
9/7/2004  
 

1/7

Oracle interMedia Image Quick Start  

Relational Interface 

Introduction 
Oracle interMedia (“interMedia”) is a feature that enables Oracle Database to store, manage, and retrieve 
images, audio, video, or other heterogeneous media data in an integrated fashion with other enterprise 
information. Oracle interMedia extends Oracle Database reliability, availability, and data management to 
multimedia content in traditional, Internet, electronic commerce, and media-rich applications. 
 
This article provides simple PL/SQL examples that upload, store, manipulate, and export image data inside a 
database using Oracle interMedia’s relational interface and a table with a BLOB column. Some common pitfalls 
are also highlighted. We assume only Oracle Database release 9i or later with Oracle interMedia installed (the 
default configuration provided by Oracle Universal Installer).  
 
The following examples will show how to store images within the database in BLOB columns so that the image 
data is stored in database tablespaces. Oracle interMedia image also supports BFILEs (pointers to files that 
reside on the filesystem), but this article will not demonstrate the use of BFILEs. Note that BFILEs are read 
only so they can only be used as the source for image processing operations (i.e. you can process from a BFILE 
but you can’t process into a BFILE). 
 
NOTE: While the relational interface is a standard and supported part of Oracle interMedia in Oracle Database 
9i and 10g (OTN download for 8i), the recommended way for storing media in Oracle is the interMedia object 
interface. The interMedia object types are recommended because they are self-describing and easy for 
applications and other Oracle tools (e.g. BC4J, Code Wizard, and many others) to understand. If you use 
BLOBs in your application instead of interMedia object types, the knowledge of what is in the BLOB must be 
hard coded into the application.  
 
NOTE: Access to an administrative account is required in order to grant the necessary file system privileges. In 
the following examples, you should change the command connect / as sysdba to the appropriate connect
username/password as sysdba for your site. The following examples also connect to the database using 
connect scott/tiger, which you should change to an actual user name and password on your system. You 
should also modify the definition of IMGDIR to point at the directory where you have downloaded the three 
sample image files goats.gif, flowers.jpg, and dummy.dcm. 

Creating a Table with an Image BLOB column 
First, we create a simple table with six columns: a numeric identifier (id), image width (width), image height 
(height), the size of the image data (contentLength), the mime-type of the image (mimeType), and a Binary 
Large OBject “BLOB” to hold the image itself (image_blob).  

connect scott/tiger
create table image_blob_table (id number primary key,

width integer,
height integer,
contentLength integer,
mimeType varchar2(20),
image_blob BLOB);



9/7/2004  
 

2/7

Importing Images into the Database 
This section shows how to bring images from the file system into the newly created image_blob_table. Note 
that all interMedia procedures are defined in the ORDSYS schema. 
 

1. Create a directory object within the database that points to the file system directory that contains the 
sample image files. This is the directory where you saved the image files included with this quickstart. 

 
connect / as sysdba
create or replace directory imagedir as '/home/alamb/quickstart/';
-- For Windows:
-- create or replace directory imagedir as 'c:\quickstart';
grant read on directory imagedir to scott;

 
2. Create a PL/SQL procedure image_blob_import() that inserts a new row into image_blob_table and 

then imports the image data into the newly created BLOB locator. 
 

connect scott/tiger
create or replace procedure image_blob_import(dest_id number, filename varchar2) is
img_blob BLOB;
ctx raw(64) := null;

begin
delete from image_blob_table where id = dest_id;
insert into image_blob_table (id, image_blob) values (dest_id, empty_blob())
returning image_blob into img_blob;

ORDSYS.ORDImage.importFrom(ctx, img_blob, 'file', 'IMAGEDIR', filename);
update image_blob_table set image_blob=img_blob where id=dest_id;

end;
/ 

3. Call the newly created procedure to import 2 sample image files. 

call image_blob_import(1,'flowers.jpg');
call image_blob_import(2,'goats.gif');

 
NOTE: The directory object is named IMAGEDIR (in uppercase letters) even if it was created with upper or 
lower case letters. Thus the command ORDSYS.ORDImage.importFrom(ctx, img_blob, 'file',

'imagedir', filename); will not work and the following error is returned. 
 
ORA-22285: non-existent directory or file for FILEOPEN operation error.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9/7/2004  
 

3/7

Populating height, width, contentLength and mimeType in image_blob_table  
Once the image data has been imported from the file system into image_blob_table, the database does not 
know what the binary bytes in the image_blob BLOB column represent. Since the interMedia object interface 
is not being used, the application itself must contain knowledge that the BLOB column holds image data and 
must manage and associate image metadata explicitly. In the following example, we show how to use the 
ORDSYS.ORDImage.getProperties() procedure to extract the images’ properties and update the metadata 
columns appropriately. 
 
connect scott/tiger
create or replace procedure image_blob_getproperties is
unused_attributes CLOB;
img_mimeType varchar2(32);
img_width integer;
img_height integer;
img_contentLength integer;
unused_fileFormat varchar2(32);
unused_contentFormat varchar2(32);
unused_compressionFormat varchar2(32);

begin
for rec in (select id, image_blob from image_blob_table where mimeType is null) loop

ORDSYS.ORDImage.getProperties(rec.image_blob,
unused_attributes,
img_mimeType,
img_width,
img_height,
unused_fileFormat,
unused_compressionFormat,
unused_contentFormat,
img_contentLength);

update image_blob_table
set width=img_width,

height=img_height,
contentLength=img_contentLength,
mimeType = img_mimeType

where id=rec.id;
end loop;
commit;

end;
/

call image_blob_getProperties();

 
NOTE: If the image data that is in the image_blob column is not one of interMedia’s supported formats (for 
example JPEG2000) the following error is returned. 

ORA-29400: data cartridge error
IMG-00705: unsupported or corrupted input format

 
In these cases, the application must set the metadata columns appropriately using external information. 
 
 
 
 
 
 
 



9/7/2004  
 

4/7

Selecting and Viewing Image Properties 
Once the metadata columns in image_blob_table have been populated, we can view the metadata by selecting 
the non-BLOB columns from image_blob_table. 
 
connect scott/tiger
select id, height, width, mimeType, contentLength from image_blob_table;

The selected values are: 
 

ID HEIGHT WIDTH MIMETYPE CONTENTLENGTH
---------- ---------- ---------- -------------------- -------------

1 600 800 image/jpeg 66580
2 375 500 image/gif 189337

 

Creating Thumbnails and Changing Formats 
We next illustrate some image processing operations that can be invoked within the database. To generate a 
thumbnail from an existing image, the programmer describes the desired properties of the new image. For 
example, the following description generates a JPEG thumbnail image of size 75x100 pixels: 
‘fileformat=jfif fixedscale=75 100’. 
 
NOTE: Some three-letter image file extensions and the corresponding interMedia fileformat are as follows. 
 

Extension fileformat

.jpg JFIF (9i, 10g), JPEG (10g) 

.gif  GIFF(9i, 10g), GIF (10g) 

.tif, .tiff TIFF  

.png  PNGF  
 
The following example defines image_blob_processCopy() that adds a new row to image_blob_table with 
identifier dest_id and creates a new image in the row’s BLOB  using the image from the source row and 
processing it with the specified command string. 
 
connect scott/tiger
create or replace procedure image_blob_processCopy(source_id number, dest_id number, verb varchar2)
is

src_blob BLOB;
dst_blob BLOB;

begin
delete from image_blob_table where id = dest_id;
insert into image_blob_table (id, image_blob)
values (dest_id, empty_blob());

select image_blob into src_blob
from image_blob_table
where id = source_id;

select image_blob into dst_blob
from image_blob_table
where id = dest_id for update;

ORDSYS.ORDImage.processCopy(src_blob, verb, dst_blob);
update image_blob_table set image_blob = dst_blob where id = dest_id;

end;
/



9/7/2004  
 

5/7

-- Scale flowers.jpg to 10% into row with id=3
call image_blob_processcopy(1,3,'scale=.1');

-- convert goats.gif to grayscale jpeg thumbnail into row with id=4
call image_blob_processcopy(2,4,'fileformat=jfif contentformat=8bitgray maxscale=100 100');

-- update the metadata for the newly created image rows
call image_blob_getProperties();

-- admire our handiwork
select id, height, width, mimeType, contentLength from image_blob_table;

 
The preceding example generates the following output. 
 

ID HEIGHT WIDTH MIMETYPE CONTENTLENGTH
---------- ---------- ---------- -------------------- -------------

1 600 800 image/jpeg 66580
2 375 500 image/gif 189337
3 60 80 image/jpeg 1918
4 75 100 image/jpeg 2156

 
NOTE: The following error might be returned from ORDImage.processCopy(). 
 
ORA-29400: data cartridge error
IMG-00703: unable to read image data
ORA-28575: unable to open RPC connection to external procedure agent

 
In Oracle Database release 9i, JPEG (and some other less common formats) encoding and decoding requires the 
external procedure agent (extproc). To fix the preceding error, the Oracle Listener needs to be configured to use 
extproc. See technical note 198099.1, Configuration of the External Procedure Call for interMedia at 
http://metalink.oracle.com for detailed instructions on setting up extproc. Oracle Database release 10g does not 
require extproc for JPEG encoding and decoding. 
 
If you do not want to change your Oracle Net configuration, try changing the file format to pngf instead as 
follows. 
 
-- Convert to PNG if Extproc is not set up correctly.
call image_blob_processcopy(2,5,'fileformat=pngf contentformat=8bitgray maxscale=100 100');
call image_blob_getproperties();

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://metalink.oracle.com


9/7/2004  
 

6/7

Exporting Images with ORDImage.export() 
Exporting image data from the database with interMedia’s export method requires that the database write to the 
file system. Writing to the file system requires granting JAVA permissions to your user (scott in the examples) 
and to the ORDSYS* schema as shown in the following example. 
 
connect / as sysdba
create or replace directory imagedir as '/home/alamb/quickstart';
-- For Windows:
--create or replace directory imagedir as 'c:\quickstart';
grant read on directory imagedir to scott;

call dbms_java.grant_permission('SCOTT','java.io.FilePermission',
'/home/alamb/quickstart/*','WRITE');

call dbms_java.grant_permission('ORDSYS','java.io.FilePermission',
'/home/alamb/quickstart/*','WRITE');

-- For Windows:
--call dbms_java.grant_permission('SCOTT','java.io.FilePermission','c:\quickstart\*','WRITE');
--call dbms_java.grant_permission('ORDSYS','java.io.FilePermission','c:\quickstart\*','WRITE');

connect scott/tiger
create or replace procedure image_blob_export (source_id number, filename varchar2) as
img_blob BLOB;
ctx raw(64) := null;

begin
select image_blob into img_blob from image_blob_table where id = source_id;
ORDSYS.ORDImage.export(ctx, img_blob, 'FILE', 'IMAGEDIR', filename);

end;
/

call image_blob_export(3, 'flowers_thumbnail.jpg');
call image_blob_export(4, 'goats_grayscale.jpg');

 
*NOTE: For Oracle Database releases 9.2.0.1, 9.2.0.2, and 9.2.0.3 you must change ORDSYS in the preceding 
export example to ORDPLUGINS. 

Cleaning Up 
To restore your database to its original state, you need to remove all of the objects that were created in this 
quickstart as shown in the following example. 
 
connect / as sysdba
drop directory imagedir;
call dbms_java.revoke_permission('SCOTT','java.io.FilePermission',

'\home\alamb\quickstart\*','WRITE');
call dbms_java.revoke_permission('ORDSYS','java.io.FilePermission',

'\home\alamb\quickstart','WRITE');
-- For Windows
--call dbms_java.revoke_permission('SCOTT','java.io.FilePermission','c:\quickstart\*','WRITE');
--call dbms_java.revoke_permission('ORDSYS','java.io.FilePermission','c:\quickstart\*','WRITE');

connect scott/tiger
drop procedure image_blob_import;
drop procedure image_blob_getproperties;
drop procedure image_blob_processcopy;
drop procedure image_blob_export;
drop table image_blob_table;



9/7/2004  
 

7/7

Conclusion 
Using interMedia’s relational interface, we have shown how to import images into the database, extract image 
metadata, write SQL queries based on image metadata (width, height, and so on), perform basic image 
processing, and export images to the file system. 
 
Oracle interMedia provides more functionality than is covered in this quickstart. Refer to the following 
documentation for more information: Oracle interMedia User’s Guide and Reference, Release 9.0.1, Oracle 
interMedia Reference, 10g Release 1 (10.1), and Oracle interMedia User’s Guide, 10g Release 1 (10.1). 
Additional examples and articles are available on the interMedia web page on the Oracle Technology Network 
at http://www.oracle.com/technology/products/intermedia/index.html.  
 

http://www.oracle.com/technology/products/intermedia/index.html

