

Oracle Fusion Middleware
MapViewer Primer

An Oracle White Paper
April 2012

Oracle Fusion Middleware MapViewer Primer Page 2

Oracle Fusion Middleware MapViewer Primer

Introduction .. 3
What Is MapViewer ... 3
What is Oracle Maps ... 4
Setting up your MapViewer Environment ... 4

Loading data into Oracle Spatial ... 5
Installing MapViewer .. 5
Creating MapViewer metadata .. 7

Creating a Persistent Data Source ..11
Creating a Dynamic Data Source ...12

MapViewer metadata ...12
Styles ..12
Themes..13

Creating Themes ...15
Base maps ...16
Tile Layers...16

Making map requests and interacting with MapViewer.............................16
Appendix A: Primer on Oracle Locator and Oracle Spatial......................17

Oracle Fusion Middleware MapViewer Primer Page 3

Oracle Fusion Middleware MapViewer Primer

INTRODUCTION
This whitepaper provides an introduction to Oracle Fusion Middleware
MapViewer. MapViewer is robust feature for creating maps from spatial and
business data stored in Oracle Database. MapViewer works with Oracle Locator
and Oracle Spatial to deliver a rich online mapping facility.

MapViewer is a component of Oracle Fusion Middleware. It is a mid-tier toolkit
that runs as a service inside an instance of Oracle Weblogic or other J2EE
container. MapViewer is included with Oracle Weblogic Server and Oracle
Application Server. MapViewer version 11g is certified on Oracle WebLogic Server
version 11g and higher.

WHAT IS MAPVIEWER
Initially, there were desktop GIS applications that created maps from geographical
data stored in various file formats. Then in the mid 1990’s Oracle introduced
Oracle Spatial, which managed geospatial data in the database in regular tables. This
brought geospatial data management to a whole new level, and made it a part of
enterprise IT infrastructure. Appendix A provides a brief primer for those not
familiar with Oracle Locator and Oracle Spatial.

Oracle Fusion Middleware MapViewer is a developer’s toolkit; that is, a set of
programmable Java components for rendering maps from geospatial application
data that is stored and managed in Oracle Database. It transparently queries
geospatial data from Oracle Locator and Oracle Spatial, and renders cartographical
query results. It provides customizable options for more advanced users.
MapViewer deploys on an Internet and Java standards-based platform and
integrates maps and spatial analysis into web and standalone applications.

MapViewer includes three sets of APIs. It has an XML request/response protocol
for embedding static maps in web pages and a Java API for embedding maps in an
application. Both APIs support interactive querying of maps for features within and
near an area of interest, and appropriate rendering of features depending on the
level of magnification. The JavaScript API in Oracle Maps, a component of
MapViewer, takes this interactivity to the next level by adding “slippy” capabilities;
that is, the ability to pan, zoom and slide the map image in any direction.

 MapViewer is robust feature of

Oracle Fusion Middleware for creating
maps from spatial and business data

stored in Oracle Database. MapViewer
works with Oracle Locator and Oracle

Spatial.

MapViewer is an Internet and Java

standards-based developer’s toolkit
included with Oracle Application Server.

MapViewer version 11g is certified on
Oracle WebLogic Server 11g and higher.

 MapViewer includes XML, Java
and JavaScript/AJAX APIs to embed maps
in Web pages, standalone applications and
Web applications, respectively. It supports

interactive within distance and nearest
neighbor map queries.

Oracle Fusion Middleware MapViewer Primer Page 4

WHAT IS ORACLE MAPS
Oracle Maps is a component of MapViewer 10.1.3.1 or later. It mashes up database
content with maps and supports “slippy map” seamless pan and zoom interactions
on geospatial data served by Oracle Locator and Oracle Spatial. It fetches, converts
and transfers geospatial database content to an online mapping service for display.

Oracle Maps provides an interactive client side JavaScript and AJAX API, a server
side file system-based image cache for map tiles, and an ad-hoc query module called
the feature of interest (FoI) server. The Oracle Maps JavaScript API is also
encapsulated in the JDeveloper ADF Faces GeoMap data visualization component.

Oracle Maps assumes a general familiarity with MapViewer and an understanding
of core concepts, including styles, themes and base maps. It offers many unique
advantages. Please refer to the companion Oracle Maps Primer for a more detailed
description.

SETTING UP YOUR MAPVIEWER ENVIRONMENT
This section describes the process to publish your geospatial application data as
online maps using MapViewer. The five basic required steps, illustrated in Figure 1,
are:

Figure 1. Steps for setting up your Spatial/MapViewer environment

1. Load or create geospatial application data in a column of an Oracle
Database table

 Oracle Maps is a component of
MapViewer that provides “slippy map”,

seamless pan and zoom interactions on
geospatial data served by Oracle Locator

and Oracle Spatial.

Oracle Maps is encapsulated in the
JDeveloper ADF Faces GeoMap data

visualization component.

Oracle Fusion Middleware MapViewer Primer Page 5

2. Install MapViewer in Oracle Application Server (or standalone OC4J).

3. Style the geospatial data and create all the necessary mapping metadata for
MapViewer using Map Builder, the desktop authoring utility that comes
with MapViewer.

4. Define a data source so MapViewer can connect to the database schema
containing the geospatial application data and mapping metadata.

5. View your maps by submitting individual map requests, or write a web
mapping application that interacts with MapViewer using one of its APIs.

The remainder of this white paper describes each step in further detail.

Loading data into Oracle Spatial
The data source for MapViewer is geospatial data managed by Oracle Locator or
Oracle Spatial in Oracle Database. There are several options for loading geospatial
application data into Oracle Database. You can use the Map Builder utility to
import shapefiles supported by ESRI and other vendors into Oracle Database
tables. You can use 3rd party tools, such as FME from Safe Software,
www.safe.com, or tools from GIS software vendors to load data from any
proprietary GIS data format into Oracle Database. You can also create tables and
use SQL to populate them with new records that contain geocoded business data.
Once your data is loaded into Oracle Locator or Oracle Spatial, it becomes the
single source of truth for MapViewer, as should be case for all your geospatial
applications.

The MapViewer page on the Oracle Technology Network has a simple geospatial
data set formatted as an Oracle Database export file for demo purposes. It can be
downloaded here:
www.oracle.com/technetwork/middleware/mapviewer

This data set contains simplified data for states, counties, major cities and highways
of the United States. It is called the “MVDEMO Sample Data Set”. All of the
MapViewer built-in tutorials and demos run off this data set so it is highly
recommended to import this data set into your Oracle Database, under a new
database user MVDEMO (or any other newly created user schema). The detailed
instructions are packaged with the demo data set.

Installing MapViewer
While you can deploy MapViewer to Oracle Weblogic Server (release 10.1.3 or later
is required), the easiest way to get a MapViewer instance up and running is to use
the MapViewer Quick Start kit. You can download the kit from the MapViewer
OTN page here:

www.oracle.com/technetwork/middleware/mapviewer/downloads

The Quick Start kit contains a standalone OC4J (Oracle Container for J2EE) with
MapViewer pre-deployed. You can think of OC4J as the core of Oracle
Application Server; that is, a web server like Apache, and a J2EE container to run

Please remember to import the MVDEMO

sample data set that comes with
MapViewer into your database!

Oracle Fusion Middleware MapViewer Primer Page 6

your JSPs and Servlets, all rolled into a small-footprint Java bundle. MapViewer is a
set of servlets that are initialized when the OC4J instance is started.

While Oracle WebLogic Server also supports MapViewer, a standalone OC4J is
sufficient and simple to manage for all of your MapViewer prototyping needs.

Download the Quick Start kit and unzip it to a directory on your computer. Verify
your computer has the Java JDK 1.6 (or later) installed. If you don’t have JDK 1.6,
go to Oracle’s Java SE Downloads page and download it.

www.oracle.com/technetwork/java/javase/downloads

The latest MapViewer (versions 11.1.1.5 and later) requires JDK version 1.6 or
later.

MapViewer is started when you start OC4J. To start OC4J simply modify and
execute the batch file (start.bat) in the Quick Start kit. On Windows, the kit has a
batch command file containing the following commands:

cd C: \mv11115qs\oc4j\j2ee\home

"C:\Program Files\Java\jdk1.6.0_24\bin\java" -server –
Xmx512M -jar oc4j.jar

The first line changes the current directory to the directory where you unzipped the
Quick Start kit. The second line uses the Java command to start OC4J. You will
need to change the directories (shown in red text) to match the actual locations of
the unzipped kit and JDK. The option –Xmx512M in the second command line
tells Java to make a maximum of 512 MB memory available to the OC4J process.
You can use a smaller or larger number if you want. The choice will depend on
how large and detailed your typical maps are, and how many concurrent users will
be requesting maps from MapViewer.

When you run the above commands for the first time, you will be prompted to
enter a password. This password is for the OC4J admin account. Remember this
password, as you will need it to log into MapViewer’s admin page. The admin user’s
name is always oc4jadmin.

Several messages will be output to the console as OC4J starts, ending with
messages output from MapViewer’s servlets. These messages can be verbose. The
essential ones are:

INFO [oracle.lbs.mapserver.oms] *** Oracle MapViewer
started. ***

and:

INFO [oracle.lbs.mapcache.mcservlet] *** Oracle
MapTileServer started. ***

If you see these messages then MapViewer is running properly. Access the
MapViewer home page by opening the URL http://localhost:8888/mapviewer in
your browser.

Oracle Fusion Middleware MapViewer Primer Page 7

Creating MapViewer metadata
Geospatial application data tables contain geometries but not visualization
information. MapViewer relies on mapping metadata to generate quality maps.
MapViewer metadata provides the “skins”, styling rules, designs or templates that
tell MapViewer how to render geospatial application data into different maps for
different scales and/or scenarios. The metadata identifies the geospatial application
data tables and dictates how to style or render the data in a map with the desired
look and feel. The metadata typically include map symbology: (styles), theme and
base map definitions.

Map Builder, the desktop authoring utility that comes with MapViewer, creates and
maintains all persisted metadata. Mapping metadata is stored in Oracle Database,
usually in the same schema as the geospatial application data. Certain types of
metadata such as styles and themes can also be programmatically created on the fly
and used as part of a map request. This metadata is temporary and will not be
stored persistently. Map Builder supports previewing geospatial data with the
chosen style, theme and base map as the metadata is being created, called “styling”.
Map Builder does not rely on MapViewer. It connects directly to your database
schema(s), and includes the same rendering engine as MapViewer for instant and
authentic preview.

See the MapViewer metadata section below for more information.

The following screenshots illustrate Map Builder in action. For more information
about Map Builder, consult the MapViewer User’s Guide. Note that Map Builder
completely replaces the old Map Definition utility.

Oracle Fusion Middleware MapViewer Primer Page 8

Oracle Fusion Middleware MapViewer Primer Page 9

Oracle Fusion Middleware MapViewer Primer Page 10

Creating a MapViewer data source

All geospatial application data and corresponding MapViewer metadata can be
stored in one or more databases of your choosing; they are not tied to any specific
MapViewer instance. MapViewer does not have its own system schema nor does it
store any private information about itself.

A MapViewer data source defines the database schema(s) where the required
geospatial application data and metadata reside. MapViewer connects to the data
source to query the geospatial application data and then uses the associated
metadata to identify the styles, themes and base maps it needs to render and serve
online maps.

You can have multiple MapViewer instances running inside your organization (or
even on a single computer), and they can all connect to the same database to serve
maps. A MapViewer instance can also connect to multiple databases or schemas,
and aggregate the geospatial application data, across schemas or databases, into a
single map. The deployment architecture of MapViewer is flexible, as illustrated in
the following figure.

Figure 2. MapViewer deployment architecture

The only connections between MapViewer and database instances (schemas) are
the data sources, which are JDBC-based. You can add, remove or change a data
source within a MapViewer instance using its web-based Admin page. You can also
set up a middle-tier cluster that contains multiple MapViewer instances, each

Oracle Fusion Middleware MapViewer Primer Page 11

connecting to one or more databases, or databases configured as an Oracle Real
Application Cluster.

A data source is always referenced by its name in map requests and application
code that interacts with MapViewer. All map requests received by MapViewer
include a master or default data source. Internally MapViewer uses this data
source’s schema as the default when looking up mapping metadata as well as
querying data tables. If you have a theme (and its underlying data table) stored in a
different schema, you need to define a data source for it and then explicitly specify
the data source name in map requests that include the theme. Map requests include
“data source name, theme name” pairs to aggregate geospatial application data
from different schemas into a single map. (There are other ways to achieve data
aggregation with MapViewer, but this is the easiest approach.)

A MapViewer instance can have as many data sources as needed. For beginners, it
is highly recommended that you create one that connects to the MVDEMO
schema mentioned earlier, which contains the MVDEMO sample data set, to
experiment with all the built-in demos and tutorials.

MapViewer supports two types of data sources, persistent and dynamic. A
persistent data source is always available, even after restarting OC4J/MapViewer,
unless the database itself is offline. The data source should be persistent in most
cases.

Creating a Persistent Data Source

Persistent data sources are defined in the MapViewer configuration file. The
configuration file is an XML file located inside the MapViewer deployment
directory. Use the MapViewer Admin web page to edit and save this file
configuration. After logging in to MapViewer’s Admin page, go to Manage
MapViewer > Configuration. It opens the XML configuration file inside
a text area. Scroll all the way down to the end of the file to find a sample
MapViewer data source definition like the example below for the sample
MVDEMO schema:

 <!--
 <map_data_source name="mvdemo"
 jdbc_host="my.mapserver.com"
 jdbc_sid="oradb10gr2"
 jdbc_port="1521"
 jdbc_user="mvdemo"
 jdbc_password="!pwd4mvdemo"
 jdbc_mode="thin"
 number_of_mappers="6"
 allow_jdbc_theme_based_foi="true"
 />
 -->

Uncomment it (by removing the XML comment tags in red), and then modify the
database connection and login information (the fields in bold text above) to reflect
your MVDEMO schema. If this will be your MVDEMO data source, then do not
change the name attribute (“mvdemo”) since it is the data source name hard-coded

Oracle Fusion Middleware MapViewer Primer Page 12

in all MapViewer standard tutorials and demos. Also make sure you have the
exclamation point “!” in front of the supplied login password value. Next time you
restart MapViewer it will automatically obfuscate this password.

Click on the Save & Restart button underneath the text area. MapViewer will
restart, reload this configuration file, and the data source “mvdemo” will be created
(make sure the database and its listener are both up!) To verify, just go to Manage
MapViewer > Datasources. In the top panel it should list the “mvdemo”
data source. If you need to add another data source, simply copy and paste the
above definition into the same configuration file, and modify accordingly before
saving it and restarting MapViewer.

Creating a Dynamic Data Source

A dynamic data source is defined and only available in the current MapViewer
session. It must be redefined if MapViewer or its OC4J container is restarted. Use a
dynamic data source when testing or when a one-time connection to a theme is
needed.

Dynamic data sources are created from the MapViewer home page. Click on the
Admin button and log in using oc4jadmin and the password you entered when you
first started OC4J. After logged in, go to Manage MapViewer >
Datasources. It will list existing data sources if any. Below the list is a panel to
define a new data source by providing a name and the database connection
information.

MAPVIEWER METADATA
MapViewer metadata is crucial in defining a desired look and feel for your map.
There are four types of metadata: styles, themes, base maps and map tile layers.

Styles
Styles are the basic graphical attributes that are applied when MapViewer renders a
geometry shape or point. For instance, given a table storing information about
lakes, you can use Map Builder to define a COLOR style to render all polygon
geometries in the table with a solid blue interior fill and a black boundary stroke
color. This COLOR style definition is stored the database and is accessible from
the USER_SDO_STYLES view. You can give this style a (unique) name, such as
‘Lake Color’ and reference it in a theme definition.

A style is not tied to a particular theme. (Themes are covered in the next section.)
Styles are independent, and stored as individual records in the database’s
USER_SDO_STYLES view. To change how a theme is rendered, either refer to a
different style, or modify the definition of the currently assigned style. When you
change the definition of a style, such as changing the fill or stroke color of a
COLOR style, you are affecting the appearance of all the themes that currently use
this particular style.

MapViewer supports six main types of styles, COLOR, MARKER, LINE, AREA,
TEXT, and ADVANCED. TEXT styles are also called Labeling styles, they tell
MapViewer how to label geometries. The typical properties of a Text style include

Note: any time you change the definition of
a style, theme or basemap in Map Builder,

you will need to purge MapViewer’s
cached metadata definitions. To do this, go

to MapViewer’s Admin page, click
Datasources under the Manage MapViewer

tab, select the proper data source in the
existing data sources list, and then click

the Purge cached metadata button.

Oracle Fusion Middleware MapViewer Primer Page 13

font name, font size, font color, and stipulate how to anchor the actual text string
to the target geometry.

It is also possible to create impromptu styles in your application. These are called
dynamic or temporary styles. Dynamic styles also have a name and are typically
referenced in dynamically created themes.

For a more detailed description of each type of style please refer to the MapViewer
User’s Guide.

Themes
Themes are important MapViewer metadata; they allow you to specify which data is
displayed in a table and how to render the data. Think of a theme as a map layer. A
map is typically composed of multiple themes stacked one on top of the other. For
example, a state boundaries theme may be the bottom layer, with other themes
rendered on top of it, such as lakes, roads, counties. When you request a map from
MapViewer you are telling MapViewer which themes to render and in what order.

A theme tells MapViewer how to render the data stored in a spatial table. A theme
called ‘Lakes Theme’ can be defined to include the previously defined COLOR
style ‘Lake Color’ for a table storing lake geometries. When MapViewer renders the
Lake geometries in the table, it looks up the style definition from the database. It
creates an instance of the ‘Lake Color’ COLOR style, and applies ‘Lake Color’ to
the geometries. The definition and instance of a style are cached in MapViewer’s
memory after the initial database lookup.

A theme is a piece of metadata that tells MapViewer:

• The name of the data table that contains the geospatial records to be
rendered;

• Optional query conditions for filtering/restricting the records;

• The names of the styles to apply when rendering the geospatial records in the
query result set; and

• The names of the label (TEXT) styles if the theme requires labeling
(annotating geometries with text).

This information is captured in a simple XML fragment and stored in a system view
(USER_SDO_THEMES) in the database. These themes are called “pre-defined
themes” because their definition is persisted. When processing such a theme,
MapViewer will formulate a complete SQL query for it at run time by combining
the various pieces of information in its definition.

A theme is always associated with one table or view. However, a table or view can
have multiple themes associated with it. Themes can be created with different
combinations of query conditions and style names.

Creating multiple themes with different styles allows the data in the same table to
have more than one look and feel. For example, a table might contain information
about all the hotels in a country. One could define a “generic” hotel theme that
displays all hotels on a map using a certain icon (a MARKER style). However, if

Oracle Fusion Middleware MapViewer Primer Page 14

you wanted to display on a certain map only those hotels that are ranked 3 stars or
above then create a new theme for the same data table, and specify a query
condition that says “star_ranking >= 3”, assuming the data table has a column
“star_ranking”. Now whenever you request this new theme to be drawn on a map,
MapViewer will include this query condition in the theme query it builds, and the
database will only return hotels with a three star or greater rating .

MapViewer automatically builds a SQL query string for each pre-defined theme.
You have some means to control certain parts of the final query, for instance by
supplying your own query conditions or predicates. If you want complete control
of the query, or want MapViewer to only render the geospatial application data
returned from your complete custom SQL query, you need to use what is called a
Dynamic Theme. A Dynamic theme is also called a JDBC Theme in the
MapViewer documentation. A dynamic theme is created ad-hoc in your application,
by supplying a complete, custom query string and associated styling information in
a map request. A dynamic theme definition is not stored in the user’s metadata
table.

Dynamic themes are helpful in the event you want to display certain map layers or
features that are based on the results of an ad hoc, dynamically constructed query.

MapViewer’s themes (pre-defined or dynamic) are always driven by a SQL query. When asked
to render a theme (as part of a map request), MapViewer will always perform a
SQL query on the data table associated with the theme, and render only the records
returned in the query result set.

It is also important to remember that MapViewer by default will automatically
append a spatial filter to the query in any pre-defined theme, in addition to user-
specified query conditions. This spatial filtering, natively supported by Oracle
Locator and Oracle Spatial through spatial indexing, is usually based on your
current map-viewing window. It is a vital piece of the theme query because it
restricts the result set to only those records that are within or interacting with the
current viewing window. As such it ensures relatively predictable performance and
response time, regardless of the total number of records the underlying data table
may have, which could be very large. Note that the same spatial filter is even added
to the custom query for dynamic themes, although you have the option of disabling
it if you so choose. The following is an example of SQL query string constructed
by MapViewer for a pre-defined theme, with the spatial filter predicate in bold text:

SELECT ROWID, GEOMETRY, 'M.AIRPORT', name, 'T.AIRPORT
NAME', 1, 'rule#0', name, AREA_ID
FROM AIRPORT_POINT WHERE
MDSYS.SDO_FILTER(GEOMETRY, MDSYS.SDO_GEOMETRY(2003, 8265,
NULL, MDSYS.SDO_ELEM_INFO_ARRAY(1,1003, 3),
MDSYS.SDO_ORDINATE_ARRAY(:mvqboxxl, :mvqboxyl, :mvqboxxh,
:mvqboxyh)), 'querytype=WINDOW') = 'TRUE'

Note the four bind variables in the predicate, :mvbox*, represent the current map
viewing window and are filled in at run time.

Note: Rendering a MapViewer theme
always involves executing a SQL query.

MapViewer always attaches a spatial filter

predicate to a theme query unless
explicitly told not to do so. The spatial

filter (index) is usually based on the
current map-viewing window.

Oracle Fusion Middleware MapViewer Primer Page 15

Creating Themes

This step is necessary when working with your geospatial application data. The
MapViewer tutorials and demos include themes that can be accessed by importing
mvdemo.dmp and running the SQL script to load the metadata that includes the
themes. The MVDEMO data set contains the geospatial application data tables
and predefined themes. Feel free to go directly to the MapViewer’s home page and
try the tutorials and demos. Optionally, you can use your favorite SQL query tool
such as SQL Developer or SQL*Plus to login to the MVDEMO schema and view
the data tables as well as the theme definitions. The themes are all stored in the
system view USER_SDO_THEMES. The following shows the xml definition of
the CUSTOMERS theme:

SQL> connect mvdemo/pwd4mvdemo
SQL> set long 4000
SQL> select styling_rules from USER_SDO_THEMES where name='CUSTOMERS';

STYLING_RULES
--
<?xml version="1.0" standalone="yes"?>
<styling_rules >
 <hidden_column>
 <field column="name" name="Name"/>
 <field column="city" name="City"/>
 <field column="sales" name="Sales" />
 </hidden_column>
 <rule >
 <features style="M.SMALL CIRCLE"> </features>
 <label column="NAME" style="T.RED STREET"> 1 </label>
 </rule>
</styling_rules>

If you have your own geospatial application data tables, then you must style the
data stored in these tables and create themes to give MapViewer the information it
needs to render them. This is quite easy to do with Map Builder. The essential steps
are:

• Launch Map Builder (for instructions, refer to the User’s Guide)

• Connect to the database schema containing your geospatial application data
tables

• In the Navigation panel, right click on the Themes node, and then select
“Create Geometry Theme”.

• Use the Wizard to guide you through a few steps to specify the base table
name, pick a particular rendering style, and so on.

• The Theme editor is presented to allow you to further customize the new
theme, or proceed to previewing the theme.

Oracle Fusion Middleware MapViewer Primer Page 16

Base maps
The concept of a base map is probably familiar. It is a map that serves as a
backdrop, providing contextual information for the map features of interest to the
viewer. In MapViewer, a base map is simply an ordered collection of pre-defined
themes.

An important step in the base map definition process is to define the map-scale
visibility for each individual theme. For instance, if you want certain themes (such
as detailed streets) display only when the map has zoomed to certain scale, then
assign scale ranges or thresholds to these themes. Such scale range information is
stored as part of the base map definition.

To create a new base map, simply launch the Map Builder utility, and use the Base
Map wizard to select and arrange a list of themes to be included, and modify the
scale range and other properties for each theme.

Note: MapViewer base maps are also the foundation of the (file-system cached)
map tile layers used by the Oracle Maps component.

Tile Layers
The fourth type of mapping metadata is Map Tile Layer metadata. This metadata is
primarily used by the Oracle Maps JavaScript API. It provides the JavaScript API
with information about a draggable map tile layer, including its geographic
boundary, coordinate system, number of discrete zoom levels and the size and
format of individual map tiles at each zoom level.

A map tile layer is typically associated with a MapViewer base map. This type of
map tile layer is often called “Internal Map Tile Layer”. Log in to the MapViewer
Admin page and open the “Manage Map Tile Layers” tab to create a new internal
map tile layer. The tile layer creation wizard will guide you through a series of steps.

 If you make changes to any of the themes and styles used to define a base map
associated with a map tile layer then the existing map tile files must be deleted from
the location on disk specified when creating the tile layer and the user’s browser
cached files must be purged. The MapViewer Web Admin page or Map Builder can
be used to create a map tile layer.

You can create a map tile layer that gets its map tiles from an external source, such
as a 3rd party web mapping service. For instance, you can create a map tile layer
that gets all of the map tiles by making OGC WMS requests to a 3rd party map
server. For more details, please consult the MapViewer User’s Guide.

MAKING MAP REQUESTS AND INTERACTING WITH MAPVIEWER
MapViewer listens for incoming map requests once MapViewer is running and a
data source is created. It acts as a web service. The fact that it runs on a J2EE
platform is transparent to applications and end-users.

Applications and users access MapViewer via one of its APIs. MapViewer’s native
and lowest-level API is the XML request/response API. Applications construct a
complete XML map request document, send it over HTTP to the listening
MapViewer server, and wait for a response containing the generated map. This

It is important to define the map-scale

threshold or range in which each theme is
visible. This is defined in the base map.

Note: If you make changes to any of the

themes and styles used to define a base
map associated with a map tile layer then
the existing map tile files must be deleted
from the location on disk specified when

creating the tile layer and the user’s
browser cached files must be purged.

Oracle Fusion Middleware MapViewer Primer Page 17

API is described in detail in the MapViewer User’s Guide. Clicking on the
Requests tab from the MapViewer home page displays a text area with a sample
XML map request. Modify it for your data source, base map, and theme definitions
to submit a sample XML request using this page. It is a handy tool to quickly test
whether things are properly setup.

Most applications, especially Web 2.0 hosted services applications, need a more
high-level and interactive API. Oracle Maps JavaScript API is appropriate for this
purpose. It is an AJAX-based interactive mapping API for embedding maps in your
web pages. MapViewer comes with over fifty tutorials describing how to use this
API. You can find them by following the link “Oracle Maps Tutorials” on the
MapViewer home page.

If you are developing a Java Swing-based application, then you can use the
MapViewer Java API. This API also follows a request/response model. For details,
please refer to the MapViewer User’s Guide for the Java Bean based API.

There are several demos in the MapViewer installation that you can use as basic
viewing tools. All are accessible from the MapViewer home page after you click the
Demos tab. The first, “Jview”, lets you enter a SQL query that includes a geometry
column and visualize the results. To use this demo, pick a data source (the schema
you want to query), and then enter up to 3 different SQL queries. A map showing
the results of such queries will be displayed with zoom/pan functions. Another
demo, “Omaps”, can be used to quickly test your map tile layers and is written in
the JavaScript API. There are several JSP-based demos that use the Java API, such
as “mapclient” and “mapinit” which let you construct and submit map requests.
Feel free to view their source code and modify them, or use them for a quick check
of your environment.

APPENDIX A: PRIMER ON ORACLE LOCATOR AND ORACLE SPATIAL
This section provides a brief introduction to Oracle Locator and Oracle Spatial. For
more information, please refer to the Oracle Spatial Developer’s Guide. The Pro
Oracle Spatial book is another great resource.

Almost all business applications find Oracle Locator, a free feature included in all
editions of Oracle Database sufficient to meet their geospatial mapping needs.
Oracle Locator stores, indexes and provides basic spatial analysis for point, line and
polygon geometry data. The Oracle Spatial option for Oracle Database Enterprise
Edition extends Oracle Locator with the ability to store, index and analyze complex
data models, including persistent topology, networks/graphs with full connectivity
information and 3D data. Oracle Spatial also manages georaster data, including
imagery, gridded data, satellite and aerial photos.

Details of the functionality in, and differences between Oracle Locator and Oracle
Spatial can be found in the Spatial Developer's Guide or on the Oracle Technology
Network here: www.oracle.com/technetwork/database/options/spatial

 Geospatial application data is stored in Oracle Database tables like any other of
data with the addition of a column of SQL type SDO_GEOMETRY (a native

Oracle Fusion Middleware MapViewer Primer Page 18

Oracle object type). This column stores the coordinates that define the shape or
boundary of geospatial features.

Lets look at a simple table, named OFFICE, which stores information about all of
the field offices for a company. It is created using the following SQL statement:

CREATE TABLE office (ID number primary key,
 Name varchar2(128),
 Manager varhcar2(128),
 NumEmployee number,
 Location MDSYS.SDO_GEOMETRY);

This table can store for each office, its unique ID, name, manager’s name, and the
number of employees in that office. It also contains a geometry object that can
store the office’s location as a longitude/latitude pair. Alternatively, one can use any
of hundreds of spatial reference systems supported by Oracle Locator and Oracle
Spatial for geometry objects. The coordinate values and the associated spatial
reference system ID will always be present in any SDO_GEOMETRY object.

Beginning with Oracle Database 10g, the prefix “MDSYS” (which is the system
schema hosting all the Oracle Spatial data types) is not needed for spatial data types
appearing in your SQL statements.

Now let's insert an actual office record into the above table:

INSERT INTO office VALUES
(1001, ‘San Francisco Branch’, ‘John Doe’, 45,
 MDSYS. SDO_GEOMETRY(2001, 8307,
 MDSYS.SDO_POINT_TYPE(-79, 37, NULL),
 NULL, NULL))
);

Note that the text in bold is the constructor for creating a point-type geometry
object that goes into the sdo_goemetry column. Its coordinate is (-79,37), specified
in the WGS84 geodetic reference system as indicated by the SRID value 8307. In
other words this office is located at longitude –79 and latitude 37. The value 2001
simply indicates it as a 2-dimensional point object.

This is how geospatial features are stored in regular Oracle Database tables and
how records are added to such tables. Once the geospatial data is stored the next
step is to create a spatial index on the geometry column in order to perform spatial
(and non-spatial) queries on these tables. You can also mix query conditions that
involve both spatial and non-spatial predicates in a SQL query, for instance, finding
all the restaurants within 5-miles of your current route that serve Chinese food.

Oracle and third party tools can help you import your existing geospatial
application data into an Oracle Database. The Oracle Map Builder utility has a
built-in wizard to import shapefiles into the database. Oracle partners provide a
variety of tools and common data sets as described on OTN here:
www.oracle.com/technetwork/database/options/spatial/overview/partners

This data and more from any other public or commercial sources can be loaded in
Oracle Database and served as online maps by MapViewer, after proper styling.

Oracle Application Server MapViewer Primer
April 2012
Author: Liujian Qian
Contributing Authors: Jayant Sharma, Thomas Wright

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2012, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

