Oracle interMedia Image Quick Start

Relational Interface

Introduction

Oracle interMedia (“interMedia”) is a feature that enables Oracle Database to store, manage, and retrieve
images, audio, video, or other heterogeneous media data in an integrated fashion with other enterprise
information. Oracle inferMedia extends Oracle Database reliability, availability, and data management to
multimedia content in traditional, Internet, electronic commerce, and media-rich applications.

This article provides simple PL/SQL examples that upload, store, manipulate, and export image data inside a
database using Oracle interMedia’s relational interface and a table with a BLOB column. Some common pitfalls
are also highlighted. We assume only Oracle Database release 9i or later with Oracle interMedia installed (the
default configuration provided by Oracle Universal Installer).

The following examples will show how to store images within the database in BLOB columns so that the image
data is stored in database tablespaces. Oracle interMedia image also supports BFILEs (pointers to files that
reside on the filesystem), but this article will not demonstrate the use of BFILEs. Note that BFILEs are read
only so they can only be used as the source for image processing operations (i.e. you can process from a BFILE
but you can’t process into a BFILE).

NOTE: While the relational interface is a standard and supported part of Oracle inferMedia in Oracle Database
9i and 10g (OTN download for 8i), the recommended way for storing media in Oracle is the interMedia object
interface. The interMedia object types are recommended because they are self-describing and easy for
applications and other Oracle tools (e.g. BC4J, Code Wizard, and many others) to understand. If you use
BLOB:s in your application instead of interMedia object types, the knowledge of what is in the BLOB must be
hard coded into the application.

NOTE: Access to an administrative account is required in order to grant the necessary file system privileges. In
the following examples, you should change the command connect / as sysdba to the appropriate connect
username/password as sysdba for your site. The following examples also connect to the database using
connect scott/tiger, which you should change to an actual user name and password on your system. You
should also modify the definition of 1MGDIR to point at the directory where you have downloaded the three
sample image files goats.gif, flowers.jpg, and dummy . dcm.

Creating a Table with an Image BLOB column

First, we create a simple table with six columns: a numeric identifier (id), image width (width), image height
(height), the size of the image data (contentLength), the mime-type of the image (mimeType), and a Binary
Large OBject “BLOB” to hold the image itself (image_blob).

connect scott/tiger

create table image blob table (id number primary key,
width integer,
height integer,
contentLength integer,
mimeType varchar2 (20),
image blob BLOB) ;

9/7/2004 1/7



Importing Images into the Database

This section shows how to bring images from the file system into the newly created image blob table. Note
that all interMedia procedures are defined in the ORDSYS schema.

1. Create a directory object within the database that points to the file system directory that contains the
sample image files. This is the directory where you saved the image files included with this quickstart.

connect / as sysdba

create or replace directory imagedir as '/home/alamb/quickstart/';
-- For Windows:

-- create or replace directory imagedir as 'c:\quickstart';

grant read on directory imagedir to scott;

2. Create a PL/SQL procedure image blob import () that inserts a new row into image blob table and
then imports the image data into the newly created BLOB locator.

connect scott/tiger
create or replace procedure image blob import (dest id number, filename varchar2) is
img blob BLOB;
ctx raw(64) := null;
begin
delete from image blob table where id = dest id;
insert into image blob table (id, image blob) wvalues (dest _id, empty blob())
returning image blob into img blob;

ORDSYS.ORDImage.importFrom(ctx, img blob, 'file', 'IMAGEDIR', filename);
update image blob table set image blob=img blob where id=dest id;
end;

/
3. Call the newly created procedure to import 2 sample image files.

call image blob import (1, 'flowers.jpg') ;
call image blob import (2, 'goats.gif');

NOTE: The directory object is named IMAGEDIR (in uppercase letters) even if it was created with upper or
lower case letters. Thus the command ORDSYS.ORDImage. importFrom(ctx, img blob, 'file',
'imagedir', filename) ; will not work and the following error is returned.

ORA-22285: non-existent directory or file for FILEOPEN operation error.

9/7/2004 2/7



Populating height, width, contentLength and mimeType in image_blob_table

Once the image data has been imported from the file system into image blob table, the database does not
know what the binary bytes in the image blob BLOB column represent. Since the interMedia object interface
is not being used, the application itself must contain knowledge that the BLOB column holds image data and
must manage and associate image metadata explicitly. In the following example, we show how to use the
ORDSYS.ORDImage.getProperties () procedure to extract the images’ properties and update the metadata
columns appropriately.

connect scott/tiger
create or replace procedure image blob getproperties is

unused_attributes CLOB;

img mimeType varchar2 (32) ;
img width integer;

img height integer;

img contentLength integer;
unused fileFormat varchar2 (32) ;
unused contentFormat varchar2 (32) ;
unused compressionFormat varchar2 (32);

begin

for rec in (select id, image blob from image blob table where mimeType is null) loop
ORDSYS.ORDImage.getProperties (rec.image blob,
unused attributes,
img mimeType,
img width,
img height,
unused fileFormat,
unused_compressionFormat,
unused contentFormat,
img contentLength) ;
update image blob table
set width=img width,
height=img height,
contentLength=img contentLength,
mimeType = img mimeType
where id=rec.id;
end loop;
commit;
end;

/

call image blob getProperties() ;

NOTE: If the image data that is in the image blob column is not one of interMedia’s supported formats (for
example JPEG2000) the following error is returned.

ORA-29400: data cartridge error
IMG-00705: unsupported or corrupted input format

In these cases, the application must set the metadata columns appropriately using external information.

9/7/2004 3/7



Selecting and Viewing Image Properties

Once the metadata columns in image _blob table have been populated, we can view the metadata by selecting
the non-BLOB columns from image blob table.

connect scott/tiger
select id, height, width, mimeType, contentLength from image blob_ table;

The selected values are:

ID HEIGHT WIDTH MIMETYPE CONTENTLENGTH
1 600 800 image/jpeg 66580
2 375 500 image/gif 189337

Creating Thumbnails and Changing Formats

We next illustrate some image processing operations that can be invoked within the database. To generate a
thumbnail from an existing image, the programmer describes the desired properties of the new image. For
example, the following description generates a JPEG thumbnail image of size 75x100 pixels:
‘fileformat=jfif fixedscale=75 100’.

NOTE: Some three-letter image file extensions and the corresponding interMedia fileformat are as follows.

Extension ‘ fileformat

Jpg JFIF (9i, 10g), JPEG (10g)
gif GIFF(9i, 10g), GIF (10g)
Aif, tift | TIFF

.png PNGF

The following example defines image blob processCopy () that adds a new row to image blob table with
identifier dest_id and creates a new image in the row’s BLOB using the image from the source row and
processing it with the specified command string.

connect scott/tiger
create or replace procedure image blob processCopy (source id number, dest id number, verb varchar2)
is
src_blob BLOB;
dst_blob BLOB;
begin
delete from image blob_table where id = dest_id;
insert into image blob table (id, image blob)
values (dest_id, empty blob());

select image_blob into src_blob
from image blob table
where id = source_ id;

select image blob into dst blob
from image blob table
where id = dest id for update;

ORDSYS.ORDImage.processCopy (src_blob, verb, dst blob);
update image blob table set image blob = dst blob where id = dest id;
end;

/

9/7/2004 4/7



-- Scale flowers.jpg to 10% into row with id=3
call image blob processcopy (1,3, 'scale=.1");

-- convert goats.gif to grayscale jpeg thumbnail into row with id=4

call image blob processcopy (2,4, 'fileformat=jfif contentformat=8bitgray maxscale=100 100');

-- update the metadata for the newly created image rows
call image blob getProperties() ;

-- admire our handiwork
select id, height, width, mimeType, contentLength from image blob_ table;

The preceding example generates the following output.

ID HEIGHT WIDTH MIMETYPE CONTENTLENGTH
1 600 800 image/jpeg 66580
2 375 500 image/gif 189337
3 60 80 image/jpeg 1918
4 75 100 image/jpeg 2156

NOTE: The following error might be returned from orRDImage .processCopy ().

ORA-29400: data cartridge error
IMG-00703: unable to read image data
ORA-28575: unable to open RPC connection to external procedure agent

In Oracle Database release 9i, JPEG (and some other less common formats) encoding and decoding requires the
external procedure agent (extproc). To fix the preceding error, the Oracle Listener needs to be configured to use

extproc. See technical note 198099.1, Configuration of the External Procedure Call for interMedia at

http://metalink.oracle.com for detailed instructions on setting up extproc. Oracle Database release 10g does not

require extproc for JPEG encoding and decoding.

If you do not want to change your Oracle Net configuration, try changing the file format to pngf instead as

follows.

-- Convert to PNG if Extproc is not set up correctly.

call image blob processcopy (2,5, 'fileformat=pngf contentformat=8bitgray maxscale=100 100');

call image blob getproperties() ;

9/7/2004

5/7


http://metalink.oracle.com

Exporting Images with ORDImage.export()

Exporting image data from the database with interMedia’s export method requires that the database write to the
file system. Writing to the file system requires granting JAVA permissions to your user (scott in the examples)
and to the ORDSYS* schema as shown in the following example.

connect / as sysdba

create or replace directory imagedir as '/home/alamb/quickstart';
-- For Windows:

--create or replace directory imagedir as 'c:\quickstart';

grant read on directory imagedir to scott;

call dbms java.grant permission('SCOTT', 'java.io.FilePermission',
' /home/alamb/quickstart/*', 'WRITE') ;
call dbms_ java.grant permission('ORDSYS', 'java.io.FilePermission',
' /home/alamb/quickstart/*', 'WRITE') ;
-- For Windows:
--call dbms_java.grant permission('SCOTT','java.io.FilePermission', 'c:\quickstart\*',6 '"WRITE') ;
--call dbms_java.grant permission('ORDSYS', 'java.io.FilePermission', 'c:\quickstart\*',6 'WRITE') ;

connect scott/tiger
create or replace procedure image blob export (source id number, filename varchar2) as
img blob BLOB;

ctx raw(64) := null;

begin
select image blob into img blob from image blob table where id = source id;
ORDSYS.ORDImage.export (ctx, img blob, 'FILE', 'IMAGEDIR', filename);

end;

/

call image blob export (3, 'flowers thumbnail.jpg');
call image blob export (4, 'goats grayscale.jpg');

*NOTE: For Oracle Database releases 9.2.0.1, 9.2.0.2, and 9.2.0.3 you must change ORDSYS in the preceding
export example to ORDPLUGINS.

Cleaning Up

To restore your database to its original state, you need to remove all of the objects that were created in this
quickstart as shown in the following example.

connect / as sysdba

drop directory imagedir;

call dbms_ java.revoke permission('SCOTT', 'java.ilo.FilePermission',
'"\home\alamb\quickstart\*', '"WRITE') ;

call dbms java.revoke permission('ORDSYS','java.io.FilePermission',
"\home\alamb\quickstart', '"WRITE') ;

-- For Windows

--call dbms_java.revoke permission('SCOTT', 'java.io.FilePermission', 'c:\quickstart\*', 'WRITE') ;

--call dbms_java.revoke permission('ORDSYS','java.io.FilePermission', 'c:\quickstart\*', 'WRITE');

connect scott/tiger

drop procedure image blob import;

drop procedure image blob getproperties;
drop procedure image blob processcopy;
drop procedure image blob export;

drop table image blob table;

9/7/2004 6/7



Conclusion

Using interMedia’s relational interface, we have shown how to import images into the database, extract image
metadata, write SQL queries based on image metadata (width, height, and so on), perform basic image
processing, and export images to the file system.

Oracle interMedia provides more functionality than is covered in this quickstart. Refer to the following
documentation for more information: Oracle interMedia User’s Guide and Reference, Release 9.0.1, Oracle
interMedia Reference, 10g Release 1 (10.1), and Oracle interMedia User’s Guide, 10g Release 1 (10.1).
Additional examples and articles are available on the interMedia web page on the Oracle Technology Network
at http://www.oracle.com/technology/products/intermedia/index.html.

9/7/2004 7/7


http://www.oracle.com/technology/products/intermedia/index.html

