes one association from all
others

ASSOCIATE_STR Structure that specifies association characteristics

character string Pointer to a null-terminated character string of type char

CHARPTR Pointer to a buffer or variable of type unsigned char

PTRCHARPTR Pointer to avariable of type CHARPTR

SHORTPTR Pointer to a variable of type short

LONGPTR Pointer to a variable of type SQS_LONGWORD

PTRSHORTPTR Pointer to a variable of type short * or SHORTPTR

PTRLONGPTR Pointer to avariable of type LONGPTR

6-2 Guide to Using the Oracle SQL/Services Client API

APl Routines

Table 6-3 API Parameter Data Types(Cont.)

Data Type Description

word (signed) 16-bit signed integer

word (unsigned) 16-bit unsigned integer

longword (signed) 32-bit signed integer

longword (signed) array Array of signed 32-bit integers

longword (unsigned) 32-bit unsigned integer

pointer An address whose size is platform specific

SQLDA_ID An identifier (pointer or handl€) used to access SQLDA data and
metadata information

void Arguments described with the void data type are reserved for future
use

SQLCA_ID é(gli_(z:extifier (pointer or handle) used to access the data and structure

To facilitate the development of portable Oracle SQL/Services client software modules, the
following two 32-bit integer data types are type defined in the sglsrv.h file and may be used
to define variablesin your programs:

S5 LONGARD 32-bit signed | ongword
S5 NS GNED LONGAMRD 32-bit unsi gned | ongwor d

6.3 APl Routines

This section describes each of the API routines.

6.3.1 Association Routines

Association routines create and terminate client/server associations and control the
association environment. Association routines include the following routines:

= sglsrv_abort routine (see sglsrv_abort)
» sglsrv_associate routine (see sglsrv_associate)
« sglsrv_get associate info routine (see sglsrv_get_associate info)

« Sglsrv_release routine (see sqlsrv_release)

APl Routines 6-3

sqlsrv_abort

sqlsrv_abort

The sglsrv_abort routine drops the network link between the client and server, frees client
association resources, and rolls back active transactions on the server.

C Format
extern int sglsrv_abort(
ASSOO ATE | D associate id);
Parameters
associate_id
An identifier used to distinguish one active association from all others.
Errors

SQLSRV_INTERR Internal error.
SQLSRV_INVASC Invalid association identifier.

APl Routines 6-4

sqlsrv_associate

sqlsrv_associate

The sqlsrv_associate routine creates a network link between your application and the server,
using the node name, user name, and password input parameters. It creates an association
identifier used in subsequent routine calls and optionally binds specific input parameters,
such as the message protocol buffersand SQLCA structure, to the association.

C Format

extern int sql srv_associ at e(
char *node_nane,
char *user_nane,
char *password,
CHARPTR read_buffer,
CHARPTR wite buffer,
S(B LONGNRD read buf fer_si ze,
SB LONGNRD wite buffer_size,
SQCA ID *sqglca_str,
struct ASSOO ATE STR *associ ate_str,
ASSO] ATE | D *associ ate_i d);

Parameters

node_name

Address of anull-terminated string containing the name of the server node. If you are using
the Oracle Net transport, this parameter specifies either the Oracle Net Service Name or the
Oracle Net Alias.

user_name (optional)

Address of anull-terminated string containing the user name that the server uses to
authenticate the user and determineif the user isauthorized to access the specified service. If
this parameter isNULL and the DECnet transport is selected, then the server looks for an
Oracle SQL/Services proxy for the client node name. If thereis no proxy for the client node,
or atransport other than DECnet is selected, the server checksto see if unknown users are
authorized to access the specified service. If unknown users are not authorized to access the
service, the association fails. See the Oracle SQL/Services Server Configuration Guide for
more information on client authentication and authorization, and how Oracle SQL/Services
uses the client user name.

APl Routines 6-5

sqlsrv_associate

password (optional)
Address of anull-terminated string containing the corresponding password to the specified
user name. You must include a password when you specify a user name.

read_buffer (optional)

Address of a buffer of type unsigned char used by the API to receive messages from the
server. If you specify abuffer address of NULL, Oracle SQL/Services allocates the buffer.
Oracle Corporation recommends that you pass a NULL value.

write_buffer (optional)

Address of a buffer of type unsigned char used by the API to build messagesto send to the
server. If you specify abuffer address of NULL, Oracle SQL/Services allocates the buffer.
Oracle Corporation recommends that you pass a NULL value.

read_buffer_size (optional)

The sizein bytes of theread buffer. If aread buffer is passed, theread_buffer_size must
contain its size. The minimum value is 256 bytes. If no read_buffer is passed, Oracle
SQL/Services alocates a buffer of sizeread_buffer_size if the parameter is non-zero, or of a
default size if the parameter is zero. See Table 64 for valid combinations of buffer-related
parameters. The values for read buffer_size and write_buffer_size must be equal. Thisis
true for both user-alocated buffers, or when the application requests that Oracle
SQL/Services alocate buffers of a specified size.

Table 6-4 Valid Combinations of Buffer-Related Parameters for the sqlsrv_associate
Routine

Buffer Size Oracle SQL/Services
Buffer Specified Specified Result Comments
NULL 0 API allocates 1300 1300 is default
NULL 256+ API allocates what user Client drops back to the
specified up to 3200 server-supported value
Valid user-allocated 256+ APl uses what user Client drops back to the
buffer spec:|f|ed up to 3200 $rver_wpported value

write_buffer_size (optional)

The size in bytes of the API buffer used to send messages. If awrite_buffer is passed, the
write_buffer_size must contain its size. The minimum value is 256 bytes. If no write buffer
is passed, Oracle SQL/Services allocates a buffer of size write-buffer-size if the parameter is
non-zero, or of a default size if the parameter is zero. See Table 64 for valid combinations
of buffer-related parameters. The values for write_buffer_sizeand read buffer_size must be

equal.

APl Routines 6-6

sqlsrv_associate

sqlca_str (optional)

Address of an SQLCA (SQL Communications Area) structure (see Section 7.3). If you
specify abuffer address of NULL, Oracle SQL/Services all ocates the SQLCA structure.
Oracle Corporation recommends that you pass a NULL value.

The SQLCA structure is defined in the include file sglsrvcah. All valid error codes are
defined in sglsrv.h.

associate_str

Address of an ASSOCIATE_STR structure used to define optional association
characteristics(see Section 7.2). The ASSOCIATE_STR structure is defined in the include
file sglsrv.h.

associate_id
A pointer to a variable of type ASSOCIATE_ID into which the API writes the association
identifier. Thisidentifier distinguishes one active association from all others.

Notes

« FErrorsthat are detected early in the processing of the sqlsrv_associate routine are
returned only in the longword return value from sglsrv_associate. These errorsinclude
SQLSRV_INVARG, SQLSRV_INVSQLCA, SQLSRV_NO_MEM, and SQLSRV_
INVBUFSIZ.

« If theread or write buffer sizeisless than 256 bytes, Oracle SQL/Services returns an
SQLSRV_INVARG error on sglsrv_associate.

« Iftheread buffer or write_buffer parameter values are user-allocated buffers, but the
read_buffer_size or write_buffer_size parameter values are specified as 0, Oracle
SQL/Services returns an SQLSRV_INVARG error on sglsrv_associate.

« Iftheread buffer and write_buffer size are not of equal size, Oracle SQL/Services
returns an SQLSRV_INVBUFSIZ error on sglsrv_associate.

« When errors are detected before an associate id isallocated for the associate session,
the sglsrv_associate routine writes NUL L to the associate id variable to indicate that no
associate id is assigned to this association. In this case, applications should not make
subsequent Oracle SQL/Services API calls that require an associate id.

« When errors are detected after an associate id isallocated for the association, the
sglsrv_associate routine writes a non-NULL value to the associate id variable. In this
case, applications can make calls to alimited subset of Oracle SQL/Services AP
routines, such as the sglsrv_sqglca_error, sglsrv_sglca error_text and sglsrv_sglca_
sqlstate routines, to retrieve additional information about the error. In this situation, the

APl Routines 6-7

sqlsrv_associate

application should call the sglsrv_release API routine to rel ease the resources held by
the association after retrieving the additional error information.

« If aclient application connectsto a server using read and write buffer sizesthat are
larger than the server can handle, the sglsrv_associate routine adjusts the buffer sizes
locally and immediately returns a success status to the client application.

The mechanism used by the sqlsrv_associate routine to select an appropriate buffer size
is transparent to the client application. Client applications can call the sglsrv_get_
associate_info routine to determine the actual buffer size being used for the association.

= When auser connectsto a database service, the sqlsrv_associate routine completes with
the SQL error code -1028, SQL_NO_PRIV, if the user has been granted access to the
Oracle SQL/Services service, but has not been granted the right to attach to the
database. A record of the failure is written to the executor process'slog file.

= When an association is no longer required, your application callsthe sglsrv_release
routine to commit any outstanding transactions, rel ease any prepared statements,
disconnect the network link, and release any memory allocated to the association at the

Errors

client and server.

SQLSRV_CONNTIMEOUT

SQLSRV_DLL_ADDR_ERR

SQLSRV_DLL_LOAD_ERR
SQLSRV_EXEINTERR

SQLSRV_GETACCINF
SQLSRV_HOSTERR
SQLSRV_INTERR
SQLSRV_INV_CLS
SQLSRV_INVARG
SQLSRV_INVASCSTR
SQLSRV_INVBUFSIZ
SQLSRV_INVSQLCA

The connection to the server could not be
completed within the specified time limit.

Windows application GetProcAddress call
error.

WindowsapplicationL oadL ibrarycall error.

The executor has encountered an internal or
other error condition.

Client authentication or authorization failed.
An attempt to access TCP/IP host files failed.
Internal error.

Invalid or unknown service name specified.
Invalid routine parameter.

Invalid parameter in ASSOCIATE_STR.
Invalid read or write buffer size.

Invalid SQLCA structure.

APl Routines 6-8

sqlsrv_associate

SQLSRV_NETERR
SQLSRV_NO_MEM
SQLSRV_NO_PRCAVL

SQLSRV_OPNLOGFIL
SQLSRV_PWD_EXPIRED
SQLSRV_SQLNET_BADCONNECT
SQLSRV_SQLNET_BADINIT
SQLSRV_SQLNET_BADSERVICE

SQLSRV_SVCNOTRUN
SQLSRV_SVC_SHUTDOWN
SQLSRV_TOOMANY CONNECTS

SQLSRV_XPT_MISSING

Network transport returned an error.
API memory alocation failed.

No executor processes are available to service
the connection.

Unableto open log file.

The password has expired.

Oracle Net is unable to connect to the server.
Unableto initialize Oracle Net.

Oracle Net is unable to resolve the service
name being specified.

The specified service is not running.
The specified service has been shut down.

The maximum number of network
connections has been reached at the server.

The specified network transport is not
installed or is not available on the client node
operating system.

APl Routines 6-9

sqlsrv_get_associate_info

sqlsrv_get_associate_info

C Format

Parameters

The sglsrv_get_associate _info routine returns attributes of the association structure. The
information is copied to a user buffer when sglsrv_get_associate info is called.

extern int sglsrv_get_associ ate_i nfo(
ASSOO ATE | D associ at e i d,
unsi gned short int info_type,
unsi gned short int buf_| en,
char *info_buf,
S5 LONGARD *i nfo_nun);

associate_id
An identifier used to distinguish one active association from all others.

info_type
Specifies the type of information to be returned. The values of the info_type parameter are
shown in Table 6-5.

Table 6-5 Values of the info_type Parameter

Value Description

SQLSRV_INFO_SQL_VERSION Getsthe version of SQL used by the server and
returnsit as character data.

SQLSRV_INFO_ENGINE Getsthe version of the Oracle Rdb database engine
used by the server and returns it as character data.

SQLSRV_INFO_SRV_VERSION Getsthe version of the Oracle SQL/Services server
and returnsit as character data.

SQLSRV_INFO_PROTOCOL Gets the protocol level of the server and returns it
as alongword.

SQLSRV_INFO_SERVER _PID Gets the process ID (PID) of the executor and
returnsit as alongword.

SQLSRV_INFO_TRANSPORT Gets the transport type in use and returns the

information as character data.

SQLSRV_INFO BUFFER_SIZE Gets the negotiated client buffer size and returns
the information as a longword.

API Routines 6-10

sqlsrv_get_associate_info

Table 6-5 Values of the info_type Parameter(Cont.)

Value Description

SQLSRV_INFO_SERVICE_ATTRS Getsthe service attributes and returns the value as a
bit mask in a 32-hit longword. The bit mask is
defined in Table 6-6.

The values of the SQLSRV_INFO_SERVICE_ATTRS bit masks are shown in Table 6-6.
Table 6-6 Values of the SQLSRV_INFO_SERVICE_ATTRS Bit Masks

Numeric
Value Value Description
SQLSRV_INFO_SVC DBSERVICE 1 Set if the service is a database
service.
SQLSRV_INFO_SVC REUSETXN 2 Set if the serviceis transaction
reusable.
SQLSRV_INFO_SVC TIEDEXEC 4 Set if the serviceistransaction

reusable and the association is
tied to asingle executor for the
life of the connection. This bit
will always be set if the
SQLSRV_INFO_SVC_
REUSETXN bit is set.

buf_len
The size of a user-supplied buffer for information returned as character data.

info_buf
Address of a user-supplied buffer of type char for information returned as character data.
Thisisrequired for information returned as character data.

info_num

The address of avariable of type SQS_L ONGWORD to be used for information returned as
alongword, or for the number of characters returned for information returned as character
data. Thisisrequired for information returned as alongword, and optional for information
returned as character data

Notes

«» Thesglsrv_get associate info service returns one attribute per call. To get multiple
attributes, your application must call sglsrv_get_associate info once for each attribute.

API Routines 6-11

sqlsrv_get_associate_info

« For information returned as character data, if the actual length of the string is longer
than the user-supplied buffer, the returned information is truncated to the size of the

buffer.
Errors
SQLSRV_INVARG Invalid routine parameter.
SQLSRV_INVASC Invalid association identifier.
SQLSRV_SRVNOTSUP The server is not supported.

API Routines 6-12

sqlsrv_release

sqlsrv_release

The sqlsrv_release routine commits active transactions on the server and requests an orderly
termination of the association, which disconnects the network link and frees client
associ ation resources.

C Format
extern int sqlsrv_rel ease(
ASSOO ATE | D associ at e i d,
char *stats);
Parameters
associate_id
An identifier used to distinguish one active association from all others.
stats (optional)
This parameter must be 0 or NULL.
Notes
= When an association is no longer required, your application callsthe sglsrv_release
routine to commit any outstanding transactions, rel ease any prepared statements,
disconnect the network link, and release any memory allocated to the association at the
client and server.
Errors
SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.
SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.
SQLSRV_INTERR Interna error.
SQLSRV_INVASC Invalid association identifier.
SQLSRV_MULTI_ACT A batched sglsrv_execute_in_out or sqlsrv_fetch_many
context is active.
SQLSRV_NETERR Network transport returned an error.

API Routines 6-13

sqlsrv_release

SQLSRV_SVC _SHUTDOWN The specified service has been shut down.

6.3.2 SQL Statement Routines

SQL statement routines prepare and execute SQL statements, and release prepared SQL
statement resources. These routines map to the dynamic SQL interface. SQL statement
routines include the following routines:

« sglsrv_prepare routine (see sglsrv_prepare)
= sglsrv_execute in_out routine (see sglsrv_execute in_out)
« sglsrv_execute immediate routine (see sglsrv_execute_immediate)

» Sglsrv_release statement routine (see sglsrv_release statement)

APl Routines 6-14

sqlsrv_prepare

sqlsrv_prepare

C Format

Parameters

The sqlsrv_prepare routine prepares the input SQL statement and returns a value that
identifies the prepared statement. It also optionally allocates and initializes SQLDA or
SQLDAZ2 parameter markers and select list items associated with the SQL statement.

extern int sql srv_prepare(
ASSOO ATE | D associ at e i d,
S5 LONGNRD dat abase i d,
char *sql _statenent,
SB LONGARD *stat enent _i d,
SQDA | D *paranet er _nar ker _sql da,
SQDA ID *sel ect_Iist_sqlda);

associate_id
An identifier used to distinguish one active association from all others.

database_id
This parameter must be 0. Databases are referenced within the SQL statement syntax.

sql_statement
Address of anull-terminated string containing the SQL statement to be prepared.

statement_id
Address of avariable of type SQS_LONGWORD into which the API writes the identifier
used in all subsequent references to the prepared statement.

parameter_marker_sqglda
A pointer to avariable of type SQLDA_ID.

Oracle Corporation recommends that you let the Oracle SQL/Services client API allocate
memory for each parameter marker SQLDA or SQLDA?2, in which case your application
should store NULL in the parameter marker SQLDA_ID before calling sglsrv_prepare. If
your application provides its own memory for each parameter marker SQLDA or SQLDAZ2,
your application must store the address of that memory in the parameter marker SQLDA_|D
before calling sqlsrv_prepare.

APl Routines 6-15

sqlsrv_prepare

Notes

If the SQL statement is prepared successfully, Oracle SQL/Services allocates memory for
the SQLDA or SQLDA?2, stores the address in the SQLDA _ID, if necessary, and writes
metadata information about all the parameter markers contained in the SQL statement to the
parameter marker SQL DA or SQLDA2.

select_list_sqlda
A pointer to avariable of type SQLDA_ID.

Oracle Corporation recommends that you let the Oracle SQL/Services client API allocate
memory for each select list SQLDA or SQLDA2, in which case your application should
store NULL inthe select list SQLDA_ID before calling sqlsrv_prepare. If your application
provides its own memory for each select list SQLDA or SQLDA2, your application must
store the address of that memory in the select list SQLDA_ID before calling sglsrv_prepare.

If the SQL statement is prepared successfully, Oracle SQL/Services allocates memory for
the SQLDA or SQLDA?2, stores the address in the SQLDA _ID, if necessary, and writes
metadata information about all the select list items contained in the SQL statement to the
select list SQLDA or SQLDA2.

» Oracle Corporation recommends that you let the Oracle SQL/Services client API
allocate memory for each parameter marker and select list SQLDA or SQLDA2. To
check for the presence of parameter markers or select list items in this situation, your
application tests the respective SQLDA_ID for anon-NULL value. If the SQLDA_ID
does contain anon-NULL value, the number of parameter markers or select list items
may be obtained from the SQL D field of the SQLDA or SQLDA?2 using the sglsrv_
sglda_sgld, sglsrv_sqlda sqld73, sglsrv_sqlda2_sgld or sglsrv_sqlda2_sgld73 routines.

= If your application provides it own memory for each parameter marker and select list
SQLDA or SQLDAZ2, it must initialize the SQLDAID field to "SQLDA" or "SQLDA2";
the SQLDABC field to the tota size, in bytes, of the SQLDA; the SQLD field to zero;
and the SQLN field to the total number of SQLVARSs or SQLVAR2s in the SQLDA or
SQLDAZ2. Upon successful completion of acall to sglsrv_prepare, the presence and
number of parameter markers or select list itemsisindicated by a non-zero value in the
SQLD field of the SQLDA or SQLDA2.

= To enable your application to distinguish between different types of SQL statements,
Oracle Rdb stores the statement type in the SQL ERRD[1] field of the SQLCA. The
statement types, as defined by Oracle Rdb, are as follows:

0: statement is an executable statement other than a CALL statement
1: statement is a SELECT statement
2: statement isa CALL statement

6-16 Guide to Using the Oracle SQL/Services Client API

sqlsrv_prepare

Errors

You can retrieve this value using the sqlsrv_sglca_sqglerrd routine.

« If the prepared statement isa CALL statement, the metadata for any input or
input/output arguments is written to the parameter marker SQLDA or SQLDAZ2, while
the metadata for any output or input/output arguments is written to the select list
SQLDA or SQLDA?2. Note that metadata for each input/output argument iswritten to
both the parameter marker and select list SQLDAs or SQLDAZ2s. However, in all other
respects, your application processes a CALL statement in the same manner as any other
executable SQL statement.

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

SQLSRV_INTERR Interna error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_NETERR Network transport returned an error.

SQLSRV_NO_MEM API memory allocation failed.

SQLSRV_SVC _SHUTDOWN The specified service has been shut down.

API Routines 6-17

sqlsrv_execute_in_out

sqlsrv_execute_in_out

C Format

Parameters

The sglsrv_execute_in_out routine executes any prepared, executable SQL statement. The
prepared statement may accept input from a parameter marker SQLDA or SQLDA2, or
return output in a select list SQLDA or SQLDAZ2, or both. The sglsrv_execute in_out
routine supersedes the sglsrv_execute routine.

extern int sqlsrv_execute in_out(
ASSOO ATE | D associ at e i d,
S5 LONGNRD dat abase i d,
S5 LONGARD st at enent i d,
short int execute flag,
SQLDA | D par anet er _nar ker _sq| da,
SQDA ID select_list_sqlda);

associate_id
An identifier used to distinguish one active association from all others.

database_id
This parameter must be 0. Databases are referenced within the SQL statement syntax.

statement_id

The statement ID returned previously by sglsrv_prepare when the statement was prepared. If
you start batched execution for a particular statement 1D using the SQLSRV_EXE_BATCH
flag, you must end batched execution for that statement 1D using one of the SQLSRV_EXE_
W_DATA, SQLSRV_EXE_WO_DATA, or SQLSRV_EXE_ABORT flags before you can
execute any other prepared statement.

execute_flag

For a prepared statement that contains parameter markers, this parameter specifies whether
the API sends single or multiple sets of parameter marker values to the server for processing
(see Section 4.1 for more information on batched execution). For all other prepared SQL

6-18 Guide to Using the Oracle SQL/Services Client API

sqlsrv_execute_in_out

statements, this value must be 0 (SQLSRV_EXE_W_DATA). The values of the execute flag
parameter are shown in Table 6-7.

Table 6-7 Values of the execute_flag Parameter in sqlsrv_execute_in_out

Flag Name Value Description

SQLSRV_EXE W_DATA 0 Builds an execute request message in the
message buffer using the current valuesin the
parameter marker SQLDA or SQLDA2, then
sends the message to the server for execution. If
batched execution is currently in effect for the
statement, this parameter appends the new
message to the previous messages in the
message buffer, and sends all the messages to
the server for execution a ong with any requests
already queued at the server.

SQLSRV_EXE BATCH 1 Starts or continues batched execution by
building an execute request message in the
message buffer using the current valuesin the
parameter marker SQLDA or SQLDA2. If
batched execution is aready in effect for the
statement, this parameter appends the new
message to the previous messages in the
message buffer. Using batched execution, no
messages are sent to the server until the message
buffer fills up, whereupon the messagesin the
message buffer are sent to the server to be
queued up for subsequent execution behind any
previously queued requests.

SQLSRV_EXE WO _DATA 2 Ends batched execution by sending the current
contents of the message buffer to the server for
execution dong with any previously queued
requests. Note that the current valuesin the
parameter marker SQLDA or SQLDA?2 are not
sent to the server when batched execution is
ended using the SQLSRV_EXE_WO_DATA

flag.
SQLSRV_EXE_ABORT 3 Aborts batched execution by discarding the
current contents of the message buffer and

sending a message to the server directing it to
discard any previously queued requests.

APl Routines 6-19

sqlsrv_execute_in_out

parameter_marker_sqglda

An SQLDA _ID that identifies the parameter marker SQLDA or SQLDA?2 containing any
parameter marker values or input and input/output argument values for the SQL statement to
be executed.

select_list_sqlda

An SQLDA_ID that identifiesthe select list SQLDA or SQLDAZ2 to receive any select list
items or output and input/output argument values returned by the SQL statement to be
executed.

Notes

» Onsuccessful completion of acall to sglsrv_execute in_out, Oracle SQL/Services
stores the total number of database rows inserted, updated, or deleted in the
SQLERRD[?2] field of the SQLCA. Because multiple rows may be updated or deleted
when you execute an UPDATE or DELETE statement, this value may be higher than
the number of timesthat you called sqlsrv_execute_in_out for a particular batched
execution. You can retrieve the row count from the SQLCA using the sglsrv_sglca
count routine. Note that Oracle Rdb does not return arow count value if you use the
CALL statement to invoke a stored procedure, or if you execute a compound statement.

« If an error occurs executing a request queued for batched execution, then the server
discards any remaining reguests in the batch execution queue and returns the error to the
client. Currently, there is no way to determine precisely which request caused the
failure. Therefore, client applications will typically roll back the transaction in this
situation.

« If you use batched execution to execute an SQL statement containing both parameter
markers and select list items, such as UPDATE . . . RETURNING, then only the results
from the execution of the last queued request are returned to the client. The results from
the execution of al previously queued requests are lost.

= Onceyou start batched execution for a particular statement 1D, you cannot call any API
routines other than sglsrv_execute_in_out, nor can you execute any other prepared
statements until you end batched execution for the current statement |D using one of the
SQLSRV_EXE_W_DATA, SQLSRV_EXE_WO_DATA, or SQLSRV_EXE_ABORT
flags.

» SQL describes the metadata for any items specified in the RETURNING clause of an
INSERT statement into the end of the parameter marker SQLDA or SQLDA?2. Note that
columns, output arguments, and other values returned by a statement are normally
described in the select list SQLDA or SQLDA2. The server does not normally return
data values from a parameter marker SQLDA or SQLDA? to the client; therefore, the
server must explicitly check each parameter marker SQLDA or SQLDA2 to determine

6-20 Guide to Using the Oracle SQL/Services Client API

sqlsrv_execute_in_out

Errors

if an INSERT statement containsa RETURNING clause. To do so, it checks the name
of the last column described in the parameter marker SQLDA or SQLDA?2 for the value
DBKEY. Therefore, the only value that can be returned from an INSERT statement is
the DBKEY, because the server is unable to detect any other returned value. For

example:

I NSERT | NTO BEMPLOYEES VALUES (?,?,?,?7,?,7,2,?) RETURN NG DBKEY | NTO ?;

SQL describes the metadata for any items specified in the RETURNING clause of an
UPDATE statement into the select list SQL DA or SQLDA?2 as expected.

SQLSRV_CONNTIMEOUT

SQLSRV_DATA_TOO_LONG

SQLSRV_EXEINTERR

SQLSRV_INTERR
SQLSRV_INVARG
SQLSRV_INVASC
SQLSRV_INVEXEFLG
SQLSRV_INVSELLST
SQLSRV_INVSQLDA
SQLSRV_INVSTMID
SQLSRV_MULTI_ACT

SQLSRV_NETERR
SQLSRV_SVC_SHUTDOWN

The connection to the server could not be completed within
the specified time limit.

The Oracle SQL/Services executor determined that the
length of a datavaluein an SQLDA exceeded the
maximum allowed for the value's data type.

The executor has encountered an interna or other error
condition.

Internal error.

Invalid routine parameter.

Invalid association identifier.

Invalid execute flag.

Invalid SQLDA or SQLDA?2 select list.
Invalid SQLDA, SQLDAZ2, or SQLDA_ID.
Invalid statement identifier.

A batched sglsrv_execute_in_out or sqlsrv_fetch_many
context is active.

Network transport returned an error.

The specified service has been shut down.

API Routines 6-21

sqlsrv_execute_immediate

sqlsrv_execute_immediate

C Format

Parameters

Notes

The sqlsrv_execute_immediate routine prepares and executes an SQL statement that does
not contain parameter markers or select list items.

extern int sqlsrv_execute_i nmedi at e(
ASSOO ATE | D associ at e i d,
S5 LONGNRD dat abase i d,
char *sql _statenent);

associate_id
An identifier used to distinguish one active association from all others.

database_id
This parameter must be 0. Databases are referenced within the SQL statement syntax.

sql_statement
Address of anull-terminated string containing the SQL statement to be prepared and
executed by dynamic SQL.

« sglsrv_execute immediate provides an efficient mechanism, using asingle
reguest/response message pair, for executing an SQL statement that does not contain
any parameter markers or select list items where the statement is to be executed only
once. However, if the same SQL statement isto be executed multiple times, it is more
efficient to prepare the statement and execute it as necessary, even if the statement
contains no parameter markers or select list items.

« Onsuccessful completion of acall to sglsrv_execute immediate, Oracle SQL/Services
stores the total number of database rows updated or deleted in the SQLERRD][2] field of
the SQLCA. You can retrieve the row count from the SQL CA using the sqlsrv_sqglca_
count routine. Note that Oracle Rdb does not return arow count value if you use the
CALL statement to invoke a stored procedure, or if you execute a compound statement.

6-22 Guide to Using the Oracle SQL/Services Client API

sqlsrv_execute_immediate

Errors

SQLSRV_CONNTIMEOUT

SQLSRV_EXEINTERR

SQLSRV_INTERR
SQLSRV_INVARG
SQLSRV_INVASC
SQLSRV_MULTI_ACT

SQLSRV_NETERR
SQLSRV_SVC_SHUTDOWN

The connection to the server could not be completed within
the specified time limit.

The executor has encountered an interna or other error
condition.

Interna error.
Invalid routine parameter.
Invalid association identifier.

A batched sglsrv_execute_in_out or sqlsrv_fetch_many
context is active.

Network transport returned an error.

The specified service has been shut down.

API Routines 6-23

sqlsrv_release_statement

sqlsrv_release_statement

The sglsrv_release_statement routine frees all resources associated with one or more
prepared statements at both the client and server. The sglsrv_release statement routine
implicitly invokes sqlsrv_free sglda data or sglsrv_free sqlda2_datato free dynamically
alocated SQLDA or SQLDA?2 structures.

C Format
extern int sqlsrv_rel ease_st at enent (
ASSOO ATE | D associ at e i d,
short int statenent id count,
S5 LONGNRD *statenent _id_array);
Parameters
associate_id
An identifier used to distinguish one active association from all others.
statement_id_count
The number of statement identifiers passed in the statement_id_array.
statement_id_array
An array containing the identifiers (statement_id parameters returned by the sqglsrv_prepare
routine) of the statements to free.
Notes

= You cannot release a statement that has an open cursor.

« Ifyoucal sglsrv_alocate sglda dataor sqlsrv_allocate sqlda2_datato allocate
memory for parameter marker and select list item data and indicator variables, Oracle
SQL/Services automatically frees the memory when you call sglsrv_release_statement.
If you let sglsrv_prepare allocate memory for the parameter marker and select list
SQLDA or SQLDAZ2 structures, Oracle SQL/Services automatically frees the memory
when you call sglsrv_release_statement.

» If Oracle SQL/Services encounters an error validating or releasing a particul ar statement
ID, it discards any subsequent statement I Ds and returns the error to the client
application. Oracle SQL/Services stores the total number of statementsreleased in the
SQLERRD[?2] field of the SQLCA. You can retrieve the count from the SQLCA using
the sglsrv_sglca_count routine.

6-24 Guide to Using the Oracle SQL/Services Client API

sqlsrv_release_statement

Errors

SQLSRV_CONNTIMEOUT

SQLSRV_EXEINTERR

SQLSRV_INTERR
SQLSRV_INVARG
SQLSRV_INVASC
SQLSRV_INVSTMID
SQLSRV_MULTI_ACT

SQLSRV_NETERR
SQLSRV_SVC_SHUTDOWN

The connection to the server could not be completed within
the specified time limit.

The executor has encountered an interna or other error
condition.

Interna error.

Invalid routine parameter.
Invalid association identifier.
Invalid statement identifier.

A batched sglsrv_execute_in_out or sqlsrv_fetch_many
context is active.

Network transport returned an error.

The specified service has been shut down.

APl Routines 6-25

sqlsrv_release_statement

6.3.3 Result Table Routines

Result table routines allow the caller to fetch data from the server by providing calls to open
acursor, fetch from an open cursor, and close an open cursor. Result table routines include
the following routines:

» sglsrv_declare _cursor routine (see sglsrv_declare _cursor)
= sglsrv_open_cursor routine (see sqlsrv_open_cursor)

« sglsrv_fetch routine (see sqlsrv_fetch)

« sglsrv_fetch _many routine (see sglsrv_fetch_many)

« sglsrv_close cursor routine (see sglsrv_close_cursor)

6-26 Guide to Using the Oracle SQL/Services Client API

sqlsrv_declare_cursor

sqlsrv_declare_cursor

C Format

Parameters

The sqlsrv_declare_cursor routine declares a dynamic cursor. If you do not use the sglsrv_
declare_cursor routine, Oracle SQL/Servicesimplicitly declaresall cursorsastypetable and
mode update within the sglsrv_open_cursor call.

extern int sql srv_decl are_cursor(
ASSOO ATE | D associ at e i d,
char *cursor_nane,
S5 LONGARD st at enent _i d,
short int cursor_type,
short int cursor_node);

associate_id
An identifier used to distinguish one active association from all others.

cursor_name
Address of anull-terminated string used to identify the cursor.

statement_id

The statement ID returned previously by sglsrv_prepare when the SELECT statement was
prepared. The sglsrv_declare_cursor routine maps the cursor_name to the prepared
statement.

cursor_type
A value indicating the type of list cursor to declare. You can declare table or list cursors:

« Table

Declare table cursors by specifying the SQLSRV_TABLE_CURSOR literal.
« List

Declare list cursors by specifying the SQLSRV_LIST_CURSOR literal.

For detailed information about SQL list and table cursors, refer to the Oracle Rdb7 Guideto
QL Programming and the Oracle Rdb SQL Reference Manual.

API Routines 6-27

sqlsrv_declare_cursor

Notes

cursor_mode
A value indicating the mode of table or list cursors. Table cursors have four modes:

Update-only

To declare table cursors in update-only mode, specify the literal SQLSRV_MODE _
UPDATE_ONLY.

Update
To declare table cursors in update mode, specify the literal SQLSRV_MODE_UPDATE.
Read-only

To declare table cursors in read-only mode, specify the literal SQLSRV_MODE_
READ_ONLY.

Insert-only

To declare table cursors in insert-only mode, specify the literal SQLSRV_MODE _
INSERT_ONLY.

List cursors have three modes:

Read-only

To declare list cursorsin read-only mode, specify the literal SQLSRV_MODE_READ _
ONLY.

Insert-only

To declare list cursorsin insert-only mode, specify the literal SQLSRV_MODE _
INSERT_ONLY.

Scroll
To declare list cursorsin scroll mode, specify the literal SQLSRV_MODE_SCROLL.

For detailed information about SQL cursor modes, refer to the Oracle Rdb7 Guide to SQL
Programming and the Oracle Rdb SQL Reference Manual.

When designing applications, you should avoid using cursor names starting with the
prefix "SQLSRV_"; thisis areserved prefix and is used by the Oracle SQL/Services
product.

The cursor type and cursor mode literals are defined in the sglsrv.h file.

Within SQL, executing a commit or rollback statement impliesthat all open cursors are
closed unless you are using the Oracle Rdb Hold Cursors feature; this assumption is not

6-28 Guide to Using the Oracle SQL/Services Client API

sqlsrv_declare_cursor

Errors

true for Oracle SQL/Services. Because Oracle SQL/Services does not parse the SQL
statements it passes, it does not know when a commit or rollback operation is executed.
Instead, Oracle SQL/Services requires that the sglsrv_close _cursor call be issued to
release the cursor-related data structures prior to a commit or rollback operation. To
reuse the same cursor name, you must close that cursor before executing a commit or
rollback statement.

SQLSRV_DUPCRSNAM Duplicate cursor name.

SQLSRV_INTERR Interna error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVCURNAM Invalid cursor name.

SQLSRV_INVSTMID Invalid statement identifier.

SQLSRV_MULTI_ACT A batchgd sql_srv_@<ecute_i n_out or sqlsrv_fetch_many
context is active.

SQLSRV_NETERR Network transport returned an error.

API Routines 6-29

sqlsrv_open_cursor

sqlsrv_open_cursor

C Format

Parameters

Notes

The sqlsrv_open_cursor routine opens a cursor for a prepared SELECT statement. The
sglsrv_declare_cursor routine optionally determines the type and mode of the cursor.

extern int sqgl srv_open_cursor(
ASSOO ATE | D associ at e i d,
char *cursor_nane,
S5 LONGARD st at enent _i d,
SQDA | D paranet er _narker _sql da);

associate_id
An identifier used to distinguish one active association from all others.

cursor_name
Address of anull-terminated string identifying the cursor. All cursor operations, including
positional INSERT, UPDATE, and DELETE statements, must use the cursor name to
identify the cursor.

statement_id
The statement ID returned previously by sglsrv_prepare when the SELECT statement was
prepared. The sglsrv_open_cursor routine maps the cursor_name to the prepared statement.

parameter_marker_sqglda
An SQLDA identifier defining the parameter marker values for the prepared SELECT
statement.

« After asuccessful call to sglsrv_open_cursor to open atable cursor, Oracle Rdb stores
the following information in the SQL CA:

— Estimated result table cardinality in the SQLERRD[2] field.
— Estimated I/Os in the SQLERRDI[3] field.

These values are retrieved using the sqlsrv_sqglca_sqlerrd routine.

6-30 Guide to Using the Oracle SQL/Services Client API

sqlsrv_open_cursor

Errors

After asuccessful call to sglsrv_open_cursor to open alist cursor, Oracle Rdb stores the
following information in the SQLCA:

— Length of the largest actual segment in the SQLERRD[1] field.
— Total number of segmentsin the SQLERRD[3] field.

— Total length of all the segments as a quadword value in the SQL ERRD[4] and
SQLERRDI5] fields, which contain the low-order 32 bits and high-order 32 bits,
respectively.

These values are retrieved using the sqlsrv_sqglca_sqlerrd routine.

Within SQL, executing a commit or rollback statement impliesthat all open cursors are
closed unless you are using the Oracle Rdb Hold Cursors feature; this assumption is not
true for Oracle SQL/Services. Because Oracle SQL/Services does not parse the SQL
statements it passes, it does not know when a commit or rollback operation is executed.
Instead, Oracle SQL/Services requires that the sglsrv_close _cursor call be issued to
release the cursor-related data structures prior to a commit or rollback operation. To
reuse the same cursor name, you must close that cursor before executing a commit or
rollback statement.

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within

the specified time limit.

SQLSRV_DATA_TOO LONG The Oracle SQL/Services executor determined that the

length of a datavaluein an SQLDA exceeded the
maximum allowed for the value's data type.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.
SQLSRV_INTERR Interna error.

SQLSRV_INVARG
SQLSRV_INVASC
SQLSRV_INVCURNAM
SQLSRV_INVSQLDA
SQLSRV_INVSTMID
SQLSRV_MULTI_ACT

SQLSRV_NETERR

Invalid routine parameter.

Invalid association identifier.

Invalid cursor name.

Invalid SQLDA, SQLDAZ2, or SQLDA_ID.
Invalid statement identifier.

A batched sglsrv_execute_in_out or sqlsrv_fetch_many
context is active.

Network transport returned an error.

API Routines 6-31

sqlsrv_open_cursor

SQLSRV_SVC _SHUTDOWN The specified service has been shut down.

6-32 Guide to Using the Oracle SQL/Services Client API

sqlsrv_fetch

sqlsrv_fetch

The sqlsrv_fetch routine fetches a row of datainto a select list SQLDA.

C Format

extern int sglsrv_fetch(
ASSOO ATE | D associ at e i d,
char *cursor_nane,
short int scroll_option,
S5 LONGARD posi ti on,
SQDA ID select_list_sqglda);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

cursor_name
Address of anull-terminated string used to identify the open cursor.

scroll_option
The values of the scroll_option parameter are shown in Table 6-8.

Table 6-8 Values of the scroll_option Parameter

Value Description

SQLSRV_NO_SCROLL No scroll option.

SQLSRV_SCROLL_FIRST Fetch first ssgment.

SQLSRV_SCROLL_LAST Fetch last segment.

SQLSRV_SCROLL_PRIOR Fetch prior segment.

SQLSRV_SCROLL_NEXT Fetch next segment.
SQLSRV_SCROLL_ABSOLUTE Fetch an absol ute segment of the list cursor.
SQLSRV_SCROLL_RELATIVE Fetch arelative segment relative to the current list

cursor position.

For table cursors, the scroll option must be 0 (SQLSRV_NO_SCROLL). For scrollable list
cursors, avalue of SQLSRV_SCROLL_ABSOL UTE indicates an absolute segment within

API Routines 6-33

sqlsrv_fetch

Notes

Errors

the segmented string, while avalue of SQLSRV_SCROLL_RELATIVE indicates a segment
relative to the current cursor position. When a parameter value of SQLSRV_SCROLL _
ABSOLUTE or SQLSRV_SCROLL_RELATIVE is specified, the value specified for the
position argument indicates the position value.

position

Indicates the position value for an absolute or relative scroll option. For an absol ute scroll
option, this parameter value indicates the nth absolute list segment of thelist cursor. For a
relative scroll option, this parameter value (positive or negative) indicates the nth list
segment relative to the current list cursor position. For example, avaue of -5 for the
position parameter for arelative scroll option resultsin afetch of the 5th segment previous
to the current cursor position. The position parameter value must be O if the scroll_option
parameter is not arelative or absolute scroll option.

select_list_sqlda
The select list SQLDA identifier in which to store the row.

« Areturnvalue of SQL_EOS indicates end of data, that is, the result tableis empty, or no
more rows remain in the result table. A call to the sglsrv_fetch routine that returns a
status code of SQL_EOS does not return any data in the SQLDA.

= Although it returns only one row to the application for each call, the sglsrv_fetch
routine can request that the server send multiple rows of data from the server when
called within an sglsrv_fetch_many context. See Fetching Multiple Rows in Chapter 4,
and sqlsrv_fetch_many.

« Toscroll read-only list cursors, the scroll_option argument must specify a value as
indicated in Table 6-8, and the position argument must specify the position value when
an absolute or relative scroll_option value is specified. Otherwise, the position argument
must be 0.

« After asuccessful call to sglsrv_fetch, Oracle SQL/Services stores the number of the
current row within the result table in the SQLERRD[2] field of the SQLCA. This value
can be retrieved using the sglsrv_sglca_sglerrd routine.

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

6-34 Guide to Using the Oracle SQL/Services Client API

sqlsrv_fetch

SQLSRV_INTERR
SQLSRV_INVARG
SQLSRV_INVASC
SQLSRV_INVCURNAM
SQLSRV_INVSQLDA
SQLSRV_MULTI_ACT

SQLSRV_NETERR
SQLSRV_SVC_SHUTDOWN

Internal error.

Invalid routine parameter.

Invalid association identifier.

Invalid cursor name.

Invalid SQLDA, SQLDAZ2, or SQLDA_ID.

A batched sglsrv_execute_in_out or sqlsrv_fetch_many
context is active.

Network transport returned an error.

The specified service has been shut down.

API Routines 6-35

sqlsrv_fetch_many

sqlsrv_fetch_many

The sqlsrv_fetch_many routine directs the sglsrv_fetch routine to transfer multiple rows of
data from the server, as described in Fetching Multiple Rows in Chapter 4. Frequently, this
reduces the number of client/server messages required to retrieve data from the server. By
default, sglsrv_fetch retrieves one row of data at atime from the server.

C Format
extern int sqlsrv_fetch many(
ASSOO ATE | D associ at e i d,
char *cursor_nane,
short int increnent,
short int repeat_count);
Parameters
associate_id
An identifier used to distinguish one active association from all others.
cursor_name
Address of anull-terminated string used to identify the open cursor.
increment
For a scrollable list cursor, the client API implicitly enables relative scroll mode (SQLSRV _
SCROLL_RELATIVE) to fetch segments and uses the value in the increment argument to
specify the relative position. Therefore, to fetch all segments in a segmented string, specify
an increment value of 1. See sglsrv_fetch for more information on scroll modes and relative
positions. This argument isignored for cursors other than scrollable list cursors.
repeat_count
The number of rows to fetch. A value of O fetches the entire result table. A value other than
0 fetches that number of rows. For example, an application might fetch enough rows to fill
one screen.
Notes

« To achieve the best performance, Oracle Corporation recommends that you specify a
repeat_count of O to fetch all records.

6-36 Guide to Using the Oracle SQL/Services Client API

sqlsrv_fetch_many

Errors

When you specify arepeat_count other than 0, your application must call the sqlsrv_
fetch_many routine again once the specified number of rows have been fetched.
Otherwise, the API returns to the default behavior (one row for each call to the sglsrv_
fetch routine). See Fetching Multiple Rows in Chapter 4, for more information.

Because the repeat_count parameter is a 16-bit integer, the maximum number of rows a
client can specify is 65535. If alarger number is specified, no error is detected. Rather,
the repeat count wraps around and a smaller repeat count is used. For example, if a
repeat count of 65536 is specified, the value in the 16-bit repeat count parameter is 0.

Once you initiate an sglsrv_fetch_many operation, you must fetch the specified number
of rowsusing sglsrv_fetch or close the cursor using sglsrv_close cursor before you call
other API routines. You can call sglsrv_close_cursor at any time to close the cursor and
end the sglsrv_fetch_many operation before all the rows have been fetched. Otherwise,
you must call sglsrv_fetch the necessary number of times to fetch all the rows from the
result table if you specify arepeat count of zero or the specified number of rows if you

specify a non-zero repeat count before you can call any other API routine.

A call to the sglsrv_close_cursor routine completes an sqlsrv_fetch_many operation.

By default, the sglsrv_fetch routine fetches only one row of data from the server. That
way, your application can execute SQL statements INSERT . . . WHERE CURRENT
OF cursor-name, UPDATE . . . WHERE CURRENT OF cursor-name, and DELETE . . .
WHERE CURRENT OF cursor-name.

The sglsrv_fetch_many routine initiates an sglsrv_fetch_many operation; however, it
does not fetch any rows. Therefore, sqlsrv_fetch_many returns a success status even if
there are no rowsin the result table. In this situation, sglsrv_fetch returns a status of
SQL_EOSthefirst timeit iscalled to fetch arow from the result table.

SQLSRV_FTCMNYACT An sglsrv_fetch_many context is already active for this
Ccursor.
SQLSRV_INTERR Interna error.

SQLSRV_INVARG
SQLSRV_INVASC
SQLSRV_INVCURNAM
SQLSRV_MULTI_ACT

Invalid routine parameter.
Invalid association identifier.
Invalid cursor name.

A batched sqglsrv_execute_in_out or sqlsrv_fetch_many
context is active.

API Routines 6-37

sqlsrv_close_cursor

sqlsrv_close_cursor

The sglsrv_close_cursor routine closes an open cursor.

ASSOO ATE | D associ at e i d,

An identifier used to distinguish one active association from all others.

Address of anull-terminated string used to identify the open cursor.

C Format
extern int sqlsrv_close_cursor(
char *cursor_nane);
Parameters
associate_id
cursor_name
Errors

SQLSRV_CONNTIMEOUT

SQLSRV_EXEINTERR

SQLSRV_INTERR
SQLSRV_INVASC
SQLSRV_INVCURNAM
SQLSRV_NETERR
SQLSRV_SVC_SHUTDOWN

The connection to the server could not be completed within
the specified time limit.

The executor has encountered an interna or other error
condition.

Interna error.

Invalid association identifier.
Invalid cursor name.

Network transport returned an error.

The specified service has been shut down.

6-38 Guide to Using the Oracle SQL/Services Client API

sqlsrv_close_cursor

6.3.4 Utility Routines

Utility routines provide local service to the caller. Utility routines include the following
routines:

« sglsrv_allocate sglda data or sglsrv_allocate _sglda?_data routine (see sglsrv_allocate
sglda_data or sglsrv_allocate sglda2_data)

« sglsrv_free sglda dataor sqlsrv_free sglda?_dataroutine (see sqlsrv_free sglda data
or sqlsrv_free sglda2_data)

« sglsrv_set option routine (see sqlsrv_set_option)

API Routines 6-39

sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data

sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data

C Format

Parameters

Notes

Thesqlsrv_allocate sqlda_dataor sqlsrv_allocate sglda2_dataroutine dynamically allocates
memory for data and indicator variables. Your application passes an SQLDA_|ID identifier
to sglsrv_allocate sglda data or sglsrv_allocate sglda?_data, which allocates buffers of the
appropriate size and writes the addresses of the newly allocated buffers into the SQLDATA
and SQLIND fieldsin the SQLVAR or SQLVAR? array.

Note: You must not modify the SQLDATA and SQLIND fieldsin the
SQLVAR or SQLVAR2 fieldsif you call sqlsrv_allocate sqlda_data or
sglsrv_allocate sglda?_datato allocate memory for data and indicator
variables. The operation and results of other client API routines will be
unpredictable if you modify these fields. The format, parameters,
description, notes, and errors for the SQLDA or SQLDA2 routines are
identical unless otherwise specified.

extern int sglsrv_allocate sql da_data(
ASSOO ATE | D associ at e i d,
SQDA ID sqglda_str);

extern int sqlsrv_allocate sql da2_dat a(
ASSOO ATE | D associ at e i d,
SQDA ID sqglda_str);

associate_id
An identifier used to distinguish one active association from all others.

sqglda_str
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2 for which to allocate
data and indicator variables.

= You can free buffers allocated by the sglsrv_allocate sqlda data or sglsrv_allocate
sglda2_data routine explicitly by calling the sglsrv_free sglda data or sglsrv_free

6-40 Guide to Using the Oracle SQL/Services Client API

sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data

Errors

sglda2_dataroutine, or implicitly by calling the sglsrv_release statement or sqlsrv_

release routine.

«» Thesglsrv_allocate sqlda dataor sglsrv_allocate sglda2_data routine alocates
additional memory for certain datatypes, as shown in Table 6-9.

Table 6-9 Special Requirements of Data Types to Determine Extra Byte Lengths to

Allocate

Data Type

Extra Memory to Allocate

SQLSRV_ASCIl_STRING

SQLSRV_GENERALIZED
DATE

SQLSRV_INTERVAL

SQLSRV_GENERALIZED
NUMBER

SQLSRV_VARCHAR
SQLSRV_VARBYTE

+1 for null-terminating select list item values; note that
parameter marker values are not treated as null-terminated
strings

+1 for null terminator

+1 for null terminator

+6 for null terminator and to allow input in scientific notation
[for example, 9999E+123]

+2 for SQLDAs or +4 for SQLDA2s for leading length field
+2 for SQLDAs or +4 for SQLDA2s for leading length field

SQLSRV_INTERR
SQLSRV_INVARG
SQLSRV_INVASC
SQLSRV_INVDATTYP
SQLSRV_INVSQLDA
SQLSRV_NO_MEM
SQLSRV_USRDATALL

Internal error.

Invalid routine parameter.

Invalid association identifier.

Invalid data type.

Invalid SQLDA, SQLDAZ2, or SQLDA_ID.
API memory allocation failed.

The user, not Oracle SQL/Services, has allocated data
buffers.

APl Routines 6-41

sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data

sqlsrv_free_sqlda_data or sqlisrv_free_sqlda2_data

C Format

Parameters

Errors

The sqlsrv_free sglda dataor sglsrv_free sqlda2_data routine frees buffers that hold data
and indicator variables that were dynamically allocated by the sqlsrv_allocate_sglda_data or
sglsrv_allocate sglda2_dataroutine. Your application passes an SQLDA _ID identifier to the
API, which frees the buffers and writes zeros into the SQLDATA and SQLIND fields of the
SQLVAR or SQLVARZ array.

Note: Thesglsrv_release statement and sglsrv_release routines
implicitly call the sglsrv_free sglda dataor sglsrv_free sqlda2_data
routine for each prepared statement's dynamically allocated SQLDA or
SQLDAZ2 structure. The format, parameters, description, notes, and errors
for the SQLDA or SQLDA2 routines are identical unless otherwise
specified.

extern int sqlsrv_free_sql da_dat a(
ASSOO ATE | D associ at e i d,
SQDA ID sqglda_str);

extern int sqlsrv_free_sqgl da2_dat a(
ASSOO ATE | D associ at e i d,
SQDA ID sqglda_str);

associate_id
An identifier used to distinguish one active association from all others.

sqglda_str
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2 for which to
deallocate data and indicator variables.

SQLSRV_ACTSTM The statement id already has an active cursor.
SQLSRV_INTERR Interna error.

6-42 Guide to Using the Oracle SQL/Services Client API

sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data

SQLSRV_INVASC
SQLSRV_INVSQLDA
SQLSRV_MULTI_ACT

SQLSRV_SQLDA_NOTALL
SQLSRV_USRDATALL

Invalid association identifier.
Invalid SQLDA, SQLDA2, or SQLDA_ID.

A batched sglsrv_execute_in_out or sqlsrv_fetch_many
context is active.

Attempt to deall ocate static memory.

The user, not Oracle SQL/Services, has alocated data

buffers.

APl Routines 6-43

sqlsrv_set_option

sqlsrv_set_option

The sglsrv_set_option routine sets the option that determines whether the Oracle
SQL/Services client and server use the standard SQLDA or the extended SQLDA 2 format
for new statements that the application prepares.

C Format
extern int sqlsrv_set_option(
ASSOO ATE | D associ at i on,
S5 LONGARD opti on,
S5 LONGARD val ue,
void *rsv);
Parameters

association
An identifier used to distinguish one association from all others.

option
The option to set. The option parameter takes the argument SQLSRV_OPT_SQLDA _
TYPE.

value
The value determines whether the SQLDA or SQLDA?2 is set.

The value parameter takes either of the arguments described in Table 6-10 when the option
parameter argument SQLSRV_OPT_SQLDA_TY PE is specified.

Table 6-10 Value Parameter Arguments If the Option Parameter Argument Is
SQLSRV_OPT_SQLDA_TYPE

Argument Description
SQLSRV_OPT_SQLDA_SQLDA Use standard SQLDA format
SQLSRV_OPT_SQLDA_SQLDA2 Use extended SQLDA2 format
rsv

Argument reserved for future use. The value of this argument must be NULL.

6-44 Guide to Using the Oracle SQL/Services Client API

sqlsrv_set_option

Notes
« Ifyoudonot call the sglsrv_set_option routine to set the SQLDA format, Oracle
SQL/Services uses the standard SQLDA format. To use the extended SQLDA2 format,
you must call the sglsrv_set _option routine, specifying the option as SQLSRV_OPT _
SQLDA_TY PE and the value as SQLSRV_OPT_SQLDA_SQLDA?2, beforeyou call
sglsrv_prepare to prepare an SQL statement.

Errors

SQLSRV_INVARG Invalid routine parameter.
SQLSRV_INVASC Invalid association identifier.

APl Routines 6-45

sqlsrv_set_option

6.3.5 Functional Interface Routines

Functiona interface routines provide access to data and metadata stored in SQLCA,
SQLDA, and SQLDA?2 structures. These routines replace the need for making direct
references to structure fieldsin APl applications. Functiona interface routines include the
following routines:

sglsrv_sglca error routine (see sglsrv_sglca._error)
sglsrv_sglca error_text routine (see sglsrv_sglca error_text)
sglsrv_sglca count routine (see sglsrv_sglca count)
sglsrv_sglca sqlerrd routine (see sglsrv_sglca sglerrd)
sglsrv_sglca sqlstate routine (see sglsrv_sglca sglstate)

sglsrv_sglda sqld or sglsrv_sglda2_sgld routine (see sqlsrv_sglda sgld or sglsrv_
sglda2_sqld)

sglsrv_sglda sqld73 or sglsrv_sglda2_sgld73 routine (see sqlsrv_sglda sgld73 or
sglsrv_sglda2_sgld73)

sglsrv_sglda_column_name or sglsrv_sglda2_column_name routine (see sglsrv_sglda
sgld73 or sglsrv_sglda2_sqld73)

sglsrv_sglda_column_name73 or sqlsrv_sglda2_column_name73 routine (see sqlsrv_
sglda_column_name73 or sglsrv_sglda2_column_name73)

sglsrv_sglda_column_type or sglsrv_sglda2_column_type routine (see sglsrv_sglda_
column_type or sglsrv_sqlda2_column_type)

sglsrv_sglda_column_type73 or sglsrv_sglda2_column_type73 routine (see sglsrv_
sglda_column_type73 or sglsrv_sglda2_column_type73)

sglsrv_sglda_bind_dataor sglsrv_sqlda2_bind_dataroutine (see sglsrv_sglda_bind_data
or sglsrv_sglda2_bind_data)

sglsrv_sglda_bind_datar3 or sglsrv_sglda2_bind_data73 routine (see sqlsrv_sqlda
bind_data73 or sqlsrv_sqlda2_bind_data73)

sglsrv_sglda_unbind_sqlda or sglsrv_sglda2_unbind_sgldaroutine (see sglsrv_sglda
unbind_sglda or sglsrv_sglda2_unbind_sglda)

sglsrv_sglda_unbind_sqlda73 or sglsrv_sqglda2 unbind_sglda73 routine (see sglsrv_
sglda_unbind_sglda73 or sglsrv_sglda2_unbind_sqglda73)

sglsrv_sglda ref_dataor sqlsrv_sglda2_ref dataroutine (see sglsrv_sqlda ref data or
sglsrv_sqlda2_ref_data)

6-46 Guide to Using the Oracle SQL/Services Client API

sqlsrv_set_option

sglsrv_sglda ref_data73 or sqlsrv_sglda2_ref data73 routine (see sglsrv_sqlda ref
data73 or sglsrv_sqlda2 ref data73)

sglsrv_sglda unref_data or sqlsrv_sglda2_unref_data routine (see sglsrv_sqlda_unref_
data or sglsrv_sglda2_unref _data)

sglsrv_sglda unref _data73 or sglsrv_sglda2_unref _data73 routine (see sglsrv_sglda_
unref_data73 or sglsrv_sglda2_unref_data73)

sglsrv_sglda get_data or sglsrv_sqlda2_get_dataroutine (see sglsrv_sqlda _get_data or
sglsrv_sglda2_get data)

sglsrv_sglda_get_data7z3 or sglsrv_sglda?_get data73 routine (see sglsrv_sglda get
data73 or sglsrv_sqlda2 get_datar3)

sglsrv_sglda set dataor sqlsrv_sglda2_set data routine (see sglsrv_sqlda set data or
sglsrv_sqlda2_set_data)

sglsrv_sglda set data73 or sqlsrv_sglda?_set data73 routine (see sglsrv_sqlda set
data73 or sglsrv_sqlda2 set data73)

sglsrv_sglda set sgllen or sglsrv_sglda?_set_sgllen routine (see sglsrv_sglda set
sgllen or sglsrv_sglda2_set sgllen)

sglsrv_sglda set sgllen73 or sglsrv_sqlda2_set_sgllen73 routine (see sglsrv_sqlda set
sgllen73 or sqlsrv_sglda2_set sqgllen73)

sglsrv_sglda2_char_set_info routine (see sglsrv_sqlda2_char_set_info)
sglsrv_sglda2_char_set_info routine (see sglsrv_sglda2_char_set info73)

APl Routines 6-47

sqlsrv_sqlca_error

sqlsrv_sglca_error

C Format

Parameters

Notes

Errors

The sqlsrv_sglca_error routine returns the error codes for the last statement executed.

extern int sqlsrv_sqglca error(
ASSOO ATE | D associ at e i d,
S5 LONGNRD *naj err,
S5 LONGNRD *suberr 1,
S5 LONGNRD *suberr2);

associate_id
An identifier used to distinguish one active association from all others.

majerr
Address of avariable of type SQS_LONGWORD into which the API writes the major error
code from the SQLCODE field of the SQLCA.

suberrl
Address of avariable of type SQS_LONGWORD into which the API writes the minor error
code from the SQLERRDI 0] field of the SQLCA.

suberr2
Address of avariable of type SQS_LONGWORD into which the API writes the minor error
code from the SQLERRDJ 2] field of the SQLCA.

« After you call the Oracle SQL/Services API routine, the SQLCA structure contains the
return status.

SQLSRV_INVASC Invalid association identifier.

6-48 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlca_error_text

sqlsrv_sqlca_error_text

C Format

Parameters

Notes

The sqglsrv_sglca _error_text routine returns the error text for the last statement executed.

extern int sqlsrv_sqglca error_text(
ASSOO ATE | D associ at e i d,
short int *nsgl en,
char *nsg,
short int buflen);

associate_id
An identifier used to distinguish one active association from all others.

msglen
Address of avariable of type short into which the API writes the length in bytes of the error
message text written to the buffer specified by the msg parameter.

msg
Address of a buffer of type char into which the API writes the error message text.

buflen
Length in bytes of the buffer specified by the msg parameter.

« Theerror message text is copied into the specified buffers and null-terminated.

« Thelength of the error excluding the null-terminator is returned in msglen.

APl Routines 6-49

sqlsrv_sqlca_count

sqlsrv_sglca_count

The sqlsrv_sglca_count routine returns the number of rows processed by a statement.

C Format

extern int sglsrv_sqgl ca count(

ASSOO ATE | D associate id);

Parameters

associate_id

An identifier used to distinguish one active association from all others.
Notes

« Thiscall replaces direct access to the SQLCA.SQLERRD[2] field.

«» The SQLCA.SQLERRD[Z] field contains avalid row count only when a statement, or

all statements in a batch execute operation, executes successfully.

Errors

SQLSRV_INVASC Invalid association identifier.

6-50 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlca_sqlerrd

sqlsrv_sqlca_sqlerrd

C Format

Parameters

Notes

Errors

The sqlsrv_sglca_sglerrd routine returns all values from the SQLCA.SQLERRD array.

extern int sqlsrv_sqgl ca sqlerrd(
ASSOO ATE | D associ at e i d,
S5 LONGNRD *sql errd_array);

associate_id
An identifier used to distinguish one active association from all others.

sqlerrd_array
Address of an array of 6 elements of type SQS_LONGWORD into which the API writes the
contents of the SQLERRD array.

See Section 7.4 for details of information returned in the SQLERRD array.

SQLSRV_INVASC Invalid association identifier.

API Routines 6-51

sqlsrv_sqlca_sqlstate

sqlsrv_sqlca_sqlstate

C Format

Parameters

Errors

The sqlsrv_sglca_sqglstate routine returns the SQL STAT E associated with the SQL CODE for
the last statement executed.

extern int sqlsrv_sqlca sqlstate(
ASSOO ATE | D associ at e i d,
char *sql state);

associate_id
An identifier used to distinguish one active association from all others.

sqlstate

Address of a buffer of type char into which the API writes the sglstate. The buffer’slengthis
SQLSTATE_LEN. SQLSTATE_LEN isaconstant defined in the sglsrv.h header file. The
sglstate is not null-terminated.

SQLSRV_INVASC Invalid association identifier.

6-52 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_sqld or sqlsrv_sqlda2_sqld

sqlsrv_sqlda_sqld or sqlsrv_sqlda2_sqid

The sqlsrv_sglda sgld or sglsrv_sglda2_sgld routine returns the number of parameter
markers or select list items in the SQLDA or SQLDA2.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA or SQLDAZ2 routines are identical unless otherwise specified.

C Format
extern int sqlsrv_sqglda sql d(
SQDA ID sql dai d);
extern int sqlsrv_sql da2_sql d(
SQDA ID sql dai d);
Parameters
sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.
Notes
« Thiscall correspondsto referencing the SQLD field in an SQLDA or SQLDA2. The
field is set by the APl after a statement is prepared.
Errors

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA _ID.

API Routines 6-53

sqlsrv_sqlda_sqld73 or sqlsrv_sqlda2_sqld73

sqlsrv_sqlda_sqld73 or sqisrv_sqlda2_sqld73

C Format

Parameters

Notes

Errors

The sqlsrv_sglda sgld73 or sqlsrv_sglda2_sqld73 routine returns the number of parameter
markers or select list items in the SQLDA or SQLDA?2.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

extern int sqlsrv_sqgl da sql d73(
SQDA I D sql dai d,
ASSOO ATE | D associate id);

extern int sql srv_sql da2_sql d73(
SQDA I D sql dai d,
ASSOO ATE | D associate id);

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

associate_id
An identifier used to distinguish one active association from all others.

» Thiscall correspondsto referencing the SQLD field in an SQLDA or SQLDA2. The
field is set by the API after a statement is prepared.

« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_sgld or sglsrv_sqlda2_sqld routine.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA _ID.

6-54 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name

sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name

The sqglsrv_sglda_column_name or sqglsrv_sglda2_column_name routine copies the column
name for a particular column from the SQL DA or SQLDA2, respectively, into a program
variable.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

C Format

extern int sql srv_sqgl da_col uim_naneg(
SQDA I D sql dai d,
short int col num
char *col nam
short int *col nan en);

extern int sql srv_sqgl da2_col umn_nang(
SQDA I D sql dai d,
short int col num
char *col nam
short int *col nan en);

Parameters

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

colnam

Address of a buffer of type char into which the API writes the column name as a
null-terminated character string. For an SQLDA, the buffer must be at least 30 bytes long;
for an SQLDAZ2, the buffer must be at least 32 byteslong.

colnamlen
Address of avariable of type short into which the API writes the length in bytes of the
column name written to the colnam parameter.

APl Routines 6-55

sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name

Notes

Errors

Oracle SQL/Servicesreturns an error if the SQLDA or SQLDA2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

The column name for a particular column is copied from the SQLDA into the variable
passed in this call.

Oracle Rdb does not assign a value to the column name in the following situations:

— If aselect list item, assignment, or comparison involves an arithmetic expression or
predicates other than basic predicates.

— For parameter markers and select list items specified in statements contained in a
compound statement.

The maximum length of a column name in an Oracle Rdb database is 31 characters.
However, the maximum length of a column name stored by Oracle SQL/Servicesin the
SQLNAME field of aclient SQLDA is 29 characters. Thisis because the SQLNAME
field is only 30 characters long and because Oracle SQL /Services null-terminates the
column name in the SQLNAME field of aclient SQLDA. The maximum length of a
column name in the SQLNAME field of an Oracle SQL/Servicesclient SQLDA2is 31
characters.

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

6-56 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_column_name73 or sqlsrv_sqlda2_column_name73

sqlsrv_sqlda_column_name73 or sqlsrv_sqlda2_column_name73

C Format

Parameters

The sqlsrv_sglda_column_name73 or sglsrv_sglda2_column_name73 routine copies the
column name for a particular column from the SQLDA or SQLDA2, respectively, into a
program variable.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

extern int sqlsrv_sqgl da_col uin_name73(
SQDA I D sql dai d,
short int col num
char *col nam
short int *col nani en,
ASSOO ATE | D associate id);

extern int sql srv_sqgl da2_col unn_nane73(
SQDA I D sql dai d,
short int col num
char *col nam
short int *col nani en,
ASSOO ATE | D associate id);

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

colnam

Address of a buffer of type char into which the API writes the column name as a
null-terminated character string. For an SQLDA, the buffer must be at least 30 bytes long;
for an SQLDAZ2, the buffer must be at least 32 bytes long.

API Routines 6-57

sqlsrv_sqlda_column_name73 or sqlsrv_sqlda2_column_name73

colnamlen
Address of avariable of type short into which the API writes the length in bytes of the
column name written to the colnam parameter.

associate_id
An identifier used to distinguish one active association from all others.

Notes

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

» The column name for a particular column is copied from the SQLDA into the variable
passed in this call.

» Oracle Rdb does not assign a value to the column name in the following situations:

— If aselect list item, assignment, or comparison involves an arithmetic expression or
predicates other than basic predicates.

— For parameter markers and select list items specified in statements contained in a
compound statement.

« The maximum length of a column name in an Oracle Rdb database is 31 characters.
However, the maximum length of a column name stored by Oracle SQL/Servicesin the
SQLNAME field of aclient SQLDA is 29 characters. Thisis because the SQLNAME
field is only 30 characters long and because Oracle SQL /Services null-terminates the
column name in the SQLNAME field of aclient SQLDA. The maximum length of a
column name in the SQLNAME field of an Oracle SQL/Servicesclient SQLDA2is 31
characters.

« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_column_name or sglsrv_sglda2_column_name routine.

Errors

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

6-58 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type

sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type

C Format

Parameters

The sqlsrv_sglda_column_type or sglsrv_sglda2_column_type routine returnsinformation
about the data type of a column.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

extern int sqlsrv_sqgl da _col um_t ype(
SQDA I D sql dai d,
short int col num
short int *coltyp,
unsi gned short int *coll en,
short int *col scl,
void *rsv);

extern int sqlsrv_sqgl da2_col um_t ype(
SQDA I D sql dai d,
short int col num
short int *coltyp,
SB NS GNED LONGACRD *col | en,
short int *col scl,
SE NS G\NED LONGACRD *col oct | en,
void *rsv);

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

coltyp
Address of avariable of type short into which the API writes the Oracle SQL/Services data
type of the column.

API Routines 6-59

sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type

Notes

Errors

collen

Address of avariable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDAZ2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl

Address of avariable of type short into which the APl writes the scale factor for columns of
type SQLSRV_GENERALIZED _NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. Undefined
for columns of all other datatypes.

coloctlen (SQLDAZ2 only)
Address of avariable of type SQS_UNSIGNED_L ONGWORD into which the APl writes
the length of the column in octets or 8-bit bytes.

rsv
Argument reserved for future use. The value of thisargument must be NULL.

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

» See Chapter 8 for information on all Oracle SQL/Services data types.

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

6-60 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_column_type73 or sqlsrv_sqlda2_column_type73

sqlsrv_sqlda_column_type73 or sqlsrv_sglda2_column_type73

C Format

Parameters

The sglsrv_sglda_column_type73 or sglsrv_sglda2_column_type73 routine returns
information about the data type of a column.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

extern int sglsrv_sqgl da _col um_type73(
SQDA I D sql dai d,
short int col num
short int *coltyp,
unsi gned short int *coll en,
short int *col scl,

void *rsv,

ASSOO ATE | D associate id);

extern int sgl srv_sqgl da2_col unn_t ype73(
SQDA I D sql dai d,
short int col num
short int *coltyp,
SE NS GNED LONGACRD *col | en,
short int *col scl,
SE NS G\NED LONGAZRD *col oct | en,

void *rsv,

ASSOO ATE | D associate id);

sqgldaid

Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum

A column identified by its ordinal position in a parameter or select list.

coltyp

Address of avariable of type short into which the API writes the Oracle SQL/Services data

type of the column.

API Routines 6-61

sqlsrv_sqlda_column_type73 or sqlsrv_sqlda2_column_type73

collen

Address of avariable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDAZ2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl

Address of avariable of type short into which the APl writes the scale factor for columns of
type SQLSRV_GENERALIZED _NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. Undefined
for columns of all other datatypes.

coloctlen (SQLDAZ2 only)
Address of avariable of type SQS_UNSIGNED_L ONGWORD into which the APl writes
the length of the column in octets or 8-bit bytes.

rsv
Argument reserved for future use. The value of thisargument must be NULL.

associate_id
An identifier used to distinguish one active association from all others.

Notes
« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).
» See Chapter 8 for information on all Oracle SQL/Services data types.
« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_column_type or sqlsrv_sglda2_column_type routine.
Errors
SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA _ID.

6-62 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data

sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data

The sqlsrv_sglda bind_data or sglsrv_sglda2_bind_data routine allows programs to allocate
their own storage for data and indicator variables for parameter markers and select list items.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

C Format

extern int sql srv_sql da bi nd_dat a(
SQDA I D sql dai d,
short int col num
short int coltyp,
unsi gned short int collen,
short int col scl,
CHARPTR dat ptr,
SHORTPTR nul ptr,
void *rsv);

extern int sqlsrv_sqgl da2_bi nd_dat a(
SQDA I D sql dai d,
short int col num
short int coltyp,
SE NS G\NED LONGAZRD col | en,
short int col scl,
CHARPTR dat ptr,
LONGPTR nul ptr,
S5 NS GNED LONGACRD oct et | en,
SB LONGARD chrono_scal e,
S5 LONGARD chrono_pr eci si on,
void *rsv);

Parameters

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

API Routines 6-63

sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data

coltyp
Address of avariable of type short into which the API writes the Oracle SQL/Services data
type of the column.

collen

Address of avariable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDAZ2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl

Address of avariable of type short into which the APl writes the scale factor for columns of
type SQLSRV_GENERALIZED _NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED DATE or SQLSRV_INTERVAL, respectively. This
parameter is undefined for columns of all other data types.

datptr
Address of the data variable of type unsigned char for the column.

nulptr

Address of the indicator variable for the column. For an SQLDA, the indicator variable is of
type short. For an SQLDAZ2, the indicator variable is of type SQS_ L ONGWORD. See
Section 7.6 or Section 7.7 for a description of the indicator variable (SQLIND field) of an
SQLDA or SQLDA?2, respectively.

octet_len (SQLDAZ2 only)
Address of avariable of type SQS_UNSIGNED_L ONGWORD into which the API writes
the length in octets of the column.

chrono_scale (SQLDA2 only)

Address of avariable of type SQS_LONGWORD into which the API writes the specific
date-time data type for columns of type SQLSRV_GENERALIZED_DATE or theinterva
scale for columns of type SQLSRV_INTERVAL.

chrono_precision (SQLDAZ2 only)

Address of avariable of type SQS_L ONGWORD into which the API writes the precision of
the date-time value or interva value for columns of type SQLSRV_GENERALIZED DATE
or SQLSRV_INTERVAL, respectively.

rsv
Argument reserved for future use. The value of thisargument must be NULL.

6-64 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data

Notes

Errors

Oracle SQL/Services returns an error if the SQLDA or SQLDA2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

The sglsrv_sglda bind_data and sqlsrv_sglda2_bind_data routines provide an efficient
mechanism for an application program to provide its own memory for data and indicator
variables for parameter markers and select list items. After preparing a statement, the
application must examine each column, allocate an appropriate amount of memory for
both the data and indicator variables, then bind that memory to the column in the
SQLDA or SQLDA?2 using the sglsrv_sglda bind_data or sglsrv_sqglda2_bind_data
routine, respectively. Before releasing the statement, the application program must
unbind the memory for the column's data and indicator variables from the SQL DA or
SQLDAZ2 using the sglsrv_sglda_unbind_data or sglsrv_sglda2_unbind_dataroutine,
respectively.

Applications that use the sglsrv_sqglda bind_data and sglsrv_sqglda2 bind_data routines
to provide memory for data and indicator variablesin an SQLDA or SQLDA?2 must
allocate memory for all the parameter markers and select list itemsin the SQLDA or
SQLDA. You cannot use the sglsrv_allocate_sglda data or sglsrv_alocate sglda2_data
routines to allocate memory for the same SQLDA or SQLDA2 for which you have
bound user memory to data and indicator variables.

Calling the sglsrv_sglda bind_data and sglsrv_sglda2_bind_dataroutinesis equivalent
to directly storing pointers and valuesin the SQLDATA, SQLIND, SQLLEN, and
SQLOCTET_LEN fields of acolumn's SQLVARARY array element in an SQLDA or
SQLDA2.

SQLSRV_INCDATTYP Incompatible data type with column.
SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVDATTYP Invalid data type.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDAZ2, or SQLDA_ID.
SQLSRV_NO_MEM API memory allocation failed.

APl Routines 6-65

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

The sqlsrv_sglda bind_data73 or sglsrv_sqlda2_bind_data73 routine allows programs to
allocate their own storage for data and indicator variables for parameter markers and select
list items.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

C Format

extern int sqlsrv_sqgl da bind_data73(
SQDA I D sql dai d,
short int col num
short int coltyp,
unsi gned short int collen,
short int col scl,
CHARPTR dat ptr,
SHORTPTR nul ptr,
void *rsv,
ASSOO ATE | D associate id);

extern int sql srv_sqgl da2_bi nd_dat a73(
SQDA I D sql dai d,
short int col num
short int coltyp,
SE NS G\NED LONGAZRD col | en,
short int colscl,
CHARPTR dat ptr,
LONGPTR nul ptr,
S5 NS GNED LONGACRD oct et | en,
SB LONGNRD chrono_scal e,
S5 LONGARD chrono_pr eci si on,
void *rsv,
ASSOO ATE | D associate id);

Parameters

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

6-66 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

colnum
A column identified by its ordinal position in a parameter or select list.

coltyp
Address of avariable of type short into which the API writes the Oracle SQL/Services data

type of the column.

collen

Address of avariable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDAZ2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl

Address of avariable of type short into which the APl writes the scale factor for columns of
type SQLSRV_GENERALIZED _NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED DATE or SQLSRV_INTERVAL, respectively. This
parameter is undefined for columns of all other data types.

datptr
Address of the data variable of type unsigned char for the column.

nulptr

Address of the indicator variable for the column. For an SQLDA, the indicator variable is of
type short. For an SQLDAZ2, the indicator variable is of type SQS_ L ONGWORD. See
Section 7.6 or Section 7.7 for a description of the indicator variable (SQLIND field) of an
SQLDA or SQLDA?2, respectively.

octet_len (SQLDAZ2 only)
Address of avariable of type SQS_UNSIGNED_L ONGWORD into which the API writes
the length in octets of the column.

chrono_scale (SQLDA2 only)

Address of avariable of type SQS_LONGWORD into which the API writes the specific
date-time data type for columns of type SQLSRV_GENERALIZED_DATE or theinterva
scale for columns of type SQLSRV_INTERVAL.

chrono_precision (SQLDAZ2 only)

Address of avariable of type SQS_L ONGWORD into which the API writes the precision of
the date-time value or interval value for columns of type SQLSRV_GENERALIZED DATE
or SQLSRV_INTERVAL, respectively.

API Routines 6-67

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

Notes

Errors

Isv

Argument reserved for future use. The value of thisargument must be NULL.

associate_id
An identifier used to distinguish one active association from all others.

Oracle SQL/Servicesreturns an error if the SQLDA or SQLDA2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

The sqlsrv_sglda bind_data73 and sglsrv_sglda2_bind_data73 routines provide an
efficient mechanism for an application program to provide its own memory for data and
indicator variables for parameter markers and select list items. After preparing a
statement, the application must examine each column, alocate an appropriate amount of
memory for both the data and indicator variables, then bind that memory to the column
in the SQLDA or SQLDA?2 using the sglsrv_sglda_bind_data73 or sglsrv_sglda2_bind_
data73 routine, respectively. Before rel easing the statement, the application program
must unbind the memory for the column's data and indicator variables from the SQLDA
or SQLDA?2 using the sglsrv_sglda _unbind_data73 or sglsrv_sglda2_unbind_data7z3
routine, respectively.

Applications that use the sglsrv_sglda bind_data73 and sglsrv_sglda2_bind_data73
routines to provide memory for data and indicator variables in an SQLDA or SQLDA?2
must allocate memory for all the parameter markers and select list itemsin the SQLDA
or SQLDA. You cannot use the sglsrv_allocate_sglda_data or sglsrv_allocate sqlda2_
data routines to allocate memory for the same SQLDA or SQLDA?2 for which you have
bound user memory to data and indicator variables.

Calling the sglsrv_sglda bind_data73 and sglsrv_sglda2_bind_data73 routines is
equivalent to directly storing pointers and values in the SQLDATA, SQLIND,
SQLLEN, and SQLOCTET_LEN fields of a column's SQLVARARY array element in
an SQLDA or SQLDAZ2.

Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_bind_data or sglsrv_sglda2_bind_data routine.

SQLSRV_INCDATTYP Incompatible data type with column.
SQLSRV_INVCOLNUM Column number not within range.

6-68 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

SQLSRV_INVDATTYP Invalid data type.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.
SQLSRV_NO_MEM API memory allocation failed.

API Routines 6-69

sqlsrv_sqlda_unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda

sqlsrv_sqlda_unbind_sqlda or sqlsrv_sqglda2_unbind_sqida

The sqlsrv_sglda_unbind_sglda or sqlsrv_sglda2_unbind_sglda routine releases variables
bound with the sglsrv_sglda bind_data or sglsrv_sqlda2_bind_data routine.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

C Format
extern int sql srv_sqgl da unbi nd_sql da(
SQDA ID sql dai d);
extern int sqgl srv_sqgl da2_unbi nd_sql da(
SQDA ID sql dai d);
Parameters
sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.
Notes
« Asinglecal to sglsrv_sglda_unbind_sgldaor sqlsrv_sglda2_unbind_sglda unbinds the
memory provided for all the data and indicator variablesin an SQLDA or SQLDA2
bound by one or more callsto sqlsrv_sglda bind_data or sglsrv_sglda2_bind_data.
« Cdlingthe sglsrv_sglda bind_data and sglsrv_sglda2_bind_dataroutines is equivalent
to directly clearing the pointers in the SQLDATA and SQLIND fields of a column's
SQLVARARY array element in an SQLDA or SQLDA2.
Errors

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA _ID.

6-70 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73

sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73

The sqlsrv_sglda_unbind_sglda73 or sglsrv_sglda2_unbind_sglda73 routine releases
variables bound with the sglsrv_sqlda_bind_data or sqlsrv_sglda2_bind_data routine.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA or SQLDAZ2 routines are identical unless otherwise specified.

C Format

extern int sgl srv_sqgl da_unbi nd_sql da73(
SQDA I D sql dai d,
ASSOO ATE | D associate id);

extern int sql srv_sqgl da2_unbi nd_sql da73(
SQDA I D sql dai d,
ASSOO ATE | D associate id);

Parameters

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

associate_id
An identifier used to distinguish one active association from all others.

Notes

« Asinglecall to sglsrv_sglda unbind_sglda73 or sqlsrv_sqlda2_unbind_sglda73 unbinds
the memory provided for al the data and indicator variablesin an SQLDA or SQLDA?2
bound by one or more callsto sglsrv_sglda bind_data73 or sglsrv_sglda2_bind_data73.

» Cdling the sglsrv_sglda bind_data73 and sqlsrv_sqlda2_bind_data73 routinesis
equivalent to directly clearing the pointersin the SQLDATA and SQLIND fields of a
column's SQLVARARY array element in an SQLDA or SQLDA2.

« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_unbind_sglda or sqlsrv_sglda2_unbind_sglda routine.

API Routines 6-71

sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73

Errors
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA?2, or SQLDA_ID.

6-72 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data

sqlsrv_sqlda_ref data or sqlsrv_sqlda2_ref data

C Format

Parameters

The sqlsrv_sglda ref_data or sglsrv_sglda?_ref_dataroutine returns the type, length, scale,
or date-time type, and address of the data and indicator variables for a column in an SQLDA
or SQLDAZ2, respectively. In the SQLDAZ2, the sglsrv_sqglda2_ref data routine also returns
the octet length, chrono-scale, and chrono-precision for a column.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

extern int sqlsrv_sqglda ref_data(
SQDA I D sql dai d,
short int col num
short int *coltyp,
unsi gned short int *coll en,
short int *col scl,
PTROHARPTR val
PTRSHORTPTR nul | p,
void *rsv);

extern int sqlsrv_sqglda2 ref_data(
SQDA I D sql dai d,
short int col num
short int *coltyp,
SE NS GNED LONGACRD *col | en,
short int *col scl,
PTROHARPTR val
PTRLONGPTR nul | p,
SE NS GNED LONGACRD *oct et | en,
SB LONGNRD *chrono_scal e,
S5 LONGARD *chrono_pr eci si on,
void *rsv);

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

API Routines 6-73

sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data

colnum
A column identified by its ordinal position in a parameter or select list.

coltyp
Address of avariable of type short into which the API writes the Oracle SQL/Services data
type of the column.

collen

Address of avariable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDAZ2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl

Address of avariable of type short into which the APl writes the scale factor for columns of
type SQLSRV_GENERALIZED_NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. Undefined
for columns of all other datatypes.

val
The address of avariable of type CHARPTR into which the API writes the address of the
column’s data variable.

nullp

Address of avariable into which the APl writes the address of the column's indicator
variable. For an SQLDA, theindicator variable is of type short. For an SQLDA?2, the
indicator variable is of type SQS_L ONGWORD. See Section 7.6 or Section 7.7 for a
description of the indicator variable (SQLIND field) of an SQLDA or SQLDAZ2,
respectively.

octet_len (SQLDAZ2 only)
Address of avariable of type SQS_UNSIGNED_L ONGWORD into which the API writes
the length in octets of the column.

chrono_scale (SQLDA2 only)

Address of avariable of type SQS_LONGWORD into which the API writes the specific
date-time data type for columns of type SQLSRV_GENERALIZED_DATE or theinterva
scale for columns of type SQLSRV_INTERVAL.

6-74 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data

Notes

Errors

chrono_precision (SQLDAZ2 only)

Address of avariable of type SQS_L ONGWORD into which the API writes the precision of
the date-time value or interval value for columns of type SQLSRV_GENERALIZED DATE
or SQLSRV_INTERVAL, respectively.

rsv
Argument reserved for future use. The value of thisargument must be NULL.

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

«» Usethesglsrv_sglda ref_dataor sqlsrv_sqlda2_ref data routine to access a column's
data and indicator variables allocated by the sglsrv_allocate sglda data or sglsrv_
allocate sglda2_dataroutine. It is equivalent to reading the SQLLEN, SQLTY PE,
SQLDATA, and SQLIND fields of the SQLVAR or SQLVAR2 structure, and for
SQLDAZ2, the SQLOCTET_LEN, SQLCHRONO_SCALE, and SQLCHRONO _
PRECISION fidds of the SQLVAR?2 structure for the column.

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDAZ2, or SQLDA_ID.

APl Routines 6-75

sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73

sqlsrv_sqlda_ref data73 or sqlsrv_sqlda2_ref_data73

The sqlsrv_sglda ref_data73 or sqlsrv_sqglda2_ref data73 routine returns the type, length,
scale, or date-time type, and address of the data and indicator variables for acolumn in an
SQLDA or SQLDA2, respectively. In the SQLDA?2, the sqlsrv_sqlda2_ref data routine also
returns the octet length, chrono-scale, and chrono-precision for a column.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

C Format

extern int sqlsrv_sqlda ref_data73(
SQDA I D sql dai d,
short int col num
short int *coltyp,
unsi gned short int *coll en,
short int *col scl,
PTROHARPTR val
PTRSHORTPTR nul | p,
void *rsv,
ASSOO ATE | D associate id);

extern int sqlsrv_sql da2 ref_data73(
SQDA I D sql dai d,
short int col num
short int *coltyp,
SE NS GNED LONGACRD *col | en,
short int *col scl,
PTROHARPTR val
PTRLONGPTR nul | p,
SE NS GNED LONGACRD *oct et | en,
S5 LONGNRD *chrono_scal e,
S5 LONGARD *chrono_pr eci si on,
void *rsv,
ASSOO ATE | D associate id);

Parameters

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

6-76 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73

colnum
A column identified by its ordinal position in a parameter or select list.

coltyp
Address of avariable of type short into which the API writes the Oracle SQL/Services data
type of the column.

collen

Address of avariable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDAZ2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl

Address of avariable of type short into which the APl writes the scale factor for columns of
type SQLSRV_GENERALIZED _NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. Undefined
for columns of all other datatypes.

val
The address of avariable of type CHARPTR into which the API writes the address of the
column’s data variable.

nullp

Address of avariable into which the APl writes the address of the column's indicator
variable. For an SQLDA, theindicator variable is of type short. For an SQLDA?2, the
indicator variable is of type SQS_ L ONGWORD. See Section 7.6 or Section 7.7 for a
description of the indicator variable (SQLIND field) of an SQLDA or SQLDAZ2,
respectively.

octet_len (SQLDAZ2 only)
Address of avariable of type SQS_UNSIGNED_L ONGWORD into which the API writes
the length in octets of the column.

chrono_scale (SQLDA2 only)

Address of avariable of type SQS_LONGWORD into which the API writes the specific
date-time data type for columns of type SQLSRV_GENERALIZED_DATE or theinterva
scale for columns of type SQLSRV_INTERVAL.

API Routines 6-77

sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73

Notes

Errors

chrono_precision (SQLDA2 only)

Address of avariable of type SQS_L ONGWORD into which the API writes the precision of
the date-time value or interval value for columns of type SQLSRV_GENERALIZED DATE
or SQLSRV_INTERVAL, respectively.

rsv
Argument reserved for future use. The value of thisargument must be NULL.

associate_id
An identifier used to distinguish one active association from all others.

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

« Usethesglsrv_sglda ref_dataz3 or sglsrv_sglda2_ref data73 routine to access a
column's data and indicator variables allocated by the sqlsrv_allocate sqlda_data or
sglsrv_allocate sglda?2_dataroutine. It is equivalent to reading the SQLLEN,
SQLTY PE, SQLDATA, and SQLIND fields of the SQLVAR or SQLVAR?2 structure,
and for SQLDA?2, the SQLOCTET_LEN, SQLCHRONO_SCALE, and
SQLCHRONO_PRECISION fields of the SQLVAR2 structure for the column.

« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda ref_data or sglsrv_sqglda2_ref_data routine.

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

6-78 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_unref_data or sqlsrv_sqlda2_unref_data

sqlsrv_sqlda_unref_data or sqlsrv_sqglda2_unref_data

C Format

Parameters

Notes

Errors

The sqlsrv_sglda unref_dataor sqlsrv_sglda2_unref_data routine frees resourcestied up by
the sglsrv_sqlda ref_dataor sqlsrv_sqlda2_ref dataroutine.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA or SQLDAZ2 routines are identical unless otherwise specified.

extern int sqlsrv_sqgl da unref_data(
SQDA I D sql dai d,
short int col num;

extern int sqlsrv_sql da2_unref_dat a(
SQDA I D sql dai d,
short int col num;

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

API Routines 6-79

sqlsrv_sqlda_unref_data73 or sqlsrv_sqglda2_unref_data73

sqlsrv_sqlda_unref_data73 or sqlsrv_sqlda2_unref_data73

The sqlsrv_sglda unref_datar3 or sglsrv_sglda2_unref_datar3 routine frees resources tied
up by the sglsrv_sglda ref_dataor sqlsrv_sqlda2_ref data routine.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

C Format
extern int sqlsrv_sqgl da unref_data73(
SQDA I D sql dai d,
short int col num
ASSOO ATE | D associate id);
extern int sqlsrv_sql da2_unref_dat a73(
SQDA I D sql dai d,
short int col num
ASSOO ATE | D associate id);
Parameters
sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.
colnum
A column identified by its ordinal position in a parameter or select list.
associate_id
An identifier used to distinguish one active association from all others.
Notes

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_unref_data or sqlsrv_sqlda2_unref_dataroutine.

6-80 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_unref_data73 or sqlsrv_sglda2_unref_data73

Errors

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

API Routines 6-81

sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data

sqlsrv_sqlda_get_data or sqisrv_sqlda2_get_data

C Format

Parameters

The sqlsrv_sglda get_dataor sglsrv_sglda2_get data routine copies column data and
indicator variables from the SQLDA or SQLDAZ2, respectively, to a program.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

extern int sqlsrv_sqgl da get_dat a(
SQDA I D sql dai d,
short int col num
unsi gned short int of fset,
CHARPTR dst
unsi gned short int dstlen,
SHORTPTR nul | p,
unsi gned short int *bytcpy);

extern int sqlsrv_sqgl da2 get dat a(
SQDA I D sql dai d,
short int col num
SB NS G\ED_LONGNRD of f set,
CHARPTR dst,
S NS G\ED LONGAZRD dst | en,
LONGPTR nul | p,
S5 NS G\ED_LONGATRD *byt cpy) ;

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

offset

The offset within the column's data variable a which to start the copy. The most typical
value for the offset parameter is zero, which means to start the copy at the beginning of the
column's data variable. For an SQLDA, the offset is of type unsigned short. For an
SQLDAZ2, the offset is of type SQS_UNSIGNED_L ONGWORD.

6-82 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data

Notes

Errors

dst
The address of abuffer of type unsigned char to which the datais copied.

dstlen

The length in bytes of the buffer specified asthe dst argument. For an SQLDA, the length is
of type unsigned short. For an SQLDA2, the length is of type SQS UNSIGNED_
LONGWORD.

nullp

Address of avariable into which Oracle SQL/Services writes the value of the column
indicator variable. For an SQLDA, the indicator variable is of type short. For an SQLDA?2,
the indicator variable is of type SQS LONGWORD. See Section 7.6 or Section 7.7 for a
description of the indicator variable (SQLIND field) of an SQLDA or SQLDAZ2,
respectively.

bytcpy

Address of avariable into which the APl writes the number of bytes of data actually copied.
For an SQLDA, the variable is of type unsigned short. For an SQLDAZ2, the variableis of
type SQS_UNSIGNED_LONGWORD.

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

« Thesglsrv_sglda get dataor sglsrv_sglda2_get data routine provides access to
SQLDA or SQLDA?2 information for languages that do not support explicit type
coercion. Note that the use of the sglsrv_sglda get dataor sglsrv_sglda2_get data
routine requires the host language to support some form of type coercion.

« Whenthesglsrv_sglda get_dataor sglsrv_sqlda2_get dataroutineisused, datais
copied between the SQLDA or SQLDA?2 and the user's buffer.

« Theoffset field provides some flexibility to callers, allowing you to take a selected
section out of the field in question. The most typical value for the offset field is zero (0),
which means to start copying at the beginning of the data. The maximum allowable
value for the offset field is the maximum length of the SQLDATA buffer.

SQLSRV_INVCOLNUM Column number not within range.

APl Routines 6-83

sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA _ID.

6-84 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73

sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73

C Format

Parameters

The sglsrv_sglda get _data73 or sglsrv_sqlda2_get_data73 routine copies column data and
indicator variables from the SQLDA or SQLDAZ2, respectively, to a program.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

extern int sqlsrv_sql da get_dat a73(
SQDA I D sql dai d,
short int col num
unsi gned short int of fset,
CHARPTR dst,
unsi gned short int dstlen,
SHORTPTR nul | p,
unsi gned short int *bytcpy,
ASSOO ATE | D associate id);

extern int sqlsrv_sql da2 _get_data73(
SQDA I D sql dai d,
short int col num
SB UNS G\BED LONGNRD of f set,
CHARPTR dst,
SB UNS G\ED LONGNRD dst | en,
LONGPTR nul | p,
S5 NS G\ED_LONGATRD * byt cpy,
ASSOO ATE | D associate id);

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

offset
The offset within the column's data variable a which to start the copy. The most typical
value for the offset parameter is zero, which means to start the copy at the beginning of the

APl Routines 6-85

sqlsrv_sqlda_get_data73 or sqlsrv_sglda2_get_data73

Notes

column's data variable. For an SQLDA, the offset is of type unsigned short. For an
SQLDAZ2, the offset is of type SQS_UNSIGNED_L ONGWORD.

dst
The address of abuffer of type unsigned char to which the datais copied.

dstlen

The length in bytes of the buffer specified asthe dst argument. For an SQLDA, the lengthis
of type unsigned short. For an SQLDA2, the length is of type SQS UNSIGNED_
LONGWORD.

nullp

Address of avariable into which Oracle SQL/Services writes the value of the column
indicator variable. For an SQLDA, the indicator variable is of type short. For an SQLDA?2,
the indicator variable is of type SQS LONGWORD. See Section 7.6 or Section 7.7 for a
description of the indicator variable (SQLIND field) of an SQLDA or SQLDAZ2,
respectively.

bytcpy

Address of avariable into which the APl writes the number of bytes of data actually copied.
For an SQLDA, the variable is of type unsigned short. For an SQLDAZ2, the variableis of
type SQS_UNSIGNED_LONGWORD.

associate_id
An identifier used to distinguish one active association from all others.

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

« Thesglsrv_sglda get data73 or sqlsrv_sqlda2_get_datar3 routine provides accessto
SQLDA or SQLDA?2 information for languages that do not support explicit type
coercion. Note that the use of the sqlsrv_sglda get data73 or sglsrv_sqlda2_get_data73
routine requires the host language to support some form of type coercion.

« Whenthesglsrv_sglda get_datar3 or sglsrv_sglda?_get data73 routine is used, datais
copied between the SQLDA or SQLDA?2 and the user's buffer.

« Theoffset field provides some flexibility to callers, allowing you to take a selected
section out of the field in question. The most typical value for the offset field is zero (0),
which means to start copying at the beginning of the data. The maximum allowable
value for the offset field is the maximum length of the SQLDATA buffer.

6-86 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73

Errors

« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_get dataor sglsrv_sglda2_get_dataroutine.

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

API Routines 6-87

sqlsrv_sqlda_set_data or sqlsrv_sglda2_set_data

sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data

Thesqlsrv_sglda set_data or sqlsrv_sqlda2_set data routine copies column information into
the SQLDA or SQLDA?2, respectively.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

C Format

extern int sqlsrv_sqglda set_dat a(
SQDA I D sql dai d,
short int col num
unsi gned short int of fset,
CHARPTR dst
unsi gned short int dstlen,
short int nullp,
unsi gned short int *bytcpy);

extern int sqlsrv_sqgl da2 set_dat a(
SQDA I D sql dai d,
short int col num
SB NS G\ED_LONGNRD of f set,
CHARPTR dst,
S NS G\ED LONGAZRD dst | en,
S5 LONGAZRD nul | p,
S5 NS G\ED_LONGATRD *byt cpy) ;

Parameters

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

offset

The offset within the column's data variable a which to start the copy. The most typical
value for the offset parameter is zero (0), which means to start the copy at the beginning of
the column's data variable. For an SQLDA, the offset is of type unsigned short. For an
SQLDAZ2, the offset is of type SQS_UNSIGNED_L ONGWORD.

6-88 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data

Notes

Errors

dst
The address of abuffer of type unsigned char containing the data to be copied to the
SQLDATA buffer.

dstlen

The length in bytes of the buffer specified asthe dst argument. For an SQLDA, the length is
of type unsigned short. For an SQLDA2, the length is of type SQS UNSIGNED_
LONGWORD.

nullp

The value for the column'sindicator variable. For an SQLDA, the indicator is of type short.
For an SQLDAZ2, the indicator is of type SQS_L ONGWORD. See Section 7.6 or Section 7.7
for adescription of the indicator variable (SQLIND field) of an SQLDA or SQLDA?2,
respectively.

bytcpy

Address of avariable into which the APl writes the number of bytes of data actually copied.
For an SQLDA, the variable is of type unsigned short. For an SQLDAZ2, the variableis of
type SQS_UNSIGNED_LONGWORD.

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

«» Thesglsrv_sglda set_dataor sglsrv_sqlda2_set data routine complements the sglsrv_
sglda_get dataor sglsrv_sglda2_get _dataroutine. It isused to copy valuesinto a
column's data and indicator variables.

« Theoffset field provides some flexibility to callers, allowing you to target a selected
section of the field in question. The most typical value for the offset field is zero (0),
which meansto target the copying at the beginning of the data. The maximum allowable
value for the offset field is the maximum length of the SQLDATA or SQLIND buffer.

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

API Routines 6-89

sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73

sqlsrv_sqlda_set_data73 or sqisrv_sqlda2_set_data73

The sqlsrv_sglda_set_data73 or sqlsrv_sglda2_set data73 routine copies column
information into the SQLDA or SQLDA2, respectively.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routines are identical unless otherwise specified.

C Format

extern int sqlsrv_sqlda set_dat a73(
SQDA I D sql dai d,
short int col num
unsi gned short int of fset,
CHARPTR dst
unsi gned short int dstlen,
short int nullp,
unsi gned short int *bytcpy,
ASSOO ATE | D associate id);

extern int sqlsrv_sqgl da2_set_data73(
SQDA I D sql dai d,
short int col num
SB UNS G\BED LONGNRD of f set,
CHARPTR dst,
SB NS G\ED LONGNRD dst | en,
S5 LONGAZRD nul | p,
S5 NS G\ED_LONGATRD * byt cpy,
ASSOO ATE | D associate id);

Parameters

sqgldaid

Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum

A column identified by its ordinal position in a parameter or select list.

offset

The offset within the column's data variable a which to start the copy. The most typical
value for the offset parameter is zero (0), which means to start the copy at the beginning of

6-90 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73

Notes

the column's data variable. For an SQLDA, the offset is of type unsigned short. For an
SQLDAZ2, the offset is of type SQS_UNSIGNED_L ONGWORD.

dst
The address of abuffer of type unsigned char containing the data to be copied to the
SQLDATA buffer.

dstlen

The length in bytes of the buffer specified asthe dst argument. For an SQLDA, the lengthis
of type unsigned short. For an SQLDA2, the length is of type SQS UNSIGNED_
LONGWORD.

nullp

The value for the column'sindicator variable. For an SQLDA, the indicator is of type short.
For an SQLDA2, the indicator is of type SQS_L ONGWORD. See Section 7.6 or Section 7.7
for adescription of the indicator variable (SQLIND field) of an SQLDA or SQLDA?2,
respectively.

bytcpy

Address of avariable into which the API writes the number of bytes of data actually copied.
For an SQLDA, the variable is of type unsigned short. For an SQLDAZ2, the variableis of
type SQS_UNSIGNED_LONGWORD.

associate_id
An identifier used to distinguish one active association from all others.

« Oracle SQL/Services returns an error if the SQLDA or SQLDAZ2 isinvalid or if the
column number is greater than the number of parameter markers or select list items
(colnum >= sglda.SQLD).

«» Thesglsrv_sglda set data73 or sqlsrv_sglda2_set data73 routine complements the
sglsrv_sglda get_data73 or sglsrv_sglda?_get data73 routine. It is used to copy values
into a column's data and indicator variables.

» Theoffset field provides some flexibility to callers, allowing you to target a selected
section of the field in question. The most typical value for the offset field is zero (0),
which meansto target the copying at the beginning of the data. The maximum allowable
value for the offset field is the maximum length of the SQLDATA or SQLIND buffer.

« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_set_data or sglsrv_sqlda2_set_data routine.

API Routines 6-91

sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73

Errors

SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

6-92 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen

sqlsrv_sqlda_set_sqllen or sqglsrv_sqglda2_set_sqllen

C Format

Parameters

Notes

The sqlsrv_sglda set_sgllen or sglsrv_sglda2_set sgllen routine sets the length of a column
by setting the SQLLEN field in an SQLDA or the SQLLEN and SQLOCTET_LEN inan
SQLDA2.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routine are identical unless otherwise specified.

extern int sqlsrv_sqglda set_sqllen(
SQDA I D sql dai d,
short int col num
unsi gned short int |en);

extern int sqlsrv_sqgl da2 set_sql | en(
SQDA I D sql dai d,
short int col num
S NS G\ED LONGNRD | en,
S5 UNSI GNED LONGARD octet | en);

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

len
The length of the SQLLEN field in an SQLDA or SQLDA?2.

octet_len (SQLDAZ2 only)
Address of avariable of type SQS_UNSIGNED_L ONGWORD into which the APl writes
the length in octets of the column.

« Only columns of the SQLSRV_ASCII_STRING, SQLSRV_VARCHAR, and SQLSRV _
VARBY TE data types can have their length changed.

API Routines 6-93

sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen

« AnSQLSRV_INVSETLEN error code is returned if you attempt to set the SQLLEN for
a column of type SQLSRV_GENERALIZED_DATE, SQLSRV_GENERALIZED _
NUMBER, SQLSRV_INTERVAL, or SQLSRV_LIST VARBYTE.

« Usethesglsrv_sglda set_sqllen or sqglsrv_sglda2_set sqgllen routine to limit the amount
of data returned in a column of a select list SQLDA. For example, if only the first few
bytes of a column of type SQLSRV_ASCII_STRING, SQLSRV_VARCHAR, or
SQLSRV_VARBYTE are required in certain circumstances, you can reduce the size of
network messages by limiting the amount of data returned by the sglsrv_fetch routine.
When processing acall to sglsrv_fetch or sglsrv_execute in_out, Oracle SQL/Services
sends to the server only the lengths of those columnsin a select list SQLDA or
SQLDAZ? that have changed since the last call.

« Usethesglsrv_sglda set_sqllen or sqlsrv_sglda2_set sqllen routine to modify the
length of a column of type SQLSRV_ASCII_STRING in a parameter marker SQLDA.
In this situation, Oracle Rdb truncates or pads the value as necessary to the actual length
of the column as specified in the database. Oracle SQL/Services does not need to send
to the server the lengths of columns that have changed in a parameter marker SQLDA
or SQLDA 2, because the length of each data value is sent to the server along with the
dataitself.

« See Chapter 8 for more information on how Oracle SQL/Services handles values of
each supported data type.

= You canincrease or decrease the amount of memory Oracle SQL/Services alocates for
acolumn by calling sglsrv_sglda_set_sgllen or sqlsrv_sqlda2_set sqllen before you call
sglsrv_allocate sglda data or sglsrv_allocate_sglda2_data. For example, Oracle Rdb
allows you to store a segment of any length into a segmented string, regardless of the
segment length specified in the database. Therefore, you may need to increase the
length of a column of type SQLSRV_VARBY TE beforeyou call sglsrv_allocate sglda
data or sglsrv_alocate sglda?_datato allocate the SQLDA data memory.

« Forthesqglsrv_sglda2_set sgllen routine, the octlen parameter is compared with the len
parameter to see if they are compatible. For example, the SQLLEN of a column of type
SQLSRV_VARCHAR or SQLSRV_VARBY TE does not include the size of the leading
32-bit count field, whereas the SQLOCTET_LEN of a column of type SQLSRV_
VARCHAR or SQLSRV_VARBY TE does include the size of the leading 32-bit count
field. If they are not compatible, an SQLSRV_INVSETLEN error code is returned.

When using a multibyte character set, normally the SQLLEN field represents the length
in characters of a column, excluding the length of any control information, whereas the
SQLOCTET_L EN represents the length in bytes of the column, including the length of
any control information. However, Oracle SQL/Services does not send the
SQLOCTET_LEN valueto the server if it is changed; therefore, you must set the

6-94 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen

Errors

SQLLEN to the new length in bytes of the column, excluding the length of any control

information.

SQLSRV_INVCOLNUM
SQLSRV_INVSQLDA
SQLSRV_INVDATTYP
SQLSRV_INVSETLEN

SQLSRV_INVSQLLEN

Column number not within range.
Invalid SQLDA, SQLDAZ2, or SQLDA_ID.
Invalid data type.

Unsupported data type or invalid SQLLEN and
SQLOCTET_LEN combination.

The SQLLEN field in the SQLDA or SQLDA?2 has been
set to 0 or to a value greater than the size of the column.

APl Routines 6-95

sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73

sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqglda2_set_sqllen73

C Format

Parameters

The sqlsrv_sglda set_sgllen73 or sglsrv_sglda?_set sgllen73 routine sets the length of a
column by setting the SQLLEN field in an SQLDA or the SQLLEN and SQLOCTET_LEN
in an SQLDA2.

Note: Theformat, parameters, description, notes, and errors for the
SQLDA and SQLDAZ? routine are identical unless otherwise specified.

extern int sqlsrv_sqglda set_sql |l en73(
SQDA I D sql dai d,
short int col num
unsi gned short int |en,
ASSOO ATE | D associate id);

extern int sglsrv_sqgl da2_set_sql | en73(
SQDA I D sql dai d,
short int col num
SGB NS GNED LONGVRD | en,
S5 UNSI G\NED LONGACRD oct et | en,
ASSOO ATE | D associate id);

sqgldaid
Theidentifier of a parameter marker or select list SQLDA or SQLDA?2.

colnum
A column identified by its ordinal position in a parameter or select list.

len
The length of the SQLLEN field in an SQLDA or SQLDA?2.

octet_len (SQLDAZ2 only)
Address of avariable of type SQS_UNSIGNED_L ONGWORD into which the APl writes
the length in octets of the column.

associate_id
An identifier used to distinguish one active association from all others.

6-96 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73

Notes

Only columns of the SQLSRV_ASCII_STRING, SQLSRV_VARCHAR, and SQLSRV _
VARBY TE data types can have their length changed.

An SQLSRV_INVSETLEN error code is returned if you attempt to set the SQLLEN for
a column of type SQLSRV_GENERALIZED_DATE, SQLSRV_GENERALIZED _
NUMBER, SQLSRV_INTERVAL, or SQLSRV_LIST VARBYTE.

Usethe sglsrv_sglda set_sqgllen73 or sglsrv_sglda2_set sgllen73 routine to limit the
amount of data returned in a column of a select list SQLDA. For example, if only the
first few bytes of acolumn of type SQLSRV_ASCII_STRING, SQLSRV_VARCHAR,
or SQLSRV_VARBY TE arerequired in certain circumstances, you can reduce the size
of network messages by limiting the amount of datareturned by the sglsrv_fetch
routine. When processing a call to sqlsrv_fetch or sglsrv_execute_in_out, Oracle
SQL/Services sendsto the server only the lengths of those columnsin a select list
SQLDA or SQLDA?2 that have changed since the last call.

Usethe sglsrv_sglda set_sqgllen73 or sglsrv_sglda2_set sgllen73 routine to modify the
length of a column of type SQLSRV_ASCII_STRING in a parameter marker SQLDA.
In this situation, Oracle Rdb truncates or pads the value as necessary to the actual length
of the column as specified in the database. Oracle SQL/Services does not need to send
to the server the lengths of columns that have changed in a parameter marker SQLDA
or SQLDA 2, because the length of each data value is sent to the server along with the
dataitself.

See Chapter 8 for more information on how Oracle SQL/Services handles val ues of
each supported data type.

You can increase or decrease the amount of memory Oracle SQL /Services allocates for
acolumn by calling sglsrv_sqlda_set _sgllen73 or sglsrv_sglda2_set sgllen73 before
you call sglsrv_allocate sglda data or sglsrv_allocate sglda2_data. For example,
Oracle Rdb allows you to store a segment of any length into a segmented string,
regardless of the segment length specified in the database. Therefore, you may need to
increase the length of acolumn of type SQLSRV_VARBY TE before you call sglsrv_
allocate sglda dataor sglsrv_allocate sqlda2_datato alocate the SQLDA data
memory.

For the sglsrv_sqlda2_set sqllen73 routine, the octlen parameter is compared with the
len parameter to seeif they are compatible. For example, the SQLLEN of a column of
type SQLSRV_VARCHAR or SQLSRV_VARBY TE does not include the size of the
leading 32-bit count field, whereas the SQLOCTET_LEN of a column of type
SQLSRV_VARCHAR or SQLSRV_VARBY TE does include the size of the leading
32-bit count field. If they are not compatible, an SQLSRV_INVSETLEN error code is
returned.

API Routines 6-97

sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73

When using a multibyte character set, normally the SQLLEN field represents the length
in characters of a column, excluding the length of any control information, whereas the
SQLOCTET_L EN represents the length in bytes of the column, including the length of
any control information. However, Oracle SQL/Services does not send the
SQLOCTET_LEN valueto the server if it is changed; therefore, you must set the
SQLLEN to the new length in bytes of the column, excluding the length of any control
information.

« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_set_sgllen or sglsrv_sglda2_setsgllen routine.

Errors
SQLSRV_INVCOLNUM Column number not within range.
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.
SQLSRV_INVDATTYP Invalid data type.
SQLSRV_INVSETLEN Unsupported data type or invalid SQLLEN and
SQLOCTET_LEN combination.
SQLSRV_INVSQLLEN The SQLLEN field in the SQLDA or SQLDA?2 has been

set to 0 or to a value greater than the size of the column.

6-98 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda2_char_set_info

sqlsrv_sqlda2_char_set_info

C Format

Parameters

The sqlsrv_sglda2_char_set_info routine returns the SQL character set fields from the
SQLDAZ2.

extern int sql srv_sqgl da2_char_set_inf o(
SQDA I D sql dai d,
short int col num
CHARPTR nane,
short int nane | en,
CHARPTR schena,
short int schema | en,
CHARPTR cat al og,
short int catal og_| en);

sqgldaid
Theidentifier of a parameter marker or select list SQLDAZ2.

colnum
A column identified by its ordinal position in a parameter or select list.

name
Address of abuffer of type unsigned char into which the API writes the character set name.

name_len
The length of the buffer specified by the name argument into which the API writesthe
character set name.

schema
Address of abuffer of type unsigned char into which the API writes the schema name.

schema_len
The length of the buffer specified by the schema argument into which the API writes the
schema name.

catalog
Address of a buffer of type unsigned char into which the API writes the catalog name.

API Routines 6-99

sqlsrv_sqlda2_char_set_info

catalog_len
The length of the buffer specified by the catalog argument into which the API writesthe
catalog name.

Notes

« Oracle SQL/Services returns an error if the SQLDAZ2 isinvalid or if the column number
is greater than the number of parameter markers or select list items (colnum >=

sglda.SQLD).

« The maximum length of a character set name, schema name, or catalog name is 128
bytes. If a user-supplied buffer is smaller than the actual name, the name is truncated. If
a user-supplied buffer islarger than the actual name, the name is padded with spaces.

Errors
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA?2, or SQLDA_ID.

SQLSRV_INVCOLNUM Column number not within range.

6-100 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda2_char_set_info73

sqlsrv_sqlda2_char_set_info73

C Format

Parameters

The sqlsrv_sglda2_char_set_info73 routine returns the SQL character set fields from the
SQLDAZ2.

extern int sqlsrv_sqgl da2 char_set_info73(
SQDA I D sql dai d,
short int col num
CHARPTR nane,
short int nane | en,
CHARPTR schena,
short int schema | en,
CHARPTR cat al og,
short int catal og_l en,
ASSOO ATE | D associate id);

sqgldaid
Theidentifier of a parameter marker or select list SQLDAZ2.

colnum
A column identified by its ordinal position in a parameter or select list.

name
Address of abuffer of type unsigned char into which the API writes the character set name.

name_len
The length of the buffer specified by the name argument into which the API writesthe
character set name.

schema
Address of abuffer of type unsigned char into which the API writes the schema name.

schema_len
The length of the buffer specified by the schema argument into which the API writes the
schema name.

APl Routines 6-101

sqlsrv_sqlda2_char_set_info73

catalog
Address of a buffer of type unsigned char into which the API writes the catalog name.

catalog_len
The length of the buffer specified by the catalog argument into which the APl writesthe
catalog name.

associate_id
An identifier used to distinguish one active association from all others.

Notes
« Oracle SQL/Services returns an error if the SQLDAZ2 isinvalid or if the column number
is greater than the number of parameter markers or select list items (colnum >=
sglda.SQLD).
« The maximum length of a character set name, schema name, or catalog name is 128
bytes. If a user-supplied buffer is smaller than the actual name, the name is truncated. If
a user-supplied buffer islarger than the actual name, the name is padded with spaces.
« Thiscall is often more efficient and performs better than the corresponding sqlsrv_
sglda_char_set_info routine.
Errors
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA _ID.
SQLSRV_INVCOLNUM Column number not within range.

6-102 Guide to Using the Oracle SQL/Services Client API

v

Data Structures

This chapter describes the data structures that Oracle SQL/Services uses to communicate
with the client application. Some of the data structures (the SQLDA, SQLDA2, and
SQLCA) areidentical in layout (but not in usage) to those in dynamic SQL. Those structures
are described in detail in the Oracle Rdb SQL Reference Manual. This Oracle SQL/Services
manual provides relatively brief descriptions of the data structures and points out the
differencesin their usage.

7.1 Documentation Format

Each Oracle SQL/Services data structure is documented using a structured format called a
template. The sections of the template are shown in Table 7-1, along with the information
that is presented in each section and the format used to present the information.

Table 7-1 Sections in the Data Structure Template

Section Description

Structure Name Appears at the top of the page, followed by the English equivalent.

Overview Appears directly below the structure name. The overview explains, usualy
in one or two sentences, the purpose of the structure.

Definition Shows the C definition of the structure.

Fields Gives detailed information about each field.

The Fields section contains detailed information about each field in the data structure. Fields
are described in the order in which they appear in the structure.

The following format is used to describe each field:

fiedd-name

Data Structures 7-1

Documentation Format

data type: The data type of the specific field (see Table 6-3)
C declaration: How that field isdeclared in the Oracle SQL/Services include files
set by: Whether the value of the field is set by the API, the application program, or
both
used by: \é\/hk?ther the value of the field is used by the API, the application program, or
ot

In addition, the Fields section contains at least one paragraph of text describing the purpose
of thefield.

7-2 Guide to Using the Oracle SQL/Services Client API

ASSOCIATE_STR-Association Structure

7.2 ASSOCIATE_STR-Association Structure

The association structure is a parameter that is passed to the sqlsrv_associate routine to
specify the attributes of an association such as the service name, network transport, client
logging flags, alternate error buffer, and so forth. ASSOCIATE_STR is defined in the
include file sglsrv.h. The following isthe SQLSRV_V 730 version of the structure.

Fields

struct ASSQO ATE STR
{

unsi gned short int QLI BENT_LGG
unsi gned short SERVER LGG
short int LOCAL FLAG
short int VERS ON
CHARPTR (*MEMORY_RQUTI NB) () ;
CHARPTR (* FREE_MEMORY_RQUJTI NB) () ;
short int RESERVED
short int BERRBUFL
CHARPTR ERRBUF;
CHARPTR cl ass_narre;
short int Xpttyp;
unsi gned short int port_id;
CHARPTR att ach;
CHARPTR decl ar g;
CHARPTR appnam
CHARPTR obj nam
¥
CLIENT_LOG
datatype word (unsigned)
C declaration: unsigned short int CLIENT_LOG
set by: program
used by: API

Specifies the type of client logging to be enabled on the client system (see Section 5.1).

The following constants are defined in the include file sglsrv.h:

SQLSRV_LOG_DISABLED
SQLSRV_LOG_ASSOCIATION

Disables logging (default)

Enables association logging

Data Structures 7-3

ASSOCIATE_STR-Association Structure

SQLSRV_LOG_ROUTINE Enables API routine logging

SQLSRV_LOG_PROTOCOL Enables message protocol logging

SQLSRV_L OG_SCREENJ1] Sends logging output to the video display on the
client system as well asto the log file

SQLSRV_LOG_OPNCLS Opens and closesthe log file around each log file
write and is useful if aclient is terminated
abnormally

SQLSRV_LOG _FLUSH Flushes pending output to the log file only at the

end of each complete association-level,
routine-level, and protocol-level entry and is useful
if aclient application isterminating abnormally
while executing application code.

SQLSRV_LOG_BINARY Dumps memory in structured format if data
contains non-printable characters

[1] See Chapter 5 for more information.

To enable more than one type of logging, add the appropriate constants.

SERVER_LOG

data type: word (unsigned)

C declaration: unsigned short int SERVER_LOG
set by: program

used by: unused

Thisfeature is deprecated. Thisfield is reserved.

LOCAL_FLAG

datatype: word (signed)

C declaration: shortint LOCAL_FLAG
set by: program

used by: unused

Thisfeature is deprecated. Thisfield is reserved.

7-4 Guide to Using the Oracle SQL/Services Client API

ASSOCIATE_STR-Association Structure

VERSION

data type: word (signed)

C declaration: short int VERSION
set by: program

used by: API

Specifies the version of the ASSOCIATE_STR structure allocated by the application
program. When set to a specific version number, such as SQL SRV _V 700, the value of the
VERSION field directs the client API to process fields in the ASSOCIATE_STR structure
supported by the specified version. The SQLSRV_Vnnn version numbers are defined in
sglsrv.h.

MEMORY_ROUTINE

data type: pointer

C declaration: CHARPTR (*MEMORY_ROUTINE) ()
set by: program

used by: API

A pointer to the entry point of a user-specified routine to be called by the API for alocation
of pointer-based memory. This featureis for client environments in which alimited amount
of memory isavailable. The default value isNULL, which causes the API to use the
portable C routine malloc() for pointer-based memory alocation.

FREE_MEMORY_ROUTINE

data type: pointer

C declaration: CHARPTR (*FREE_MEMORY _ROUTINE) ()
set by: program

used by: API

A pointer to the entry point of a user-specified routine to be called by the API for
deallocation of pointer-based memory. The default valueis NULL, which causesthe API to
use the portable C routine free() for pointer-based memory deallocation.

Data Structures 7-5

ASSOCIATE_STR-Association Structure

RESERVED

data type: word (signed)

C declaration: short int RESERVED
set by: program

used by: unused

Must be 0. Thisfield is reserved.

ERRBUFLEN

data type: word (signed)

C declaration: short int ERRBUFLEN
set by: program

used by: APl

The length in bytes of an alternate error buffer specified by the ERRBUF field. Specify zero
if you do not provide an alternate error buffer.

ERRBUF

data type: pointer

C declaration: CHARPTR ERRBUF
set by: API

used by: program

The address of an aternate error message buffer in which the APl stores error message text.
If you do not specify an alternate error message buffer, Oracle SQL/Services uses the
70-byte SQLERRMC field in the SQL CA data structure. However, because the
SQLERRMC field is only 70 bytes, it may not be long enough to hold al the possible error
messages that can be returned by the Oracle SQL/Services server or Oracle Rdb. Therefore,
Oracle Corporation recommends that you allocate a larger message buffer for each
association. A buffer of size 512 bytesis sufficient for all possible error messages.

class_name
data type: pointer
C declaration: CHARPTR class_name

7-6 Guide to Using the Oracle SQL/Services Client API

ASSOCIATE_STR-Association Structure

set by: program
used by: API

The address of abuffer containing the service name with which to associate.

xpttyp

data type: word (signed)
C declaration: short int xpttyp
set by: program

used by: API

The desired transport type for this association.

The following constants are defined in the include file sqlsrv.h:

SQLSRV_XPT_NOT_CHOSEN No transport chosen (default); API will select
transport

SQLSRV_XPT_DECNET Enables DECnet transport support (VMS and
Tru64 UNIX only)

SQLSRV_XPT_TCPIP Enables TCP/IP transport support

SQLSRV_XPT_SQLNET Enables Oracle Net transport support (VMS
only)

port_id

datatype: word (unsigned)

C declaration: short int port_id

set by: program

used by: API

Must be 0 or a TCPIP port number. If non-zero, this value will be used to specify an
alternate TCPIP port number to be used for this association. This value will override any
SQLSRV$TCPIP_PORT logical (OpenVMS clients), SQLSRV_TCPIP_PORT environment
variable (HP Tru64, HP-UX and Linux clients) or TCPIPPortNumber .ini specification
(Windows clients).

Data Structures 7-7

ASSOCIATE_STR-Association Structure

attach

data type: pointer

C declaration: CHARPTR or an unsigned char*
set by: program

used by: APl

Must be NULL, or set to avalid SQL ATTACH statement. You can use the attach field
when associating to a universal service to avoid the extraround trip message to the server
for an sglsrv_execute_immediate call to issue the ATTACH statement. The ATTACH
statement is executed in the executor after the SQL initialization procedure (if any) is

executed.

declare

data type: pointer

C declaration: CHARPTR or an unsigned char*
set by: program

used by: API

Must be NULL, or any SQL statement that can be executed using sglsrv_execute
immediate. The declare field is designed to specify a DECLARE TRANSACTION
statement; however, you can specify any valid SQL statement. You can use the declare field
when associating to a service of any type to avoid the extraround trip message to the server
for an sglsrv_execute_immediate call to issue a DECLARE TRANSACTION or other SQL
statement. The SQL statement is executed in the executor after the SQL initialization
procedure (if any) and ATTACH statement (if any) is executed.

appnam
data type: pointer

C declaration: CHARPTR or an unsigned char*
set by: program

used by: API

Must be NULL, or astring representing the client application name. Note that because the
client application can pass any string using this field, the application name cannot be used

7-8 Guide to Using the Oracle SQL/Services Client API

ASSOCIATE_STR-Association Structure

for security purposes. The application name is displayed with a system management SHOW
CLIENT command.

objnam

data type: pointer

C declaration: CHARPTR or an unsigned char*
set by: program

used by: API

Must be NULL, or astring representing the DECnet object name to be used for this
association. Thisvalue will override any SQLSRV$DECNET_OBJECT logical (OpenVMS
clients) or SQLSRV_DECNET_OBJECT environment variable (HP Tru64 clients).

Data Structures 7-9

SQLCA-SQL Communications Area

7.3 SQLCA-SQL Communications Area

The SQLCA structure is used to store information when an error occurs. This structure is
defined in the include file sglsrvca.h along with the error codes generated by Oracle
SQL/Services.

struct SQLCA

{
char SQCADI[§];
SB_LONGARD SQLCABG
S5 LONGARD SQLOCTDE,
struct

{

short int SQLERRW;
char SQQERR\VC [70];
} SQAERV
S5 LONGAORD SQERRD [6] ;
st ruct
{
char SQLWARND;
char SQLWARNL,
char SQWARN
char SQLWARNS;
char SQLWARN,
char SQLWARNG;
char SQLWARNG;
char SQLWARN7;
} SAWRY
char SQEXT [8];
Y

The Oracle SQL/Services SQL CA is based on the SQL SQL CA, which isdescribed in detail
in the Oracle Rdb SQL Reference Manual.

Fields
SQLCAID
data type: character string
C declaration: char SQLCAID [8]
set by: API
used by: unused

7-10 Guide to Using the Oracle SQL/Services Client API

SQLCA-SQL Communications Area

Structure identification field, present only for compatibility with SQL. Contains the
null-terminated string “ SQLCA” followed by two reserved bytes.

SQLCABC

datatype: SQS_LONGWORD

C declaration: SQS LONGWORD SQLCABC
set by: API

used by: program

Containsthe size, in bytes, of the SQL CA structure. The value of thisfield is always 128.

SQLCODE

data type: SQS_LONGWORD

C declaration: SQS LONGWORD SQLCODE
set by: API

used by: program

Contains the error status for the most recently invoked Oracle SQL/Servicesroutine. A
positive value indicates a warning, a negative value indicates an error, and a 0 value
indicates success. The include file sglsrv.h contains the error messages that correspond to all
of the possible values of SQL CODE returned by the Oracle SQL/Services client API.

SQLERRM.SQLERRML

data type: word (signed)

C declaration: short int SQLERRML
set by: API

used by: program

The length, in bytes, of the error message text returned in SQLERRMC.
SQLERRM.SQLERRMC

data type: character string
C declaration: char SQLERRMC [70]

Data Structures 7-11

SQLERRD-Part of SQLCA

set by: API
used by: program
The error message text, if any, that corresponds to the error contained in the SQLCODE

field. Thisfield isnot used if you specify an aternate error message buffer. See Section 7.2
for more information.

SQLERRD

data type: longword (signed) array
C declaration: SQS_LONGWORD [6]
set by: API

used by: program

An array of six integers as described in Section 7.4.

SQLWARN.SQLWARNN

data type: character string

C declaration: char SQLWARNO . . . SQLWARNY7
set by: unused

used by: unused

A series of eight 1-character state fields as defined by SQL.

SQLEXT

data type: character string

C declaration: char SQLEXT [8]
set by: unused

used by: unused

Not used by the API.

7.4 SQLERRD-Part of SQLCA

The SQLERRD array contains six elements. The content of each element in the SQLERRD
array is determined by the routine that is successfully called:

7-12 Guide to Using the Oracle SQL/Services Client API

SQLDA or SQLDA2-SQL Descriptor Area

« After asuccessful call to sglsrv_prepare, the following information is stored in the
SQLERRD array:

SQLERRD[1] contains the statement type.

The statement types, as defined by Oracle Rdb, are asfollows:

0: statement is an executable statement other than CALL
1: statement isa SELECT statement
2: statement isa CALL statement

« After asuccessful call to sglsrv_execute immediate or sglsrv_execute in_out with the
execute flag set to either SQLSRV_EXE_W_DATA or SQLSRV_EXE_WO_DATA, the
following information is stored in the SQLERRD array:

SQLERRD[2] element contains the number of rowsinserted, updated, or deleted.

See sglsrv_execute_immediate and sglsrv_execute_in_out for more information.

« After asuccessful call to sglsrv_open_cursor to open atable cursor, the following
information is stored in the SQLERRD array:

SQLERRD[2] element contains the estimated result table cardinality.
SQLERRD[3] element contains the estimated 1/0s.

« After asuccessful call to sglsrv_open_cursor to open alist cursor, the following
information is stored in the SQLERRD array:
SQLERRD[1] element contains the length of the largest actual segment.
SQLERRD[3] element contains the total number of segments.

The SQLERRD[4] and SQLERRD[5] elements contain the total length of all the
segments as a quadword value where the low-order 32-bit valueis stored in
SQLERR[4] and the high-order 32-bit value is stored in SQLERRD[5].

« After asuccessful call to sglsrv_fetch, the following information is stored in the
SQLERRD array:

SQLERRD[?2] contains the number of the current row within the result table.

7.5 SQLDA or SQLDA2-SQL Descriptor Area

The SQLDA or SQLDA? structure contains SQL parameter marker and select list metadata
aswell as pointers to data and indicator variables. It is defined in the include file sglsrvda.h.

Data Structures 7-13

SQLDA or SQLDA2-SQL Descriptor Area

The Oracle SQL/Services SQLDA or SQLDA2 isidentical to the SQLDA or SQLDA2
structures, respectively, in SQL. For additiona information on the SQLDA or SQLDAZ2,
read the dynamic SQL chapter in the Oracle Rdb7 Guideto SQL Programming and the
SQLDA and SQLDA?2 appendix in the Oracle Rdb SQL Reference Manual.

struct SQDA
{
char SQDA O 8];
SB LONGNMRD SQ.DABC,
unsi gned short SAN
unsi gned short SQD
struct SQLQVAR SQVARARY[1];
h

struct SQDA2
{
char SQDA O 8];
SB LONGNMRD SQDABC,
unsi gned short SAN
unsi gned short Selly;

struct SQQVARZ SQVARARY[1];

¥
Fields
SQLDAID
data type: character string
C declaration: char SQLDAIDI8]
set by: API
used by: unused

Structure identification field; contains the null-terminated string “ SQLDA” or “SQLDA2"
followed by one or two reserved bytes.

SQLDABC

data type: SQS_LONGWORD

C declaration: SQS LONGWORD SQLDABC
set by: API or program

used by: APl

7-14 Guide to Using the Oracle SQL/Services Client API

SQLDA or SQLDA2-SQL Descriptor Area

The size, in bytes, of the SQLDA or SQLDAZ2 structure, including the nested variable length
SQLVARARY structure. The SQLDABC field is used by the API to verify the integrity of
the SQLDA or SQLDAZ2.

SQLN

datatype: word (signed)

C declaration: shortint SQLN
set by: see following text
used by: API

The number of elementsin the SQLVARARY. If the API allocated the SQLDA or SQLDA2
structure, this value is the same as the SQLD field. If your application allocated its own
SQLDA or SQLDAZ2 structure, it must supply this value. In that case, the SQLN field
specifies the maximum number of select list items or parameter marker items that can exist
in an SQL statement that is prepared with a particular SQLDA or SQLDAZ2; acall to the
sglsrv_prepare routine with an SQLVARARY that istoo small returns an error.

SQLD

datatype: word (signed)
C declaration: shortint SQLD
set by: API

used by: program

The actual number of parameter markers or select list itemsin a prepared SQL statement. In
an SQLDA or SQLDAZ2 structure that was allocated by the AP, thisvalue is the same as the
SQLN field (the number of elementsin the SQLVARARY).

SQLVARARY

data type: structure array

C declaration: struct SQLVAR SQLVARARY[1] (SQLDA),
struct SQLVAR2 SQLVARARY[1] (SQLDA?2)

set by: see Section 7.6 and Section 7.7

used by: see Section 7.6 and Section 7.7

An array of SQLVAR structures (see Section 7.6) or SQLVAR2 structures (see Section 7.7),
each of which describes one select list item or one parameter marker item. Because some C

Data Structures 7-15

SQLDA or SQLDA2-SQL Descriptor Area

compilers do not support the definition of avarying array within astructure, SQLVARARY
is defined as an array of one element. However, Oracle SQL/Services uses as many
SQLVAR or SQLVAR2 elements as allocated in an SQLDA or SQLDA2.

7-16 Guide to Using the Oracle SQL/Services Client API

SQLVAR-Parameter Marker or Select List Item

7.6 SQLVAR-Parameter Marker or Select List ltem

Each SQLVAR structure describes one select list item or parameter marker.

Fields

struct SQVAR
{

short

unsi gned short
CHARPTR
SHRTPTR
short

char

s

SQLTYPE

data type:

C declaration:
set by:

used by:

SQATYPE
SQLEN
SQDATA
SQIND,
SQNAME LEN
SCQLNAME] 30] ;

word (signed)

shortint SQLTY PE

APl

program

The SQL datatype for the SQLVAR entry. This value represents the Oracle SQL/Services

data type as defined in the include file sglsrv.h.

#define SQLSRV ASC | _STR NG

#defi ne SQLSRV_GENERALI ZED NUMBER
#defi ne SQLSRV_GENERALI ZED DATE
#defi ne SQLSRV_VARCHAR

#defi ne SQLSRV_VARBYTE

#defi ne SQSRV_LI ST_VARBYTE

#defi ne SQLSRV_| NTERVAL

SQLLEN

data type:

C declaration:
set by:

used by:

word (signed)

unsigned short int SQLLEN

see following text

program

129
130
131
132
155
159
168

Data Structures 7-17

SQLVAR-Parameter Marker or Select List Item

The value of the SQLLEN field is dependent on the data type of the parameter marker or
select list item. For more information, see Chapter 8.

SQLDATA

data type: pointer

C declaration: char * SQLDATA
set by: program or API
used by: program and AP

The address of the data variable for the parameter marker or select list item. If your
application allocates data variables by calling the sglsrv_allocate_sglda data or sqlsrv_
allocate sglda2 _dataroutine, the API initidlizesthisfield. If your application alocates its
own data variables, it must write the address of each variable into an SQLDATA field. In
that case, the API returns an error if an SQLLEN value islessthan the length of the

associated data value.

SQLIND

data type: pointer

C declaration: short int * SQLIND
set by: program or API
used by: program and AP

The address of the indicator variable for the data. If your application callsthe sglsrv_
allocate sglda dataor sglsrv_allocate_sglda2_data routine, the API initializes this field.
Otherwise, your application must allocate its own indicator variables and write the address
of each variable into an SQLIND fidld.

Your program sets the indicator variable of each parameter marker as follows before calling
sglsrv_execute in_out or sglsrv_open_cursor:

0: to indicate the presence of data for the column
-1: toindicate aNULL vaue for the column
The API setsthe indicator variable of each select list item as follows as part of the

successful completion of acall to sglsrv_fetch or sglsrv_execute in_out:

0: to indicate the presence of data for the column

7-18 Guide to Using the Oracle SQL/Services Client API

SQLVAR-Parameter Marker or Select List Item

-1: to indicate aNULL value for the column
>0: to indicate that a column value was truncated

SQLNAME_LEN

data type: word (signed)

C declaration: shortint SQLNAME_LEN
set by: API

used by: program

The length, in bytes, of the name stored in the SQLNAME field.

SQLNAME

data type: character string

C declaration: char SQLNAME[30]
set by: API

used by: program

The name of the parameter marker or select list item. Oracle SQL/Services stores the name
as a null-terminated string.

Data Structures 7-19

SQLVAR2-Parameter Marker or Select List Item

7.7 SQLVAR2-Parameter Marker or Select List Item

Each SQLVAR?2 structure describes one select list item or parameter marker.

struct SQVAR2
{
short SQATYPE
SE UNSIAGNED LONGARD SQLLEN
5 NS G\ED LONGNRD SQLOCTET LEN
CHARPTR SQDATA
LONFTR S ND
SB_LONGMRD SQCHRONO SCALE;
6 LONGARD SQCHROND PREA S O\
short SQANAME LEN
char SQNAMH 128] ;
char SQCHAR SET_NAMH 128];
char SQCHAR SET_SOHEWA 128] ;
char SQLCHAR SET_CATALGT 128] ;
¥

Fields

SQLTYPE

data type: word (signed)

C declaration: short int SQLTY PE

set by: API

used by: program

The SQL data type for the SQLVARZ entry. This value represents the Oracle SQL/Services
data type as defined in the include file sglsrv.h.

#define SQSRV_ A | _STR NG

#defi ne SQLSRV_GENERALI ZED NUMBER
#def i ne SQLSRV_GENERALI ZED DATE

#defi ne SQLSRV_VARCHAR
#defi ne SQLSRV_VARBYTE
#defi ne SQSRV_LI ST_VARBYTE
#defi ne SQLSRV_| NTERVAL

129
130
131
132
155
159
168

7-20 Guide to Using the Oracle SQL/Services Client API

SQLVAR2-Parameter Marker or Select List Item

SQLLEN
datatype: SQS LONGWORD_UNSIGNED

C declaration: SQS_LONGWORD_UNSIGNED SQLLEN
set by: see following text

used by: program

The value of the SQLLEN field is dependent on the data type of the parameter marker or
select list item. For more information, see Chapter 8.

SQLOCTET_LEN

datatype: SQS LONGWORD_UNSIGNED

C declaration: SQS_LONGWORD_UNSIGNED SQLOCTET_LEN
set by: SQL

used by: program and AP

A value that indicates the length in octets or 8-bit bytes of the select list item or parameter
marker. For more information, see Chapter 8.

SQLDATA

data type: pointer

C declaration: char *SQLDATA
set by: program or API
used by: program and AP

The address of the data variable for the parameter marker or select list item. If your
application allocates data variables by calling the sglsrv_allocate_sglda data or sqlsrv_
allocate sglda2_dataroutine, the API initializes this field. If your application allocates its
own data variables, it must write the address of each variable into an SQLDATA field. In
that case, the API returns an error if an SQLLEN value islessthan the length of the
associated data value.

SQLIND
data type: pointer
C declaration: SQS LONGWORD *SQLIND

Data Structures 7-21

SQLVAR2-Parameter Marker or Select List Item

set by: program or API
used by: program and AP

The address of the indicator variable for the data. If your application callsthe sglsrv_
allocate sglda dataor sglsrv_allocate sglda?_dataroutine, the APl initializes this field.
Otherwise, your application must allocate its own indicator variables and write the address
of each variable into an SQLIND fidld.

Your program sets the indicator variable of each parameter marker as follows before calling
sglsrv_execute in_out or sglsrv_open_cursor:

0: to indicate the presence of data for the column
-1: toindicate aNULL vaue for the column
The API setsthe indicator variable of each select list item as follows as part of the

successful completion of acall to sglsrv_fetch or sglsrv_execute in_out:

0: to indicate the presence of data for the column
-1: to indicate aNULL value for the column
>0: to indicate that a column value was truncated

SQLCHRONO_SCALE

data type: SQS_LONGWORD

C declaration: SQS LONGWORD SQLCHRONO_SCALE
set by: API

used by: program

SQLCHRONO_SCALE contains the scale of the interval for columns of type SQLSRV _
INTERVAL. SQLCHRONO_SCALE contains the type of date as shown in Table 8-2 for
columns of type SQLSRV_GENERALIZED_DATE.

SQLCHRONO_PRECISION

data type: SQS_LONGWORD

C declaration: SQS_LONGWORD SQLCHRONO_PRECISION
set by: API

used by: program

7-22 Guide to Using the Oracle SQL/Services Client API

SQLVAR2-Parameter Marker or Select List Item

SQLCHRONO_PRECISION contains the precision for columns of type SQLSRV_
INTERVAL and for columns of type SQLSRV_GENERALIZED_DATE with a type of
SQLSRV_DT_DATE_ANSI, SQLSRV_DT_TIME, or SQLSRV_DT_TIMESTAMP.

SQLNAME_LEN

data type: word (signed)

C declaration: shortint SQLNAME_LEN
set by: API

used by: program

The length, in bytes, of the name stored in the SQLNAME field.

SQLNAME

data type: character string

C declaration: char SQLNAME[128]
set by: API

used by: program

The name of the parameter marker or select list item. Oracle SQL/Services stores the name
as a null-terminated string. The maximum length of anameis 31 characters.

SQLCHAR_SET_NAME

data type: character string

C declaration: char SQLCHAR_SET_NAME[128]
set by: API

used by: program

The character set name when the SQLTY PE is a character string type. The maximum length
of acharacter set name is 128 characters. When SQLTY PE is any other datatype, thisfield
contains spaces.

SQLCHAR_SET_SCHEMA

data type: character string
C declaration: char SQLCHAR_SET_SCHEMA[128]

Data Structures 7-23

SQLVAR2-Parameter Marker or Select List Item

set by: reserved for future use

used by: reserved for future use

The schema name when the SQLTY PE is a character string type. The maximum length of a
schema name is 128 characters. When SQLTY PE is any other data type, thisfield contains
spaces.

SQLCHAR_SET_CATALOG

data type: character string

C declaration: char SQLCHAR_SET_CATALOG[128]
set by: reserved for future use

used by: reserved for future use

The catalog name when the SQLTY PE is a character string type. The maximum length of a
catalog name is 128 characters. When SQLTY PE isany other datatype, this field contains
spaces.

7-24 Guide to Using the Oracle SQL/Services Client API

8

Data Types

Oracle SQL/Services supports the full range of SQL data types; however, the values for
certain data types are represented in a different format than that used in the database. Each
SQL data type has a corresponding Oracle SQL/Services data type, all of which are
described in this chapter. The sglsrv.h file provides definitions for each Oracle SQL/Services
datatype.

8.1 Data Types

Table 8-1 lists the SQL data types along with the corresponding Oracle SQL/Services data
types.

Table 8-1 Data Types

SQL Data Type Oracle SQL/Services Data Type
CHAR SQLSRV_ASCII_STRING
VARCHAR SQLSRV_VARCHAR

TINYINT SQLSRV_GENERALIZED_NUMBER
SMALLINT SQLSRV_GENERALIZED_NUMBER
INTEGER SQLSRV_GENERALIZED_NUMBER
QUADWORD SQLSRV_GENERALIZED_NUMBER
FLOAT SQLSRV_GENERALIZED_NUMBER
REAL SQLSRV_GENERALIZED_NUMBER
DOUBLE PRECISION SQLSRV_GENERALIZED_NUMBER
DATEVMS SQLSRV_GENERALIZED_DATE
DATE ANS SQLSRV_GENERALIZED_DATE

Data Types 8-1

SQLSRV_ASCII_STRING

Table 8-1 Data Types(Cont.)

SQL Data Type Oracle SQL/Services Data Type
TIME SQLSRV_GENERALIZED_DATE
TIMESTAMP SQLSRV_GENERALIZED_DATE
INTERVAL SQLSRV_INTERVAL

LIST OF BYTE VARYING SQLSRV_LIST_VARBYTE

String segment data type SQLSRV_VARBYTE

8.2 SQLSRV_ASCII_STRING

Oracle SQL/Services uses the SQLSRV_ASCII_STRING data type to represent the CHAR
fixed-length character string data type.

For an SQLDA, the SQLLEN field specifies the length of the string in 8-bit bytes. For an
SQLDAZ2, the SQLLEN field specifies the length of the string in characters and the
SQLOCTET_LEN field specifies the length of the string in 8-bit bytes.

If the client application calls either the sglsrv_allocate_sglda_data() or sqlsrv_allocate
sglda2_data() client API service to allocate the SQLDATA memory, then Oracle
SQL/Services alocates an extra byte of memory and null-terminates SQLSRV_ASCI|_
STRING character stringsin select list SQLDAs. The extra byte of memory is not reflected
in the SQLLEN or SQLOCTET_LEN fields. If the client application allocatesits own
SQLDATA memory, then Oracle SQL/Services does not null-terminate SQLSRV_ASCII_
STRING character strings.

8.3 SQLSRV_VARCHAR

Oracle SQL/Services uses the SQLSRV_VARCHAR data type to represent the VARCHAR
varying-length string datatype. An SQLSRV_VARCHAR data vaue consists of aleading
length field immediately followed by the string, which may contain binary data.

For an SQLDA, the leading length field is an unsigned 16-bit word. The SQLLEN field
specifies the maximum length of a string in 8-bit bytes, excluding the size of the 16-bit
leading length field.

For an SQLDA?2, the leading length field is an unsigned 32-bit longword. The SQLLEN
field specifies the maximum length of a string in characters, excluding the size of the 32-bit
leading length field. The SQLOCTET_LEN field specifies the maximum length of a string
in 8-bit bytes, including the size of the 32-hit leading length field.

8-2 Guide to Using the Oracle SQL/Services Client API

SQLSRV_GENERALIZED_NUMBER

Be sure to specify the correct length for the SQL SRV_VARCHAR datatype in your API
applications. Oracle SQL/Services does not issue an error message when the size of the data
fields for the SQLSRV_VARCHAR data type exceeds the size of the SQLLEN field in the
SQLDA data structure.

8.4 SQLSRV_GENERALIZED_NUMBER

Oracle SQL/Services uses the SQLSRV_GENERALIZED_NUMBER data type to represent
the following SQL data types:

. TINYINT
. SMALLINT

. INTEGER

. QUADWORD
. FLOAT

. REAL

« DOUBLE PRECISION

Oracle SQL/Services presents al integer, fixed-point, and floating-point data valuesto a
client application as null-terminated numeric strings in the following format:

[-JINNN]L.DD](E[-][xx]]

- unary minus

NNN integer portion of the number
.DD decimal portion of the number
E exponent identifier

- unary minus for exponent value

XX exponent value

The brackets indicate the optional syntax.

When you prepare a statement, the Oracle SQL/Services executor cal cul ates the maximum
number of bytes required to represent the most negative and the most positive value for an
Oracle SQL/Services generalized number.

For an SQLDA, the low-order byte of the SQLLEN field specifies the maximum number of
bytes, excluding the null-terminator. The high-order byte of the SQLLEN field specifies the
scale factor.

Data Types 8-3

SQLSRV_GENERALIZED_NUMBER

For an SQLDA 2, the low-order 16-bit word of the SQLLEN field specifies the maximum
number of bytes, excluding the null-terminator. The high-order 16-bit word of the SQLLEN
field specifies the scale factor. The SQLOCTET _L EN field specifies the maximum number
of bytes, including the null-terminator.

Trailing zeros occur in fixed-point numeric datatypes with SCALE FACTOR. Trailing zeros
are included after the decimal point up to the number of digits specified by the SCALE
FACTOR. For example, afield defined as INTEGER (3) would be expressed as 23.400.

Trailing zeros occur in floating-point data types. Trailing zeros are included in the fraction,
and leading zeros are included in the exponent, up to the maximum precision available, for
fields assigned the REAL and DOUBLE PRECISION data types. For example, a REAL
number would be expressed as 1.2340000E+01 and a DOUBLE PRECISION number would
be expressed as 5.678900000000000E+001.

The maximum size of the TINYINT data type is 4 and the maximum size of the REAL data
typeis 15.

SQL alows a parameter marker value for an integer or fixed-point data type to be supplied
in scientific notation. For example: —3.2768E4 is equivalent to —32768. To support this, the
sglsrv_allocate sglda data() and sglsrv_allocate sqlda2_data() client API services both
allocate an additiona 5 bytes of memory to account for a possible decimal point (.) and
exponent (E+nn). These 5 extra bytes are not reflected in either the SQLLEN or
SQLOCTET_LEN values.

It is possible for an application that allocates its own memory for parameter marker data
variables to send a numeric data value to the server that is a valid number, but that is
potentially longer than the server can handle. For this reason, the server allocates an extra 10
bytes of memory for parameter marker variables for all numeric data types, in addition to the
minimum required for each data type. If the length of a numeric parameter marker value
exceeds the amount of memory allocated for the parameter marker variable, the server
returns the SQL SRV_DATA_TOO_L ONG error to the client. This restriction isimposed on
the server by the particular dynamic SQL interface used by the Oracle SQL/Services server.

For example, the server minimally allocates 6 bytes for a column of type SMALLINT. This
supports values from —32768 through +32767. To handle values expressed in scientific
notation, the server alocates an additional 5 bytes for all numeric data types. This supports
values from -3.2768E+04 through +3.2767E+04. To support the inclusion of insignificant
zeros, the server finally allocates an additional 10 bytesfor all numeric datatypes. This
supports values such as —003.276800E+4 and +3.2767E+0004. However, a value of
+00003.27670000E+00004, although a valid numeric value, is considered too long to be
handled by the server.

8-4 Guide to Using the Oracle SQL/Services Client API

SQLSRV_GENERALIZED_DATE

8.5 SQLSRV_GENERALIZED_DATE

Oracle SQL/Services uses the SQLSRV_GENERALIZED_DATE data type to represent the
DATE VMS, DATE ANSI, TIME, and TIMESTAMP data types. An Oracle SQL/Services
generalized date is a null-terminated string containing a maximum of 16 digits in the
following format:

ccyymmdd{hh[mi[ss(ff]]]]

cc century

yy year

mm month

dd day

hh hour (24-hour format)
mi minute

S second

ff fractions of a second

If you omit any of the optional fields of adate-time value of type DATE VMS, then SQL
pads the string with zeros. Thus, the default time is exactly midnight.

Inaselect list SQLDA, the century, year, month, and day fields of adate-time value of type
TIME are all zeros. In a parameter marker SQL DA, the century, year, month, and day fields
of adate-time value of type TIME are ignored, but must be present. Oracle Corporation
recommends you set these fields to all zeros.

Inasdect list SQLDA, the hours, minutes, seconds, and fractions-of-second fields of a
date-time value of type DATE ANSI are al zeros. In a parameter marker SQLDA, the hours,
minutes, seconds, and fractions-of-second fields of a date-time value of type DATE ANSI
are ignored.

All the fields of date-time value of type TIMESTAMP are significant in both select list and
parameter marker SQL DAs. For example:

SQLSRV_GENERALIZED_

Data Type Date/Time DATE

DATEVMS June 26, 1961 11:04:05 AM 1961062611040500
DATE ANSI March 22, 1996 1996032200000000
TIME 11:23:06.7 AM 0000000011230670

Data Types 8-5

SQLSRV_GENERALIZED_DATE

SQLSRV_GENERALIZED_
Data Type Date/Time DATE

TIMESTAMP May 6, 1994 2:34:56.21 PM 1994050614345621

For an SQLDA, the low-order byte of the SQLLEN field specifies the maximum number of
digits, including the null-terminator. Thus the value is dways 17. The high-order byte of the
SQLLEN field specifies the Oracle SQL/Services date-time data type as shown in Table 8-2.
The precision of the fractions-of-second field of a date-time value of type TIME or
TIMESTAMP value is not available for an SQLDA.

For an SQLDA2, the SQLLEN and SQLOCTET_LEN fields both contain the maximum
number of digits, including the null-terminator. Thus both values are dways 17. The
SQLCHRONO_SCALE field specifies the Oracle SQL/Services date-time data type as
shown in Table 8-2. The SQLCHRONO_PRECISION field specifies the precision of the
fractions-of-second field. This value is undefined for a date-time value of type DATE VMS.

Table 8-2 Oracle SQL/Services Date-Time Data Types

Oracle SQL/Services Date-Time

Value Data Types SQL Date-Time Data Types
0 SQLSRV_DT _DATE VMS DATEVMS

1 SQLSRV_DT_DATE ANSI DATE ANSI

2 SQLSRV_DT_TIME TIME

3 SQLSRV_DT_TIMESTAMP TIMESTAMP

It is possible for an application that allocates its own memory for parameter marker data
variables to send a date-time data value to the server that isvalid, but that is potentially
longer than the server can handle. For this reason, the server allocates an extra 10 bytes of
memory for parameter marker variables for all date-time datatypes, in addition to the
minimum required for each data type. If the length of a date-time parameter marker value
exceeds the amount of memory allocated for the parameter marker variable, the server
returns the SQL SRV_DATA_TOO_L ONG error to the client. This restriction isimposed on
the server by the dynamic SQL interface used by the Oracle SQL/Services server.

For example, the server minimally allocates 16 bytes for a column of type TIMESTAMP.
This supports al valid timestamp values expressed in the Oracle SQL/Services generalized
date format, such as 1996073009572249 (1996-07-30:09:57:22.49). To support the inclusion
of insignificant zeros, the server also allocates an additional 10 bytes for all date-time data
types. This supports values such as 199607300957224900. However, avalue of

8-6 Guide to Using the Oracle SQL/Services Client API

SQLSRV_INTERVAL

1996073009572249000000000000, a'though a valid date-time value, is considered too long
to be handled by the server.

See the Oracle Rdb SQL Reference Manual and the Oracle Rdb7 Guide to SQL
Programming for more information on the SQL date-time data types.

8.6 SQLSRV_INTERVAL

Oracle SQL/Services uses the SQLSRV_INTERVAL data type to represent the INTERVAL
datatype. An Oracle SQL/Servicesinterva isanull-terminated string.

When you prepare a statement, the Oracle SQL/Services executor cal cul ates the maximum
number of bytes required to represent the most negative and the most positive value for an
interval.

For an SQLDA, the low-order byte of the SQLLEN field specifies the maximum number of
bytes, excluding the null-terminator. The high-order byte of the SQLLEN field specifies the
interval subtype. The scale and precision of the interval are not available for an SQLDA.

For an SQLDA?2, the SQLLEN field specifiesthe interval subtype. The SQLOCTET_LEN
field specifies the maximum number of bytes, including the null-terminator. The scale and
precision of theinterval are specified by the SQLCHRONO_SCALE and SQLCHRONO _
PRECISION fields, respectively.

The Oracle SQL/Services interval codes shown in Table 8-3 correspond directly to the SQL
interval types.

Table 8-3 Oracle SQL/Services Interval Type

Value Oracle SQL/Services Interval Type
SQLSRV_DT_YEAR
SQLSRV_DT_MONTH
SQLSRV_DT_DAY
SQLSRV_DT_HOUR
SQLSRV_DT_MINUTE
SQLSRV_DT_SECOND
SQLSRV_DT_YEAR_MONTH
SQLSRV_DT DAY _HOUR
SQLSRV_DT_DAY_MINUTE

© 00 N o OO b~ W N P

Data Types 8-7

SQLSRV_VARBYTE

Table 8-3 Oracle SQL/Services Interval Type(Cont.)

Value Oracle SQL/Services Interval Type
10 SQLSRV_DT_DAY_SECOND

1 SQLSRV_DT_HOUR_MINUTE

12 SQLSRV_DT_HOUR_SECOND

13 SQLSRV_DT_MINUTE_SECOND

It is possible for an application that allocates its own memory for parameter marker data
variables to send an interval data value to the server that isvalid, but that is potentially
longer than the server can handle. For this reason, the server allocates an extra 10 bytes of
memory for parameter marker variables for all interval datatypes, in addition to the
minimum required for each data type. If the length of an interval parameter marker value
exceeds the amount of memory allocated for the parameter marker variable, the server
returns the SQL SRV_DATA_TOO_L ONG error to the client. This restriction isimposed on
the server by the dynamic SQL interface used by the Oracle SQL/Services server.

For example, the server minimally allocates 3 bytes for a column of type INTERVAL

Y EAR(3). This supports values from —99 through 99. To support the inclusion of
insignificant zeros, the server also allocates an additional 10 bytesfor all interval data types.
This supports values such as +000999, although SQL may consider insignificant zeros as
invalid. However, a vaue of -0000000000099, although potentially avalid interval value, is
considered too long to be handled by the server.

See the Oracle Rdb7 Guide to SQL Programming and the Oracle Rdb SQL Reference
Manual for more information on the INTERVAL datatype.

8.7 SQLSRV_VARBYTE

Oracle SQL/Services uses the SQLSRV_VARBY TE data type to represent the
varying-length string segment datatype. An SQLSRV_VARBY TE data value consists of a
leading length field immediately followed by the string, which may contain binary data.

For an SQLDA, the leading length field is an unsigned 16-bit word. The SQLLEN field
specifies the maximum length of a string in 8-bit bytes, excluding the size of the 16-bit
leading length field.

For an SQLDA?2, the leading length field is an unsigned 32-bit longword. The SQLLEN
field specifies the maximum length of a string in characters, excluding the size of the 32-bit
leading length field. The SQLOCTET_LEN field specifies the maximum length of a string
in 8-bit bytes, including the size of the 32-hit leading length field.

8-8 Guide to Using the Oracle SQL/Services Client API

SQLSRV_LIST_VARBYTE

Be sure to specify the correct length for the SQLSRV_VARBY TE datatypein your AP
applications. Oracle SQL/Services does not issue an error message when the size of the data
fields for the SQLSRV_VARBY TE data type exceeds the size of the SQLLEN field in the
SQLDA data structure.

When dealing with the SQLSRV_VARBY TE data type, it isimportant to know that the
length of a segment may exceed the length specified in the metadata for a column. For
example, the default segment length is 1 byte; however, segments of any length may be
stored in a column defined with the default length. Consider a segmented string defined as
LIST OF BYTE VARYING(80).

In a parameter marker SQLDA, you can call sglsrv_sglda_set_sqllen(), sqlsrv_sglda set
sgllen73(), sqlsrv_sglda2_set sqllen() or sglsrv_sglda2_set sgllen73() to increase the
maximum segment length to 132 bytes before you call sglsrv_allocate_sglda data() or
sglsrv_allocate sglda2_data(). You may then insert strings up to 132 bytesin length into the
segmented string.

Inaselect list SQLDA, sglsrv_prepare() returns the segment length specified when the
column was defined. In this example, the column was defined with a segment length of 80
bytes. However, the length of the longest segment in a particular segmented string may be
longer than thisvalue. In this example, it is 132 bytes. To allow your application to allocate
sufficient memory for the longest segment, sqlsrv_open_cursor() returns the length of the
longest segment in the SQLERRD] 1] field of the SQLCA when you successfully open a
list cursor to access the segmented string. Therefore, in this example, sglsrv_open_cursor()
returns 132 in the SQLERRD[1] field. You can then supply this valueto sglsrv_sglda set
sgllen(), sglsrv_sqlda_set sqllen73(), sglsrv_sqlda2_set_sgllen() or sglsrv_sglda2 set
sgllen73() before you call sglsrv_allocate sqlda data() or sglsrv_allocate sglda2_data(). In
thisway, you are guaranteed to have sufficient SQL DATA memory available to hold the
longest segment in the segment string.

See the Oracle Rdb7 Guide to SQL Programming and the Oracle Rdb SQL Reference
Manual for more information on lists (segmented strings).

8.8 SQLSRV_LIST_VARBYTE

Oracle SQL/Services uses the SQLSRV_LIST_VARBY TE data type to represent the LIST
OF BYTE VARYING datatype. The SQLSRV_LIST_VARBY TE datatypeis afixed-length
data type that holds the location of a particular segmented string or binary large object
(BLOB) in a database.

For an SQLDA, the SQLLEN field specifies the size in bytes of the SQLSRV_LIST_
VARBYTE.

Data Types 8-9

Deciding Whether to Use SQLDA or SQLDA2

For an SQLDA?2, both the SQLLEN and SQLOCTET_LEN fields specify the size in bytes
of the SQLSRV_LIST_VARBYTE.

See the Oracle Rdb7 Guide to SQL Programming and the Oracle Rdb SQL Reference
Manual for more information on the LIST OF BY TE VARY ING data type.

8.9 Deciding Whether to Use SQLDA or SQLDA2

You can develop most client applications using the standard SQLDA SQL descriptor area.
However, you must use the extended SQLDA?2 SQL descriptor areain the following
situations:

« If your application needs to process datain columns that have a multibyte character data
type.

= If your application needs the scale or precision of columns of type TIME,
TIMESTAMP, or INTERVAL. This metadatainformation is not accessible if you use a
standard SQLDA.

= If your application needs to access the full name of a column where the length of the
column name is greater than 29 characters. If you use a standard SQLDA, Oracle
SQL/Services truncates column names that are 30 or 31 characters long. The maximum
length of a column name is 31 characters.

8-10 Guide to Using the Oracle SQL/Services Client API

A

Obsolete Features

The following Oracle SQL/Services features have been made obsolete. These features are no
longer described in the main body of the Guide to Using the Oracle SQL/Services Client
API, the Oracle SQL/Services Installation Guide, and the Oracle SQL/Services Server
Configuration Guide.

A.1 Obsolete Features

An obsolete feature is afeature that is no longer supported that was described as a
deprecated feature in a previousrelease. These features no longer work.

A.1.1 Obsolete Network Communications Software
The following network communi cations software is now obsolete and no longer supported.

« NetWare (IPX/SPX) software

The NetWare network transport was supported for MS Windows 3.1 clients, which are
now obsolete.

« SQL*Net software on HP Tru64 UNIX

The Oracle Net network transport is now supported on the Open VMS Alpha and
Itanium servers and client platforms. It is no longer supported for HP Tru64 UNIX
client platforms.

» DECnet software on Windows platforms

The DECnet network transport is no longer supported on Windows platforms. HP
support for Pathworks 32 is scheduled to terminate on May 31, 2010.

Obsolete Features A-1

Obsolete Features

A.1.2 Obsolete Client Platforms

The following client platforms are now obsolete and no longer supported. These client kits
no longer ship with the Oracle SQL/Services client API software kit.

« MSWindows 3.1

« Windows 95

« WindowsNT X86

« WindowsNT Alpha
« Macintosh

«» Solaris

« OpenVMSVAX

A.1.3 Obsolete Server Platforms
The following server platforms are now obsolete and no longer supported.

« OpenVMSVAX
« HPTrué4 UNIX

A-2 Guide to Using the Oracle SQL/Services Client API

AP
HP Tru64 UNIX, 1-4
HP-UX, 1-4
installing, 1-11
library, 1-3
Linux, 1-4
OpenVMSAlpha, 1-4
OpenVMS164, 1-4
Oracle ODBC Driver for Rdb

Windows, 1-4
using in C applications, 1-9
Windows, 1-4
writing applicationsusing, 1-3
API routines

association, 6-3to 6-14

functiond interface, 6-46 to ??

result table, 6-26 to 6-39

SQL statement, 6-14to 6-26

utility, 6-39to 6-45
Application

building on HP Tru64 UNIX, 2-17

building on HP-UX, 2-17

building on Linux, 2-18

building on OpenVMS, 2-15

building on Windows, 2-16

recommendations for developing, 2-13
Application development

knowledge assumed for Oracle SQL/Services,
Application programming interface

See AP
Argument vector

used in sample application, 3-7

Index

ASCIZ

See SQLSRV_ASCII_STRING datatype

ASSOCIATE_STR

atach field, 7-8

CLASS NAME fidd, 7-6
CLIENT_LOG field, 7-3
declarefield, 7-8
description of, 7-3to 7-8
ERRBUF fidd, 7-6
ERRBUFLEN field, 7-6
execution logging and, 5-2
RESERVED field, 7-4,7-6, 7-7
settingup, 3-7

summary of, 2-13
VERSION field, 7-5
xpttyp field, 7-7

Association

aborting, 6-4

creating, 3-6, 6-5
creating client/server, 2-8
data structure, 7-3
declaring variablesfor, 3-6
ending client/server, 2-9
logging, 5-2,5-3,7-3
multiple, 3-6

releasing, 3-6

summary of routines, 2-8to 2-9, 6-3to0 6-13
terminating, 6-13

Association identifier

passing, 3-7

Association information

obtaining value of, 6-10

Association structure

See ASSOCIATE_STR

Index-1

B
Batched execution, 4-1
Binary

datatype, 8-2

Binary datain logs

dumped in structured format, 5-2, 7-4
Buffer, message

binding to association, 6-5

role in performance enhancement, 4-1

C

C, C++, C# programming languages
programming, 1-9
routine name format, 6-2
CALL statement
using, 2-4
Client
in client/server model, 1-1
logging
See Logging
Client API routines
association, 2-8to2-9
calling from your applications, 1-9
data structuresused, 2-13
functiond interface, 2-11to2-12
overview, 2-8to2-12
result table, 2-9
similarity to dynamic SQL, 1-9
SQL statement, 2-9
utility, 2-10to2-11
CLIENT_LOG fidd
in sample application, 3-7
Client/server association
creating, 2-8
ending, 2-9
CLOSE statement
indynamic SQL, 2-3
using, 2-4
Committing active transactions on the server
sylsrv_releaseroutine, 6-13
Communications area
See SQLCA
Communications software, 1-4

Index-2

accessing Oracle SQL/Services through DECnet, 1-4

accessing Oracle SQL/Services through Oracle
Net, 1-4

accessing Oracle SQL/Servicesthrough TCP/IP, 1-4

requirement for installing DECnet, 1-4

requirement for installing Oracle Net, 1-5
Compiling SQL statements

sglsrv_prepareroutine, 6-15
Components of Oracle SQL/Services, 1-3
Compound statement

using, 2-4,4-7
Control Panel Device

selecting network transport, 1-4
Counted string

datatype, 8-2
Creating and releasing an association, 3-6
Cursor

closing, 3-10, 6-38

declaring dynamic, 6-27

modes, 6-28

opening, 3-10

typeof, 6-27

D

Data buffer
alocating, 3-13
Data structure
ASSOCIATE STR, 2-13
SQLCA, 2-13
SQLDA or SQLDA2, 2-13
summary of, 2-13
template, 7-1
Data structures used, 2-13
Datatype
includefile, 8-1
Oracle SQL/Services representation, 8-1
SQLSRV_ASCII_STRING, 8-2
SQLSRV_GENERALIZED DATE, 7-17,8-5

SQLSRV_GENERALIZED_NUMBER, 7-17,8-3

SQLSRV_INTERVAL, 87
SQLSRV_LIST VARBYTE, 89
SQLSRV_VARBYTE, 88
SQLSRV_VARCHAR, 7-17,8-2
SQLTYPE field, 7-17, 7-20

Database
accessing, 1-2
OracleRdb, 1-1
Date-time

SQLSRV_GENERALIZED_DATE datatype, 8-5

DECLARE CURSOR statement
indynamic SQL, 2-3
using, 2-4
Declaring a cursor
List cursor
declaring, 6-27
DECnet software
allowing client/server communication, 1-4
installing on client and server systems, 1-4
use with Oracle SQL/Services, 1-4
DELETE statement
using, 2-4
DESCRIBE statement, 2-3
using, 2-4,2-7
Descriptor area
See SQLDA or SQLDA2
Driver module
See SQLSRV$DRIVER module
Dynamic allocation
of data buffersand indicator variables, 6-40
selecting routine for, 3-7
Dynamic SQL, 2-1
CLOSE statement, 2-3
DECLARE CURSOR statement, 2-3
DESCRIBE statement, 2-3
EXECUTE IMMEDIATE statement, 2-3
EXECUTE statement, 2-3
FETCH statement, 2-3
OPEN statement, 2-3
parameter markers, 2-6
PREPARE statement, 2-2
purpose of SQLDA or SQLDA2, 2-7
RELEASE statement, 2-3
select list items, 2-3, 2-7
similarity to
client APl routines, 1-9
Oracle SQL/Services, 1-3
statement names, 2-3
usein Oracle SQL/Services, 1-3
Dynamic SQL processing module, 3-1

E

ERRBUF field
in sample application, 3-7
ERRBUFLEN field
in sample application, 3-7
Error
network, 1-10
OracleRdb, 1-10
Oracle SQL/Services, 1-10
SQL, 1-10
Error buffer
dternative, 7-3
in sample application, 3-7
Error code
valuein SQLERRD, 7-13
Error handling, 3-23
SQLCA structure, 7-10
EXECUTE IMMEDIATE statement, 2-3
using, 2-4
EXECUTE statement, 2-3
using, 2-4
Execute flag parameter
useof, 4-1
Execution logging, 5-1
controlling, 7-3

F

FETCH statement
indynamic SQL, 2-3
purpose of, 2-7
using, 2-4
Fetching arow of datainto aselect list, 6-33
Fetching multiplerows, 4-4, 6-36
Flush to client log file
after writing to other logs, 5-2, 7-4
FREE_ MEMORY_ROUTINE field
in sample application, 3-7
Freeing
data buffers, 6-42
indicator variables, 6-42
Freeing dl resources, 6-24
Function prototype (C), 6-2
Functional interface routines, 2-11, 6-46 to ??

Index-3

G

Get associate information

sglsrv_get_associate info routine returns, 6-10

H

HP Tru64 UNIX APl software, 1-4
HP Tru64 UNIX operating system
building applicationson, 2-17
building sample applicationon, 3-3
HP-UX APl software, 1-4
HP-UX operating system
building applicationson, 2-17
building sample applicationon, 3-4

Identifier
declaring SQLDA_ID, 3-12
Includefile
location of, 2-14
HP Tru64 UNIX, 2-17
HP-UX, 2-17
Linux, 2-18
OpenVMS, 2-15
use of in application program, 2-14
Indicator variable
alocating, 3-13
fieldin SQLDA, 7-18
fieldin SQLDA2, 7-22
INSERT statement
using, 2-4
Installing API software, 1-11
Interface
See API (application programming interface)
Interval
SQLSRV_INTERVAL datatype, 8-7
Introduction to Oracle SQL/Services, 1-1
I/Omodule, 3-1

L

Linking
on HP Tru64 UNIX, 2-17
on HP-UX, 2-17

Index-4

onLinux, 2-18
on OpenVMS, 2-15
on Windows, 2-17
Linux APl software, 1-4
Linux operating system
building applicationson, 2-18
building sample application on, 3-4
List
SQLSRV_INTERVAL datatype, 8-7
SQLSRV_LIST_VARBYTE datatype, 8-9
SQLSRV_VARBYTE datatype, 8-8
List cursor
declaring, 6-27
modes, 6-28
Local input/output
controlling, 7-3
LOCAL_FLAG field
in sample application, 3-7
Logging
association, 5-3
in sample application, 3-7
message protocol, 5-6
routine, 5-4

M

Memory allocation

defining routines for, 7-3
MEMORY_ROUTINE field

in sample application, 3-7
Message buffer

binding to association, 6-5

role in performance enhancement, 4-1
Message protocol logging, 5-2, 5-6, 7-4

N

Network
components, 1-4
creating link, 6-5
DECnet, 1-4
disconnecting link, 6-4, 6-13
Oracle Net, 1-4
selecting, with Control Panel Device, 1-4
TCPIP, 1-4

NULL character, 8-2
Null-terminated string
See SQLSRV_ASCII_STRING data type

O

Obsolete features for Oracle SQL/Services, A-1
Open and close logging
abnormal client termination and, 5-2, 7-4
OPEN statement
indynamic SQL, 2-3
using, 2-4
Opening a cursor for aprepared SELECT
statement, 6-30
OpenVMS Alpha API software, 1-4
OpenVMS 164 API software, 1-4
OpenVMS operating system
building applicationson, 2-15
building sample application on, 3-2
Optionsfile
useof, 2-15
Oracle Net software
allowing client/server communication, 1-4
installing on client and server systems, 1-5
using with Oracle SQL/Services, 1-4
Oracle ODBC Driver for Rdb API
Windows, 1-4
Oracle SQL/Services APl software, 1-11

P

Parameter
datatype, 6-2
Parameter marker
checking for, 3-9
definition of, 2-6
in batched execution, 4-1
processing, 3-14
purpose of, 2-4
SQLVAR structure, 7-17
SQLVAR?2 structure, 7-20
testing for, 3-13
valid SQL statements, 2-5
Performance
enhancing application, 4-1

setting buffer sizes, 4-4
PREPARE statement, 2-2

using, 2-4
Prepared statement

releasing, 3-25
Preparing and executing an SQL statement without

parameter markers, 6-22

Program

building Oracle SQL/Services

applications, 2-14to 2-18

Programming

knowledge assumed for Oracle SQL/Services, 1-9
Protocol logging, 5-6

Q

Question mark in SQL statement
See Parameter marker

R

Recommended approach to application
development, 2-13
RELEASE statement
indynamic SQL, 2-3
using, 2-4
Releasing
data buffers, 6-42
indicator variables, 6-42
prepared statement resources, 6-24

Result table
creating, 6-30
displaying, 3-10

fetching from, 6-33

fetching multiple rows from, 4-4, 6-34

processing, 3-18

summary of routines, 2-9to 2-10, 6-26 to 6-39
Return value

of API routine, 6-2
Returning

error codes, 6-48

error text, 6-49

list cursor information, 6-51

glstate, 6-52

values of association information, 6-10

Index-5

Routinelogging, 5-2,5-4,7-4
Routine template
description of, 6-1
Routines, 2-8to 2-12
API (application programming interface), 1-3
association, 2-8
functiona interface, 2-11
result table, 2-9
SQL statement, 2-9
utility, 2-10

S

Sample executable program, 3-1to 3-25
building on HP Tru64 UNIX, 3-3
building on HP-UX, 3-4
building on Linux, 3-4
building on OpenVMS, 3-2
building on Windows X64, 3-3
building on Windows X86, 3-2
execute statement routinein, 3-10
running, 3-4
structure of, 3-9

Select list
checking for, 3-9
DESCRIBE statement, 2-7
mapping of itemsto variables, 2-7
SQLVAR structure, 7-17
SQLVAR?2 structure, 7-20
valid SQL statements, 2-5

Select list item
testing for, 3-13

SELECT statement
checking for, 3-9
indynamic SQL, 2-6
processing, 3-18
using, 2-4

Server
in client/server model, 1-1

Setting buffer sizes, 4-4

Singleton-SELECT statement
using, 2-4

SQL Communications Area
See SQLCA

SQL datatype

Index-6

Oracle SQL/Services representation, 8-1
SQL Descriptor Area
See SQLDA or SQLDA2
SQL statements
CLOSE
indynamic SQL, 2-3
DECLARE CURSOR
dynamic SQL, 2-3
DESCRIBE, 2-3
dynamically executable, 2-5
EXECUTE, 2-3
EXECUTE IMMEDIATE, 2-3
FETCH
indynamic SQL, 2-3
not dynamically executable, 2-5
OPEN
indynamic SQL, 2-3
PREPARE, 2-2
RELEASE
indynamic SQL, 2-3
reuse, 4-8
summary of routines, 2-9, 6-14 to 6-26
SQLCA
alocating, 6-7
binding to association, 6-5
definition of, 2-8
description of, 2-13, 7-10to 7-12
execution resultsin, 6-18, 6-22
SQLCABCfidd, 7-11
SQLCAID field, 7-10
SQLCODE field, 6-2, 7-11
SQLERRD
description of, 7-12to 7-13
SQLERRD fidd, 7-12
SQLERRM field, 7-11
SQLEXT fidld, 7-12
SQLWARN field, 7-12
SQLCODE field
purpose of, 2-8
SQLDA
allocating
data buffers and indicator variablesfor,
definition of, 2-7
description of, 2-13, 7-13to 7-16
initialization of, 6-15

6-40

parameter marker, 2-6, 6-20, 6-30
initialization of, 6-15
releasing
data buffers, 6-42
indicator variables, 6-42

prepared statement resources, 6-24

select list, 2-7,6-33, 6-34
initialization of, 6-16

SQLD fidd, 7-15

SQLDABC fidd, 7-14

SQLDAID field, 7-14

SQLN fidd, 7-15

SQLVAR structure
SQLDATA fidd, 7-18
SQLIND field, 7-18
SQLLEN field, 7-17
SQLNAME field, 7-19
SQLNAME_LEN fied, 7-19
SQLTYPE field, 7-17

SQLVARARY fidd, 7-15

use by DESCRIBE statement, 2-3

whentouse, 8-10

SQLDA_ID identifier

declaring, 3-12

SQLDA?2

definition of, 2-7

description of, 2-13, 7-13to 7-16
SQLD fidd, 7-15

SQLDAID field, 7-14

SQLN fidd, 7-15

SQLVAR?2 structure

SQLCHAR_SET_CATALOG fidd, 7-24
SQLCHAR_SET_NAME field, 7-23
SQLCHAR_SET_SCHEMA field, 7-23
SQLCHRONO_PRECISION field, 7-22
SQLCHRONO_SCALE field, 7-22

SQLDATA fidd, 7-21
SQLIND field, 7-21
SQLLEN fidd, 7-21
SQLNAME field, 7-23
SQLNAME _LEN fidd, 7-23
SQLOCTET_LEN field, 7-21
SQLTYPE field, 7-20
SQLVARARY fidd, 7-15
whentouse, 8-10

SQLERRD array
description of, 7-12
SQL SRV $DRIVER module
structure of, 3-6
sglsrv_abort routine
description of, 6-4
sylsrv_allocate sglda dataroutine, 6-42
description of, 6-40to 6-41
sylsrv_allocate sglda2_dataroutine, 6-42
description of, 6-40to 6-41
SQLSRV_ASCIl_STRING, 7-17
SQLSRV_ASCII_STRING datatype
definition of, 8-2
sl srv_associate routine
ASSOCIATE STRand, 2-13
description of, 6-5to 6-9
in sample application, 3-7
sglsrv_close_cursor routine, 2-5, 6-37
description of, 6-38
sglsrv_declare_cursor routine, 2-5
description of, 6-27 to 6-29
sglsrv_executeroutine, 6-18
sglsrv_execute immediate routine, 2-5
description of, 6-23
useof, 3-9
sglsrv_execute in_out routing, 2-5
batched execution with, 4-1
description of, 6-17to 6-21
useof, 3-10
glsrv_fetch routine, 2-5, 6-34
description of, 6-33t0 6-34
sylsrv_fetch_many routine, 6-34
description of, 6-36 to 6-37
useof, 4-4
glsrv_free sglda dataroutine, 6-41
description of, 6-42to 6-43
glsrv_free sqlda2_dataroutine, 6-41
description of, 6-42to 6-43
SQLSRV_GENERALIZED_DATE datatype
definition of, 8-5
SQLSRV_GENERALIZED_NUMBER data type
definition of, 8-3
sglsrv_get_associate info routine
description of, 6-10to 6-12
SQLSRV_INTERVAL datatype

Index-7

definition of, 8-7
SQLSRV_LIST_VARBYTE datatype
definition of, 8-9
sglsrv_open_cursor routine, 2-6
description of, 6-30to 6-31
sglsrv_prepare routine, 2-6
description of, 6-15to 6-17
useof, 3-9
sglsrv_releaseroutine, 6-41
description of, 6-13

slsrv_release statement routine, 2-6, 6-41

description of, 6-24 to 6-26
useof, 3-10, 3-25
sglsrv_set_option routine
description of, 6-44 to 6-45
sglsrv_sqglca_count routine
description of, 6-50
sglsrv_sqglca_error routine
description of, 6-48
sglsrv_sqglca error_text routine
description of, 6-49
sglsrv_sqglca_sglerrd routine
description of, 6-51
useof, 3-9
sglsrv_sqglca_sglstate routine
description of, 6-52
sglsrv_sglda_bind_data routine
description of, 6-63 to 6-65
sglsrv_sglda_bind_data73 routine
description of, 6-66 to 6-68
sglsrv_sglda_column_name routine
description of, 6-55 to 6-56
sglsrv_sglda_column_name73 routine
description of, 6-57 to 6-58
sglsrv_sglda_column_type routine
description of, 6-59 to 6-60
sglsrv_sglda_column_type73 routine
description of, 6-61 to 6-62
sglsrv_sqlda_get dataroutine
description of, 6-82to 6-83
sglsrv_sqlda_get data73 routine
description of, 6-85 to 6-87
sglsrv_sqlda ref dataroutine
description of, 6-73t06-75
sglsrv_sqlda ref data73 routine

Index-8

description of, 6-761to0 6-78
sglsrv_sqlda_set dataroutine
description of, 6-88to 6-89
sglsrv_sgldaset data73 routine
description of, 6-90 to 6-92
sglsrv_sglda_set _sgllen routine
description of, 6-93to 6-95
sglsrv_sglda_set sgllen73 routine
description of, 6-96 to 6-98
sglsrv_sglda_sgld routine
description of, 6-53
sglsrv_sglda_sqld73 routine
description of, 6-54
sglsrv_sglda_unbind_sgldaroutine
description of, 6-70
sglsrv_sglda_unbind_sglda73 routine
description of, 6-71to 6-72
slsrv_sglda_unref_dataroutine
description of, 6-79
sglsrv_sqlda_unref_data73 routine
description of, 6-80to 6-81
sglsrv_sglda2_bind_dataroutine
description of, 6-63 to 6-65
sglsrv_sglda2_bind_data73 routine
description of, 6-66 to 6-68
sglsrv_sglda2_char_set_info routine
description of, 6-99 to 6-100
sylsrv_sglda2_char_set_info73 routine
description of, 6-101 to 6-102
sglsrv_sglda2_column_name routine
description of, 6-55 to 6-56
sglsrv_sglda2_column_name73 routine
description of, 6-57 to 6-58
sglsrv_sglda2_column_type routine
description of, 6-59 to 6-60
sglsrv_sglda2_column_type73 routine
description of, 6-61 to 6-62
sglsrv_sglda2_get_data routine
description of, 6-82to 6-83
sglsrv_sglda2_get_datar3 routine
description of, 6-85to 6-87
sglsrv_sqlda2_ref_dataroutine
description of, 6-73t06-75
sglsrv_sqlda2_ref_datar3 routine
description of, 6-761to0 6-78

sglsrv_sqlda2_set dataroutine
description of, 6-88 to 6-89
sglsrv_sqlda2_set data73 routine
description of, 6-90 to 6-92
sglsrv_sqlda2_set_sgllen routine
description of, 6-93to 6-95
sglsrv_sqlda2_set_sgllen73 routine
description of, 6-96 to 6-98
sglsrv_sqlda2_sqld routine
description of, 6-53
sglsrv_sqlda2_sqld73 routine
description of, 6-54
sglsrv_sglda2_unbind_sgldaroutine
description of, 6-70
sglsrv_sglda2_unbind_sglda73 routine
description of, 6-71to 6-72
sglsrv_sqlda2_unref_data routine
description of, 6-79
sglsrv_sqlda2_unref_data73 routine
description of, 6-80 to 6-81
SQLSRV_VARBYTE datatype
definition of, 8-8
SQLSRV_VARCHAR datatype
definition of, 8-2
sylsrvecah file
location on
OpenVMS, 2-15
sglsrvda.h file
location on
OpenVMS, 2-15
sglsrv.hfile
execution logging and, 5-2
location on
HP Tru64 UNIX, 2-17
HP-UX, 2-17
Linux, 2-18
OpenVMS, 2-15
SQLVAR
description of, 7-17 to 7-19
SQLDATA field, 7-18
SQLIND field, 7-18
SQLLEN fidd, 7-17
SQLNAME field, 7-19
SQLNAME_LEN fidd, 7-19
SQLTYPE field, 7-17

SQLVAR2
description of, 7-20to 7-24
SQLCHAR SET_CATALOG fied, 7-24
SQLCHAR_SET_NAME field, 7-23
SQLCHAR _SET_SCHEMA field, 7-23
SQLCHRONO_PRECISION field, 7-22
SQLCHRONO_SCALEfield, 7-22
SQLDATA fidd, 7-21
SQLIND field, 7-21
SQLLEN fidd, 7-21
SQLNAME field, 7-23
SQLNAME_LEN fidd, 7-23
SQLOCTET_LEN field, 7-21
SQLTYPE field, 7-20

sgsdyn32.exe
built on Windows X86, 3-2

sgsdyn64.exe

built on Windows X64, 3-3
Statement, prepared

releasing, 3-25
Stored procedure

using, 4-7
String

counted

datatype, 8-2

null-terminated, 8-2
SYSSLIBRARY

includefilesin, 2-15
System management

Oracle SQL/Services, 1-11

T

Table cursor
declaring, 6-27
modes, 6-28
TCP/IP software
allowing client/server communication, 1-4
use with Oracle SQL/Services, 1-4
Transaction
aborting, 6-4
committing, 6-13
Transferring rows of data from the server, 6-36
Transport
DECnet, 7-7

Index-9

Oracle Net, 7-7
TCPIP, 7-7

U

UPDATE statement
using, 2-4
Using SQLDA
whento, 8-10
Using SQLDA2
whento, 8-10
Utility routines, 2-10, 6-39 to 6-45

\Y,

Variables

represented by parameter marker, 2-6
Video display

execution logging and, 5-2, 7-4

wW

Windows API software, 1-4

Windows operating system
building applicationson, 2-16
building sample application on, 3-2

Index-10

