

2

To support the new preprocessor feature, a new PREPROCESSOR parameter has been added

to the RECORDS clause of the ORACLE_LOADER access driver. The syntax of the

PREPROCESSOR parameter is as follows:

directory_spec – specifies the directory object containing the name of the preprocessor program to

execute for every data file. If directory_spec is omitted, then the default directory specified for the

external table is used. The user trying to access the external table must have the EXECUTE

privilege for the specified directory object.

file-spec - the name of the preprocessor program. It is appended to the path name associated with

the directory object (either the directory_spec or the default directory for the external table). The

file-spec cannot contain an absolute or relative directory path.

Note that if file-spec requires any arguments, then file-spec along with the arguments must be placed

in an executable shell script (or on Windows systems, in a batch (.bat) file), and it must reside in

directory_spec. (See Example 2.)

The following two examples demonstrate use of the preprocessor feature. In both examples,

input data in compressed format is preprocessed to uncompress it and then sent to the

ORACLE_LOADER access driver in uncompressed format. Example 1 specifies the

preprocessor program directly on the PREPROCESSOR clause. Example 2 specifies the

preprocessor program within a shell script, because the program uses additional arguments.

This example requires you to take several distinct steps, including: supplying a preprocessor

program; creating a simple data file, directory objects, and an external table; and then querying

from that table to verify the data was successfully uncompressed.

3

From within the shell, use the following command to copy the preprocessor program (in this

case, zcat) to some other directory on your system.

% /bin/cp /bin/zcat /somedirectory/bin/zcat

In another directory, create a simple data file named foo.dat containing the words “Hello World”

and then use the gzip executable to compress the foo.dat file into a file named foo.dat.gz. Verify

that the compressed file has been created by issuing an ls -l command.

% echo “Hello World” > foo.dat

% gzip foo.dat

% ls -l foo.dat.gz

-rw-rw-r-- 1 oracle dba 40 Oct 2 15:10 foo.dat.gz

Directory objects must be created for the directories that hold the preprocessor programs and

data files. For this example, the necessary privileges on those directories are granted to user scott.

The creation of directory objects and granting of privileges on them to only certain users is

necessary for security reasons (see BEST PRACTICES). In the following examples, replace the

name „somedirectory‟ with the name of the directory to which you copied the zcat program in

step 1. Replace the name „somedirectory1‟ with the name of the directory in which you created

the foo.dat.gz file in step 2.

SQL> create or replace directory execdir as '/somedirectory/bin';

Directory created.

SQL> create or replace directory data_dir as '/somedirectory1';

Directory created.

SQL> grant read, execute on directory execdir to scott;

Grant succeeded.

SQL> grant read, write on directory data_dir to scott;

Grant succeeded.

SQL> CONNECT scott/tiger

Connected.

4

SQL> CREATE TABLE xtab (COL1 varchar2(2000))

 2 ORGANIZATION EXTERNAL (

3 TYPE ORACLE_LOADER

 4 DEFAULT DIRECTORY data_dir

 5 ACCESS PARAMETERS (

 6 RECORDS DELIMITED BY NEWLINE

 7 PREPROCESSOR execdir:'zcat'

 8 FIELDS (COL1 char(2000)))

 9 LOCATION ('foo.dat.gz'))

 10 REJECT LIMIT UNLIMITED

 11 PARALLEL 2;

Table created.

SQL> SELECT * FROM xtab;

COL1

Hello World

1 row selected.

The following example demonstrates using a shell script to uncompress the data. Shell scripts are

necessary when preprocessor programs require additional arguments. Note that /bin/zcat and

/bin/gunzip –c are functionally equivalent.

% echo „/bin/gunzip –c $1‟ > uncompress.sh

% chmod +x uncompress.sh

% cp uncompress.sh /somedirectory/bin/uncompress.sh

Note the following when creating a preprocessor shell script:

 The full path name must be specified for system commands (for example, gunzip)

5

 The data file listed in the external table LOCATION clause should be referred to by $1.

(On Windows systems, the LOCATION clause should be referred to by %1.)

 On Windows systems, the first line in the .bat file must be the following:

@echo off

Otherwise, by default, Windows will echo the contents of the batch file (which will be

treated as input by the external table access driver).

 Make sure the preprocessor shell script has EXECUTE permissions

SQL> CONNECT scott/tiger

Connected.

SQL> drop table xtab;

Table dropped.

SQL> CREATE TABLE xtab (COL1 varchar2(2000))

 2 ORGANIZATION EXTERNAL (

 3 TYPE ORACLE_LOADER

 4 DEFAULT DIRECTORY data_dir

 5 ACCESS PARAMETERS (

 6 RECORDS DELIMITED BY NEWLINE

 7 PREPROCESSOR execdir:'uncompress.sh'

 8 FIELDS (COL1 char(2000)))

 9 LOCATION ('foo.dat.gz'))

 10 REJECT LIMIT UNLIMITED

 11 PARALLEL 2;

Table created.

SQL> SELECT * FROM xtab;

COL1

6

Hello World

1 row selected.

Because a DBA does not necessarily know what actions a preprocessor program performs,

precautions must be taken when allowing preprocessors to be used with external tables.

The OS system manager should create a separate directory to hold the preprocessors. Multiple

directories may need to be created if different sets of Oracle users will use different

preprocessors. The OS-user ORACLE must have appropriate OS-permissions to execute the

image.

The OS system manager and the DBA need to ensure that the correct version of the

preprocessor program is placed in the proper directory. The OS system manager should protect

the preprocessor program from write access by any OS user.

The DBA should create a directory object for each directory that contains preprocessor

programs. The DBA should grant the EXECUTE privilege to only those users who require

access to the preprocessor programs.

To prevent a database user from accidentally or maliciously overwriting the preprocessor

program, the DBA should NOT grant write access on the directory object containing the

preprocessor programs to anyone.

Any data files required for an external table should be kept in a directory separate from the

directory containing preprocessor programs. The DBA and the OS system manager should work

together to ensure that only the appropriate OS users have access to the directory. Because the

data files are in a different directory, a directory object needs to be created. The DBA should

allow users only read access to the directory object in order to keep the data files from being

accidentally or maliciously overwritten by the database user.

Any files generated by the access driver, including log files, bad files, and discard files, should be

written to a directory object that is separate from the directory objects containing data files and

directory objects containing the preprocessor. The DBA and the OS system manager need to

work together to create a directory and ensure it has the proper protections. The database user

may need to access these files to resolve problems in data files, so the DBA and OS system

manager might want to determine a way for the database user to read those files.

Note that any DBA, as well as any user with the CREATE ANY DIRECTORY or DROP ANY

DIRECTORY privilege also has full access to all directory objects. Therefore, those privileges

should be used sparingly, if at all.

7

When the preprocessor option is specified, each file in the LOCATION clause is a single granule

and the number of granules limits the degree of parallelism achievable. Therefore, the number of

files in the LOCATION clause should be a multiple of the degree of parallelism. At lease one

granule per slave is needed to exploit parallel operation across all slaves. In practice, 10 granules

per slave is a good choice to avoid tail processing skew.

The simple example in this white paper illustrates how the power and flexibility of external tables

has increased with the new preprocessing feature. The ability to use a preprocessor program to

manipulate the input data in ways not previously possible offers more loadable data formats to

users.

Other benefits include the potential reduction of hardware and developer resources. Additional

disk space is not required to first uncompress the input data before it is read by the external

table. For users with very large compressed input data and a shortage of available disk space this

represents huge savings in terms of both time and resources. Being able to reformat the input

data through a preprocessor program, rather than manually, also saves administrative resources.

For more information, see the following Oracle Database 11g Release 2 documentation:

Oracle Database Utilities for more information about the ORACLE_LOADER access driver.

Oracle Database Security Guide for guidelines about securing the ORACLE_LOADER Access

Driver.

Oracle Database Administrator's Guide for detailed information about creating and managing

external tables.

