
Oracle Rdb

Guide to Using the Oracle SQL/Services Client API

Release 7.3.1

March 2011

Guide to Using the Oracle SQL/Services Client API, Release 7.3.1

Copyright © 1993, 2011, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is error
free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical
data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the
extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted
Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure the safe use of such applications if the Programs are used for such purposes, and Oracle
Corporation disclaims liability for any damages caused by such use of the Programs.

Oracle is a registered trademark, and Oracle Rdb, Oracle SQL/Services, and Oracle Net are trademarks or registered
trademarks of Oracle Corporation. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks
associated with the use of such content. If you choose to purchase any products or services from a third party, the
relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party
products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of
products or services and warranty obligations related to purchased products or services. Oracle is not responsible
for any loss or damage of any sort that you may incur from dealing with any third party.

 iii

Contents

Send Us Your Comments .. xiii

Preface... xv

Intended Audience ... xv
Operating System Information .. xv
Structure.. xvi
Related Manuals ... xvi
Conventions ... xvii

Technical Changes and New Features... xix

1 Overview

1.1 Introduction to Oracle SQL/Services ... 1-2
1.1.1 Client Components.. 1-3
1.1.2 Network Components ... 1-4
1.1.3 Server System Components .. 1-5
1.2 Supported Client Platforms .. 1-5
1.3 Preparing Programmers to Use Oracle SQL/Services.. 1-9
1.3.1 What Programmers Must Know to Write Applications.. 1-9
1.3.2 Reading Path for Programmers ... 1-9
1.4 Location of Oracle SQL/Services Error Documentation ... 1-10
1.5 What System Managers Must Know to Support Oracle SQL/Services 1-11

iv

2 Developing Oracle SQL/Services Applications

2.1 Introduction to the Dynamic SQL Interface of Oracle Rdb ... 2-2
2.2 Overview of Dynamic SQL Interface Statements .. 2-2
2.2.1 Execution Statements .. 2-2
2.2.2 Result Table Statements .. 2-3
2.3 Using the Dynamic SQL Interface of Oracle Rdb.. 2-4
2.3.1 Parameter Markers .. 2-6
2.3.2 Select List Items .. 2-6
2.3.3 Unknown Statements... 2-7
2.3.4 SQL Descriptor Area (SQLDA or SQLDA2) ... 2-7
2.3.5 SQL Communications Area (SQLCA) ... 2-8
2.4 Overview of Client API Routines... 2-8
2.4.1 Association Routines... 2-8
2.4.2 SQL Statement Routines ... 2-9
2.4.3 Result Table Routines ... 2-9
2.4.4 Utility Routines ... 2-10
2.4.5 Functional Interface Routines ... 2-11
2.5 Overview of Data Structures .. 2-13
2.6 Developing Applications with the Functional Interface Routines ... 2-13
2.7 Building Oracle SQL/Services Application Programs ... 2-14
2.7.1 Building Applications on the OpenVMS Operating System .. 2-15
2.7.2 Building Applications on the MS Windows Operating System...................................... 2-16
2.7.2.1 Building 32-Bit Applications for Windows X86 Systems....................................... 2-16
2.7.2.2 Building 64-Bit Applications for Windows X64 Systems....................................... 2-16
2.7.2.3 Building 32-Bit or 64-Bit Applications for Windows ... 2-16
2.7.3 Building Applications on the HP Tru64 UNIX Operating System................................. 2-17
2.7.4 Building Applications on the HP-UX Operating System.. 2-17
2.7.5 Building Applications on the Linux Operating System .. 2-18

3 Sample Application Guidelines

3.1 Sample Application .. 3-1
3.2 Building the Sample Application ... 3-2
3.2.1 Building the Sample Application on the OpenVMS Operating System 3-2
3.2.2 Building the Sample Application on Windows X86 Systems... 3-2
3.2.3 Building the Sample Application on Windows X64 Systems... 3-3

v

3.2.4 Building the Sample Application on the HP Tru64 UNIX Operating System 3-3
3.2.5 Building the Sample Application on the HP-UX Operating System 3-4
3.2.6 Building the Sample Application on the Linux Operating System................................... 3-4
3.3 Running the Sample Application ... 3-4
3.4 Driver Module .. 3-6
3.5 Dynamic Module.. 3-6
3.5.1 Creating an Association .. 3-6
3.5.2 Processing the Dynamic SQL Statement .. 3-9
3.5.2.1 Declaring and Allocating SQLDA_ID Identifiers ... 3-12
3.5.2.2 Executing SQL Statements Using the sqlsrv_execute_immediate API Routine 3-12
3.5.2.3 Preparing the SQL Statement .. 3-12
3.5.2.4 Allocating Data and Indicator Variables ... 3-13
3.5.2.5 Processing Parameter Markers... 3-14
3.5.2.6 Testing for SELECT Statements.. 3-18
3.5.2.7 Processing a SELECT Statement... 3-18
3.5.2.8 Processing Executable Statements... 3-19
3.5.2.9 Processing Select List Items .. 3-20
3.5.2.10 Error Handling ... 3-23
3.5.2.11 Releasing Prepared Statements .. 3-25

4 Performance Considerations

4.1 Batched Execution.. 4-1
4.2 Improving Row Fetch Performance ... 4-4
4.3 Using Stored Procedures .. 4-7
4.4 Using Compound Statements ... 4-7
4.5 Reusing SQL Statements.. 4-8

5 Logging for Performance and Debugging

5.1 Enabling and Disabling Logging.. 5-1
5.2 Association Logging .. 5-3
5.3 Routine Logging... 5-4
5.4 Message Protocol Logging... 5-6

vi

6 API Routines

6.1 Documentation Format... 6-1
6.1.1 Routine Name.. 6-1
6.1.2 Return Values.. 6-2
6.1.3 C Format Section... 6-2
6.2 Oracle SQL/Services Data Types... 6-2
6.3 API Routines .. 6-3
6.3.1 Association Routines... 6-3

sqlsrv_abort ... 6-4

sqlsrv_associate ... 6-5

sqlsrv_get_associate_info .. 6-10

sqlsrv_release ... 6-13
6.3.2 SQL Statement Routines ... 6-14

sqlsrv_prepare... 6-15

sqlsrv_execute_in_out .. 6-18

sqlsrv_execute_immediate ... 6-22

sqlsrv_release_statement .. 6-24
6.3.3 Result Table Routines ... 6-26

sqlsrv_declare_cursor ... 6-27

sqlsrv_open_cursor... 6-30

sqlsrv_fetch... 6-33

sqlsrv_fetch_many.. 6-36

sqlsrv_close_cursor .. 6-38
6.3.4 Utility Routines ... 6-39

sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data... 6-40

sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data ... 6-42

sqlsrv_set_option .. 6-44
6.3.5 Functional Interface Routines ... 6-46

sqlsrv_sqlca_error... 6-48

sqlsrv_sqlca_error_text... 6-49

sqlsrv_sqlca_count ... 6-50

sqlsrv_sqlca_sqlerrd ... 6-51

vii

sqlsrv_sqlca_sqlstate .. 6-52

sqlsrv_sqlda_sqld or sqlsrv_sqlda2_sqld ... 6-53

sqlsrv_sqlda_sqld73 or sqlsrv_sqlda2_sqld73 ... 6-54

sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name ... 6-55

sqlsrv_sqlda_column_name73 or sqlsrv_sqlda2_column_name73 6-57

sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type... 6-59

sqlsrv_sqlda_column_type73 or sqlsrv_sqlda2_column_type73... 6-61

sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data ... 6-63

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73 ... 6-66

sqlsrv_sqlda_unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda ... 6-70

sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73 ... 6-71

sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data .. 6-73

sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73 .. 6-76

sqlsrv_sqlda_unref_data or sqlsrv_sqlda2_unref_data .. 6-79

sqlsrv_sqlda_unref_data73 or sqlsrv_sqlda2_unref_data73 .. 6-80

sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data ... 6-82

sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73 ... 6-85

sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data .. 6-88

sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73 .. 6-90

sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen... 6-93

sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73... 6-96

sqlsrv_sqlda2_char_set_info .. 6-99

sqlsrv_sqlda2_char_set_info73 .. 6-101

7 Data Structures

7.1 Documentation Format... 7-1
7.2 ASSOCIATE_STR-Association Structure... 7-3
7.3 SQLCA-SQL Communications Area... 7-10
7.4 SQLERRD-Part of SQLCA ... 7-12
7.5 SQLDA or SQLDA2-SQL Descriptor Area .. 7-13
7.6 SQLVAR-Parameter Marker or Select List Item ... 7-17
7.7 SQLVAR2-Parameter Marker or Select List Item... 7-20

viii

8 Data Types

8.1 Data Types.. 8-1
8.2 SQLSRV_ASCII_STRING.. 8-2
8.3 SQLSRV_VARCHAR ... 8-2
8.4 SQLSRV_GENERALIZED_NUMBER.. 8-3
8.5 SQLSRV_GENERALIZED_DATE .. 8-5
8.6 SQLSRV_INTERVAL... 8-7
8.7 SQLSRV_VARBYTE.. 8-8
8.8 SQLSRV_LIST_VARBYTE ... 8-9
8.9 Deciding Whether to Use SQLDA or SQLDA2 .. 8-10

A Obsolete Features

A.1 Obsolete Features ... A-1
A.1.1 Obsolete Network Communications Software .. A-1
A.1.2 Obsolete Client Platforms ... A-2
A.1.3 Obsolete Server Platforms... A-2

Index

ix

x

List of Figures

1–1 Client/Server Model for Oracle SQL/Services... 1-1
1–2 Oracle SQL/Services Architecture ... 1-3
3–1 Statement Execution Flow.. 3-11

xi

List of Tables

1–1 Network Transports Supported by Oracle SQL/Services Clients ... 1-2
2–1 SQL Statements That Can Be Processed Using Dynamic SQL Operations 2-5
2–2 SQL Statements That Cannot Be Processed Using Dynamic SQL Operations 2-5
5–1 Client Logging Flags and Values ... 5-2
6–1 Sections in the Routine Template... 6-1
6–2 API Return Values ... 6-2
6–3 API Parameter Data Types ... 6-2
6–4 Valid Combinations of Buffer-Related Parameters for the sqlsrv_associate Routine 6-6
6–5 Values of the info_type Parameter ... 6-10
6–6 Values of the SQLSRV_INFO_SERVICE_ATTRS Bit Masks .. 6-11
6–7 Values of the execute_flag Parameter in sqlsrv_execute_in_out... 6-19
6–8 Values of the scroll_option Parameter ... 6-33
6–9 Special Requirements of Data Types to Determine Extra Byte Lengths to Allocate 6-41
6–10 Value Parameter Arguments If the Option Parameter Argument Is SQLSRV_OPT_SQLDA_

TYPE 6-44
7–1 Sections in the Data Structure Template .. 7-1
8–1 Data Types.. 8-1
8–2 Oracle SQL/Services Date-Time Data Types .. 8-6
8–3 Oracle SQL/Services Interval Type ... 8-7

xii

xiii

Send Us Your Comments

Guide to Using the Oracle SQL/Services Client API, Release 7.3.1.0

Oracle welcomes your comments and suggestions on the quality and usefulness of this document. Your input is
an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document title and
part number, and the chapter, section, and page number (if available). You can send comments to us in the fol-
lowing ways:

■ Electronic mail: nedc-doc_us@oracle.com
■ FAX: 603.897.3825 Attn: Oracle Rdb
■ Postal service:

Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) electronic mail
address.

 If you have problems with the software, please contact your local Oracle Support Services.

xiv

xv

Preface

Oracle SQL/Services, a client/server component of Oracle Rdb, enables a client application
program invoked on a client computer running on a supported operating system or transport,
to access Oracle Rdb databases on an OpenVMS server system. See the overview chapter
for a complete list of supported clients.

This manual describes how to develop Oracle SQL/Services client application programs.

Intended Audience
This manual is written primarily for experienced applications programmers; however, some
sections are intended for the system manager responsible for maintaining and fine-tuning
Oracle SQL/Services. Both programmers and system managers should read Chapter 1 for a
recommended approach to the material in this guide and a discussion of the pertinent
sections. In addition, system managers should refer to the Oracle SQL/Services Installation
Guide, which provides information important to the installation of an Oracle SQL/Services
system, and to the Oracle SQL/Services Server Configuration Guide, which provides
information important to the configuration and maintenance of an Oracle SQL/Services
system.

Operating System Information
You can find information about the versions of the operating system and optional software
that are compatible with this release of Oracle Rdb and Oracle SQL/Services in the Oracle
Rdb Installation and Configuration Guide and the Oracle SQL/Services Installation Guide,
and also in the Oracle Rdb Release Notes and the Oracle SQL/Services Release Notes.

Contact your Oracle Corporation representative if you have other questions about product
requirements or compatibility.

xvi

Structure
This manual contains the following chapters and appendix.

Related Manuals
For more information, see the other manuals in this documentation set, especially the
following:

■ Oracle Rdb7 Guide to SQL Programming

■ Oracle Rdb SQL Reference Manual

■ Oracle Rdb Release Notes

■ Oracle SQL/Services Release Notes

■ Oracle Rdb Installation and Configuration Guide

■ Oracle SQL/Services Installation Guide

■ Oracle SQL/Services Server Configuration Guide

Chapter 1 Introduces Oracle SQL/Services. Provides a reading path for programmers and
system managers.

Chapter 2 Provides a condensed discussion of dynamic SQL, API routines, Oracle
SQL/Services data structures, recommendations for API development, and
API application linking.

Chapter 3 Provides guidelines for application development using the Oracle
SQL/Services sample application.

Chapter 4 Explains how to enhance application performance.

Chapter 5 Describes execution logging and how to use it for debugging and monitoring
application performance.

Chapter 6 Presents detailed reference descriptions of the Oracle SQL/Services API
routines.

Chapter 7 Presents detailed reference descriptions of the Oracle SQL/Services data
structures.

Chapter 8 Describes the data types used in Oracle SQL/Services.

Appendix A Lists and describes the obsolete features for Oracle SQL/Services V7.3.0.3 and
higher.

xvii

The Oracle SQL/Services Release Notes and the Oracle SQL/Services Installation Guide are
provided as part of the software kit. Adobe Portable Document Format (.pdf) files for the
release notes are available in SYS$HELP.

The remaining manuals and Oracle Rdb documentation are available on the OTN web site.

Conventions
In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS software.

OpenVMS I64 refers to the HP OpenVMS Industry Standard 64 for Integrity Servers
operating system.

OpenVMS refers to the OpenVMS Alpha and OpenVMS I64 operating systems.

The SQL interface to Oracle Rdb is referred to as SQL. This interface is the Oracle Rdb
implementation of the SQL standard adopted in 1999, in general referred to as the
ANSI/ISO SQL standard or SQL:1999. See the Oracle Rdb Release Notes for additional
information about this SQL standard.

Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

The following conventions are also used in this manual:

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean that information not directly related to
the example has been omitted.

[] In text, brackets enclose optional information from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command Language promptn OpenVMS.

boldface text Boldface type in text indicates a term defined in the text.

xviii

e, f, t Index entries in the printed manual may have a lowercase e, f, or t following the
page number; the e, f, or t is a reference to the example, figure, or table,
respectively, on that page.

xix

Technical Changes and New Features

This section lists some of the new and changed features described in this manual since it was
last revised with Version 7.0. The Oracle SQL/Services Release Notes provide information
on all the new features and technical changes included in release 7.3.1.0 and 7.3.0.3. The
major new features described in this manual include the following:

New API Clients Supported
Several new client platforms are now supported by the Oracle SQL/Services client API,
including 64-bit client platforms.

■ Windows 2000, XP, Vista, Server 2003, Server 2008, 7, XP X64, Vista X64, Server
2003 X64, Server 2008 X64 and 7 X64

■ HP-UX

■ Red Hat Linux and Oracle Linux

■ OpenVMS I64

New SQLSRV_SQLCA_SQLSTATE Routine in Release 7.3.1
A new routine SQLSRV_SQLCA_SQLSTATE has been added to the Oracle SQL/Services
client API. See Section 6.3.5 for more information about this routine.

New SQLSRV_SQLDA... Routines in Release 7.3.0.3
The following routines include an optional association ID parameter and are otherwise
identical to the similarly named routines without the “73” appended. The use of these
routines improves performance on Windows platforms. See Section 6.3.5 for more
information about these routines.

■ sqlsrv_sqlda_sqld73 and sqlsrv_sqlda2_sqld73

xx

■ sqlsrv_sqlda_column_name73 and sqlsrv_sqlda2_column_name73

■ sqlsrv_sqlda_column_type73 and sqlsrv_sqlda2_column_type73

■ sqlsrv_sqlda_bind_data73 and sqlsrv_sqlda2_bind_data73

■ sqlsrv_sqlda_unbind_sqlda73 and sqlsrv_sqlda2_unbind_sqlda73

■ sqlsrv_sqlda_ref_data73 and sqlsrv_sqlda2_ref_data73

■ sqlsrv_sqlda_unref_data73 and sqlsrv_sqlda2_unref_data73

■ sqlsrv_sqlda_get_data73 and sqlsrv_sqlda2_get_data73

■ sqlsrv_sqlda_set_data73 and sqlsrv_sqlda2_set_data73

■ sqlsrv_sqlda_set_sqllen73 and sqlsrv_sqlda2_set_sqllen73

■ sqlsrv_sqlda2_char_set_info73

New Association Structure Version in Release 7.3.0.3
The association struction has been updated to include an optional TCPIP port id and DECnet
object name. Therefore the TCPIP port or DECnet object name can be specified during the
call to sqlsrv_associate, making it possible to associate with multiple servers on the same
node in a multiversion SQL/Services environment. See Section 7.2 for more information.

Technical changes have been made where necessary to provide technical clarifications, to fix
errors of omission, and to make corrections.

Overview 1-1

1
Overview

Oracle SQL/Services is a client/server system that enables client applications on PCs and
workstations to access data in Oracle Rdb databases on server systems. Oracle SQL/Services
follows the client/server model in which:

■ The client requests a set of services from the server through an agreed upon interface.

■ The server responds by accepting client requests, calling the server function to execute
requests, and sending results back to the client.

A simplified view of Oracle SQL/Services is shown in Figure 1–1.

Figure 1–1 Client/Server Model for Oracle SQL/Services

In its implementation of the client/server model, Oracle SQL/Services enables programmers
working on any of several computing platforms shown in Table 1–1 to develop client

Introduction to Oracle SQL/Services

1-2 Guide to Using the Oracle SQL/Services Client API

applications that remotely access server databases stored on OpenVMS using an available*
network transport.

1.1 Introduction to Oracle SQL/Services
Remote application access through Oracle SQL/Services to databases on the server system
requires a system configuration similar to the one illustrated in Figure 1–2. Although your
system may not exactly mirror the one shown, it must have at least client, network, and
server system components.

Section 1.1.1, Section 1.1.2, and Section 1.1.3 briefly describe the client, network, and
server system components respectively. Each section identifies the role the component plays
in allowing client application access to databases on the server system.

Table 1–1 Network Transports Supported by Oracle SQL/Services Clients

Clients DECnet TCP/IP Oracle Net

Windows 2000 – X –

Windows XP – X –

Windows Vista – X –

Windows Server 2003 – X –

Windows Server 2008 – X –

Windows 7 – X –

Windows XP X64 – X –

Windows Vista X64 – X –

Windows Server 2003
X64

– X –

Windows Server 2008
X64

– X –

Windows 7 X64 – X –

HP Tru64 UNIX X X –

HP-UX – X –

Red Hat or Oracle Linux – X –

OpenVMS Alpha X X X

OpenVMS I64 X X X

Introduction to Oracle SQL/Services

Overview 1-3

Figure 1–2 Oracle SQL/Services Architecture

1.1.1 Client Components
Client application programs access Oracle SQL/Services on a server node using the Oracle
SQL/Services client API. The Oracle SQL/Services client API is a library of callable
routines that use layered communications software to communicate with the server node.

■ Client API routines

The Oracle SQL/Services client API routines provide an interface to client applications
that is functionally very similar to the dynamic SQL interface. This enables client
applications to execute SQL statements against data stored in a database on a server
node. The SQL statements can either be defined as string constants in the source code or
formulated at run time. The SQL statement syntax accepted by Oracle SQL/Services is
identical to that of the dynamic SQL interface of Oracle Rdb.

Introduction to Oracle SQL/Services

1-4 Guide to Using the Oracle SQL/Services Client API

■ Communications software

Communications software facilitates the transfer of information between the client and
server systems. Using a request/response protocol that is virtually transparent to the
application, the API accepts client application input, builds Oracle SQL/Services
request messages, and transmits them to the server system using DECnet, Transmission
Control Protocol/Internet Protocol (TCP/IP), or Oracle Net (SQL*Net) communications
protocol. (See Section 1.1.2 for descriptions of these network components.) Because the
Oracle SQL/Services client API provides an interface that is functionally very similar to
the dynamic SQL interface, programmers need not understand the communications
software to develop Oracle SQL/Services client applications.

Oracle SQL/Services currently supports API software for the client systems described in
Table 1–1. See Section 1.2 for more information on supported client platforms.

1.1.2 Network Components
The appropriate client API software can communicate with the Oracle SQL/Services server
using DECnet, TCP/IP, or Oracle Net (SQL*Net) communications software:

■ DECnet software

The DECnet network transport is supported by the Oracle SQL/Services OpenVMS
server platform and HP Tru64 UNIX platforms.

■ TCP/IP software

The TCP/IP network transport is supported by all Oracle SQL/Services client and server
platforms.

■ Oracle Net (SQL*Net) software

The Oracle Net (SQL*Net) network transport is supported by the Oracle SQL/Services
OpenVMS server and client platforms.

Oracle SQL/Services uses Oracle Net as a network transport to send Oracle
SQL/Services protocol messages between Oracle SQL/Services clients and servers. The
following additional features are supported with Oracle SQL/Services using Oracle Net:

– Secure Network Services

Secure Network Services encrypts and performs security checks on data as it moves
across LANs and WANs, preventing any unauthorized user from viewing or
tampering with information. Specifically, Secure Network Services provides:

* Network authentication

* Tamper-proof data

Supported Client Platforms

Overview 1-5

* High-speed global data encryption

* Cross-protocol data security

– Diagnostic tools (tracing and logging)

Diagnostic tools include Oracle Trace and Oracle Net logging.

Regardless of the communications software used, Oracle SQL/Services relieves application
programmers of any need to understand networking to develop Oracle SQL/Services
applications.

See the Oracle SQL/Services Installation Guide for network, transport, client, and server
operating system version information.

1.1.3 Server System Components
The server system accepts request messages from the application through network transport
software, processes the requests against a server system database, and sends response
messages back to the waiting application on the client system. For a detailed discussion of
the server and its components for the OpenVMS platform, see the Oracle SQL/Services
Server Configuration Guide.

1.2 Supported Client Platforms
Oracle SQL/Services supports the following client platforms:

■ MS Windows 2000, XP, Vista, Server 2003, Server 2008, 7, XP X64, Vista X64, Server
2003 X64, Server 2008 X64 and 7 X64 clients

The Oracle SQL/Services client API is shipped as a Dynamic Link Library (DLL) on all
Windows platforms. You use any C, C++ or C# on Windows to develop client
applications that you link against the DLL to access the Oracle SQL/Services client
API. The name of the DLL file for Windows 2000, XP, Vista, Server 2003, Server 2008
and 7 clients is sqsapi32.dll. The name of the DLL file for Windows XP X64, Vista
X64, Server 2003 X64, Server 2008 X64 and 7 X64 clients is sqsapi64.dll.

The Windows platforms support the use of an .ini file to customize various aspects of
Oracle SQL/Services client API operations including communications, client logging,
and so forth. The name of the .ini file for Windows 2000, XP, Vista, Server 2003, Server
2008 and 7 clients is sqsapi32.ini. The name of the .ini file for Windows XP X64, Vista
X64, Server 2003 X64, Server 2008 X64 and 7 X64 clients is sqsapi64.ini. The .ini file
that is provided by the installation procedure has all the customizations commented out.
You can tailor the operation of the Oracle SQL/Services client API to your specific

Supported Client Platforms

1-6 Guide to Using the Oracle SQL/Services Client API

requirements by reading the directions, then uncommenting and providing appropriate
values for the options you need to set.

The Oracle SQL/Services Windows 2000, XP, Vista, Server 2003, Server 2008, 7, XP
X64, Vista X64, Server 2003 X64, Server 2008 X64 and 7 X64 client API software
supports the TCPIP network transport.

Client applications on all Windows platforms select the TCP/IP transport using an
Oracle SQL/Services client API service or using an .ini file. Specifying a transport in an
.ini file overrides a selection made using the Oracle SQL/Services client API service. If
you are connecting to a server node running multiple versions of Oracle SQL/Services,
then you must use an .ini file to select an alternate TCP/IP network port if the server
you are using does not use the default network ports. See the .ini file on your platform
for more information on setting Oracle SQL/Services client API options.

To use an alternate network port on server node A, define an alternate network port in
the section of the .ini file for server node A. The alternate network port parameter in the
.ini file is TCPIPPortNumber. This parameters is defined under the nodename
subsection.

The TCPIPPortNumber should be specified as the TCP/IP port number of the sqlsrv_
disp, or other user defined, dispatcher on the server side. To specify an alternate TCP/IP
port number, define the TCPIPPortNumber parameter, where the port number must be a
number:

;
; Use server TCP/IP port number 119 when connectiong to RDBSRV
;
[RDBSRV]
TCPIPPortNumber=119

Alternate network ports can also be specified when calling the sqlsrv_associate routine,
within the associate_str structure. Values passed to sqlsrv_associate supercede the
values specified in the .ini file.

■ HP Tru64 UNIX client

The Oracle SQL/Services HP Tru64 UNIX client API software is shipped as an object
library against which you link your client application programs.

The Oracle SQL/Services HP Tru64 UNIX client API software supports the DECnet
and TCP/IP network transports. If you are connecting to a server node running multiple
versions of Oracle SQL/Services and the server you are using does not use the default
network ports, then you can specify alternate network ports.

Supported Client Platforms

Overview 1-7

To specify an alternate DECnet object, define the SQLSRV_DECNET_OBJECT
environment variable, where the DECnet object can be either a number or a name:

csh> setenv SQLSRV_DECNET_OBJECT decnet10

To specify an alternate TCP/IP port number, define the SQLSRV_TCPIP_PORT
environment variable, where the port number must be a number:

csh> setenv SQLSRV_TCPIP_PORT 1234

The definition for alternate network ports is made on a per-client basis. Alternate
network ports can also be specified when calling the sqlsrv_associate routine, within the
associate_str structure. Values passed to sqlsrv_associate supercede the values specified
in the environment variables.

■ HP-UX client

The Oracle SQL/Services HP-UX client API software is shipped as an object library
against which you link your client application programs.

The Oracle SQL/Services HP-UX client API software supports the TCP/IP network
transport. If you are connecting to a server node running multiple versions of Oracle
SQL/Services and the server you are using does not use the default network ports, then
you can specify alternate network ports.

To specify an alternate TCP/IP port number, define the SQLSRV_TCPIP_PORT
environment variable, where the port number must be a number:

csh> setenv SQLSRV_TCPIP_PORT 1234

The definition for alternate network ports is made on a per-client basis. Alternate
network ports can also be specified when calling the sqlsrv_associate routine, within the
associate_str structure. Values passed to sqlsrv_associate supercede the values specified
in the environment variables.

■ Linux client

The Oracle SQL/Services Linux client API software is shipped as an object library
against which you link your client application programs.

The Oracle SQL/Services Linux client API software supports the TCP/IP network
transport. If you are connecting to a server node running multiple versions of Oracle
SQL/Services and the server you are using does not use the default network ports, then
you can specify alternate network ports.

To specify an alternate TCP/IP port number, define the SQLSRV_TCPIP_PORT
environment variable, where the port number must be a number:

Supported Client Platforms

1-8 Guide to Using the Oracle SQL/Services Client API

csh> setenv SQLSRV_TCPIP_PORT 1234

The definition for alternate network ports is made on a per-client basis. Alternate
network ports can also be specified when calling the sqlsrv_associate routine, within the
associate_str structure. Values passed to sqlsrv_associate supercede the values specified
in the environment variables.

■ OpenVMS clients

The Oracle SQL/Services OpenVMS Alpha and OpenVMS I64 client API software is
shipped as shared images against which you link your client application programs.

The Oracle SQL/Services OpenVMS client API software supports the DECnet, TCP/IP,
and Oracle Net network transports. If you are connecting to a server node running
multiple versions of Oracle SQL/Services and the server you are using does not use the
default network ports, then you can specify alternate network ports.

To specify an alternate DECnet object, define the SQLSRV$DECNET_OBJECT logical
name using the following syntax where the DECnet object can be either a number or a
name:

$ DEFINE SQLSRV$DECNET_OBJECT “<number> | <name>”

For example:

$ DEFINE SQLSRV$DECNET_OBJECT “142”

or

$ DEFINE SQLSRV$DECNET_OBJECT “SQLSRV73”

To specify an alternate TCP/IP port number, define the SQLSRV$TCPIP_PORT logical
name using the following syntax where the TCPIP_PORT number must be a number:

$ DEFINE SQLSRV$TCPIP_PORT “<number>”

For example:

$ DEFINE SQLSRV$TCPIP_PORT “10042”

The definition for alternate network ports is made on a per-client-process basis.
Alternate network ports can also be specified when calling the sqlsrv_associate routine,
within the associate_str structure. Values passed to sqlsrv_associate supercede the
values specified by the logical names.

Preparing Programmers to Use Oracle SQL/Services

Overview 1-9

1.3 Preparing Programmers to Use Oracle SQL/Services
This section describes what application programmers must know to develop applications,
and provides a recommended reading path for learning how to develop applications.

1.3.1 What Programmers Must Know to Write Applications
As a programmer creating Oracle SQL/Services applications, you must be familiar with the
following:

■ C, C++ or C# programming languages

Have experience in writing programs in the C, C++ or C# programming languages.
Know how to call Oracle SQL/Services client API routines from C, C++ or C#
programs to create Oracle SQL/Services applications.

OpenVMS client applications can be written in any language that supports the
OpenVMS Calling Standard.

■ Client system environment

Know how to invoke and use a text editor on your client system to create programming
source files. Be able to run your compiler and linker and run the resulting executable
image.

■ SQL language (and the dynamic SQL interface) concepts

Have a working knowledge of the SQL language. A conceptual familiarity with the
dynamic SQL interface of Oracle Rdb can help you understand the client API routines.

■ Oracle SQL/Services API

Understand how to use the client API routines in your applications.

1.3.2 Reading Path for Programmers
As a programmer assigned to write client applications, you can become familiar with the
process of developing applications using Oracle SQL/Services by reading this guide as
follows:

■ Chapter 2 helps you to understand the relationship between the dynamic SQL interface
and the client API routines, the function of the SQL Communications Area (SQLCA)
and the SQL Descriptor Area (SQLDA or SQLDA2) data structures in Oracle
SQL/Services, and how to build applications using the Oracle SQL/Services callable
API.

Location of Oracle SQL/Services Error Documentation

1-10 Guide to Using the Oracle SQL/Services Client API

■ Chapter 3 introduces you to an Oracle SQL/Services sample application that illustrates
how to use the Oracle SQL/Services callable client API routines, and includes
information on how to compile, link and run the sample application on all the client
platforms supported by Oracle SQL/Services.

■ Chapter 6 helps you to understand the client API routines that you call from your
applications. The chapter provides detailed reference information about all routines in
the API callable library.

■ Chapter 7 presents detailed reference descriptions of the Oracle SQL/Services data
structures.

■ Chapter 8 describes the data types used in Oracle SQL/Services.

Other chapters in this guide will support you in your programming as you refine your
application development skills.

1.4 Location of Oracle SQL/Services Error Documentation
Programmers developing Oracle SQL/Services API client applications can encounter error
messages from a variety of sources:

■ Oracle SQL/Services

When error mnemonics are preceded by SQLSRV_, refer to the sqlsrv.h file and Oracle
SQL/Services help for descriptions of errors generated by Oracle SQL/Services client
API routines and the Oracle SQL/Services server. Chapter 6 of this guide describes the
specific errors that can be returned by each Oracle SQL/Services client API routine.

■ SQL

When error mnemonics are preceded by SQL_, refer to the SQL documentation and
SQL help for further error information.

■ Oracle Rdb

When error mnemonics are preceded by SQL_RDBERR_, refer to the Oracle Rdb SQL
Reference Manual, the Oracle Rdb7 Guide to SQL Programming, and Oracle Rdb help
for pointers to error information.

■ Network

When you receive the primary SQLSRV_NETERR or SQLSRV_HOSTERR errors,
look at the network error documentation for the network error referred to in the
secondary error status. Refer to the Oracle SQL/Services Installation Guide for more
information.

What System Managers Must Know to Support Oracle SQL/Services

Overview 1-11

1.5 What System Managers Must Know to Support Oracle SQL/Services
If you are the person responsible for managing Oracle SQL/Services at your site, see the
Oracle SQL/Services Installation Guide and the Oracle SQL/Services Server Configuration
Guide.

Information about installing the client API software for all interfaces supported by Oracle
SQL/Services is not included in this document. Refer to the Oracle SQL/Services
Installation Guide for instructions on installing the OpenVMS clients and to the readme and
install guide files provided on the Oracle SQL/Services Client kit for installing all other
clients described in Table 1–1.

What System Managers Must Know to Support Oracle SQL/Services

1-12 Guide to Using the Oracle SQL/Services Client API

Developing Oracle SQL/Services Applications 2-1

2
Developing Oracle SQL/Services

Applications

This chapter describes a number of topics programmers must understand before writing
client applications. Topics covered in this chapter include:

■ A description of the dynamic SQL interface for Oracle Rdb

The Oracle SQL/Services client API routines that programmers use in client
applications to access the dynamic SQL interface on the server system correspond
closely to the dynamic SQL interface statements. An understanding of the dynamic
SQL interface can help programmers understand the way the client API routines work.
See Section 2.1 to Section 2.3.

■ An overview of Oracle SQL/Services client API routines

Programmers include in their applications calls to the Oracle SQL/Services client API
routines to access Oracle SQL/Services functions on the server system. Client
applications link against the Oracle SQL/Services client API library, DLL, or shared
image to access these routines. See Section 2.4.

■ An overview of Oracle SQL/Services data structures

The Oracle SQL/Services client API routines use a set of data structures that allow
two-way communication between applications on the client system and SQL on the
server system. See Section 2.5.

■ A recommended approach to developing Oracle SQL/Services applications

Oracle Corporation recommends that you let Oracle SQL/Services allocate memory for
SQLCA, SQLDA, and SQLDA2 data structures and that you use functional interface
routines to access these data structures. See Section 2.6.

■ Steps for building Oracle SQL/Services application programs

Introduction to the Dynamic SQL Interface of Oracle Rdb

2-2 Guide to Using the Oracle SQL/Services Client API

Programmers must compile and link their applications to create an executable image
that can access Oracle SQL/Services. The steps to link an application program differ
from one client system to another and are thus provided for each client system. See
Section 2.7.

If you are already familiar with the dynamic SQL interface, you may want to skip to
Section 2.4, which describes the structures used by Oracle SQL/Services client API routines.

2.1 Introduction to the Dynamic SQL Interface of Oracle Rdb
The dynamic SQL interface of Oracle Rdb allows application programs to formulate and
execute SQL statements at run time. It consists of:

■ Dynamic SQL statements

A set of SQL statements with which you can write applications using either the SQL
precompiler or the SQL module processor

■ Data structures

A set of data structures that provides a way for the dynamic SQL interface and
application programs to exchange data and metadata

Applications that use the dynamic SQL interface might, for example, translate interactive
user input into SQL statements, or open, read, and execute files containing SQL statements.
The Oracle SQL/Services executor is itself a dynamic SQL interface application.

For more detailed information on the dynamic SQL interface of Oracle Rdb, see the Oracle
Rdb7 Guide to SQL Programming and the Oracle Rdb SQL Reference Manual.

2.2 Overview of Dynamic SQL Interface Statements
The dynamic SQL interface statements are summarized in Section 2.2.1 and Section 2.2.2,
which group the statements according to function. For each dynamic SQL interface
statement, there is an Oracle SQL/Services client API routine that performs the same
function. Some client API routines, like sqlsrv_prepare, combine the functions of two
dynamic SQL interface statements.

2.2.1 Execution Statements
Execution statements prepare and execute SQL statements and release prepared SQL
statement resources.

■ PREPARE

Overview of Dynamic SQL Interface Statements

Developing Oracle SQL/Services Applications 2-3

Compiles the SQL statement, checking it for errors, and returns a handle to the prepared
statement. The handle is subsequently used to reference the prepared statement.

■ DESCRIBE

Stores the number and metadata information of any select list items or parameter
markers in an SQLDA structure.

■ EXECUTE

Executes a previously prepared SQL statement that is not a SELECT statement.

■ EXECUTE IMMEDIATE

Prepares and executes in one step any SQL statement (other than SELECT) that does
not contain parameter markers or select list items.

■ RELEASE

Releases all resources used by a prepared SQL statement.

Except for the DESCRIBE statement, each of these dynamic SQL statements has an
equivalent Oracle SQL/Services routine. In Oracle SQL/Services, the DESCRIBE and
PREPARE statements are combined in a single routine, as shown in Table 2–2.

2.2.2 Result Table Statements
Result table statements allow your program to declare a cursor, open a cursor, fetch data
from an open cursor, and close an open cursor.

■ DECLARE CURSOR

Declares a cursor for a prepared SELECT statement.

■ OPEN

Opens a cursor declared for a prepared SELECT statement.

■ FETCH

Retrieves values from a cursor declared for a prepared SELECT statement.

■ CLOSE

Closes a cursor.

Using the Dynamic SQL Interface of Oracle Rdb

2-4 Guide to Using the Oracle SQL/Services Client API

2.3 Using the Dynamic SQL Interface of Oracle Rdb

You can execute the simplest SQL statements that neither accept variable data values from
nor return data values to your application using the EXECUTE IMMEDIATE dynamic SQL
statement. If you use EXECUTE IMMEDIATE to execute a statement, SQL automatically
prepares, executes, and releases the statement for you. However, if you need to execute the
same SQL statement more than once, using EXECUTE IMMEDIATE is inefficient because
SQL must prepare and release the statement each time it is executed. In this situation, it is
more efficient for your application to prepare the statement, execute it as many times as
necessary, and release it only when it is no longer needed.

More complex SQL statements can accept variable data values from or return data values to
your application. Your application provides variable data values to SQL statements as
parameter markers, using a question mark character (?) to identify each parameter marker. A
SELECT statement will return a select list item for each column named in the select list
clause. In addition, you also identify the data values returned by singleton-SELECT,
UPDATE . . . RETURNING, and CALL statements using a question mark character (?) for
each returned data value.

To process more complex SQL statements with parameter markers or select list items, and to
improve the efficiency of your application when processing SQL statements that are used
multiple times, you first use PREPARE to dynamically compile the statement. You then
optionally use DESCRIBE to obtain the metadata for any parameter markers or select list
items. You use the EXECUTE statement to process executable SQL statements, such as
INSERT, UPDATE, DELETE, singleton-SELECT, CALL, and compound statements. To
process a result table formed by a SELECT statement, you first use DECLARE CURSOR
and OPEN to declare and open a cursor. You then use FETCH to retrieve rows from the
result table. Finally, you use CLOSE to close the cursor at the end. When a statement is no
longer needed, you free the resources used by the prepared statement using the RELEASE
statement.

Section 2.3.1 describes how to use dynamic SQL operations to process statements that
contain parameter markers. Section 2.3.2 describes how to access the data returned by
SELECT statements. Section 2.3.3 describes how to handle statements about which the
program has no prior information.

Table 2–1 lists the major SQL statements that can be processed using dynamic SQL.
However, certain SQL statements cannot be processed using dynamic SQL. This includes all

Note: The following general discussion is relevant only to the dynamic
SQL interface. Some of the functionality described in this section may not
be directly accessible to an Oracle SQL/Services client application.

Using the Dynamic SQL Interface of Oracle Rdb

Developing Oracle SQL/Services Applications 2-5

the SQL statements listed in Table 2–2 including those that comprise the dynamic SQL
interface itself. Furthermore, statements and commands such as SHOW that are processed
only by the interactive SQL utility cannot be processed using the dynamic SQL interface.

Table 2–1 SQL Statements That Can Be Processed Using Dynamic SQL Operations

Statement Associated Dynamic SQL Statements

SELECT PREPARE, Extended Dynamic DECLARE CURSOR,
DESCRIBE (optional), OPEN, FETCH, CLOSE, RELEASE

INSERT, UPDATE, DELETE,
CALL, Singleton-SELECT,
ATTACH, CONNECT, SET
CONNECT, DISCONNECT

PREPARE, DESCRIBE (optional), EXECUTE and RELEASE,
or EXECUTE IMMEDIATE (if no parameter markers or select
list items)

CREATE, ALTER, DROP,
DECLARE TRANSACTION,
SET TRANSACTION,
COMMIT, ROLLBACK,
GRANT, REVOKE,
COMMENT ON

PREPARE, EXECUTE and RELEASE, or EXECUTE
IMMEDIATE

Table 2–2 SQL Statements That Cannot Be Processed Using Dynamic SQL
Operations

SQL Statement Related Oracle SQL/Services Routine

BEGIN DECLARE none

CLOSE sqlsrv_close_cursor

DECLARE ALIAS none

DECLARE CURSOR sqlsrv_declare_cursor

DECLARE STATEMENT none

DECLARE TABLE none

DESCRIBE sqlsrv_prepare (implicit in)

END DECLARE none

EXECUTE sqlsrv_execute_in_out

EXECUTE IMMEDIATE sqlsrv_execute_immediate

FETCH sqlsrv_fetch

INCLUDE none

Using the Dynamic SQL Interface of Oracle Rdb

2-6 Guide to Using the Oracle SQL/Services Client API

2.3.1 Parameter Markers
Parameter markers represent variables that can be processed using dynamic SQL operations
with SQL SELECT, INSERT, UPDATE, DELETE, CALL, Singleton-SELECT, ATTACH,
CONNECT, SET CONNECT, and DISCONNECT statements. Question marks (?)
embedded in the statement string denote parameters that are to be replaced when the
statement is processed using the dynamic SQL interface. An example of an SQL statement
with parameter markers is:

INSERT INTO EMPLOYEES
 (EMPLOYEE_ID, FIRST_NAME, LAST_NAME, CITY)
 VALUES (?, ?, ?, ?);

The mechanism for mapping parameter markers to variables in application programs is a
data structure called the SQLDA or SQLDA2 (see Section 2.3.4 and Section 7.5). The
DESCRIBE statement writes information about parameter markers into an SQLDA or
SQLDA2 structure. Your program examines the SQLDA or SQLDA2 structure, allocates a
data variable and an indicator variable for each parameter marker, obtains values for each
parameter marker, and stores the values in the SQLDA or SQLDA2 data variables before
processing the SQL statement using the dynamic SQL interface.

2.3.2 Select List Items
Programs that process SELECT statements using dynamic SQL operations must declare a
cursor to receive the result table, and must allocate memory for each select list item in the
SELECT statement. After the cursor is opened, FETCH statements return values for rows of
the result table.

INSERT . . . RETURNING, UPDATE . . . RETURNING, CALL, compound statements and
singleton-SELECT statements are executable statements that are processed using the
EXECUTE dynamic SQL statement that can return information in a select list SQLDA. For
example,

OPEN sqlsrv_open_cursor

PREPARE sqlsrv_prepare

RELEASE sqlsrv_release_statement

WHENEVER none

Table 2–2 SQL Statements That Cannot Be Processed Using Dynamic SQL
Operations (Cont.)

SQL Statement Related Oracle SQL/Services Routine

Using the Dynamic SQL Interface of Oracle Rdb

Developing Oracle SQL/Services Applications 2-7

UPDATE EMPLOYEES SET SALARY=SALARY+? WHERE BADGE=? RETURNING SALARY INTO ?;

As with parameter markers, the mechanism for mapping select list items to host variables is
a data structure called the SQLDA or SQLDA2 (see Section 2.3.4 and Section 7.5). The
DESCRIBE statement writes select list information into the SQLDA or SQLDA2.

If the SQL statement contains parameter markers in addition to select list items, the program
must also set up host variables for the parameter markers and assign values to them.

2.3.3 Unknown Statements
It is possible to process SQL statements using the dynamic SQL interface about which the
program has no prior information. Such statements may contain parameter markers or select
list items or both. The program can use the DESCRIBE statement to obtain an SQLDA or
SQLDA2 structure containing information about the numbers and data types of select list
items and parameter markers. Then the program allocates data and indicator variables as
appropriate and writes the addresses of those variables into the SQLDA or SQLDA2
structures before executing the statement.

2.3.4 SQL Descriptor Area (SQLDA or SQLDA2)
The SQL Descriptor Area (SQLDA) or Extended SQL Descriptor Area (SQLDA2) is a data
structure that enables programs to communicate with SQL about parameter markers and
select list items.

Oracle Rdb SQL provides an extended version of the SQLDA structure, called the
SQLDA2, which supports additional fields and field sizes. Oracle SQL/Services supports
this SQLDA2 structure. For more information about the SQLDA2 data structure and its use
with the SQL interface of Oracle Rdb, refer to Section 7.5 and to the appendix of the Oracle
Rdb SQL Reference Manual.

When SQL processes a DESCRIBE statement, it writes information about select list items
(for a DESCRIBE . . . SELECT LIST statement) or parameter markers (for a DESCRIBE . .
. MARKERS statement) of a prepared statement into an SQLDA or SQLDA2.

The host language program examines the SQLDA or SQLDA2 to determine how many
select list items or parameter markers are present and the data type of each. The program
must provide memory for data and indicator variables for each parameter marker or select
list item, and write the address of each memory location into the SQLDA or SQLDA2.

For parameter markers, the program writes values into the SQLDA or SQLDA2 before
processing the SQL statement using dynamic SQL operations. For select list items, the
program reads the data written into the SQLDA or SQLDA2 by subsequent FETCH
statements.

Overview of Client API Routines

2-8 Guide to Using the Oracle SQL/Services Client API

The Oracle Rdb SQL Reference Manual contains an appendix on the SQLDA and SQLDA2
and a section on the DESCRIBE statement that discusses the MARKERS and SELECT
LIST clauses of the DESCRIBE statement in more detail.

2.3.5 SQL Communications Area (SQLCA)
The SQL Communications Area (SQLCA) is a data structure that SQL uses to provide
information about the execution of SQL statements to application programs. SQL updates
the contents of the SQLCA after completion of every executable SQL statement. Fields of
interest in the SQLCA are the SQLCODE field and several elements of the SQLERRD
array.

The SQLCODE field contains the completion status of every SQL request.

Both SQL and Oracle SQL/Services may store information in one or more elements of the
SQLERRD array to provide additional details about the execution of a SQL statement. For
example, SQL stores the statement type in the SQLERRD array following a PREPARE
request; while Oracle SQL/Services stores additional network error information in the
SQLERRD array if an associate fails due to a network error.

See Section 7.4 for a description of the other values of the SQLERRD array. Section 7.3
describes the SQLCA in detail. In addition, the Oracle Rdb SQL Reference Manual contains
an appendix on the SQLCA.

2.4 Overview of Client API Routines
The Oracle SQL/Services client application programming interface (API) is a set of callable
routines that client appplications use to access Oracle SQL/Services functions. The client
API routines are grouped according to function and summarized in Section 2.4.1 through
Section 2.4.5.

2.4.1 Association Routines
Association routines create and terminate client/server associations and control the
association environment. These routines are:

■ sqlsrv_abort

Terminates a client/server association. Disconnects from the server and releases all
client resources related to the association.

■ sqlsrv_associate

Overview of Client API Routines

Developing Oracle SQL/Services Applications 2-9

Creates a client/server association. Makes the remote connection to the server process
and negotiates association characteristics and attributes.

■ sqlsrv_get_associate_info

Gets association information.

■ sqlsrv_release

Terminates a client/server association in an orderly fashion. Sends a message to the
server requesting termination of the association, disconnects the network link, and
releases all client resources related to the association.

2.4.2 SQL Statement Routines
SQL statement routines prepare and execute SQL statements, and release prepared SQL
statement resources. These routines map directly to the dynamic SQL interface. These
routines are:

■ sqlsrv_prepare

Prepares a dynamic SQL statement. It returns a statement identifier and SQLDA or
SQLDA2 metadata information. This routine maps to the dynamic SQL interface
PREPARE and DESCRIBE statements.

■ sqlsrv_execute_in_out

Executes a prepared SQL statement. This routine maps to the dynamic SQL interface
EXECUTE statement.

■ sqlsrv_execute_immediate

Prepares and executes an SQL statement. This routine cannot be used if the SQL
statement contains parameter markers or select list items. This routine maps to the
dynamic SQL interface EXECUTE IMMEDIATE statement.

■ sqlsrv_release_statement

Releases client and server statement resources associated with a prepared statement.
This routine maps to the dynamic SQL interface RELEASE statement.

2.4.3 Result Table Routines
Result table routines allow the caller to fetch data from the server by providing calls to open
a cursor, fetch from an open cursor, and close an open cursor. These routines are:

■ sqlsrv_declare_cursor

Overview of Client API Routines

2-10 Guide to Using the Oracle SQL/Services Client API

Declares the type and mode of an extended dynamic cursor. Note that the cursor is
actually declared at the server when sqlsrv_open_cursor is called the first time for a
specific cursor name. If you do not call the sqlsrv_declare_cursor routine for a
particular cursor name before calling sqlsrv_open_cursor, Oracle SQL/Services
implicitly declares the cursor as type table and mode update.

This routine conceptually maps to the dynamic SQL interface DECLARE CURSOR
statement.

■ sqlsrv_open_cursor

Opens a cursor by associating a cursor name with a prepared statement identifier. The
cursor name is used in each reference to the cursor. The sqlsrv_open_cursor routine also
declares the extended dynamic cursor at the server the first time it is called for a specific
cursor name.

This routine conceptually maps to the dynamic SQL interface OPEN statement.

■ sqlsrv_fetch

Fetches one row of data from an open cursor.

This routine maps to the dynamic SQL interface FETCH statement.

■ sqlsrv_fetch_many

Requests that multiple rows of data be fetched and transmitted to the client, which
frequently reduces the number of network messages.

This routine has no equivalent dynamic SQL interface statement. Rather, it controls the
way the server sends row data back to the client after it has been retrieved by the server
using the dynamic SQL interface FETCH statement.

■ sqlsrv_close_cursor

Closes an open cursor.

This routine maps to the dynamic SQL interface CLOSE statement.

2.4.4 Utility Routines
Utility routines provide miscellaneous services to the caller. These routines are:

■ sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data

Allocates memory for the SQLDA or SQLDA2 data buffer and indicator variable fields.

■ sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data

Frees memory for the SQLDA or SQLDA2 data buffer and indicator variable fields.

Overview of Client API Routines

Developing Oracle SQL/Services Applications 2-11

■ sqlsrv_set_option

Sets the option that determines whether an SQLDA or SQLDA2 is used.

2.4.5 Functional Interface Routines
The functional interface routines provide access to data and metadata stored in the SQLCA,
SQLDA, and SQLDA2 structures. These routines replace the need for making direct
references to structure fields in client applications. These routines are:

■ sqlsrv_sqlca_error

Returns from the SQLCA structure the error codes for the last statement executed.

■ sqlsrv_sqlca_error_text

Returns from the SQLCA structure the error text for the last statement executed.

■ sqlsrv_sqlca_count

Returns from the SQLCA the number of rows processed by a statement and replaces
direct access to the SQLCA.SQLERRD[2] field.

■ sqlsrv_sqlca_sqlerrd

Returns to your application the contents of the entire SQLCA.SQLERRD array which
includes, for example, optimizer information for a table cursor, and number of
segments, maximum segment length, and so forth for a list cursor, following a
successful call to sqlsrv_open_cursor.

■ sqlsrv_sqlca_sqlstate

Returns the SQLSTATE associated with the SQLCODE for the last statement executed.

■ sqlsrv_sqlda_sqld or sqlsrv_sqlda2_sqld, sqlsrv_sqlda_sqld73 or sqlsrv_sqlda2_sqld73

Returns the number of parameter markers or select list items in the SQLDA or
SQLDA2 and replaces direct access to the SQLD field in an SQLDA or SQLDA2.

■ sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name, sqlsrv_sqlda_column_
name73 or sqlsrv_sqlda2_column_name73

Copies the column name for a particular column from the SQLDA or SQLDA2 into the
variable passed in this call.

■ sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type, sqlsrv_sqlda_column_
type73 or sqlsrv_sqlda2_column_type73

Returns from the SQLDA or SQLDA2 information about the data type of a column.

Overview of Client API Routines

2-12 Guide to Using the Oracle SQL/Services Client API

■ sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data, sqlsrv_sqlda_bind_data73 or
sqlsrv_sqlda2_bind_data73

Allows programs to allocate their own storage for data and indicator variables in an
SQLDA or SQLDA2.

■ sqlsrv_sqlda_unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda, sqlsrv_sqlda_unbind_
sqlda73 or sqlsrv_sqlda2_unbind_sqlda73

Releases all variables bound with the sqlsrv_sqlda_bind_data, sqlsrv_sqlda_bind_
data73, sqlsrv_sqlda2_bind_data or sqlsrv_sqlda2_bind_data73 routines.

■ sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data, sqlsrv_sqlda_ref_data73 or sqlsrv_
sqlda2_ref_data73

Returns from the SQLDA or SQLDA2 the type and length and addresses of the data and
indicator variables for a column.

■ sqlsrv_sqlda_unref_data or sqlsrv_sqlda2_unref_data, sqlsrv_sqlda_unref_data73 or
sqlsrv_sqlda2_unref_data73

Frees resources tied up by the sqlsrv_sqlda_ref_data, sqlsrv_sqlda_ref_data73, sqlsrv_
sqlda2_ref_data or sqlsrv_sqlda2_ref_data73 routines.

■ sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data, sqlsrv_sqlda_get_data73 or sqlsrv_
sqlda2_get_data73

Copies data and indicator values from the SQLDA or SQLDA2 to program variables
and provides access to SQLDA or SQLDA2 information for languages that do not
support explicit type coercion.

■ sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data, sqlsrv_sqlda_set_data73 or sqlsrv_
sqlda2_set_data73

Copies data and indicator values from program variables into the SQLDA or SQLDA2.

■ sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen, sqlsrv_sqlda_set_sqllen73 or
sqlsrv_sqlda2_set_sqllen73

Sets the length of a column of type SQLSRV_ASCII_STRING, SQLSRV_VARCHAR,
and SQLSRV_VARBYTE by setting the SQLLEN field in an SQLDA or SQLDA2.
Sqlsrv_sqlda2_set_sqllen and sqlsrv_sqlda2_set_sqllen73 also set the SQLOCTET_
LEN in an SQLDA2.

■ sqlsrv_sqlda2_char_set_info, sqlsrv_sqlda2_char_set_info73

Returns SQL character set information from the SQLDA2.

Developing Applications with the Functional Interface Routines

Developing Oracle SQL/Services Applications 2-13

2.5 Overview of Data Structures
Oracle SQL/Services uses data structures to communicate with the client application. The
client API routines use the following data structures:

■ ASSOCIATE_STR

This structure is passed as a parameter to sqlsrv_associate to set the characteristic of an
association. The sqlsrv_associate routine opens the communications link between client
and server and creates an association. For more information, see Section 7.2.

■ SQLCA

The SQLCA (SQL Communications Area) is used to store error messages and SQL
statement information returned by Oracle SQL/Services. When a client API routine
returns a nonzero value indicating that an error occurred, the SQLCA contains
additional error information. For more information, see Section 7.3.

■ SQLDA or SQLDA2

The SQLDA (SQL Descriptor Area) or SQLDA2 (Extended SQL Descriptor Area) is
used to exchange database metadata and data for parameter markers (input) and select
list items (output). The Oracle SQL/Services SQLDA or SQLDA2 is identical to that
used by the dynamic SQL interface for Oracle Rdb. For more information, see
Section 2.3.4 and Section 7.5.

2.6 Developing Applications with the Functional Interface Routines
When designing an application, you must decide how to allocate memory for SQLCA,
SQLDA, and SQLDA2 data structures and how to access these data structures.

Oracle Corporation recommends that you let Oracle SQL/Services allocate memory for
SQLCA, SQLDA, and SQLDA2 data structures. To let Oracle SQL/Services allocate
memory for the SQLCA data structure, specify a NULL pointer in the call to sqlsrv_
associate. To let Oracle SQL/Services allocate memory for SQLDA and SQLDA2 data
structures, specify NULL SQLDA_ID pointers in the call to sqlsrv_prepare. Note that you
can direct Oracle SQL/Services to use application-specific memory allocation and
deallocation routines by specifying their addresses in the associate data structure
(ASSOCIATE_STR) that you pass to sqlsrv_associate. Alternatively, you can allocate
memory for SQLCA, SQLDA, and SQLDA2 data structures prior to calling sqlsrv_associate
and sqlsrv_prepare.

The Oracle SQL/Services client API provides a set of functional interface routines that allow
indirect access to the SQLCA, SQLDA, and SQLDA2 data structures. Oracle Corporation
recommends that you use the functional interface routines to access the SQLCA, SQLDA,

Building Oracle SQL/Services Application Programs

2-14 Guide to Using the Oracle SQL/Services Client API

and SQLDA2 data structures to facilitate portability across all supported client platforms.
See Section 2.4.5 for a complete list of the functional interface routines and a brief
description of each routine. Alternatively, you can directly access the SQLCA, SQLDA, and
SQLDA2 data structures. Direct access to SQLCA, SQLDA, and SQLDA2 data structures is
supported but is not recommended by Oracle Corporation.

2.7 Building Oracle SQL/Services Application Programs
The process of building Oracle SQL/Services application programs consists of these steps:

1. Compile your code using the following #include compiler directive:

#include <sqlsrv.h> /* Typedefs, function prototypes, error literals*/

If your application accesses the SQLCA, SQLDA, or SQLDA2 structures directly, also
include the sqlsrvca.h or sqlsrvda.h header files as follows.

#include <sqlsrvca.h> /*SQLCA structure */
#include <sqlsrvda.h> /*SQLDA and SQLDA2 structures */
#include <sqlsrv.h>

Compile errors will result if the include files are not in this order.

On most operating systems, include files are kept in a standard location, indicated in C
by placing angle brackets around the name of the file. If these directives do not work on
your system, ask the person who installed the Oracle SQL/Services API where the
include files are located.

To avoid this problem, Oracle Corporation recommends that you use either a printf or
puts statement when printing Oracle SQL/Services error messages:

printf ("%s", message);

or

puts (message);

2. Use a Jacket Header File When Calling the Oracle SQL/Services API From C++

The Oracle SQL/Services header files, sqlsrv.h, sqlsrvca.h, and sqlsrvda.h, do not
provide built-in support for use with the C++ programming language. However, by

Note: Some C compilers have a problem with %S and %D when
printing error messages (for example, %SQLSRV and %DBS).

Building Oracle SQL/Services Application Programs

Developing Oracle SQL/Services Applications 2-15

providing a jacket header file, you may call the Oracle SQL/Services API from C++ as
you would from C. To include the Oracle SQL/Services header files in a C++
application, create the following header file, called sqlsrv.hxx, and #include it in your
application program:

//
// Define VMS if compiling on OpenVMS to pick up the $ versions of
// the service names.
//
#ifdef __VMS
#ifndef VMS
#define VMS
#endif
#endif

//
// Include the headers files using C, not C++. No need to include
// sqlsrvca.h or sqlsrvda.h unless the application directly accesses
// the SQLCA and SQLDA structures.
//
extern "C"
{

// #include <sqlsrvca.h>
// #include <sqlsrvda.h>
#include <sqlsrv.h>

}

3. Link your object module with the Oracle SQL/Services client API. Linking procedures
are system dependent and are thus discussed separately in the following sections.

Linking procedures can also depend on the network transport you want to use with
Oracle SQL/Services and the specific client.

2.7.1 Building Applications on the OpenVMS Operating System
The OpenVMS include files are installed in SYS$LIBRARY.

To link your program, enter the following command:

$ LINK object.obj,SYS$LIBRARY:SQLSRV$API/OPT

Replace object with the name of your object module.

Building Oracle SQL/Services Application Programs

2-16 Guide to Using the Oracle SQL/Services Client API

If you want to relink a client application that was compiled with VAX C, you must create an
options file that specifies SYS$LIBRARY:VAXCRTL/SHARE and link against this new
options file as well as SYS$LIBRARY:SQLSRV$API.OPT.

2.7.2 Building Applications on the MS Windows Operating System
This section describes how to build and run applications for Windows 2000, XP, Vista,
Server 2003, Server 2008, 7, XP X64, Vista X64, Server 2003 X64, Server 2008 X64 and 7
X64.

2.7.2.1 Building 32-Bit Applications for Windows X86 Systems
The Oracle SQL/Services client API for Windows 2000, XP, Vista, Server 2003, Server
2008 or 7 is supplied in the form of a Dynamic Link Library (DLL) called sqsapi32.dll,
together with a library file called sqsapi32.lib. Review your Windows documentation for
information about creating applications that link against a DLL. If you use sqsdyn32.mak as
a template, you will need to customize it to your application's particular requirements.

2.7.2.2 Building 64-Bit Applications for Windows X64 Systems
The Oracle SQL/Services client API for Windows XP X64, Vista X64, Server 2003 X64,
Server 2008 X64 or 7 X64 is supplied in the form of a Dynamic Link Library (DLL) called
sqsapi64.dll, together with a library file called sqsapi64.lib. Review your Windows
documentation for information about creating applications that link against a DLL. If you
use sqsdyn64.mak as a template, you will need to customize it to your application's
particular requirements.

2.7.2.3 Building 32-Bit or 64-Bit Applications for Windows
See the Oracle SQL/Services Release Notes for a complete list of software products and their
versions that are required to support different network transports.

If you want to call Oracle SQL/Services using threads, you must be aware of the following:

■ Oracle SQL/Services synchronizes calls to the Oracle SQL/Services client API routines
between threads. That is, only one Oracle SQL/Services call may be active per associate
at a time. All subsequent concurrent calls for an association stall until all previous calls
complete.

■ The error and error messages returned into the SQLCA data structure should not be
accessed or manipulated directly by the application programmer. This structure will
contain the message returned by the last thread that accessed it. Therefore, an error
received in one thread may be overwritten by another thread. This may cause the
application program to receive the wrong error and associated messages for the thread

Building Oracle SQL/Services Application Programs

Developing Oracle SQL/Services Applications 2-17

that initially received the error. To receive the correct error and messages, use the
following Oracle SQL/Services routines:

– sqlsrv_sqlca_error

– sqlsrv_sqlca_error_text

– sqlsrv_sqlca_sqlstate

– sqlsrv_sqlca_sqlerrd

2.7.3 Building Applications on the HP Tru64 UNIX Operating System
The HP Tru64 UNIX include files are installed in the /usr/include directory.

By default, the HP Tru64 UNIX C compiler compiles and links your program in one
command, including support for both DECnet and TCP/IP. For example:

% cc file -lsqs -lots -ldnet -o name

Replace file with the name of your source file and name with the name that you want for the
executable file. If your application uses the DECnet transport, include the optional –ldnet
argument as shown; otherwise, replace –ldnet with –ldnet–stub.

You may find it useful to examine the makefile that builds the HP Tru64 UNIX API
Installation Verification Procedure (sqsivpu.mak) and the makefile that builds the sample
application, sqsdynu.mak (see Section 3.2.4).

2.7.4 Building Applications on the HP-UX Operating System
The HP-UX include files are installed in the /usr/include directory.

By default, the HP-UX C compiler compiles and links your program in one command,
including support for TCP/IP. For example:

% gcc -o name file -mlp64 -DSQLSRV_LOCAL_INCLUDES -lsqs

Replace file with the name of your source file and name with the name that you want for the
executable file.

You may find it useful to examine the makefile that builds the HP-UX API Installation
Verification Procedure (sqsivpu.mak) and the makefile that builds the sample application,
sqsdynu.mak (see Section 3.2.5).

Building Oracle SQL/Services Application Programs

2-18 Guide to Using the Oracle SQL/Services Client API

2.7.5 Building Applications on the Linux Operating System
The Linux include files are installed in the /usr/include directory.

By default, the Linux C compiler compiles and links your program in one command,
including support for TCP/IP. For example:

% gcc -o name file -mlp64 -DSQLSRV_LOCAL_INCLUDES -lsqs

Replace file with the name of your source file and name with the name that you want for the
executable file.

You may find it useful to examine the makefile that builds the Linux API Installation
Verification Procedure (sqsivpu.mak) and the makefile that builds the sample application,
sqsdynu.mak (see Section 3.2.6).

Sample Application Guidelines 3-1

3
Sample Application Guidelines

This chapter guides you through the Oracle SQL/Services sample application.

3.1 Sample Application
Section 3.1, Section 3.2, and Section 3.3 describe a sample interactive application that
accepts dynamic SQL statements and processes them using the Oracle SQL/Services client
API. The sample application consists of two or three modules, depending on your client
platform:

■ A driver module named sqsdrv.c (on all Windows platforms), sqsdrvu.c (on the HP
Tru64 UNIX, HP-UX and Linux platforms) or sqlsrv$driver.c (on all OpenVMS
platforms). This module accepts dynamic SQL statements from the user and calls the
dynamic SQL processing module to process the statements. It is described in
Section 3.4.

■ A dynamic SQL processing module named sqsdyn.c (on all Windows platforms),
sqsdynu.c (on the HP Tru64 UNIX, HP-UX and Linux platforms) or sqlsrv$dynamic.c
(on all OpenVMS platforms). This module accepts dynamic SQL statements from the
driver module and calls Oracle SQL/Services client API routines to process the
statements. It is described in Section 3.5.

■ An I/O module named winivp.c for Windows platforms only. This module calls
Windows services to implement a basic Windows I/O interface and is not described in
this chapter.

The sample application is able to process any dynamic SQL statement, including executable
statements such as INSERT, UPDATE, DELETE, singleton-SELECT, and CALL
statements, as well as SELECT statements. To process a statement entered by the user, the
sample application first prepares the statement. If a statement contains parameter markers,

Building the Sample Application

3-2 Guide to Using the Oracle SQL/Services Client API

the sample application then prompts the user for parameter marker values. To process an
executable statement, the sample application executes the statement, then displays any
results that the statement might produce. To process a SELECT statement, the sample
application declares and opens a cursor, fetches and displays rows from the result table, then
closes the cursor when all rows have been fetched. Finally, the sample application releases
the statement to free the resources held by the prepared statement.

In some respects, the Oracle SQL/Services sample application resembles a limited, portable
implementation of the Oracle Rdb interactive SQL application. Like interactive SQL, the
driver module recognizes the semicolon (;) as an SQL statement terminator and thus accepts
multiline statements. However, unlike interactive SQL, it does not parse the SQL statements
entered by the user and thus cannot handle compound statements or the definition of stored
procedures. Input lines beginning with an exclamation point (!) are considered comments
and are not executed.

3.2 Building the Sample Application
This section describes how to build the sample application on the client platforms supported
by Oracle SQL/Services.

3.2.1 Building the Sample Application on the OpenVMS Operating System
The source code for the sample application is available on line in a directory under
SYS$EXAMPLES. To copy, compile, link, and run the sample application, enter the
following commands:

$ copy sys$common:[syshlp.examples.sqlsrv]sqlsrv$*.c *
$ cc sqlsrv$driver,sqlsrv$dynamic
$ link/exe=sqlsrv$dynamic sqlsrv$driver,sqlsrv$dynamic,-
_$ sys$library:sqlsrv$api/opt
$ run sqlsrv$dynamic

3.2.2 Building the Sample Application on Windows X86 Systems
An executable form of the sample application is supplied when you install the Oracle
SQL/Services client kit. This executable program was built using the default settings and
switches in sqsdyn32.mak, and so it might not be suitable for all environments and
transports. The executable is named sqsdyn32.exe; you may wish to copy or rename this file
if you rebuild the sample application locally.

The source files for the sample application are supplied in the directory where you installed
the Oracle SQL/Services client kit. The sqsdyn32.mak file uses the Microsoft C compiler to

Building the Sample Application

Sample Application Guidelines 3-3

create an executable named sqsdyn32.exe. Review sqsdyn32.mak as a sample guide and for
information on default settings and switches.

Use the following commands to build the sample application from the MS–DOS prompt.
Select the appropriate NMAKE command depending on whether or not you want to build a
debuggable executable.

> cd \[sql/services-install-dir] | Oracle SQL/Services installation directory
> nmake -a -f sqsdyn32.mak | To build a nodebug executable, or
> nmake -a -f sqsdyn32.mak debug=1 | to build a debuggable executable
> sqsdyn32 | Invoke sample after successful build

3.2.3 Building the Sample Application on Windows X64 Systems
An executable form of the sample application is supplied when you install the Oracle
SQL/Services client kit. This executable program was built using the default settings and
switches in sqsdyn64.mak, and so it might not be suitable for all environments and
transports. The executable is named sqsdyn64.exe; you may wish to copy or rename this file
if you rebuild the sample application locally.

The source files for the sample application are supplied in the directory where you installed
the Oracle SQL/Services client kit. The sqsdyn64.mak file uses the Microsoft C compiler to
create an executable named sqsdyn64.exe. Review sqsdyn64.mak as a sample guide and for
information on default settings and switches.

Use the following commands to build the sample application from the MS–DOS prompt.
Select the appropriate NMAKE command depending on whether or not you want to build a
debuggable executable.

> cd \[sql/services-install-dir] | Oracle SQL/Services installation directory
> nmake -a -f sqsdyn64.mak | To build a nodebug executable, or
> nmake -a -f sqsdyn64.mak debug=1 | to build a debuggable executable
> sqsdyn64 | Invoke sample after successful build

3.2.4 Building the Sample Application on the HP Tru64 UNIX Operating System
If DECnet is available on your system, you can build the HP Tru64 UNIX sample
application by issuing the following command:

make "STUB=stubdnetu.o" "LIBS=libsqs.a" "DNET=" "DNETLIB=-ldnet" -f sqsdynu.mak

If DECnet is not available on your system, you can build the HP Tru64 UNIX sample
application by issuing the following command:

make "STUB=stubdnetu.o" "LIBS=libsqs.a" "DNET=" -f sqsdynu.mak

Running the Sample Application

3-4 Guide to Using the Oracle SQL/Services Client API

To invoke the sample application after a successful build, issue the following command:

sqsdynu

See Section 2.7.3 for information on building applications on HP Tru64 UNIX systems.

3.2.5 Building the Sample Application on the HP-UX Operating System
You can build the HP-UX sample application by issuing the following command:

make -f sqsdynh.mak "LIB=libsqs.a" "DNET="

To invoke the sample application after a successful build, issue the following command:

sqsdynu

See Section 2.7.4 for information on building applications on HP-UX systems.

3.2.6 Building the Sample Application on the Linux Operating System
You can build the Linux sample application by issuing the following command:

make "STUB=stubdnet.o" "LIB=libsqs.a" "DNET=" "DEFS=-DSQLSRV_LOCAL_INCLUDES" -f
 sqsdynl.mak

To invoke the sample application after a successful build, issue the following command:

sqsdynu

See Section 2.7.5 for information on building applications on Linux systems.

3.3 Running the Sample Application
When the sample executable program starts up, it prompts you for the information required
to create an association with a remote system. When the association is made, the program
prompts for SQL statements to execute. For example, on the OpenVMS operating system,
this is what you would see:

$ run sqlsrv$dynamic
Server node OR SQL*Net service name: MYNODE
Network Transport: DECNET
Server account name: MYNAME
Server account password: ****
Service name [GENERIC]:

Running the Sample Application

Sample Application Guidelines 3-5

Enter any dynamically executable SQL statement,
continuing it on successive lines.
Terminate the statement with a semicolon.
Built-in commands are: [no]echo and exit.

SQL> ATTACH 'FILENAME sql_personnel';
SQL> SELECT * FROM EMPLOYEES WHERE FIRST_NAME STARTING WITH ?;
Enter value for: FIRST_NAME
Maximum length is: 10
DATA> Norman

------ BEGIN RESULT TABLE ------
EMPLOYEE_ID : 00168
LAST_NAME : Nash
FIRST_NAME : Norman
MIDDLE_INITIAL :
ADDRESS_DATA_1 : 87 West Rd.
ADDRESS_DATA_2 :
CITY : Meadows
STATE : NH
POSTAL_CODE : 03587
SEX : M
BIRTHDAY : 1932102300000000
STATUS_CODE : 1
---------- END OF ROW ----------
 .
 .
 .
---------- END OF ROW ----------
EMPLOYEE_ID : 00245
LAST_NAME : Roberts
FIRST_NAME : Norman
MIDDLE_INITIAL : U
ADDRESS_DATA_1 : 162 Tenby Dr.
ADDRESS_DATA_2 :
CITY : Chocorua
STATE : NH
POSTAL_CODE : 03817
SEX : M
BIRTHDAY : 1949061100000000
STATUS_CODE : 1
---------- END OF ROW ----------
------- END RESULT TABLE -------
SQL> exit;

Driver Module

3-6 Guide to Using the Oracle SQL/Services Client API

$

To select the network transport, type D or DECnet to select the DECnet transport; type T or
TCP to select the TCP/IP transport; type S or SQLNET to select the Oracle Net transport.
Note that not all these transports are supported on all the client platforms and that all the
transports supported by Oracle SQL/Services may not be installed on your node. See
Table 1–1 for a list of the network transports supported for each client platform.

3.4 Driver Module
When a user runs the sample application, the flow of control is as follows:

■ Call a routine to create an association. Although the driver creates only one association,
Oracle SQL/Services allows an application to have several associations active at any
given time.

■ Enter a loop that inputs SQL statements and passes them to the execute_statement
function for processing.

■ Call a routine to close the association.

The implementation of the terminal input/output in the driver is unimportant. The module is
intended to be easily replaced.

3.5 Dynamic Module
This section describes how the sample application works and provides some examples that
illustrate how to call some of the more commonly used Oracle SQL/Services API routines.

3.5.1 Creating an Association
The sample program contains a function named create_association that does the following:

■ Declares the variables required for creating an association.

– Association identifier

Most Oracle SQL/Services API routines require an association identifier that
specifies for which association a call is being made. An association identifier is
returned as an output argument during the successful completion of a call to the
sqlsrv_associate API routine. The association identifier is then specified as an input
argument to most of the other Oracle SQL/Services API routines and, optionally,
with the sqlsrv_sqlda_xxx and sqlsrv_sqlda2_xxx functional interface routines.

Dynamic Module

Sample Application Guidelines 3-7

In the sample application, the main routine in the driver module passes in the
address of the association identifier, which it declares as follows:

ASSOCIATE_ID assoc_id;

– Error message buffer

If you do not specify an alternate error message buffer, Oracle SQL/Services uses
the 70-byte SQLERRMC field in the SQLCA data structure. However, because the
SQLERRMC field may not be long enough to hold all the possible error messages
that can be returned by the Oracle SQL/Services server and Oracle Rdb, Oracle
Corporation recommends that you allocate a larger message buffer for each
association.

In the sample application, the main routine in the driver module passes in the
address of a 512-byte message buffer, which is sufficient for all possible messages.
The driver routine declares the error buffer as follows:

unsigned char error_buf[512];

■ Gets the node name, network transport, user name, password, and service name for the
server system from the argument vector; if any of these are missing, the create_
association function prompts the user.

■ Sets up the association structure as follows:

associate_str.VERSION = SQLSRV_V730; /* Structure version number */
associate_str.CLIENT_LOG = 0; /* Disable client logging. */
associate_str.SERVER_LOG = 0; /* Obsolete */
associate_str.LOCAL_FLAG = 0; /* Obsolete */
associate_str.MEMORY_ROUTINE = NULL; /* Use default memory rtns. */
associate_str.FREE_MEMORY_ROUTINE = NULL; /* Use default memory rtns. */
associate_str.ERRBUFLEN = error_buf_len; /* Alternate err buf length */
associate_str.ERRBUF = error_buf; /* Alternate error buffer */
associate_str.class_name = (CHARPTR)service_name; /* Service name */
associate_str.xpttyp = xpt; /* Transport type */
associate_str.port_id = 0; /* TCPIP port number */
associate_str.attach = NULL; /* No SQL ATTACH statement */
associate_str.declare = NULL; /* No SQL DECLARE statement */
associate_str.appnam = (CHARPTR)"Sample App"; /* Our application name */
associate_str.objnam = NULL; /* DECnet object name */

This structure is described in detail in Section 7.2.

■ Calls the API routine sqlsrv_associate to create the association.

sts = sqlsrv_associate(

Dynamic Module

3-8 Guide to Using the Oracle SQL/Services Client API

 node_name, /* node name. */
 user_name, /* user name. */
 password, /* password. */
 NULL, /* protocol read buffer. */
 NULL, /* protocol write buffer. */
 0, /* read buffer size. */
 0, /* write buffer size. */
 NULL, /* Let SQL/Services allocate SQLCA. */
 &associate_str, /* ASSOCIATE structure. */
 assoc_id /* Association handle. */
);

By specifying the read and write buffer pointers as NULL and the read and write buffer
lengths as zero, the sample application directs Oracle SQL/Services to allocate read and
write buffers of the default size. By specifying a NULL SQLCA pointer, the sample
application directs Oracle SQL/Services to allocate memory for the SQLCA structure.
Note that by specifying the associate structure as Version 7.3, the sample application
directs Oracle SQL/Services to process extensions to the original structure, which
include the service (class) name, transport type, application name, TCPIP port number
and DECnet object name fields.

Creating an association is a multiphase process, which starts with the Oracle
SQL/Services client API validating the routine arguments, allocating memory for the
association, establishing a network connection to the server, and so forth. Because a
new association can fail for different reasons, client applications must be written to
handle different types of failure.

If the Oracle SQL/Services client API detects any invalid arguments, it does not allocate
any memory for the association, stores a NULL value in the association ID variable, and
returns a single error status as the function return value. In this situation, the client
application need perform no additional work to clean up the association; however, no
additional error information is available.

If the routine arguments are valid, Oracle SQL/Services allocates memory for the
association and attempts to connect to the server. Once the routine arguments have been
successfully validated, Oracle SQL/Services always returns a non-NULL value in the
association ID, even if the connection to the server is not established successfully. For
example, perhaps a user typed an invalid password. In this situation, the client
application can obtain additional error information by calling the sqlsrv_sqlca_error_
text , sqlsrv_sqlca_error and sqlsrv_sqlca_sqlstate API routines. After retrieving any
additional error information, the client application must then clean up the association by
calling the sqlsrv_release API routine.

Dynamic Module

Sample Application Guidelines 3-9

The sample application uses the following logic to handle the situation where a call to
the sqlsrv_associate API routine fails:

if (sts != SQL_SUCCESS)
 {
 if (*assoc_id != NULL)
 {
 report_error(*assoc_id);
 sqlsrv_release(
 assoc_id, / association ID. */
 NULL /* reserved argument. */
);
 }
 else
 {
 report_sqlsvcs_error((SQS_LONGWORD)sts, 0, 0);
 }
 }

The report_error and report_sqlsvcs_error functions in the sample application are
described in Section 3.5.2.10.

3.5.2 Processing the Dynamic SQL Statement
The sample program contains a function named execute_statement that processes the
statement string passed to it by the driver module. As shown in Figure 3–1, the execute_
statement function does the following:

■ Checks for statements, such as COMMIT and ROLLBACK, that can be executed using
the sqlsrv_execute_immediate API routine, processes them accordingly, and returns.

■ Calls the sqlsrv_prepare API routine, which prepares the SQL statement and returns a
statement ID.

■ Calls the sqlsrv_sqlca_sqlerrd API routine to retrieve the SQLERRD array to obtain the
statement type from the SQLERRD[1] array element.

■ If the statement contains parameter markers, calls the sqlsrv_sqlda_allocate_data API
routine to allocate memory for the data and indicator variables, then calls the get_
params function to prompt for parameter marker values.

■ If the statement contains select list items, calls the sqlsrv_allocate_sqlda_data API
routine to allocate memory for the data and indicator variables.

■ If the statement is a SELECT statement:

Dynamic Module

3-10 Guide to Using the Oracle SQL/Services Client API

– Calls the sqlsrv_open_cursor API routine to open a cursor

– For each row in the result table, calls the sqlsrv_fetch API routine to fetch the row
and calls the display_select_list routine to display the data

– Calls the sqlsrv_close_cursor API routine to close the cursor

■ If the statement is not a SELECT statement, calls the sqlsrv_execute_in_out API routine
to execute the statement. If the statement has output, such as a singleton-SELECT
statement or a CALL statement to a procedure with output or input/output arguments,
calls the display_select_list function to display the data.

■ Calls the sqlsrv_release_statement API routine to release the prepared statement.

Section 3.5.2.1 through Section 3.5.2.10 explain the workings of the execute_statement and
get_params functions in more detail.

Dynamic Module

Sample Application Guidelines 3-11

Figure 3–1 Statement Execution Flow

Dynamic Module

3-12 Guide to Using the Oracle SQL/Services Client API

3.5.2.1 Declaring and Allocating SQLDA_ID Identifiers
The SQLDA structure contains SQL parameter marker and select list metadata as well as
pointers to the data and indicator variables. The SQLDA_ID identifiers are the means by
which your application and the Oracle SQL/Services API communicate about the SQL
statement being prepared for execution.

Oracle SQL/Services applications must allocate variables that point to the SQLDA_ID
identifiers. The execute_statement function contains the following declarations:

SQLDA_ID param_sqlda;
SQLDA_ID select_sqlda;

3.5.2.2 Executing SQL Statements Using the sqlsrv_execute_immediate API
Routine
Simple SQL statements that do not contain parameter markers or select list items can be
executed using the sqlsrv_execute_immediate API routine. The sample application checks
for statements such as COMMIT and ROLLBACK, and executes them using the sqlsrv_
execute_immediate API routine as follows:

sts = sqlsrv_execute_immediate(
 assoc_id, /* association ID. */
 0, /* database id, must be zero. */
 sql_statement /* SQL statement. */
);

3.5.2.3 Preparing the SQL Statement
All applications call the sqlsrv_prepare API routine to prepare an SQL statement. The
sample application lets Oracle SQL/Services allocate memory for the parameter marker and
select list SQLDA structures; therefore, it initializes the select_sqlda and param_sqlda
SQLDA_IDs to NULL. For example:

select_sqlda = NULL;
param_sqlda = NULL;

sts = sqlsrv_prepare(

Note: The sample application uses the sqlsrv_execute_immediate API
routine to process SQL statements such as COMMIT and ROLLBACK in
order to demonstrate how to use the sqlsrv_execute_immediate API
routine. However, in a real application, where such statements may be
used frequently, you should consider preparing such statements once and
executing the prepared statements as needed.

Dynamic Module

Sample Application Guidelines 3-13

 assoc_id, /* association ID. */
 0, /* database id, must be zero. */
 sql_statement, /* SQL statement. */
 &statement_id, /* to receive prepared statement id */
 ¶m_sqlda, /* to receive parameter marker SQLDA */
 &select_sqlda /* to receive select list SQLDA */
);

If the server successfully prepares the statement, it returns a statement ID to the client,
which the Oracle SQL/Services client API stores in the statement_id variable. If an SQL
statement contains either parameter markers or select list items, then the Oracle
SQL/Services client API allocates memory for one or both SQLDAs and returns the memory
pointer or handle to the application in the param_sqlda or select_sqlda variables.

The sample application calls the sqlsrv_sqlca_sqlerrd API routine to obtain the statement
type from the SQLERRD[1] array element as follows:

sts = sqlsrv_sqlca_sqlerrd(
 assoc_id, /* association ID. */
 sqlerrd_array /* to receive SQLERRD array */
);
 .
 .
 .
statement_type = sqlerrd_array[1];

3.5.2.4 Allocating Data and Indicator Variables
The sample application checks the param_sqlda and select_sqlda variables for non-NULL
values to determine if the SQL statement contains any parameter markers or select list items.
If any are present, the sample calls the sqlsrv_allocate_sqlda_data API routine to allocate
memory for the data and indicator variables. For example, to allocate the data and indicator
variables for a select list SQLDA:

if (select_sqlda != NULL)
 {
 sts = sqlsrv_allocate_sqlda_data(
 assoc_id, /* association ID. */
 select_sqlda /* Select list SQLDA. */
);
 .
 .
 .
 }

Dynamic Module

3-14 Guide to Using the Oracle SQL/Services Client API

If any parameter markers are present, the sample application also calls the get_params
function, which is described in Section 3.5.2.5, to prompt the user for values for all
parameter markers.

3.5.2.5 Processing Parameter Markers
The sample program includes a function named get_params that prompts the user for
parameter markers. As in the driver module, the implementation of the terminal input/output
is unimportant. As demonstrated in the get_params function, your application must perform
the following steps:

1. Execute a loop that iterates once for each parameter marker in the SQL statement. The
sqlsrv_sqlda_sqld73 API routine returns the number of parameter markers.

for (i = 0; i < sqlsrv_sqlda_sqld73(param_sqlda, assoc_id); i++)
 {
 .
 .
 .
 }

2. Within the loop, call the sqlsrv_sqlda_ref_data73 API routine to obtain the data type
and length, and pointers to the data and indicator variables for each parameter marker.

sts = sqlsrv_sqlda_ref_data73(
 param_sqlda, /* parameter marker SQLDA */
 i, /* column index number */
 &coltyp, /* to receive column data type */
 &collen, /* to receive column length */
 &colscl, /* to receive column scale/type */
 &coldata, /* to receive column data ptr. */
 &nullp, /* to receive column ind. ptr. */
 NULL, /* reserved argument */
 assoc_id /* associate ID */
);

3. Obtain a value for each parameter marker. The sample application checks that the user
enters a data value that is not too long. To do so, it must check for certain data types and
adjust the length returned by the sqlsrv_sqlda_ref_data73 API routine accordingly. For
example, the length for the SQLSRV_GENERALIZED_DATE data type includes space
for the null-terminator, so the maximum length must be decreased by 1, whereas the
length for the SQLSRV_GENERALIZED_NUMBER data type does not include the
additional 5 bytes that the sqlsrv_allocate_sqlda_data API routine allocates for integer
values expressed in scientific notation, so the maximum length must be increased by 5.

Dynamic Module

Sample Application Guidelines 3-15

See Chapter 8 for more information on the data types supported by the Oracle
SQL/Services client API.

switch (coltyp)
 {
 case SQLSRV_GENERALIZED_DATE:
 maxlen--;
 break;

 case SQLSRV_GENERALIZED_NUMBER:
 maxlen += 5;
 break;
 }

4. Set the indicator variable and store the value in the parameter marker's data variable
according to each parameter marker's data type.

To specify a NULL value for a parameter marker, store –1 in the indicator variable;
otherwise, store 0 in the indicator variable.

There are three fundamental data types in Oracle SQL/Services: fixed-length strings,
null-terminated strings, and variable-length data with leading length field. Each Oracle
SQL/Services data type maps to one of these fundamental data types. The sample
application supports a subset of the full range of Oracle SQL/Services data types as
follows.

■ Fixed-length strings

There are two fixed-length data types: SQLSRV_LIST_VARBYTE (not supported
by the sample application) and SQLSRV_ASCII_STRING. To store a fixed-length
string in a parameter marker, the sample uses the memcpy C library function to
copy the value, and the memset C library function to pad the value with spaces, if
necessary.

If your application calls the sqlsrv_allocate_sqlda_data API routine to allocate
parameter marker variables, then Oracle SQL/Services allocates an extra byte of
memory for parameter marker variables of type SQLSRV_ASCII_STRING.
Therefore, your application can also use the strcpy C library function to copy a
value to a parameter marker variable, because there is sufficient space for the
trailing null-terminator. However, you should be aware that when Oracle
SQL/Services sends fixed-length string parameter marker values to the server, it
always sends the number of bytes specified by the parameter marker length in the
SQLDA, regardless of the possible presence of a null-terminator anywhere in the
string. Because Oracle SQL/Services does not treat fixed-length strings as a
null-terminated string, the sample application always pads these values with spaces.

Dynamic Module

3-16 Guide to Using the Oracle SQL/Services Client API

■ Null-terminated strings

There are three null-terminated data types: SQLSRV_GENERALIZED_NUMBER,
SQLSRV_GENERALIZED_DATE, and SQLSRV_INTERVAL. To store a
null-terminated string in a parameter marker, the sample simply uses the strcpy C
library function to copy the value and null-terminator.

If your application calls the sqlsrv_allocate_sqlda_data API routine to allocate
parameter marker variables, Oracle SQL/Services always allocates the extra byte of
memory required for the null-terminator. When Oracle SQL/Services sends
null-terminated string parameter marker values to the server, it uses the strlen C
library function to determine how much data to send.

■ Variable-length data with leading length field

There are two variable-length data types: SQLSRV_VARBYTE (not supported by
the sample application) and SQLSRV_VARCHAR. To store a variable-length data
value in a parameter marker, the sample first stores the length in the leading
unsigned 16-bit length field, then uses the memcpy C library function to copy the
data value.

If your application calls the sqlsrv_allocate_sqlda_data API routine to allocate
parameter marker variables, then Oracle SQL/Services allocates sufficient memory
to accomodate the leading length field and a data value of the maximum length;
however, it does not allocate space for a null-terminator. Therefore, your
application should not use the strcpy C library function to copy a variable-length
data value. When Oracle SQL/Services sends a variable-length data value to the
server, it uses the leading length field to determine how much data to send.

See Chapter 8 for more information on the data types supported by the Oracle
SQL/Services client API.

Note: The SQLSRV_LIST_VARBYTE, which is not supported by the
sample application, is another instance of a fixed-length data type.
However, because values of this data type can contain binary values,
including null bytes, you should always use the memcpy C library
function when processing values of this data type.

Note: If your application uses the SQLDA2 format, the leading length
field is an unsigned 32-bit integer.

Dynamic Module

Sample Application Guidelines 3-17

The following code example illustrates how the sample application processes each
data type.

switch(coltyp)
 {

 case SQLSRV_ASCII_STRING:

 /* fixed-length string: copy the data to the */
 /* SQLDATA memory; pad with spaces if necessary */

 memcpy((SCHARPTR)coldata, lcldata, len);
 if (len < maxlen)
 {
 memset((SCHARPTR)coldata+len, ' ', maxlen-len);
 }
 break;

 case SQLSRV_GENERALIZED_NUMBER:
 case SQLSRV_GENERALIZED_DATE:
 case SQLSRV_INTERVAL:

 /* null-terminated strings: just use strcpy to */
 /* copy the data value and the null-terminator */

 strcpy((SCHARPTR)coldata, lcldata);
 break;

 case SQLSRV_VARCHAR:

 /* variable-length data with length field: write */
 /* the length into the leading 16-bit length field */
 /* of the buffer, then advance the pointer over */
 /* the length to the beginning of the data and */
 /* copy the data */

 varchar_ptr = coldata;
 *(unsigned short int *)varchar_ptr = len;
 varchar_ptr += sizeof(unsigned short int);
 memcpy((SCHARPTR)varchar_ptr, lcldata, len);
 break;

 } /* switch */

Dynamic Module

3-18 Guide to Using the Oracle SQL/Services Client API

5. After processing each parameter marker, call the sqlsrv_sqlda_unref_data73 API routine
to de-reference the parameter marker's data and indicator variables.

sts = sqlsrv_sqlda_unref_data73(
 param_sqlda, /* parameter marker SQLDA */
 i, /* column index number */
 assoc_id /* associate ID */
);

3.5.2.6 Testing for SELECT Statements
To test for a SELECT statement, the sample application checks the statement_type variable,
which it set previously using the SQLERRD[1] field of the SQLCA. Whenever Oracle Rdb
SQL prepares an SQL statement, it stores the statement type in the SQLERRD[1] field, as
follows:

■ 0 = executable statement, excluding CALL statements

■ 1 = SELECT statement

■ 2 = CALL statement

3.5.2.7 Processing a SELECT Statement
To process a SELECT statement, the sample application opens a cursor, fetches and displays
each row in the result table, then closes the cursor, as follows:

■ Calls the sqlsrv_open_cursor API routine to open the cursor. Note that the sample has
previously prompted the user for the values of any parameter marker values.

sts = sqlsrv_open_cursor(
 assoc_id, /* association id */
 cursor_name, /* cursor name */
 statement_id, /* statement ID */
 param_sqlda /* parameter marker SQLDA */
);

■ For each row in the result table, calls the sqlsrv_fetch API routine to fetch the row, then
calls the display_select_list function to display the values. See Section 3.5.2.9 for more
information about the display_select_list function.

printf("------ BEGIN RESULT TABLE ------\n");
do
 {
 sts = sqlsrv_fetch(
 assoc_id, /* association id */
 cursor_name, /* cursor name */

Dynamic Module

Sample Application Guidelines 3-19

 0, /* scroll option */
 0L, /* position */
 select_sqlda /* select list SQLDA */
);
 switch (sts)
 {
 case SQL_SUCCESS:
 sts = display_select_list(assoc_id, select_sqlda);
 printf("---------- END OF ROW ----------\n");
 break;

 case SQL_EOS:
 printf("------- END RESULT TABLE -------\n");
 break;

 default:
 handle_error(assoc_id);
 break;
 }
 } while (sts == SQL_SUCCESS);

■ Calls sqlsrv_close_cursor API routine to close the cursor when all rows have been
fetched.

sts = sqlsrv_close_cursor(
 assoc_id, /* association id */
 cursor_name /* cursor name */
);

3.5.2.8 Processing Executable Statements
To process an executable SQL statement, including CALL statements, the sample
application calls the sqlsrv_execute_in_out API routine as follows:

sts = sqlsrv_execute_in_out(
 assoc_id, /* association ID. */
 0, /* database_id, must be zero. */
 statement_id, /* Prepared statement id. */
 SQLSRV_EXE_W_DATA, /* Normal nonbatched execute mode. */
 param_sqlda, /* Parameter marker SQLDA. */
 select_sqlda /* Select list SQLDA. */
);

The sqlsrv_execute_in_out API routine handles any executable statement, regardless of
whether the statement has any input in the form of parameter markers, or output in the form

Dynamic Module

3-20 Guide to Using the Oracle SQL/Services Client API

of select list items. See Chapter 4.1 for information on batched execution of executable
statements with parameter markers.

If the executable SQL statement has any output, the sample application calls the display_
select_list to display the values of the select list items.

3.5.2.9 Processing Select List Items
The sample application includes a function named display_select_list that displays the
values of any select list items in a select list SQLDA. As in the driver module, the
implementation of the terminal input/output is unimportant. As demonstrated in the display_
select_list function, your application must perform the following steps.

1. Execute a loop that iterates once for each select list item in the SQL statement. The
sqlsrv_sqlda_sqld73 API routine returns the number of select list items.

for (i = 0; i < sqlsrv_sqlda_sqld73(select_sqlda, assoc_id); i++)
 {
 .
 .
 .
 }

2. Within the loop, call the sqlsrv_sqlda_ref_data73 API routine to obtain the data type
and length, and pointers to the data and indicator variables for each select list item.

sts = sqlsrv_sqlda_ref_data73(
 select_sqlda, /* select list SQLDA */
 i, /* column index number */
 &coltyp, /* to receive column data type */
 &collen, /* to receive column length */
 &colscl, /* to receive column scale/type */
 &coldata, /* to receive column data ptr. */
 &nullp, /* to receive column ind. ptr. */
 NULL, /* reserved argument */
 assoc_id /* associate ID */
);

3. Check the indicator variable and process the value in each select list item's data variable
according to the data type.

If the indicator variable for a select list item is set to –1, indicating a NULL value, the
sample application displays "NULL" and proceeds to the next select list item.
Otherwise, the sample application displays the data value based on the data type of the
select list item.

Dynamic Module

Sample Application Guidelines 3-21

There are three fundamental data types in Oracle SQL/Services: fixed-length strings,
null-terminated strings, and variable-length data with leading length field. Each Oracle
SQL/Services data type maps to one of these fundamental data types. The sample
application supports a subset of the full range of Oracle SQL/Services data types as
follows.

– Fixed-length strings

There are two fixed-length data types: SQLSRV_LIST_VARBYTE (not supported
by the sample application) and SQLSRV_ASCII_STRING. To process a
fixed-length string in a select list item's data variable, use the length and pointer
variables set by the sqlsrv_sqlda_ref_data73 API routine. The sample application
passes both the length and the pointer as arguments to the printf C library function
using the format string "%-.*s\n". Alternatively, to copy the same value to a local
variable, the sample could call the memcpy C library function, again specifying the
length and pointer variables as arguments.

If your application calls the sqlsrv_allocate_sqlda_data API routine to allocate
select list item variables, then Oracle SQL/Services allocates an extra byte of
memory for select list item data variables of type SQLSRV_ASCII_STRING. This
allows Oracle SQL/Services to null-terminate a string value when it receives
fixed-length string select list item data values from the server. Therefore, you can
also treat variables of type SQLSRV_ASCII_STRING as null-terminated strings
using, for example, the strcpy C library function.

– Null-terminated strings

There are three null-terminated data types: SQLSRV_GENERALIZED_NUMBER,
SQLSRV_GENERALIZED_DATE, and SQLSRV_INTERVAL. To display a
null-terminated string from a select list item's data variable, the sample simply
passes the data pointer as an argument to the printf C library function using the
format string "%s\n". Alternatively, to copy the same value to a local variable, the
sample could simply call the strcpy C library function, again specifying the pointer
variable as an argument.

– Variable-length data with leading length field

Note: The SQLSRV_LIST_VARBYTE, which is not supported by the
sample application, is another instance of a fixed-length data type.
However, because values of this data type can contain binary values,
including null bytes, you should always use the memcpy C library
function when processing values of this data type.

Dynamic Module

3-22 Guide to Using the Oracle SQL/Services Client API

There are two variable-length data types: SQLSRV_VARBYTE (not supported by
the sample application) and SQLSRV_VARCHAR. To process a variable-length
data value in a select list item's data variable, the sample first uses a pointer to
retrieve the length from the leading unsigned 16-bit length field, then advances the
pointer past the length field to the data area of the variable. The sample application
passes both the length and the data pointer as arguments to the printf C library
function using the format string "%-.*s\n". Alternatively, to copy the same value to
a local variable, the sample could call the memcpy C library function, again
specifying the length and data pointer variables as arguments.

If your application calls the sqlsrv_allocate_sqlda_data API routine to allocate
parameter marker variables, then Oracle SQL/Services allocates sufficient memory
to accommodate the leading length field and a data value of the maximum length;
however, it does not allocate space for a null-terminator. Therefore, your
application should not use the strcpy C library function to copy a variable-length
data value.

See Chapter 8 for more information on the data types supported by the Oracle
SQL/Services client API.

The following code example illustrates how the sample application processes each
data type.

/* check the indicator variable for NULL value */

if (*nullp < 0)
 {
 printf("NULL\n");
 }
else
 {
 switch (coltyp)
 {
 case SQLSRV_ASCII_STRING:

 /* Fixed-length character strings */

 printf("%-.*s\n", collen, coldata);
 break;

Note: If your application uses the SQLDA2 format, the leading length
field is an unsigned 32-bit integer.

Dynamic Module

Sample Application Guidelines 3-23

 case SQLSRV_GENERALIZED_NUMBER:
 case SQLSRV_GENERALIZED_DATE:
 case SQLSRV_INTERVAL:

 /* Null-terminated strings */

 printf("%s\n", coldata);
 break;

 case SQLSRV_VARCHAR:

 /* Counted string. The first 16-bit unsigned word of */
 /* the data buffer is the length. Get length then */
 /* advance the pointer to the data. */

 /* Note: SQLSRV_VARCHAR data may contain nonprintable */
 /* binary data; a real application may not display the */
 /* data value using printf. */

 varchar_ptr = coldata;
 varchar_len = *(unsigned short int *)varchar_ptr;
 varchar_ptr += sizeof(unsigned short int);
 printf("%-.*s\n", varchar_len, varchar_ptr);
 break;

 } /* switch */

 } /* else */

4. After processing each select list item, call the sqlsrv_sqlda_unref_data73 API routine to
de-reference the select list item's data and indicator variables.

sts = sqlsrv_sqlda_unref_data73(
 select_sqlda, /* select list SQLDA */
 i, /* column index number */
 assoc_id /* associate ID */
);

3.5.2.10 Error Handling
The sample application contains three functions that handle error conditions.

■ handle_error function

The handle_error function is the main error handling routine for the sample application.
It first calls the report_error function to display an error message. It then checks the

Dynamic Module

3-24 Guide to Using the Oracle SQL/Services Client API

error status and terminates the application if a nonrecoverable error occurred, such as a
network error or if the server was shut down.

major_error = report_error(assoc_id);
if (major_error == SQLSRV_NETERR ||
 major_error == SQLSRV_INTERR ||
 major_error == SQLSRV_EXEINTERR ||
 major_error == SQLSRV_CONNTIMEOUT ||
 major_error == SQLSRV_SVC_SHUTDOWN)
 {
 sqlsrv_release(assoc_id, NULL);
#if defined (_WINDOWS)
 IvpExit();
#else
 exit(2);
#endif
 }

■ report_error function

The report_error function is responsible for displaying an error message associated with
the most recent error. It is called by the handle_error function and by the create_
association function if an error occurred trying to connect to the server. The report_error
function first calls the sqlsrv_sqlca_error_text API routine to retrieve any error text that
might have been returned by the server or produced by the Oracle SQL/Services client
API.

sts = sqlsrv_sqlca_error_text(
 assoc_id, /* associate ID */
 &err_msg_len, /* to receive error message length */
 err_msg_buf, /* error message buffer */
 sizeof(err_msg_buf) /* size of error message buffer */
);

If an error message is available, the report_error function displays the error message
text and returns. If no error message is available, the report_error function calls the
sqlsrv_sqlca_error API routine to retrieve the major and minor error codes, then calls
the report_sqlsvcs_error function to display an error message based on the error codes.

sts = sqlsrv_sqlca_error(
 assoc_id, /* associate ID */
 &major_error, /* to receive major error code */
 &minor_error_1, /* to receive first suberror */
 &minor_error_2 /* to receive second suberror */
);

Dynamic Module

Sample Application Guidelines 3-25

■ report_sqlsvcs_error function

The report_sqlsvcs_error function accepts as input major and minor error codes, then
displays an error message based on those error codes. It is called by the report_error_
function if no error message is available and called by the create_association if an error
occurs trying to connect to the server and the sqlsrv_associate API routine does not
return an association ID.

The execute_statement function checks the return status after calling every Oracle
SQL/Services client API routine. If a call fails, the execute_statement function calls the
handle_error function, calls the sqlsrv_release_statement API routine to release the prepared
statement, then returns the failure status to the caller.

if (sts != SQL_SUCCESS)
 {
 handle_error(assoc_id);
 sqlsrv_release_statement(assoc_id, 1, &statement_id);
 return sts;
 }

Note that if a call to the sqlsrv_execute_immediate or sqlsrv_prepare API routines fails,
there is no prepared statement to release.

3.5.2.11 Releasing Prepared Statements
When a prepared statement is no longer needed, the execute_statement function calls the
API routine sqlsrv_release_statement to release the resources allocated for that statement:

sts = sqlsrv_release_statement(
 assoc_id, /* association handle. */
 1, /* no. of statement ids. */
 &statement_id /* statement id array. */
);

If your application prepares several statements at one time, you can release any or all of
them together by passing an array of statement identifiers to the API routine sqlsrv_release_
statement. The sample application prepares only one statement at a time; therefore, it passes
the address of the statement ID variable to sqlsrv_release_statement. Effectively this is an
array of one element.

Dynamic Module

3-26 Guide to Using the Oracle SQL/Services Client API

Performance Considerations 4-1

4
Performance Considerations

This chapter describes how to improve the performance of your programming applications
by reducing the number of client/server network messages required to perform operations.

4.1 Batched Execution
When your application executes a prepared INSERT, UPDATE, or DELETE statement that
contains parameter markers, it can control whether the API sends one row or several rows of
data at a time to the server for processing. Frequently, batched execution reduces the number
of messages required to complete the operation.

The mechanism for controlling batched execution is the execute_flag parameter in the
sqlsrv_execute_in_out routine, which is described in sqlsrv_execute_in_out. The values of
the execute_flag parameter are shown in Table 6–7.

In batched execution, the API stores sets of parameter marker values in the message buffer
until your application signals the end of the batched execution. If the message buffer
becomes full during batched execution, the API sends the message to the server and begins a
new message in a manner that is transparent to your application. In that case, when the
batched parameter marker values arrive at the server, the server stores the values in a buffer
until the application signals the end of the batched execution. If the application aborts the
batched execution, the API clears the buffers on both the client and the server. Thus, the
database remains consistent and there is no need to roll back the transaction.

In nonbatched execution, the API places each set of parameter marker values in the message
buffer and sends the message to the server for execution.

Batched Execution

4-2 Guide to Using the Oracle SQL/Services Client API

The following example illustrates how to use the batched execution mechanism. Note that
the error checking code has been removed from the example for brevity; however, your
application should always check for and handle error conditions.

In this example, the application calls the prompt_for_order_details application function to
prompt the user for new order details and to store the data into the parameter marker
variables in the SQLDA.

As the user enters each line of the order, the application calls the sqlsrv_execute_in_out API
routine with the SQLSRV_EXE_BATCH flag. This flag directs the Oracle SQL/Services
client API to start or continue batched execution by queueing the row data for subsequent
execution.

When the user has finished the order, the application calls the sqlsrv_execute_in_out API
routine with the SQLSRV_EXE_WO_DATA flag to end batched execution. This flag directs
the server to execute the previously queued requests, but does not send the data that is
currently stored in the parameter marker SQLDA, which in this case would be the data from
the most recent order line.

If the user cancels the order, the application calls the sqlsrv_execute_in_out API routine
with the SQLSRV_EXE_ABORT flag to cancel batched execution without executing any
previously queued requests.

 .
 .
 .
sql_statement = "INSERT INTO NEW_ORDERS VALUES (?, ?, ?, ?, ?, ?, ?)";
sts = sqlsrv_prepare(
 assoc_id, /* association ID. */
 0, /* database id, must be zero. */
 sql_statement, /* SQL statement. */
 &statement_id, /* to receive prepared statement id. */
 ¶m_sqlda, /* to receive parameter marker SQLDA. */
 &select_sqlda /* to receive select list SQLDA. */
);

Note: Once you initiate batched execution for a particular statement ID
by calling the sqlsrv_execute_in_out API routine with the SQLSRV_
EXE_BATCH flag, you cannot call other API routines or execute other
statement IDs until you end batched execution for the current statement ID
using the SQLSRV_EXE_WO_DATA, SQLSRV_EXE_W_DATA, or
SQLSRV_EXE_ABORT flag.

Batched Execution

Performance Considerations 4-3

do
 {
 action = prompt_for_order_details(param_sqlda);

 switch (action)
 {
 case ADD_ORDER_LINE:
 exec_flag = SQLSRV_EXE_BATCH; /* Queue for later execution */
 break;

 case END_OF_ORDER:
 exec_flag = SQLSRV_EXE_WO_DATA; /* Execute queued requests */
 break;

 case CANCEL_ORDER:
 exec_flag = SQLSRV_EXE_ABORT; /* Cancel batched execution */
 break;
 }

 sts = sqlsrv_execute_in_out(
 assoc_id, /* association ID. */
 0, /* reserved, must be zero. */
 statement_id, /* Prepared statement id. */
 exec_flag, /* Execute function flag. */
 param_sqlda, /* Parameter marker SQLDA. */
 select_sqlda /* Select list SQLDA. */
);

 } while (action == ADD_ORDER_LINE);

sts = sqlsrv_release_statement(
 assoc_id, /* association ID. */
 1, /* number of statement id's. */
 &statement_id /* statement id array. */
);
 .
 .
 .

Improving Row Fetch Performance

4-4 Guide to Using the Oracle SQL/Services Client API

4.2 Improving Row Fetch Performance
You can improve row fetch performance of your application by setting appropriate read and
write buffer sizes for your client application based on the sizes of the data values. In
addition, you can improve row fetch performance using the sqlsrv_fetch_many routine.

Setting Buffer Sizes
Oracle Corporation recommends that for a fetch-intensive application, in which you are
using the sqlsrv_fetch_many routine and are working with large data values, such as images
stored in lists (segmented strings), that you specify values greater than 1300 bytes for the
read_buffer and write_buffer parameters in the sqlsrv_associate routine. You do this to
ensure optimal performance for moving data between the server and client.

If you specify values greater than 5000 bytes for these two parameters in your application
program, be sure to check that the server's dispatcher MAX_CLIENT_BUFFER_SIZE value
is greater than these two parameter values. The default and minimum value allowed for the
maximum client buffer size in a dispatcher process is 5000 bytes.

If the server's dispatcher MAX_CLIENT_BUFFER_SIZE is less than the read_buffer and
write_buffer parameter values, the client picks the lower of the two sizes.

Fetching Multiple Rows
When your application fetches rows from a result table, it can control whether the server
sends one row or several rows of data at a time to the API. Fetching multiple rows at a time
generally reduces the number of client/server messages required to complete the operation.

The mechanism for fetching multiple rows is the sqlsrv_fetch_many routine, which is
described in sqlsrv_fetch_many. Using the sqlsrv_fetch_many API routine to initiate a fetch
many operation is as follows. Call the routine after calling the sqlsrv_open_cursor routine
before the first call to the sqlsrv_fetch routine. The repeat_count parameter specifies the
number of rows that the server can send to the API the next time your application calls
sqlsrv_fetch. When you specify a repeat count of 0, the server continously fetches rows from
the result table and transmits them to the client until all rows have been fetched. When you
specify a repeat_count other than 0, your application must call the sqlsrv_fetch_many
routine again once the specified number of rows have been fetched. You can call the sqlsrv_
close_cursor API routine at any time to end a multiple row fetch operation.

Note: Alternatively, you can use the SQLSRV_EXE_W_DATA flag to
end a batched execution operation. This flag directs the server to execute
the previously queued requests, including the data that is currently stored
in the parameter marker SQLDA.

Improving Row Fetch Performance

Performance Considerations 4-5

Oracle Corporation recommends that you set the repeat_count to 0 if all rows are to be
fetched. When the sqlsrv_fetch_many routine is called with a repeat_count of 0, all rows in
the result table can be accessed with successive calls to sqlsrv_fetch. In this situation, the
sqlsrv_fetch_many routine does not need to be called again. Oracle SQL/Services manages
the message buffer transparently by filling each message buffer with as many rows as
possible whenever the data in the buffer is exhausted by a sqlsrv_fetch call. Each successive
call to the sqlsrv_fetch API routine retrieves the next row of data from the message buffer.
When all the rows have been read from the buffer, the client API posts a network receive to
read the next buffer from the server without having to send a fetch request to the server.
When the specified number of rows has been fetched or when the last row in the table has
been fetched, the API returns to the default behavior.

The sqlsrv_fetch_many API routine is responsible for configuring the Oracle SQL/Services
API to begin a multiple row fetch operation; however, it does not fetch any rows. The
multiple row fetch operation is not actually started until the application calls the sqlsrv_fetch
API routine. Therefore, the sqlsrv_fetch_many API routine returns a success status even if
no rows are in the result table.

The following example extends the sample application described in Chapter 3 to use the
sqlsrv_fetch_many API routine. In this example, note that the only change to the logic is the
addition of the call to the sqlsrv_fetch_many API routine; the rest of the routine remains the
same.

 .
 .
 .
sts = sqlsrv_open_cursor(
 assoc_id, /* association id */

Note: Once you initiate a multiple row fetch operation by calling the
sqlsrv_fetch_many API routine, you cannot call other API routines until
the specified number of rows or all rows have been fetched. The only
exception is the sqlsrv_close_cursor API routine, which you can call to
end a multiple row fetch operation. For this reason, and because the
position of the cursor within the result table at the server is always ahead
of the number of rows fetched by the client when a multiple row fetch
operation is active, you cannot call the sqlsrv_execute_in_out API routine
to execute statements such as INSERT . . . WHERE CURRENT OF
cursor_name, UPDATE . . . WHERE CURRENT OF cursor_name, or
DELETE . . . WHERE CURRENT OF cursor_name when a multiple row
fetch is active.

Improving Row Fetch Performance

4-6 Guide to Using the Oracle SQL/Services Client API

 cursor_name, /* cursor name */
 statement_id, /* statement ID */
 param_sqlda /* parameter marker SQLDA */
);
 .
 .
 .
sts = sqlsrv_fetch_many(
 assoc_id, /* association id */
 cursor_name, /* cursor name */
 1, /* Row increment */
 0 /* Fetch all rows */
);
 .
 .
 .
printf("------ BEGIN RESULT TABLE ------\n");
do
 {
 sts = sqlsrv_fetch(
 assoc_id, /* association id */
 cursor_name, /* cursor name */
 0, /* direction */
 0L, /* row number */
 select_sqlda /* select list SQLDA */
);
 switch (sts)
 {
 case SQL_SUCCESS:
 sts = display_select_list(assoc_id, select_sqlda);
 printf("---------- END OF ROW ----------\n");
 break;

 case SQL_EOS:
 printf("------- END RESULT TABLE -------\n");
 break;

 default:
 handle_error(assoc_id);
 break;
 }
 } while (sts == SQL_SUCCESS);
 .
 .
 .

Using Compound Statements

Performance Considerations 4-7

sts = sqlsrv_close_cursor(
 assoc_id, /* association id */
 cursor_name /* cursor name */
);
 .
 .
 .

4.3 Using Stored Procedures
A stored procedure is a set of operations performed on an Oracle Rdb database by one or
more SQL statements that execute as a unit to perform a wide variety of database operations.
The stored procedure resides within a stored module that is the object of compilation and
encapsulates an operation, such as updating, deleting, or adding information to a table. The
stored module resides as a schema object inside an Oracle Rdb database and defines at least
one stored procedure. Stored procedures allow you to place an operation (or set of
operations) in the database for reference by other users.

With client/server processing, your client system applications can attain much better
performance by calling a set of stored procedures that reside on the server system. The
stored procedures perform an operation or a series of operations on the database from the
server side rather than locally storing and maintaining database requests containing the same
SQL statements from the client side. With stored procedures, multiple SQL statements can
be processed with a single CALL statement. This is useful if certain transactions are
executed frequently. In such a case, the stored procedure can be created in advance on the
server and called as needed by the client. Therefore, use stored procedures whenever
possible.

For more information on using stored procedures, see the Oracle Rdb7 Guide to SQL
Programming.

4.4 Using Compound Statements
You can dynamically prepare and execute compound statements using the dynamic SQL
interface. A compound statement is a set of one or more SQL statements delimited by
BEGIN and END statements. The SQL statements contained in a compound statement can
contain parameter markers, select list items, or both. For example:

BEGIN
SET TRANSACTION READ WRITE;
INSERT INTO EMPLOYEES VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?);
INSERT INTO SALARY HISTORY VALUES (?, ?, ?, ?, ?);
SELECT AVG(SALARY), SUM(SALARY) INTO ?, ? FROM EMPLOYESS;

Reusing SQL Statements

4-8 Guide to Using the Oracle SQL/Services Client API

COMMIT;
END

Compound statements have some of the same performance advantages as stored procedures,
because a series of SQL statements can be executed at the server with a single call to the
sqlsrv_execute_in_out API routine. In some situations, compound statements have an
advantage over stored procedures because they can be constructed dynamically by an
application as and when required. However, it is more efficient to use a stored procedure if a
particular set of SQL statements are executed frequently. Furthermore, an application must
have precise knowledge of the order of all parameter markers and select list items because
parameter marker names and select list item names are not returned by Oracle Rdb when
you prepare a compound statement.

For more information on using compound statements, see the Oracle Rdb7 Guide to SQL
Programming.

4.5 Reusing SQL Statements
A prepared SQL statement should not be released when the statement can be reused. After a
statement is prepared, the statement can be executed many more times with the same
statement_id (see the sqlsrv_prepare and sqlsrv_execute_in_out routines for more
information). This not only reduces the number of network messages, but also reduces
resource consumption by not performing extra sqlsrv_prepare and sqlsrv_release routine
calls. The only disadvantage is that extra memory will be needed to keep these prepared
statements before they are released. For example:

sts = sqlsrv_prepare(
 assoc_id,
 0L,
 sql_statement_1,
 &statement_id_1,
 ¶m_sqlda_1,
 &select_sqlda_1,
);
sts = sqlsrv_prepare(
 assoc_id,
 0L,
 sql_statement_2,
 &statement_id_2,
 ¶m_sqlda_2,
 &select_sqlda_2,
);
 .
 .

Reusing SQL Statements

Performance Considerations 4-9

 .
 do {
 GetUserChoice(&choice);
 switch (choice)
 case CHOICE_1:
 sts = sqlsrv_execute_in_out(
 assoc_id,
 0L,
 statement_id_1,
 execute_flag,
 param_sqlda_1,
 select_sqlda_1
);
 if (sts != SQL_SUCCESS) {
 /*
 error condition
 */
 }
 break;
 case CHOICE_2:
 sts = sqlsrv_execute_in_out(
 assoc_id,
 0L,
 statement_id_2,
 execute_flag,
 param_sqlda_2,
 select_sqlda_2
);
 if (sts != SQL_SUCCESS) {
 /*
 error condition
 */
 }
 break;
 .
 .
 .
 default:
 .
 .
 .
 } /* switch (choice) */
 .
 .
 .

Reusing SQL Statements

4-10 Guide to Using the Oracle SQL/Services Client API

 } while (choice != END_OF_CHOICE);
 sts = sqlsrv_release_statement(
 assoc_id,
 1,
 &statement_id_1
 };
 sts = sqlsrv_release_statement(
 assoc_id,
 1,
 &statement_id_2
 };
 .
 .
 .

Logging for Performance and Debugging 5-1

5
Logging for Performance and Debugging

This chapter describes how to use client logging to help debug and monitor the performance
of Oracle SQL/Services applications. Logging can be useful in debugging an application to
verify that the application is sending the correct data to the server. Logging can be useful in
tuning the performance of an application to set the network buffer size so that frequently
sent messages fit into a single network packet and do not have to be split into multiple
packets.

5.1 Enabling and Disabling Logging
You enable client logging by setting one or more logging flags in the CLIENT_LOG field in
the association structure (see Section 7.2) before calling sqlsrv_associate or by using one of
the following operating system-specific mechanisms:

■ 32-Bit Windows operating systems

Set the ClientLogging option to the appropriate value in the sqsapi32.ini file before
running the application. For example:

ClientLogging=7

■ 64-Bit Windows operating systems

Set the ClientLogging option to the appropriate value in the sqsapi64.ini file before
running the application. For example:

ClientLogging=7

■ OpenVMS operating system

Define the SQLSRV$CLIENT_LOG logical name using the appropriate value before
running the application. For example:

$ DEFINE SQLSRV$CLIENT_LOG 7

Enabling and Disabling Logging

5-2 Guide to Using the Oracle SQL/Services Client API

■ HP Tru64, HP-UX and Linux operating systems

Set the SQLSRV_CLIENT_LOG environment variable to the appropriate value before
running the application. For example:

% setenv SQLSRV_CLIENT_LOG 7

Table 5–1 shows all the logging flag names and their numeric values.

Table 5–1 Client Logging Flags and Values

Flag Name Value Description

SQLSRV_LOG_DISABLED 0 Disables logging (default).

SQLSRV_LOG_ASSOCIATION 1 Enables association logging.

SQLSRV_LOG_ROUTINE 2 Enables API routine logging.

SQLSRV_LOG_PROTOCOL 4 Enables message protocol logging.

SQLSRV_LOG_SCREEN1

1 The SQLSRV_LOG_SCREEN flag is ignored on all Windows platforms.

8 Sends logging to standard output on the client
system as well as to the log file.

SQLSRV_LOG_OPNCLS 64 Opens and closes the log file around each log
file write and is useful if a client is terminating
abnormally while calling an Oracle
SQL/Services client API routine. If the client
process is terminating due to an unhandled
error condition in an Oracle SQL/Services
client API service, then it may be necessary to
use the SQLSRV_LOG_OPNCLS option in
order to write as much information as possible
to the log file during every call to an Oracle
SQL/Services client API service.

SQLSRV_LOG_FLUSH 128 Flushes pending output to the log file only at
the end of each complete association-level,
routine-level, and protocol-level log entry and
is useful if a client application is terminating
abnormally while executing application code.
If the client process is terminating due to an
unhandled error condition in the client
application, use the SQLSRV_LOG_FLUSH
option to flush pending output to the client log
before each call to an Oracle SQL/Services
client API service completes.

SQLSRV_LOG_BINARY 256 Dumps memory in structured format if data
contains nonprintable characters.

Association Logging

Logging for Performance and Debugging 5-3

To enable more than one type of logging, add the appropriate constants. For example:

associate_str.CLIENT_LOG = SQLSRV_LOG_ROUTINE + SQLSRV_LOG_SCREEN;

Most of the operating systems supported by the Oracle SQL/Services client API do not
support multiple versions of the same file. However, sometimes it is necessary or
advantageous to preserve the client log files produced by multiple associations. For example,
Microsoft Access frequently uses two associations to process user requests. Therefore,
Oracle SQL/Services uses the following algorithm to construct a unique client log file name
to retain multiple client log files:

1. Use client.log if there is no existing log file named client.log.

2. Using client<nn>.log as a template, increment nn from 00 to 99 looking for a log file
name for which there is no existing log file. For example client00.log, client01.log, and
so forth. Use the first available unused file name.

3. If client.log and client00.log through client99.log all exist, use client.log, overwriting
the existing client.log file.

Using this algorithm, Oracle SQL/Services can retain up to 101 client log files. Client log
files can consume large amounts of disk space, depending on the application. Therefore, you
may want to delete or archive log files once you have finished monitoring or debugging an
application.

5.2 Association Logging
Association logging occurs whenever a client/server association is created, terminated, or
aborted. Use this type of logging to debug server access in application programs.

Depending on the API routine called, association log entries include some or all of the
following items:

A header that identifies the entry as ASSOCIATE LEVEL LOG

The name of the API routine

The association identifier

The name of the server node

The name of the user account on the server

The error status for the API routine

The detailed error code for network or server errors

1

2

3

4

5

6

7

Routine Logging

5-4 Guide to Using the Oracle SQL/Services Client API

The type of network transport used for client/server communication: DECnet, TCP/IP,
or Oracle Net

For example:

ASSOCIATE LEVEL LOG
----SQLSRV_ASSOCIATE
--------SQLSRV_ASSOCIATE ID: 7ac50
--------NODE: abcdef, USERNAME: xxxxxx, SQLCODE: 0, SQLERRD[0] 0
--------NETWORK TRANSPORT: DECnet

These messages indicate that an association with a server system was created normally.

5.3 Routine Logging
Routine logging occurs whenever your application calls an Oracle SQL/Services API
routine. Use this type of logging to debug execution flow in application programs.

Routine log entries include some or all of the following items:

A header that identifies the entry as ROUTINE LEVEL LOG and contains a timestamp

The name of the API routine

The length in bytes of the SQL statement string

The SQL statement string

The name of the cursor

The SQL statement identifier

The execution flag

For example:

ROUTINE LEVEL LOG at 07:57:08 on 15-DEC-2009
----SQLSRV_PREPARE
--------SQL STATEMENT
------------len: 45, value: Select * from sqlsrv_table
 where USERNAME = ?

ROUTINE LEVEL LOG at 07:57:08 on 15-DEC-2009
----SQLSRV_OPEN_CURSOR
--------CURSOR NAME
------------sqlsrv_cursor
--------STATEMENT ID
 1199896

8

1
2

3
4 5 6 7

8

1

2

3

4

5

6

7

1
2

3
4

5

6

Routine Logging

Logging for Performance and Debugging 5-5

ROUTINE LEVEL LOG at 07:57:08 on 15-DEC-2009
----SQLSRV_EXECUTE_IN_OUT
--------STATEMENT ID
------------1199897
--------EXECUTE FLAG:SQLSRV_EXE_W_DATA
 .
 .
 .

Routine log entries that follow the sqlsrv_prepare routine also include metadata:

The type of SQLDA (parameter marker or select list)

The number of parameter markers or select list items

The Oracle SQL/Services data type

For character data types, the length of the data variable

For numeric and date-time data types, the length of the data variable and the scale factor
or type of date or interval, respectively (see Section 7.6)

The name of the column

For example:

ROUTINE LEVEL LOG at 07:57:08 on 15-DEC-2009
----SELECT LIST SQLDA
--------SQLDA: SQLD 4
--------[0].SQLTYPE: SQLSRV_ASCII_STRING, SQLLEN: 33
------------SQLNAME: USERNAME
--------[1].SQLTYPE: SQLSRV_GENERALIZED_NUMBER, SIZE 11, SCALE 0
------------SQLNAME: INTEGER_VALUE
--------[2].SQLTYPE: SQLSRV_GENERALIZED_NUMBER, SIZE 24, SCALE 0
------------SQLNAME: DOUBLE_VALUE
--------[3].SQLTYPE: SQLSRV_GENERALIZED_DATE, SIZE 17, TYPE 0
------------SQLNAME: DATE_VALUE

Routine log entries that follow the sqlsrv_fetch, sqlsrv_open_cursor, and sqlsrv_execute_in_
out routines also include data:

The type of SQLDA (parameter marker or select list)

The number of parameter markers or select list items

The Oracle SQL/Services data type

The value of the indicator variable

The length of the value of the data variable

7

1

2

3

4

5

6

1
2

3 4

5
6

1

2

3

4

5

Message Protocol Logging

5-6 Guide to Using the Oracle SQL/Services Client API

The value of the data variable

For example:

ROUTINE LEVEL LOG at 07:57:08 on 15-DEC-2009
----SELECT LIST SQLDA
--------SQLDA: SQLD 4
------------[0].SQLTYPE: SQLSRV_ASCII_STRING, SQLIND: 0
----------------len: 32, value: xxxxxx
------------[1].SQLTYPE: SQLSRV_GENERALIZED_NUMBER, SQLIND: 0
----------------len: 1, value: 1
------------[2].SQLTYPE: SQLSRV_GENERALIZED_NUMBER, SQLIND: 0
----------------len: 23, value: 1.280000000000000E+002
------------[3].SQLTYPE: SQLSRV_GENERALIZED_DATE, SQLIND: 0
----------------len: 16, value: 1988070100000000

5.4 Message Protocol Logging
Message protocol logging occurs whenever a message is transmitted between the client API
and the server process. Use this type of logging to verify that the Oracle SQL/Services
client/server communications protocol is working as expected and to determine if request or
response messages are being split into multiple network packets.

Protocol log entries include some or all of the following items:

A header that identifies the entry as PROTOCOL LEVEL and contains a timestamp

The word CLIENT to indicate where the log file was written

The word "read" or "write" to indicate whether the packet was received or transmitted,
respectively

The timestamp

The packet identification number, which is incremented from 0 from the beginning of
the association

The packet sequence number, which is nonzero in the following instances:

■ Batched execution

■ Multiple row fetches

■ Any message that is too large for a single packet

The message tag, which indicates a function to be executed on the server, an
acknowledgment (ACK) that a function was executed successfully, or an error
(ERROR) message

Tags that represent routine parameters, including:

6

1
2

3 4
5 6

1

2

3

4

5

6

7

8

Message Protocol Logging

Logging for Performance and Debugging 5-7

The total length in bytes of the data

The number of bytes of data in this packet

The data value

Subtags that describe SQLDA structures; indicates whether an SQLDA(1) or
SQLDA2 is being used

For example:

PROTOCOL LEVEL LOG CLIENT: write (logonly) at 07:57:08 on 15-DEC-2009
----PACKET ID: 11, PACKET SEQUENCE: 0
--------SQLSRV_FETCH
------------STATEMENT ID
--------------------len: 4, value: 1000001
--------END OF MESSAGE

PROTOCOL LEVEL LOG CLIENT: read at 07:57:08 on 15-DEC-2009
----PACKET ID: 11, PACKET SEQUENCE: 0
--------SQLSRV_FETCH ACK
------------FETCH ROW NUMBER
--------------------len: 4, value: 3
------------SELECT LIST DATA
----------------len: 2, value: 4
------------SQLVAR INDEX SQLDATA SQLIND
----------------SQLSRV_SQLVAR_INDEX
--------------------len: 2, value: 0
----------------SQLSRV_SQLVAR_SQLIND1
--------------------len: 2, value: 0
----------------SQLSRV_SQLVAR_SQLDATA1, len: 32
--------------------len: 32, value: SMITH
------------SQLVAR INDEX SQLDATA SQLIND
----------------SQLSRV_SQLVAR_INDEX
--------------------len: 2, value: 1
----------------SQLSRV_SQLVAR_SQLIND1
--------------------len: 2, value: 0
----------------SQLSRV_SQLVAR_SQLDATA1, len: 1
--------------------len: 1, value: 3
.
.
.
--------END OF MESSAGE

9

10

11

12

1 2 3 4
5 6

7
8

9 10

11

12
12

12

12

Message Protocol Logging

5-8 Guide to Using the Oracle SQL/Services Client API

To determine the data type of an SQLDATA value, review the SQLDA information from the
routine level log that is written at prepare time. For example:

ROUTINE LEVEL LOG at 07:57:08 on 15-DEC-2009
----SELECT LIST SQLDA
--------SQLDA: SQLD 2
--------[0].SQLTYPE: SQLSRV_ASCII_STRING, SQLLEN: 15
------------SQLNAME: EMPLOYEE_NAME
--------[1].SQLTYPE: SQLSRV_GENERALIZED_NUMBER, SIZE 6, SCALE 0
------------SQLNAME: COST_CENTER
 .
 .
 .

The following information is logged in the ASSOCIATION ACK message for the protocol
level log:

A header that identifies the entry as PROTOCOL LEVEL LOG CLIENT and contains a
timestamp

The name of the API routine

The version of SQL used by the server

The version of Oracle Rdb used by the server

The server protocol version number

The version of the server

The process ID (PID) of the executor

A flag to indicate the service attributes

The maximum server buffer size

For example:

 .
 .
 .
PROTOCOL LEVEL LOG CLIENT: read at 07:57:08 on 15-DEC-2009
----PACKET ID: 1, PACKET SEQUENCE: 0
--------SQLSRV_ASSOCIATE ACK
------------DEC SQL VERSION
----------------SQLSRV_ASCII_STRING, len: 8
--------------------len: 7, value: V7.2-400
------------RDB ENG VERSION
----------------SQLSRV_ASCII_STRING, len: 8
--------------------len: 7, value: V7.2-400

1

2

3

4

5

6

7

8

9

1

2
3

4

Message Protocol Logging

Logging for Performance and Debugging 5-9

------------SERVER PROTOCOL VERSION
----------------len: 2, value: 14
------------SQLSRV SRV VERSION
----------------SQLSRV_ASCII_STRING, len: 8
--------------------len: 7, value: V7.3-030
------------EXECUTOR PID
--------------------len: 4, value: 727725642
------------SERVICE ATTRIBUTES
----------------len: 2, value: 0
------------MAXIMUM SERVER BUFFER SIZE
----------------len: 4, value: 5000
--------END OF MESSAGE
 .
 .
 .

These messages indicate that an association is made between a client and a server with a
protocol of 14, using V7.2 of SQL and V7.2 of Oracle Rdb, using an executor whose process
ID is 727725642 (decimal), using a universal (nondatabase) service, and a maximum server
buffer size of 5000 bytes. This information can be beneficial in resolving server-related
environmental issues and protocol version issues.

5

6

7

8

9

Message Protocol Logging

5-10 Guide to Using the Oracle SQL/Services Client API

API Routines 6-1

6
API Routines

This chapter describes the routines in the Oracle SQL/Services client application
programming interface (API).

6.1 Documentation Format
Each Oracle SQL/Services API routine is documented using a structured format called the
routine template. Table 6–1 lists the sections of the routine template, along with the
information that is presented in each section and the format used to present the information.
Some sections require no further explanation beyond what is given in Table 6–1. Those that
require additional explanation are discussed in the subsections that follow the table.

6.1.1 Routine Name
The Oracle SQL/Services API routine names are shown in the form sqlsrv_xxx, sqlsrv_
sqlca_xxx, sqlsrv_sqlda_xxx, or sqlsrv_sqlda2_xxx, throughout the manual.

Table 6–1 Sections in the Routine Template

Section Description

Routine Name Appears at the top of the page, followed by the English name of the routine

Overview Appears directly below the routine name and explains, usually in one or
two sentences, what the routine does

C Format Shows the C function prototype from the include file sqlsrv.h

Parameters Provides detailed information about each parameter

Notes Contains additional pieces of information related to applications
programming

Errors Lists the Oracle SQL/Services errors that can occur in the routine

Oracle SQL/Services Data Types

6-2 Guide to Using the Oracle SQL/Services Client API

6.1.2 Return Values
The Oracle SQL/Services routine template does not include a "Returns" section. Except
where explicitly noted, the Oracle SQL/Services API routines return a signed longword
integer containing one of the values shown in Table 6–2.

6.1.3 C Format Section
The C Format section shows the function prototypes for the Oracle SQL/Services API
routines exactly as they are declared in the include file sqlsrv.h.

6.2 Oracle SQL/Services Data Types
Table 6–3 lists the data types used in Oracle SQL/Services API routine calls and structures.

Table 6–2 API Return Values

Return Value Description

n = SQL_SUCCESS1

1 The symbol SQL_SUCCESS is defined as 0 in the include file sqlsrv.h.

The routine completed successfully.

n < SQL_SUCCESS An error occurred during processing. Refer to the
SQLCA.SQLCODE for the specific error.

n > SQL_SUCCESS A warning was issued during processing. Refer to the
SQLCA for additional information.

Table 6–3 API Parameter Data Types

Data Type Description

ASSOCIATE_ID An identifier that uniquely distinguishes one association from all
others

ASSOCIATE_STR Structure that specifies association characteristics

character string Pointer to a null-terminated character string of type char

CHARPTR Pointer to a buffer or variable of type unsigned char

PTRCHARPTR Pointer to a variable of type CHARPTR

SHORTPTR Pointer to a variable of type short

LONGPTR Pointer to a variable of type SQS_LONGWORD

PTRSHORTPTR Pointer to a variable of type short * or SHORTPTR

PTRLONGPTR Pointer to a variable of type LONGPTR

API Routines

API Routines 6-3

To facilitate the development of portable Oracle SQL/Services client software modules, the
following two 32-bit integer data types are type defined in the sqlsrv.h file and may be used
to define variables in your programs:

SQS_LONGWORD 32-bit signed longword
SQS_UNSIGNED_LONGWORD 32-bit unsigned longword

6.3 API Routines
This section describes each of the API routines.

6.3.1 Association Routines
Association routines create and terminate client/server associations and control the
association environment. Association routines include the following routines:

■ sqlsrv_abort routine (see sqlsrv_abort)

■ sqlsrv_associate routine (see sqlsrv_associate)

■ sqlsrv_get_associate_info routine (see sqlsrv_get_associate_info)

■ sqlsrv_release routine (see sqlsrv_release)

word (signed) 16-bit signed integer

word (unsigned) 16-bit unsigned integer

longword (signed) 32-bit signed integer

longword (signed) array Array of signed 32-bit integers

longword (unsigned) 32-bit unsigned integer

pointer An address whose size is platform specific

SQLDA_ID An identifier (pointer or handle) used to access SQLDA data and
metadata information

void Arguments described with the void data type are reserved for future
use

SQLCA_ID An identifier (pointer or handle) used to access the data and structure
SQLCA

Table 6–3 API Parameter Data Types(Cont.)

Data Type Description

sqlsrv_abort

API Routines 6-4

sqlsrv_abort

The sqlsrv_abort routine drops the network link between the client and server, frees client
association resources, and rolls back active transactions on the server.

C Format
extern int sqlsrv_abort(
 ASSOCIATE_ID associate_id);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

Errors

SQLSRV_INTERR Internal error.

SQLSRV_INVASC Invalid association identifier.

sqlsrv_associate

API Routines 6-5

sqlsrv_associate

The sqlsrv_associate routine creates a network link between your application and the server,
using the node name, user name, and password input parameters. It creates an association
identifier used in subsequent routine calls and optionally binds specific input parameters,
such as the message protocol buffers and SQLCA structure, to the association.

C Format
extern int sqlsrv_associate(
 char *node_name,
 char *user_name,
 char *password,
 CHARPTR read_buffer,
 CHARPTR write_buffer,
 SQS_LONGWORD read_buffer_size,
 SQS_LONGWORD write_buffer_size,
 SQLCA_ID *sqlca_str,
 struct ASSOCIATE_STR *associate_str,
 ASSOCIATE_ID *associate_id);

Parameters

node_name
Address of a null-terminated string containing the name of the server node. If you are using
the Oracle Net transport, this parameter specifies either the Oracle Net Service Name or the
Oracle Net Alias.

user_name (optional)
Address of a null-terminated string containing the user name that the server uses to
authenticate the user and determine if the user is authorized to access the specified service. If
this parameter is NULL and the DECnet transport is selected, then the server looks for an
Oracle SQL/Services proxy for the client node name. If there is no proxy for the client node,
or a transport other than DECnet is selected, the server checks to see if unknown users are
authorized to access the specified service. If unknown users are not authorized to access the
service, the association fails. See the Oracle SQL/Services Server Configuration Guide for
more information on client authentication and authorization, and how Oracle SQL/Services
uses the client user name.

sqlsrv_associate

API Routines 6-6

password (optional)
Address of a null-terminated string containing the corresponding password to the specified
user name. You must include a password when you specify a user name.

read_buffer (optional)
Address of a buffer of type unsigned char used by the API to receive messages from the
server. If you specify a buffer address of NULL, Oracle SQL/Services allocates the buffer.
Oracle Corporation recommends that you pass a NULL value.

write_buffer (optional)
Address of a buffer of type unsigned char used by the API to build messages to send to the
server. If you specify a buffer address of NULL, Oracle SQL/Services allocates the buffer.
Oracle Corporation recommends that you pass a NULL value.

read_buffer_size (optional)
The size in bytes of the read_buffer. If a read_buffer is passed, the read_buffer_size must
contain its size. The minimum value is 256 bytes. If no read_buffer is passed, Oracle
SQL/Services allocates a buffer of size read_buffer_size if the parameter is non-zero, or of a
default size if the parameter is zero. See Table 6–4 for valid combinations of buffer-related
parameters. The values for read_buffer_size and write_buffer_size must be equal. This is
true for both user-allocated buffers, or when the application requests that Oracle
SQL/Services allocate buffers of a specified size.

write_buffer_size (optional)
The size in bytes of the API buffer used to send messages. If a write_buffer is passed, the
write_buffer_size must contain its size. The minimum value is 256 bytes. If no write buffer
is passed, Oracle SQL/Services allocates a buffer of size write-buffer-size if the parameter is
non-zero, or of a default size if the parameter is zero. See Table 6–4 for valid combinations
of buffer-related parameters. The values for write_buffer_size and read_buffer_size must be
equal.

Table 6–4 Valid Combinations of Buffer-Related Parameters for the sqlsrv_associate
Routine

Buffer Specified
Buffer Size
Specified

Oracle SQL/Services
Result Comments

NULL 0 API allocates 1300 1300 is default

NULL 256+ API allocates what user
specified up to 3200

Client drops back to the
server-supported value

Valid user-allocated
buffer

256+ API uses what user
specified up to 3200

Client drops back to the
server-supported value

sqlsrv_associate

API Routines 6-7

sqlca_str (optional)
Address of an SQLCA (SQL Communications Area) structure (see Section 7.3). If you
specify a buffer address of NULL, Oracle SQL/Services allocates the SQLCA structure.
Oracle Corporation recommends that you pass a NULL value.

The SQLCA structure is defined in the include file sqlsrvca.h. All valid error codes are
defined in sqlsrv.h.

associate_str
Address of an ASSOCIATE_STR structure used to define optional association
characteristics(see Section 7.2). The ASSOCIATE_STR structure is defined in the include
file sqlsrv.h.

associate_id
A pointer to a variable of type ASSOCIATE_ID into which the API writes the association
identifier. This identifier distinguishes one active association from all others.

Notes
■ Errors that are detected early in the processing of the sqlsrv_associate routine are

returned only in the longword return value from sqlsrv_associate. These errors include
SQLSRV_INVARG, SQLSRV_INVSQLCA, SQLSRV_NO_MEM, and SQLSRV_
INVBUFSIZ.

■ If the read or write buffer size is less than 256 bytes, Oracle SQL/Services returns an
SQLSRV_INVARG error on sqlsrv_associate.

■ If the read_buffer or write_buffer parameter values are user-allocated buffers, but the
read_buffer_size or write_buffer_size parameter values are specified as 0, Oracle
SQL/Services returns an SQLSRV_INVARG error on sqlsrv_associate.

■ If the read_buffer and write_buffer size are not of equal size, Oracle SQL/Services
returns an SQLSRV_INVBUFSIZ error on sqlsrv_associate.

■ When errors are detected before an associate_id is allocated for the associate session,
the sqlsrv_associate routine writes NULL to the associate_id variable to indicate that no
associate_id is assigned to this association. In this case, applications should not make
subsequent Oracle SQL/Services API calls that require an associate_id.

■ When errors are detected after an associate_id is allocated for the association, the
sqlsrv_associate routine writes a non-NULL value to the associate_id variable. In this
case, applications can make calls to a limited subset of Oracle SQL/Services API
routines, such as the sqlsrv_sqlca_error, sqlsrv_sqlca_error_text and sqlsrv_sqlca_
sqlstate routines, to retrieve additional information about the error. In this situation, the

sqlsrv_associate

API Routines 6-8

application should call the sqlsrv_release API routine to release the resources held by
the association after retrieving the additional error information.

■ If a client application connects to a server using read and write buffer sizes that are
larger than the server can handle, the sqlsrv_associate routine adjusts the buffer sizes
locally and immediately returns a success status to the client application.

The mechanism used by the sqlsrv_associate routine to select an appropriate buffer size
is transparent to the client application. Client applications can call the sqlsrv_get_
associate_info routine to determine the actual buffer size being used for the association.

■ When a user connects to a database service, the sqlsrv_associate routine completes with
the SQL error code -1028, SQL_NO_PRIV, if the user has been granted access to the
Oracle SQL/Services service, but has not been granted the right to attach to the
database. A record of the failure is written to the executor process’s log file.

■ When an association is no longer required, your application calls the sqlsrv_release
routine to commit any outstanding transactions, release any prepared statements,
disconnect the network link, and release any memory allocated to the association at the
client and server.

Errors

SQLSRV_CONNTIMEOUT The connection to the server could not be
completed within the specified time limit.

SQLSRV_DLL_ADDR_ERR Windows application GetProcAddress call
error.

SQLSRV_DLL_LOAD_ERR Windows application LoadLibrary call error.

SQLSRV_EXEINTERR The executor has encountered an internal or
other error condition.

SQLSRV_GETACCINF Client authentication or authorization failed.

SQLSRV_HOSTERR An attempt to access TCP/IP host files failed.

SQLSRV_INTERR Internal error.

SQLSRV_INV_CLS Invalid or unknown service name specified.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASCSTR Invalid parameter in ASSOCIATE_STR.

SQLSRV_INVBUFSIZ Invalid read or write buffer size.

SQLSRV_INVSQLCA Invalid SQLCA structure.

sqlsrv_associate

API Routines 6-9

SQLSRV_NETERR Network transport returned an error.

SQLSRV_NO_MEM API memory allocation failed.

SQLSRV_NO_PRCAVL No executor processes are available to service
the connection.

SQLSRV_OPNLOGFIL Unable to open log file.

SQLSRV_PWD_EXPIRED The password has expired.

SQLSRV_SQLNET_BADCONNECT Oracle Net is unable to connect to the server.

SQLSRV_SQLNET_BADINIT Unable to initialize Oracle Net.

SQLSRV_SQLNET_BADSERVICE Oracle Net is unable to resolve the service
name being specified.

SQLSRV_SVCNOTRUN The specified service is not running.

SQLSRV_SVC_SHUTDOWN The specified service has been shut down.

SQLSRV_TOOMANYCONNECTS The maximum number of network
connections has been reached at the server.

SQLSRV_XPT_MISSING The specified network transport is not
installed or is not available on the client node
operating system.

sqlsrv_get_associate_info

API Routines 6-10

sqlsrv_get_associate_info

The sqlsrv_get_associate_info routine returns attributes of the association structure. The
information is copied to a user buffer when sqlsrv_get_associate_info is called.

C Format
extern int sqlsrv_get_associate_info(
 ASSOCIATE_ID associate_id,
 unsigned short int info_type,
 unsigned short int buf_len,
 char *info_buf,
 SQS_LONGWORD *info_num);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

info_type
Specifies the type of information to be returned. The values of the info_type parameter are
shown in Table 6–5.

Table 6–5 Values of the info_type Parameter

Value Description

SQLSRV_INFO_SQL_VERSION Gets the version of SQL used by the server and
returns it as character data.

SQLSRV_INFO_ENGINE Gets the version of the Oracle Rdb database engine
used by the server and returns it as character data.

SQLSRV_INFO_SRV_VERSION Gets the version of the Oracle SQL/Services server
and returns it as character data.

SQLSRV_INFO_PROTOCOL Gets the protocol level of the server and returns it
as a longword.

SQLSRV_INFO_SERVER_PID Gets the process ID (PID) of the executor and
returns it as a longword.

SQLSRV_INFO_TRANSPORT Gets the transport type in use and returns the
information as character data.

SQLSRV_INFO_BUFFER_SIZE Gets the negotiated client buffer size and returns
the information as a longword.

sqlsrv_get_associate_info

API Routines 6-11

The values of the SQLSRV_INFO_SERVICE_ATTRS bit masks are shown in Table 6–6.

buf_len
The size of a user-supplied buffer for information returned as character data.

info_buf
Address of a user-supplied buffer of type char for information returned as character data.
This is required for information returned as character data.

info_num
The address of a variable of type SQS_LONGWORD to be used for information returned as
a longword, or for the number of characters returned for information returned as character
data. This is required for information returned as a longword, and optional for information
returned as character data.

Notes
■ The sqlsrv_get_associate_info service returns one attribute per call. To get multiple

attributes, your application must call sqlsrv_get_associate_info once for each attribute.

SQLSRV_INFO_SERVICE_ATTRS Gets the service attributes and returns the value as a
bit mask in a 32-bit longword. The bit mask is
defined in Table 6–6.

Table 6–6 Values of the SQLSRV_INFO_SERVICE_ATTRS Bit Masks

Value
Numeric
Value Description

SQLSRV_INFO_SVC_DBSERVICE 1 Set if the service is a database
service.

SQLSRV_INFO_SVC_REUSETXN 2 Set if the service is transaction
reusable.

SQLSRV_INFO_SVC_TIEDEXEC 4 Set if the service is transaction
reusable and the association is
tied to a single executor for the
life of the connection. This bit
will always be set if the
SQLSRV_INFO_SVC_
REUSETXN bit is set.

Table 6–5 Values of the info_type Parameter(Cont.)

Value Description

sqlsrv_get_associate_info

API Routines 6-12

■ For information returned as character data, if the actual length of the string is longer
than the user-supplied buffer, the returned information is truncated to the size of the
buffer.

Errors

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_SRVNOTSUP The server is not supported.

sqlsrv_release

API Routines 6-13

sqlsrv_release

The sqlsrv_release routine commits active transactions on the server and requests an orderly
termination of the association, which disconnects the network link and frees client
association resources.

C Format
extern int sqlsrv_release(
 ASSOCIATE_ID associate_id,
 char *stats);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

stats (optional)
This parameter must be 0 or NULL.

Notes
■ When an association is no longer required, your application calls the sqlsrv_release

routine to commit any outstanding transactions, release any prepared statements,
disconnect the network link, and release any memory allocated to the association at the
client and server.

Errors

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

SQLSRV_INTERR Internal error.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_MULTI_ACT A batched sqlsrv_execute_in_out or sqlsrv_fetch_many
context is active.

SQLSRV_NETERR Network transport returned an error.

sqlsrv_release

API Routines 6-14

6.3.2 SQL Statement Routines
SQL statement routines prepare and execute SQL statements, and release prepared SQL
statement resources. These routines map to the dynamic SQL interface. SQL statement
routines include the following routines:

■ sqlsrv_prepare routine (see sqlsrv_prepare)

■ sqlsrv_execute_in_out routine (see sqlsrv_execute_in_out)

■ sqlsrv_execute_immediate routine (see sqlsrv_execute_immediate)

■ sqlsrv_release_statement routine (see sqlsrv_release_statement)

SQLSRV_SVC_SHUTDOWN The specified service has been shut down.

sqlsrv_prepare

API Routines 6-15

sqlsrv_prepare

The sqlsrv_prepare routine prepares the input SQL statement and returns a value that
identifies the prepared statement. It also optionally allocates and initializes SQLDA or
SQLDA2 parameter markers and select list items associated with the SQL statement.

C Format
extern int sqlsrv_prepare(
 ASSOCIATE_ID associate_id,
 SQS_LONGWORD database_id,
 char *sql_statement,
 SQS_LONGWORD *statement_id,
 SQLDA_ID *parameter_marker_sqlda,
 SQLDA_ID *select_list_sqlda);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

database_id
This parameter must be 0. Databases are referenced within the SQL statement syntax.

sql_statement
Address of a null-terminated string containing the SQL statement to be prepared.

statement_id
Address of a variable of type SQS_LONGWORD into which the API writes the identifier
used in all subsequent references to the prepared statement.

parameter_marker_sqlda
A pointer to a variable of type SQLDA_ID.

Oracle Corporation recommends that you let the Oracle SQL/Services client API allocate
memory for each parameter marker SQLDA or SQLDA2, in which case your application
should store NULL in the parameter marker SQLDA_ID before calling sqlsrv_prepare. If
your application provides its own memory for each parameter marker SQLDA or SQLDA2,
your application must store the address of that memory in the parameter marker SQLDA_ID
before calling sqlsrv_prepare.

sqlsrv_prepare

6-16 Guide to Using the Oracle SQL/Services Client API

If the SQL statement is prepared successfully, Oracle SQL/Services allocates memory for
the SQLDA or SQLDA2, stores the address in the SQLDA_ID, if necessary, and writes
metadata information about all the parameter markers contained in the SQL statement to the
parameter marker SQLDA or SQLDA2.

select_list_sqlda
A pointer to a variable of type SQLDA_ID.

Oracle Corporation recommends that you let the Oracle SQL/Services client API allocate
memory for each select list SQLDA or SQLDA2, in which case your application should
store NULL in the select list SQLDA_ID before calling sqlsrv_prepare. If your application
provides its own memory for each select list SQLDA or SQLDA2, your application must
store the address of that memory in the select list SQLDA_ID before calling sqlsrv_prepare.

If the SQL statement is prepared successfully, Oracle SQL/Services allocates memory for
the SQLDA or SQLDA2, stores the address in the SQLDA_ID, if necessary, and writes
metadata information about all the select list items contained in the SQL statement to the
select list SQLDA or SQLDA2.

Notes
■ Oracle Corporation recommends that you let the Oracle SQL/Services client API

allocate memory for each parameter marker and select list SQLDA or SQLDA2. To
check for the presence of parameter markers or select list items in this situation, your
application tests the respective SQLDA_ID for a non-NULL value. If the SQLDA_ID
does contain a non-NULL value, the number of parameter markers or select list items
may be obtained from the SQLD field of the SQLDA or SQLDA2 using the sqlsrv_
sqlda_sqld, sqlsrv_sqlda_sqld73, sqlsrv_sqlda2_sqld or sqlsrv_sqlda2_sqld73 routines.

■ If your application provides it own memory for each parameter marker and select list
SQLDA or SQLDA2, it must initialize the SQLDAID field to "SQLDA" or "SQLDA2";
the SQLDABC field to the total size, in bytes, of the SQLDA; the SQLD field to zero;
and the SQLN field to the total number of SQLVARs or SQLVAR2s in the SQLDA or
SQLDA2. Upon successful completion of a call to sqlsrv_prepare, the presence and
number of parameter markers or select list items is indicated by a non-zero value in the
SQLD field of the SQLDA or SQLDA2.

■ To enable your application to distinguish between different types of SQL statements,
Oracle Rdb stores the statement type in the SQLERRD[1] field of the SQLCA. The
statement types, as defined by Oracle Rdb, are as follows:

0: statement is an executable statement other than a CALL statement
1: statement is a SELECT statement
2: statement is a CALL statement

sqlsrv_prepare

API Routines 6-17

You can retrieve this value using the sqlsrv_sqlca_sqlerrd routine.

■ If the prepared statement is a CALL statement, the metadata for any input or
input/output arguments is written to the parameter marker SQLDA or SQLDA2, while
the metadata for any output or input/output arguments is written to the select list
SQLDA or SQLDA2. Note that metadata for each input/output argument is written to
both the parameter marker and select list SQLDAs or SQLDA2s. However, in all other
respects, your application processes a CALL statement in the same manner as any other
executable SQL statement.

Errors

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

SQLSRV_INTERR Internal error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_NETERR Network transport returned an error.

SQLSRV_NO_MEM API memory allocation failed.

SQLSRV_SVC_SHUTDOWN The specified service has been shut down.

sqlsrv_execute_in_out

6-18 Guide to Using the Oracle SQL/Services Client API

sqlsrv_execute_in_out

The sqlsrv_execute_in_out routine executes any prepared, executable SQL statement. The
prepared statement may accept input from a parameter marker SQLDA or SQLDA2, or
return output in a select list SQLDA or SQLDA2, or both. The sqlsrv_execute_in_out
routine supersedes the sqlsrv_execute routine.

C Format
extern int sqlsrv_execute_in_out(
 ASSOCIATE_ID associate_id,
 SQS_LONGWORD database_id,
 SQS_LONGWORD statement_id,
 short int execute_flag,
 SQLDA_ID parameter_marker_sqlda,
 SQLDA_ID select_list_sqlda);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

database_id
This parameter must be 0. Databases are referenced within the SQL statement syntax.

statement_id
The statement ID returned previously by sqlsrv_prepare when the statement was prepared. If
you start batched execution for a particular statement ID using the SQLSRV_EXE_BATCH
flag, you must end batched execution for that statement ID using one of the SQLSRV_EXE_
W_DATA, SQLSRV_EXE_WO_DATA, or SQLSRV_EXE_ABORT flags before you can
execute any other prepared statement.

execute_flag
For a prepared statement that contains parameter markers, this parameter specifies whether
the API sends single or multiple sets of parameter marker values to the server for processing
(see Section 4.1 for more information on batched execution). For all other prepared SQL

sqlsrv_execute_in_out

API Routines 6-19

statements, this value must be 0 (SQLSRV_EXE_W_DATA). The values of the execute_flag
parameter are shown in Table 6–7.

Table 6–7 Values of the execute_flag Parameter in sqlsrv_execute_in_out

Flag Name Value Description

SQLSRV_EXE_W_DATA 0 Builds an execute request message in the
message buffer using the current values in the
parameter marker SQLDA or SQLDA2, then
sends the message to the server for execution. If
batched execution is currently in effect for the
statement, this parameter appends the new
message to the previous messages in the
message buffer, and sends all the messages to
the server for execution along with any requests
already queued at the server.

SQLSRV_EXE_BATCH 1 Starts or continues batched execution by
building an execute request message in the
message buffer using the current values in the
parameter marker SQLDA or SQLDA2. If
batched execution is already in effect for the
statement, this parameter appends the new
message to the previous messages in the
message buffer. Using batched execution, no
messages are sent to the server until the message
buffer fills up, whereupon the messages in the
message buffer are sent to the server to be
queued up for subsequent execution behind any
previously queued requests.

SQLSRV_EXE_WO_DATA 2 Ends batched execution by sending the current
contents of the message buffer to the server for
execution along with any previously queued
requests. Note that the current values in the
parameter marker SQLDA or SQLDA2 are not
sent to the server when batched execution is
ended using the SQLSRV_EXE_WO_DATA
flag.

SQLSRV_EXE_ABORT 3 Aborts batched execution by discarding the
current contents of the message buffer and
sending a message to the server directing it to
discard any previously queued requests.

sqlsrv_execute_in_out

6-20 Guide to Using the Oracle SQL/Services Client API

parameter_marker_sqlda
An SQLDA_ID that identifies the parameter marker SQLDA or SQLDA2 containing any
parameter marker values or input and input/output argument values for the SQL statement to
be executed.

select_list_sqlda
An SQLDA_ID that identifies the select list SQLDA or SQLDA2 to receive any select list
items or output and input/output argument values returned by the SQL statement to be
executed.

Notes
■ On successful completion of a call to sqlsrv_execute_in_out, Oracle SQL/Services

stores the total number of database rows inserted, updated, or deleted in the
SQLERRD[2] field of the SQLCA. Because multiple rows may be updated or deleted
when you execute an UPDATE or DELETE statement, this value may be higher than
the number of times that you called sqlsrv_execute_in_out for a particular batched
execution. You can retrieve the row count from the SQLCA using the sqlsrv_sqlca_
count routine. Note that Oracle Rdb does not return a row count value if you use the
CALL statement to invoke a stored procedure, or if you execute a compound statement.

■ If an error occurs executing a request queued for batched execution, then the server
discards any remaining requests in the batch execution queue and returns the error to the
client. Currently, there is no way to determine precisely which request caused the
failure. Therefore, client applications will typically roll back the transaction in this
situation.

■ If you use batched execution to execute an SQL statement containing both parameter
markers and select list items, such as UPDATE . . . RETURNING, then only the results
from the execution of the last queued request are returned to the client. The results from
the execution of all previously queued requests are lost.

■ Once you start batched execution for a particular statement ID, you cannot call any API
routines other than sqlsrv_execute_in_out, nor can you execute any other prepared
statements until you end batched execution for the current statement ID using one of the
SQLSRV_EXE_W_DATA, SQLSRV_EXE_WO_DATA, or SQLSRV_EXE_ABORT
flags.

■ SQL describes the metadata for any items specified in the RETURNING clause of an
INSERT statement into the end of the parameter marker SQLDA or SQLDA2. Note that
columns, output arguments, and other values returned by a statement are normally
described in the select list SQLDA or SQLDA2. The server does not normally return
data values from a parameter marker SQLDA or SQLDA2 to the client; therefore, the
server must explicitly check each parameter marker SQLDA or SQLDA2 to determine

sqlsrv_execute_in_out

API Routines 6-21

if an INSERT statement contains a RETURNING clause. To do so, it checks the name
of the last column described in the parameter marker SQLDA or SQLDA2 for the value
DBKEY. Therefore, the only value that can be returned from an INSERT statement is
the DBKEY, because the server is unable to detect any other returned value. For
example:

INSERT INTO EMPLOYEES VALUES (?,?,?,?,?,?,?,?) RETURNING DBKEY INTO ?;

SQL describes the metadata for any items specified in the RETURNING clause of an
UPDATE statement into the select list SQLDA or SQLDA2 as expected.

Errors

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_DATA_TOO_LONG The Oracle SQL/Services executor determined that the
length of a data value in an SQLDA exceeded the
maximum allowed for the value’s data type.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

SQLSRV_INTERR Internal error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVEXEFLG Invalid execute flag.

SQLSRV_INVSELLST Invalid SQLDA or SQLDA2 select list.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_INVSTMID Invalid statement identifier.

SQLSRV_MULTI_ACT A batched sqlsrv_execute_in_out or sqlsrv_fetch_many
context is active.

SQLSRV_NETERR Network transport returned an error.

SQLSRV_SVC_SHUTDOWN The specified service has been shut down.

sqlsrv_execute_immediate

6-22 Guide to Using the Oracle SQL/Services Client API

sqlsrv_execute_immediate

The sqlsrv_execute_immediate routine prepares and executes an SQL statement that does
not contain parameter markers or select list items.

C Format
extern int sqlsrv_execute_immediate(
 ASSOCIATE_ID associate_id,
 SQS_LONGWORD database_id,
 char *sql_statement);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

database_id
This parameter must be 0. Databases are referenced within the SQL statement syntax.

sql_statement
Address of a null-terminated string containing the SQL statement to be prepared and
executed by dynamic SQL.

Notes
■ sqlsrv_execute_immediate provides an efficient mechanism, using a single

request/response message pair, for executing an SQL statement that does not contain
any parameter markers or select list items where the statement is to be executed only
once. However, if the same SQL statement is to be executed multiple times, it is more
efficient to prepare the statement and execute it as necessary, even if the statement
contains no parameter markers or select list items.

■ On successful completion of a call to sqlsrv_execute_immediate, Oracle SQL/Services
stores the total number of database rows updated or deleted in the SQLERRD[2] field of
the SQLCA. You can retrieve the row count from the SQLCA using the sqlsrv_sqlca_
count routine. Note that Oracle Rdb does not return a row count value if you use the
CALL statement to invoke a stored procedure, or if you execute a compound statement.

sqlsrv_execute_immediate

API Routines 6-23

Errors

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

SQLSRV_INTERR Internal error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_MULTI_ACT A batched sqlsrv_execute_in_out or sqlsrv_fetch_many
context is active.

SQLSRV_NETERR Network transport returned an error.

SQLSRV_SVC_SHUTDOWN The specified service has been shut down.

sqlsrv_release_statement

6-24 Guide to Using the Oracle SQL/Services Client API

sqlsrv_release_statement

The sqlsrv_release_statement routine frees all resources associated with one or more
prepared statements at both the client and server. The sqlsrv_release_statement routine
implicitly invokes sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data to free dynamically
allocated SQLDA or SQLDA2 structures.

C Format
extern int sqlsrv_release_statement(
 ASSOCIATE_ID associate_id,
 short int statement_id_count,
 SQS_LONGWORD *statement_id_array);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

statement_id_count
The number of statement identifiers passed in the statement_id_array.

statement_id_array
An array containing the identifiers (statement_id parameters returned by the sqlsrv_prepare
routine) of the statements to free.

Notes
■ You cannot release a statement that has an open cursor.

■ If you call sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data to allocate
memory for parameter marker and select list item data and indicator variables, Oracle
SQL/Services automatically frees the memory when you call sqlsrv_release_statement.
If you let sqlsrv_prepare allocate memory for the parameter marker and select list
SQLDA or SQLDA2 structures, Oracle SQL/Services automatically frees the memory
when you call sqlsrv_release_statement.

■ If Oracle SQL/Services encounters an error validating or releasing a particular statement
ID, it discards any subsequent statement IDs and returns the error to the client
application. Oracle SQL/Services stores the total number of statements released in the
SQLERRD[2] field of the SQLCA. You can retrieve the count from the SQLCA using
the sqlsrv_sqlca_count routine.

sqlsrv_release_statement

API Routines 6-25

Errors

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

SQLSRV_INTERR Internal error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVSTMID Invalid statement identifier.

SQLSRV_MULTI_ACT A batched sqlsrv_execute_in_out or sqlsrv_fetch_many
context is active.

SQLSRV_NETERR Network transport returned an error.

SQLSRV_SVC_SHUTDOWN The specified service has been shut down.

sqlsrv_release_statement

6-26 Guide to Using the Oracle SQL/Services Client API

6.3.3 Result Table Routines
Result table routines allow the caller to fetch data from the server by providing calls to open
a cursor, fetch from an open cursor, and close an open cursor. Result table routines include
the following routines:

■ sqlsrv_declare_cursor routine (see sqlsrv_declare_cursor)

■ sqlsrv_open_cursor routine (see sqlsrv_open_cursor)

■ sqlsrv_fetch routine (see sqlsrv_fetch)

■ sqlsrv_fetch_many routine (see sqlsrv_fetch_many)

■ sqlsrv_close_cursor routine (see sqlsrv_close_cursor)

sqlsrv_declare_cursor

API Routines 6-27

sqlsrv_declare_cursor

The sqlsrv_declare_cursor routine declares a dynamic cursor. If you do not use the sqlsrv_
declare_cursor routine, Oracle SQL/Services implicitly declares all cursors as type table and
mode update within the sqlsrv_open_cursor call.

C Format
extern int sqlsrv_declare_cursor(
 ASSOCIATE_ID associate_id,
 char *cursor_name,
 SQS_LONGWORD statement_id,
 short int cursor_type,
 short int cursor_mode);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

cursor_name
Address of a null-terminated string used to identify the cursor.

statement_id
The statement ID returned previously by sqlsrv_prepare when the SELECT statement was
prepared. The sqlsrv_declare_cursor routine maps the cursor_name to the prepared
statement.

cursor_type
A value indicating the type of list cursor to declare. You can declare table or list cursors:

■ Table

Declare table cursors by specifying the SQLSRV_TABLE_CURSOR literal.

■ List

Declare list cursors by specifying the SQLSRV_LIST_CURSOR literal.

For detailed information about SQL list and table cursors, refer to the Oracle Rdb7 Guide to
SQL Programming and the Oracle Rdb SQL Reference Manual.

sqlsrv_declare_cursor

6-28 Guide to Using the Oracle SQL/Services Client API

cursor_mode
A value indicating the mode of table or list cursors. Table cursors have four modes:

■ Update-only

To declare table cursors in update-only mode, specify the literal SQLSRV_MODE_
UPDATE_ONLY.

■ Update

To declare table cursors in update mode, specify the literal SQLSRV_MODE_UPDATE.

■ Read-only

To declare table cursors in read-only mode, specify the literal SQLSRV_MODE_
READ_ONLY.

■ Insert-only

To declare table cursors in insert-only mode, specify the literal SQLSRV_MODE_
INSERT_ONLY.

List cursors have three modes:

■ Read-only

To declare list cursors in read-only mode, specify the literal SQLSRV_MODE_READ_
ONLY.

■ Insert-only

To declare list cursors in insert-only mode, specify the literal SQLSRV_MODE_
INSERT_ONLY.

■ Scroll

To declare list cursors in scroll mode, specify the literal SQLSRV_MODE_SCROLL.

For detailed information about SQL cursor modes, refer to the Oracle Rdb7 Guide to SQL
Programming and the Oracle Rdb SQL Reference Manual.

Notes
■ When designing applications, you should avoid using cursor names starting with the

prefix "SQLSRV_"; this is a reserved prefix and is used by the Oracle SQL/Services
product.

■ The cursor type and cursor mode literals are defined in the sqlsrv.h file.

■ Within SQL, executing a commit or rollback statement implies that all open cursors are
closed unless you are using the Oracle Rdb Hold Cursors feature; this assumption is not

sqlsrv_declare_cursor

API Routines 6-29

true for Oracle SQL/Services. Because Oracle SQL/Services does not parse the SQL
statements it passes, it does not know when a commit or rollback operation is executed.
Instead, Oracle SQL/Services requires that the sqlsrv_close_cursor call be issued to
release the cursor-related data structures prior to a commit or rollback operation. To
reuse the same cursor name, you must close that cursor before executing a commit or
rollback statement.

Errors

SQLSRV_DUPCRSNAM Duplicate cursor name.

SQLSRV_INTERR Internal error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVCURNAM Invalid cursor name.

SQLSRV_INVSTMID Invalid statement identifier.

SQLSRV_MULTI_ACT A batched sqlsrv_execute_in_out or sqlsrv_fetch_many
context is active.

SQLSRV_NETERR Network transport returned an error.

sqlsrv_open_cursor

6-30 Guide to Using the Oracle SQL/Services Client API

sqlsrv_open_cursor

The sqlsrv_open_cursor routine opens a cursor for a prepared SELECT statement. The
sqlsrv_declare_cursor routine optionally determines the type and mode of the cursor.

C Format
extern int sqlsrv_open_cursor(
 ASSOCIATE_ID associate_id,
 char *cursor_name,
 SQS_LONGWORD statement_id,
 SQLDA_ID parameter_marker_sqlda);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

cursor_name
Address of a null-terminated string identifying the cursor. All cursor operations, including
positional INSERT, UPDATE, and DELETE statements, must use the cursor name to
identify the cursor.

statement_id
The statement ID returned previously by sqlsrv_prepare when the SELECT statement was
prepared. The sqlsrv_open_cursor routine maps the cursor_name to the prepared statement.

parameter_marker_sqlda
An SQLDA identifier defining the parameter marker values for the prepared SELECT
statement.

Notes
■ After a successful call to sqlsrv_open_cursor to open a table cursor, Oracle Rdb stores

the following information in the SQLCA:

– Estimated result table cardinality in the SQLERRD[2] field.

– Estimated I/Os in the SQLERRD[3] field.

These values are retrieved using the sqlsrv_sqlca_sqlerrd routine.

sqlsrv_open_cursor

API Routines 6-31

■ After a successful call to sqlsrv_open_cursor to open a list cursor, Oracle Rdb stores the
following information in the SQLCA:

– Length of the largest actual segment in the SQLERRD[1] field.

– Total number of segments in the SQLERRD[3] field.

– Total length of all the segments as a quadword value in the SQLERRD[4] and
SQLERRD[5] fields, which contain the low-order 32 bits and high-order 32 bits,
respectively.

These values are retrieved using the sqlsrv_sqlca_sqlerrd routine.

■ Within SQL, executing a commit or rollback statement implies that all open cursors are
closed unless you are using the Oracle Rdb Hold Cursors feature; this assumption is not
true for Oracle SQL/Services. Because Oracle SQL/Services does not parse the SQL
statements it passes, it does not know when a commit or rollback operation is executed.
Instead, Oracle SQL/Services requires that the sqlsrv_close_cursor call be issued to
release the cursor-related data structures prior to a commit or rollback operation. To
reuse the same cursor name, you must close that cursor before executing a commit or
rollback statement.

Errors

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_DATA_TOO_LONG The Oracle SQL/Services executor determined that the
length of a data value in an SQLDA exceeded the
maximum allowed for the value’s data type.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

SQLSRV_INTERR Internal error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVCURNAM Invalid cursor name.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_INVSTMID Invalid statement identifier.

SQLSRV_MULTI_ACT A batched sqlsrv_execute_in_out or sqlsrv_fetch_many
context is active.

SQLSRV_NETERR Network transport returned an error.

sqlsrv_open_cursor

6-32 Guide to Using the Oracle SQL/Services Client API

SQLSRV_SVC_SHUTDOWN The specified service has been shut down.

sqlsrv_fetch

API Routines 6-33

sqlsrv_fetch

The sqlsrv_fetch routine fetches a row of data into a select list SQLDA.

C Format
extern int sqlsrv_fetch(
 ASSOCIATE_ID associate_id,
 char *cursor_name,
 short int scroll_option,
 SQS_LONGWORD position,
 SQLDA_ID select_list_sqlda);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

cursor_name
Address of a null-terminated string used to identify the open cursor.

scroll_option
The values of the scroll_option parameter are shown in Table 6–8.

For table cursors, the scroll option must be 0 (SQLSRV_NO_SCROLL). For scrollable list
cursors, a value of SQLSRV_SCROLL_ABSOLUTE indicates an absolute segment within

Table 6–8 Values of the scroll_option Parameter

Value Description

SQLSRV_NO_SCROLL No scroll option.

SQLSRV_SCROLL_FIRST Fetch first segment.

SQLSRV_SCROLL_LAST Fetch last segment.

SQLSRV_SCROLL_PRIOR Fetch prior segment.

SQLSRV_SCROLL_NEXT Fetch next segment.

SQLSRV_SCROLL_ABSOLUTE Fetch an absolute segment of the list cursor.

SQLSRV_SCROLL_RELATIVE Fetch a relative segment relative to the current list
cursor position.

sqlsrv_fetch

6-34 Guide to Using the Oracle SQL/Services Client API

the segmented string, while a value of SQLSRV_SCROLL_RELATIVE indicates a segment
relative to the current cursor position. When a parameter value of SQLSRV_SCROLL_
ABSOLUTE or SQLSRV_SCROLL_RELATIVE is specified, the value specified for the
position argument indicates the position value.

position
Indicates the position value for an absolute or relative scroll option. For an absolute scroll
option, this parameter value indicates the nth absolute list segment of the list cursor. For a
relative scroll option, this parameter value (positive or negative) indicates the nth list
segment relative to the current list cursor position. For example, a value of –5 for the
position parameter for a relative scroll option results in a fetch of the 5th segment previous
to the current cursor position. The position parameter value must be 0 if the scroll_option
parameter is not a relative or absolute scroll option.

select_list_sqlda
The select list SQLDA identifier in which to store the row.

Notes
■ A return value of SQL_EOS indicates end of data, that is, the result table is empty, or no

more rows remain in the result table. A call to the sqlsrv_fetch routine that returns a
status code of SQL_EOS does not return any data in the SQLDA.

■ Although it returns only one row to the application for each call, the sqlsrv_fetch
routine can request that the server send multiple rows of data from the server when
called within an sqlsrv_fetch_many context. See Fetching Multiple Rows in Chapter 4,
and sqlsrv_fetch_many.

■ To scroll read-only list cursors, the scroll_option argument must specify a value as
indicated in Table 6–8, and the position argument must specify the position value when
an absolute or relative scroll_option value is specified. Otherwise, the position argument
must be 0.

■ After a successful call to sqlsrv_fetch, Oracle SQL/Services stores the number of the
current row within the result table in the SQLERRD[2] field of the SQLCA. This value
can be retrieved using the sqlsrv_sqlca_sqlerrd routine.

Errors

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

sqlsrv_fetch

API Routines 6-35

SQLSRV_INTERR Internal error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVCURNAM Invalid cursor name.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_MULTI_ACT A batched sqlsrv_execute_in_out or sqlsrv_fetch_many
context is active.

SQLSRV_NETERR Network transport returned an error.

SQLSRV_SVC_SHUTDOWN The specified service has been shut down.

sqlsrv_fetch_many

6-36 Guide to Using the Oracle SQL/Services Client API

sqlsrv_fetch_many

The sqlsrv_fetch_many routine directs the sqlsrv_fetch routine to transfer multiple rows of
data from the server, as described in Fetching Multiple Rows in Chapter 4. Frequently, this
reduces the number of client/server messages required to retrieve data from the server. By
default, sqlsrv_fetch retrieves one row of data at a time from the server.

C Format
extern int sqlsrv_fetch_many(
 ASSOCIATE_ID associate_id,
 char *cursor_name,
 short int increment,
 short int repeat_count);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

cursor_name
Address of a null-terminated string used to identify the open cursor.

increment
For a scrollable list cursor, the client API implicitly enables relative scroll mode (SQLSRV_
SCROLL_RELATIVE) to fetch segments and uses the value in the increment argument to
specify the relative position. Therefore, to fetch all segments in a segmented string, specify
an increment value of 1. See sqlsrv_fetch for more information on scroll modes and relative
positions. This argument is ignored for cursors other than scrollable list cursors.

repeat_count
The number of rows to fetch. A value of 0 fetches the entire result table. A value other than
0 fetches that number of rows. For example, an application might fetch enough rows to fill
one screen.

Notes
■ To achieve the best performance, Oracle Corporation recommends that you specify a

repeat_count of 0 to fetch all records.

sqlsrv_fetch_many

API Routines 6-37

■ When you specify a repeat_count other than 0, your application must call the sqlsrv_
fetch_many routine again once the specified number of rows have been fetched.
Otherwise, the API returns to the default behavior (one row for each call to the sqlsrv_
fetch routine). See Fetching Multiple Rows in Chapter 4, for more information.

■ Because the repeat_count parameter is a 16-bit integer, the maximum number of rows a
client can specify is 65535. If a larger number is specified, no error is detected. Rather,
the repeat count wraps around and a smaller repeat count is used. For example, if a
repeat count of 65536 is specified, the value in the 16-bit repeat count parameter is 0.

■ Once you initiate an sqlsrv_fetch_many operation, you must fetch the specified number
of rows using sqlsrv_fetch or close the cursor using sqlsrv_close_cursor before you call
other API routines. You can call sqlsrv_close_cursor at any time to close the cursor and
end the sqlsrv_fetch_many operation before all the rows have been fetched. Otherwise,
you must call sqlsrv_fetch the necessary number of times to fetch all the rows from the
result table if you specify a repeat count of zero or the specified number of rows if you
specify a non-zero repeat count before you can call any other API routine.

■ A call to the sqlsrv_close_cursor routine completes an sqlsrv_fetch_many operation.

■ By default, the sqlsrv_fetch routine fetches only one row of data from the server. That
way, your application can execute SQL statements INSERT . . . WHERE CURRENT
OF cursor-name, UPDATE . . . WHERE CURRENT OF cursor-name, and DELETE . . .
WHERE CURRENT OF cursor-name.

■ The sqlsrv_fetch_many routine initiates an sqlsrv_fetch_many operation; however, it
does not fetch any rows. Therefore, sqlsrv_fetch_many returns a success status even if
there are no rows in the result table. In this situation, sqlsrv_fetch returns a status of
SQL_EOS the first time it is called to fetch a row from the result table.

Errors

SQLSRV_FTCMNYACT An sqlsrv_fetch_many context is already active for this
cursor.

SQLSRV_INTERR Internal error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVCURNAM Invalid cursor name.

SQLSRV_MULTI_ACT A batched sqlsrv_execute_in_out or sqlsrv_fetch_many
context is active.

sqlsrv_close_cursor

6-38 Guide to Using the Oracle SQL/Services Client API

sqlsrv_close_cursor

The sqlsrv_close_cursor routine closes an open cursor.

C Format
extern int sqlsrv_close_cursor(
 ASSOCIATE_ID associate_id,
 char *cursor_name);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

cursor_name
Address of a null-terminated string used to identify the open cursor.

Errors

SQLSRV_CONNTIMEOUT The connection to the server could not be completed within
the specified time limit.

SQLSRV_EXEINTERR The executor has encountered an internal or other error
condition.

SQLSRV_INTERR Internal error.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVCURNAM Invalid cursor name.

SQLSRV_NETERR Network transport returned an error.

SQLSRV_SVC_SHUTDOWN The specified service has been shut down.

sqlsrv_close_cursor

API Routines 6-39

6.3.4 Utility Routines
Utility routines provide local service to the caller. Utility routines include the following
routines:

■ sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data routine (see sqlsrv_allocate_
sqlda_data or sqlsrv_allocate_sqlda2_data)

■ sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data routine (see sqlsrv_free_sqlda_data
or sqlsrv_free_sqlda2_data)

■ sqlsrv_set_option routine (see sqlsrv_set_option)

sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data

6-40 Guide to Using the Oracle SQL/Services Client API

sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data

The sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data routine dynamically allocates
memory for data and indicator variables. Your application passes an SQLDA_ID identifier
to sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data, which allocates buffers of the
appropriate size and writes the addresses of the newly allocated buffers into the SQLDATA
and SQLIND fields in the SQLVAR or SQLVAR2 array.

C Format
extern int sqlsrv_allocate_sqlda_data(
 ASSOCIATE_ID associate_id,
 SQLDA_ID sqlda_str);

extern int sqlsrv_allocate_sqlda2_data(
 ASSOCIATE_ID associate_id,
 SQLDA_ID sqlda_str);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

sqlda_str
The identifier of a parameter marker or select list SQLDA or SQLDA2 for which to allocate
data and indicator variables.

Notes
■ You can free buffers allocated by the sqlsrv_allocate_sqlda_data or sqlsrv_allocate_

sqlda2_data routine explicitly by calling the sqlsrv_free_sqlda_data or sqlsrv_free_

Note: You must not modify the SQLDATA and SQLIND fields in the
SQLVAR or SQLVAR2 fields if you call sqlsrv_allocate_sqlda_data or
sqlsrv_allocate_sqlda2_data to allocate memory for data and indicator
variables. The operation and results of other client API routines will be
unpredictable if you modify these fields. The format, parameters,
description, notes, and errors for the SQLDA or SQLDA2 routines are
identical unless otherwise specified.

sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data

API Routines 6-41

sqlda2_data routine, or implicitly by calling the sqlsrv_release_statement or sqlsrv_
release routine.

■ The sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data routine allocates
additional memory for certain data types, as shown in Table 6–9.

Errors

Table 6–9 Special Requirements of Data Types to Determine Extra Byte Lengths to
Allocate

Data Type Extra Memory to Allocate

SQLSRV_ASCII_STRING +1 for null-terminating select list item values; note that
parameter marker values are not treated as null-terminated
strings

SQLSRV_GENERALIZED_
DATE

+1 for null terminator

SQLSRV_INTERVAL +1 for null terminator

SQLSRV_GENERALIZED_
NUMBER

+6 for null terminator and to allow input in scientific notation
[for example, 9999E+123]

SQLSRV_VARCHAR +2 for SQLDAs or +4 for SQLDA2s for leading length field

SQLSRV_VARBYTE +2 for SQLDAs or +4 for SQLDA2s for leading length field

SQLSRV_INTERR Internal error.

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVDATTYP Invalid data type.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_NO_MEM API memory allocation failed.

SQLSRV_USRDATALL The user, not Oracle SQL/Services, has allocated data
buffers.

sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data

6-42 Guide to Using the Oracle SQL/Services Client API

sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data

The sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data routine frees buffers that hold data
and indicator variables that were dynamically allocated by the sqlsrv_allocate_sqlda_data or
sqlsrv_allocate_sqlda2_data routine. Your application passes an SQLDA_ID identifier to the
API, which frees the buffers and writes zeros into the SQLDATA and SQLIND fields of the
SQLVAR or SQLVAR2 array.

C Format
extern int sqlsrv_free_sqlda_data(
 ASSOCIATE_ID associate_id,
 SQLDA_ID sqlda_str);

extern int sqlsrv_free_sqlda2_data(
 ASSOCIATE_ID associate_id,
 SQLDA_ID sqlda_str);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

sqlda_str
The identifier of a parameter marker or select list SQLDA or SQLDA2 for which to
deallocate data and indicator variables.

Errors

Note: The sqlsrv_release_statement and sqlsrv_release routines
implicitly call the sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data
routine for each prepared statement's dynamically allocated SQLDA or
SQLDA2 structure. The format, parameters, description, notes, and errors
for the SQLDA or SQLDA2 routines are identical unless otherwise
specified.

SQLSRV_ACTSTM The statement id already has an active cursor.

SQLSRV_INTERR Internal error.

sqlsrv_free_sqlda_data or sqlsrv_free_sqlda2_data

API Routines 6-43

SQLSRV_INVASC Invalid association identifier.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_MULTI_ACT A batched sqlsrv_execute_in_out or sqlsrv_fetch_many
context is active.

SQLSRV_SQLDA_NOTALL Attempt to deallocate static memory.

SQLSRV_USRDATALL The user, not Oracle SQL/Services, has allocated data

buffers.

sqlsrv_set_option

6-44 Guide to Using the Oracle SQL/Services Client API

sqlsrv_set_option

The sqlsrv_set_option routine sets the option that determines whether the Oracle
SQL/Services client and server use the standard SQLDA or the extended SQLDA2 format
for new statements that the application prepares.

C Format
extern int sqlsrv_set_option(
 ASSOCIATE_ID association,
 SQS_LONGWORD option,
 SQS_LONGWORD value,
 void *rsv);

Parameters

association
An identifier used to distinguish one association from all others.

option
The option to set. The option parameter takes the argument SQLSRV_OPT_SQLDA_
TYPE.

value
The value determines whether the SQLDA or SQLDA2 is set.

The value parameter takes either of the arguments described in Table 6–10 when the option
parameter argument SQLSRV_OPT_SQLDA_TYPE is specified.

rsv
Argument reserved for future use. The value of this argument must be NULL.

Table 6–10 Value Parameter Arguments If the Option Parameter Argument Is
SQLSRV_OPT_SQLDA_TYPE

Argument Description

SQLSRV_OPT_SQLDA_SQLDA Use standard SQLDA format

SQLSRV_OPT_SQLDA_SQLDA2 Use extended SQLDA2 format

sqlsrv_set_option

API Routines 6-45

Notes
■ If you do not call the sqlsrv_set_option routine to set the SQLDA format, Oracle

SQL/Services uses the standard SQLDA format. To use the extended SQLDA2 format,
you must call the sqlsrv_set_option routine, specifying the option as SQLSRV_OPT_
SQLDA_TYPE and the value as SQLSRV_OPT_SQLDA_SQLDA2, before you call
sqlsrv_prepare to prepare an SQL statement.

Errors

SQLSRV_INVARG Invalid routine parameter.

SQLSRV_INVASC Invalid association identifier.

sqlsrv_set_option

6-46 Guide to Using the Oracle SQL/Services Client API

6.3.5 Functional Interface Routines
Functional interface routines provide access to data and metadata stored in SQLCA,
SQLDA, and SQLDA2 structures. These routines replace the need for making direct
references to structure fields in API applications. Functional interface routines include the
following routines:

■ sqlsrv_sqlca_error routine (see sqlsrv_sqlca_error)

■ sqlsrv_sqlca_error_text routine (see sqlsrv_sqlca_error_text)

■ sqlsrv_sqlca_count routine (see sqlsrv_sqlca_count)

■ sqlsrv_sqlca_sqlerrd routine (see sqlsrv_sqlca_sqlerrd)

■ sqlsrv_sqlca_sqlstate routine (see sqlsrv_sqlca_sqlstate)

■ sqlsrv_sqlda_sqld or sqlsrv_sqlda2_sqld routine (see sqlsrv_sqlda_sqld or sqlsrv_
sqlda2_sqld)

■ sqlsrv_sqlda_sqld73 or sqlsrv_sqlda2_sqld73 routine (see sqlsrv_sqlda_sqld73 or
sqlsrv_sqlda2_sqld73)

■ sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name routine (see sqlsrv_sqlda_
sqld73 or sqlsrv_sqlda2_sqld73)

■ sqlsrv_sqlda_column_name73 or sqlsrv_sqlda2_column_name73 routine (see sqlsrv_
sqlda_column_name73 or sqlsrv_sqlda2_column_name73)

■ sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type routine (see sqlsrv_sqlda_
column_type or sqlsrv_sqlda2_column_type)

■ sqlsrv_sqlda_column_type73 or sqlsrv_sqlda2_column_type73 routine (see sqlsrv_
sqlda_column_type73 or sqlsrv_sqlda2_column_type73)

■ sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data routine (see sqlsrv_sqlda_bind_data
or sqlsrv_sqlda2_bind_data)

■ sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73 routine (see sqlsrv_sqlda_
bind_data73 or sqlsrv_sqlda2_bind_data73)

■ sqlsrv_sqlda_unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda routine (see sqlsrv_sqlda_
unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda)

■ sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73 routine (see sqlsrv_
sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73)

■ sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data routine (see sqlsrv_sqlda_ref_data or
sqlsrv_sqlda2_ref_data)

sqlsrv_set_option

API Routines 6-47

■ sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73 routine (see sqlsrv_sqlda_ref_
data73 or sqlsrv_sqlda2_ref_data73)

■ sqlsrv_sqlda_unref_data or sqlsrv_sqlda2_unref_data routine (see sqlsrv_sqlda_unref_
data or sqlsrv_sqlda2_unref_data)

■ sqlsrv_sqlda_unref_data73 or sqlsrv_sqlda2_unref_data73 routine (see sqlsrv_sqlda_
unref_data73 or sqlsrv_sqlda2_unref_data73)

■ sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data routine (see sqlsrv_sqlda_get_data or
sqlsrv_sqlda2_get_data)

■ sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73 routine (see sqlsrv_sqlda_get_
data73 or sqlsrv_sqlda2_get_data73)

■ sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data routine (see sqlsrv_sqlda_set_data or
sqlsrv_sqlda2_set_data)

■ sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73 routine (see sqlsrv_sqlda_set_
data73 or sqlsrv_sqlda2_set_data73)

■ sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen routine (see sqlsrv_sqlda_set_
sqllen or sqlsrv_sqlda2_set_sqllen)

■ sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73 routine (see sqlsrv_sqlda_set_
sqllen73 or sqlsrv_sqlda2_set_sqllen73)

■ sqlsrv_sqlda2_char_set_info routine (see sqlsrv_sqlda2_char_set_info)

■ sqlsrv_sqlda2_char_set_info routine (see sqlsrv_sqlda2_char_set_info73)

sqlsrv_sqlca_error

6-48 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlca_error

The sqlsrv_sqlca_error routine returns the error codes for the last statement executed.

C Format
extern int sqlsrv_sqlca_error(
 ASSOCIATE_ID associate_id,
 SQS_LONGWORD *majerr,
 SQS_LONGWORD *suberr1,
 SQS_LONGWORD *suberr2);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

majerr
Address of a variable of type SQS_LONGWORD into which the API writes the major error
code from the SQLCODE field of the SQLCA.

suberr1
Address of a variable of type SQS_LONGWORD into which the API writes the minor error
code from the SQLERRD[0] field of the SQLCA.

suberr2
Address of a variable of type SQS_LONGWORD into which the API writes the minor error
code from the SQLERRD[2] field of the SQLCA.

Notes
■ After you call the Oracle SQL/Services API routine, the SQLCA structure contains the

return status.

Errors

SQLSRV_INVASC Invalid association identifier.

sqlsrv_sqlca_error_text

API Routines 6-49

sqlsrv_sqlca_error_text

The sqlsrv_sqlca_error_text routine returns the error text for the last statement executed.

C Format
extern int sqlsrv_sqlca_error_text(
 ASSOCIATE_ID associate_id,
 short int *msglen,
 char *msg,
 short int buflen);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

msglen
Address of a variable of type short into which the API writes the length in bytes of the error
message text written to the buffer specified by the msg parameter.

msg
Address of a buffer of type char into which the API writes the error message text.

buflen
Length in bytes of the buffer specified by the msg parameter.

Notes
■ The error message text is copied into the specified buffers and null-terminated.

■ The length of the error excluding the null-terminator is returned in msglen.

sqlsrv_sqlca_count

6-50 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlca_count

The sqlsrv_sqlca_count routine returns the number of rows processed by a statement.

C Format
extern int sqlsrv_sqlca_count(
 ASSOCIATE_ID associate_id);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ This call replaces direct access to the SQLCA.SQLERRD[2] field.

■ The SQLCA.SQLERRD[2] field contains a valid row count only when a statement, or
all statements in a batch execute operation, executes successfully.

Errors

SQLSRV_INVASC Invalid association identifier.

sqlsrv_sqlca_sqlerrd

API Routines 6-51

sqlsrv_sqlca_sqlerrd

The sqlsrv_sqlca_sqlerrd routine returns all values from the SQLCA.SQLERRD array.

C Format
extern int sqlsrv_sqlca_sqlerrd(
 ASSOCIATE_ID associate_id,
 SQS_LONGWORD *sqlerrd_array);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

sqlerrd_array
Address of an array of 6 elements of type SQS_LONGWORD into which the API writes the
contents of the SQLERRD array.

Notes
See Section 7.4 for details of information returned in the SQLERRD array.

Errors

SQLSRV_INVASC Invalid association identifier.

sqlsrv_sqlca_sqlstate

6-52 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlca_sqlstate

The sqlsrv_sqlca_sqlstate routine returns the SQLSTATE associated with the SQLCODE for
the last statement executed.

C Format
extern int sqlsrv_sqlca_sqlstate(
 ASSOCIATE_ID associate_id,
 char *sqlstate);

Parameters

associate_id
An identifier used to distinguish one active association from all others.

sqlstate
Address of a buffer of type char into which the API writes the sqlstate. The buffer’s length is
SQLSTATE_LEN. SQLSTATE_LEN is a constant defined in the sqlsrv.h header file. The
sqlstate is not null-terminated.

Errors

SQLSRV_INVASC Invalid association identifier.

sqlsrv_sqlda_sqld or sqlsrv_sqlda2_sqld

API Routines 6-53

sqlsrv_sqlda_sqld or sqlsrv_sqlda2_sqld

The sqlsrv_sqlda_sqld or sqlsrv_sqlda2_sqld routine returns the number of parameter
markers or select list items in the SQLDA or SQLDA2.

C Format
extern int sqlsrv_sqlda_sqld(
 SQLDA_ID sqldaid);

extern int sqlsrv_sqlda2_sqld(
 SQLDA_ID sqldaid);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

Notes
■ This call corresponds to referencing the SQLD field in an SQLDA or SQLDA2. The

field is set by the API after a statement is prepared.

Errors

Note: The format, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_sqld73 or sqlsrv_sqlda2_sqld73

6-54 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_sqld73 or sqlsrv_sqlda2_sqld73

The sqlsrv_sqlda_sqld73 or sqlsrv_sqlda2_sqld73 routine returns the number of parameter
markers or select list items in the SQLDA or SQLDA2.

C Format
extern int sqlsrv_sqlda_sqld73(
 SQLDA_ID sqldaid,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_sqld73(
 SQLDA_ID sqldaid,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ This call corresponds to referencing the SQLD field in an SQLDA or SQLDA2. The

field is set by the API after a statement is prepared.

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_sqld or sqlsrv_sqlda2_sqld routine.

Errors

Note: The format, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name

API Routines 6-55

sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name

The sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name routine copies the column
name for a particular column from the SQLDA or SQLDA2, respectively, into a program
variable.

C Format
extern int sqlsrv_sqlda_column_name(
 SQLDA_ID sqldaid,
 short int colnum,
 char *colnam,
 short int *colnamlen);

extern int sqlsrv_sqlda2_column_name(
 SQLDA_ID sqldaid,
 short int colnum,
 char *colnam,
 short int *colnamlen);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

colnam
Address of a buffer of type char into which the API writes the column name as a
null-terminated character string. For an SQLDA, the buffer must be at least 30 bytes long;
for an SQLDA2, the buffer must be at least 32 bytes long.

colnamlen
Address of a variable of type short into which the API writes the length in bytes of the
column name written to the colnam parameter.

Note: The format, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_column_name or sqlsrv_sqlda2_column_name

6-56 Guide to Using the Oracle SQL/Services Client API

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ The column name for a particular column is copied from the SQLDA into the variable
passed in this call.

■ Oracle Rdb does not assign a value to the column name in the following situations:

– If a select list item, assignment, or comparison involves an arithmetic expression or
predicates other than basic predicates.

– For parameter markers and select list items specified in statements contained in a
compound statement.

■ The maximum length of a column name in an Oracle Rdb database is 31 characters.
However, the maximum length of a column name stored by Oracle SQL/Services in the
SQLNAME field of a client SQLDA is 29 characters. This is because the SQLNAME
field is only 30 characters long and because Oracle SQL/Services null-terminates the
column name in the SQLNAME field of a client SQLDA. The maximum length of a
column name in the SQLNAME field of an Oracle SQL/Services client SQLDA2 is 31
characters.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_column_name73 or sqlsrv_sqlda2_column_name73

API Routines 6-57

sqlsrv_sqlda_column_name73 or sqlsrv_sqlda2_column_name73

The sqlsrv_sqlda_column_name73 or sqlsrv_sqlda2_column_name73 routine copies the
column name for a particular column from the SQLDA or SQLDA2, respectively, into a
program variable.

C Format
extern int sqlsrv_sqlda_column_name73(
 SQLDA_ID sqldaid,
 short int colnum,
 char *colnam,
 short int *colnamlen,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_column_name73(
 SQLDA_ID sqldaid,
 short int colnum,
 char *colnam,
 short int *colnamlen,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

colnam
Address of a buffer of type char into which the API writes the column name as a
null-terminated character string. For an SQLDA, the buffer must be at least 30 bytes long;
for an SQLDA2, the buffer must be at least 32 bytes long.

Note: The format, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_column_name73 or sqlsrv_sqlda2_column_name73

6-58 Guide to Using the Oracle SQL/Services Client API

colnamlen
Address of a variable of type short into which the API writes the length in bytes of the
column name written to the colnam parameter.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ The column name for a particular column is copied from the SQLDA into the variable
passed in this call.

■ Oracle Rdb does not assign a value to the column name in the following situations:

– If a select list item, assignment, or comparison involves an arithmetic expression or
predicates other than basic predicates.

– For parameter markers and select list items specified in statements contained in a
compound statement.

■ The maximum length of a column name in an Oracle Rdb database is 31 characters.
However, the maximum length of a column name stored by Oracle SQL/Services in the
SQLNAME field of a client SQLDA is 29 characters. This is because the SQLNAME
field is only 30 characters long and because Oracle SQL/Services null-terminates the
column name in the SQLNAME field of a client SQLDA. The maximum length of a
column name in the SQLNAME field of an Oracle SQL/Services client SQLDA2 is 31
characters.

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_column_name or sqlsrv_sqlda2_column_name routine.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type

API Routines 6-59

sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type

The sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type routine returns information
about the data type of a column.

C Format
extern int sqlsrv_sqlda_column_type(
 SQLDA_ID sqldaid,
 short int colnum,
 short int *coltyp,
 unsigned short int *collen,
 short int *colscl,
 void *rsv);

extern int sqlsrv_sqlda2_column_type(
 SQLDA_ID sqldaid,
 short int colnum,
 short int *coltyp,
 SQS_UNSIGNED_LONGWORD *collen,
 short int *colscl,
 SQS_UNSIGNED_LONGWORD *coloctlen,
 void *rsv);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

coltyp
Address of a variable of type short into which the API writes the Oracle SQL/Services data
type of the column.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_column_type or sqlsrv_sqlda2_column_type

6-60 Guide to Using the Oracle SQL/Services Client API

collen
Address of a variable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDA2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl
Address of a variable of type short into which the API writes the scale factor for columns of
type SQLSRV_GENERALIZED_NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. Undefined
for columns of all other data types.

coloctlen (SQLDA2 only)
Address of a variable of type SQS_UNSIGNED_LONGWORD into which the API writes
the length of the column in octets or 8-bit bytes.

rsv
Argument reserved for future use. The value of this argument must be NULL.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ See Chapter 8 for information on all Oracle SQL/Services data types.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_column_type73 or sqlsrv_sqlda2_column_type73

API Routines 6-61

sqlsrv_sqlda_column_type73 or sqlsrv_sqlda2_column_type73

The sqlsrv_sqlda_column_type73 or sqlsrv_sqlda2_column_type73 routine returns
information about the data type of a column.

C Format
extern int sqlsrv_sqlda_column_type73(
 SQLDA_ID sqldaid,
 short int colnum,
 short int *coltyp,
 unsigned short int *collen,
 short int *colscl,
 void *rsv,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_column_type73(
 SQLDA_ID sqldaid,
 short int colnum,
 short int *coltyp,
 SQS_UNSIGNED_LONGWORD *collen,
 short int *colscl,
 SQS_UNSIGNED_LONGWORD *coloctlen,
 void *rsv,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

coltyp
Address of a variable of type short into which the API writes the Oracle SQL/Services data
type of the column.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_column_type73 or sqlsrv_sqlda2_column_type73

6-62 Guide to Using the Oracle SQL/Services Client API

collen
Address of a variable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDA2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl
Address of a variable of type short into which the API writes the scale factor for columns of
type SQLSRV_GENERALIZED_NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. Undefined
for columns of all other data types.

coloctlen (SQLDA2 only)
Address of a variable of type SQS_UNSIGNED_LONGWORD into which the API writes
the length of the column in octets or 8-bit bytes.

rsv
Argument reserved for future use. The value of this argument must be NULL.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ See Chapter 8 for information on all Oracle SQL/Services data types.

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_column_type or sqlsrv_sqlda2_column_type routine.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data

API Routines 6-63

sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data

The sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data routine allows programs to allocate
their own storage for data and indicator variables for parameter markers and select list items.

C Format
extern int sqlsrv_sqlda_bind_data(
 SQLDA_ID sqldaid,
 short int colnum,
 short int coltyp,
 unsigned short int collen,
 short int colscl,
 CHARPTR datptr,
 SHORTPTR nulptr,
 void *rsv);

extern int sqlsrv_sqlda2_bind_data(
 SQLDA_ID sqldaid,
 short int colnum,
 short int coltyp,
 SQS_UNSIGNED_LONGWORD collen,
 short int colscl,
 CHARPTR datptr,
 LONGPTR nulptr,
 SQS_UNSIGNED_LONGWORD octet_len,
 SQS_LONGWORD chrono_scale,
 SQS_LONGWORD chrono_precision,
 void *rsv);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data

6-64 Guide to Using the Oracle SQL/Services Client API

coltyp
Address of a variable of type short into which the API writes the Oracle SQL/Services data
type of the column.

collen
Address of a variable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDA2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl
Address of a variable of type short into which the API writes the scale factor for columns of
type SQLSRV_GENERALIZED_NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. This
parameter is undefined for columns of all other data types.

datptr
Address of the data variable of type unsigned char for the column.

nulptr
Address of the indicator variable for the column. For an SQLDA, the indicator variable is of
type short. For an SQLDA2, the indicator variable is of type SQS_LONGWORD. See
Section 7.6 or Section 7.7 for a description of the indicator variable (SQLIND field) of an
SQLDA or SQLDA2, respectively.

octet_len (SQLDA2 only)
Address of a variable of type SQS_UNSIGNED_LONGWORD into which the API writes
the length in octets of the column.

chrono_scale (SQLDA2 only)
Address of a variable of type SQS_LONGWORD into which the API writes the specific
date-time data type for columns of type SQLSRV_GENERALIZED_DATE or the interval
scale for columns of type SQLSRV_INTERVAL.

chrono_precision (SQLDA2 only)
Address of a variable of type SQS_LONGWORD into which the API writes the precision of
the date-time value or interval value for columns of type SQLSRV_GENERALIZED_DATE
or SQLSRV_INTERVAL, respectively.

rsv
Argument reserved for future use. The value of this argument must be NULL.

sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data

API Routines 6-65

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ The sqlsrv_sqlda_bind_data and sqlsrv_sqlda2_bind_data routines provide an efficient
mechanism for an application program to provide its own memory for data and indicator
variables for parameter markers and select list items. After preparing a statement, the
application must examine each column, allocate an appropriate amount of memory for
both the data and indicator variables, then bind that memory to the column in the
SQLDA or SQLDA2 using the sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data
routine, respectively. Before releasing the statement, the application program must
unbind the memory for the column's data and indicator variables from the SQLDA or
SQLDA2 using the sqlsrv_sqlda_unbind_data or sqlsrv_sqlda2_unbind_data routine,
respectively.

■ Applications that use the sqlsrv_sqlda_bind_data and sqlsrv_sqlda2_bind_data routines
to provide memory for data and indicator variables in an SQLDA or SQLDA2 must
allocate memory for all the parameter markers and select list items in the SQLDA or
SQLDA. You cannot use the sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data
routines to allocate memory for the same SQLDA or SQLDA2 for which you have
bound user memory to data and indicator variables.

■ Calling the sqlsrv_sqlda_bind_data and sqlsrv_sqlda2_bind_data routines is equivalent
to directly storing pointers and values in the SQLDATA, SQLIND, SQLLEN, and
SQLOCTET_LEN fields of a column's SQLVARARY array element in an SQLDA or
SQLDA2.

Errors

SQLSRV_INCDATTYP Incompatible data type with column.

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVDATTYP Invalid data type.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_NO_MEM API memory allocation failed.

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

6-66 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

The sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73 routine allows programs to
allocate their own storage for data and indicator variables for parameter markers and select
list items.

C Format
extern int sqlsrv_sqlda_bind_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 short int coltyp,
 unsigned short int collen,
 short int colscl,
 CHARPTR datptr,
 SHORTPTR nulptr,
 void *rsv,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_bind_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 short int coltyp,
 SQS_UNSIGNED_LONGWORD collen,
 short int colscl,
 CHARPTR datptr,
 LONGPTR nulptr,
 SQS_UNSIGNED_LONGWORD octet_len,
 SQS_LONGWORD chrono_scale,
 SQS_LONGWORD chrono_precision,
 void *rsv,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

API Routines 6-67

colnum
A column identified by its ordinal position in a parameter or select list.

coltyp
Address of a variable of type short into which the API writes the Oracle SQL/Services data
type of the column.

collen
Address of a variable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDA2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl
Address of a variable of type short into which the API writes the scale factor for columns of
type SQLSRV_GENERALIZED_NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. This
parameter is undefined for columns of all other data types.

datptr
Address of the data variable of type unsigned char for the column.

nulptr
Address of the indicator variable for the column. For an SQLDA, the indicator variable is of
type short. For an SQLDA2, the indicator variable is of type SQS_LONGWORD. See
Section 7.6 or Section 7.7 for a description of the indicator variable (SQLIND field) of an
SQLDA or SQLDA2, respectively.

octet_len (SQLDA2 only)
Address of a variable of type SQS_UNSIGNED_LONGWORD into which the API writes
the length in octets of the column.

chrono_scale (SQLDA2 only)
Address of a variable of type SQS_LONGWORD into which the API writes the specific
date-time data type for columns of type SQLSRV_GENERALIZED_DATE or the interval
scale for columns of type SQLSRV_INTERVAL.

chrono_precision (SQLDA2 only)
Address of a variable of type SQS_LONGWORD into which the API writes the precision of
the date-time value or interval value for columns of type SQLSRV_GENERALIZED_DATE
or SQLSRV_INTERVAL, respectively.

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

6-68 Guide to Using the Oracle SQL/Services Client API

rsv
Argument reserved for future use. The value of this argument must be NULL.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ The sqlsrv_sqlda_bind_data73 and sqlsrv_sqlda2_bind_data73 routines provide an
efficient mechanism for an application program to provide its own memory for data and
indicator variables for parameter markers and select list items. After preparing a
statement, the application must examine each column, allocate an appropriate amount of
memory for both the data and indicator variables, then bind that memory to the column
in the SQLDA or SQLDA2 using the sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_
data73 routine, respectively. Before releasing the statement, the application program
must unbind the memory for the column's data and indicator variables from the SQLDA
or SQLDA2 using the sqlsrv_sqlda_unbind_data73 or sqlsrv_sqlda2_unbind_data73
routine, respectively.

■ Applications that use the sqlsrv_sqlda_bind_data73 and sqlsrv_sqlda2_bind_data73
routines to provide memory for data and indicator variables in an SQLDA or SQLDA2
must allocate memory for all the parameter markers and select list items in the SQLDA
or SQLDA. You cannot use the sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_
data routines to allocate memory for the same SQLDA or SQLDA2 for which you have
bound user memory to data and indicator variables.

■ Calling the sqlsrv_sqlda_bind_data73 and sqlsrv_sqlda2_bind_data73 routines is
equivalent to directly storing pointers and values in the SQLDATA, SQLIND,
SQLLEN, and SQLOCTET_LEN fields of a column's SQLVARARY array element in
an SQLDA or SQLDA2.

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_bind_data or sqlsrv_sqlda2_bind_data routine.

Errors

SQLSRV_INCDATTYP Incompatible data type with column.

SQLSRV_INVCOLNUM Column number not within range.

sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73

API Routines 6-69

SQLSRV_INVDATTYP Invalid data type.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_NO_MEM API memory allocation failed.

sqlsrv_sqlda_unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda

6-70 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda

The sqlsrv_sqlda_unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda routine releases variables
bound with the sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data routine.

C Format
extern int sqlsrv_sqlda_unbind_sqlda(
 SQLDA_ID sqldaid);

extern int sqlsrv_sqlda2_unbind_sqlda(
 SQLDA_ID sqldaid);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

Notes
■ A single call to sqlsrv_sqlda_unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda unbinds the

memory provided for all the data and indicator variables in an SQLDA or SQLDA2
bound by one or more calls to sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data.

■ Calling the sqlsrv_sqlda_bind_data and sqlsrv_sqlda2_bind_data routines is equivalent
to directly clearing the pointers in the SQLDATA and SQLIND fields of a column's
SQLVARARY array element in an SQLDA or SQLDA2.

Errors

Note: The format, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73

API Routines 6-71

sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73

The sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73 routine releases
variables bound with the sqlsrv_sqlda_bind_data or sqlsrv_sqlda2_bind_data routine.

C Format
extern int sqlsrv_sqlda_unbind_sqlda73(
 SQLDA_ID sqldaid,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_unbind_sqlda73(
 SQLDA_ID sqldaid,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ A single call to sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73 unbinds

the memory provided for all the data and indicator variables in an SQLDA or SQLDA2
bound by one or more calls to sqlsrv_sqlda_bind_data73 or sqlsrv_sqlda2_bind_data73.

■ Calling the sqlsrv_sqlda_bind_data73 and sqlsrv_sqlda2_bind_data73 routines is
equivalent to directly clearing the pointers in the SQLDATA and SQLIND fields of a
column's SQLVARARY array element in an SQLDA or SQLDA2.

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_unbind_sqlda or sqlsrv_sqlda2_unbind_sqlda routine.

Note: The format, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_unbind_sqlda73 or sqlsrv_sqlda2_unbind_sqlda73

6-72 Guide to Using the Oracle SQL/Services Client API

Errors
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data

API Routines 6-73

sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data

The sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data routine returns the type, length, scale,
or date-time type, and address of the data and indicator variables for a column in an SQLDA
or SQLDA2, respectively. In the SQLDA2, the sqlsrv_sqlda2_ref_data routine also returns
the octet length, chrono-scale, and chrono-precision for a column.

C Format
extern int sqlsrv_sqlda_ref_data(
 SQLDA_ID sqldaid,
 short int colnum,
 short int *coltyp,
 unsigned short int *collen,
 short int *colscl,
 PTRCHARPTR val,
 PTRSHORTPTR nullp,
 void *rsv);

extern int sqlsrv_sqlda2_ref_data(
 SQLDA_ID sqldaid,
 short int colnum,
 short int *coltyp,
 SQS_UNSIGNED_LONGWORD *collen,
 short int *colscl,
 PTRCHARPTR val,
 PTRLONGPTR nullp,
 SQS_UNSIGNED_LONGWORD *octet_len,
 SQS_LONGWORD *chrono_scale,
 SQS_LONGWORD *chrono_precision,
 void *rsv);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data

6-74 Guide to Using the Oracle SQL/Services Client API

colnum
A column identified by its ordinal position in a parameter or select list.

coltyp
Address of a variable of type short into which the API writes the Oracle SQL/Services data
type of the column.

collen
Address of a variable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDA2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl
Address of a variable of type short into which the API writes the scale factor for columns of
type SQLSRV_GENERALIZED_NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. Undefined
for columns of all other data types.

val
The address of a variable of type CHARPTR into which the API writes the address of the
column's data variable.

nullp
Address of a variable into which the API writes the address of the column's indicator
variable. For an SQLDA, the indicator variable is of type short. For an SQLDA2, the
indicator variable is of type SQS_LONGWORD. See Section 7.6 or Section 7.7 for a
description of the indicator variable (SQLIND field) of an SQLDA or SQLDA2,
respectively.

octet_len (SQLDA2 only)
Address of a variable of type SQS_UNSIGNED_LONGWORD into which the API writes
the length in octets of the column.

chrono_scale (SQLDA2 only)
Address of a variable of type SQS_LONGWORD into which the API writes the specific
date-time data type for columns of type SQLSRV_GENERALIZED_DATE or the interval
scale for columns of type SQLSRV_INTERVAL.

sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data

API Routines 6-75

chrono_precision (SQLDA2 only)
Address of a variable of type SQS_LONGWORD into which the API writes the precision of
the date-time value or interval value for columns of type SQLSRV_GENERALIZED_DATE
or SQLSRV_INTERVAL, respectively.

rsv
Argument reserved for future use. The value of this argument must be NULL.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ Use the sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data routine to access a column's
data and indicator variables allocated by the sqlsrv_allocate_sqlda_data or sqlsrv_
allocate_sqlda2_data routine. It is equivalent to reading the SQLLEN, SQLTYPE,
SQLDATA, and SQLIND fields of the SQLVAR or SQLVAR2 structure, and for
SQLDA2, the SQLOCTET_LEN, SQLCHRONO_SCALE, and SQLCHRONO_
PRECISION fields of the SQLVAR2 structure for the column.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73

6-76 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73

The sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73 routine returns the type, length,
scale, or date-time type, and address of the data and indicator variables for a column in an
SQLDA or SQLDA2, respectively. In the SQLDA2, the sqlsrv_sqlda2_ref_data routine also
returns the octet length, chrono-scale, and chrono-precision for a column.

C Format
extern int sqlsrv_sqlda_ref_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 short int *coltyp,
 unsigned short int *collen,
 short int *colscl,
 PTRCHARPTR val,
 PTRSHORTPTR nullp,
 void *rsv,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_ref_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 short int *coltyp,
 SQS_UNSIGNED_LONGWORD *collen,
 short int *colscl,
 PTRCHARPTR val,
 PTRLONGPTR nullp,
 SQS_UNSIGNED_LONGWORD *octet_len,
 SQS_LONGWORD *chrono_scale,
 SQS_LONGWORD *chrono_precision,
 void *rsv,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73

API Routines 6-77

colnum
A column identified by its ordinal position in a parameter or select list.

coltyp
Address of a variable of type short into which the API writes the Oracle SQL/Services data
type of the column.

collen
Address of a variable into which the API writes the length of the column. For an SQLDA,
the column length is expressed in an unsigned word as the number of 8-bit bytes. For an
SQLDA2, the column length is expressed in an unsigned longword as the number of
characters, where a single character might occupy more than one byte in a multibyte
character set.

colscl
Address of a variable of type short into which the API writes the scale factor for columns of
type SQLSRV_GENERALIZED_NUMBER or the type of date or interval for columns of
type SQLSRV_GENERALIZED_DATE or SQLSRV_INTERVAL, respectively. Undefined
for columns of all other data types.

val
The address of a variable of type CHARPTR into which the API writes the address of the
column's data variable.

nullp
Address of a variable into which the API writes the address of the column's indicator
variable. For an SQLDA, the indicator variable is of type short. For an SQLDA2, the
indicator variable is of type SQS_LONGWORD. See Section 7.6 or Section 7.7 for a
description of the indicator variable (SQLIND field) of an SQLDA or SQLDA2,
respectively.

octet_len (SQLDA2 only)
Address of a variable of type SQS_UNSIGNED_LONGWORD into which the API writes
the length in octets of the column.

chrono_scale (SQLDA2 only)
Address of a variable of type SQS_LONGWORD into which the API writes the specific
date-time data type for columns of type SQLSRV_GENERALIZED_DATE or the interval
scale for columns of type SQLSRV_INTERVAL.

sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73

6-78 Guide to Using the Oracle SQL/Services Client API

chrono_precision (SQLDA2 only)
Address of a variable of type SQS_LONGWORD into which the API writes the precision of
the date-time value or interval value for columns of type SQLSRV_GENERALIZED_DATE
or SQLSRV_INTERVAL, respectively.

rsv
Argument reserved for future use. The value of this argument must be NULL.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ Use the sqlsrv_sqlda_ref_data73 or sqlsrv_sqlda2_ref_data73 routine to access a
column's data and indicator variables allocated by the sqlsrv_allocate_sqlda_data or
sqlsrv_allocate_sqlda2_data routine. It is equivalent to reading the SQLLEN,
SQLTYPE, SQLDATA, and SQLIND fields of the SQLVAR or SQLVAR2 structure,
and for SQLDA2, the SQLOCTET_LEN, SQLCHRONO_SCALE, and
SQLCHRONO_PRECISION fields of the SQLVAR2 structure for the column.

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_ref_data or sqlsrv_sqlda2_ref_data routine.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_unref_data or sqlsrv_sqlda2_unref_data

API Routines 6-79

sqlsrv_sqlda_unref_data or sqlsrv_sqlda2_unref_data

The sqlsrv_sqlda_unref_data or sqlsrv_sqlda2_unref_data routine frees resources tied up by
the sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data routine.

C Format
extern int sqlsrv_sqlda_unref_data(
 SQLDA_ID sqldaid,
 short int colnum);

extern int sqlsrv_sqlda2_unref_data(
 SQLDA_ID sqldaid,
 short int colnum);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

Errors

Note: The format, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_unref_data73 or sqlsrv_sqlda2_unref_data73

6-80 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_unref_data73 or sqlsrv_sqlda2_unref_data73

The sqlsrv_sqlda_unref_data73 or sqlsrv_sqlda2_unref_data73 routine frees resources tied
up by the sqlsrv_sqlda_ref_data or sqlsrv_sqlda2_ref_data routine.

C Format
extern int sqlsrv_sqlda_unref_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_unref_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_unref_data or sqlsrv_sqlda2_unref_data routine.

Note: The format, parameters, description, notes, and errors for the
SQLDA or SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_unref_data73 or sqlsrv_sqlda2_unref_data73

API Routines 6-81

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data

6-82 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data

The sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data routine copies column data and
indicator variables from the SQLDA or SQLDA2, respectively, to a program.

C Format
extern int sqlsrv_sqlda_get_data(
 SQLDA_ID sqldaid,
 short int colnum,
 unsigned short int offset,
 CHARPTR dst,
 unsigned short int dstlen,
 SHORTPTR nullp,
 unsigned short int *bytcpy);

extern int sqlsrv_sqlda2_get_data(
 SQLDA_ID sqldaid,
 short int colnum,
 SQS_UNSIGNED_LONGWORD offset,
 CHARPTR dst,
 SQS_UNSIGNED_LONGWORD dstlen,
 LONGPTR nullp,
 SQS_UNSIGNED_LONGWORD *bytcpy);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

offset
The offset within the column's data variable at which to start the copy. The most typical
value for the offset parameter is zero, which means to start the copy at the beginning of the
column's data variable. For an SQLDA, the offset is of type unsigned short. For an
SQLDA2, the offset is of type SQS_UNSIGNED_LONGWORD.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data

API Routines 6-83

dst
The address of a buffer of type unsigned char to which the data is copied.

dstlen
The length in bytes of the buffer specified as the dst argument. For an SQLDA, the length is
of type unsigned short. For an SQLDA2, the length is of type SQS_UNSIGNED_
LONGWORD.

nullp
Address of a variable into which Oracle SQL/Services writes the value of the column
indicator variable. For an SQLDA, the indicator variable is of type short. For an SQLDA2,
the indicator variable is of type SQS_LONGWORD. See Section 7.6 or Section 7.7 for a
description of the indicator variable (SQLIND field) of an SQLDA or SQLDA2,
respectively.

bytcpy
Address of a variable into which the API writes the number of bytes of data actually copied.
For an SQLDA, the variable is of type unsigned short. For an SQLDA2, the variable is of
type SQS_UNSIGNED_LONGWORD.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ The sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data routine provides access to
SQLDA or SQLDA2 information for languages that do not support explicit type
coercion. Note that the use of the sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data
routine requires the host language to support some form of type coercion.

■ When the sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data routine is used, data is
copied between the SQLDA or SQLDA2 and the user's buffer.

■ The offset field provides some flexibility to callers, allowing you to take a selected
section out of the field in question. The most typical value for the offset field is zero (0),
which means to start copying at the beginning of the data. The maximum allowable
value for the offset field is the maximum length of the SQLDATA buffer.

Errors

SQLSRV_INVCOLNUM Column number not within range.

sqlsrv_sqlda_get_data or sqlsrv_sqlda2_get_data

6-84 Guide to Using the Oracle SQL/Services Client API

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73

API Routines 6-85

sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73

The sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73 routine copies column data and
indicator variables from the SQLDA or SQLDA2, respectively, to a program.

C Format
extern int sqlsrv_sqlda_get_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 unsigned short int offset,
 CHARPTR dst,
 unsigned short int dstlen,
 SHORTPTR nullp,
 unsigned short int *bytcpy,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_get_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 SQS_UNSIGNED_LONGWORD offset,
 CHARPTR dst,
 SQS_UNSIGNED_LONGWORD dstlen,
 LONGPTR nullp,
 SQS_UNSIGNED_LONGWORD *bytcpy,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

offset
The offset within the column's data variable at which to start the copy. The most typical
value for the offset parameter is zero, which means to start the copy at the beginning of the

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73

6-86 Guide to Using the Oracle SQL/Services Client API

column's data variable. For an SQLDA, the offset is of type unsigned short. For an
SQLDA2, the offset is of type SQS_UNSIGNED_LONGWORD.

dst
The address of a buffer of type unsigned char to which the data is copied.

dstlen
The length in bytes of the buffer specified as the dst argument. For an SQLDA, the length is
of type unsigned short. For an SQLDA2, the length is of type SQS_UNSIGNED_
LONGWORD.

nullp
Address of a variable into which Oracle SQL/Services writes the value of the column
indicator variable. For an SQLDA, the indicator variable is of type short. For an SQLDA2,
the indicator variable is of type SQS_LONGWORD. See Section 7.6 or Section 7.7 for a
description of the indicator variable (SQLIND field) of an SQLDA or SQLDA2,
respectively.

bytcpy
Address of a variable into which the API writes the number of bytes of data actually copied.
For an SQLDA, the variable is of type unsigned short. For an SQLDA2, the variable is of
type SQS_UNSIGNED_LONGWORD.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ The sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73 routine provides access to
SQLDA or SQLDA2 information for languages that do not support explicit type
coercion. Note that the use of the sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73
routine requires the host language to support some form of type coercion.

■ When the sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73 routine is used, data is
copied between the SQLDA or SQLDA2 and the user's buffer.

■ The offset field provides some flexibility to callers, allowing you to take a selected
section out of the field in question. The most typical value for the offset field is zero (0),
which means to start copying at the beginning of the data. The maximum allowable
value for the offset field is the maximum length of the SQLDATA buffer.

sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73

API Routines 6-87

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_get_data or sqlsrv_sqlda2_get_data routine.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data

6-88 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data

The sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data routine copies column information into
the SQLDA or SQLDA2, respectively.

C Format
extern int sqlsrv_sqlda_set_data(
 SQLDA_ID sqldaid,
 short int colnum,
 unsigned short int offset,
 CHARPTR dst,
 unsigned short int dstlen,
 short int nullp,
 unsigned short int *bytcpy);

extern int sqlsrv_sqlda2_set_data(
 SQLDA_ID sqldaid,
 short int colnum,
 SQS_UNSIGNED_LONGWORD offset,
 CHARPTR dst,
 SQS_UNSIGNED_LONGWORD dstlen,
 SQS_LONGWORD nullp,
 SQS_UNSIGNED_LONGWORD *bytcpy);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

offset
The offset within the column's data variable at which to start the copy. The most typical
value for the offset parameter is zero (0), which means to start the copy at the beginning of
the column's data variable. For an SQLDA, the offset is of type unsigned short. For an
SQLDA2, the offset is of type SQS_UNSIGNED_LONGWORD.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data

API Routines 6-89

dst
The address of a buffer of type unsigned char containing the data to be copied to the
SQLDATA buffer.

dstlen
The length in bytes of the buffer specified as the dst argument. For an SQLDA, the length is
of type unsigned short. For an SQLDA2, the length is of type SQS_UNSIGNED_
LONGWORD.

nullp
The value for the column's indicator variable. For an SQLDA, the indicator is of type short.
For an SQLDA2, the indicator is of type SQS_LONGWORD. See Section 7.6 or Section 7.7
for a description of the indicator variable (SQLIND field) of an SQLDA or SQLDA2,
respectively.

bytcpy
Address of a variable into which the API writes the number of bytes of data actually copied.
For an SQLDA, the variable is of type unsigned short. For an SQLDA2, the variable is of
type SQS_UNSIGNED_LONGWORD.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ The sqlsrv_sqlda_set_data or sqlsrv_sqlda2_set_data routine complements the sqlsrv_
sqlda_get_data or sqlsrv_sqlda2_get_data routine. It is used to copy values into a
column's data and indicator variables.

■ The offset field provides some flexibility to callers, allowing you to target a selected
section of the field in question. The most typical value for the offset field is zero (0),
which means to target the copying at the beginning of the data. The maximum allowable
value for the offset field is the maximum length of the SQLDATA or SQLIND buffer.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73

6-90 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73

The sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73 routine copies column
information into the SQLDA or SQLDA2, respectively.

C Format
extern int sqlsrv_sqlda_set_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 unsigned short int offset,
 CHARPTR dst,
 unsigned short int dstlen,
 short int nullp,
 unsigned short int *bytcpy,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_set_data73(
 SQLDA_ID sqldaid,
 short int colnum,
 SQS_UNSIGNED_LONGWORD offset,
 CHARPTR dst,
 SQS_UNSIGNED_LONGWORD dstlen,
 SQS_LONGWORD nullp,
 SQS_UNSIGNED_LONGWORD *bytcpy,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

offset
The offset within the column's data variable at which to start the copy. The most typical
value for the offset parameter is zero (0), which means to start the copy at the beginning of

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routines are identical unless otherwise specified.

sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73

API Routines 6-91

the column's data variable. For an SQLDA, the offset is of type unsigned short. For an
SQLDA2, the offset is of type SQS_UNSIGNED_LONGWORD.

dst
The address of a buffer of type unsigned char containing the data to be copied to the
SQLDATA buffer.

dstlen
The length in bytes of the buffer specified as the dst argument. For an SQLDA, the length is
of type unsigned short. For an SQLDA2, the length is of type SQS_UNSIGNED_
LONGWORD.

nullp
The value for the column's indicator variable. For an SQLDA, the indicator is of type short.
For an SQLDA2, the indicator is of type SQS_LONGWORD. See Section 7.6 or Section 7.7
for a description of the indicator variable (SQLIND field) of an SQLDA or SQLDA2,
respectively.

bytcpy
Address of a variable into which the API writes the number of bytes of data actually copied.
For an SQLDA, the variable is of type unsigned short. For an SQLDA2, the variable is of
type SQS_UNSIGNED_LONGWORD.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ Oracle SQL/Services returns an error if the SQLDA or SQLDA2 is invalid or if the

column number is greater than the number of parameter markers or select list items
(colnum >= sqlda.SQLD).

■ The sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73 routine complements the
sqlsrv_sqlda_get_data73 or sqlsrv_sqlda2_get_data73 routine. It is used to copy values
into a column's data and indicator variables.

■ The offset field provides some flexibility to callers, allowing you to target a selected
section of the field in question. The most typical value for the offset field is zero (0),
which means to target the copying at the beginning of the data. The maximum allowable
value for the offset field is the maximum length of the SQLDATA or SQLIND buffer.

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_set_data or sqlsrv_sqlda2_set_data routine.

sqlsrv_sqlda_set_data73 or sqlsrv_sqlda2_set_data73

6-92 Guide to Using the Oracle SQL/Services Client API

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen

API Routines 6-93

sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen

The sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen routine sets the length of a column
by setting the SQLLEN field in an SQLDA or the SQLLEN and SQLOCTET_LEN in an
SQLDA2.

C Format
extern int sqlsrv_sqlda_set_sqllen(
 SQLDA_ID sqldaid,
 short int colnum,
 unsigned short int len);

extern int sqlsrv_sqlda2_set_sqllen(
 SQLDA_ID sqldaid,
 short int colnum,
 SQS_UNSIGNED_LONGWORD len,
 SQS_UNSIGNED_LONGWORD octet_len);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

len
The length of the SQLLEN field in an SQLDA or SQLDA2.

octet_len (SQLDA2 only)
Address of a variable of type SQS_UNSIGNED_LONGWORD into which the API writes
the length in octets of the column.

Notes
■ Only columns of the SQLSRV_ASCII_STRING, SQLSRV_VARCHAR, and SQLSRV_

VARBYTE data types can have their length changed.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routine are identical unless otherwise specified.

sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen

6-94 Guide to Using the Oracle SQL/Services Client API

■ An SQLSRV_INVSETLEN error code is returned if you attempt to set the SQLLEN for
a column of type SQLSRV_GENERALIZED_DATE, SQLSRV_GENERALIZED_
NUMBER, SQLSRV_INTERVAL, or SQLSRV_LIST_VARBYTE.

■ Use the sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen routine to limit the amount
of data returned in a column of a select list SQLDA. For example, if only the first few
bytes of a column of type SQLSRV_ASCII_STRING, SQLSRV_VARCHAR, or
SQLSRV_VARBYTE are required in certain circumstances, you can reduce the size of
network messages by limiting the amount of data returned by the sqlsrv_fetch routine.
When processing a call to sqlsrv_fetch or sqlsrv_execute_in_out, Oracle SQL/Services
sends to the server only the lengths of those columns in a select list SQLDA or
SQLDA2 that have changed since the last call.

■ Use the sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen routine to modify the
length of a column of type SQLSRV_ASCII_STRING in a parameter marker SQLDA.
In this situation, Oracle Rdb truncates or pads the value as necessary to the actual length
of the column as specified in the database. Oracle SQL/Services does not need to send
to the server the lengths of columns that have changed in a parameter marker SQLDA
or SQLDA2, because the length of each data value is sent to the server along with the
data itself.

■ See Chapter 8 for more information on how Oracle SQL/Services handles values of
each supported data type.

■ You can increase or decrease the amount of memory Oracle SQL/Services allocates for
a column by calling sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen before you call
sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data. For example, Oracle Rdb
allows you to store a segment of any length into a segmented string, regardless of the
segment length specified in the database. Therefore, you may need to increase the
length of a column of type SQLSRV_VARBYTE before you call sqlsrv_allocate_sqlda_
data or sqlsrv_allocate_sqlda2_data to allocate the SQLDA data memory.

■ For the sqlsrv_sqlda2_set_sqllen routine, the octlen parameter is compared with the len
parameter to see if they are compatible. For example, the SQLLEN of a column of type
SQLSRV_VARCHAR or SQLSRV_VARBYTE does not include the size of the leading
32-bit count field, whereas the SQLOCTET_LEN of a column of type SQLSRV_
VARCHAR or SQLSRV_VARBYTE does include the size of the leading 32-bit count
field. If they are not compatible, an SQLSRV_INVSETLEN error code is returned.

When using a multibyte character set, normally the SQLLEN field represents the length
in characters of a column, excluding the length of any control information, whereas the
SQLOCTET_LEN represents the length in bytes of the column, including the length of
any control information. However, Oracle SQL/Services does not send the
SQLOCTET_LEN value to the server if it is changed; therefore, you must set the

sqlsrv_sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen

API Routines 6-95

SQLLEN to the new length in bytes of the column, excluding the length of any control
information.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_INVDATTYP Invalid data type.

SQLSRV_INVSETLEN Unsupported data type or invalid SQLLEN and
SQLOCTET_LEN combination.

SQLSRV_INVSQLLEN The SQLLEN field in the SQLDA or SQLDA2 has been
set to 0 or to a value greater than the size of the column.

sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73

6-96 Guide to Using the Oracle SQL/Services Client API

sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73

The sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73 routine sets the length of a
column by setting the SQLLEN field in an SQLDA or the SQLLEN and SQLOCTET_LEN
in an SQLDA2.

C Format
extern int sqlsrv_sqlda_set_sqllen73(
 SQLDA_ID sqldaid,
 short int colnum,
 unsigned short int len,
 ASSOCIATE_ID associate_id);

extern int sqlsrv_sqlda2_set_sqllen73(
 SQLDA_ID sqldaid,
 short int colnum,
 SQS_UNSIGNED_LONGWORD len,
 SQS_UNSIGNED_LONGWORD octet_len,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA or SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

len
The length of the SQLLEN field in an SQLDA or SQLDA2.

octet_len (SQLDA2 only)
Address of a variable of type SQS_UNSIGNED_LONGWORD into which the API writes
the length in octets of the column.

associate_id
An identifier used to distinguish one active association from all others.

Note: The format, parameters, description, notes, and errors for the
SQLDA and SQLDA2 routine are identical unless otherwise specified.

sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73

API Routines 6-97

Notes
■ Only columns of the SQLSRV_ASCII_STRING, SQLSRV_VARCHAR, and SQLSRV_

VARBYTE data types can have their length changed.

■ An SQLSRV_INVSETLEN error code is returned if you attempt to set the SQLLEN for
a column of type SQLSRV_GENERALIZED_DATE, SQLSRV_GENERALIZED_
NUMBER, SQLSRV_INTERVAL, or SQLSRV_LIST_VARBYTE.

■ Use the sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73 routine to limit the
amount of data returned in a column of a select list SQLDA. For example, if only the
first few bytes of a column of type SQLSRV_ASCII_STRING, SQLSRV_VARCHAR,
or SQLSRV_VARBYTE are required in certain circumstances, you can reduce the size
of network messages by limiting the amount of data returned by the sqlsrv_fetch
routine. When processing a call to sqlsrv_fetch or sqlsrv_execute_in_out, Oracle
SQL/Services sends to the server only the lengths of those columns in a select list
SQLDA or SQLDA2 that have changed since the last call.

■ Use the sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73 routine to modify the
length of a column of type SQLSRV_ASCII_STRING in a parameter marker SQLDA.
In this situation, Oracle Rdb truncates or pads the value as necessary to the actual length
of the column as specified in the database. Oracle SQL/Services does not need to send
to the server the lengths of columns that have changed in a parameter marker SQLDA
or SQLDA2, because the length of each data value is sent to the server along with the
data itself.

■ See Chapter 8 for more information on how Oracle SQL/Services handles values of
each supported data type.

■ You can increase or decrease the amount of memory Oracle SQL/Services allocates for
a column by calling sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73 before
you call sqlsrv_allocate_sqlda_data or sqlsrv_allocate_sqlda2_data. For example,
Oracle Rdb allows you to store a segment of any length into a segmented string,
regardless of the segment length specified in the database. Therefore, you may need to
increase the length of a column of type SQLSRV_VARBYTE before you call sqlsrv_
allocate_sqlda_data or sqlsrv_allocate_sqlda2_data to allocate the SQLDA data
memory.

■ For the sqlsrv_sqlda2_set_sqllen73 routine, the octlen parameter is compared with the
len parameter to see if they are compatible. For example, the SQLLEN of a column of
type SQLSRV_VARCHAR or SQLSRV_VARBYTE does not include the size of the
leading 32-bit count field, whereas the SQLOCTET_LEN of a column of type
SQLSRV_VARCHAR or SQLSRV_VARBYTE does include the size of the leading
32-bit count field. If they are not compatible, an SQLSRV_INVSETLEN error code is
returned.

sqlsrv_sqlda_set_sqllen73 or sqlsrv_sqlda2_set_sqllen73

6-98 Guide to Using the Oracle SQL/Services Client API

When using a multibyte character set, normally the SQLLEN field represents the length
in characters of a column, excluding the length of any control information, whereas the
SQLOCTET_LEN represents the length in bytes of the column, including the length of
any control information. However, Oracle SQL/Services does not send the
SQLOCTET_LEN value to the server if it is changed; therefore, you must set the
SQLLEN to the new length in bytes of the column, excluding the length of any control
information.

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_set_sqllen or sqlsrv_sqlda2_set_sqllen routine.

Errors

SQLSRV_INVCOLNUM Column number not within range.

SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_INVDATTYP Invalid data type.

SQLSRV_INVSETLEN Unsupported data type or invalid SQLLEN and
SQLOCTET_LEN combination.

SQLSRV_INVSQLLEN The SQLLEN field in the SQLDA or SQLDA2 has been
set to 0 or to a value greater than the size of the column.

sqlsrv_sqlda2_char_set_info

API Routines 6-99

sqlsrv_sqlda2_char_set_info

The sqlsrv_sqlda2_char_set_info routine returns the SQL character set fields from the
SQLDA2.

C Format
extern int sqlsrv_sqlda2_char_set_info(
 SQLDA_ID sqldaid,
 short int colnum,
 CHARPTR name,
 short int name_len,
 CHARPTR schema,
 short int schema_len,
 CHARPTR catalog,
 short int catalog_len);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

name
Address of a buffer of type unsigned char into which the API writes the character set name.

name_len
The length of the buffer specified by the name argument into which the API writes the
character set name.

schema
Address of a buffer of type unsigned char into which the API writes the schema name.

schema_len
The length of the buffer specified by the schema argument into which the API writes the
schema name.

catalog
Address of a buffer of type unsigned char into which the API writes the catalog name.

sqlsrv_sqlda2_char_set_info

6-100 Guide to Using the Oracle SQL/Services Client API

catalog_len
The length of the buffer specified by the catalog argument into which the API writes the
catalog name.

Notes
■ Oracle SQL/Services returns an error if the SQLDA2 is invalid or if the column number

is greater than the number of parameter markers or select list items (colnum >=
sqlda.SQLD).

■ The maximum length of a character set name, schema name, or catalog name is 128
bytes. If a user-supplied buffer is smaller than the actual name, the name is truncated. If
a user-supplied buffer is larger than the actual name, the name is padded with spaces.

Errors
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_INVCOLNUM Column number not within range.

sqlsrv_sqlda2_char_set_info73

API Routines 6-101

sqlsrv_sqlda2_char_set_info73

The sqlsrv_sqlda2_char_set_info73 routine returns the SQL character set fields from the
SQLDA2.

C Format
extern int sqlsrv_sqlda2_char_set_info73(
 SQLDA_ID sqldaid,
 short int colnum,
 CHARPTR name,
 short int name_len,
 CHARPTR schema,
 short int schema_len,
 CHARPTR catalog,
 short int catalog_len,
 ASSOCIATE_ID associate_id);

Parameters

sqldaid
The identifier of a parameter marker or select list SQLDA2.

colnum
A column identified by its ordinal position in a parameter or select list.

name
Address of a buffer of type unsigned char into which the API writes the character set name.

name_len
The length of the buffer specified by the name argument into which the API writes the
character set name.

schema
Address of a buffer of type unsigned char into which the API writes the schema name.

schema_len
The length of the buffer specified by the schema argument into which the API writes the
schema name.

sqlsrv_sqlda2_char_set_info73

6-102 Guide to Using the Oracle SQL/Services Client API

catalog
Address of a buffer of type unsigned char into which the API writes the catalog name.

catalog_len
The length of the buffer specified by the catalog argument into which the API writes the
catalog name.

associate_id
An identifier used to distinguish one active association from all others.

Notes
■ Oracle SQL/Services returns an error if the SQLDA2 is invalid or if the column number

is greater than the number of parameter markers or select list items (colnum >=
sqlda.SQLD).

■ The maximum length of a character set name, schema name, or catalog name is 128
bytes. If a user-supplied buffer is smaller than the actual name, the name is truncated. If
a user-supplied buffer is larger than the actual name, the name is padded with spaces.

■ This call is often more efficient and performs better than the corresponding sqlsrv_
sqlda_char_set_info routine.

Errors
SQLSRV_INVSQLDA Invalid SQLDA, SQLDA2, or SQLDA_ID.

SQLSRV_INVCOLNUM Column number not within range.

Data Structures 7-1

7
Data Structures

This chapter describes the data structures that Oracle SQL/Services uses to communicate
with the client application. Some of the data structures (the SQLDA, SQLDA2, and
SQLCA) are identical in layout (but not in usage) to those in dynamic SQL. Those structures
are described in detail in the Oracle Rdb SQL Reference Manual. This Oracle SQL/Services
manual provides relatively brief descriptions of the data structures and points out the
differences in their usage.

7.1 Documentation Format
Each Oracle SQL/Services data structure is documented using a structured format called a
template. The sections of the template are shown in Table 7–1, along with the information
that is presented in each section and the format used to present the information.

The Fields section contains detailed information about each field in the data structure. Fields
are described in the order in which they appear in the structure.

The following format is used to describe each field:

Table 7–1 Sections in the Data Structure Template

Section Description

Structure Name Appears at the top of the page, followed by the English equivalent.

Overview Appears directly below the structure name. The overview explains, usually
in one or two sentences, the purpose of the structure.

Definition Shows the C definition of the structure.

Fields Gives detailed information about each field.

field-name

Documentation Format

7-2 Guide to Using the Oracle SQL/Services Client API

In addition, the Fields section contains at least one paragraph of text describing the purpose
of the field.

data type: The data type of the specific field (see Table 6–3)

C declaration: How that field is declared in the Oracle SQL/Services include files

set by: Whether the value of the field is set by the API, the application program, or
both

used by: Whether the value of the field is used by the API, the application program, or
both

ASSOCIATE_STR-Association Structure

Data Structures 7-3

7.2 ASSOCIATE_STR-Association Structure
The association structure is a parameter that is passed to the sqlsrv_associate routine to
specify the attributes of an association such as the service name, network transport, client
logging flags, alternate error buffer, and so forth. ASSOCIATE_STR is defined in the
include file sqlsrv.h. The following is the SQLSRV_V730 version of the structure.

struct ASSOCIATE_STR
 {
 unsigned short int CLIENT_LOG;
 unsigned short SERVER_LOG;
 short int LOCAL_FLAG;
 short int VERSION;
 CHARPTR (*MEMORY_ROUTINE)();
 CHARPTR (*FREE_MEMORY_ROUTINE)();
 short int RESERVED;
 short int ERRBUFLEN;
 CHARPTR ERRBUF;
 CHARPTR class_name;
 short int xpttyp;
 unsigned short int port_id;
 CHARPTR attach;
 CHARPTR declare;
 CHARPTR appnam;
 CHARPTR objnam;
 };

Fields

CLIENT_LOG

Specifies the type of client logging to be enabled on the client system (see Section 5.1).

 The following constants are defined in the include file sqlsrv.h:

data type word (unsigned)

C declaration: unsigned short int CLIENT_LOG

set by: program

used by: API

SQLSRV_LOG_DISABLED Disables logging (default)

SQLSRV_LOG_ASSOCIATION Enables association logging

ASSOCIATE_STR-Association Structure

7-4 Guide to Using the Oracle SQL/Services Client API

 [1]See Chapter 5 for more information.

To enable more than one type of logging, add the appropriate constants.

SERVER_LOG

This feature is deprecated. This field is reserved.

LOCAL_FLAG

This feature is deprecated. This field is reserved.

SQLSRV_LOG_ROUTINE Enables API routine logging

SQLSRV_LOG_PROTOCOL Enables message protocol logging

SQLSRV_LOG_SCREEN[1] Sends logging output to the video display on the
client system as well as to the log file

SQLSRV_LOG_OPNCLS Opens and closes the log file around each log file
write and is useful if a client is terminated
abnormally

 SQLSRV_LOG_FLUSH Flushes pending output to the log file only at the
end of each complete association-level,
routine-level, and protocol-level entry and is useful
if a client application is terminating abnormally
while executing application code.

SQLSRV_LOG_BINARY Dumps memory in structured format if data
contains non-printable characters

data type: word (unsigned)

C declaration: unsigned short int SERVER_LOG

set by: program

used by: unused

data type: word (signed)

C declaration: short int LOCAL_FLAG

set by: program

used by: unused

ASSOCIATE_STR-Association Structure

Data Structures 7-5

VERSION

Specifies the version of the ASSOCIATE_STR structure allocated by the application
program. When set to a specific version number, such as SQLSRV_V700, the value of the
VERSION field directs the client API to process fields in the ASSOCIATE_STR structure
supported by the specified version. The SQLSRV_Vnnn version numbers are defined in
sqlsrv.h.

MEMORY_ROUTINE

A pointer to the entry point of a user-specified routine to be called by the API for allocation
of pointer-based memory. This feature is for client environments in which a limited amount
of memory is available. The default value is NULL, which causes the API to use the
portable C routine malloc() for pointer-based memory allocation.

FREE_MEMORY_ROUTINE

A pointer to the entry point of a user-specified routine to be called by the API for
deallocation of pointer-based memory. The default value is NULL, which causes the API to
use the portable C routine free() for pointer-based memory deallocation.

data type: word (signed)

C declaration: short int VERSION

set by: program

used by: API

data type: pointer

C declaration: CHARPTR (*MEMORY_ROUTINE) ()

set by: program

used by: API

 data type: pointer

C declaration: CHARPTR (*FREE_MEMORY_ROUTINE) ()

set by: program

used by: API

ASSOCIATE_STR-Association Structure

7-6 Guide to Using the Oracle SQL/Services Client API

RESERVED

Must be 0. This field is reserved.

ERRBUFLEN

The length in bytes of an alternate error buffer specified by the ERRBUF field. Specify zero
if you do not provide an alternate error buffer.

ERRBUF

The address of an alternate error message buffer in which the API stores error message text.
If you do not specify an alternate error message buffer, Oracle SQL/Services uses the
70-byte SQLERRMC field in the SQLCA data structure. However, because the
SQLERRMC field is only 70 bytes, it may not be long enough to hold all the possible error
messages that can be returned by the Oracle SQL/Services server or Oracle Rdb. Therefore,
Oracle Corporation recommends that you allocate a larger message buffer for each
association. A buffer of size 512 bytes is sufficient for all possible error messages.

class_name

data type: word (signed)

C declaration: short int RESERVED

set by: program

used by: unused

data type: word (signed)

C declaration: short int ERRBUFLEN

set by: program

used by: API

data type: pointer

C declaration: CHARPTR ERRBUF

set by: API

used by: program

data type: pointer

C declaration: CHARPTR class_name

ASSOCIATE_STR-Association Structure

Data Structures 7-7

The address of a buffer containing the service name with which to associate.

xpttyp

The desired transport type for this association.

The following constants are defined in the include file sqlsrv.h:

port_id

Must be 0 or a TCPIP port number. If non-zero, this value will be used to specify an
alternate TCPIP port number to be used for this association. This value will override any
SQLSRV$TCPIP_PORT logical (OpenVMS clients), SQLSRV_TCPIP_PORT environment
variable (HP Tru64, HP-UX and Linux clients) or TCPIPPortNumber .ini specification
(Windows clients).

set by: program

used by: API

 data type: word (signed)

C declaration: short int xpttyp

set by: program

used by: API

SQLSRV_XPT_NOT_CHOSEN No transport chosen (default); API will select
transport

SQLSRV_XPT_DECNET Enables DECnet transport support (VMS and
Tru64 UNIX only)

SQLSRV_XPT_TCPIP Enables TCP/IP transport support

SQLSRV_XPT_SQLNET Enables Oracle Net transport support (VMS
only)

data type: word (unsigned)

C declaration: short int port_id

set by: program

used by: API

ASSOCIATE_STR-Association Structure

7-8 Guide to Using the Oracle SQL/Services Client API

attach

Must be NULL, or set to a valid SQL ATTACH statement. You can use the attach field
when associating to a universal service to avoid the extra round trip message to the server
for an sqlsrv_execute_immediate call to issue the ATTACH statement. The ATTACH
statement is executed in the executor after the SQL initialization procedure (if any) is
executed.

declare

Must be NULL, or any SQL statement that can be executed using sqlsrv_execute_
immediate. The declare field is designed to specify a DECLARE TRANSACTION
statement; however, you can specify any valid SQL statement. You can use the declare field
when associating to a service of any type to avoid the extra round trip message to the server
for an sqlsrv_execute_immediate call to issue a DECLARE TRANSACTION or other SQL
statement. The SQL statement is executed in the executor after the SQL initialization
procedure (if any) and ATTACH statement (if any) is executed.

appnam

Must be NULL, or a string representing the client application name. Note that because the
client application can pass any string using this field, the application name cannot be used

data type: pointer

C declaration: CHARPTR or an unsigned char*

set by: program

used by: API

data type: pointer

C declaration: CHARPTR or an unsigned char*

set by: program

used by: API

data type: pointer

C declaration: CHARPTR or an unsigned char*

set by: program

used by: API

ASSOCIATE_STR-Association Structure

Data Structures 7-9

for security purposes. The application name is displayed with a system management SHOW
CLIENT command.

objnam

Must be NULL, or a string representing the DECnet object name to be used for this
association. This value will override any SQLSRV$DECNET_OBJECT logical (OpenVMS
clients) or SQLSRV_DECNET_OBJECT environment variable (HP Tru64 clients).

data type: pointer

C declaration: CHARPTR or an unsigned char*

set by: program

used by: API

SQLCA-SQL Communications Area

7-10 Guide to Using the Oracle SQL/Services Client API

7.3 SQLCA-SQL Communications Area
The SQLCA structure is used to store information when an error occurs. This structure is
defined in the include file sqlsrvca.h along with the error codes generated by Oracle
SQL/Services.

struct SQLCA

 {
 char SQLCAID [8];
 SQS_LONGWORD SQLCABC;
 SQS_LONGWORD SQLCODE;
 struct
 {
 short int SQLERRML;
 char SQLERRMC [70];
 } SQLERRM;
 SQS_LONGWORD SQLERRD [6];
 struct
 {
 char SQLWARN0;
 char SQLWARN1;
 char SQLWARN
 char SQLWARN3;
 char SQLWARN4;
 char SQLWARN5;
 char SQLWARN6;
 char SQLWARN7;
 } SQLWARN;
 char SQLEXT [8];
 } ;

The Oracle SQL/Services SQLCA is based on the SQL SQLCA, which is described in detail
in the Oracle Rdb SQL Reference Manual.

Fields

SQLCAID

data type: character string

C declaration: char SQLCAID [8]

set by: API

used by: unused

SQLCA-SQL Communications Area

Data Structures 7-11

Structure identification field, present only for compatibility with SQL. Contains the
null-terminated string “SQLCA” followed by two reserved bytes.

SQLCABC

Contains the size, in bytes, of the SQLCA structure. The value of this field is always 128.

SQLCODE

Contains the error status for the most recently invoked Oracle SQL/Services routine. A
positive value indicates a warning, a negative value indicates an error, and a 0 value
indicates success. The include file sqlsrv.h contains the error messages that correspond to all
of the possible values of SQLCODE returned by the Oracle SQL/Services client API.

SQLERRM.SQLERRML

The length, in bytes, of the error message text returned in SQLERRMC.

SQLERRM.SQLERRMC

data type: SQS_LONGWORD

C declaration: SQS_LONGWORD SQLCABC

set by: API

used by: program

data type: SQS_LONGWORD

C declaration: SQS_LONGWORD SQLCODE

set by: API

used by: program

data type: word (signed)

C declaration: short int SQLERRML

set by: API

used by: program

data type: character string

C declaration: char SQLERRMC [70]

SQLERRD-Part of SQLCA

7-12 Guide to Using the Oracle SQL/Services Client API

The error message text, if any, that corresponds to the error contained in the SQLCODE
field. This field is not used if you specify an alternate error message buffer. See Section 7.2
for more information.

SQLERRD

An array of six integers as described in Section 7.4.

SQLWARN.SQLWARNn

A series of eight 1-character state fields as defined by SQL.

SQLEXT

Not used by the API.

7.4 SQLERRD-Part of SQLCA
The SQLERRD array contains six elements. The content of each element in the SQLERRD
array is determined by the routine that is successfully called:

set by: API

used by: program

data type: longword (signed) array

C declaration: SQS_LONGWORD [6]

set by: API

used by: program

data type: character string

C declaration: char SQLWARN0 . . . SQLWARN7

set by: unused

used by: unused

data type: character string

C declaration: char SQLEXT [8]

set by: unused

used by: unused

SQLDA or SQLDA2-SQL Descriptor Area

Data Structures 7-13

■ After a successful call to sqlsrv_prepare, the following information is stored in the
SQLERRD array:

SQLERRD[1] contains the statement type.

The statement types, as defined by Oracle Rdb, are as follows:

 0: statement is an executable statement other than CALL
 1: statement is a SELECT statement
 2: statement is a CALL statement

■ After a successful call to sqlsrv_execute_immediate or sqlsrv_execute_in_out with the
execute flag set to either SQLSRV_EXE_W_DATA or SQLSRV_EXE_WO_DATA, the
following information is stored in the SQLERRD array:

SQLERRD[2] element contains the number of rows inserted, updated, or deleted.

See sqlsrv_execute_immediate and sqlsrv_execute_in_out for more information.

■ After a successful call to sqlsrv_open_cursor to open a table cursor, the following
information is stored in the SQLERRD array:

SQLERRD[2] element contains the estimated result table cardinality.
SQLERRD[3] element contains the estimated I/Os.

■ After a successful call to sqlsrv_open_cursor to open a list cursor, the following
information is stored in the SQLERRD array:

SQLERRD[1] element contains the length of the largest actual segment.
SQLERRD[3] element contains the total number of segments.

The SQLERRD[4] and SQLERRD[5] elements contain the total length of all the
segments as a quadword value where the low-order 32-bit value is stored in
SQLERR[4] and the high-order 32-bit value is stored in SQLERRD[5].

■ After a successful call to sqlsrv_fetch, the following information is stored in the
SQLERRD array:

SQLERRD[2] contains the number of the current row within the result table.

7.5 SQLDA or SQLDA2-SQL Descriptor Area
The SQLDA or SQLDA2 structure contains SQL parameter marker and select list metadata
as well as pointers to data and indicator variables. It is defined in the include file sqlsrvda.h.

SQLDA or SQLDA2-SQL Descriptor Area

7-14 Guide to Using the Oracle SQL/Services Client API

The Oracle SQL/Services SQLDA or SQLDA2 is identical to the SQLDA or SQLDA2
structures, respectively, in SQL. For additional information on the SQLDA or SQLDA2,
read the dynamic SQL chapter in the Oracle Rdb7 Guide to SQL Programming and the
SQLDA and SQLDA2 appendix in the Oracle Rdb SQL Reference Manual.

struct SQLDA
 {
 char SQLDAID[8];
 SQS_LONGWORD SQLDABC;
 unsigned short SQLN;
 unsigned short SQLD;
 struct SQLVAR SQLVARARY[1];
 };
struct SQLDA2
 {
 char SQLDAID[8];
 SQS_LONGWORD SQLDABC;
 unsigned short SQLN;
 unsigned short SQLD;
 struct SQLVAR2 SQLVARARY[1];
 };

Fields

SQLDAID

 Structure identification field; contains the null-terminated string “SQLDA” or “SQLDA2”
followed by one or two reserved bytes.

SQLDABC

data type: character string

C declaration: char SQLDAID[8]

set by: API

used by: unused

data type: SQS_LONGWORD

C declaration: SQS_LONGWORD SQLDABC

set by: API or program

used by: API

SQLDA or SQLDA2-SQL Descriptor Area

Data Structures 7-15

The size, in bytes, of the SQLDA or SQLDA2 structure, including the nested variable length
SQLVARARY structure. The SQLDABC field is used by the API to verify the integrity of
the SQLDA or SQLDA2.

SQLN

The number of elements in the SQLVARARY. If the API allocated the SQLDA or SQLDA2
structure, this value is the same as the SQLD field. If your application allocated its own
SQLDA or SQLDA2 structure, it must supply this value. In that case, the SQLN field
specifies the maximum number of select list items or parameter marker items that can exist
in an SQL statement that is prepared with a particular SQLDA or SQLDA2; a call to the
sqlsrv_prepare routine with an SQLVARARY that is too small returns an error.

SQLD

The actual number of parameter markers or select list items in a prepared SQL statement. In
an SQLDA or SQLDA2 structure that was allocated by the API, this value is the same as the
SQLN field (the number of elements in the SQLVARARY).

SQLVARARY

An array of SQLVAR structures (see Section 7.6) or SQLVAR2 structures (see Section 7.7),
each of which describes one select list item or one parameter marker item. Because some C

data type: word (signed)

C declaration: short int SQLN

set by: see following text

used by: API

data type: word (signed)

C declaration: short int SQLD

set by: API

used by: program

 data type: structure array

C declaration: struct SQLVAR SQLVARARY[1] (SQLDA),
struct SQLVAR2 SQLVARARY[1] (SQLDA2)

set by: see Section 7.6 and Section 7.7

used by: see Section 7.6 and Section 7.7

SQLDA or SQLDA2-SQL Descriptor Area

7-16 Guide to Using the Oracle SQL/Services Client API

compilers do not support the definition of a varying array within a structure, SQLVARARY
is defined as an array of one element. However, Oracle SQL/Services uses as many
SQLVAR or SQLVAR2 elements as allocated in an SQLDA or SQLDA2.

SQLVAR-Parameter Marker or Select List Item

Data Structures 7-17

7.6 SQLVAR-Parameter Marker or Select List Item
Each SQLVAR structure describes one select list item or parameter marker.

struct SQLVAR
 {
 short SQLTYPE;
 unsigned short SQLLEN;
 CHARPTR SQLDATA;
 SHORTPTR SQLIND;
 short SQLNAME_LEN;
 char SQLNAME[30];
 };

Fields

SQLTYPE

The SQL data type for the SQLVAR entry. This value represents the Oracle SQL/Services
data type as defined in the include file sqlsrv.h.

#define SQLSRV_ASCII_STRING 129
#define SQLSRV_GENERALIZED_NUMBER 130
#define SQLSRV_GENERALIZED_DATE 131
#define SQLSRV_VARCHAR 132
#define SQLSRV_VARBYTE 155
#define SQLSRV_LIST_VARBYTE 159
#define SQLSRV_INTERVAL 168

SQLLEN

data type: word (signed)

C declaration: short int SQLTYPE

set by: API

used by: program

data type: word (signed)

C declaration: unsigned short int SQLLEN

set by: see following text

used by: program

SQLVAR-Parameter Marker or Select List Item

7-18 Guide to Using the Oracle SQL/Services Client API

The value of the SQLLEN field is dependent on the data type of the parameter marker or
select list item. For more information, see Chapter 8.

SQLDATA

The address of the data variable for the parameter marker or select list item. If your
application allocates data variables by calling the sqlsrv_allocate_sqlda_data or sqlsrv_
allocate_sqlda2_ data routine, the API initializes this field. If your application allocates its
own data variables, it must write the address of each variable into an SQLDATA field. In
that case, the API returns an error if an SQLLEN value is less than the length of the
associated data value.

SQLIND

The address of the indicator variable for the data. If your application calls the sqlsrv_
allocate_sqlda_data or sqlsrv_ allocate_sqlda2_data routine, the API initializes this field.
Otherwise, your application must allocate its own indicator variables and write the address
of each variable into an SQLIND field.

Your program sets the indicator variable of each parameter marker as follows before calling
sqlsrv_execute_in_out or sqlsrv_open_cursor:

 0: to indicate the presence of data for the column
 -1: to indicate a NULL value for the column

The API sets the indicator variable of each select list item as follows as part of the
successful completion of a call to sqlsrv_fetch or sqlsrv_execute_in_out:

 0: to indicate the presence of data for the column

data type: pointer

C declaration: char *SQLDATA

set by: program or API

used by: program and API

data type: pointer

C declaration: short int *SQLIND

set by: program or API

used by: program and API

SQLVAR-Parameter Marker or Select List Item

Data Structures 7-19

 -1: to indicate a NULL value for the column
 >0: to indicate that a column value was truncated

SQLNAME_LEN

The length, in bytes, of the name stored in the SQLNAME field.

SQLNAME

The name of the parameter marker or select list item. Oracle SQL/Services stores the name
as a null-terminated string.

data type: word (signed)

C declaration: short int SQLNAME_LEN

set by: API

used by: program

data type: character string

C declaration: char SQLNAME[30]

set by: API

used by: program

SQLVAR2-Parameter Marker or Select List Item

7-20 Guide to Using the Oracle SQL/Services Client API

7.7 SQLVAR2-Parameter Marker or Select List Item
Each SQLVAR2 structure describes one select list item or parameter marker.

struct SQLVAR2
 {
 short SQLTYPE;
 SQS_UNSIGNED_LONGWORD SQLLEN;
 SQS_UNSIGNED_LONGWORD SQLOCTET_LEN;
 CHARPTR SQLDATA;
 LONGPTR SQLIND;
 SQS_LONGWORD SQLCHRONO_SCALE;
 SQS_LONGWORD SQLCHRONO_PRECISION;
 short SQLNAME_LEN;
 char SQLNAME[128];
 char SQLCHAR_SET_NAME[128];
 char SQLCHAR_SET_SCHEMA[128];
 char SQLCHAR_SET_CATALOG[128];
 };

Fields

SQLTYPE

The SQL data type for the SQLVAR2 entry. This value represents the Oracle SQL/Services
data type as defined in the include file sqlsrv.h.

#define SQLSRV_ASCII_STRING 129
#define SQLSRV_GENERALIZED_NUMBER 130
#define SQLSRV_GENERALIZED_DATE 131
#define SQLSRV_VARCHAR 132
#define SQLSRV_VARBYTE 155
#define SQLSRV_LIST_VARBYTE 159
#define SQLSRV_INTERVAL 168

data type: word (signed)

C declaration: short int SQLTYPE

set by: API

used by: program

SQLVAR2-Parameter Marker or Select List Item

Data Structures 7-21

SQLLEN

The value of the SQLLEN field is dependent on the data type of the parameter marker or
select list item. For more information, see Chapter 8.

SQLOCTET_LEN

A value that indicates the length in octets or 8-bit bytes of the select list item or parameter
marker. For more information, see Chapter 8.

SQLDATA

The address of the data variable for the parameter marker or select list item. If your
application allocates data variables by calling the sqlsrv_allocate_sqlda_data or sqlsrv_
allocate_sqlda2_data routine, the API initializes this field. If your application allocates its
own data variables, it must write the address of each variable into an SQLDATA field. In
that case, the API returns an error if an SQLLEN value is less than the length of the
associated data value.

SQLIND

data type: SQS_LONGWORD_UNSIGNED

C declaration: SQS_LONGWORD_UNSIGNED SQLLEN

set by: see following text

used by: program

data type: SQS_LONGWORD_UNSIGNED

C declaration: SQS_LONGWORD_UNSIGNED SQLOCTET_LEN

set by: SQL

used by: program and API

data type: pointer

C declaration: char *SQLDATA

set by: program or API

used by: program and API

data type: pointer

C declaration: SQS_LONGWORD *SQLIND

SQLVAR2-Parameter Marker or Select List Item

7-22 Guide to Using the Oracle SQL/Services Client API

The address of the indicator variable for the data. If your application calls the sqlsrv_
allocate_sqlda_data or sqlsrv_allocate_sqlda2_data routine, the API initializes this field.
Otherwise, your application must allocate its own indicator variables and write the address
of each variable into an SQLIND field.

Your program sets the indicator variable of each parameter marker as follows before calling
sqlsrv_execute_in_out or sqlsrv_open_cursor:

 0: to indicate the presence of data for the column
 -1: to indicate a NULL value for the column

The API sets the indicator variable of each select list item as follows as part of the
successful completion of a call to sqlsrv_fetch or sqlsrv_execute_in_out:

 0: to indicate the presence of data for the column
 -1: to indicate a NULL value for the column
 >0: to indicate that a column value was truncated

SQLCHRONO_SCALE

SQLCHRONO_SCALE contains the scale of the interval for columns of type SQLSRV_
INTERVAL. SQLCHRONO_SCALE contains the type of date as shown in Table 8-2 for
columns of type SQLSRV_GENERALIZED_DATE.

SQLCHRONO_PRECISION

set by: program or API

used by: program and API

data type: SQS_LONGWORD

C declaration: SQS_LONGWORD SQLCHRONO_SCALE

set by: API

used by: program

data type: SQS_LONGWORD

C declaration: SQS_LONGWORD SQLCHRONO_PRECISION

set by: API

used by: program

SQLVAR2-Parameter Marker or Select List Item

Data Structures 7-23

SQLCHRONO_PRECISION contains the precision for columns of type SQLSRV_
INTERVAL and for columns of type SQLSRV_GENERALIZED_DATE with a type of
SQLSRV_DT_DATE_ANSI, SQLSRV_DT_TIME, or SQLSRV_DT_TIMESTAMP.

SQLNAME_LEN

The length, in bytes, of the name stored in the SQLNAME field.

SQLNAME

The name of the parameter marker or select list item. Oracle SQL/Services stores the name
as a null-terminated string. The maximum length of a name is 31 characters.

SQLCHAR_SET_NAME

The character set name when the SQLTYPE is a character string type. The maximum length
of a character set name is 128 characters. When SQLTYPE is any other data type, this field
contains spaces.

SQLCHAR_SET_SCHEMA

data type: word (signed)

C declaration: short int SQLNAME_LEN

set by: API

used by: program

data type: character string

C declaration: char SQLNAME[128]

set by: API

used by: program

data type: character string

C declaration: char SQLCHAR_SET_NAME[128]

set by: API

used by: program

data type: character string

C declaration: char SQLCHAR_SET_SCHEMA[128]

SQLVAR2-Parameter Marker or Select List Item

7-24 Guide to Using the Oracle SQL/Services Client API

The schema name when the SQLTYPE is a character string type. The maximum length of a
schema name is 128 characters. When SQLTYPE is any other data type, this field contains
spaces.

SQLCHAR_SET_CATALOG

The catalog name when the SQLTYPE is a character string type. The maximum length of a
catalog name is 128 characters. When SQLTYPE is any other data type, this field contains
spaces.

set by: reserved for future use

used by: reserved for future use

data type: character string

C declaration: char SQLCHAR_SET_CATALOG[128]

set by: reserved for future use

used by: reserved for future use

Data Types 8-1

8
Data Types

Oracle SQL/Services supports the full range of SQL data types; however, the values for
certain data types are represented in a different format than that used in the database. Each
SQL data type has a corresponding Oracle SQL/Services data type, all of which are
described in this chapter. The sqlsrv.h file provides definitions for each Oracle SQL/Services
data type.

8.1 Data Types
Table 8–1 lists the SQL data types along with the corresponding Oracle SQL/Services data
types.

Table 8–1 Data Types

SQL Data Type Oracle SQL/Services Data Type

CHAR SQLSRV_ASCII_STRING

VARCHAR SQLSRV_VARCHAR

TINYINT SQLSRV_GENERALIZED_NUMBER

SMALLINT SQLSRV_GENERALIZED_NUMBER

INTEGER SQLSRV_GENERALIZED_NUMBER

QUADWORD SQLSRV_GENERALIZED_NUMBER

FLOAT SQLSRV_GENERALIZED_NUMBER

REAL SQLSRV_GENERALIZED_NUMBER

DOUBLE PRECISION SQLSRV_GENERALIZED_NUMBER

DATE VMS SQLSRV_GENERALIZED_DATE

DATE ANSI SQLSRV_GENERALIZED_DATE

SQLSRV_ASCII_STRING

8-2 Guide to Using the Oracle SQL/Services Client API

8.2 SQLSRV_ASCII_STRING
Oracle SQL/Services uses the SQLSRV_ASCII_STRING data type to represent the CHAR
fixed-length character string data type.

For an SQLDA, the SQLLEN field specifies the length of the string in 8-bit bytes. For an
SQLDA2, the SQLLEN field specifies the length of the string in characters and the
SQLOCTET_LEN field specifies the length of the string in 8-bit bytes.

If the client application calls either the sqlsrv_allocate_sqlda_data() or sqlsrv_allocate_
sqlda2_data() client API service to allocate the SQLDATA memory, then Oracle
SQL/Services allocates an extra byte of memory and null-terminates SQLSRV_ASCII_
STRING character strings in select list SQLDAs. The extra byte of memory is not reflected
in the SQLLEN or SQLOCTET_LEN fields. If the client application allocates its own
SQLDATA memory, then Oracle SQL/Services does not null-terminate SQLSRV_ASCII_
STRING character strings.

8.3 SQLSRV_VARCHAR
Oracle SQL/Services uses the SQLSRV_VARCHAR data type to represent the VARCHAR
varying-length string data type. An SQLSRV_VARCHAR data value consists of a leading
length field immediately followed by the string, which may contain binary data.

For an SQLDA, the leading length field is an unsigned 16-bit word. The SQLLEN field
specifies the maximum length of a string in 8-bit bytes, excluding the size of the 16-bit
leading length field.

For an SQLDA2, the leading length field is an unsigned 32-bit longword. The SQLLEN
field specifies the maximum length of a string in characters, excluding the size of the 32-bit
leading length field. The SQLOCTET_LEN field specifies the maximum length of a string
in 8-bit bytes, including the size of the 32-bit leading length field.

TIME SQLSRV_GENERALIZED_DATE

TIMESTAMP SQLSRV_GENERALIZED_DATE

INTERVAL SQLSRV_INTERVAL

LIST OF BYTE VARYING SQLSRV_LIST_VARBYTE

String segment data type SQLSRV_VARBYTE

Table 8–1 Data Types(Cont.)

SQL Data Type Oracle SQL/Services Data Type

SQLSRV_GENERALIZED_NUMBER

Data Types 8-3

Be sure to specify the correct length for the SQLSRV_VARCHAR data type in your API
applications. Oracle SQL/Services does not issue an error message when the size of the data
fields for the SQLSRV_VARCHAR data type exceeds the size of the SQLLEN field in the
SQLDA data structure.

8.4 SQLSRV_GENERALIZED_NUMBER
Oracle SQL/Services uses the SQLSRV_GENERALIZED_NUMBER data type to represent
the following SQL data types:

■ TINYINT

■ SMALLINT

■ INTEGER

■ QUADWORD

■ FLOAT

■ REAL

■ DOUBLE PRECISION

Oracle SQL/Services presents all integer, fixed-point, and floating-point data values to a
client application as null-terminated numeric strings in the following format:

[-][NNN][.DD][E[-][xx]]

The brackets indicate the optional syntax.

When you prepare a statement, the Oracle SQL/Services executor calculates the maximum
number of bytes required to represent the most negative and the most positive value for an
Oracle SQL/Services generalized number.

For an SQLDA, the low-order byte of the SQLLEN field specifies the maximum number of
bytes, excluding the null-terminator. The high-order byte of the SQLLEN field specifies the
scale factor.

– unary minus

NNN integer portion of the number

.DD decimal portion of the number

E exponent identifier

– unary minus for exponent value

xx exponent value

SQLSRV_GENERALIZED_NUMBER

8-4 Guide to Using the Oracle SQL/Services Client API

For an SQLDA2, the low-order 16-bit word of the SQLLEN field specifies the maximum
number of bytes, excluding the null-terminator. The high-order 16-bit word of the SQLLEN
field specifies the scale factor. The SQLOCTET_LEN field specifies the maximum number
of bytes, including the null-terminator.

Trailing zeros occur in fixed-point numeric data types with SCALE FACTOR. Trailing zeros
are included after the decimal point up to the number of digits specified by the SCALE
FACTOR. For example, a field defined as INTEGER (3) would be expressed as 23.400.

Trailing zeros occur in floating-point data types. Trailing zeros are included in the fraction,
and leading zeros are included in the exponent, up to the maximum precision available, for
fields assigned the REAL and DOUBLE PRECISION data types. For example, a REAL
number would be expressed as 1.2340000E+01 and a DOUBLE PRECISION number would
be expressed as 5.678900000000000E+001.

The maximum size of the TINYINT data type is 4 and the maximum size of the REAL data
type is 15.

SQL allows a parameter marker value for an integer or fixed-point data type to be supplied
in scientific notation. For example: –3.2768E4 is equivalent to –32768. To support this, the
sqlsrv_allocate_sqlda_data() and sqlsrv_allocate_sqlda2_data() client API services both
allocate an additional 5 bytes of memory to account for a possible decimal point (.) and
exponent (E+nn). These 5 extra bytes are not reflected in either the SQLLEN or
SQLOCTET_LEN values.

It is possible for an application that allocates its own memory for parameter marker data
variables to send a numeric data value to the server that is a valid number, but that is
potentially longer than the server can handle. For this reason, the server allocates an extra 10
bytes of memory for parameter marker variables for all numeric data types, in addition to the
minimum required for each data type. If the length of a numeric parameter marker value
exceeds the amount of memory allocated for the parameter marker variable, the server
returns the SQLSRV_DATA_TOO_LONG error to the client. This restriction is imposed on
the server by the particular dynamic SQL interface used by the Oracle SQL/Services server.

For example, the server minimally allocates 6 bytes for a column of type SMALLINT. This
supports values from –32768 through +32767. To handle values expressed in scientific
notation, the server allocates an additional 5 bytes for all numeric data types. This supports
values from -3.2768E+04 through +3.2767E+04. To support the inclusion of insignificant
zeros, the server finally allocates an additional 10 bytes for all numeric data types. This
supports values such as –003.276800E+4 and +3.2767E+0004. However, a value of
+00003.27670000E+00004, although a valid numeric value, is considered too long to be
handled by the server.

SQLSRV_GENERALIZED_DATE

Data Types 8-5

8.5 SQLSRV_GENERALIZED_DATE
Oracle SQL/Services uses the SQLSRV_GENERALIZED_DATE data type to represent the
DATE VMS, DATE ANSI, TIME, and TIMESTAMP data types. An Oracle SQL/Services
generalized date is a null-terminated string containing a maximum of 16 digits in the
following format:

ccyymmdd[hh[mi[ss[ff]]]]

If you omit any of the optional fields of a date-time value of type DATE VMS, then SQL
pads the string with zeros. Thus, the default time is exactly midnight.

In a select list SQLDA, the century, year, month, and day fields of a date-time value of type
TIME are all zeros. In a parameter marker SQLDA, the century, year, month, and day fields
of a date-time value of type TIME are ignored, but must be present. Oracle Corporation
recommends you set these fields to all zeros.

In a select list SQLDA, the hours, minutes, seconds, and fractions-of-second fields of a
date-time value of type DATE ANSI are all zeros. In a parameter marker SQLDA, the hours,
minutes, seconds, and fractions-of-second fields of a date-time value of type DATE ANSI
are ignored.

All the fields of date-time value of type TIMESTAMP are significant in both select list and
parameter marker SQLDAs. For example:

cc century

yy year

mm month

dd day

hh hour (24-hour format)

mi minute

ss second

ff fractions of a second

Data Type Date/Time
SQLSRV_GENERALIZED_
DATE

DATE VMS June 26, 1961 11:04:05 AM 1961062611040500

DATE ANSI March 22, 1996 1996032200000000

TIME 11:23:06.7 AM 0000000011230670

SQLSRV_GENERALIZED_DATE

8-6 Guide to Using the Oracle SQL/Services Client API

For an SQLDA, the low-order byte of the SQLLEN field specifies the maximum number of
digits, including the null-terminator. Thus the value is always 17. The high-order byte of the
SQLLEN field specifies the Oracle SQL/Services date-time data type as shown in Table 8–2.
The precision of the fractions-of-second field of a date-time value of type TIME or
TIMESTAMP value is not available for an SQLDA.

For an SQLDA2, the SQLLEN and SQLOCTET_LEN fields both contain the maximum
number of digits, including the null-terminator. Thus both values are always 17. The
SQLCHRONO_SCALE field specifies the Oracle SQL/Services date-time data type as
shown in Table 8–2. The SQLCHRONO_PRECISION field specifies the precision of the
fractions-of-second field. This value is undefined for a date-time value of type DATE VMS.

It is possible for an application that allocates its own memory for parameter marker data
variables to send a date-time data value to the server that is valid, but that is potentially
longer than the server can handle. For this reason, the server allocates an extra 10 bytes of
memory for parameter marker variables for all date-time data types, in addition to the
minimum required for each data type. If the length of a date-time parameter marker value
exceeds the amount of memory allocated for the parameter marker variable, the server
returns the SQLSRV_DATA_TOO_LONG error to the client. This restriction is imposed on
the server by the dynamic SQL interface used by the Oracle SQL/Services server.

For example, the server minimally allocates 16 bytes for a column of type TIMESTAMP.
This supports all valid timestamp values expressed in the Oracle SQL/Services generalized
date format, such as 1996073009572249 (1996-07-30:09:57:22.49). To support the inclusion
of insignificant zeros, the server also allocates an additional 10 bytes for all date-time data
types. This supports values such as 199607300957224900. However, a value of

TIMESTAMP May 6, 1994 2:34:56.21 PM 1994050614345621

Table 8–2 Oracle SQL/Services Date-Time Data Types

Value
Oracle SQL/Services Date-Time
Data Types SQL Date-Time Data Types

0 SQLSRV_DT_DATE_VMS DATE VMS

1 SQLSRV_DT_DATE_ANSI DATE ANSI

2 SQLSRV_DT_TIME TIME

3 SQLSRV_DT_TIMESTAMP TIMESTAMP

Data Type Date/Time
SQLSRV_GENERALIZED_
DATE

SQLSRV_INTERVAL

Data Types 8-7

1996073009572249000000000000, although a valid date-time value, is considered too long
to be handled by the server.

See the Oracle Rdb SQL Reference Manual and the Oracle Rdb7 Guide to SQL
Programming for more information on the SQL date-time data types.

8.6 SQLSRV_INTERVAL
Oracle SQL/Services uses the SQLSRV_INTERVAL data type to represent the INTERVAL
data type. An Oracle SQL/Services interval is a null-terminated string.

When you prepare a statement, the Oracle SQL/Services executor calculates the maximum
number of bytes required to represent the most negative and the most positive value for an
interval.

For an SQLDA, the low-order byte of the SQLLEN field specifies the maximum number of
bytes, excluding the null-terminator. The high-order byte of the SQLLEN field specifies the
interval subtype. The scale and precision of the interval are not available for an SQLDA.

For an SQLDA2, the SQLLEN field specifies the interval subtype. The SQLOCTET_LEN
field specifies the maximum number of bytes, including the null-terminator. The scale and
precision of the interval are specified by the SQLCHRONO_SCALE and SQLCHRONO_
PRECISION fields, respectively.

The Oracle SQL/Services interval codes shown in Table 8–3 correspond directly to the SQL
interval types.

Table 8–3 Oracle SQL/Services Interval Type

Value Oracle SQL/Services Interval Type

1 SQLSRV_DT_YEAR

2 SQLSRV_DT_MONTH

3 SQLSRV_DT_DAY

4 SQLSRV_DT_HOUR

5 SQLSRV_DT_MINUTE

6 SQLSRV_DT_SECOND

7 SQLSRV_DT_YEAR_MONTH

8 SQLSRV_DT_DAY_HOUR

9 SQLSRV_DT_DAY_MINUTE

SQLSRV_VARBYTE

8-8 Guide to Using the Oracle SQL/Services Client API

It is possible for an application that allocates its own memory for parameter marker data
variables to send an interval data value to the server that is valid, but that is potentially
longer than the server can handle. For this reason, the server allocates an extra 10 bytes of
memory for parameter marker variables for all interval data types, in addition to the
minimum required for each data type. If the length of an interval parameter marker value
exceeds the amount of memory allocated for the parameter marker variable, the server
returns the SQLSRV_DATA_TOO_LONG error to the client. This restriction is imposed on
the server by the dynamic SQL interface used by the Oracle SQL/Services server.

For example, the server minimally allocates 3 bytes for a column of type INTERVAL
YEAR(3). This supports values from –99 through 99. To support the inclusion of
insignificant zeros, the server also allocates an additional 10 bytes for all interval data types.
This supports values such as +000999, although SQL may consider insignificant zeros as
invalid. However, a value of –0000000000099, although potentially a valid interval value, is
considered too long to be handled by the server.

See the Oracle Rdb7 Guide to SQL Programming and the Oracle Rdb SQL Reference
Manual for more information on the INTERVAL data type.

8.7 SQLSRV_VARBYTE
Oracle SQL/Services uses the SQLSRV_VARBYTE data type to represent the
varying-length string segment data type. An SQLSRV_VARBYTE data value consists of a
leading length field immediately followed by the string, which may contain binary data.

For an SQLDA, the leading length field is an unsigned 16-bit word. The SQLLEN field
specifies the maximum length of a string in 8-bit bytes, excluding the size of the 16-bit
leading length field.

For an SQLDA2, the leading length field is an unsigned 32-bit longword. The SQLLEN
field specifies the maximum length of a string in characters, excluding the size of the 32-bit
leading length field. The SQLOCTET_LEN field specifies the maximum length of a string
in 8-bit bytes, including the size of the 32-bit leading length field.

10 SQLSRV_DT_DAY_SECOND

11 SQLSRV_DT_HOUR_MINUTE

12 SQLSRV_DT_HOUR_SECOND

13 SQLSRV_DT_MINUTE_SECOND

Table 8–3 Oracle SQL/Services Interval Type(Cont.)

Value Oracle SQL/Services Interval Type

SQLSRV_LIST_VARBYTE

Data Types 8-9

Be sure to specify the correct length for the SQLSRV_VARBYTE data type in your API
applications. Oracle SQL/Services does not issue an error message when the size of the data
fields for the SQLSRV_VARBYTE data type exceeds the size of the SQLLEN field in the
SQLDA data structure.

When dealing with the SQLSRV_VARBYTE data type, it is important to know that the
length of a segment may exceed the length specified in the metadata for a column. For
example, the default segment length is 1 byte; however, segments of any length may be
stored in a column defined with the default length. Consider a segmented string defined as
LIST OF BYTE VARYING(80).

In a parameter marker SQLDA, you can call sqlsrv_sqlda_set_sqllen(), sqlsrv_sqlda_set_
sqllen73(), sqlsrv_sqlda2_set_sqllen() or sqlsrv_sqlda2_set_sqllen73() to increase the
maximum segment length to 132 bytes before you call sqlsrv_allocate_sqlda_data() or
sqlsrv_allocate_sqlda2_data(). You may then insert strings up to 132 bytes in length into the
segmented string.

In a select list SQLDA, sqlsrv_prepare() returns the segment length specified when the
column was defined. In this example, the column was defined with a segment length of 80
bytes. However, the length of the longest segment in a particular segmented string may be
longer than this value. In this example, it is 132 bytes. To allow your application to allocate
sufficient memory for the longest segment, sqlsrv_open_cursor() returns the length of the
longest segment in the SQLERRD[1] field of the SQLCA when you successfully open a
list cursor to access the segmented string. Therefore, in this example, sqlsrv_open_cursor()
returns 132 in the SQLERRD[1] field. You can then supply this value to sqlsrv_sqlda_set_
sqllen(), sqlsrv_sqlda_set_sqllen73(), sqlsrv_sqlda2_set_sqllen() or sqlsrv_sqlda2_set_
sqllen73() before you call sqlsrv_allocate_sqlda_data() or sqlsrv_allocate_sqlda2_data(). In
this way, you are guaranteed to have sufficient SQLDATA memory available to hold the
longest segment in the segment string.

See the Oracle Rdb7 Guide to SQL Programming and the Oracle Rdb SQL Reference
Manual for more information on lists (segmented strings).

8.8 SQLSRV_LIST_VARBYTE
Oracle SQL/Services uses the SQLSRV_LIST_VARBYTE data type to represent the LIST
OF BYTE VARYING data type. The SQLSRV_LIST_VARBYTE data type is a fixed-length
data type that holds the location of a particular segmented string or binary large object
(BLOB) in a database.

For an SQLDA, the SQLLEN field specifies the size in bytes of the SQLSRV_LIST_
VARBYTE.

Deciding Whether to Use SQLDA or SQLDA2

8-10 Guide to Using the Oracle SQL/Services Client API

For an SQLDA2, both the SQLLEN and SQLOCTET_LEN fields specify the size in bytes
of the SQLSRV_LIST_VARBYTE.

See the Oracle Rdb7 Guide to SQL Programming and the Oracle Rdb SQL Reference
Manual for more information on the LIST OF BYTE VARYING data type.

8.9 Deciding Whether to Use SQLDA or SQLDA2
You can develop most client applications using the standard SQLDA SQL descriptor area.
However, you must use the extended SQLDA2 SQL descriptor area in the following
situations:

■ If your application needs to process data in columns that have a multibyte character data
type.

■ If your application needs the scale or precision of columns of type TIME,
TIMESTAMP, or INTERVAL. This metadata information is not accessible if you use a
standard SQLDA.

■ If your application needs to access the full name of a column where the length of the
column name is greater than 29 characters. If you use a standard SQLDA, Oracle
SQL/Services truncates column names that are 30 or 31 characters long. The maximum
length of a column name is 31 characters.

Obsolete Features A-1

A
Obsolete Features

The following Oracle SQL/Services features have been made obsolete. These features are no
longer described in the main body of the Guide to Using the Oracle SQL/Services Client
API, the Oracle SQL/Services Installation Guide, and the Oracle SQL/Services Server
Configuration Guide.

A.1 Obsolete Features
An obsolete feature is a feature that is no longer supported that was described as a
deprecated feature in a previous release. These features no longer work.

A.1.1 Obsolete Network Communications Software
The following network communications software is now obsolete and no longer supported.

■ NetWare (IPX/SPX) software

The NetWare network transport was supported for MS Windows 3.1 clients, which are
now obsolete.

■ SQL*Net software on HP Tru64 UNIX

The Oracle Net network transport is now supported on the Open VMS Alpha and
Itanium servers and client platforms. It is no longer supported for HP Tru64 UNIX
client platforms.

■ DECnet software on Windows platforms

The DECnet network transport is no longer supported on Windows platforms. HP
support for Pathworks 32 is scheduled to terminate on May 31, 2010.

Obsolete Features

A-2 Guide to Using the Oracle SQL/Services Client API

A.1.2 Obsolete Client Platforms
The following client platforms are now obsolete and no longer supported. These client kits
no longer ship with the Oracle SQL/Services client API software kit.

■ MS Windows 3.1

■ Windows 95

■ Windows NT X86

■ Windows NT Alpha

■ Macintosh

■ Solaris

■ OpenVMS VAX

A.1.3 Obsolete Server Platforms
The following server platforms are now obsolete and no longer supported.

■ OpenVMS VAX

■ HP Tru64 UNIX

Index-1

Index
A
API

HP Tru64 UNIX, 1-4
HP-UX, 1-4
installing, 1-11
library, 1-3
Linux, 1-4
OpenVMS Alpha, 1-4
OpenVMS I64, 1-4
Oracle ODBC Driver for Rdb

Windows, 1-4
using in C applications, 1-9
Windows, 1-4
writing applications using, 1-3

API routines
association, 6-3 to 6-14
functional interface, 6-46 to ??
result table, 6-26 to 6-39
SQL statement, 6-14 to 6-26
utility, 6-39 to 6-45

Application
building on HP Tru64 UNIX, 2-17
building on HP-UX, 2-17
building on Linux, 2-18
building on OpenVMS, 2-15
building on Windows, 2-16
recommendations for developing, 2-13

Application development
knowledge assumed for Oracle SQL/Services, 1-9

Application programming interface
See API

Argument vector
used in sample application, 3-7

ASCIZ
See SQLSRV_ASCII_STRING data type

ASSOCIATE_STR
attach field, 7-8
CLASS_NAME field, 7-6
CLIENT_LOG field, 7-3
declare field, 7-8
description of, 7-3 to 7-8
ERRBUF field, 7-6
ERRBUFLEN field, 7-6
execution logging and, 5-2
RESERVED field, 7-4, 7-6, 7-7
setting up, 3-7
summary of, 2-13
VERSION field, 7-5
xpttyp field, 7-7

Association
aborting, 6-4
creating, 3-6, 6-5
creating client/server, 2-8
data structure, 7-3
declaring variables for, 3-6
ending client/server, 2-9
logging, 5-2, 5-3, 7-3
multiple, 3-6
releasing, 3-6
summary of routines, 2-8 to 2-9, 6-3 to 6-13
terminating, 6-13

Association identifier
passing, 3-7

Association information
obtaining value of, 6-10

Association structure
See ASSOCIATE_STR

Index-2

B
Batched execution, 4-1
Binary

data type, 8-2
Binary data in logs

dumped in structured format, 5-2, 7-4
Buffer, message

binding to association, 6-5
role in performance enhancement, 4-1

C
C, C++, C# programming languages

programming, 1-9
routine name format, 6-2

CALL statement
using, 2-4

Client
in client/server model, 1-1
logging

See Logging
Client API routines

association, 2-8 to 2-9
calling from your applications, 1-9
data structures used, 2-13
functional interface, 2-11 to 2-12
overview, 2-8 to 2-12
result table, 2-9
similarity to dynamic SQL, 1-9
SQL statement, 2-9
utility, 2-10 to 2-11

CLIENT_LOG field
in sample application, 3-7

Client/server association
creating, 2-8
ending, 2-9

CLOSE statement
in dynamic SQL, 2-3
using, 2-4

Committing active transactions on the server
sqlsrv_release routine, 6-13

Communications area
See SQLCA

Communications software, 1-4

accessing Oracle SQL/Services through DECnet, 1-4
accessing Oracle SQL/Services through Oracle

Net, 1-4
accessing Oracle SQL/Services through TCP/IP, 1-4
requirement for installing DECnet, 1-4
requirement for installing Oracle Net, 1-5

Compiling SQL statements
sqlsrv_prepare routine, 6-15

Components of Oracle SQL/Services, 1-3
Compound statement

using, 2-4, 4-7
Control Panel Device

selecting network transport, 1-4
Counted string

data type, 8-2
Creating and releasing an association, 3-6
Cursor

closing, 3-10, 6-38
declaring dynamic, 6-27
modes, 6-28
opening, 3-10
type of, 6-27

D
Data buffer

allocating, 3-13
Data structure

ASSOCIATE_STR, 2-13
SQLCA, 2-13
SQLDA or SQLDA2, 2-13
summary of, 2-13
template, 7-1

Data structures used, 2-13
Data type

include file, 8-1
Oracle SQL/Services representation, 8-1
SQLSRV_ASCII_STRING, 8-2
SQLSRV_GENERALIZED_DATE, 7-17, 8-5
SQLSRV_GENERALIZED_NUMBER, 7-17, 8-3
SQLSRV_INTERVAL, 8-7
SQLSRV_LIST_VARBYTE, 8-9
SQLSRV_VARBYTE, 8-8
SQLSRV_VARCHAR, 7-17, 8-2
SQLTYPE field, 7-17, 7-20

Index-3

Database
accessing, 1-2
Oracle Rdb, 1-1

Date-time
SQLSRV_GENERALIZED_DATE data type, 8-5

DECLARE CURSOR statement
in dynamic SQL, 2-3
using, 2-4

Declaring a cursor
List cursor

declaring, 6-27
DECnet software

allowing client/server communication, 1-4
installing on client and server systems, 1-4
use with Oracle SQL/Services, 1-4

DELETE statement
using, 2-4

DESCRIBE statement, 2-3
using, 2-4, 2-7

Descriptor area
See SQLDA or SQLDA2

Driver module
See SQLSRV$DRIVER module

Dynamic allocation
of data buffers and indicator variables, 6-40
selecting routine for, 3-7

Dynamic SQL, 2-1
CLOSE statement, 2-3
DECLARE CURSOR statement, 2-3
DESCRIBE statement, 2-3
EXECUTE IMMEDIATE statement, 2-3
EXECUTE statement, 2-3
FETCH statement, 2-3
OPEN statement, 2-3
parameter markers, 2-6
PREPARE statement, 2-2
purpose of SQLDA or SQLDA2, 2-7
RELEASE statement, 2-3
select list items, 2-3, 2-7
similarity to

client API routines, 1-9
Oracle SQL/Services, 1-3

statement names, 2-3
use in Oracle SQL/Services, 1-3

Dynamic SQL processing module, 3-1

E
ERRBUF field

in sample application, 3-7
ERRBUFLEN field

in sample application, 3-7
Error

network, 1-10
Oracle Rdb, 1-10
Oracle SQL/Services, 1-10
SQL, 1-10

Error buffer
alternative, 7-3

in sample application, 3-7
Error code

value in SQLERRD, 7-13
Error handling, 3-23

SQLCA structure, 7-10
EXECUTE IMMEDIATE statement, 2-3

using, 2-4
EXECUTE statement, 2-3

using, 2-4
Execute_flag parameter

use of, 4-1
Execution logging, 5-1

controlling, 7-3

F
FETCH statement

in dynamic SQL, 2-3
purpose of, 2-7
using, 2-4

Fetching a row of data into a select list, 6-33
Fetching multiple rows, 4-4, 6-36
Flush to client log file

after writing to other logs, 5-2, 7-4
FREE_MEMORY_ROUTINE field

in sample application, 3-7
Freeing

data buffers, 6-42
indicator variables, 6-42

Freeing all resources, 6-24
Function prototype (C), 6-2
Functional interface routines, 2-11, 6-46 to ??

Index-4

G
Get associate information

sqlsrv_get_associate_info routine returns, 6-10

H
HP Tru64 UNIX API software, 1-4
HP Tru64 UNIX operating system

building applications on, 2-17
building sample application on, 3-3

HP-UX API software, 1-4
HP-UX operating system

building applications on, 2-17
building sample application on, 3-4

I
Identifier

declaring SQLDA_ID, 3-12
Include file

location of, 2-14
HP Tru64 UNIX, 2-17
HP-UX, 2-17
Linux, 2-18
OpenVMS, 2-15

use of in application program, 2-14
Indicator variable

allocating, 3-13
field in SQLDA, 7-18
field in SQLDA2, 7-22

INSERT statement
using, 2-4

Installing API software, 1-11
Interface

See API (application programming interface)
Interval

SQLSRV_INTERVAL data type, 8-7
Introduction to Oracle SQL/Services, 1-1
I/O module, 3-1

L
Linking

on HP Tru64 UNIX, 2-17
on HP-UX, 2-17

on Linux, 2-18
on OpenVMS, 2-15
on Windows, 2-17

Linux API software, 1-4
Linux operating system

building applications on, 2-18
building sample application on, 3-4

List
SQLSRV_INTERVAL data type, 8-7
SQLSRV_LIST_VARBYTE data type, 8-9
SQLSRV_VARBYTE data type, 8-8

List cursor
declaring, 6-27
modes, 6-28

Local input/output
controlling, 7-3

LOCAL_FLAG field
in sample application, 3-7

Logging
association, 5-3
in sample application, 3-7
message protocol, 5-6
routine, 5-4

M
Memory allocation

defining routines for, 7-3
MEMORY_ROUTINE field

in sample application, 3-7
Message buffer

binding to association, 6-5
role in performance enhancement, 4-1

Message protocol logging, 5-2, 5-6, 7-4

N
Network

components, 1-4
creating link, 6-5
DECnet, 1-4
disconnecting link, 6-4, 6-13
Oracle Net, 1-4
selecting, with Control Panel Device, 1-4
TCP/IP, 1-4

Index-5

NULL character, 8-2
Null-terminated string

See SQLSRV_ASCII_STRING data type

O
Obsolete features for Oracle SQL/Services, A-1
Open and close logging

abnormal client termination and, 5-2, 7-4
OPEN statement

in dynamic SQL, 2-3
using, 2-4

Opening a cursor for a prepared SELECT
statement, 6-30

OpenVMS Alpha API software, 1-4
OpenVMS I64 API software, 1-4
OpenVMS operating system

building applications on, 2-15
building sample application on, 3-2

Options file
use of, 2-15

Oracle Net software
allowing client/server communication, 1-4
installing on client and server systems, 1-5
using with Oracle SQL/Services, 1-4

Oracle ODBC Driver for Rdb API
Windows, 1-4

Oracle SQL/Services API software, 1-11

P
Parameter

data type, 6-2
Parameter marker

checking for, 3-9
definition of, 2-6
in batched execution, 4-1
processing, 3-14
purpose of, 2-4
SQLVAR structure, 7-17
SQLVAR2 structure, 7-20
testing for, 3-13
valid SQL statements, 2-5

Performance
enhancing application, 4-1

setting buffer sizes, 4-4
PREPARE statement, 2-2

using, 2-4
Prepared statement

releasing, 3-25
Preparing and executing an SQL statement without

parameter markers, 6-22
Program

building Oracle SQL/Services
applications, 2-14 to 2-18

Programming
knowledge assumed for Oracle SQL/Services, 1-9

Protocol logging, 5-6

Q
Question mark in SQL statement

See Parameter marker

R
Recommended approach to application

development, 2-13
RELEASE statement

in dynamic SQL, 2-3
using, 2-4

Releasing
data buffers, 6-42
indicator variables, 6-42
prepared statement resources, 6-24

Result table
creating, 6-30
displaying, 3-10
fetching from, 6-33
fetching multiple rows from, 4-4, 6-34
processing, 3-18
summary of routines, 2-9 to 2-10, 6-26 to 6-39

Return value
of API routine, 6-2

Returning
error codes, 6-48
error text, 6-49
list cursor information, 6-51
sqlstate, 6-52
values of association information, 6-10

Index-6

Routine logging, 5-2, 5-4, 7-4
Routine template

description of, 6-1
Routines, 2-8 to 2-12

API (application programming interface), 1-3
association, 2-8
functional interface, 2-11
result table, 2-9
SQL statement, 2-9
utility, 2-10

S
Sample executable program, 3-1 to 3-25

building on HP Tru64 UNIX, 3-3
building on HP-UX, 3-4
building on Linux, 3-4
building on OpenVMS, 3-2
building on Windows X64, 3-3
building on Windows X86, 3-2
execute_statement routine in, 3-10
running, 3-4
structure of, 3-9

Select list
checking for, 3-9
DESCRIBE statement, 2-7
mapping of items to variables, 2-7
SQLVAR structure, 7-17
SQLVAR2 structure, 7-20
valid SQL statements, 2-5

Select list item
testing for, 3-13

SELECT statement
checking for, 3-9
in dynamic SQL, 2-6
processing, 3-18
using, 2-4

Server
in client/server model, 1-1

Setting buffer sizes, 4-4
Singleton-SELECT statement

using, 2-4
SQL Communications Area

See SQLCA
SQL data type

Oracle SQL/Services representation, 8-1
SQL Descriptor Area

See SQLDA or SQLDA2
SQL statements

CLOSE
in dynamic SQL, 2-3

DECLARE CURSOR
dynamic SQL, 2-3

DESCRIBE, 2-3
dynamically executable, 2-5
EXECUTE, 2-3
EXECUTE IMMEDIATE, 2-3
FETCH

in dynamic SQL, 2-3
not dynamically executable, 2-5
OPEN

in dynamic SQL, 2-3
PREPARE, 2-2
RELEASE

in dynamic SQL, 2-3
reuse, 4-8
summary of routines, 2-9, 6-14 to 6-26

SQLCA
allocating, 6-7
binding to association, 6-5
definition of, 2-8
description of, 2-13, 7-10 to 7-12
execution results in, 6-18, 6-22
SQLCABC field, 7-11
SQLCAID field, 7-10
SQLCODE field, 6-2, 7-11
SQLERRD

description of, 7-12 to 7-13
SQLERRD field, 7-12
SQLERRM field, 7-11
SQLEXT field, 7-12
SQLWARN field, 7-12

SQLCODE field
purpose of, 2-8

SQLDA
allocating

data buffers and indicator variables for, 6-40
definition of, 2-7
description of, 2-13, 7-13 to 7-16
initialization of, 6-15

Index-7

parameter marker, 2-6, 6-20, 6-30
initialization of, 6-15

releasing
data buffers, 6-42
indicator variables, 6-42
prepared statement resources, 6-24

select list, 2-7, 6-33, 6-34
initialization of, 6-16

SQLD field, 7-15
SQLDABC field, 7-14
SQLDAID field, 7-14
SQLN field, 7-15
SQLVAR structure

SQLDATA field, 7-18
SQLIND field, 7-18
SQLLEN field, 7-17
SQLNAME field, 7-19
SQLNAME_LEN field, 7-19
SQLTYPE field, 7-17

SQLVARARY field, 7-15
use by DESCRIBE statement, 2-3
when to use, 8-10

SQLDA_ID identifier
declaring, 3-12

SQLDA2
definition of, 2-7
description of, 2-13, 7-13 to 7-16
SQLD field, 7-15
SQLDAID field, 7-14
SQLN field, 7-15
SQLVAR2 structure

SQLCHAR_SET_CATALOG field, 7-24
SQLCHAR_SET_NAME field, 7-23
SQLCHAR_SET_SCHEMA field, 7-23
SQLCHRONO_PRECISION field, 7-22
SQLCHRONO_SCALE field, 7-22
SQLDATA field, 7-21
SQLIND field, 7-21
SQLLEN field, 7-21
SQLNAME field, 7-23
SQLNAME_LEN field, 7-23
SQLOCTET_LEN field, 7-21
SQLTYPE field, 7-20

SQLVARARY field, 7-15
when to use, 8-10

SQLERRD array
description of, 7-12

SQLSRV$DRIVER module
structure of, 3-6

sqlsrv_abort routine
description of, 6-4

sqlsrv_allocate_sqlda_data routine, 6-42
description of, 6-40 to 6-41

sqlsrv_allocate_sqlda2_data routine, 6-42
description of, 6-40 to 6-41

SQLSRV_ASCII_STRING, 7-17
SQLSRV_ASCII_STRING data type

definition of, 8-2
sqlsrv_associate routine

ASSOCIATE_STR and, 2-13
description of, 6-5 to 6-9
in sample application, 3-7

sqlsrv_close_cursor routine, 2-5, 6-37
description of, 6-38

sqlsrv_declare_cursor routine, 2-5
description of, 6-27 to 6-29

sqlsrv_execute routine, 6-18
sqlsrv_execute_immediate routine, 2-5

description of, 6-23
use of, 3-9

sqlsrv_execute_in_out routine, 2-5
batched execution with, 4-1
description of, 6-17 to 6-21
use of, 3-10

sqlsrv_fetch routine, 2-5, 6-34
description of, 6-33 to 6-34

sqlsrv_fetch_many routine, 6-34
description of, 6-36 to 6-37
use of, 4-4

sqlsrv_free_sqlda_data routine, 6-41
description of, 6-42 to 6-43

sqlsrv_free_sqlda2_data routine, 6-41
description of, 6-42 to 6-43

SQLSRV_GENERALIZED_DATE data type
definition of, 8-5

SQLSRV_GENERALIZED_NUMBER data type
definition of, 8-3

sqlsrv_get_associate_info routine
description of, 6-10 to 6-12

SQLSRV_INTERVAL data type

Index-8

definition of, 8-7
SQLSRV_LIST_VARBYTE data type

definition of, 8-9
sqlsrv_open_cursor routine, 2-6

description of, 6-30 to 6-31
sqlsrv_prepare routine, 2-6

description of, 6-15 to 6-17
use of, 3-9

sqlsrv_release routine, 6-41
description of, 6-13

sqlsrv_release_statement routine, 2-6, 6-41
description of, 6-24 to 6-26
use of, 3-10, 3-25

sqlsrv_set_option routine
description of, 6-44 to 6-45

sqlsrv_sqlca_count routine
description of, 6-50

sqlsrv_sqlca_error routine
description of, 6-48

sqlsrv_sqlca_error_text routine
description of, 6-49

sqlsrv_sqlca_sqlerrd routine
description of, 6-51
use of, 3-9

sqlsrv_sqlca_sqlstate routine
description of, 6-52

sqlsrv_sqlda_bind_data routine
description of, 6-63 to 6-65

sqlsrv_sqlda_bind_data73 routine
description of, 6-66 to 6-68

sqlsrv_sqlda_column_name routine
description of, 6-55 to 6-56

sqlsrv_sqlda_column_name73 routine
description of, 6-57 to 6-58

sqlsrv_sqlda_column_type routine
description of, 6-59 to 6-60

sqlsrv_sqlda_column_type73 routine
description of, 6-61 to 6-62

sqlsrv_sqlda_get_data routine
description of, 6-82 to 6-83

sqlsrv_sqlda_get_data73 routine
description of, 6-85 to 6-87

sqlsrv_sqlda_ref_data routine
description of, 6-73 to 6-75

sqlsrv_sqlda_ref_data73 routine

description of, 6-76 to 6-78
sqlsrv_sqlda_set_data routine

description of, 6-88 to 6-89
sqlsrv_sqlda_set_data73 routine

description of, 6-90 to 6-92
sqlsrv_sqlda_set_sqllen routine

description of, 6-93 to 6-95
sqlsrv_sqlda_set_sqllen73 routine

description of, 6-96 to 6-98
sqlsrv_sqlda_sqld routine

description of, 6-53
sqlsrv_sqlda_sqld73 routine

description of, 6-54
sqlsrv_sqlda_unbind_sqlda routine

description of, 6-70
sqlsrv_sqlda_unbind_sqlda73 routine

description of, 6-71 to 6-72
sqlsrv_sqlda_unref_data routine

description of, 6-79
sqlsrv_sqlda_unref_data73 routine

description of, 6-80 to 6-81
sqlsrv_sqlda2_bind_data routine

description of, 6-63 to 6-65
sqlsrv_sqlda2_bind_data73 routine

description of, 6-66 to 6-68
sqlsrv_sqlda2_char_set_info routine

description of, 6-99 to 6-100
sqlsrv_sqlda2_char_set_info73 routine

description of, 6-101 to 6-102
sqlsrv_sqlda2_column_name routine

description of, 6-55 to 6-56
sqlsrv_sqlda2_column_name73 routine

description of, 6-57 to 6-58
sqlsrv_sqlda2_column_type routine

description of, 6-59 to 6-60
sqlsrv_sqlda2_column_type73 routine

description of, 6-61 to 6-62
sqlsrv_sqlda2_get_data routine

description of, 6-82 to 6-83
sqlsrv_sqlda2_get_data73 routine

description of, 6-85 to 6-87
sqlsrv_sqlda2_ref_data routine

description of, 6-73 to 6-75
sqlsrv_sqlda2_ref_data73 routine

description of, 6-76 to 6-78

Index-9

sqlsrv_sqlda2_set_data routine
description of, 6-88 to 6-89

sqlsrv_sqlda2_set_data73 routine
description of, 6-90 to 6-92

sqlsrv_sqlda2_set_sqllen routine
description of, 6-93 to 6-95

sqlsrv_sqlda2_set_sqllen73 routine
description of, 6-96 to 6-98

sqlsrv_sqlda2_sqld routine
description of, 6-53

sqlsrv_sqlda2_sqld73 routine
description of, 6-54

sqlsrv_sqlda2_unbind_sqlda routine
description of, 6-70

sqlsrv_sqlda2_unbind_sqlda73 routine
description of, 6-71 to 6-72

sqlsrv_sqlda2_unref_data routine
description of, 6-79

sqlsrv_sqlda2_unref_data73 routine
description of, 6-80 to 6-81

SQLSRV_VARBYTE data type
definition of, 8-8

SQLSRV_VARCHAR data type
definition of, 8-2

sqlsrvca.h file
location on

OpenVMS, 2-15
sqlsrvda.h file

location on
OpenVMS, 2-15

sqlsrv.h file
execution logging and, 5-2
location on

HP Tru64 UNIX, 2-17
HP-UX, 2-17
Linux, 2-18
OpenVMS, 2-15

SQLVAR
description of, 7-17 to 7-19
SQLDATA field, 7-18
SQLIND field, 7-18
SQLLEN field, 7-17
SQLNAME field, 7-19
SQLNAME_LEN field, 7-19
SQLTYPE field, 7-17

SQLVAR2
description of, 7-20 to 7-24
SQLCHAR_SET_CATALOG field, 7-24
SQLCHAR_SET_NAME field, 7-23
SQLCHAR_SET_SCHEMA field, 7-23
SQLCHRONO_PRECISION field, 7-22
SQLCHRONO_SCALE field, 7-22
SQLDATA field, 7-21
SQLIND field, 7-21
SQLLEN field, 7-21
SQLNAME field, 7-23
SQLNAME_LEN field, 7-23
SQLOCTET_LEN field, 7-21
SQLTYPE field, 7-20

sqsdyn32.exe
built on Windows X86, 3-2

sqsdyn64.exe
built on Windows X64, 3-3

Statement, prepared
releasing, 3-25

Stored procedure
using, 4-7

String
counted

data type, 8-2
null-terminated, 8-2

SYS$LIBRARY
include files in, 2-15

System management
Oracle SQL/Services, 1-11

T
Table cursor

declaring, 6-27
modes, 6-28

TCP/IP software
allowing client/server communication, 1-4
use with Oracle SQL/Services, 1-4

Transaction
aborting, 6-4
committing, 6-13

Transferring rows of data from the server, 6-36
Transport

DECnet, 7-7

Index-10

Oracle Net, 7-7
TCP/IP, 7-7

U
UPDATE statement

using, 2-4
Using SQLDA

when to, 8-10
Using SQLDA2

when to, 8-10
Utility routines, 2-10, 6-39 to 6-45

V
Variables

represented by parameter marker, 2-6
Video display

execution logging and, 5-2, 7-4

W
Windows API software, 1-4
Windows operating system

building applications on, 2-16
building sample application on, 3-2

