
Oracle® Adapters for Files, FTP, Databases, and
Enterprise Messaging
User’s Guide

10g Release 2 (10.1.2.)

B25307-01

November 8, 2005

Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide, 10g Release 2 (10.1.2.)

B25307-01

Copyright © 2005 Oracle. All rights reserved.

Primary Author: Deanna Bradshaw, Mark Kennedy, Craig West

Contributors: Oracle BPEL Process Manager development, product management, and quality assurance
teams

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City,
CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xiii

Audience... xiii
Documentation Accessibility ... xiii
Related Documentation.. xiv
Conventions ... xiv

1 Introduction to Oracle Adapters for Files, FTP, Databases, and Enterprise
Messaging

Overview of Oracle BPEL Process Manager Technology Adapters.. 1-1
Summary .. 1-3

2 Oracle Application Server Adapter for Files/FTP

Introduction to the File and FTP Adapters .. 2-1
File and FTP Adapter Features... 2-1
File and FTP Adapter Architecture ... 2-3
File and FTP Adapter Integration with Oracle BPEL Process Manager 2-3

File and FTP Adapter Concepts ... 2-4
File Adapter Read File Concepts ... 2-4

Inbound Operation ... 2-4
Inbound File Directory Specifications.. 2-5

Specifying Inbound Physical or Logical Directory Paths .. 2-5
Archiving Successfully Processed Files.. 2-6

File Matching and Batch Processing .. 2-7
Specifying a Naming Pattern ... 2-7
Including and Excluding Files ... 2-8
Batching Multiple Inbound Messages ... 2-10

File Polling .. 2-10
File Processing .. 2-11
Postprocessing.. 2-11
Native Data Translation.. 2-11
Error Handling ... 2-12

rejectedMessageHandlers Property ... 2-12
fatalErrorFailoverProcess Property.. 2-13
uniqueMessageSeparator Property.. 2-14
Default Error Directory.. 2-15

iv

Guaranteed Delivery and Recovery from Server Failures... 2-15
Inbound Service Name WSDL File.. 2-15
Inbound Header WSDL File ... 2-16
Synchronous File Reading Capabilities .. 2-17

File Adapter Write File Concepts.. 2-18
Outbound Operation ... 2-19
Outbound File Directory Creation .. 2-19

Specifying Outbound Physical or Logic Directory Paths ... 2-20
Specifying the Outbound File Naming Convention.. 2-21
Specifying a Dynamic Outbound File Name.. 2-23
Batching Multiple Outbound Messages .. 2-24

Native Data Translation.. 2-25
Error Handling ... 2-25
Outbound Service Name WSDL File .. 2-26
Outbound Header WSDL File.. 2-27

FTP Adapter for Get File Concepts... 2-27
FTP Adapter for Put File Concepts... 2-32

Using Secure FTP with the FTP Adapter... 2-34
Secure FTP Overview ... 2-34
Installing and Configuring OpenSSL ... 2-35
Installing and Configuring vsftpd .. 2-36
Creating an Oracle Wallet .. 2-38
Setting Up the FTP Adapter .. 2-38

Use Cases for the File and FTP Adapters .. 2-39
File Adapter Use Cases... 2-39

File Reading ... 2-39
Message Debatching ... 2-40
Reading Delimited Content Files... 2-40
Reading Positional (Fixed Length) Content Files.. 2-40
File Writing ... 2-40

FTP Adapter Use Case.. 2-40
Summary ... 2-41

3 Oracle Application Server Adapter for Advanced Queuing

Introduction to the AQ Adapter .. 3-1
AQ Adapter Features ... 3-1

Enqueue-Specific Features (Message Production) .. 3-2
Dequeue and Enqueue Features .. 3-3
Supported ADT Payload Types ... 3-4
Native Format Builder Wizard... 3-5

Use Cases for the AQ Adapter ... 3-6
Adapter Configuration Wizard Walkthrough... 3-6

Generated WSDL file... 3-14
Dequeuing and Enqueuing Object and ADT Payloads... 3-16
Dequeuing One Column of the Object/ADT Payload .. 3-16
Processing Large Numbers of Messages ... 3-16
Using Correlation ID for Filtering Messages During Dequeue.. 3-17

v

Enqueuing and Dequeuing from Multisubscriber Queues... 3-17
Rule-Based Subscription for Multiconsumer Queues.. 3-19
Using AQ Headers in a BPEL Process.. 3-20
Header Variables in JDeveloper BPEL Designer .. 3-21
Configuring a Message Rejection Handler for Data Errors .. 3-22

Summary ... 3-22

4 Oracle Application Server Adapter for Databases

Introduction to the Database Adapter.. 4-1
Database Adapter Features... 4-1
Design Overview.. 4-2

Database Adapter Concepts ... 4-4
Relational-to-XML Mapping .. 4-4

Relational Types to XML Schema Types ... 4-7
Mapping Any Relational Schema to Any XML Schema ... 4-8

SQL Operations as Web Services ... 4-8
DML Operations ... 4-8

Merge... 4-9
querybyExample .. 4-9
Use Cases for Outbound Invoke Operations... 4-9

Polling Strategies.. 4-10
Physical Delete .. 4-10
Logical Delete .. 4-11
Sequencing Table: Last-Read Id.. 4-13
Sequencing Table: Last Updated .. 4-14
Control Tables ... 4-14
Use Cases for Polling Strategies ... 4-16

Use Cases for the Database Adapter.. 4-16
The Adapter Configuration Wizard... 4-18

Starting the Adapter Configuration Wizard ... 4-18
Connecting to a Database... 4-19
Selecting the Operation Type .. 4-20
Selecting and Importing Tables .. 4-21
Defining Primary Keys... 4-22
Creating Relationships ... 4-23

What Happens When Relationships Are Created or Removed.. 4-25
Different Types of One-to-One Mappings ... 4-25

Creating the Object Model ... 4-26
Defining a WHERE Clause .. 4-26
Choosing an After-Read Strategy ... 4-28

Delete the Rows that Were Read ... 4-29
Update a Field in the Table (Logical Delete).. 4-29
Update a Sequencing Table .. 4-30

Internal Processes at Design Time .. 4-31
Importing Tables .. 4-31
Creating Relationships .. 4-32
Generating Design-Time Artifacts... 4-32

vi

Advanced Configuration ... 4-32
The OracleAS TopLink Mapping Workbench Project ... 4-32

Deleting a Descriptor... 4-33
Returning Partial Objects When Querying .. 4-33
Renaming a Mapping .. 4-35
Configuring Offline Database Tables.. 4-35

Relational-to-XML Mappings (toplink_mappings.xml).. 4-36
The Service Definition (WSDL) ... 4-38

DBWriteInteractionSpec.. 4-39
DBReadInteractionSpec .. 4-40
DBActivationSpec .. 4-41

XML Schema Definition (XSD).. 4-43
Deployment.. 4-44

Location of the oc4j-ra.xml File .. 4-46
Advanced Properties ... 4-48

Performance ... 4-49
Outbound Write: Should You Use Merge, Write, or Insert? ... 4-49
The OracleAS TopLink Cache: When Should You Use It? .. 4-50
Existence Checking .. 4-50
Inbound (Polling): maxRaiseSize... 4-50
Inbound (Polling): Choosing a Polling Strategy.. 4-50
Relationship Reading (Batch Attribute and Joined Attribute Reading) 4-50
Connection Pooling ... 4-50
Inbound Distributed Polling .. 4-51

Concurrency Control: Pessimistic Locking... 4-51
Load Balancing: MaxTransactionSize and Pessimistic Locking 4-52

Third-Party Database Support .. 4-52
Design Time ... 4-53
Run Time .. 4-54

Stored Procedure and Function Support .. 4-54
Design Time: Using the Adapter Configuration Wizard .. 4-55

Using Top-Level Standalone APIs... 4-55
Using Packaged APIs and Overloading ... 4-59

Design Time: WSDL and XSD Generation .. 4-61
The WSDL–XSD Relationship .. 4-61
Supported Primitive Datatypes ... 4-62
Generated XSD Attributes .. 4-63
User-Defined Types ... 4-64
Complex User-Defined Types.. 4-66
Object Type Inheritance .. 4-66
Object References ... 4-66

Run Time: Before Stored Procedure Invocation .. 4-67
Value Binding ... 4-67
Datatype Conversions ... 4-69

Run Time: After Stored Procedure Invocation ... 4-69
Datatype Conversions ... 4-69
Null Values ... 4-70

vii

Function Return Values .. 4-70
Advanced Topics... 4-70

Support for REF CURSOR .. 4-70
Support for PL/SQL BOOLEAN... 4-71
Support for PL/SQL RECORD .. 4-71

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer . 4-71
Creating a Stored Procedure.. 4-72
Creating a Database Connection... 4-72
Creating a Workspace and a Greeting Process ... 4-73
Creating a Partner Link .. 4-74
Creating an Invoke Activity .. 4-77
Creating an Initial Assign Activity ... 4-78
Creating a Second Assign Activity ... 4-80
Validating, Compiling, and Deploying the Greeting Process .. 4-81
Running the Greeting Process ... 4-82

Summary ... 4-83

5 Oracle Application Server Adapter for Java Message Service

Introduction to the JMS Adapter... 5-1
JMS Adapter Features.. 5-1
Use Cases for the JMS Adapter.. 5-2

Concepts .. 5-2
Using the Adapter Configuration Wizard to Configure a JMS Adapter 5-4
Generated WSDL File ... 5-10
oc4j-ra.xml file.. 5-12
Produce Message Procedure ... 5-12
Configuring for OJMS .. 5-13
Configuring for OC4J JMS ... 5-15
Configuring for TIBCO JMS .. 5-16

Direct Connection .. 5-17
Configuring for IBM Websphere JMS .. 5-17

Summary ... 5-18

6 Native Format Builder Wizard

Creating Native Schema Files with the Native Format Builder Wizard.. 6-1
Supported Formats .. 6-2

Delimited (such as CSV files) .. 6-2
Fixed Length (Positional)... 6-2
DTD... 6-2
COBOL Copybook .. 6-2

User Inputs ... 6-3
COBOL Clauses.. 6-3

Native Format Builder Wizard Windows .. 6-6
Understanding Native Schema .. 6-7

Use Cases for the Native Format Builder ... 6-7
Defining a Comma-Separated Value File Structure... 6-8

viii

Native Data Format to Be Translated ... 6-8
Native Schema.. 6-8
Translated XML Using the Native Schema.. 6-9

Defining a * Separated Value File Structure ... 6-9
Native Data Format to Be Translated ... 6-9
Native Schema.. 6-9

Defining a Fixed Length Structure ... 6-9
Native Data Format to Be Translated ... 6-9
Native Schema.. 6-9

Defining a More Complex Structure - Invoice... 6-10
Native Data Format to Be Translated .. 6-10
Native Schema... 6-11
Translated XML Using the Native Schema... 6-12

COBOL Copybook ... 6-13
Multiple Root Levels .. 6-13
Single Root Level, Virtual Decimal, Fixed Length Array ... 6-16
Variable Length Array ... 6-18
Numeric Types.. 6-20

Native Schema Constructs ... 6-21
Defining Fixed Length Data ... 6-21

Native Data Format to Be Translated: With Padding.. 6-21
Native Schema: With Padding.. 6-21
Translated XML Using the Native Schema: With Padding .. 6-22
Native Data Format to Be Translated: Without Padding.. 6-22
Native Schema: Without Padding .. 6-22
Translated XML Using the Native Schema: Without Padding 6-23
Native Data Format to Be Translated: Actual Length Also Being Read from the Native
Data ... 6-23
Native Schema: Actual Length Also Being Read from the Native Data................... 6-23
Translated XML Using the Native Schema: Actual Length Also Being Read from the
Native Data .. 6-23

Defining Terminated Data.. 6-24
Native Data Format to Be Translated: Optionally Quoted... 6-24
Native Schema: Optionally Quoted ... 6-24
Translated XML Using the Native Schema: Optionally Quoted 6-24
Native Data Format to Be Translated: Not Quoted ... 6-24
Native Schema: Not Quoted ... 6-24
Translated XML Using the Native Schema: Not Quoted.. 6-25

Defining Surrounded Data ... 6-25
Native Data Format to Be Translated: Left and Right Surrounding Marks Are Different
.. 6-25
Native Schema: Left and Right Surrounding Marks Are Different........................... 6-25
Translated XML Using the Native Schema: Left and Right Surrounding Marks Are
Different ... 6-26
Native Data Format to Be Translated: Left and Right Surrounding Marks Are the Same
.. 6-26
Native Schema: Left and Right Surrounding Marks Are the Same 6-26

ix

Translated XML Using the Native Schema: Left and Right Surrounding Marks Are the
Same ... 6-26

Defining Lists.. 6-26
Native Data Format to Be Translated: All Items Separated by the Same Mark, But the
Last Item Terminated by a Different Mark (Bounded) ... 6-27
Native Schema: All Items Separated by the Same Mark, But the Last Item Terminated
by a Different Mark (Bounded) .. 6-27
Translated XML Using the Native Schema: All Items Separated by the Same Mark, But
the Last Item Terminated by a Different Mark (Bounded)... 6-27
Native Data Format to Be Translated: All Items Separated by the Same Mark,
Including the Last Item (Unbounded) ... 6-27
Native Schema: All Items Separated by the Same Mark, Including the Last Item
(Unbounded) .. 6-27
Translated XML Using the Native Schema: All Items Separated by the Same Mark,
Including the Last Item (Unbounded) 6-28

Defining Arrays.. 6-28
Native Data Format to Be Translated: All Cells Separated by the Same Mark, But the
Last Cell Terminated by a Different Mark (Bounded) 6-28
Native Schema: All Cells Separated by the Same Mark, But the Last Cell Terminated
by a Different Mark (Bounded) 6-28
Translated XML Using the Native Schema: All Cells Separated by the Same Mark, But
the Last Cell Terminated by a Different Mark (Bounded) 6-29
Native Data Format to Be Translated: ... 6-29
Native Schema:.. 6-29
Translated XML Using the Native Schema: All Cells Separated by the Same Mark,
Including the Last Cell (Unbounded) .. 6-30
Native Data Format to Be Translated: Cells Not Separated by Any Mark, But the Last
Cell Terminated by a Mark (Bounded) 6-30
Native Schema: Cells Not Separated by Any Mark, But the Last Cell Terminated by a
Mark (Bounded) ... 6-31
Translated XML Using the Native Schema: Cells Not Separated by Any Mark, But the
Last Cell Terminated by a Mark (Bounded) 6-31
Native Data Format to Be Translated: The Number of Cells Being Read from the
Native Data .. 6-31
Native Schema: The Number of Cells Being Read from the Native Data 6-32
Translated XML Using the Native Schema: The Number of Cells Being Read from the
Native Data .. 6-32

Conditional Processing ... 6-33
Native Data Format to Be Translated: Processing One Element within a Choice Model
Group Based on the Condition 6-33
Native Schema: Processing One Element within a Choice Model Group Based on the
Condition ... 6-33
Translated XML Using the Native Schema: Processing One Element Within a Choice
Model Group Based on the Condition ... 6-35
Native Data Format to Be Translated: Processing Elements within a Sequence Model
Group Based on the Condition 6-36
Native Schema: Processing Elements within a Sequence Model Group Based on the
Condition 6-36
Translated XML Using the Native Schema: Processing Elements within a Sequence
Model Group Based on the Condition... 6-38

x

Defining Dates .. 6-40
Native Data Format to Be Translated .. 6-40
Native Schema... 6-40
Translated XML Using the Native Schema... 6-40

Using Variables .. 6-41
Native Data Format to Be Translated .. 6-41
Native Schema... 6-41
Translated XML Using the Native Schema... 6-42

Native Schema Constructs ... 6-42
Summary ... 6-44

A Troubleshooting and Workarounds

Troubleshooting the Oracle Application Server Adapter for Databases A-1
Could Not Create OracleAS TopLink Session Exception.. A-1
Could Not Find Adapter for eis/DB/my_connection ... A-1
Changes Through TopLink Mapping Workbench... A-2
Redeploying from the Command Line .. A-2
Cannot Change Customers_table.xsd .. A-2
No Target Foreign Keys Error ... A-2
No Primary Key Exception .. A-3
dateTime Conversion Exceptions ... A-4
Issues with Oracle DATE ... A-5
Handling a Database Adapter Fault... A-6
BPEL Process Does Not Run Against Another Database.. A-6
Only One Employee Per Department Appears .. A-7
Outbound SELECT on a CHAR(X) or NCHAR Column Returns No Rows............................ A-7
ORA-00932: Inconsistent Datatypes Exception Querying CLOBs ... A-8
Merge Sometimes Does UPDATE Instead of INSERT, or Vice Versa A-8
Integrity Violation Occurs with Delete or DeletePollingStrategy.. A-9
Some Queried Rows Appear Twice or Not at All in the Query Result................................... A-10
Importing a Same-Named Table, with Same Schema Name, but Different Databases........ A-10
Problems Creating a Relationship Manually for a Composite Primary Key A-11
Must Fully Specify Relationships Involving Composite Primary Keys.................................. A-11
Database Adapter Throws an Exception When Using a BFILE ... A-11
During Design-Time, Wizard Does Not Allow Deletion of a Table.. A-11
Changes to JDeveloper Project Are Made Even If Wizard Is Cancelled................................. A-11
Problems Removing a Relationship, Then Adding a New Relationship with the Same Name ...
.. A-11
Problems Importing Third-Party Database Tables with Unsupported Database Types...... A-12
Problems Importing Object Tables ... A-12
Relationships Not Autogenerated When Tables Are Imported Separately A-12
Primary Key Is Not Saved.. A-13

Troubleshooting the Oracle Application Server Adapter for Databases When Using Stored
Procedures... A-13

Design-Time Problems: Unsupported Parameter Types .. A-13
Run-Time Problems: Parameter Mismatches.. A-14
Run-Time Problems: Stored Procedure Not Defined in the Database A-15

xi

Troubleshooting the Oracle Application Server Adapter for Files/FTP A-16
Changing Logical Names with the Adapter Configuration Wizard A-16
Creating File Names with Spaces with the Native Format Builder Wizard........................... A-16
Common User Errors.. A-16

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing A-18
Inbound Errors .. A-18

JNDI Lookup Failed... A-18
During Initialization, I/O Exception: Network Adapter Did Not Establish the Connection
.. A-19
Incorrect Username/Password.. A-19
Queue Not Found .. A-20
User Does Not Have DBMS_AQIN Privileges, Which Are Required by the AQ Java API
.. A-20
Translation Error .. A-20
Subscriber Already Exists When Using MessageRuleSelector.. A-21

Outbound Errors ... A-22
JNDI Lookup Failed... A-22
I/O Exception: Network Adapter Could Not Establish the Connection......................... A-22
Queue Not Found .. A-23
Incorrect Username/Password.. A-23
User Does Not Have DBMS_AQIN Privileges, Which Are Required by the AQ Java API
 ... A-23
Translation Error .. A-24

JDeveloper BPEL Designer Errors .. A-24
Translation Error ... A-26
Other Problems.. A-27

Summary ... A-29

Index

xii

xiii

Preface

This guide describes how to use the technology adapters that are provided with Oracle
BPEL Process Manager.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide is
intended for anyone who is interested in using these adapters.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xiv

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Application Server 10g Documentation Library

■ Oracle BPEL Process Manager Developer’s Guide

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

To download Oracle BPEL Process Manager documentation, technical notes, or other
collateral, visit the Oracle Technology Network (OTN) at

http://www.oracle.com/technology/bpel/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Introduction to Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging 1-1

1
Introduction to Oracle Adapters for Files,

FTP, Databases, and Enterprise Messaging

This chapter describes the file, FTP, database, and enterprise messaging adapters that
are provided with Oracle BPEL Process Manager. The adapters enable you to integrate
BPEL processes with access to file systems, FTP servers, database tables, database
queues (advanced queues, or AQ), Java Message Services (JMS), and Oracle
Applications. See Oracle BPEL Process Manager Developer’s Guide for information about
BPEL processes.

This chapter contains the following topics:

■ Overview of Oracle BPEL Process Manager Technology Adapters

■ Summary

See Oracle Application Server Adapter Concepts for information about application and
mainframe adapters.

Overview of Oracle BPEL Process Manager Technology Adapters
From the Partner Link Window, shown in Figure 1–1, you can access the adapters that
are provided with Oracle BPEL Process Manager.

Figure 1–1 Partner Link Window

Click the Define Adapter Service icon, shown in Figure 1–2, to access the Adapter
Configuration Wizard.

Overview of Oracle BPEL Process Manager Technology Adapters

1-2 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 1–2 Defining an Adapter

This wizard enables you to configure the types of adapters shown in Figure 1–3 for use
with BPEL processes.

Figure 1–3 Adapter Types

When you select an adapter type, the Service Name window shown in Figure 1–4
prompts you to enter a name. For this example, File Adapter was selected in
Figure 1–3. When the wizard completes, a WSDL file by this service name appears in
the Applications Navigator for the BPEL process (for this example, named
ReadFile.wsdl). This file includes the adapter configuration settings you specify with
this wizard. Other configuration files (such as header files and files specific to the
adapter) are also created and display in the Applications Navigator.

See Oracle Application Server Adapter for Oracle Applications User’s Guide for information
on using the Oracle Applications adapter listed in Figure 1–3.

Summary

Introduction to Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging 1-3

Figure 1–4 Adapter Service Name

The Adapter Configuration Wizard windows that appear after the Service Name
window are based on the adapter type you selected. These configuration windows and
the information you must provide are described in later chapters of this guide.

Summary
This chapter introduces the file, FTP, database, and enterprise messaging adapters that
are provided with Oracle BPEL Process Manager. The adapters enable you to integrate
BPEL processes with access to file systems, FTP servers, database tables, database
queues, Java Message Services (JMS), and Oracle Applications.

Summary

1-4 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Oracle Application Server Adapter for Files/FTP 2-1

2
Oracle Application Server Adapter for

Files/FTP

This chapter describes how to use the Oracle Application Server Adapter for Files/FTP
(file and FTP adapters), which work in conjunction with Oracle BPEL Process Manager
as an external service. References to use cases for the file and FTP adapters are also
provided.

This chapter contains the following topics:

■ Introduction to the File and FTP Adapters

■ File and FTP Adapter Concepts

■ Using Secure FTP with the FTP Adapter

■ Use Cases for the File and FTP Adapters

■ Summary

Introduction to the File and FTP Adapters
Oracle BPEL Process Manager includes the file and FTP adapters. The file and FTP
adapters enable your BPEL process to exchange (read and write) files on local file
systems and remote file systems (through use of the file transfer protocol (FTP)). The
file contents can be both XML and non-XML data formats.

This section contains the following topics:

■ File and FTP Adapter Features

■ File and FTP Adapter Architecture

■ File and FTP Adapter Integration with Oracle BPEL Process Manager

File and FTP Adapter Features
The file and FTP adapters enable you to configure your BPEL process to interact with
local and remote file system directories. The file and FTP adapters can read and write
the following file formats and use the adapter translator component at both design
time and run time:

■ XML (both XSD- and DTD-based)

Note: The term Oracle Application Server Adapter for Files/FTP is used
for the file and FTP adapters, which are separate adapters with very
similar functionality.

Introduction to the File and FTP Adapters

2-2 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

■ Delimited

■ Fixed positional

■ Binary data

■ COBOL Copybook data

The file and FTP adapters can also treat file contents as an opaque object and pass the
contents in their original format (without performing translation). The opaque option
handles binary data such as JPGs and GIFs whose structure cannot be captured in an
XSD or data you do not want to have translated.

The translator enables the file and FTP adapters to convert native data in various
formats to XML, and vice versa. The native data can be simple (just a flat structure) or
complex (with parent-child relationships).

The FTP adapter supports the use of secure FTP on Solaris.

The file and FTP adapters exchange files in the inbound and outbound directions.
Based on the direction, the file and FTP adapters perform a different set of tasks.

For inbound files sent to Oracle BPEL Process Manager, the file and FTP adapters
perform the following operations:

■ Poll the file system looking for matches

■ Read and translate the file contents based on the translation logic defined at
design time

■ Publish the same as an XML message

This functionality of the file and FTP adapters is referred to as the file read operation
and the component that provides this function as the file reader. This operation is
known as a Java Connector Architecture (JCA) inbound interaction.

For outbound files sent from Oracle BPEL Process Manager, the file and FTP adapters
perform the following operations:

■ Receive messages from BPEL

■ Format the XML contents as specified at design time

■ Produce output files

This functionality of the file and FTP adapters is referred to as the file write operation
and the component that provides this functionality as the file writer. This operation is
known as a JCA outbound interaction.

For the inbound and outbound directions, the file and FTP adapters use a set of
configuration parameters. For example:

■ The inbound file and FTP adapters have parameters for the inbound directory
where the input file appears and the frequency with which to poll the directory.

■ The outbound file and FTP adapters have parameters for the outbound directory
in which to write the file and the file naming convention to use.

The file reader supports polling conventions and offers several postprocessing options.
After processing the file, the files can be deleted, moved to a directory, or left as is. The
file reader can split the contents of a file and publish it in batches, instead of as a single
message. This feature can be utilized for performance tuning of the file and FTP
adapters. The file reader guarantees once and once-only delivery.

When a file contains multiple messages, you can select to publish messages in a
specific number of batches. This is referred to as debatching. During debatching, the

Introduction to the File and FTP Adapters

Oracle Application Server Adapter for Files/FTP 2-3

file reader, upon restart, proceeds from where it left off in the previous run, thereby
avoiding duplicate messages.

The file writer offers several conditions for output file creation. The output files can be
created based on time elapsed, file size, and number of messages received.

See the following sections for details about the read and write functionality of the file
and FTP adapters:

■ "File Adapter Read File Concepts" on page 2-4

■ "File Adapter Write File Concepts" on page 2-18

■ "FTP Adapter for Get File Concepts" on page 2-27

■ "FTP Adapter for Put File Concepts" on page 2-32

File and FTP Adapter Architecture
The file and FTP adapters are based on JCA 1.5 architecture. JCA provides a standard
architecture for integrating heterogeneous enterprise information systems (EIS). The
adapter framework of the file and FTP adapters exposes the underlying JCA
interactions as services (WSDL with JCA binding) for Oracle BPEL Process Manager
integration. See Oracle Application Server Adapter Concepts for details about OracleAS
Adapter architecture.

File and FTP Adapter Integration with Oracle BPEL Process Manager
The file and FTP adapters are automatically integrated with Oracle BPEL Process
Manager. When you create a partner link in JDeveloper BPEL Designer, you can
invoke the Adapter Configuration Wizard, as shown in Figure 1–2 on page 1-2.

This wizard enables you to select and configure the file and FTP adapters or other
OracleAS Adapters, as shown in Figure 1–3 on page 1-2. The Adapter Configuration
Wizard then prompts you to enter a service name, as shown in Figure 1–4 on page 1-3.
When configuration is complete, a WSDL file of the same name is created in the
Applications Navigator section of JDeveloper BPEL Designer. This WSDL file
contains the configuration information you specify with the Adapter Configuration
Wizard.

After specifying a service name (as shown in Figure 1–4 on page 1-3), you are
prompted to select an operation to perform. Based on your selection, different Adapter
Configuration Wizard windows appear and prompt you for configuration
information. Table 2–1 lists the available operations and provides references to sections
that describe the configuration information you must provide.

Table 2–1 Supported Operations

Operation See Section...

File Adapter -

■ Read File (inbound operation) "File Adapter Read File Concepts" on page 2-4

■ Write File (outbound operation) "File Adapter Write File Concepts" on page 2-18

FTP Adapter -

■ Get File (inbound operation) "FTP Adapter for Get File Concepts" on page 2-27

■ Put File (outbound operation) "FTP Adapter for Put File Concepts" on page 2-32

File and FTP Adapter Concepts

2-4 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

See Oracle Application Server Adapter Concepts for more information about OracleAS
Adapter integration with Oracle BPEL Process Manager.

File and FTP Adapter Concepts
This section contains the following topics:

■ File Adapter Read File Concepts

■ File Adapter Write File Concepts

■ FTP Adapter for Get File Concepts

■ FTP Adapter for Put File Concepts

File Adapter Read File Concepts
In the inbound direction, the file adapter polls and reads files from a file system for
processing. This section provides an overview of the inbound file reading capabilities
of the file adapter. You use the Adapter Configuration Wizard to configure the file
adapter for use with your BPEL process. This creates an inbound WSDL file named
after the service name you specify with the Adapter Configuration Wizard. An
inbound header file named fileAdapterInboundheader.wsdl is also created.

This section contains the following topics:

■ Inbound Operation

■ Inbound File Directory Specifications

■ File Matching and Batch Processing

■ File Polling

■ File Processing

■ Postprocessing

■ Native Data Translation

■ Error Handling

■ Guaranteed Delivery and Recovery from Server Failures

■ Inbound Service Name WSDL File

■ Inbound Header WSDL File

■ Synchronous File Reading Capabilities

Inbound Operation
For inbound operations with the file adapter, you select to perform an inbound Read
File operation. Figure 2–1 shows this selection.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-5

Figure 2–1 Selecting the Read File Operation

Inbound File Directory Specifications
The File Directories window of the Adapter Configuration Wizard shown in
Figure 2–2 enables you to specify information about the directory to use for reading
inbound files and the directories in which to place successfully processed files.

Figure 2–2 Adapter Configuration Wizard—Specifying Incoming Files

The following sections describe the file directory information to specify:

■ Specifying Inbound Physical or Logical Directory Paths

■ Archiving Successfully Processed Files

Specifying Inbound Physical or Logical Directory Paths You can specify inbound directory
names as physical or logical paths. Physical paths are values such as c:\inputDir.

Logical properties are specified in the inbound WSDL file and their logical-physical
mapping is resolved using partner link properties. You specify the logical parameters
once at design time, and you can later modify the physical directory name as needed.

File and FTP Adapter Concepts

2-6 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Provide a logical name. For example, the generated inbound WSDL file looks as
follows for the logical input directory name InputFileDir.

<operation name="Read">
 <jca:operation
 LogicalDirectory="InputFileDir"
 ActivationSpec="oracle.tip.adapter.file.inbound.FileActivationSpec"
 IncludeFiles=".*"
 PollingFrequency="5"
 MinimumAge="0"
 DeleteFile="true"
 OpaqueSchema="true" >
 </jca:operation>

In the BPEL partner link of the bpel.xml file, you then provide the physical
parameter values (in this case, the directory path) of the corresponding logical
ActivationSpec or InteractionSpec. This resolves the mapping between the
logical directory name and actual physical directory name.

<?xml version = '1.0' encoding = 'UTF-8'?>
<BPELSuitcase>
 <BPELProcess id="ComplexStructure" src="ComplexStructure.bpel">
 <partnerLinkBindings>
 <partnerLinkBinding name="InboundPL">
 <property name="wsdlLocation">ComplexStructureInbound.wsdl</property>
 </partnerLinkBinding>
 <partnerLinkBinding name="OutboundPL">
 <property name="wsdlLocation">ComplexStructureOutbound.wsdl</property>
 </partnerLinkBinding>
 </partnerLinkBindings>
 <activationAgents>
 <activationAgentclassName=
"oracle.tip.adapter.fw.agent.jca.JCAActivationAgent"partnerLink="InboundPL">
 <property name="InputFileDir">C:/ora_home/integration/bpm/samples/tutorials/
121.FileAdapter/ComplexStructure/InputDir/</property>
 <property name="portType">Read_ptt</property>
 </activationAgent>
 </activationAgents>
 /BPELProcess>
</BPELSuitcase>

Archiving Successfully Processed Files This option enables you to specify a directory in
which to place successfully processed files. You can also specify the archive directory
as a logical name. In this case, you must follow the logical-to-physical mappings
described in "Specifying Inbound Physical or Logical Directory Paths" on page 2-5.

Note: Multiple BPEL processes or multiple file adapters polling one
inbound directory are not supported. Ensure that all are polling their
own unique directory.

Note: Files greater than or equal to 7 MB cannot be delivered. As an
alternative, debatch large files (if they have multiple messages), and
publish these files in messages of sizes less than 7 MB.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-7

File Matching and Batch Processing
The File Filtering window of the Adapter Configuration Wizard shown in Figure 2–3
enables you to specify details about the files to retrieve or ignore.

The file adapter acts as a file listener in the inbound direction. The file adapter polls
the specified directory on a local or remote file system and looks for files that match a
specified naming criteria.

Figure 2–3 Adapter Configuration Wizard—File Filtering

The following sections describe the file filtering information to specify:

■ Specifying a Naming Pattern

■ Including and Excluding Files

■ Batching Multiple Inbound Messages

Specifying a Naming Pattern Specify the naming convention that the file adapter uses to
poll for inbound files. You can also specify the naming convention for files you do not
want to process. Two naming conventions are available for selection. The file adapter
matches the files that appear in the inbound directory.

■ File wildcards (po*.txt)

Retrieves all files that start with po and end with .txt. This convention conforms
to Windows operating system standards.

■ Regular expressions (po.*\.txt)

Retrieves all files that start with po and end with .txt. This convention conforms
to Java Development Kit (JDK) regular expression (regex) constructs.

File and FTP Adapter Concepts

2-8 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Including and Excluding Files If you use regular expressions, the values you specify in the
Include Files and Exclude Files fields must conform to JDK regular expression (regex)
constructs. For both fields, different regex patterns must be provided separately. The
Include Files and Exclude Files fields correspond to the IncludeFiles and
ExcludeFiles parameters, respectively, of the inbound WSDL file.

If you want the inbound file adapter to pick up all file names that start with po and
which have the extension txt, you must specify the Include Files field as po.*\.txt
when the name pattern is a regular expression. In this regex pattern example:

■ A period (.) indicates any character

■ An asterisk (*) indicates any number of occurrences

■ A backslash followed by a period (\.) indicates the character period (.), as
indicated with the backslash escape character

The Exclude Files field is constructed similarly.

If you have Include Files field and Exclude Files field expressions that have an
overlap, the exclude files expression takes precedence. For example, if Include Files is
set to abc*.txt and Exclude Files is set to abcd*.txt, you receive any files prefixed with
abcd*.

Table 2–2 lists details of Java regex constructs.

Notes:

■ If you later select a different naming pattern, ensure that you also
change the naming conventions you specify in the Include Files
and Exclude Files fields. The Adapter Configuration Wizard does
not automatically make this change for you.

■ Do not specify *.* as the convention for retrieving files.

■ Be aware of any file length restrictions imposed by your operating
system. For example, Windows operating system file names
cannot be more than 256 characters in length (the filename, plus
the complete directory path). Some operating systems also have
restrictions on the use of specific characters in file names. For
example, Windows operating systems do not allow characters like
\, /, :, *, <, >, or |.

Note: The regex pattern complies with the JDK regex pattern.
According to the JDK regex pattern, the correct connotation for a
pattern of any characters with any number of occurrences is a period
followed by a plus sign (.+). An asterisk (*) in a JDK regex is not a
placeholder for a string of any characters with any number of
occurrences.

Note: Do not begin JDK regex pattern names with the following
characters: +, ?, or *.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-9

Table 2–2 Java Regular Expression Constructs

Matches Construct

Characters -

The character x x

The backslash character \\

The character with octal value 0n (0 <= n <= 7) \0n

The character with octal value 0nn (0 <= n <= 7) \0nn

The character with octal value 0mnn (0 <= m <= 3, 0
<= n <= 7)

\0mnn

The character with hexadecimal value 0xhh \xhh

The character with hexadecimal value 0xhhhh \uhhhh

The tab character ('\u0009') \t

The newline (line feed) character ('\u000A') \n

The carriage-return character ('\u000D') \r

The form-feed character ('\u000C') \f

The alert (bell) character ('\u0007') \a

The escape character ('\u001B') \e

The control character corresponding to x \cx

- -

Character classes -

a, b, or c (simple class) [abc]

Any character except a, b, or c (negation) [^abc]

a through z or A through Z, inclusive (range) [a-zA-Z]

a through d, or m through p: [a-dm-p] (union) [a-d[m-p]]

d, e, or f (intersection) [a-z&&[def]]

a through z, except for b and c: [ad-z] (subtraction) [a-z&&[^bc]]

a through z, and not m through p: [a-lq-z](subtraction) [a-z&&[^m-p]]

- -

Predefined character classes -

Any character (may or may not match line terminators) -

A digit: [0-9] \d

A nondigit: [^0-9] \D

A whitespace character: [\t\n\x0B\f\r] \s

A nonwhitespace character: [^\s] \S

A word character: [a-zA-Z_0-9] \w

A nonword character: [^\w] \W

Greedy quantifiers -

X, once or not at all X?

X, zero or more times X*

File and FTP Adapter Concepts

2-10 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

For details about Java regex constructs, go to

http://java.sun.com/j2se/1.4.2/docs/api

Batching Multiple Inbound Messages You can select if incoming files have more than one
message, and specify the number of messages in one batch file to publish. When a file
contains multiple messages and this check box is selected, this is referred to as
debatching. Nondebatching is when the file contains only a single message and the
check box is not selected.

File Polling
The File Polling window of the Adapter Configuration Wizard shown in Figure 2–4
enables you to specify the following inbound polling parameters:

■ The frequency with which to poll the inbound directory for new files to retrieve.

■ The minimum file age of files to retrieve. For example, this enables a large file to
be completely copied into the directory before it is retrieved for processing. The
age is determined by the last modified time stamp. For example, if you know that
it takes three to four minutes for a file to be written, set the minimum age of
pollable files to five minutes. If a file is detected in the input directory and its
modification time is less than 5 minutes older than the current time, the file is not
retrieved because it is still potentially being written to.

■ Whether or not to delete files after a successful retrieval. If this check box is not
selected, processed files remain in the inbound directory, but are ignored. Only
files with modification dates more recent than the last processed file are retrieved.
If you place another file in the inbound directory with the same name as a file that
has already been processed, but the modification date remains the same, that file is
not retrieved.

X, one or more times X+

X, exactly n times X{n}

X, at least n times X{n,}

X, at least n, but not more than m times X{n,m}

Table 2–2 (Cont.) Java Regular Expression Constructs

Matches Construct

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-11

Figure 2–4 Adapter Configuration Wizard—File Polling

File Processing
The file adapter prepares the files for processing and delivers them to the adapter
translator for translation and debatching (if necessary).

If you have many inbound files to process or very large files of more than 1 MB, you
may need to increase the config timeout value in the Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\server.
xml file:

<transaction-config timeout="30000"/>

Postprocessing
The file adapter supports several postprocessing options. After processing the file, the
files can be deleted if specified in the File Polling window shown in Figure 2–4. Files
can also be moved to a completion (archive) directory if specified in the File
Directories window shown in Figure 2–2 on page 2-5.

Native Data Translation
The next Adapter Configuration Wizard window that appears is the Messages
window shown in Figure 2–5. This window enables you to select the XSD schema file
for translation.

File and FTP Adapter Concepts

2-12 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 2–5 Specifying the Schema

If native format translation is not required (for example, a JPG or GIF image is being
processed) select the Native format translation is not required check box. The file is
passed through in base-64 encoding.

XSD files are required for translation. If you want to define a new schema or convert
an existing data type description (DTD) or COBOL Copybook, select Define Schema
for Native Format. This starts the Native Format Builder Wizard. This wizard guides
you through the creation of a native schema file from file formats such as
comma-separated value (CSV), fixed-length, DTD, and COBOL Copybook. After the
native schema file is created, you are returned to this Messages window with the
Schema File URL and Schema Element fields filled in. See "Creating Native Schema
Files with the Native Format Builder Wizard" on page 6-1 for more information.

Error Handling
The file adapter provides several inbound error handling capabilities:

■ rejectedMessageHandlers Property

■ fatalErrorFailoverProcess Property

■ uniqueMessageSeparator Property

■ Default Error Directory

rejectedMessageHandlers Property You can configure your BPEL process to process the
correct records of a file and write only the rejected records to an archive directory by
setting the rejectedMessageHandlers property. For example, assume that you
have a file with four records. If three records are processed successfully and one record
is not, the file is processed with the three correct records. The record that errored is
written to a rejected messages directory. The behavior of the
rejectedMessageHandlers property in case a file has only one message is to reject
the entire message.

Note: Ensure that the schema you specify includes a namespace. If
your schema does not have a namespace, an error message appears.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-13

You first define the rejectedMessageHandlers property as an activationAgent
property in the bpel.xml file so that it applies to inbound WSDL operations only:

<BPELSuitcase>
 <BPELProcess src="ErrorTest.bpel" id="ErrorTest">
 <activationAgents>
 <activationAgent
 className="oracle.tip.adapter.fw.agent.jca.JCAActivationAgent"
 partnerLink="inboundPL">
 <property name="rejectedMessageHandlers">
 file://C:/orabpel/samples/test/errorTest/rejectedMessages
 </property>

This causes messages that error to be written to the configured directory using the
following naming pattern:

INVALID_MSG_ + process-name + operation-name + current-time

fatalErrorFailoverProcess Property If the file adapter (or any OracleAS Adapter)
encounters an unrecoverable system error (such as no more memory or a full disk), it
can instruct the adapter framework to shut down the BPEL process.

You can optionally configure a standby (or failover) BPEL process to be invoked when
the adapter initiates the shutdown request of the (main) BPEL process.

You configure this failover BPEL process by setting the
fatalErrorFailoverProcess property as an activationAgent property in the
bpel.xml file.

<property name="fatalErrorFailoverProcess">
bpel://bpel-domain:password|process-name|operation-name|
input-message-part-name
</property>

where password (which can be omitted if it is bpel) can be encrypted.

For example:

<property name="fatalErrorFailoverProcess">

 bpel://default|JCA-FatalErrorHandler|handleError|message
</property>

or

<property name="fatalErrorFailoverProcess">

bpel://default:C23487CFA591952D3ED0B81F0961F65A|JCA-FatalErrorHandler|handleError|
message</property>

where the bpel password was specified in encrypted form (using the encrypt.bat
(for Windows) or encrypt.sh (for UNIX) command line utility).

The fatal error BPEL process must use a specific input (WSDL) message type. This
message type is defined in the system-provided WSDL file
FatalErrorMessageWSDL.wsdl. This WSDL can be referenced (imported) using
the following:

<import namespace="http://xmlns.oracle.com/pcbpel/fatalErrorHandler"
location="http://localhost:9700/orabpel/xmllib/jca/FatalErrorMessage.wsdl"/>

The XML schema type for this message is as follows:

File and FTP Adapter Concepts

2-14 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

<complexType name="FatalErrorMessageType">
 <sequence>
 <element name="Reason" type="string"/>
 <element name="Exception" type="string"/>
 <element name="StackTrace" type="string"/>
 </sequence>
</complexType>

The purpose of the failover BPEL process can be to undertake error compensating
actions, alert someone through e-mail or short message service (SMS), or restart some
other process.

uniqueMessageSeparator Property In the case of debatching (multiple messages in a
single file), the typical behavior is to reject the messages from the first bad message to
the end of the file. If each message has a unique separator and that separator is not
part of any data, then rejection can be more fine-grained. In these cases, you can define
a uniqueMessageSeparator in the schema element of the native schema to have
the value of this unique message separator. This property controls how the adapter
translator works when parsing through multiple records in one file (debatching). This
property enables recovery even when detecting bad messages inside a large batch file;
when a bad record is detected, the adapter translator skips to the next unique message
separator boundary and continues from there. If you do not set this property, all
records that follow the record that errored are also rejected.

The following schema file provides an example of using uniqueMessageSeparator.

<?xml version="1.0" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://TargetNamespace.com/Reader"
 xmlns:tns="http://TargetNamespace.com/Reader"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:encoding="US-ASCII" nxsd:stream="chars"
 nxsd:version="NXSD" nxsd:uniqueMessageSeparator="${eol}">
 <xsd:element name="emp-listing">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="emp" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="GUID" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Designation" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
 nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Car" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Labtop" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
 nxsd:quotedBy=""">
 </xsd:element>
 <xsd:element name="Location" type="xsd:string"
 nxsd:style="terminated" nxsd:terminatedBy=","
 nxsd:quotedBy=""">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-15

 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
<!--NXSDWIZ:D:\work\jDevProjects\Temp_BPEL_process\Sample2\note.txt:-->
<!--USE-HEADER:false:-->

Default Error Directory If you do not set the rejectedMessageHandlers property,
records that error during translation are placed by default in

Oracle_Home\integration\orabpel\domains\domain_name\archive\jca\default_directory

Guaranteed Delivery and Recovery from Server Failures
The file adapter guarantees once-only delivery of inbound files. This includes
guaranteed delivery of large files through FTP. If your system goes down, the read
functionality of the file adapter upon restart avoids creating duplicate messages.

If your system server crashes while inbound messages are being processed, you must
manually perform recovery when the server restarts to ensure that all message records
are recovered. For example, a file has ten messages and the server crashes after three
messages have been processed. This causes the fourth message to go undelivered.
When the server restarts and begins processing with message five (the offset of the last
successfully rejected message), you must manually recover message four to ensure
that all messages are preserved.

Perform the following procedures to recover the rejected message record.

1. Log in to Oracle BPEL Console.

2. Select the BPEL Processes tab.

3. Click Perform Manual Recovery under the Related Tasks section.

4. Click Recover.

Inbound Service Name WSDL File
When you finish configuring the file adapter, a WSDL file is generated for the inbound
direction. The file is named after the service name you specified on the Service Name
window of the Adapter Configuration Wizard shown in Figure 1–4 on page 1-3. You
can rerun the wizard at any time to change your operation definitions.

The ActivationSpec parameter holds the inbound configuration information. The
ActivationSpec and a set of inbound file adapter properties are part of the inbound
WSDL file.

The inbound WSDL contains the following information:

<pc:inbound_binding />
 <operation name="Read">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.file.inbound.FileActivationSpec"
 PhysicalDirectory="C:/ora_
home/integration/bpm/samples/tutorials/121.FileAdapter/ComplexStructure/inputDir/"
 PhysicalArchiveDirectory="C:/ora_
home/integration/bpm/samples/tutorials/121.FileAdapter/ComplexStructure/archiveDir
/"
 IncludeFiles=".+\.txt"
 PollingFrequency="5"
 MinimumAge="0"
 DeleteFile="true"

File and FTP Adapter Concepts

2-16 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 OpaqueSchema="false" >
 </jca:operation>
 <input>
 <jca:header message="hdr:InboundHeader_msg" part="inboundHeader"/>
 </input>
 </operation>
</binding>

The ActivationSpec parameters are specified in the Adapter Configuration Wizard
during design time and appear in the binding element of the inbound WSDL. The
inbound file adapter uses the following configuration parameters:

■ PollingFrequency

This parameter specifies how often to poll a given input directory for new files.
The parameter is of type int and is mandatory. The default value is 1 minute.

■ PhysicalDirectory

This parameter specifies the physical input directory to be polled. The parameter
is of type String. The inbound directory where the files appear is mandatory.
You must specify the physical directory or logical directory.

■ LogicalDirectory

This parameter specifies the logical input directory to be polled. The parameter is
of type String.

■ PublishSize

This parameter indicates if the file contains multiple messages, and how many
messages to publish to the BPEL process at a time. The parameter is of type int
and is not mandatory. The default value is 1.

■ PhysicalArchiveDirectory

This parameter specifies where to archive successfully processed files. The
parameter is of type String and is not mandatory.

■ LogicalArchiveDirectory

This parameter specifies the logical directory in which to archive successfully
processed files. The parameter is of type String and is not mandatory.

■ IncludeFiles

This parameter specifies the pattern for types of files to pick up during polling.
The parameter is of type String and is not mandatory.

■ ExcludeFiles

This parameter specifies the pattern for types of files to be excluded during
polling. The parameter is of type String and is not mandatory.

Inbound Header WSDL File
The WSDL file shown in "Inbound Service Name WSDL File" on page 2-15 includes
two attributes that indicate which message and part define the operation headers:

<jca:header message="hdr:InboundHeader_msg" part="inboundHeader"/>

The fileAdapterInboundHeader.wsdl file defines these attributes. This file also
provides information such as the name of the file being processed and its directory
path. This file is created along with the service name WSDL file, and displays in the
Applications Navigator of JDeveloper BPEL Designer.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-17

<definitions
 name="fileAdapter"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:FILEAPP="http://xmlns.oracle.com/pcbpel/adapter/file/">
 <element name="InboundFileHeaderType">
 <complexType>
 <sequence>
 <element name="fileName" type="string"/>
 <element name="directory" type="string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>

 <!-- Header Message -->
 <message name="InboundHeader_msg">
 <part element="tns:InboundFileHeaderType" name="inboundHeader"/>
 </message>
</definitions>

See the online Help that is included with the Adapter tab in JDeveloper BPEL
Designer for more information.

Synchronous File Reading Capabilities
The file adapter can synchronously read a file using an invoke activity. If the specified
file does not exist, the read invoke activity returns nothing. You must manually edit
the WSDL file to enable this functionality.

1. Create a WSDL file for the write file operation using the Adapter Configuration
Wizard.

2. Select the schema of the file to be read in the Adapter Configuration Wizard
Messages window.

3. Change the value of the parameters in the <jca:operation> element section
of the created WSDL file to:

InteractionSpec = oracle.tip.adapter.file.outbound.FileReadInteractionSpec
PhysicalDirectory=Directory_from_which_to_read
FileName=file_name_to_read
DeleteFile=true | false

where either true or false is selected for the DeleteFile parameter. Do not
use a regular expression for the FileName parameter value. For synchronous
reads, the file name must be known.

4. Review the operation section of the WSDL file, which includes information
similar to the following:

<operation name="Write">
<input message="..."/>
</operation>

File and FTP Adapter Concepts

2-18 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

5. Rename the input message to output message. The adapter uses this to
return the translated file contents. This now points to the native format definition
you created with the Adapter Configuration Wizard.

6. Create an empty_msg message type:

<element name="empty"><complexType/></element>

7. Add an input message to the <operation> pointing to an empty element as
defined in step 6.

8. Modify the <invoke> activity in the BPEL file with appropriate inputVariable
(pointing to the empty_msg type) and outputVariable attributes.

A sample WSDL section looks as follows. Note that the dots below (...) represent
areas you must complete with information appropriate to your environment.

<types>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="...">
<import..../>
<element name="empty"><complexType/></element>
</schema>
</types>

<message name="Address-List_msg"> /* The output message */
<part name="..." element="...:.."/>
</message>

<message name="Empty_msg">
<part name="Empty" element="...:empty"/>
</message>

<portType name="SynchronousRead_ptt">
<operation name="SynchronousRead">
<input message="tns:Empty_msg"/>
<output message="tns:Address-List_msg"/>
</operation>
</portType>

<binding name="SynchronousRead_binding" type="tns:SynchronousRead_ptt">
<jca:binding />
<operation name="SynchronousRead">
<jca:operation
PhysicalDirectory="D:\work\jDevProjects"
InteractionSpec="oracle.tip.adapter.file.outbound.FileReadInteractionSpec"
FileName="address_csv.txt"
DeleteFile="true"
OpaqueSchema="false" >
</jca:operation>

File Adapter Write File Concepts
In the outbound direction, the file adapter receives messages from the BPEL process
and writes the messages to a file in a file system. This section provides an overview of
the outbound file writing capabilities of the file adapter. You use the Adapter
Configuration Wizard to configure the file adapter for use with your BPEL process.
This creates an outbound WSDL file named after the service name you specify with
the Adapter Configuration Wizard. An outbound header file named
fileAdapterOutboundheader.wsdl is also created.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-19

This section contains the following topics:

■ Outbound Operation

■ Outbound File Directory Creation

■ Native Data Translation

■ Error Handling

■ Outbound Service Name WSDL File

■ Outbound Header WSDL File

Outbound Operation
For outbound operations with the file adapter, you select to perform an outbound
Write File operation. Figure 2–6 shows this selection.

Figure 2–6 Selecting the Write File Operation

Outbound File Directory Creation
For the outbound operation, you can specify the outbound directory, outbound file
naming convention to use and, if necessary, the batch file conventions to use.

The File Configuration window of the Adapter Configuration Wizard shown in
Figure 2–7 enables you to specify the directory for outgoing files and the outbound file
naming convention.

File and FTP Adapter Concepts

2-20 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 2–7 Adapter Configuration Wizard—Parameters for Outgoing Files

The following sections describe the file configuration information to specify:

■ Specifying Outbound Physical or Logic Directory Paths

■ Specifying the Outbound File Naming Convention

■ Specifying a Dynamic Outbound File Name

■ Batching Multiple Outbound Messages

Specifying Outbound Physical or Logic Directory Paths You can specify outbound directory
names as physical or logical paths. Physical paths are values such as c:\outputDir.

If you specify logical parameters, the generated WSDL file looks as follows for the
logical outbound directory name OutputFileDir.

<jca:binding />
 <operation name="Write">
 <jca:operation
 InteractionSpec="oracle.tip.adapter.file.outbound.FileInteractionSpec"
 LogicalDirectory="OutputFileDir"
 FileNamingConvention="po_%SEQ%.xml">
 </jca:operation>

In the BPEL partner link in the bpel.xml file, you then specify an outbound
partner link binding property through the Property tab of the partner link. This
resolves the mapping between the logical directory name and the actual physical
directory name.

<?xml version = '1.0' encoding = 'UTF-8'?>
<BPELSuitcase>
 <BPELProcess id="ComplexStructure" src="ComplexStructure.bpel">
 <partnerLinkBindings>
 <partnerLinkBinding name="InboundPL">
 <property name="wsdlLocation">ComplexStructureInbound.wsdl</property>
 </partnerLinkBinding>
 <partnerLinkBinding name="OutboundPL">
 <property name="wsdlLocation">ComplexStructureOutbound.wsdl</property>
 <property name="OutputFileDir">C:/ora_
home/integration/bpm/samples/tutorials/

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-21

121.FileAdapter/ComplexStructure/outputDir/</property>
 </partnerLinkBinding>
</partnerLinkBindings>
 <activationAgents>
 <activationAgentclassName=
"oracle.tip.adapter.fw.agent.jca.JCAActivationAgent"partnerLink="InboundPL">
 <property name="portType">Read_ptt</property>
 </activationAgent>
 </activationAgents>
 </BPELProcess>
</BPELSuitcase>

Specifying the Outbound File Naming Convention Specify the naming convention to use for
outgoing files. You cannot enter completely static names such as po.txt. This is to
ensure the uniqueness of outgoing files names, which prevents files from being
inadvertently overwritten. Instead, outgoing file names must be a combination of
static and dynamic portions.

The prefix and suffix portions of the file example shown in Figure 2–7 are static (for
example, po_ and .xml). The %SEQ% variable of the name is dynamic and can be a
sequence number or a time stamp (for example, po_%yyMMddHHmmss%.xml to create
a file with a time stamp).

The sequence number is written to a file if the system goes down. If you choose a
name starting with po_, followed by a sequence number and the extension txt as the
naming convention of the outgoing files, then you must specify po_%SEQ%.txt.

If you choose a name starting with po_, followed by a time stamp with pattern
yyyy.MM.dd and the extension txt as the naming convention of the outgoing file,
then you must specify po_%yyyy.MM.dd%.txt. For example, the outgoing file name
can be po_2004.11.29.txt.

You cannot use a regular expression for outbound synchronous reads. In these cases,
the exact file name must be known.

A time stamp is specified by date and time pattern strings. Within date and time
pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are interpreted
as pattern letters representing the components of a date or time string. Text can be
quoted using single quotes (') to avoid interpretation. The characters "''" represent a
single quote. All other characters are not interpreted.

The Java pattern letters are defined in Table 2–3.

Note: Ensure that you limit the length of outbound file names (the
file name, plus the complete directory path) to 200 characters. This is
not an exact limit, but rather a recommendation. When an outbound
file name is long (for example, 215 characters), a blank file with that
name is created in the outbound directory.

Table 2–3 Java Pattern Letters

Letter
Date or Time
Component Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

File and FTP Adapter Concepts

2-22 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Different presentations in the pattern are as follows:

■ Text

For formatting, if the number of pattern letters is four or more, the full form is
used; otherwise, a short or abbreviated form is used if available. For parsing, both
forms are accepted, independent of the number of pattern letters.

■ Number

For formatting, the number of pattern letters is the minimum number of digits,
and shorter numbers are zero-padded to this amount. For parsing, the number of
pattern letters is ignored unless it is needed to separate two adjacent fields.

■ Year

For formatting, if the number of pattern letters is two, the year is truncated to two
digits; otherwise, it is interpreted as a number.

For parsing, if the number of pattern letters is more than two, the year is interpreted
literally, regardless of the number of digits. Using the pattern MM/dd/yyyy,
01/11/12 parses to Jan 11, 12 A.D.

For parsing with the abbreviated year pattern (y or yy), the abbreviated year is
interpreted relative to some century. The date is adjusted to be within 80 years before
and 20 years after the time instance is created. For example, using a pattern of
MM/dd/yy and Jan 1, 1997 is created; the string 01/11/12 is interpreted as Jan
11, 2012, while the string 05/04/64 is interpreted as May 4, 1964. During
parsing, only strings consisting of exactly two digits are parsed into the default
century. Any other numeric string, such as a one-digit string, a three-or-more-digit

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a AM/PM marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in AM/PM
(0-11)

Number 0

h Hour in AM/PM
(1-12)

Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General Time Zone Pacific Standard
Time; PST;
GMT-08:00

Z Time zone RFC 822 Time Zone -0800

Table 2–3 (Cont.) Java Pattern Letters

Letter
Date or Time
Component Presentation Examples

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-23

string, or a two-digit string that is not all digits (for example, -1), is interpreted
literally. So 01/02/3 or 01/02/003 is parsed, using the same pattern, as Jan 2, 3
AD. Likewise, 01/02/-3 is parsed as Jan 2, 4 BC.

■ Month

If the number of pattern letters is 3 or more, the month is interpreted as text;
otherwise, it is interpreted as a number.

■ General time zone

Time zones are interpreted as text if they have names. For time zones representing
a GMT offset value, the following syntax is used:

GMTOffsetTimeZone:
 GMT Sign Hours : Minutes
 Sign: one of
 + -
 Hours:
 Digit
 Digit Digit
 Minutes:
 Digit Digit
 Digit: one of
 0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and Minutes must be between 00 and 59. The
format is locale-independent and digits must be taken from the Basic Latin block of the
Unicode standard.

For parsing, RFC 822 time zones are also accepted.

For formatting, the RFC 822 4-digit time zone format is used:

RFC822TimeZone:
 Sign TwoDigitHours Minutes
 TwoDigitHours:
 Digit Digit

TwoDigitHours must be between 00 and 23. Other definitions are the same as for
general time zones.

For parsing, general time zones are also accepted.

Specifying a Dynamic Outbound File Name You can also use variables to specify dynamic
outbound file names through use of the OutboundHeader_msg message name in the
fileAdapterOutboundHeader.wsdl.

<definitions
 name="fileAdapter"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:FILEAPP="http://xmlns.oracle.com/pcbpel/adapter/file/">
 <element name="OutboundFileHeaderType">
 <complexType>
 <sequence>
 <element name="fileName" type="string"/>
 </sequence>

File and FTP Adapter Concepts

2-24 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 </complexType>
 </element>
 </schema>
 </types>
 <!-- Header Message -->
 <message name="OutboundHeader_msg">
 <part element="tns:OutboundFileHeaderType" name="outboundHeader"/>
 </message>
</definitions>

Create a variable of message type OutboundHeader_msg, assign it a value, and use it
in the Adapter tab of an invoke activity. For example:

 <variables>
 <variable name="fileHeader" messageType="file:OutboundHeader_msg"/>
 [..]

 <assign>
 <copy>
 <from>*testfile.txt*</from>
 <to variable="fileHeader" part="outboundHeader"
 query="/file:OutboundFileHeaderType/file:fileName"/>
 </copy>
 </assign>

 <invoke name="FileSend" partnerLink="outboundPL"
 portType="out:FileWrite_PortType" operation="Write"
 inputVariable="payload"
 bpelx:inputHeaderVariable="fileHeader"/>

See the online Help that is included with the Adapter tab in JDeveloper BPEL
Designer for more information.

Batching Multiple Outbound Messages In the simplest scenario, you specify writing a
single file to a single message. You can also specify the outbound method for batch file
writing. This enables you to specify the number of messages in one batch file to
publish. The following batch file settings are provided in the File Configuration
window shown in Figure 2–7 on page 2-20:

■ Number of messages equals

Specify a value that, when equaled, causes a new outgoing file to be created.

■ Elapsed time exceeds

Specify a time that, when equaled, causes a new outgoing file to be created.

■ File size exceeds

Specify a file size that, when equaled, causes a new outgoing file to be created. For
example, assume you specify a value of three for the number of messages received
and a value of 1 MB for the file size. When you receive two messages that when
combined equal or exceed 1 MB, or three messages that are less than 1 MB, an
output file is created.

If the file adapter goes down during batching, it starts batching at the point at which it
left off upon recovery.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-25

Native Data Translation
The next Adapter Configuration Wizard window that appears is the Messages
window shown in Figure 2–8. This window enables you to select the XSD schema file
for translation.

Figure 2–8 Specifying the Schema

As with specifying the schema for the inbound direction, you can perform the
following tasks in this window:

■ Specify if native format translation is not required

■ Select the XSD schema file for translation

■ Start the Native Format Builder Wizard to create an XSD file from file formats such
as CSV, fixed-length, DTD, and COBOL Copybook

See "Native Data Translation" on page 2-11 for more information about the Messages
window.

Error Handling
As with inbound files, the file adapter guarantees once-only delivery of outbound
files. This includes guaranteed delivery of large files through FTP. If your system goes
down, the write functionality of the file adapter upon restart has the knowledge to
proceed from where it left off in the previous run, thereby avoiding duplicate
messages. If the target host is unavailable, the file adapter supports retrying to send
documents. For example, if the directory to which it is trying to write is read only, the
file adapter tries to write again. You must configure two partner link retry properties
from the Property tab of the partner link (updates the bpel.xml file):

<partnerLinkBinding name="WriteFile">
 <property name="wsdlLocation">WriteFile.wsdl</property>
 <property name="retryMaxCount">10</property>
 <property name="retryInterval">60</property>

The write operation eventually succeeds (if the problem is resolved in a timely
fashion). If the problem is not resolved within the retry period, a binding fault is sent
back to the BPEL process.

File and FTP Adapter Concepts

2-26 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Outbound Service Name WSDL File
When you complete configuration of the file adapter with the Adapter Configuration
Wizard, a WSDL file is generated for the outbound direction. The file is named after
the service name you specified on the Service Name window of the Adapter
Configuration Wizard shown in Figure 1–4 on page 1-3. You can rerun the wizard at
any time to change your operation definitions.

The InteractionSpec parameters in the WSDL file contain the outbound
configuration information that you specified with the Adapter Configuration Wizard
during design time. The InteractionSpec parameters and a set of outbound file
adapter properties are part of the outbound WSDL file. The outbound WSDL includes
the following information:

<jca:binding />
 <operation name="Write">
 <jca:operation
 InteractionSpec="oracle.tip.adapter.file.outbound.FileInteractionSpec"
 PhysicalDirectory="C:/ora_
home/integration/bpm/samples/tutorials/121.FileAdapter/ComplexStructure/outputDir/
"
 FileNamingConvention="po_%SEQ%.xml"
 NumberMessages="1"
 ElapsedTime="60"
 FileSize="1000000"
 OpaqueSchema="false" >
 </jca:operation>
 <input>
 <jca:header message="hdr:OutboundHeader_msg" part="outboundHeader"/>
 </input>
 </operation>
</binding>

The outbound file adapter uses the following configuration parameters:

■ PhysicalDirectory

This parameter specifies the physical directory in which to write output files. The
parameter is of type String. The outbound directory where the outgoing files are
written is mandatory. You must specify the physical directory or logical directory.

■ LogicalDirectory

This parameter specifies the logical directory in which to write output files. The
parameter is of type String.

■ NumberMessages

This parameter is used for outbound batching. The outgoing file is created when
the number of messages condition is met. The parameter is of type String and is
not mandatory. The default value is 1.

■ ElapsedTime

This parameter is used for outbound batching. When the time specified elapses,
the outgoing file is created. The parameter is of type String and is not
mandatory. The default value is 1 minute.

■ FileSize

This parameter is used for outbound batching. The outgoing file is created when
the file size condition is met. The parameter is of type String and is not
mandatory. The default value is 1000 kb.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-27

■ FileNamingConvention

This parameter is for the naming convention for the outbound write operation
file. The parameter is of type String and is mandatory.

Outbound Header WSDL File
The WSDL file shown in "Outbound Service Name WSDL File" on page 2-26 includes
two attributes that indicate which message and part define the operation headers:

<jca:header message="hdr:OutboundHeader_msg" part="outboundHeader"/>

The fileAdapterOutboundHeader.wsdl file defines these attributes, as well as
information about the outbound file name. This file is created along with the service
name WSDL file, and displays in the Applications Navigator of JDeveloper BPEL
Designer.

<definitions
 name="fileAdapter"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:FILEAPP="http://xmlns.oracle.com/pcbpel/adapter/file/">
 <element name="OutboundFileHeaderType">
 <complexType>
 <sequence>
 <element name="fileName" type="string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>

 <!-- Header Message -->
 <message name="OutboundHeader_msg">
 <part element="tns:OutboundFileHeaderType" name="outboundHeader"/>
 </message>
</definitions>

FTP Adapter for Get File Concepts
In the inbound direction, the FTP adapter works the same as the Read File operations
of the file adapter in that it polls and gets files from a file system for processing. The
major difference is that the FTP adapter is used for remote file exchanges. Because of
this, the Adapter Configuration Wizard asks for connection information to an FTP
server to be used later, as shown in Figure 2–9.

File and FTP Adapter Concepts

2-28 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 2–9 Specifying FTP Server Connection Information

To create the FTP server connection that you specify in Figure 2–9, you must edit the
Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\applica
tion-deployments\default\FtpAdapter\oc4j-ra.xml deployment
descriptor file for adapter instance JNDI name and FTP server connection information.
A sample of oc4j-ra.xml is as follows:

<?xml version="1.0"?>
<!DOCTYPE oc4j-connector-factories PUBLIC "-//Oracle//DTD Oracle Connector
 9.04//EN" "http://xmlns.oracle.com/ias/dtds/oc4j-connector-factories-9_04.dtd">

<oc4j-connector-factories>
 <connector-factory location="eis/Ftp/FtpAdapter" connector-name="FTP Adapter">
 <config-property name="host" value="stada55.us.oracle.com"/>
 <config-property name="port" value="21"/>
 <config-property name="username" value="anonymous"/>
 <config-property name="password" value="password"/>
 </connector-factory>
</oc4j-connector-factories>

The adapter instance JNDI name is specified as eis/Ftp/FtpAdapter and
connection information such as host, port, username, and password are provided as
configuration properties.

Notes:

■ The directory path to the oc4j-ra.xml file shown above is for
the BPEL Process Manager for Developers installation type. If you
selected the BPEL Process Manager for OracleAS Middle Tier
installation type, this file is located in:

Oracle_Home\j2ee\OC4J_BPEL\application-deployments\default\
FtpAdapter

■ The FTP adapter does not support the FTP commands RESTART
and RECOVERY during the transfer of large files.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-29

After logging in, you select the Get File (read) operation and the type of file to deliver.
Figure 2–10 shows this selection.

Figure 2–10 Selecting the Get File Operation

For inbound and outbound binary file transfers, the Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\connect
ors\FtpAdapter\FtpAdapter\META-INF\ra.xml file includes a
serverLineSeparator property. This property is automatically used to determine
line separators when you transfer data in binary mode only.

<config-property-name>serverLineSeparator</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>\n</config-property-value>

This property is not used when transferring data in ASCII mode. This is because in
ASCII mode, the line separators are determined by the operating system on which the
FTP server is running.

From this point onward, the windows of the Adapter Configuration Wizard window
for the Get File operation are the same as those for the Read File operation of the FTP
adapter. Table 2–4 lists the windows that display and provides references to sections
that describe their functionality.

An additional Adapter Configuration Wizard window is also available for advanced
users. This window is shown in Figure 2–11 and only appears after you make either or
both of the following selections on the File Polling window shown in Figure 2–4 on
page 2-11:

■ Do not select the Delete files after successful retrieval check box.

■ Set the value of the Minimum File Age field to a value greater than 0.

Table 2–4 Adapter Configuration Wizard Windows for Get File Operation

Window See Section...

File Directories (Figure 2–2) "Inbound File Directory Specifications" on page 2-5

File Filtering (Figure 2–3) "File Matching and Batch Processing" on page 2-7

File Polling (Figure 2–4) "File Polling" on page 2-10

Messages (Figure 2–5) "Native Data Translation" on page 2-11

File and FTP Adapter Concepts

2-30 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 2–11 File Modification Time

This window enables you to specify one of the following methods for obtaining the
modification time of files on the remote FTP server:

■ File System

This option enables you to obtain the date/time format of the file modification
time with the file system listing command. However, this option is rarely used and
not supported by all FTP servers. See your FTP server documentation to determine
whether your server supports the file system listing command, which command
line syntax to use, and how to interpret the output.

For example, if the file system listing command quote mdtm filename is
supported and returns the following information:

213 20050602102633

specify the start index, end index, and date/time format of the file modification
time in the Data/Time Format field as a single value separated by commas (for
example, 4,18,yyyyMMddHHmmss).

Where:

– 4 is the start index of the file modification time.

– 18 is the end index of the file modification time.

– yyyyMMddHHmmss is the data/time format of the file modification time
obtained with the quote mdtm filename command.

The resulting service_name.wsdl file includes the following parameters and
values:

FileModificationTime="FileSystem"
ModificationTimeFormat="4,18,yyyyMMddHHmmss"

To handle the time zone issue, you must also be aware of the time stamp
difference. The time zone of the FTP server is determined by using the Windows
date/time properties (for example, by double-clicking the time showing in the
Windows task bar). You must then convert the time difference between the FTP
server and the system on which the FTP adapter is running to milliseconds and
add the value as a property in the bpel.xml file:

<activationAgents>

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-31

 <activationAgent ...>
 <property name="timestampOffset">2592000000</property>

■ Directory Listing

This option enables you to obtain the date/time format from the file modification
time with the FTP directory listing command. For example, if the directory listing
command (ls -l) returns the following information:

12-27-04 07:44AM 2829 NativeData2.txt

specify the start index, end index, and date/time format of the file modification
time as a single value separated by commas in either the Old File Date/Time
Format field or the Recent File Date/Time Format field (for example, 0,17,
MM-dd-yy hh:mma).

Where:

– 0 is the start index of the file modification time.

– 17 is the end index of the file modification time.

– MM-dd-yy hh:mma is the data/time format of the file modification time
obtained with the ls -l command. For this example, the value is entered in
the Recent File Date/Time Format field. This field indicates that the format is
obtained from the most recent file adhering to the naming convention,
whereas the Old File Date/Time Format field obtains the format from the
oldest file.

The resulting service_name.wsdl file includes the following parameters and
values:

FileModificationTime="DirListing"
ModificationTimeFormat="0,17, MM-dd-yy hh:mma"

To handle the time zone issue, you must also be aware of the time stamp
difference. The time zone of the FTP server is determined by using the Windows
date/time properties (for example, by double-clicking the time showing in the
Windows task bar). You must then convert the time difference between the FTP
server and the system on which the FTP adapter is running to milliseconds and
add the value as a property in the bpel.xml file:

<activationAgents>
 <activationAgent ...>
 <property name="timestampOffset">2592000000</property>

■ File Name Substring

This option enables you to obtain the modification time from the file name. For
example, if the name of the file is fixedLength_20050324.txt, you can specify
the following values:

– The start index in the Substring Begin Index field (for example, 12).

– The end index in the End Index field (for example, 20).

– The date and time format in the Date/Time Format field conforming to the
Java SimpleDateFormat to indicate the file modification time in the file
name (for example, yyyyMMdd).

The resulting service_name.wsdl file includes the following parameters and
values:

FileModificationTime="Filename"

File and FTP Adapter Concepts

2-32 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

FileNameSubstringBegin="12"
FileNameSubstringEnd="20"
ModificationTimeFormat="yyyyMMdd"

When the Adapter Configuration Wizard completes, configuration files are created in
the Applications Navigator section of JDeveloper BPEL Designer.

The inbound service WSDL file name that is created is also similar to that of the file
adapter. The main differences include the operation type and the file type.

<pc:inbound_binding />
 <operation name="Get">
<jca:operation
 FileType="binary"

The inbound header WSDL file named ftpAdapterInboundHeader.wsdl looks as
follows:

<definitions
 name="fileAdapter"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/ftp/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/ftp/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/ftp/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:FTPAPP="http://xmlns.oracle.com/pcbpel/adapter/ftp/">
 <element name="InboundFTPHeaderType">
 <complexType>
 <sequence>
 <element name="fileName" type="string"/>
 <element name="ftpHost" type="string"/>
 <element name="ftpPort" type="string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>

 <!-- Header Message -->
 <message name="InboundHeader_msg">
 <part element="tns:InboundFTPHeaderType" name="inboundHeader"/>
 </message>
</definitions>

See "Error Handling" on page 2-12 and "Guaranteed Delivery and Recovery from
Server Failures" on page 2-15 for more information about error handling and
guaranteed delivery capabilities.

FTP Adapter for Put File Concepts
In the outbound direction, the FTP adapter works the same as the Write File operations
of the file adapter in that it receives messages from the BPEL process and writes the
messages in a file to a file system (in this case, remote). Because of this, the Adapter
Configuration Wizard prompts you to connect to the FTP server with the adapter
instance JNDI name, as shown in Figure 2–9 on page 2-28.

After logging in, you select the Put File (write) operation and the type of file to deliver.
Figure 2–12 shows this selection.

File and FTP Adapter Concepts

Oracle Application Server Adapter for Files/FTP 2-33

Figure 2–12 Selecting the Put File Operation

From this point onward, the windows of the Adapter Configuration Wizard window
for the Put File operation are the same as those for the Write File operation of the file
adapter. Table 2–5 lists the windows that display and provides references to sections
that describe their functionality.

When the Adapter Configuration Wizard completes, configuration files are created in
the Applications Navigator section of JDeveloper BPEL Designer.

The outbound service WSDL file name that is created is also similar to that of the file
adapter. The main differences include the operation type and the file type.

<pc:inbound_binding />
 <operation name="Put">
<jca:operation
 FileType="binary"

The outbound header WSDL file named ftpAdapterOutboundHeader.wsdl looks
as follows:

<definitions
 name="fileAdapter"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/ftp/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/ftp/"
 xmlns="http://schemas.xmlsoap.org/wsdl/" >
 <types>
 <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/ftp/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:FTPAPP="http://xmlns.oracle.com/pcbpel/adapter/ftp/">
 <element name="OutboundFTPHeaderType">
 <complexType>
 <sequence>
 <element name="fileName" type="string"/>

Table 2–5 Adapter Configuration Wizard Windows for Put File Operation

Window See Section...

File Configuration (Figure 2–7) "Outbound File Directory Creation" on page 2-19

Messages (Figure 2–8) "Native Data Translation" on page 2-25

Using Secure FTP with the FTP Adapter

2-34 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 </sequence>
 </complexType>
 </element>
 </schema>
 </types>

 <!-- Header Message -->
 <message name="OutboundHeader_msg">
 <part element="tns:OutboundFTPHeaderType" name="outboundHeader"/>
 </message>
</definitions>

See "Error Handling" on page 2-25 for more information about error handling
capabilities.

Using Secure FTP with the FTP Adapter
The FTP adapter supports the use of the secure FTP feature on Solaris. This section
provides an overview of secure FTP functionality and describes how to install and
configure this feature.

This section contains the following tasks:

■ Secure FTP Overview

■ Installing and Configuring OpenSSL

■ Installing and Configuring vsftpd

■ Creating an Oracle Wallet

■ Setting Up the FTP Adapter

Secure FTP Overview
In environments in which sensitive data is transferred to remote servers (for example,
sending credit card information to HTTP servers), the issue of security is very
important. Security in these cases primarily refers to two requirements:

■ Trust in the remote server with which you are exchanging data

■ Protection from third parties trying to intercept the data

Secure socket layer (SSL) certificates and encryption focus on satisfying these two
security requirements. When SSL is used in the context of FTP, the resulting security
mechanism is known as FTPS (or FTP over SSL).

To gain the trust of clients in SSL environments, servers obtain certificates (typically,
X.509 certificates) from recognized certificate authorities. When you set up the FTP
server vsftpd in "Installing and Configuring vsftpd" on page 2-36, you use openSSL to
create a certificate for the server. Every client trusts a few parties to begin. If the server
is one of these trusted parties, or if the server’s certificate was issued by one of these
parties, you have established trust, even indirectly. For example, if the server’s
certificate was issued by authority A, which has a certificate issued by authority B, and
the client trusts B, that is good enough. For the setup shown in Figure 2–3, the server’s
certificate is directly imported into the client’s certificate store (or Oracle Wallet) as a
trusted certificate.

Note: The FTP adapter supports the secure FTP feature on Solaris
only.

Using Secure FTP with the FTP Adapter

Oracle Application Server Adapter for Files/FTP 2-35

Figure 2–13 Establishing Trust

You make the data being transferred immune to spying by encrypting it before
sending it and decrypting it after receiving it. Symmetric encryption (using the same
key to encrypt and decrypt data) is much faster for large amounts of data than the
public key and private key approach. Symmetric encryption is the approach used by
FTPS. However, before the client and server can use the same key to encrypt and
decrypt data, they must agree on a common key. This is typically done by the client
performing the following tasks:

■ Generating a session key (to be used to encrypt and decrypt data)

■ Encrypting this session key using the server’s public key that is part of the server’s
certificate

■ Sending the key to the server

The server decrypts this session key using its private key and subsequently uses it to
encrypt file data before sending it to the client.

The remaining subsections describe how to install and configure secure FTP.

Installing and Configuring OpenSSL
OpenSSL is an open source implementation of the SSL protocol. OpenSSL implements
basic cryptographic functions and provides utility functions. Install and configure
OpenSSL on the Solaris host to use as the FTP server.

1. Go to the following URL:

http://www.openssl.org/source

2. Locate openssl-0.9.7g.tar.gz in the list of available files. For example:

 3132217 Apr 11 17:21:51 2005 openssl-0.9.7g.tar.gz (MD5) (PGP sign)

3. Download the following files:

■ openssl-0.9.7g.tar.gz

■ openssl-0.9.7g.tar.gz.md5 (under the MD5 link)

■ openssl-0.9.7g.tar.gz.asc (under the PGP sign link

4. Unzip the following file using gunzip.

gunzip openssl-0.9.7g.tar.gz

5. Untar the following file:

tar xvf openssl-0.9.7g.tar

3

At runtime, client
gets server
certificate

Certificate

4
Client
checks Server generates

certificate

1

Certificate

2
Client imports server
certificate in its
trusted store

Certificate

Using Secure FTP with the FTP Adapter

2-36 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

6. Change directories to the following location:

cd openssl-0.9.7g

7. Run the following command:

./config --prefix=/usr --openssldir=/usr/local/openssl

8. Change to the Bourne shell (if not already using it):

sh

9. Configure and export the PATH:

PATH=${PATH}:/usr/ccs/bin; export PATH

10. Run the following command:

make

11. Exit the Bourne shell:

exit

12. Run the following command:

make test

13. Log in as the super user:

msu

14. Enter the password when prompted.

15. Run the following command:

make install

Installing and Configuring vsftpd
The vsftpd server is a secure and fast FTP server for UNIX systems. Install and
configure vsftpd on the Solaris host to use as the FTP server.

1. Go to the following location:

ftp://vsftpd.beasts.org/users/cevans/

2. Download vsftpd-2.0.3 (you need the tar and signature file (.asc file)). For
example:

[BINARY] vsftpd-2.0.3.tar.gz. [Mar 19 21:26] 149K
[FILE] vsftpd-2.0.3.tar.gz.asc. [Mar 19 21:26] 189B

3. Unzip the following file using gunzip.

gunzip vsftpd-2.0.3.tar.gz

4. Unzip the tar file:

tar xvf vsftpd-2.0.3.tar

5. Change directories to the following location:

cd vsftpd-2.0.3

Using Secure FTP with the FTP Adapter

Oracle Application Server Adapter for Files/FTP 2-37

6. Make the following change in the builddefs.h file:

#undef VSF_BUILD_SSL

to

#define VSF_BUILD_SSL

7. Log in as the super user:

msu

8. Enter the password when prompted.

9. Create a file named vsftpd.conf with the following settings in the /etc
directory:

Standalone mode
listen=YES
max_clients=200
max_per_ip=4
Access rights
anonymous_enable=YES
#chroot_local_user=YES
#userlist_enable=YES
ftp_username=ftp
local_enable=YES
write_enable=YES
anon_upload_enable=YES
anon_mkdir_write_enable=YES
anon_other_write_enable=YES
chown_uploads=YES
chown_username=ftp
Security
anon_world_readable_only=NO
allow_anon_ssl=YES
ssl_enable=YES
connect_from_port_20=YES
hide_ids=YES
pasv_min_port=50000
pasv_max_port=60000
Features
ftpd_banner="Welcome to the FTP Service"
xferlog_enable=YES
ls_recurse_enable=NO
ascii_download_enable=NO
async_abor_enable=YES
Performance
one_process_model=NO
idle_session_timeout=120
data_connection_timeout=300
accept_timeout=60
connect_timeout=60
anon_max_rate=50000

Note: Copies of the vsftpd.conf file appear in several locations in the
vsftpd-2.0.3 directory structure. If you use one of those files to
create the vsftpd.conf file in the /etc directory, ensure that it only
includes the parameters and settings described above.

Using Secure FTP with the FTP Adapter

2-38 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

10. Run the following commands:

mkdir /var/ftp
useradd -d /var/ftp ftp
chown root /var/ftp
chmod og-w /var/ftp
mkdir /usr/share/empty
mkdir /usr/share/ssl
mkdir /usr/share/ssl/certs

11. Run the following command:

openssl req -x509 -nodes -newkey rsa:1024 -keyout
/usr/share/ssl/certs/vsftpd.pem -out /usr/share/ssl/certs/vsftpd.pem

12. Run the vsftpd daemon from the vsftpd-2.0.3 directory:

./vsftpd

Creating an Oracle Wallet
Oracle Wallet Manager is an application for managing and editing security credentials
in Oracle wallets. A wallet is a password-protected container that stores authentication
and signing credentials, including private keys, certificates, and trusted certificates, all
of which are used by SSL for strong authentication.

1. Create a new wallet in Oracle Wallet Manager.

2. Import vsftpd.pem from step 11 on page 2-38 as a trusted certificate in this
wallet.

3. Save this wallet in PKCS # 12 (.p12) format.

See the Oracle Application Server Administrator’s Guide for details about using Oracle
Wallet Manager.

Setting Up the FTP Adapter
1. Perform the following tasks on your Solaris host:

mkdir /var/ftp/inDir
mkdir /var/ftp/outDir
chmod 777 /var/ftp/inDir /var/ftp/outDir

2. Specify the FTP connection parameters in the FTP adapter oc4j-ra.xml file. The
location of this file is based on the installation type you selected.

■ If you selected BPEL Process Manager for Developers, edit the Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\a
pplication-deployments\default\FtpAdapter\oc4j-ra.xml file.

■ If you selected BPEL Process Manager for OracleAS Middle Tier, edit the
Oracle_Home\j2ee\OC4J_
BPEL\application-deployments\default\FtpAdapter\oc4j-ra.xm
l file.

A sample oc4j-ra.xml is as follows:

<connector-factory location="eis/Ftp/FtpAdapter" connector-name="FTP Adapter">
 <config-property name="host" value="usunnbf29.us.oracle.com"/>
 <config-property name="port" value="21"/>
 <config-property name="username" value="ftp"/>
 <config-property name="password" value="password"/>

Use Cases for the File and FTP Adapters

Oracle Application Server Adapter for Files/FTP 2-39

 <config-property name="useFtps" value="true"/>
 <config-property name="walletLocation" value="D:\wallet\ewallet.p12"/>
 <config-property name="walletPassword" value="welcome1"/>
 <config-property name="channelMask" value="both"/>
 <config-property name="securePort" value="990"/>
</connector-factory>

3. Restart Oracle BPEL Server after changing the oc4j-ra.xml file.

You have now installed and configured secure FTP and are ready to use this
feature with the FTP adapter.

Use Cases for the File and FTP Adapters
Oracle BPEL Process Manager includes a number of demonstrations of file and FTP
adapters. Some of these demonstrations are described in Readme files. Others are
described in the Oracle BPEL Process Manager documentation set. This section
provides an overview of these demonstrations and a reference to documentation that
more fully describes the scenarios.

This section contains the following topics:

■ File Adapter Use Cases

■ FTP Adapter Use Case

File Adapter Use Cases
This section provides an overview of file adapter demonstrations.

This section contains the following topics:

■ File Reading

■ Message Debatching

■ Reading Delimited Content Files

■ Reading Positional (Fixed Length) Content Files

■ File Writing

File Reading
Several file reading demonstrations are available:

Where... Is...

useFtps Set to true. This setting is required to use FTP over SSL. The default is
false.

walletLocation The location of the wallet created in "Creating an Oracle Wallet" on
page 2-38

walletPassword The password of the wallet

channelMask The type of channel: control channel or data channel. Possible values are
both, control, data, or none. The default is both.

Author’s Note: I lower cased the values, to match the code sample above.

securePort The port for FTP over SSL. The default is 990.

Use Cases for the File and FTP Adapters

2-40 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

■ A complex structure demonstration shows how to use the file read and write
functionality of the file adapter. For a demonstration of a complex structure, go to

Oracle_Home\integration\orabpel\samples\tutorials\121.FileAdapter\
ComplexStructure

■ A simple file reading demonstration is provided as part of a larger tutorial that
guides you through the design and execution of a sophisticated process that uses
synchronous and asynchronous services, parallel flows of execution, conditional
branching logic, fault handling and exceptions management, transformations, the
file adapter, the database adapter, and human workflow, notification, and sensor
functionality. In the file reading portion, you configure the file adapter to read an
inbound purchase order request from a file in a directory. See Oracle BPEL Process
Manager Order Booking Tutorial for a tutorial that uses the file reading
functionality of the file adapter.

Message Debatching
This demonstration shows how the file adapter processes native data containing
multiple messages defined in a custom format. The file adapter takes a single inbound
file of two records and outputs each record to its own file. For a demonstration of
message debatching, go to

Oracle_Home\integration\orabpel\samples\tutorials\121.FileAdapter\Debatching

Reading Delimited Content Files
This demonstration shows how the file adapter reads CSV-formatted entries in an
address book, transforms the file contents using XSLT, and stores the data in a
fixed-length formatted file. For a demonstration of delimited content files, go to

Oracle_Home\integration\orabpel\samples\tutorials\121.FileAdapter\FlatStructure

Reading Positional (Fixed Length) Content Files
This demonstration shows how the file adapter reads CSV-formatted entries in an
address book, transforms the file contents using XSLT, and stores the data in a
fixed-length formatted file. For a positional (fixed length) demonstration, go to

Oracle_Home\integration\orabpel\samples\tutorials\121.FileAdapter\FlatStructure

File Writing
A simple file writing demonstration is provided as part of the larger tutorial described
in "File Reading" on page 2-39. In the file writing portion, you configure the file
adapter to write an outbound purchase order acknowledgment to a file in a directory.

See Oracle BPEL Process Manager Order Booking Tutorial for a demonstration that
uses the file writing functionality of the file adapter.

FTP Adapter Use Case
This demonstration shows how the file adapter processes native data containing
multiple messages defined in a custom format. The native data instance contains an
invoice and purchase order.

In the inbound direction, the FTP adapter retrieves a remote file, processes the file, and
publishes the invoice and purchase order separately to the debatching BPEL process.

In the outbound direction, only purchase orders are generated. The debatching BPEL
process transforms an invoice to a purchase order. The purchase record is simply

Summary

Oracle Application Server Adapter for Files/FTP 2-41

copied over. All purchase orders are then written in separate remote output files. For
an FTP demonstration, go to

Oracle_Home\integration\orabpel\samples\tutorials\129.FTPAdapter\FTPDebatching

Summary
This chapter describes how you use the file and FTP adapters so that your BPEL
process can exchange (read and write) files (both XML and non-XML) on local file
systems and remote file systems (through FTP).

Summary

2-42 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Oracle Application Server Adapter for Advanced Queuing 3-1

3
Oracle Application Server Adapter for

Advanced Queuing

This chapter describes how to use the Oracle Application Server Adapter for
Advanced Queuing (AQ adapter), which enables a BPEL process to interact with a
queue.

This chapter contains the following topics:

■ Introduction to the AQ Adapter

■ AQ Adapter Features

■ Use Cases for the AQ Adapter

■ Summary

Introduction to the AQ Adapter
Oracle Streams Advanced Queuing (AQ) provides a flexible mechanism for
bidirectional, asynchronous communication between participating applications.
Because advanced queues are an Oracle database feature, they are scalable and
reliable. Backup and recovery (including any-point-in-time recovery), logging,
transactional services, and system management are all inherent features of the
database and, therefore, advanced queues. Multiple queues can also service a single
application, partitioning messages in a variety of ways and providing another level of
scalability through load balancing. See Oracle Streams Advanced Queuing User’s Guide
and Reference for more information.

AQ Adapter Features
The AQ adapter is both a producer and consumer of AQ messages. The enqueue
operation is exposed as a JCA outbound interaction. The dequeue operation is exposed
as a JCA inbound interaction.

The AQ adapter supports both ADT (Oracle object type) and RAW queues as
payloads. It also supports extracting a payload from one ADT member column. The
AQ adapter does not support the AQ XML type.

The AQ adapter supports headers for enqueue and dequeue options. Headers are
comprised of an AQ header and a payload header. The AQ header consists of the
standard message properties that are present in every queue.

You access the AQ adapter from the Adapter Configuration Wizard, which you use to
browse queues and expose the underlying metadata as a WSDL with JCA extensions.

For AQ adapter samples, go to

3-2 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Oracle_Home\integration\orabpel\samples\tutorials\124.AQAdapter

Enqueue-Specific Features (Message Production)
The AQ adapter supports the following features of Oracle Streams AQ:

■ Correlation identifier

In the Adapter Configuration Wizard, you can specify a correlation identifier
when defining an enqueue operation, which you use to retrieve specific messages.

■ Multiconsumer queue

In Oracle Streams AQ, more than one consumer can process and consume a single
message. To use this feature, you must create multiconsumer queues and enqueue
the messages into these queues. In this configuration, a single message can be
consumed by more than one AQ consumer (dequeue operation), either through
the default subscription list or with an override recipient list. Under this scenario,
a message remains in the queue until it is consumed by all of its intended
consumer agents. The AQ adapter enqueue header enables you to specify the
override recipient list (string values separated by commas) that can retrieve
messages from a queue. All consumers that are added as subscribers to a
multiconsumer queue must have unique values for the Recipient parameter.
This means that two subscribers cannot have the same values for the NAME,
ADDRESS, and PROTOCOL attributes.

■ Message priority

If you specify the priority of enqueued messages, then the messages are dequeued
in priority order. If two messages have the same priority, the order in which they
are dequeued is determined by the enqueue time. You can also create a first-in,
first-out (FIFO) priority queue by specifying the enqueue time priority as the sort
order of the messages. This priority is a property of the AQ adapter enqueue
header. The enqueue time is set automatically by the underlying AQ application.

Here is an example of how to create the FIFO queue:

EXECUTE DBMS_AQADM.CREATE_QUEUE_TABLE(\
queue_table => 'OE_orders_pr_mqtab', \
sort_list =>'priority,enq_time', \
comment => 'Order Entry Priority \
MultiConsumer Orders queue table',\
multiple_consumers => TRUE, \
queue_payload_type => 'BOLADM.order_typ', \
compatible => '8.1', \
primary_instance => 2, \
secondary_instance => 1);
EXECUTE DBMS_AQADM.CREATE_QUEUE (\
queue_name => 'OE_bookedorders_que', \
queue_table => 'OE_orders_pr_mqtab');

■ Time specification and scheduling

In Oracle Streams AQ, you can specify a delay interval and an expiration interval.
The delay interval determines when an enqueued message is marked as available
to the dequeuers after the message is enqueued. When a message is enqueued
with a delay time set, the message is marked in a WAIT state. Messages in a WAIT
state are masked from the default dequeue calls. The expiration time property is
used to specify an expiration time and the message is automatically moved to an
exception queue if the message is not consumed before its expiration. The delay

AQ Adapter Features

Oracle Application Server Adapter for Advanced Queuing 3-3

interval, expiration time, and exception queue property are properties of the AQ
adapter enqueue header.

Dequeue and Enqueue Features
Oracle Streams AQ provides the following dequeuing options:

■ Poll option

■ Notification option

The poll option involves processing the messages as they arrive and polling repeatedly
for messages. The AQ adapter supports a polling mechanism for consuming AQ
messages.

The AQ adapter supports the following features of Oracle Streams AQ:

■ Multiconsumer queue

The AQ adapter can retrieve messages from a multiconsumer queue.

■ Navigation of messages for dequeuing

Messages do not have to be dequeued in the same order in which they were
enqueued. You can use a correlation identifier to specify dequeue order. The
Adapter Configuration Wizard defines the correlation ID for the dequeue
operation.

■ Retries with delays

The number of retries is a property of the AQ adapter dequeue header. If the
number of retries exceeds the limit, the message is moved to an exception queue
that you specify. The exception queue is a property of the AQ adapter enqueue
header.

■ Rule-based subscription

Oracle Streams AQ provides content-based message filtering and subject-based
message filtering. A rule defines one or more consumers interest in subscribing to
messages that conform to that rule. For a subject-based rule, you specify a Boolean
expression using syntax similar to the WHERE clause of a SQL query. This Boolean
expression can include conditions on message properties (currently priority and
correlation ID), user data properties (object payloads only), and functions (as
specified in the WHERE clause of a SQL query).

■ AQ headers

Table 3–1 summarizes the AQ header properties for the enqueue and dequeue
operations.

3-4 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

See Oracle Application Server Adapter Concepts for information on AQ adapter
architecture, adapter integration with Oracle BPEL Process Manager, and adapter
deployments.

Supported ADT Payload Types
The AQ adapter supports the following RAW types:

■ BLOB

■ CHAR

■ CLOB

■ DATE

■ DECIMAL

■ DOUBLE PRECISON

■ FLOAT

■ INTEGER

■ NUMBER

■ REAL

■ SMALLINT

Table 3–1 AQ Header Message Properties

Message
Property Datatype

Default If Not
Specified Description

Include in
Message
Header for
Enqueue

Include in
Message
Header for
Dequeue

Priority Integer 1 Priority of the message.

A smaller number indicates a higher
priority.

Yes Yes

Delay Integer 0 The number of seconds after which
the message is available for
dequeuing

Yes No

Expiration Integer -1 (never
expires)

The number of seconds before the
message expires. This parameter is
an offset from the delay.

Yes No

Correlation String - User-assigned correlation ID Yes Yes

RecipientList String - The list of recipients for this
message, separated by commas.
This overrides RecipientList in
the InteractionSpec

Yes No

ExceptionQueue String - The exception queue name Yes No

EnqueueTime String - The time at which the message was
enqueued

No Yes

MessageID String - The hexadecimal representation of
the message ID

No Yes

OrigMessageId String - The hexadecimal representation of
the original message ID

No Yes

Attempts Integer - The number of failed attempts at
dequeuing the message

No Yes

AQ Adapter Features

Oracle Application Server Adapter for Advanced Queuing 3-5

■ TIMESTAMP

■ VARCHAR2

In addition, the primitive types, varrays of objects, or primitives are also supported.

If choosing a payload field instead of the whole ADT, choose only one of the following
datatypes as the payload field:

■ CLOB, either XSD or opaque schema

■ VARCHAR2, either XSD or opaque schema

■ BLOB, opaque schema only

Native Format Builder Wizard
JDeveloper BPEL Designer provides the Native Format Builder Wizard to define XSD
files of various formats, including for the AQ RAW payload. See Chapter 6, "Native
Format Builder Wizard" for more information. For Native Format Builder examples, go
to

Oracle_Home\integration\orabpel\samples\tutorials\124.AQAdapter\
RawQueuePayloadUsingNativeFormat

Payload Schema
The payload schemas depend on the payload type. In the whole ADT case, the schema
is completely generated by the Adapter Configuration Wizard. In the ADT with BLOB
selected as the payload case, an opaque schema must be used, which is defined as:

<element name="opaqueElement" type="base64Binary" />

In all other cases, you can either provide a schema or use an opaque schema, as shown
in Table 3–2.

If you do not have an XSD, but the payload data is formatted in some way (for
example, in a comma-separated value (CSV) format), then the Native Format Builder
Wizard can be used to generate an appropriate XSD. The Adapter Configuration
Wizard is integrated with the Native Format Builder Wizard. In the Adapter
Configuration Wizard - Messages window, click Define Schema for Native Format to
access the Native Format Builder Wizard.

Table 3–2 Payload Schema

Payload Type Supported Schema

RAW User-provided schema or opaque schema

Whole ADT Must use a schema generated by the Adapter
Configuration Wizard, which is based on the queue
structure

ADT with VARCHAR2 picked as payload User-provided schema or opaque schema

ADT with CLOB picked as payload
user-provided schema or opaque schema

User-provided schema or opaque schema

ADT with BLOB picked as payload opaque
schema

Opaque schema

3-6 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Use Cases for the AQ Adapter
The following use cases include a general walkthrough of the Adapter Configuration
Wizard, followed by examples of how you modify the general procedure in different
situations. Each example shows relevant parts of the generated WSDL file.

Adapter Configuration Wizard Walkthrough
This procedure shows how to use the Adapter Configuration Wizard. The example
creates an adapter service that enqueues messages to the CUSTOMER_IN_QUEUE
queue, with a payload that is one field within the CUSTOMER_TYPE object (the
customer’s e-mail address), and with a user-defined schema.

1. Drag and drop a PartnerLink activity onto the right side of the designer window.

2. Select Define Adapter Service (third icon) in the Create Partner Link window.

3. Select AQ Adapter from the Adapter Type window and click Next.

4. Enter a service name (this name can be anything) and click Next.

Use Cases for the AQ Adapter

Oracle Application Server Adapter for Advanced Queuing 3-7

5. Select a database connection and click Next. This name must typically match with
your connector-factory location setting in the oc4j-ra.xml file. Ensure
that you restart Oracle BPEL Server after changing the oc4j-ra.xml file.

6. Select Enqueue, to send messages to a queue, or Dequeue, to receive messages
from a queue. Click Next.

3-8 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

7. Select a database schema or click Browse to browse for the correct schema. The
<Default Schema> selection is the schema owned by the connection user. For
example, if you connect as scott/tiger, then the <Default Schema> is scott; you
see all of the queues of scott. In general, you only see schemas and queues that the
connection user has the privileges to see. For this example, Browse is selected.

The Select Queue window appears. Note that all types is selected. This means that
all available types display: RAW, OBJECT, and special OBJECT (XML Gateway,
Business Event System, and B2B Integration) queues.

Use Cases for the AQ Adapter

Oracle Application Server Adapter for Advanced Queuing 3-9

8. Select the correct queue and click OK.

9. Verify that you have selected the database schema and click Next.

3-10 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

10. Enter an optional correlation ID from 1 to 30 characters in length and click Next.
This is used to identify messages that can be retrieved at a later time by a dequeue
activity using the same correlation ID.

The value to enter is agreed upon between the enqueuing sender and the
dequeuing receiver for asynchronous conversations. The correlation ID maps to an
AQ header. Correlation IDs in the inbound direction enable you to be selective
about the message to dequeue. This field is optional. If you do not enter a value,
all messages in the queue are processed.

If you enter a value for the Correlation ID in the outbound direction, all outbound
messages have the correct ID set to the value entered. You can override this value
on a per message basis in the correlation field of the outbound header.

11. Select the business payload, either the entire object, or just one field within the
object:

■ If you select Whole Object CUSTOMER_TYPE, click Next and go to Step 14.
The message schema is automatically generated.

■ If you select Field within the Object, the business payload is contained in a
single field in the object. Specify the correct file name, either by entering the

Use Cases for the AQ Adapter

Oracle Application Server Adapter for Advanced Queuing 3-11

name or by browsing for it using the Browse button. The field containing the
payload you select must be a CLOB, BLOB, or VARCHAR2.

The Access to non-payload fields also needed check box is available as an
option. Select this check box if you need to specify additional information in a
header field that is separate from the object payload. For example, your
payload may be a JPG image. You may want to specify a person’s name in the
nonpayload field. This selection generates an additional header schema file
(object_name.xsd, where object_name is the structured payload object
used by the queue). Using this information is discussed in more detail in
"Rule-Based Subscription for Multiconsumer Queues" on page 3-19.

12. If you select the Browse button, the Select Payload Field window appears. Select
the correct field name and click OK.

Figure 3–1 Select Payload Field Window

13. Click Next.

3-12 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

The Messages window appears. These settings define the correct schema for the
message payload.

14. Perform one of the following tasks:

■ Check Native format translation is not required (Schema is Opaque), which
disables the rest of the fields.

■ Click Define Schema for Native Format to start the Native Format Builder
Wizard, if the schema you want to use is not a native schema file. This wizard
guides you through the creation of a native schema file from file formats such
as comma-separated value (CSV), fixed-length, data type description (DTD),
and COBOL Copybook.

■ Enter the path for the schema file URL (or browse for the path).

The following steps demonstrate the last option, browsing for the schema file
URL. Click the Browse button.

The Type Chooser window appears, with the Type Explorer navigation tree.

15. Browse the tree and select the appropriate schema type. Click OK.

Use Cases for the AQ Adapter

Oracle Application Server Adapter for Advanced Queuing 3-13

The Messages window reappears, with the Schema File URL field completed.

16. Click Next.

The Finish window appears. This box shows the path and name of the adapter file
that the wizard creates.

3-14 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

17. Click Finish.

The Create Partner Link window appears with the fields completed.

18. Click OK.

Generated WSDL file
The adapter service generates a WSDL file to serve as the defined adapter interface.
Here is the WSDL file generated by the walkthrough example.

This part of the code segment defines the name of the adapter, and the locations of
various necessary schemas and other definition files.

<definitions
 name="AQ_Example"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/aq/AQ_Example/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/aq/AQ_Example/"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"
 xmlns:imp1="http://xmlns.oracle.com/BPELProcess"
 xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/aq/outbound/"
 >

This code segment imports the necessary namespaces.

Use Cases for the AQ Adapter

Oracle Application Server Adapter for Advanced Queuing 3-15

 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/aq/outbound/"
location="aqAdapterOutboundHeader.wsdl"/>
 <import namespace="http://xmlns.oracle.com/BPELProcess"
location="bpelprocess.wsdl"/>

This code segment defines the message name and port type for the partner link.

 <message name="BPELProcessProcessRequest_msg">
 <part name="BPELProcessProcessRequest"
element="imp1:BPELProcessProcessRequest"/>
 </message>
 <portType name="Enqueue_ptt">
 <operation name="Enqueue">
 <input message="tns:BPELProcessProcessRequest_msg"/>
 </operation>
 </portType>

This code segment defines the necessary bindings for the enqueue operation and the
target queue, and identifies the message header.

 <binding name="Enqueue_binding" type="tns:Enqueue_ptt">
 <jca:binding />
 <operation name="Enqueue">
 <jca:operation

InteractionSpec="oracle.tip.adapter.aq.outbound.AQEnqueueInteractionSpec"
 QueueName="CUSTOMER_IN_QUEUE"
 ObjectFieldName="CONTACTS.EMAIL"
 OpaqueSchema="false" >
 </jca:operation>
 <input>
 <jca:header message="hdr:Header" part="Header"/>
 </input>
 </operation>
 </binding>
 <service name="AQ_Example">
 <port name="Enqueue_pt" binding="tns:Enqueue_binding">

This last part defines the database connection, the connection factory (as defined in the
oc4j-ra.xml file), and the name and role of the partnerLinkType and portType.

<!--Your runtime connection is declared in
J2EE_HOME/application-deployments/default/DbAdapter/oc4j-ra.xml
These mcf properties here are from your design time connection and
save you from having to edit that file and restart the application server
if eis/AQ/DBConnection2 is missing.

These mcf properties are safe to remove.-->
 <jca:address location="eis/AQ/DBConnection2"
UIConnectionName="DBConnection2"

ManagedConnectionFactory="oracle.tip.adapter.aq.AQManagedConnectionFactory"
 mcf.ConnectionString="jdbc:oracle:thin:@144.25.143.7:1521:shashipc"
 mcf.UserName="system"
 mcf.Password="47E570316F19A1CFFD2E2104BF5CA8FE" />
 </port>
 </service>
 <plt:partnerLinkType name="Enqueue_plt" >
 <plt:role name="Enqueue_role" >
 <plt:portType name="tns:Enqueue_ptt" />
 </plt:role>

3-16 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 </plt:partnerLinkType>
</definitions>

Dequeuing and Enqueuing Object and ADT Payloads
The Adapter Configuration Wizard walkthrough shows how to enqueue one field in
an object. To enqueue or dequeue the entire object as the payload, do the following:

■ Select Enqueue or Dequeue in Step 6 on page 3-7.

■ Select Whole Object CUSTOMER_TYPE in Step 11 on page 3-10, and skip to Step
16 on page 3-13.

The Adapter Configuration Wizard walkthrough provided an enqueue operation
example. For a dequeue operation, the resulting WSDL file differs by including
dequeue information instead of enqueue information, and by lacking an
ObjectFieldName in the jca:Operation section of the code. See the following
code sample for a dequeue operation and compare it to the WSDL file from the general
walkthrough to see these differences:

 <portType name="Dequeue_ptt">
 <operation name="Dequeue">
 <input message="tns:CUSTOMER_TYPE_msg"/>
 </operation>
 </portType>
 <binding name="Dequeue_binding" type="tns:Dequeue_ptt">
 <pc:inbound_binding />
 <operation name="Dequeue">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec"
 QueueName="CUSTOMER_OUT_QUEUE
 OpaqueSchema="false" >
 </jca:operation>
 <input>
 <jca:header message="hdr:Header" part="Header"/>
 </input>
 </operation>

Dequeuing One Column of the Object/ADT Payload
The walkthrough is an example of enqueuing one field or column within an object
payload. To create an adapter that dequeues the one field in an object, the steps are the
same, except that in Step 6 on page 3-7, select Dequeue.

The following segment of the generated WSDL file specifies that one field, in this case
CONTACTS.EMAIL, is dequeued.

 <jca:operation
 ActivationSpec="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec"
 QueueName="CUSTOMER_IN_QUEUE"
 ObjectFieldName="CONTACTS.EMAIL"
 OpaqueSchema="true" >
 </jca:operation>

Processing Large Numbers of Messages
If you want to process large numbers of messages with the AQ adapter, ensure that
you set the cacheWSIFOperation property to true in the bpel.xml file:

<BPELSuitcase>
 <BPELProcess id="HelloWorld" src="HelloWorld.bpel">

Use Cases for the AQ Adapter

Oracle Application Server Adapter for Advanced Queuing 3-17

 <partnerLinkBindings>
 <partnerLinkBinding name="Dequeue">
 <property name="wsdlLocation">fileService.wsdl</property>
 </partnerLinkBinding>
 <partnerLinkBinding name="Enqueue">
 <property name="wsdlLocation">fileWriteService.wsdl</property>
 <property name="cacheWSIFOperation">true</property>
 </partnerLinkBinding>
 </partnerLinkBindings>

Set this property through the Property tab of the Create Partner Link or Edit Partner
Link window for the partner link.

Using Correlation ID for Filtering Messages During Dequeue
Perform the following steps to set up an adapter that dequeues messages with a
certain correlation ID only.

■ Select Dequeue operation in Step 6 on page 3-7.

■ Enter the correlation ID in Step 10 on page 3-10.

The adapter dequeues messages enqueued with that same correlation ID only.

The resulting WSDL file contains the correlation ID:

<jca:operation
 ActivationSpec="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec"
 QueueName="CUSTOMER_OUT_QUEUE"
 Correlation="147"
 OpaqueSchema="false" >
</jca:operation>

Enqueuing and Dequeuing from Multisubscriber Queues
Multisubscriber queues are accessible by multiple users, and sometimes those users
are only concerned with certain types of messages within the queue. For example, you
may have a multiuser queue for loan applications where loans below $100,000 can be
approved by regular loan-approval staff, whereas loans over $100,000 must be
approved by a supervisor. In this case, the BPEL process can use one adapter to
enqueue loan applications for big loans for supervisors, and another adapter to
enqueue loan applications for smaller loans for regular staff in the same
multisubscriber queue.

If you specify an adapter that enqueues to a multisubscriber queue in Step 8 on
page 3-9, then the Queue Parameters window also includes a Recipients field with the
Correlation Id field, as shown in Figure 3–2.

3-18 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 3–2 Queue Parameters Window with Correlation Id Field

Enter the consumer name or names separated by commas that are the intended
recipients for the messages enqueued by the adapter. The message remains in the
queue until all recipients have dequeued the message. If the Recipients field is left
empty, then all currently active consumers are recipients. This field can be overridden
on a per message basis by setting the RecipientList field described in Table 3–1 on
page 3-4 in the outbound header.

The following code is from a WSDL file generated by defining an AQ adapter that
enqueues with a recipient list of Bob:

 <jca:operation
 InteractionSpec="oracle.tip.adapter.aq.outbound.AQEnqueueInteractionSpec"
 QueueName="IP_IN_QUEUE"
 DatabaseSchema="SCOTT"
 ObjectFieldName="PAYLOAD"
 PayloadHeaderRequired="true"
 RecipientList="Bob"
 OpaqueSchema="true" >
 </jca:operation>

When dequeuing from a multisubscriber queue, the Queue Parameters window
appears, as shown in Figure 3–3.

Use Cases for the AQ Adapter

Oracle Application Server Adapter for Advanced Queuing 3-19

Figure 3–3 Queue Parameters Window with Consumer Field

The Consumer field is where you specify the consumer name, or the name of the
queue subscriber. This must match the Recipient entry on the enqueue process for the
message to be dequeued. When subscribing to a multiconsumer queue, this field is
required.

The following code is from a WSDL file generated by defining an AQ adapter with a
consumer name:

 <jca:operation
 ActivationSpec="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec"
 QueueName="IP_IN_QUEUE"
 DatabaseSchema="SCOTT"
 ObjectFieldName="PAYLOAD"
 PayloadHeaderRequired="true"
 Consumer="Bob"
 OpaqueSchema="true" >
 </jca:operation>
 <input>
 <jca:header message="tns:Header_msg" part="Header"/>
 </input>
 </operation>

The Message Selector Rule field enables you to enter rules for accepting messages.
This is discussed in more detail in the following section.

Correlation Id is a number assigned to a message to identify it to specific dequeuers,
as mentioned in Step 10 on page 3-10. This differs from a subscription rule in that the
queue stores messages with a correlation ID for later use when a subscriber using that
correlation ID comes online.

Rule-Based Subscription for Multiconsumer Queues
When a dequeue is performed from a multisubscriber queue, it is sometimes necessary
to screen the messages and accept only those that meet certain conditions. This
condition may concern header information, as in selecting messages of only priority 1,
or some aspect of the message payload, as in selecting only loan applications above
$100,000.

The Message Selector Rule field appears in Step 10 on page 3-10 if the selected queue
is multisubscriber. Enter a subscription rule in the form of a Boolean expression using

3-20 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

syntax similar to a SQL WHERE clause, such as priority = 1, or TAB.USER_
DATA.amount > 1000. The adapter only dequeues messages for which this Boolean
expression is true.

In Step 11 on page 3-10, Access to non-payload fields also needed must be checked in
order to access header information.

When this field is checked, the generated WSDL has additional code in the type
section:

 <complexType name="HeaderCType" >
 <sequence>
 <!-- static header -->
 <element name="QueueHeader" type="hdr:HeaderType" />
 <!-- payload header -->
 <element name="PayloadHeader" type="obj1:SERVICE_TYPE" />
 </sequence>
 </complexType>
 <element name="Header" type="tns:HeaderCType" />
<element name="Header" type="tns:HeaderCType" />

and the message:
 <message name="Header_msg">
 <part name="Header" element="tns:Header"/>
 </message>

Note that PayloadHeader is the type for the whole ADT of the queue. The payload
contains only the chosen payload field. If Access to non-payload fields also needed is
checked, the PayloadHeader contains the whole ADT (including the payload field,
which is also present in the header, but ignored by the adapter).

For working examples of rule-based subscription using header and payload
information, go to

Oracle_Home\integration\orabpel\samples\tutorials\124.AQAdapter\
RuleBasedSubscription_Header

Oracle_Home\integration\orabpel\samples\tutorials\124.AQAdapter\
RuleBasedSubscription_Payload

Using AQ Headers in a BPEL Process
The entries included in AQ headers are described in "Dequeue and Enqueue Features"
on page 3-3. These header entries are available for composing subscription rules.

Header information can also be translated into BPEL variables using the Adapter tab
when defining BPEL activities that send or receive messages. This tab enables you to
create header variables for use with the adapters.

You create header variables in invoke, receive, reply, and pick - OnMessage branch
activities. Information passing through header variables is protocol specific.

Note that header information for messages coming from the AQ adapter is different
from header information for corresponding messages flowing into the AQ adapter.
You must use headers if you need to get or set any of these protocol-specific
properties. The following examples describe when you must use headers:

■ The AQ adapter enables you to get and set the priority of the message. For
example, you want two different flows in your business process: one for high
priority flows and one for low priority flows. This is possible if you use the
inbound AQ header of the message flowing into the business process. In a similar

Use Cases for the AQ Adapter

Oracle Application Server Adapter for Advanced Queuing 3-21

fashion, you can set the priority of an outbound message through the outbound
AQ headers.

■ In a file propagation scenario, files are being moved from one file system to
another using the file adapter. In this case, it is imperative that you maintain file
names across the two systems. Use file headers in both directions and set the file
name in the outbound file header to use the file name in the inbound file header.

Header Variables in JDeveloper BPEL Designer
The following example describes how to create a special header variable in a receive
activity in the outbound direction for the file adapter. You are not restricted to this
direction or adapter type. You can also create this variable in either direction (inbound
or outbound) with other adapter types that include headers (AQ, JMS, and FTP).

1. Click the flashlight icon to display the Variable Chooser window.

2. Select the second Variables folder, and click Create to display the Create Variable
window.

3. Enter a unique and recognizable name in the Name field (for this example,
Variable_Header).

4. Select Message Type and click the flashlight icon to display the Type Chooser
window.

5. Expand Message Types, then Project WSDL Files, then service_name.wsdl, and
then Message Types, where service_name is the name you specified for the service
name when you ran the Adapter Configuration Wizard.

A header message named OutboundHeader_msg (or a similar name that includes
Header_msg as part of the name) appears.

6. If this name appears here, select it and go to Step 8.

7. If this name does not appear, perform the following additional steps.

a. Expand Imported WSDL, then fileAdapterOutboundHeader.wsdl (or a
similar name for the direction and adapter type you are using), and then
Message Types.

b. Select OutboundHeader_msg and go to Step 8.

8. Click OK to close the Type Chooser window, Create Variable window, and
Variable Chooser window.

9. Complete the setup of the Receive activity.

10. Open the source view of the BPEL process file to view the header variable you
created:

bpelx:headerVariable="Variable_Header"/>

Note: The name that displays here for the AQ adapter may only be
Header. Select this name. This indicates that the header is static,
because you did not need to select the Access to non-payload fields
check box when configuring the AQ adapter.

3-22 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Configuring a Message Rejection Handler for Data Errors
Rejected messages (that is, messages with data errors) can be directed to a rejected
messages queue, and can also be logged in a directory on the system for later review.

An example of a rejection handler can be found at

Oracle_Home\integration\orabpel\samples\tutorials\124.AQAdapter\
AQMessageRejectionHandler

The readme.txt file in this directory describes a procedure for testing the message
rejection handler.

The Dequeue.wsdl file in this directory includes the following code:

 <pc:inbound_binding />
 <operation name="Dequeue">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.aq.inbound.AQDequeueActivationSpec"
 QueueName="REJECTION_TEST_IN"
 DatabaseSchema="SCOTT"
 OpaqueSchema="false" >
 </jca:operation>
 <input>
 <jca:header message="hdr:Header" part="Header"/>
 </input>
 </operation>
 </binding>

This part of the code directs the errored message to the REJECTION_TEST_IN queue.

Summary
This chapter discusses Oracle Streams AQ concepts and how to configure various
types of AQ adapters. It also discusses different ways of filtering messages received
from multisubscriber queues, and copying header information into BPEL variables for
decision making.

Oracle Application Server Adapter for Databases 4-1

4
Oracle Application Server Adapter for

Databases

This chapter describes the Oracle Application Server Adapter for Databases (database
adapter), which works in conjunction with Oracle BPEL Process Manager. Support for
stored procedures and functions (for Oracle databases only) is also described.
References to use cases for the database adapter and for stored procedures are
provided.

This chapter contains the following topics:

■ Introduction to the Database Adapter

■ Database Adapter Concepts

■ Use Cases for the Database Adapter

■ The Adapter Configuration Wizard

■ Advanced Configuration

■ Third-Party Database Support

■ Stored Procedure and Function Support

■ Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL
Designer

■ Summary

Introduction to the Database Adapter
The database adapter enables a BPEL process to communicate with Oracle databases
or third-party databases through JDBC. The database adapter service is defined within
a BPEL process partner link using the Adapter Configuration Wizard of Oracle BPEL
Process Manager.

This section contains the following topics:

■ Database Adapter Features

■ Design Overview

Database Adapter Features
The database adapter connects to any relational database. For nonrelational databases
and legacy systems, application and mainframe adapters are available. See Oracle
Application Server Adapter Concepts for information about application and mainframe
adapters.

Introduction to the Database Adapter

4-2 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

To access an existing relational schema, you use the Adapter Configuration Wizard to
do the following:

■ Import a relational schema and map it as an XML schema (XSD)

See "Relational-to-XML Mapping" on page 4-4 for more information.

■ Abstract SQL operations such as SELECT, INSERT, and UPDATE as Web services

See "SQL Operations as Web Services" on page 4-8 for more information.

While your BPEL process deals with XML and invokes Web services, database rows
and values are queried, inserted, and updated. Unlike other solutions that give you a
way to access data using a fixed schema, stored procedures, streams, or queues, with
the database adapter, you access table data directly and transparently.

Features of the database adapter include:

■ Compliance with open standards. The database adapter is an implementation of
the JCA 1.5 connector. Like the other adapters that work with Oracle BPEL Process
Manager, the database adapter is compatible with open standards such as BPEL,
WSIF, and WSDL.

■ Connectivity to any relational (SQL 92) database using JDBC, or ODBC using the
Sun JdbcOdbcBridge

■ Ability to map any existing relational schema to XML. The mapping is nonintrusive
to the schema and no changes need to be made to it.

■ Web services abstraction of SQL operations. The generated WSDL operations are
merge, insert, update, write, delete, select, queryByExample, and
inbound polling, which includes physical delete, logical delete, and
sequencing-based polling strategies.

■ Leveraging of OracleAS TopLink technology, an advanced object-to-relational
persistence framework. You can access the underlying TopLink project, and use
the OracleAS TopLink Mapping Workbench interface for advanced mapping and
configuration, sequencing, batch and joined relationship reading, batch writing,
parameter binding, statement caching, connection pooling, external transaction
control (JTS and JTA), UnitOfWork for minimal updates, caching, optimistic
locking, advanced query support, and query by example.

See the following for more information:

■ The Oracle BPEL Process Manager forum at

http://forums.oracle.com/forums/forum.jsp?forum=212

■ The OracleAS TopLink forum at

http://forums.oracle.com/forums/forum.jsp?forum=48

This site contains over 2,000 topics, such as implementing native sequencing,
optimistic locking, and JTA-managed connection pools with OracleAS TopLink

You can also access the forums from Oracle Technology Network at

http://www.oracle.com/technology

Design Overview
Figure 4–1 shows how the database adapter interacts with the various design-time and
deployment artifacts.

Introduction to the Database Adapter

Oracle Application Server Adapter for Databases 4-3

Figure 4–1 How the Database Adapter Works

The database adapter is a separate JCA 1.5 connector. It is deployed to the application
server during installation, and is configured using oc4j-ra.xml.

Each entry in oc4j-ra.xml has a Java Naming and Directory Interface (JNDI) name
(location) and session and login properties, and represents a single database and
database adapter instance. The connector is tied to the application server; therefore, it
can be used independently, but any change to oc4j-ra.xml requires restarting the
application server.

When a business process is executed in Oracle BPEL Process Manager, a Web service
(WSDL) may be invoked (using WSIF) against the database. The jca:address tag in
the WSDL is used to look up an adapter instance, and the jca:operation tag in the
WSDL is used to set up an interaction (outbound) or activation (inbound) with the
database adapter using a JCA interface. The jca:operation tag contains a link to
OracleAS TopLink metadata for executing a query to push XML data to a relational
schema, or vice versa.

The toplink_mappings.xml file and WSDL (with custom jca:operation and
jca:address tags) are created during design time. In JDeveloper BPEL Designer,
you create an endpoint, or partner link, for interacting with the database. Each partner
link has its own WSDL. The WSDL defines all the operations (queries) that can be
performed with that database.

To create the WSDL, you use the Adapter Configuration Wizard, where you import the
relational schema, map it to an XML schema, and define one or more operations. This
produces an XSD representing the schema and a toplink_mappings.xml file.

The Adapter Configuration Wizard creates an OracleAS TopLink Mapping Workbench
project (a .mwp file) as part of the JDeveloper BPEL Designer project. Like the

Adapter
Framework

Connectors

OraBPEL
OraBPEL

JDeveloper
Designer

JPR TopLink
MWP

Application Server

JCAJNDI

MyDBConnection1

MyDBConnection2

sessions.xml

WSIF

Mappings.xml
· WSDL
· XSD

Deploy

oc4j-ra.xml

DBAdapter

BPEL
Suitcase

PartnerLink
Wizard

PartnerLink
Wizard

BPEL
Artifacts Design

Database Adapter Concepts

4-4 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

JDeveloper BPEL Designer .jpr file, it allows a user to go back and visually change
mappings or leverage OracleAS TopLink to set advanced properties. Saving the MWP
project does not regenerate toplink_mappings.xml; that is done by running
through the wizard again in edit mode. (No changes are needed; you simply run
through it.)

During deployment, a copy of toplink_mappings.xml is included in the BPEL
suitcase. It is later read by the database adapter and the metadata is cached.

The database adapter is used for relational-to-XML mapping; therefore, no Java class
files are needed. The database adapter generates byte codes for the classes in memory
based on information in the descriptors. You do not compile class files or deal with
class path issues when using the database adapter. The MWP project in the JDeveloper
BPEL Designer project may create Java files as a by-product of using the wizard, but
they are needed at design time only.

Database Adapter Concepts
This section contains the following topics:

■ Relational-to-XML Mapping

■ SQL Operations as Web Services

Relational-to-XML Mapping
For a flat table or schema, the relational-to-XML mapping is easy to see. Each row in
the table becomes a complex XML element. The value for each column becomes a text
node in the XML element. Both column values and text elements are primitive types.

Table 4–1 shows the structure of the MOVIES table. This table is used in the use cases
described in this chapter. See "Use Cases for the Database Adapter" on page 4-16 for
more information.

Table 4–1 MOVIES Table Description

Name Null? Type

TITLE NOT NULL VARCHAR2(50)

DIRECTOR -- VARCHAR2(20)

STARRING -- VARCHAR2(100)

SYNOPSIS -- VARCHAR2(255)

GENRE -- VARCHAR2(70)

RUN_TIME -- NUMBER

RELEASE_DATE -- DATE

RATED -- VARCHAR2(6)

RATING -- VARCHAR2(4)

VIEWER_RATING -- VARCHAR2(5)

STATUS -- VARCHAR2(11)

TOTAL_GROSS -- NUMBER

DELETED -- VARCHAR2(5)

SEQUENCENO -- NUMBER

LAST_UPDATED -- DATE

Database Adapter Concepts

Oracle Application Server Adapter for Databases 4-5

The corresponding XML schema definition (XSD) is as follows:

<xs:complexType name="Movies">
 <xs:sequence>
 <xs:element name="director" type="xs:string" minOccurs="0" nillable="true"/>
 <xs:element name="genre" type="xs:string" minOccurs="0" nillable="true"/>
 <xs:element name="rated" type="xs:string" minOccurs="0" nillable="true"/>
 <xs:element name="rating" type="xs:string" minOccurs="0" nillable="true"/>
 <xs:element name="releaseDate" type="xs:dateTime" minOccurs="0"
nillable="true"/>
 <xs:element name="runTime" type="xs:double" minOccurs="0" nillable="true"/>
 <xs:element name="starring" type="xs:string" minOccurs="0" nillable="true"/>
 <xs:element name="status" type="xs:string" minOccurs="0" nillable="true"/>
 <xs:element name="synopsis" type="xs:string" minOccurs="0" nillable="true"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="totalGross" type="xs:double" minOccurs="0" nillable="true"/>
 <xs:element name="viewerRating" type="xs:string" minOccurs="0"
nillable="true"/>
 </xs:sequence>
</xs:complexType>

As the preceding code example shows, MOVIES is not just a single CLOB or XMLTYPE
column containing the entire XML string. Instead, it is an XML complexType
comprised of elements, each of which corresponds to a column in the MOVIES table.
For flat tables, the relational-to-XML mapping is straightforward.

Table 4–2 and Table 4–3 show the structure of the EMP and DEPT tables, respectively.
These tables are used in the MasterDetail use case. See "Use Cases for the Database
Adapter" on page 4-16 for more information.

As the preceding table definitions show, and as is typical of a normalized relational
schema, an employee’s department number is not stored in the EMP table. Instead,
one of the columns of EMP (DEPTNO) is a foreign key, which equals the primary key
(DEPTNO) in DEPT.

Table 4–2 EMP Table Description

Name Null? Type

EMPNO NOT NULL NUMBER(4)

ENAME -- VARCHAR2(10)

JOB -- VARCHAR2(9)

MGR -- NUMBER(4)

HIREDATE -- DATE

SAL -- NUMBER(7,2)

COMM -- NUMBER(7,2)

DEPTNO -- NUMBER(2)

Table 4–3 DEPT Table Description

Name Null? Type

DEPTNO NOT NULL NUMBER(2)

DNAME -- VARCHAR2(14)

LOC -- VARCHAR2(13)

Database Adapter Concepts

4-6 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

However, the XML equivalent has no similar notion of primary keys and foreign keys.
Consequently, in the resulting XML, the same data is represented in a hierarchy,
thereby preserving the relationships by capturing the detail record inline (embedded)
inside the master.

An XML element can contain elements that are either a primitive type (string,
decimal), or a complex type, that is, another XML element. Therefore, an employee
element can contain a department element.

The corresponding XML shows how the relationship is materialized, or shown inline.
DEPTNO is removed from EMP, and instead you see the DEPT itself.

<EmpCollection>
 <Emp>
 <comm xsi:nil = "true" ></comm>
 <empno >7369.0</empno>
 <ename >SMITH</ename>
 <hiredate >1980-12-17T00:00:00.000-08:00</hiredate>
 <job >CLERK</job>
 <mgr >7902.0</mgr
 <sal >800.0</sal>
 <dept>
 <deptno >20.0</deptno>
 <dname >RESEARCH</dname>
 <loc >DALLAS</loc>
 </dept>
 </Emp>
 ...
</EmpCollection>

Materializing the relationship makes XML human readable, and allows the data to be
sent as one packet of information. No cycles are allowed in the XML; therefore, an
element cannot contain itself. This is handled automatically by the database adapter.
However, you may see duplication (that is, the same XML detail record appearing
more than once under different master records). For example, if a query returned two
employees, both of whom work in the same department, then, in the returned XML,
you see the same DEPT record inline in both the EMP records.

Therefore, when you import tables and map them as XML, it is recommended that you
avoid excessive duplication, although the database adapter does not print an element
inside itself. The database adapter prints the following:

<Emp>
 <name>Bob</name>
 <spouse>
 <name>June</name>
 </spouse
</Emp>

But not:

<Emp>
 <name>Bob</name>
 <spouse>
 <name>June</name>
 <spouse>
 <name>Bob</name>
 <spouse>
 ...
 </spouse>
 </spouse>

Database Adapter Concepts

Oracle Application Server Adapter for Databases 4-7

 </spouse>
</Emp>

To avoid duplication, you can do the following:

■ Import fewer tables. If you import only EMP, then DEPT does not appear.

■ Remove the relationship between EMP and DEPT in the wizard. This removes the
relationship, but the foreign key column is put back.

In both these cases, the corresponding XML is as follows:

<EmpCollection>
 <Emp>
 <comm xsi:nil = "true" ></comm>
 <empno >7369.0</empno>
 <ename >SMITH</ename>
 <hiredate >1980-12-17T00:00:00.000-08:00</hiredate>
 <job >CLERK</job>
 <mgr >7902.0</mgr>
 <sal >800.0</sal>
 <deptno >20.0</deptno>
 </Emp>
 ...
</EmpCollection>

Note that one of the two preceding solutions is feasible only if getting back the foreign
key suffices, as opposed to getting back the complete detail record in its entirety.

Relational Types to XML Schema Types
Table 4–4 shows how database datatypes are converted to XML primitive types when
you import tables from a database.

Table 4–4 Mapping Database Datatypes to XML Primitive Types

Database Type XML Type (Prefixed with :xs)

VARCHAR, VARCHAR2, CHAR, NCHAR,
NVARCHAR, NVARCHAR2, MEMO, TEXT,
CHARACTER, CHARACTER VARYING,
UNICHAR, UNIVARCHAR, SYSNAME,
NATIONAL CHARACTER, NATIONAL CHAR,
NATIONAL CHAR VARYING, NCHAR
VARYING, LONG, CLOB, NCLOB,
LONGTEXT, LONGVARCHAR, NTEXT

string

BLOB, BINARY, IMAGE,
LONGVARBINARY, LONG RAW,
VARBINARY, GRAPHIC, VARGRAPHIC,
DBCLOB, BIT VARYING

base64Binary

BIT, NUMBER(1) DEFAULT 0, SMALLINT
DEFAULT 0, SMALLINT DEFAULT 0

boolean

TINYINT, BYTE byte

SHORT, SMALLINT short

INT, SERIAL int

INTEGER, BIGINT integer

NUMBER, NUMERIC, DECIMAL, MONEY,
SMALLMONEY, UNIQUEIDENTIFIER

decimal

Database Adapter Concepts

4-8 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Essentially, NUMBER goes to DECIMAL, the most versatile XML datatype for numbers,
VARCHAR2 and CLOB to string, BLOB to base64Binary (to meet the plain-text
requirement), and date types to dateTime.

Any type not mentioned in this discussion defaults to java.lang.String and
xs:string. Timestamp support is basic, because only the xs:dateTime format is
supported. The BFILE, USER DEFINED, OBJECT, STRUCT, VARRAY, and REF types
are specifically not supported.

Because XML is plain text, BLOB and byte values are base 64/MIME encoded so that
they can be passed as character data.

Mapping Any Relational Schema to Any XML Schema
The database adapter supports mapping any relational schema on any relational
database to an XML schema, although not any XML schema of your choice, because
the wizard generates the XML schema with no explicit user control over the layout of
the elements. You can control how you map the schema in both the Adapter
Configuration Wizard and later in OracleAS TopLink Mapping Workbench. By pairing
the database adapter with a transformation step, you can map any relational schema to
any XML schema.

SQL Operations as Web Services
After mapping a relational schema as XML, you must also map basic SQL operations
as Web services. Each operation discussed in the following sections has a
corresponding tutorial and readme. It is recommended that you start with these and
try to run one or more as you read this section. As the tutorials demonstrate, some
operations translate directly to the SQL equivalent, while others are more complex.

See the following sections for details:

■ "Use Cases for Outbound Invoke Operations" on page 4-9

■ "Use Cases for Polling Strategies" on page 4-16

DML Operations
Data manipulation language (DML) operations align with basic SQL INSERT,
UPDATE, and SELECT operations. SQL INSERT, UPDATE, DELETE, and SELECT are all
mapped to Web service operations of the same name. The WRITE is either an INSERT
or UPDATE, based on the results of an existence check. A distinction is made between
the data manipulation operations—called outbound writes—and the SELECT
operations—called outbound reads. The connection between the Web service and the
SQL for merge (the default for outbound write) and queryByExample are not as
obvious as for basic SQL INSERT, UPDATE, and SELECT.

FLOAT FLOAT16, FLOAT(16), FLOAT32,
FLOAT(32), DOUBLE, DOUBLE PRECIS,
REAL

double

TIME, DATE, DATETIME, TIMESTAMP,
TIMESTAMP(6), SMALLDATETIME,
TIMESTAMPTZ, TIMESTAMPLTZ,
TIMESTAMP WITH TIME ZONE,
TIMESTAMP WITH LOCAL TIME ZONE

dateTime

Table 4–4 (Cont.) Mapping Database Datatypes to XML Primitive Types

Database Type XML Type (Prefixed with :xs)

Database Adapter Concepts

Oracle Application Server Adapter for Databases 4-9

Merge Merge first reads the corresponding records in the database, calculates any
changes, and then performs a minimal update. INSERT, UPDATE, and WRITE make the
most sense when you are thinking about a single row and a single table. However,
your XML can contain complex types and map to multiple rows on multiple tables.
Imagine a DEPT with many EMPS, each with an ADDRESS. In this case, you must
calculate which of possibly many rows have changed and which to insert, update, or
delete. If a particular row did not change or only one field changed, the DML calls will
be minimal.

querybyExample Unlike the SELECT operation, queryByExample does not require a
selection criteria to be specified at design time. Instead, for each invoke, a selection
criteria is inferred from an exemplar input XML record.

For instance, if the output xmlRecord is an employee record, and the input is a
sample xmlRecord with lastName = "Smith", then on execution, all employees
with a last name of Smith are returned.

A subset of queryByExample is to query by primary key, which can be implemented
by passing in sample XML records where only the primary key attributes are set.

Use queryByExample when you do not want to create a query using the visual query
builder, and want the flexibility of allowing the input record to share the same XML
schema as the output records.

The queryByExample operation is slightly less performant because a new SELECT
needs to be prepared for each execution. This is because the attributes that are set in
the example XML record can vary each time, and therefore the selection criteria varies.

Input xmlRecord:
<Employee>
 <id/>
 <lastName>Smith</lastName>
</Employee>

Output xmlRecord:

<EmployeeCollection>
 <Employee>
 <id>5</id>
 <lastName>Smith</lastName>

 </Employee>
 <Employee>
 <id>456</id>
 <lastName>Smith</lastName>

 </Employee>
</EmployeeCollection>

Use Cases for Outbound Invoke Operations Outbound invoke operations are demonstrated
in the following tutorial files:

■ Insert

■ Update

■ Delete

■ Merge

■ SelectAll

■ SelectAllByTitle

Database Adapter Concepts

4-10 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

■ PureSQLSelect

■ QueryByExample

For these files, go to

Oracle_Home\integration\orabpel\samples\tutorials\122.DBAdapter

Polling Strategies
The inbound receive allows you to listen to and detect events and changes in the
database, which in turn can be the initiators of a business process. This is not a
one-time action, but rather an activation. A polling thread is started, which polls a
database table for new rows or events.

Whenever a new row is inserted into the MOVIES table, the polling operation raises it
to Oracle BPEL Process Manager. The stratagem is to poll every record once. The
initial SELECT has to be repeated over time, to receive the rows that exist at the start
and all new rows as they are inserted over time. However, a new row once read is not
likely to be deleted, and therefore can possibly be read repeatedly with each polling.

The various ways to poll for events—called polling strategies, also known as after-read
strategies or publish strategies—range from simple and intrusive to sophisticated and
nonintrusive. Each strategy employs a different solution for the problem of what to do
after reading a row or event so as not to pick it up again in the next polling interval.
The simplest (and most intrusive) solution is to delete the row so that you do not
query it again.

This section discusses the following polling strategies and factors to help you
determine which strategy to employ for a particular situation:

■ Physical Delete

■ Logical Delete

■ Sequencing Table: Last-Read Id

■ Sequencing Table: Last Updated

■ Control Tables

Physical Delete The physical delete polling strategy polls the database table for records
and deletes them after processing. This strategy can be used to capture events related
to INSERT operations and cannot capture database events related to DELETE and
UPDATE operations on the parent table. This strategy cannot be used to poll child table
events. This strategy allows multiple adapter instances to go against the same source
table. There is zero data replication.

Preconditions: You must have deletion privileges on the parent and associated child
tables to use the delete polling strategy. Table 4–5 describes the requirements for using
the delete polling strategy.

Table 4–5 Delete Polling Strategy Preconditions

Requirements Met Conflicts with

Poll for inserts No delete on source

Shallow delete1 No updates on source

Cascading delete1 Poll for updates

Minimal SQL Poll for deletes

Zero data replication Poll for child updates

Database Adapter Concepts

Oracle Application Server Adapter for Databases 4-11

Configuration: You can configure the delete polling strategy to delete the top-level
row, to cascade all, or to cascade on a case-by-case basis. This enables deleting only the
parent rows and not the child rows, cascaded deletes, and optional cascaded deletes,
determined on a case-by-case basis. You can configure the polling interval for
performing an event publish at design time.

Delete Cascade Policy: The optional advanced configuration is to specify the cascade
policy of the DELETE. For instance, after polling for an employee with an address and
many phone numbers, the phone numbers are deleted because they are privately
owned (default for one-to-many), but not the address (default for one-to-one). This can
be altered by configuring toplink_mappings.xml, as in the following example:

<database-mapping>
 <attribute-name>orders</attribute-name>
 <reference-class>taxonomy.Order</reference-class>
 <is-private-owned>true</is-private-owned>

You can also configure the activation itself to delete only the top level (master row), or
to delete everything.

A receive operation appears in an inbound WSDL as:

<operation name="receive">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.db.DBActivationSpec"
 …
 PollingStrategyName="DeletePollingStrategy"
 DeleteDetailRows="true"

Logical Delete The logical delete polling strategy involves updating a special field on
each row processed, and updating the WHERE clause at run time to filter out processed
rows. It mimics logical delete, wherein applications rows are rarely deleted but instead
a status column isDeleted is set to true. The status column and the read value must
be provided, but the modified WHERE clause and the post-read update are handled
automatically by the database adapter.

Preconditions: You must have the logical delete privilege or a one-time alter schema
(add column) privilege on the source table. Table 4–6 describes the requirements for
using the logical delete polling strategy.

Default --

Allows raw SQL --

Concurrent polling2 --

1 Delete can be configured to delete the top-level row, to cascade all, or to cascade on a case-by-case basis.
2 Concurrent polling can be configured for both delete and logical delete polling strategies.

Table 4–6 Logical Delete Polling Strategy Preconditions

Requirements Met Conflicts With

Poll for inserts No updates on source

No delete on source Poll for deletes

Minimal SQL --

Zero data replication --

Table 4–5 (Cont.) Delete Polling Strategy Preconditions

Requirements Met Conflicts with

Database Adapter Concepts

4-12 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Configuration: The logical delete polling strategy requires minimal configuration. You
must specify the mark read column, and the value that indicates a processed record.

A receive operation appears in an inbound WSDL as:

<operation name="receive">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.db.DBActivationSpec"
 …
 PollingStrategyName="LogicalDeletePollingStrategy"
 MarkReadField="STATUS"
 MarkReadValue="PROCESSED"

Given the configuration for logical delete, the database adapter appends the following
WHERE clause to every polling query:

AND (STATUS IS NULL) OR (STATUS <> 'PROCESSED')

Database Configuration: A status column on the table being polled must exist. If it
does not exist already, you can add one to an existing table.

Support for Polling for Updates: Given that rows are not deleted with each read, it is
possible to repetitively read a row multiple times. You should add a trigger to reset the
mark read field whenever a record is changed, as follows:

create trigger Employee_modified
before update on Employee
for each row
begin
 :new.STATUS := 'MODIFIED';
end;

Support for Concurrent Access Polling: Just as a single instance should never process
an event more than once, the same applies to a collection of instances. Therefore,
before processing a record, an instance needs to reserve that record with a unique
value. Again, the status column can be used:

<operation name="receive">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.db.DBActivationSpec"
 …
 PollingStrategyName="LogicalDeletePollingStrategy"
 MarkReadField="STATUS"
 MarkUnreadValue="UNPROCESSED"
 MarkReservedValue="RESERVED-1"
 MarkReadValue="PROCESSED"

Minimal configuration --

Allows raw SQL --

Poll for updates1 --

Poll for child updates2 --

Concurrent polling3 --

1 By adding a trigger.
2 By adding a trigger.
3 By specifying additional mark unread and reserved values.

Table 4–6 (Cont.) Logical Delete Polling Strategy Preconditions

Requirements Met Conflicts With

Database Adapter Concepts

Oracle Application Server Adapter for Databases 4-13

The polling query instead looks like the following:

Update EMPLOYE set STATUS = 'RESERVED-1' where (CRITERIA) AND (STATUS =
'UNPROCESSED');

Select … from EMPLOYEE where (CRITERIA) AND (STATUS = 'RESERVED-1');

The after-read UPDATE is faster because it can update all:

Update EMPLOYEE set STATUS = 'PROCESSED' where (CRITERIA) AND (STATUS =
'RESERVED-1');

Sequencing Table: Last-Read Id This polling strategy involves using a helper table to
remember a sequence value. The source table is not modified; instead, rows that have
been read in a separate helper table are recorded. A sequence value of 1000, for
example, means that every record with a sequence less than that value has already
been processed. Because many tables have some counter field that is always increasing
and maintained by triggers or the application, this strategy can often be used for
noninvasive polling. No fields on the processed row ever need to be modified by the
database adapter.

Native sequencing with a preallocation size of 1 can ensure that rows are inserted with
primary keys that are always increasing over time.

This strategy is also called a nondestructive delete because no updates are made to the
source rows, and a sequencing strategy such as the sequence field can be used to
order the rows in a sequence for processing. When the rows are ordered in a line, the
database adapter knows which rows are processed and which are not with a single
unit of information.

Preconditions: You must have a sequencing table or create table privilege on the
source schema. The source table has a column that is monotonically increasing with
every INSERT (an Oracle native sequenced primary key) or UPDATE (the last-modified
timestamp). Table 4–7 describes the requirements for using the sequencing polling
strategy.

Configuration: A separate helper table must be defined. On the source table, you must
specify which column is ever increasing.

<operation name="receive">
<jca:operation
ActivationSpec="oracle.tip.adapter.db.DBActivationSpec"
…
PollingStrategyName="SequencingPollingStrategy"
SequencingFieldName="MODIFIED_DATE"

Table 4–7 Sequencing Polling Strategy Preconditions

Requirements Met Conflicts With

Poll for inserts Poll for deletes

Poll for updates Allows raw SQL

No delete on source Concurrent polling

No updates on source Poll for child updates

One extra SQL select --

Zero data replication --

Moderate configuration --

Database Adapter Concepts

4-14 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

SequencingFieldType="java.sql.Date"
SequencingTableNameFieldValue="EMPLOYEE"
SequencingTableName="SEQUENCING_HELPER"
SequencingTableNameFieldName="TABLE_NAME"
SequencingTableValueFieldName="LAST_READ_DATE"

The sequencing field type can be excluded if it is actually a number.

Database Configuration: A sequencing table must be configured once for a given
database. Multiple processes can share the same table. Given the above
ActivationSpec, the CREATE TABLE command looks as follows:

CREATE TABLE SEQUENCING_HELPER
(
TABLE_NAME VARCHAR2(32) NOT NULL,
LAST_READ_DATE DATE
)
;

Polling for Updates: In the preceding example, the polling is for new objects or
updates, because every time an object is changed, the modified time is updated.

A sample trigger to set the modified time on every insert or update is as follows:

create trigger Employee_modified
before insert or update on Employee
for each row
begin
 :new.modified_date := sysdate;
end;

Using a Sequence Number: A sequence number can be used for either insert or
update polling. Native sequencing returns monotonically increasing primary keys, as
long as an increment by 1 is used. You can also use the sequence number of a
materialized view log.

Sequencing Table: Last Updated This polling strategy involves using a helper table to
remember a last_updated value. A last_updated value of 2005-01-01
12:45:01 000, for example, means that every record last updated at that time or
earlier has already been processed. Because many tables have rows with a last_
updated or creation_time column maintained by triggers or the application, this
strategy can often be used for noninvasive polling. No fields on the processed row
ever need to be modified by the database adapter.

This strategy is also called a nondestructive delete because no updates are made to the
source rows, and a sequencing strategy such as the last_updated field can be used
to order the rows in a sequence for processing. When the rows are ordered in a line,
the database adapter knows which rows are processed and which are not with a single
unit of information.

See "Sequencing Table: Last-Read Id" on page 4-13 for information about preconditions
and configuration.

Control Tables The control table polling strategy involves using a control table to store
the primary key of every row that has yet to be processed. With a natural join between
the control table and the source table (by primary key), polling against the control
table is practically the same as polling against the source table directly. However, an
extra layer of indirection allows the following:

Database Adapter Concepts

Oracle Application Server Adapter for Databases 4-15

■ Destructive polling strategies such as the delete polling strategy can be applied to
rows in the control table alone, while shielding any rows in the source table.

■ Only rows that are meant to be processed have their primary key appear in the
control table. Information that is not in the rows themselves can be used to control
which rows to process (a good WHERE clause may not be enough).

■ The entire row is not copied to a control table, and any structure under the source
table, such as detail rows, can also be raised without copying.

Streams and materialized view logs make good control tables.

Preconditions: You must have create/alter triggers privilege on the source table.
Table 4–8 describes the requirements for using the control table polling strategy.

Using triggers, whenever a row is modified, an entry is added to a control table,
containing the name of the master table, and the primary keys. At design time, the
control table is defined to be the root table, with a one-to-one mapping to the master
table, based on the matching primary keys. The control table can contain extra control
information, such as a timestamp, and operation type (INSERT, UPDATE, and so on).

The delete polling strategy is useful with this setup. It is important to keep the control
table small, and if the option shouldDeleteDetailRows="false" is used, then
only the control rows are deleted, giving you a nondestructive delete (the DELETE is
not cascaded to the real tables).

It is possible to reuse the same control table for multiple master tables. In OracleAS
TopLink, you can map the same table to multiple descriptors by mapping the control
table as one abstract class with multiple children. Each child has a unique one-to-one
mapping to a different master table. The advantage of this approach is that you can
specify for each child a class indicator field and value so that you do not need an
explicit WHERE clause for each polling query.

Some sample triggers follow for polling for changes both to a department table and
any of its child employee rows:

CREATE OR REPLACE TRIGGER EVENT_ON_DEPT
 AFTER INSERT OR UPDATE ON DEPARTMENT
 REFERENCING NEW AS newRow
 FOR EACH ROW

Table 4–8 Control Table Polling Strategy Preconditions

Requirements Met Conflicts With

Poll for inserts Advanced configuration: the native XML from the database will
have control header, and triggers are required.

Poll for updates --

Poll for deletes --

Poll for child updates Minimal data replication (primary keys are stored in control
table)

No delete on source --

No updates on source --

No extra SQL selects --

Concurrent polling --

Allows raw SQL --

Auditing --

Use Cases for the Database Adapter

4-16 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 DECLARE X NUMBER;
BEGIN
 SELECT COUNT(*) INTO X FROM DEPT_CONTROL WHERE (DEPTNO = :newRow.DEPTNO);
 IF X = 0 then
 insert into DEPT_CONTROL values (:newRow. DEPTNO);
 END IF;
END;
CREATE OR REPLACE TRIGGER EVENT_ON_EMPLOYEE
 AFTER INSERT OR UPDATE ON EMPLOYEE
 REFERENCING OLD AS oldRow NEW AS newRow
 FOR EACH ROW
 DECLARE X NUMBER;
BEGIN
 SELECT COUNT(*) INTO X FROM DEPT_CONTROL WHERE (DEPTNO = :newRow.DEPTNO);
 IF X = 0 then
 INSERT INTO DEPT_CONTROL VALUES (:newRow.DEPTNO);
 END IF;
 IF (:oldRow.DEPTNO <> :newRow.DEPTNO) THEN
 SELECT COUNT(*) INTO X FROM DEPT_CONTROL WHERE (DEPTNO = :oldRow.DEPTNO);
 IF (X = 0) THEN
 INSERT INTO DEPT_CONTROL VALUES (:oldRow.DEPTNO);
 END IF;
 END IF;
END;

Use Cases for Polling Strategies Polling strategies are demonstrated in the following
tutorials:

■ PollingLogicalDeleteStrategy

■ PollingLastUpdatedStrategy

■ PollingLastReadIdStrategy

■ PollingControlTableStrategy

■ MasterDetail (for physical delete polling strategy

For these files, go to

Oracle_Home\integration\orabpel\samples\tutorials\122.DBAdapter

Use Cases for the Database Adapter
Using the database adapter is demonstrated in the 122.DBAdapter tutorial. Go to

Oracle_Home\integration\orabpel\samples\tutorials\122.DBAdapter

Table 4–9 shows the database adapter samples that are provided with Oracle BPEL
Process Manager.

Use Cases for the Database Adapter

Oracle Application Server Adapter for Databases 4-17

Table 4–9 Database Adapter Use Cases

Tutorial Name Description

Delete Illustrates the outbound delete operation of the database adapter. An
XML record is passed to the operation and the row in the database with the
same primary key is deleted.

File2StoredProcedure Describes a simple scenario in which the file adapter is used to provide
instance XML to a stored procedure, ADDEMPLOYEES, which is then
executed. The instance XML provides a value for the parameter of the
stored procedure. The ADDEMPLOYEES procedure must be installed in an
Oracle database (not Oracle Lite).

File2Table Illustrates the use of an input a native (CSV) data file defined in a custom
format. The input file is a purchase order, which the file adapter processes
and publishes as an XML message to the FIle2Table BPEL process. The
message is transformed to another purchase order format and routed to an
invoke activity.

Insert Illustrates the outbound insert operation of the database adapter. An
XML record is passed to the operation and inserted into the database as
relational data. (In JDeveloper BPEL Designer, Merge (Insert or Update)
is provided.)

JPublisherWrapper Illustrates a workaround for using PL/SQL RECORD types. JPublisher is
used to create a corresponding OBJECT type whose attributes match the
fields of the RECORD, and conversion APIs that convert from RECORD to
OBJECT and vice versa. JPublisher also generates a wrapper procedure (or
function) that accepts the OBJECT and invokes the underlying method
using the conversion APIs in both directions. The invoked methods must
be installed in an in an Oracle database (not Oracle Lite).

MasterDetail Illustrates how to migrate data from one set of tables to another. The
sample uses the database adapter to read data from one set of tables,
process the data, and write it in to another set of database tables using the
adapter.

Merge Illustrates the outbound merge operation of the database adapter. An XML
record is passed to the operation and a corresponding row in the database
is either inserted or updated.

PollingControlTableStrategy Illustrates an inbound polling operation to poll XML instances from the
MOVIES table. When a new row is inserted into the MOVIES table, the
polling operation raises it to Oracle BPEL Process Manager. This strategy
uses a control table to store the primary key of every row that has not yet
been processed. With a natural join between the control table and the
source table (by primary key), polling against the control table is practically
the same as polling against the source table directly.

PollingLastReadIdStrategy Illustrates an inbound polling operation to poll XML instances from the
MOVIES table. Whenever a new row is inserted into the MOVIES table, the
polling operation raises it to Oracle BPEL Process Manager. This strategy
uses a helper table to remember a sequence value.

PollingLastUpdatedStrategy Illustrates an inbound polling operation to poll XML instances from the
MOVIES table. Whenever a new row is inserted into the MOVIES table, the
polling operation raises it to Oracle BPEL Process Manager. This strategy
involves using a helper table to remember a last_updated value.

PollingLogicalDeleteStrategy Illustrates an inbound polling operation to poll XML instances from the
MOVIES table. Whenever a new row is inserted into the MOVIES table, the
polling operation raises it to Oracle BPEL Process Manager. This strategy
involves updating a special field on each row processed, and updating the
WHERE clause at run time to filter out processed rows.

PureSQLPolling Illustrates how to poll a table based on a date field.

PureSQLSelect Illustrates how to bypass the JDeveloper BPEL Designer WHERE-clause
builder to specify arbitrarily complex SQL strings for SELECT operations.

The Adapter Configuration Wizard

4-18 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

See Table 4–1 on page 4-4 for the structure of the MOVIES table, which is used for
many of the use cases. The readme.txt files that are included with most of the
samples provide instructions.

The Adapter Configuration Wizard
Using the Adapter Configuration Wizard, you can import tables from the database,
specify relationships spanning multiple tables, generate corresponding XML schema
definitions, and create services to expose the necessary SQL or database operations.
These services are consumed to define partner links that are used in the BPEL process.
You use the Adapter Configuration to both create and edit adapter services.

This section contains the following topics:

■ Starting the Adapter Configuration Wizard

■ Connecting to a Database

■ Selecting the Operation Type

■ Selecting and Importing Tables

■ Defining Primary Keys

■ Creating Relationships

■ Creating the Object Model

■ Defining a WHERE Clause

■ Choosing an After-Read Strategy

■ Internal Processes at Design Time

Starting the Adapter Configuration Wizard
After you create a BPEL project in JDeveloper BPEL Designer, you can start defining a
database adapter. If you lose focus on the window, use alt-tab to get it back.

To launch the Adapter Configuration Wizard:

QueryByExample illustrates the outbound queryByExample operation of the database
adapter. A SELECT SQL query is built dynamically based on fields set in
an example XML record, and any matching records are returned.

ResultSetConverter Illustrates a workaround for using REF CURSORs. The solution involves
the use of a Java stored procedure to convert the corresponding
java.sql.ResultSet into a collection (either VARRAY or NESTED
TABLE) of OBJECTs.

SelectAll Illustrates the outbound SelectAll operation of the database adapter.
With no WHERE clause, all rows in the MOVIES table are returned as XML.

SelectAllByTitle Illustrates the outbound SelectAllByTitle operation of the database
adapter. The row in the MOVIES table with the selected title is returned as
XML.

Update illustrates the outbound Update operation of the database adapter. An
XML record is passed to the operation and the row in the database with the
same primary key is updated. (In JDeveloper BPEL Designer, Merge
(Insert or Update) is provided.)

Table 4–9 (Cont.) Database Adapter Use Cases

Tutorial Name Description

The Adapter Configuration Wizard

Oracle Application Server Adapter for Databases 4-19

1. Ensure that Process Activities is selected in the drop-down list of the Component
Palette section.

2. Drag and drop a PartnerLink activity onto the right side of the designer window.

3. Enter a name in the Create Partner Link window.

4. Click the Define Adapter Service icon to start the Adapter Configuration Wizard.

5. Click Next on the Welcome window.

6. Select Database Adapter for the Adapter Service Type and click Next.

See "Connecting to a Database" on page 4-19 to continue using the wizard.

Connecting to a Database
Figure 4–2 shows where you select the database connection that you are using with the
service. This is the database from which you import tables to configure the service.

You can provide a Java Naming and Directory Interface (JNDI) name to identify the
database connection, or use the default name that is provided. The JNDI name acts as
a placeholder for the connection used when your service is deployed to Oracle BPEL
Server. This enables you to use different databases for development and production.
The Adapter Configuration Wizard captures the design-time connection in the
generated WSDL as well, to serve as a fallback in case the run-time lookup fails.

Figure 4–2 Adapter Configuration Wizard: Service Connection

Note the following:

■ In production environments, it is recommended that you add the JNDI entry to the
adapter deployment descriptor (oc4j-ra.xml). This way, the database adapter is
more performant by working in a managed mode. In a nonmanaged mode, the
database adapter uses the design-time connection information.

The Adapter Configuration Wizard

4-20 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

■ When you click Next, a connection to the database is attempted. If a connection
cannot be made, you are not able to proceed to the next window, even if you are
editing an existing partner link.

See "Selecting the Operation Type" on page 4-20 to continue using the wizard.

Selecting the Operation Type
Figure 4–3 shows where you indicate the type of operation you want to configure for
this service.

Figure 4–3 Adapter Configuration Wizard: Operation Type

The follow operation types are available:

■ Call a Stored Procedure or Function

Select this option if you want the service to execute a stored procedure or function.
See "Stored Procedure and Function Support" on page 4-54 for more information.

■ Perform an Operation on a Table

Select this option for outbound operations. You can select Insert or Update,
Delete, Select, or any combination of the three. These operations loosely translate
to SQL INSERT, UPDATE, DELETE, and SELECT operations. See "DML Operations"
on page 4-8 for more information.

If you select all three, then after you run the wizard, you see the following
operations in the Operation list of the Invoke window: merge, insert, update,
write, delete, serviceNameSelect, and queryByExample.

The Adapter Configuration Wizard

Oracle Application Server Adapter for Databases 4-21

Note the following:

– The operations merge, insert, update, and write are created from selecting
Insert or Update.

– The preceding Invoke window shows the MergeService service name as
part of the Select operation, that is, MergeServiceSelect.

– The queryByExample operation appears in every WSDL.

– If the Operation list is initially blank, reselect the partner link and click the
Operation list again.

■ Poll for New or Changed Records in a Table

Select this option for an inbound operation (that is, an operation that is associated
with a Receive activity). This operation type polls a specified table and returns for
processing any new rows that are added. You can also specify the polling
frequency. See "Polling Strategies" on page 4-10 for more information.

See "Selecting and Importing Tables" on page 4-21 to continue using the wizard.

Selecting and Importing Tables
Figure 4–4 shows where you select the root database table for your operation. If you
are using multiple, related tables, then this is the highest-level table (or highest parent
table) in the relationship tree.

The Adapter Configuration Wizard

4-22 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 4–4 Adapter Configuration Wizard: Select Table

This window shows all the tables that have been previously imported in the
JDeveloper BPEL Designer project (including tables that were imported for other
partner links). This enables you to reuse configured table definitions across multiple
partner links in a given BPEL project. These are the generated TopLink descriptors.

If the root database table you want to use for this operation has not been previously
imported, you can click Import Tables.... If you want to reimport a table (if the table
structure has changed on the database, for example), import it again. You can then
reimport the table and overwrite the previously configured table definition.

See "Defining Primary Keys" on page 4-22 to continue using the wizard.

Defining Primary Keys
If any of the tables you have imported do not have primary keys defined on the
database, you are prompted to provide a primary key for each one, as shown in
Figure 4–5. You must specify a primary key for all imported tables. You can select
multiple fields if you need to specify a multipart primary key.

Note: If you reimport a table, you lose any custom relationships you
may have defined on that table, as well as any custom WHERE clauses
(if the table being imported was the root table).

The Adapter Configuration Wizard

Oracle Application Server Adapter for Databases 4-23

Figure 4–5 Adapter Configuration Wizard: Define Primary Keys

The primary key that you specify here is recorded on the offline database table and is
not persisted back to the database schema; the database schema is left untouched.

See "Creating Relationships" on page 4-23 to continue using the wizard.

Creating Relationships
Figure 4–6 shows the relationships defined on the root database table and any other
related tables. You can click Create Relationships… to create a new relationship
between two tables, or Remove Relationship to remove it.

Figure 4–6 Adapter Configuration Wizard: Relationships

Note the following regarding creating relationships:

■ If foreign key constraints between tables already exist on the database, then two
relationships are created automatically when you import the tables: a one-to-one
(1:1) from the source table (the table containing the foreign key constraints) to the
target table, as well as a one-to-many (1:M) from the target table to the source
table.

The Adapter Configuration Wizard

4-24 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

■ As Figure 4–6 shows, you see only the relationships that are reachable from the
root database table. If, after removing a relationship, other relationships are no
longer reachable from the root table, then they are not shown in the Relationships
window. Consider the following set of relationships:

A --1:1--> B --1:1--> C --1:M--> D --1:1--> E --1:M--> F

 (1) (2) (3) (4) (5)

If you remove relationship 3, then you see only:

A --1:1--> B

B --1:1--> C

If you remove relationship 2, then you see only:

A --1:1--> B

If you remove relationship 1, you no longer see any relationships.

Figure 4–7 shows where you can create a new relationship.

Figure 4–7 Creating Relationships

To create a new relationship:

1. Select the parent and child tables.

2. Select the mapping type (one-to-many, one-to-one, or one-to-one with the foreign
key on the child table).

3. Associate the foreign key fields to the primary key fields.

4. Optionally name the relationship (a default name is generated).

Note: Only tables that are reachable from the root table can be
selected as a parent.

The Adapter Configuration Wizard

Oracle Application Server Adapter for Databases 4-25

What Happens When Relationships Are Created or Removed
When tables are initially imported into the wizard, a TopLink direct-to-field mapping
corresponding to each field in the database is created. Consider the schemas shown in
Figure 4–8 and Figure 4–9:

Figure 4–8 EMPLOYEE Schema

Figure 4–9 ADDRESS Schema

Immediately after importing these two tables, the following mappings in the
Employee descriptor are created:

Employee:

■ id (direct mapping to the ID field, for example, 151)

■ name (direct mapping to the NAME field, for example, Stephen King)

■ addrId (direct mapping to the ADDR_ID field, for example, 345)

When creating a relationship mapping, the direct-to-field mappings to the foreign key
fields are removed and replaced with a single relationship (one-to-one, one-to-many)
mapping. Therefore, after creating a one-to-one relationship between Employee and
Address called homeAddress, the Employee descriptor looks like this:

Employee:

■ id

■ name

■ homeAddress (one-to-one mapping to the ADDRESS table; this attribute now
represents the entire Address object.)

When a relationship is removed, the direct mappings for the foreign keys are restored.

Different Types of One-to-One Mappings
The following ways of specifying one-to-one relationships are supported:

■ The foreign keys exist on the parent table, as shown in Figure 4–10 and
Figure 4–11.

■ The foreign keys exist on the child table, as shown in Figure 4–12 and Figure 4–13.

Figure 4–10 Foreign Keys on the Parent Table EMPLOYEE

The Adapter Configuration Wizard

4-26 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 4–11 Foreign Keys on the Parent Table ADDRESS

Figure 4–12 Foreign Keys on the Child Table EMPLOYEE

Figure 4–13 Foreign Keys on the Child Table ADDRESS

Creating the Object Model
Figure 4–14 shows the object model that is created from the imported table definitions,
including any relationships that you may have defined.

Figure 4–14 Adapter Configuration Wizard: Object Model

If your object model contains self-relationships (for example, the
employee-to-employee manager relationship), then you see these as loops in the tree.
These loops are not present in the XSD. This is the descriptor object model, not the
XSD.

See "Defining a WHERE Clause" on page 4-26 to continue using the wizard.

Defining a WHERE Clause
If your service contains a SELECT query (that is, inbound polling services, or
outbound services that contain a SELECT), then you can customize the WHERE clause
of the SELECT statement.

The Adapter Configuration Wizard

Oracle Application Server Adapter for Databases 4-27

Figure 4–15 shows where you define a WHERE clause for an outbound service. For
inbound services, you do not see the Parameters section.

Figure 4–15 Adapter Configuration Wizard: Define WHERE Clause

The most basic expression in a WHERE clause can be one of the following three cases,
depending on what the right-hand side (RHS) is:

1. EMP.ID = 123

In this case, the RHS is a literal value. This RHS is the Literal option shown in
Figure 4–16.

2. EMP.ADDR_ID = ADDR.ID

In this case, the RHS is another database field. This RHS is the Query Key option
shown in Figure 4–16.

3. EMP.ID = ?

In this case, the RHS value must be specified at run time. This is the Parameter
option shown in Figure 4–16.

You create the parameters that you need in the WHERE clause by clicking Add before
you move on to build the WHERE clause. To build the WHERE clause, click Edit… to
launch the Expression Builder, as shown in Figure 4–16.

Note: The WHERE clause applies to SELECT operations only (that is,
polling for new or changed records, or performing a SELECT
operation on a table). It does not apply to INSERT, UPDATE, and
DELETE operations.

The Adapter Configuration Wizard

4-28 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 4–16 Expression Builder

See the following for more information:

■ The OracleAS TopLink page on OTN at

http://www.oracle.com/technology/products/ias/toplink/index.html

■ OracleAS TopLink documentation at

http://download.oracle.com/docs/cd/B14099_04/web.htm#toplink

This site contains documentation on configuring expressions using the XPath
Expression Builder.

See "Choosing an After-Read Strategy" on page 4-28 to continue using the wizard.

Choosing an After-Read Strategy
When configuring an inbound operation, you have the following options about what
to do after a row or rows have been read:

■ Delete the Rows that Were Read

■ Update a Field in the Table (Logical Delete)

■ Update a Sequencing Table

Figure 4–17 shows these options.

The Adapter Configuration Wizard

Oracle Application Server Adapter for Databases 4-29

Figure 4–17 Adapter Configuration Wizard: After-Read Strategies

See "Polling Strategies" on page 4-10 for more information.

Delete the Rows that Were Read
With this option, the rows are deleted from the database after they have been read and
processed by the adapter service.

Update a Field in the Table (Logical Delete)
With this option, you update a field in the root database table to indicate that the rows
have been read. The WHERE clause of the query is updated automatically after you
complete the configuration, as shown in Figure 4–18.

Figure 4–18 Adapter Configuration Wizard: Logical Delete

Using this approach, your database table looks something like Figure 4–19.

The Adapter Configuration Wizard

4-30 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 4–19 Updating Fields in a Table

Note the following:

■ Rows 150 and 153 have been previously read and processed.

■ At the next polling event, row 152 will be read and processed because it contains
UNPROCESSED in the Status column. Because an explicit Unread Value was
provided, row 151 will not be read.

■ Row 154 has been flagged as LOCKED and will not be read. You can use this
reserved value if your table is in use by other processes.

Update a Sequencing Table
With this option, you are keeping track of the last-read rows in a separate sequence
table. Figure 4–20 shows the information you provide. The WHERE clause of your query
is updated automatically after you complete the configuration.

Figure 4–20 Adapter Configuration Wizard: Last Read IDs Table

Using these settings, your sequence table looks something like Figure 4–21.

The Adapter Configuration Wizard

Oracle Application Server Adapter for Databases 4-31

Figure 4–21 Updating a Sequence Table

Whenever a row is read, this table is updated with the ID that was just read. Then
when the next polling event occurs, it will search for rows that have an ID greater than
the last-read ID (154).

Typical columns used are event_id, transaction_id, scn (system change
number), id, or last_updated. These columns typically have (monotonically)
increasing values, populated from a sequence number or sysdate.

Internal Processes at Design Time
This section describes happens internally at design time when you use the Adapter
Configuration Wizard to configure the database adapter.

Importing Tables
When you import a table, the offline table support of JDeveloper BPEL Designer
creates an offline snapshot of the database table. You can modify this offline version of
the table (for example, you can add a foreign key constraint) without affecting the real
database table. This creates a TopLink descriptor and associated Java source file for the
table, and all the attributes in the descriptor are automapped to their corresponding
database columns. The TopLink descriptor maps the Java class to the offline database
table.

Most typical data columns are mapped as direct-to-field mappings, meaning that the
value in the database column is directly mapped to the attribute. For example, a
SALARY column in the database is mapped to a salary attribute in the object model,
and that attribute contains the value of that column.

If foreign key constraints are already present in the imported tables, then relationship
mappings are autogenerated between the tables. To cover as many scenarios as
possible, two mappings are generated for every foreign key constraint encountered: a
one-to-one mapping from the source table to the target table, and a one-to-many
mapping in the opposite direction. After this is done, you are left with an OracleAS
TopLink Mapping Workbench project in your BPEL project.

When you have finished importing tables, you must select a root database table. In
doing so, you are actually selecting which TopLink descriptor stores the autogenerated
query.

Note: The Java classes that are created as part of the descriptor
generation process are never actually deployed with your process or
used at run time. They are present in the design time because
OracleAS TopLink Mapping Workbench is expecting each descriptor
to be associated with a Java class. When your process is deployed, the
mapping metadata is stored in toplink_mappings.xml.

Advanced Configuration

4-32 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Creating Relationships
When you create or remove a relationship, you are actually modifying the TopLink
descriptor mappings. Creating a new relationship does the following:

■ Creates a foreign key constraint in the offline database table

■ Adds a one-to-one or one-to-many mapping to the descriptor

■ Removes the direct-to-field mappings to the foreign key fields

Removing a relationship mapping does the following:

■ Removes the one-to-one or one-to-many mapping from the descriptor

■ Removes the foreign key constraint from the offline database table

■ Adds direct-to-field mappings for each foreign key field involved in the
relationship

Generating Design-Time Artifacts
The following files are generated:

■ service_name.wsdl—contains the database adapter service definition

■ RootTable.xsd—the XML type definition of the root object

■ toplink_mappings.xml—contains the TopLink mapping metadata for your
BPEL project. It is the only Toplink artifact that is deployed to the server.

Advanced Configuration
The Adapter Configuration Wizard generates everything you need to use the database
adapter as part of a BPEL process. The following sections describe what happens in
the background when you use the wizard, as well as performance considerations.

This section contains the following topics:

■ The OracleAS TopLink Mapping Workbench Project

■ Relational-to-XML Mappings (toplink_mappings.xml)

■ The Service Definition (WSDL)

■ XML Schema Definition (XSD)

■ Deployment

■ Performance

The OracleAS TopLink Mapping Workbench Project
The wizard works by creating an OracleAS TopLink Mapping Workbench project as
part of your BPEL process project. This TopLink project contains metadata for
mapping a database schema to objects/XML.

The TopLink mappings are stored in two formats. The toplink_mappings.mwp file
is your design time project, which you can edit visually in JDeveloper BPEL Designer.
In contrast, the toplink_mappings.xml file is an XML representation of your
project for use at run time. It is not as easy as editing the .bpel file, where there is
only one file, but you can toggle between Diagram View and Source.

Note the following:

Advanced Configuration

Oracle Application Server Adapter for Databases 4-33

■ Rather than edit the toplink_mappings.xml file directly, it is recommended
that you edit the toplink_mappings.mwp visually, and regenerate all the BPEL
artifacts to reflect the changes. You can do this by double-clicking the partner link
to open the Adapter Configuration Wizard in edit mode, and then clicking
through the wizard until you can click Finish. Changing the MWP version does
not update the XML version until you click through the wizard in edit mode..

■ When running the wizard, any changes that affect the TopLink project (importing
tables, creating or removing mappings, specifying an expression, and so on) are
applied immediately, and are not undone if you cancel the wizard.

Deleting a Descriptor
You cannot remove TopLink descriptors from your project from within the wizard
because removing descriptors can potentially affect other partner links that are sharing
that descriptor. To explicitly remove a descriptor, do the following:

■ Click the TopLink Mappings node under Application Sources under your project
in the Applications - Navigator.

■ Select the descriptor from the tree in the TopLink Mappings - Structure pane.

■ Right-click and select Remove.

Returning Partial Objects When Querying
Currently, the Adapter Configuration Wizard does not have built-in support for partial
object reading, that is, returning only specific fields from a table. To achieve this
functionality, you can manually unmap any attributes that you do not want to include
in the result set. Relationship mappings can be unmapped by removing them in the
Relationships window, but direct mappings must be explicitly unmapped on the
TopLink descriptor:

1. Click the TopLink Mappings node under Application Sources under your project
in the Applications - Navigator.

Advanced Configuration

4-34 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

2. Select the descriptor containing the attribute you want to unmap from the tree in
the TopLink Mappings - Structure pane.

3. Right-click the attribute you want to unmap and select Map As > Unmapped.

To remap the attribute, you can do the following:

1. Click the TopLink Mappings node under Application Sources under your project
in the Applications - Navigator.

2. Select the descriptor containing the attribute you want to remap from the tree in
the TopLink Mappings - Structure pane.

3. Right-click the attribute you want to remap and select Map As > Direct to Field.

The TopLink Mappings Editor automatically opens in the JDeveloper BPEL
Designer window.

4. From Database Field, select the column to which the attribute should be mapped.

Advanced Configuration

Oracle Application Server Adapter for Databases 4-35

Renaming a Mapping
Open the corresponding Java source file and change the name. Then go to the
structure/Mappings pane, and the newly named attribute will appear unmapped.
Right-click it and select Map As to remap it. Then save and regenerate BPEL artifacts.

Keep in mind there are four views, the project view, the table/descriptor view, and the
individual attribute/column view you can access from the TopLink Mappings
structure window. The Java source view is not exactly a TopLink view, but can be
treated as such (when renaming a mapping).

Configuring Offline Database Tables
Offline database tables are internal to the OracleAS TopLink Mapping Workbench
project. When you run the wizard, a TopLink project is created. When you import
tables, they are saved as offline table definitions.

You can use the offline database tables to control the micromapping from database
datatype to XML datatype. If you are using a third-party database, you may need to
edit these objects as a workaround. For instance, a serial field on a third-party
database may need to be mapped as Integer so that it is recognized by the wizard
and mapped to xs:integer.

Run the wizard once. Then add the following to your JDeveloper BPEL Designer
project: database/schemaName/schemaName.schema

Click the table name (see Figure 4–22) after it is added to your project and change the
types of any of the columns. When you run the wizard again (in edit mode) and click
Finish, the toplink_mappings.xml and XSD file are remapped based on the new
database datatypes.

Advanced Configuration

4-36 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 4–22 Configuring Offline Tables

Edit the offline table in your JDeveloper BPEL Designer project (see Figure 4–23), not
the table reachable from the ConnectionManager. If you try the latter, the column
types will not be editable, because you are editing the table itself, not an offline
representation of it.

Figure 4–23 Editing Offline Tables

Relational-to-XML Mappings (toplink_mappings.xml)
The database adapter is implemented using OracleAS TopLink. For every business
process, there is an underlying TopLink project, which contains metadata from
mapping a database schema to objects/XML.

In OracleAS TopLink terminology, toplink_mappings.xml is an XML deployment
file. It is generated from a.mwp project file for use at run time. It is recommended that

Advanced Configuration

Oracle Application Server Adapter for Databases 4-37

you edit the project in OracleAS TopLink Mapping Workbench and periodically
refresh toplink_mappings.xml.

The toplink_mappings.xml file is the run-time version of the OracleAS TopLink
Mapping Workbench project. If you edit this file directly, keep in mind that changes
are not reflected in the design-time toplink_mappings.mwp. Therefore, any changes
are lost when you edit a partner link.

The toplink_mappings.xml file consists of a set of descriptors and mappings.
Descriptors roughly represent a single table in the database schema, and mappings
represent either a single column in the table (direct to field), or a one-to-one or
one-to-many relationship to another table (foreign reference).

When modifying the toplink_mappings.xml file, the recommended approach is to
use OracleAS TopLink Mapping Workbench. The following is an example of a
mapping and a descriptor from a toplink_mappings.xml file.

<mappings>
 <database-mapping>
 <attribute-name>fname</attribute-name>
 <read-only>false</read-only>
 <field-name>ACTOR.FNAME</field-name>
 <attribute-classification>java.lang.String</attribute-classification>
 <type>oracle.toplink.mappings.DirectToFieldMapping</type>
 </database-mapping>

and:

<descriptor>
 <java-class>BusinessProcess.Actor</java-class>
 <tables>
 <table>ACTOR</table>
 </tables>
 <primary-key-fields>
 <field>ACTOR.ID</field>
 <field>ACTOR.PROGRAM_ID</field>
 <field>ACTOR.PROGRAM_TYPE</field>
 </primary-key-fields>

However, the recommended approach is to work from the OracleAS TopLink Mapping
Workbench.

Useful attributes on foreign reference mappings (one-to-one, one-to-many) include:

■ <privately-owned>false/true

If a relationship is privately owned, that means that any target rows are deleted
whenever any source rows are deleted.

This is important for one-to-many relationships because, if you remove Dept
without first deleting its Emp rows, you get a 'child records found' constraint
exception.

If you set privately-owned to true, the database adapter automatically deletes
child records before deleting source rows. In XML everything is assumed to be
privately owned; therefore, this tag is set to true by default.

■ <uses-batch-reading>false/true and <uses-joining>false/true

There are two key optimizations in relation to reading rows with detail rows from
the database.

Advanced Configuration

4-38 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

The following shows the series of selects that OracleAS TopLink uses to read two
department objects (1 and 2), and their employees:

Unoptimized:

SELECT DEPT_COLUMNS FROM DEPT WHERE (subQuery)
SELECT EMP_COLUMNS FROM EMP WHERE (DEPTID = 1)
SELECT EMP_COLUMNS FROM EMP WHERE (DEPTID = 2)

Batch Reading:

SELECT DEPT_COLUMNS FROM DEPT WHERE (subQuery)
SELECT EMP_COLUMNS FROM EMP e, DEPT d WHERE ((subQuery) AND (e.DEPTID =
d.DEPTID))

Joined Reading:

SELECT DEPT_COLUMNS, EMP_COLUMNS FROM DEPT d, EMP e WHERE ((subQuery) AND
(e.DEPTID = d.DEPTID))

Joined reading appears to be the more advanced, but only works for one-to-one
mappings currently, and the detail record cannot be null because the join is not an
outer join.

Therefore, by default, batch reading is enabled, but not joined reading. This can
easily be reversed to improve performance.

If you specify raw SQL for a query, that query cannot be a batched or joined read.
To use batched or joined reading, you must not use raw SQL.

You can set other properties in toplink_mappings.xml.

The Service Definition (WSDL)
The WSDL generated by the Adapter Configuration Wizard defines the adapter
service. This WSDL specifies the various operations exposed by the service. Table 4–10
specifies the operations that are generated based on your selection in the wizard.

Of the preceding operations, receive is associated with a BPEL receive activity,
whereas the rest of the preceding operations are associated with a BPEL invoke
activity.

See "SQL Operations as Web Services" on page 4-8 for more information on the
preceding operations.

This section discusses the database adapter-specific parameters in the generated
WSDL. This is intended for advanced users who want information about all the
parameters in the generated WSDL.

Table 4–10 WSDL Operations Generated by the Adapter Configuration Wizard

Adapter Configuration
Wizard Selection Generated WSDL Operation

Insert or Update insert, update, merge, write, queryByExample

Delete delete, queryByExample

Select serviceNameSelect, queryByExample

Poll for New or Changed
Records in a Table

receive

Advanced Configuration

Oracle Application Server Adapter for Databases 4-39

A given database adapter service is meant for either continuous polling of a data
source (translates to a JCA Activation) or for performing a one-time DML operation
(translates to a JCA Interaction). In the continuous polling case, the WSDL contains
only one receive operation with a corresponding activation spec defined in the binding
section. In the one-time DML operation case, the WSDL contains multiple operations,
all of which have a corresponding interaction spec defined in the binding section.

Table 4–11 specifies the JCA Activation/Interaction spec associated with each of the
preceding operations:

DBWriteInteractionSpec
The following code example shows the binding section corresponding to the movie
service to write to the Movies table:

 <binding name="movie_binding" type="tns:movie_ptt">
 <jca:binding />
 <operation name="merge">
 <jca:operation
 InteractionSpec="oracle.tip.adapter.db.DBWriteInteractionSpec"
 DescriptorName="BPELProcess1.Movies"
 DmlType="merge"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </operation>
 <operation name="insert">
 <jca:operation
 InteractionSpec="oracle.tip.adapter.db.DBWriteInteractionSpec"
 DescriptorName="BPELProcess1.Movies"
 DmlType="insert"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </operation>
 <operation name="update">
 <jca:operation
 InteractionSpec="oracle.tip.adapter.db.DBWriteInteractionSpec"
 DescriptorName="BPELProcess1.Movies"
 DmlType="update"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </operation>
 <operation name="write">
 <jca:operation
 InteractionSpec="oracle.tip.adapter.db.DBWriteInteractionSpec"
 DescriptorName="BPELProcess1.Movies"
 DmlType="write"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </operation>
 <operation name="delete">
 <jca:operation

Table 4–11 Operation and JCA Activation/Interaction Spec

WSDL Operation JCA Activation/Interaction Spec

insert, update, merge,
write, delete

oracle.tip.adapter.db.DBWriteInteractionSpec

select, queryByExample oracle.tip.adapter.db.DBReadInteractionSpec

receive oracle.tip.adapter.db.DBActivationSpec

Advanced Configuration

4-40 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 InteractionSpec="oracle.tip.adapter.db.DBWriteInteractionSpec"
 DescriptorName="BPELProcess1.Movies"
 DmlType="delete"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </binding>

Table 4–12 describes the DBWriteInteractionSpec parameters:

DBReadInteractionSpec
The following code example corresponds to the movie service to query the Movies
table:

 <binding name="movie_binding" type="tns:movie_ptt">
 <jca:binding />
 <operation name="movieSelect">
 <jca:operation
 InteractionSpec="oracle.tip.adapter.db.DBReadInteractionSpec"
 DescriptorName="BPELProcess1.Movies"
 QueryName="movieSelect"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </operation>
 <operation name="queryByExample">
 <jca:operation
 InteractionSpec="oracle.tip.adapter.db.DBReadInteractionSpec"
 DescriptorName="BPELProcess1.Movies"
 IsQueryByExample="true"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </operation>
 </binding>

Table 4–13 describes the DBReadInteractionSpec parameters:

Table 4–12 DBWriteInteractionSpec Parameters

Parameter Description Mechanism to Update

DescriptorName Indirect reference to the root database table that
is being written to

Wizard updates automatically. Do
not modify this manually.

DmlType The DML type of the operation (insert,
update, merge, write)

Wizard updates automatically. Do
not modify this manually.

MappingsMetaDataURL Reference to file containing relational-to-XML
mappings (toplink_mappings.xml)

Wizard updates automatically. Do
not modify this manually.

Table 4–13 DBReadInteractionSpec Parameters

Parameter Description Mechanism to Update

DescriptorName Indirect reference to the root database table that
is being queried

Wizard updates automatically. Do
not modify this manually.

Advanced Configuration

Oracle Application Server Adapter for Databases 4-41

DBActivationSpec
The following code example shows the binding section corresponding to the
MovieFetch service to poll the Movies table using DeletePollingStrategy:

 <binding name="MovieFetch_binding" type="tns:MovieFetch_ptt">
 <pc:inbound_binding/>
 <operation name="receive">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.db.DBActivationSpec"
 DescriptorName="BPELProcess1.Movies"
 QueryName="MovieFetch"
 PollingStrategyName="DeletePollingStrategy"
 MaxRaiseSize="1"
 MaxTransactionSize="unlimited"
 PollingInterval="5"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </operation>
 </binding>

Table 4–14 describes the DBActivationSpec parameters:

The following code example is the binding section corresponding to the MovieFetch
service to poll the Movies table using LogicalDeletePollingStrategy:

QueryName Reference to the SELECT query inside the
relational-to-XML mappings file

Wizard updates automatically. Do
not modify this manually.

IsQueryByExample Indicates if this query is a queryByExample or
not

Wizard updates automatically. Do
not modify this manually. This
parameter is needed for
queryByExample only.

MappingsMetaDataURL Reference to file containing relational-to-XML
mappings (toplink_mappings.xml)

Wizard updates automatically. Do
not modify this manually.

Table 4–14 DBActivationSpec Parameters

Parameter Description Mechanism to Update

DescriptorName Indirect reference to the root database table that
is being queried

Wizard updates automatically. Do
not modify this manually.

QueryName Reference to the SELECT query inside the
relational-to-XML mappings file

Wizard updates automatically. Do
not modify this manually.

PollingStrategyName Indicates the polling strategy to be used Wizard updates automatically. Do
not modify this manually.

PollingInterval Indicates how often to poll the root database
table for new events (in seconds)

Wizard updates automatically. Do
not modify this manually.

MaxRaiseSize Indicates the maximum number of XML records
that can be raised at a time to the BPEL engine

Modify manually in the generated
WSDL.

MaxTransactionSize Indicates the maximum number of rows to
process as part of one database transaction

Modify manually in the generated
WSDL.

MappingsMetaDataURL Reference to file containing relational-to-XML
mappings (toplink_mappings.xml)

Wizard updates automatically. Do
not modify this manually.

Table 4–13 (Cont.) DBReadInteractionSpec Parameters

Parameter Description Mechanism to Update

Advanced Configuration

4-42 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 <binding name="PollingLogicalDeleteService_binding"
 type="tns:PollingLogicalDeleteService_ptt">
 <pc:inbound_binding/>
 <operation name="receive">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.db.DBActivationSpec"
 DescriptorName="PollingLogicalDeleteStrategy.Movies"
 QueryName="PollingLogicalDeleteService"
 PollingStrategyName="LogicalDeletePollingStrategy"
 MarkReadFieldName="DELETED"
 MarkReadValue="TRUE"
 MarkReservedValue="MINE"
 MarkUnreadValue="FALSE"
 MaxRaiseSize="1"
 MaxTransactionSize="unlimited"
 PollingInterval="10"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </operation>
 </binding>

Table 4–15 describes all of the additional DBActivationSpec parameters for
LogicalDeletePollingStrategy:

The following code example shows the binding section corresponding to the
MovieFetch service to poll the Movies table using
SequencingPollingStrategy:

 <binding name="PollingLastReadIdStrategyService_binding"
 type="tns:PollingLastReadIdStrategyService_ptt">
 <pc:inbound_binding/>
 <operation name="receive">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.db.DBActivationSpec"
 DescriptorName="PollingLastReadIdStrategy.Movies"
 QueryName="PollingLastReadIdStrategyService"
 PollingStrategyName="SequencingPollingStrategy"
 SequencingFieldName="SEQUENCENO"
 SequencingTableNameFieldValue="MOVIES"
 SequencingTableName="PC_SEQUENCING"

Table 4–15 DBActivationSpec Parameters for LogicalDeletePollingStrategy

Parameter Description Mechanism to Update

MarkReadFieldName Specifies the database column to use to
mark the row as read

Wizard updates automatically. Do not
modify this manually.

MarkReadValue Specifies the value to which the database
column is set to mark the row as read

Wizard updates automatically. Do not
modify this manually.

MarkReservedValue Specifies the value to which the database
column is set to mark the row as reserved.
This parameter is optional. You can use it
when multiple adapter instances are
providing the same database adapter
service.

Wizard updates automatically. Do not
modify this manually.

MarkUnreadValue Specifies the value to which the database
column is set to mark the row as unread.
This parameter is optional. Use it when you
want to indicate specific rows that the
database adapter must process.

Wizard updates automatically. Do not
modify this manually.

Advanced Configuration

Oracle Application Server Adapter for Databases 4-43

 SequencingTableNameFieldName="TABLE_NAME"
 SequencingTableValueFieldName="LAST_READ_ID"
 MaxRaiseSize="1"
 MaxTransactionSize="unlimited"
 PollingInterval="10"
 MappingsMetaDataURL="toplink_mappings.xml" />
 <input/>
 </operation>
 </binding>

Table 4–16 describes all of the additional DBActivationSpec parameters for
SequencingPollingStrategy:

See "Deployment" on page 4-44 for details about the service section of the WSDL.

XML Schema Definition (XSD)
From a database schema, the wizard generates an XML schema representation of that
object. This schema is used by the BPEL process.

For example, from the table named Movies, the following is generated:

<?xml version = '1.0' encoding = 'UTF-8'?>
<xs:schema
targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/db/top/SelectAllByTitle"
xmlns="http://xmlns.oracle.com/pcbpel/adapter/db/top/SelectAllByTitle"
elementFormDefault="unqualified" attributeFormDefault="unqualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="MoviesCollection" type="MoviesCollection"/>
 <xs:element name="Movies" type="Movies"/>
 <xs:complexType name="MoviesCollection">
 <xs:sequence>
 <xs:element name="Movies" type="Movies" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>

Table 4–16 DBActivationSpec Parameters for SequencingPollingStrategy

Parameter Description Mechanism to update

SequencingFieldName Specifies the database column that is
monotonically increasing

Wizard updates automatically. Do
not modify this manually.

SequencingFieldType Specifies the type of the database
column that is monotonically
increasing. This parameter is
optional. Use it if the type is not
NUMBER.

Wizard updates automatically. Do
not modify this manually.

SequencingTableNameFieldValue Specifies the root database table for
this polling query

Wizard updates automatically. Do
not modify this manually.

SequencingTableName Name of the database table that is
serving as the helper table

Wizard updates automatically. Do
not modify this manually.

SequencingTableNameFieldName Specifies the database column in the
helper table that is used to store the
root database table name

Wizard updates automatically. Do
not modify this manually.

SequencingTableValueFieldName Specifies the database column in the
helper table that is used to store the
sequence number of the last
processed row in the root database
table name

Wizard updates automatically. Do
not modify this manually.

Advanced Configuration

4-44 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 </xs:complexType>
 <xs:complexType name="Movies">
 <xs:sequence>
 <xs:element name="director" type="xs:string" minOccurs="0"
 nillable="true"/>
 <xs:element name="genre" type="xs:string" minOccurs="0" nillable="true"/>
 <xs:element name="rated" type="xs:string" minOccurs="0" nillable="true"/>
 <xs:element name="rating" type="xs:string" minOccurs="0"
 nillable="true"/>
 <xs:element name="releaseDate" type="xs:dateTime" minOccurs="0"
 nillable="true"/>
 <xs:element name="runTime" type="xs:double" minOccurs="0"
 nillable="true"/>
 <xs:element name="starring" type="xs:string" minOccurs="0"
 nillable="true"/>
 <xs:element name="status" type="xs:string" minOccurs="0"
 nillable="true"/>
 <xs:element name="synopsis" type="xs:string" minOccurs="0"
 nillable="true"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="totalGross" type="xs:double" minOccurs="0"
 nillable="true"/>
 <xs:element name="viewerRating" type="xs:string" minOccurs="0"
 nillable="true"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="findAllInputParameters" type="findAll"/>
 <xs:complexType name="findAll">
 <xs:sequence/>
 </xs:complexType>
 <xs:element name="SelectAllByTitleServiceSelect_titleInputParameters"
type="SelectAllByTitleServiceSelect_title"/>
 <xs:complexType name="SelectAllByTitleServiceSelect_title">
 <xs:sequence>
 <xs:element name="title" type="xs:string" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

This is a generated file. Changes to this file do not affect the behavior of the adapter. It
is a declaration of the XML file that the database adapter produces and consumes.

You may need to modify the XSD file if you update the underlying toplink_
mappings.xml. In that case, regenerate both files by rerunning the Adapter
Configuration Wizard in edit mode.

The generated XSD flags all elements as optional with minOccurs=0, except for the
primary key attributes, which are mandatory.

Deployment
The database adapter service that has been configured thus far is deployable as part of
a business process. It is currently not deployable as a standalone. To deploy the
adapter service, deploy the corresponding business process from Oracle BPEL Process
Manager. Before you deploy, understand which run-time connection the adapter
service will use and ensure that it is valid.

Note: Do not manually modify the XSD file to configure the database
adapter.

Advanced Configuration

Oracle Application Server Adapter for Databases 4-45

The adapter service WSDL refers to the run-time connection configured in the
deployment descriptor of the database adapter. (In Oracle Application Server, it is
oc4j-ra.xml). The relevant code example for the service WSDL follows:

<!-- Your runtime connection is declared in
J2EE_HOME/application-deployments/default/DbAdapter/oc4j-ra.xml.
These 'mcf' properties here are from your design time connection and save you from having to edit
that file and restart the application server if eis/DB/scott is missing.
These 'mcf' properties are safe to remove.
-->
<service name="get">
 <port name="get_pt" binding="tns:get_binding">
 <jca:address location="eis/DB/scott"
 UIConnectionName="scott"
 ManagedConnectionFactory="oracle.tip.adapter.db.DBManagedConnectionFactory"
 mcf.DriverClassName="oracle.jdbc.driver.OracleDriver"
 mcf.PlatformClassName="oracle.toplink.oraclespecific.Oracle9Platform"
 mcf.ConnectionString="jdbc:oracle:thin:@mypc.home.com:1521:orcl"
 mcf.UserName="scott"
 mcf.Password="7347B141D0FBCEA077C118A5138D02BE"
 />
 </port>
</service>

Note the following about the preceding deployment-related code example:

■ The attribute location points to the run-time connection that is used at run time
after the service is deployed. The location attribute links up to the database server
JNDI name, which you may remember from the wizard.

■ The run-time connection information corresponding to the given location value
is specified in the adapter deployment descriptor (oc4j-ra.xml) file.

– If the location specified in the WSDL exists in the oc4j-ra.xml file, then
the database adapter uses the run-time connection information under the
corresponding location entry in the oc4j-ra.xml file.

– If the location specified in the WSDL does not exist in the oc4j-ra.xml
file, then you have the following options:

* Add a new entry to oc4j-ra.xml and specify the connection
information. Restart the Oracle BPEL Server and deploy the business
process (recommended).

* The modeled service functions normally if the run-time connection is the
same as the design-time connection. All connection information is
captured in the WSDL, as shown in the preceding code example in the
mcf.* parameters. However, the database adapter runs in nonmanaged
mode if you use this option, which is provided for development and
testing. For production, use the recommended option.

The entry in the oc4j-ra.xml file is not generated by the wizard. You must manually
update this file and restart the BPEL PM server for this to take effect. This file is
created by the application server the first time Oracle BPEL Server comes up.
Therefore, in a standalone installation, you do not see this file unless you start Oracle
BPEL Server at least once.

Note: You must restart Oracle BPEL Server for updates in
oc4j-ra.xml to take effect.

Advanced Configuration

4-46 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Location of the oc4j-ra.xml File
For the Oracle BPEL Process Manager for Developers installation, oc4j-ra.xml is at

Oracle_Home\integration\orabpel\system\appserver\oc4j\j2ee\home\
application-deployments\default\DbAdapter\oc4j-ra.xml

For the Oracle BPEL Process Manager for OracleAS Middle Tier installation,
oc4j-ra.xml is at

Oracle_Home\j2ee\OC4J_BPEL\application-deployments\default\DBAdapter\oc4j-ra.xml

A sample entry from the oc4j-ra.xml file follows:

<connector-factory location="eis/DB/DBConnection1" connector-name="Database
Adapter">
<config-property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
<config-property name="connectionString"
 value="jdbc:oracle:thin:@localhost:1521:orcl"/>
<config-property name="userName" value="scott"/>
<config-property name="password" value="tiger"/>
<config-property name="minConnections" value="5"/>
<config-property name="maxConnections" value="5"/>
<config-property name="minReadConnections" value="1"/>
<config-property name="maxReadConnections" value="1"/>
<config-property name="usesExternalConnectionPooling" value="false"/>
<config-property name="dataSourceName" value=""/>
<config-property name="usesExternalTransactionController" value="false"/>
<config-property name="platformClassName"
 value="oracle.toplink.internal.databaseaccess.Oracle9Platform"/>
<config-property name="usesNativeSequencing" value="true"/>
<config-property name="sequencePreallocationSize" value="50"/>
<config-property name="tableQualifier" value=""/>
</connector-factory>

The properties specified in the connection factory use OracleAS TopLink by translating
to roughly 40 properties of an underlying TopLink login object. This is the equivalent
of the OracleAS TopLink sessions.xml file.

Table 4–17, Table 4–18, and Table 4–19 show the configuration properties available to
configure the run-time connection.

Table 4–17 Run-Time Connection Configuration Properties

Parameter Description Mechanism to Update

driverClassName Name of the Java class for the JDBC
driver being used

See "Third-Party Database
Support" on page 4-52 for more
information.

connectionString JDBC Connection String See "Third-Party Database
Support" on page 4-52 for more
information.

userName Database login name -

password Database login password -

Advanced Configuration

Oracle Application Server Adapter for Databases 4-47

If the application server connection pool is used, then most connection properties in
this class are managed elsewhere.

Table 4–20 shows the advanced properties, which are database platform variables. Set
the DatabasePlatform name to one of the following variables.

Table 4–18 OracleAS TopLink Connection Pooling for the Database Adapter

Parameter Description Mechanism to Update

minConnections Minimum number of connections in
the pool

This is to use the adapter's local
Toplink connection pool.

maxConnections Maximum number of connections in
the pool

This is to use the adapter's local
Toplink connection pool.

minReadConnections Minimum number of read-only
connections in the pool

This is to use the adapter's local
Toplink connection pool.

maxReadConnections Maximum number of read-only
connections in the pool

This is to use the adapter's local
Toplink connection pool.

Table 4–19 Application Server Connection Pooling

Parameter Description Mechanism to Update

dataSourceName Points to the data source
configured in the application
server

Use the application server
connection pooling, for
example:
java:comp/env/jdbc/myDa
taSourceName

usesExternalConnectionPooling Use application server's connection
pooling

Use the application server
connection pooling.

usesExternalTransactionController Indicates if the application server's
connection pool is managed or not

Use the application server
connection pooling.

platformClassName Indicates the database platform
(see Table 4–20)

-

usesNativeSequencing Indicates whether to use native
database sequencing or not

-

sequencePreallocationSize This corresponds to the
INCREMENT BY value on the
native database sequence

-

tableQualifier Schema name to be used if the
table names are not qualified in
toplink_mappings.xml

Obsolete, because the wizard
qualifies table names as it
generates them.

Table 4–20 Application Server Connection Pooling

Database PlatformClassName

Oracle9+ (including 10g) oracle.toplink.oraclespecific.Oracle9Platform

Oracle8 oracle.toplink.internal.databaseaccess.OraclePlatform

Oracle7 oracle.toplink.internal.databaseaccess.DB2Platform

DB2 oracle.toplink.internal.databaseaccess.DB2Platform

AS400 oracle.toplink.internal.databaseaccess.DB2Platform

Informix oracle.toplink.internal.databaseaccess.InformixPlatform

Advanced Configuration

4-48 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Advanced Properties
The following properties are configurable by using the managed connection factory
entry in the oc4j-ra.xml file:

String connectionString
String userName
String password
String encryptionClassName
Integer minConnections
Integer maxConnections
Boolean useReadConnectionPool
Integer minReadConnections
Integer maxReadConnections
String dataSourceName
String driverClassName
Integer cursorCode
String databaseName
String driverURLHeader
Integer maxBatchWritingSize
String platformClassName
String sequenceCounterFieldName
String sequenceNameFieldName
Integer sequencePreallocationSize
String sequenceTableName
String serverName
Boolean shouldBindAllParameters
Boolean shouldCacheAllStatements
Boolean shouldIgnoreCaseOnFieldComparisons
Boolean shouldForceFieldNamesToUpperCase
Boolean shouldOptimizeDataConversion
Boolean shouldTrimStrings
Integer statementCacheSize
Integer stringBindingSize
String tableQualifier
Integer transactionIsolation
Boolean usesBatchWriting
Boolean usesByteArrayBinding
Boolean usesDirectDriverConnect
Boolean usesExternalConnectionPooling
Boolean usesExternalTransactionController
Boolean usesJDBCBatchWriting
Boolean usesNativeSequencing
Boolean usesNativeSQL
Boolean usesStreamsForBinding
Boolean usesStringBinding

The following properties appear in the
oracle.toplink.sessions.DatabaseLogin object.

See OracleAS TopLink API reference information on DBConnectionFactory
Javadoc and DatabaseLogin Javadoc at

Sybase oracle.toplink.internal.databaseaccess.SybasePlatform

SQLServer oracle.toplink.internal.databaseaccess.SQLServerPlatform

Any other database oracle.toplink.internal.databaseaccess.DatabasePlatform

Table 4–20 (Cont.) Application Server Connection Pooling

Database PlatformClassName

Advanced Configuration

Oracle Application Server Adapter for Databases 4-49

http://download-east.oracle.com/docs/cd/B10464_02/web.904/b10491/index.html

To configure any of the preceding properties:

1. Add the following to the ra.xml file:

<config-property>
 <config-property-name>usesJDBCBatchWriting</config-property-name>
 <config-property-type>java.lang.Boolean</config-property-type>
 <config-property-value>true</config-property-value>
 </config-property>

For Oracle BPEL Process Manager for Developers, ra.xml is at

Oracle_Home\integration\orabpel\system\appserver\oc4j\j2ee\home\connectors\
DbAdapter\DbAdapter\META-INF\ra.xml

For Oracle BPEL Process Manager for OracleAS Middle Tier, ra.xml is at

Oracle_Home\j2ee\OC4J_BPEL\connectors\DbAdapter\DbAdapter\META-INF\ra.xml

2. Add the following to the oc4j-ra.xml file:

 <config-property name="usesJDBCBatchWriting" value="true"/>

3. Restart Oracle BPEL Server for the changes to take effect.

You can also update the factory default oc4j-ra.xml and ra.xml files before you
deploy the database adapter. This way, you need only deploy once and do not need to
restart the application server.

Performance
The database adapter is preconfigured with many performance optimizations. You
can, however, make some changes to reduce the number of round trips to the
database, as described in the following sections.

Outbound Write: Should You Use Merge, Write, or Insert?
If you run through the Adapter Configuration Wizard and select Insert or Update, you
get a WSDL with the following operations: merge (default), insert, update, and
write. The latter three call TopLink queries of the same name, avoiding advanced
functionality that you may not need for straightforward scenarios. You can make the
change by double-clicking an invoke activity and selecting a different operation. The
merge is the most expensive, followed by the write and then the insert.

The merge first does a read of every element and calculates what has changed. If a
row has not changed, it is not updated. The extra reads (for existence) and the complex
change calculation add considerable overhead. For simple cases, this can be safely
avoided; that is, if you changed only two columns, it does not matter if you update all
five anyway. For complex cases, however, the opposite is true. If you have a master
record with 100 details, but you changed only two columns on the master and two on
one detail, the merge updates those four columns on two rows. A write does a write
of every column in all 101 rows. Also, the merge may appear slower, but can actually
relieve pressure on the database by minimizing the number of writes.

The insert operation is the most performant because it uses no existence check and
has no extra overhead. You have no reads, only writes. If you know that you will do an
insert most of the time, try an insert, and catch a Unique Key Constraint SQL
exception inside your BPEL process, which can then perform a merge or update
instead. For simple schemas this makes sense, but a merge is good if you have a mix

Advanced Configuration

4-50 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

of new and existing objects (for instance, a master row containing several new details).
The update is similar to the insert.

To monitor performance, you can enable debug logging and then watch the SQL for
various inputs.

The OracleAS TopLink Cache: When Should You Use It?
Caching is an important performance feature of OracleAS TopLink. However, issues
with stale data can be difficult to manage. By default, the database adapter uses a
WeakIdentityMap, meaning a cache is used only to resolve cyclical references, and
entries are quickly reclaimed by the Java virtual machine. If you have no cycles (and
you ideally should not for XML), you can switch to a NoIdentityMap. The TopLink
default is a SoftCacheWeakIdentityMap. This means that the most frequently used
rows in the database are more likely to appear already in the cache.

For a knowledge article on caching, go to

http://www.oracle.com/technology/tech/java/newsletter/november04.html

Existence Checking
One method of performance optimization for merge is to eliminate check database
existence checking. The existence check is marginally better if the row is new, because
only the primary key is returned, not the entire row. But, due to the nature of merge, if
the existence check passes, the entire row must be read anyway to calculate what
changed. Therefore, for every row to be updated, you see one extra round trip to the
database during merge.

It is always safe to use check cache on the root descriptor/table and any child tables if
A is master and B is a privately owned child. If A does not exist, B cannot exist. And if
A exists, all its Bs are loaded as part of reading A; therefore, check cache works.

Inbound (Polling): maxRaiseSize
On read (inbound) you can set maxRaiseSize = 0 (unbounded), meaning that if
you read 1000 rows, you will create one XML with 1000 elements, which is passed
through a single Oracle BPEL Process Manager instance. A merge on the outbound
side can then take all 1000 in one group and write them all at once with batch writing.

Inbound (Polling): Choosing a Polling Strategy
Your choice of polling strategy matters too. Avoid the delete polling strategy because it
must individually delete each row. The sequencing polling strategy can destroy 1000
rows with a single update to a helper table.

Relationship Reading (Batch Attribute and Joined Attribute Reading)
Batch reading of one-to-many and one-to-one relationships is on by default. You can
also use joined reading for one-to-one relationships instead, which may offer a slight
improvement.

Connection Pooling
You can configure a connection pool if using either the adapter's local connection pool
or an application server data source. Creating a database connection is an expensive
operation. Ideally you should only exceed the minConnections under heavy loads.
If you are consistently using more connections than that at once, then you may spend a
lot of time setting up and tearing down connections. The database adapter also has a
read connection pool. A read connection is more performant because there is no limit

Advanced Configuration

Oracle Application Server Adapter for Databases 4-51

on how many users can use one connection for reading at the same time, a feature that
most JDBC drivers support.

Inbound Distributed Polling
The database adapter is designed to scale to the number of unprocessed rows on the
database. By default, it is possible to read and process one database row or 10,000 with
as little as three round trips to the database. The most expensive operations are limited
to a constant number. You can also configure the database adapter for a distributed
environment.

Concurrency Control: Pessimistic Locking You can set a simple option that enables the
database adapter to work safely in a distributed environment by making the first
polling query acquire locks, as shown in Figure 4–24. In SQL terms, you are making
your first SELECT into a SELECT...FOR UPDATE.

Figure 4–24 Acquiring Locks

The behavior of all polling strategies is as follows:

1. Read all unprocessed rows.

2. Process those rows.

3. Commit.

If any adapter instance performs step 1 while another instance is between steps 1 and
3, then duplicate processing occurs. Acquiring locks on the first operation and
releasing them in commit solves this problem, and may naturally order the polling
instances.

To enable pessimistic locking, run through the wizard once to create an inbound
polling query. In the Applications Navigator window, expand Application Sources,
then TopLink, and click TopLink Mappings. In the Structure window, click the table
name. In Diagram View, click the following tabs: TopLink Mappings, Queries,

Third-Party Database Support

4-52 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Named Queries, Options; then the Advanced… button, and then Pessimistic Locking
and Acquire Locks. You see the message, “Set Refresh Identity Map Results?" If a
query uses pessimistic locking, it must refresh the identity map results. Click OK
when you see the message, "Would you like us to set Refresh Identity Map Results and
Refresh Remote Identity Map Results to true?” Run the wizard again to regenerate
everything. In the new toplink_mappings.xml file, you see something like this for
the query: <lock-mode>1</lock-mode>.

Note the following:

■ The preceding procedure works in conjunction with every polling strategy where
the first operation is a read.

■ For the sequencing-based polling strategies, the SELECT FOR UPDATE is applied
to the SELECT on the helper table only. The SELECT on the polled table does not
acquire locks because you do not have write access to those tables.

■ If an adapter instance fails while polling records, those records are returned to the
unprocessed pool (no commit happens).

■ No individual adapter instance is special. In an ideal distributed system,
coordination between instances is minimal (here effected with locking). No master
acts as a weak link, and every part is identically configured and interchangeable.

■ Other than the SELECT FOR UPDATE, no extra reads or writes are performed by
the database adapter in a distributed environment.

Load Balancing: MaxTransactionSize and Pessimistic Locking After you enable pessimistic
locking on a polling query, the maxTransactionSize activation property
automatically behaves differently.

Assume that there are 10,000 rows at the start of a polling interval and that
maxTransactionSize is 100. In standalone mode, a cursor is used to iteratively read
and process 100 rows at a time until all 10,000 have been processed, dividing the work
into 10,000 / 100 = 100 sequential transactional units. In a distributed environment, a
cursor is also used to read and process the first 100 rows. However, the adapter
instance will release the cursor, leaving 9,900 unprocessed rows (or 99 transactional
units) for the next polling interval or another adapter instance.

For load balancing purposes, it is dangerous to set the maxTransactionSize too
low in a distributed environment (where it becomes a speed limit). It is best to set the
maxTransactionSize close to the per CPU throughput of the entire business
process. This way, load balancing occurs only when you need it.

Third-Party Database Support
The following sections discuss how to connect to a third-party database.

This section contains the following topics:

■ Design Time

■ Run Time

Note: You can use one vendor’s database for design time and
another for run time because BPEL processes are database-platform
neutral.

Third-Party Database Support

Oracle Application Server Adapter for Databases 4-53

Design Time
Table 4–21 provides information for connecting to some common third-party
databases.

To create a database connection when using a third-party JDBC driver:

1. Select Connection Navigator from View.

2. Right-click Database and select New Database Connection.

3. Click Next in the Welcome window.

4. Enter a connection name.

5. Select Third Party JDBC Driver from Connection Type.

6. Enter your username, password, and role information.

7. Click New for Driver Class.

8. Enter the driver name (for example, some.jdbc.Driver) for Driver Class.

9. Click New for Library.

10. Click Edit to add each JAR file of your driver to Class Path.

11. Click OK twice to exit the Create Library windows.

12. Click OK to exit the Register JDBC Driver window.

13. Enter your connection string name for URL and click Next.

The connection URL varies across database vendors. Some sample entries appear
in the deployment descriptor file (oc4j-ra.xml). See "Deployment" on page 4-44
for file location information.

14. Click Test Connection.

15. If the connection is successful, then click Finish.

Table 4–21 Information for Connecting to Third-Party Databases

Database URL Driver Class Driver Jar

Oracle URL:
jdbc:oracle:thin:@local
host:1521:orcl

oracle.jdbc.driver.Orac
leDriver

classes12.jar

DB2 (net driver)
jdbc:db2:localhost:NAME

(net driver)
COM.ibm.db2.jdbc.net.DB
2Driver

v8.1 (net driver)
.\IBM-net\db2java_
81.zip, db2jcc_81.jar

Stored Procedure and Function Support

4-54 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Run Time
At run time, you must put the driver JAR files in the application server class path. You
can do this in the following ways:

■ Edit the class path in the following files:

(standalone) Oracle_
Home/integration/orabpel/system/appserver/oc4j/j2ee/home/config/application.xml

(regular middle tier) Oracle_Home/j2ee/OC4J_BPEL/config/application.xml

■ Drop the JAR files into the following directories:

(standalone) Oracle_
Home/integration/orabpel/system/appserver/oc4j/j2ee/home/applib

(regular middle tier) Oracle_Home/j2ee/OC4J_BPEL/applib

Stored Procedure and Function Support
This section describes how the database adapter supports the use of stored procedures
and functions for Oracle databases only.

This section contains the following topics:

■ Design Time: Using the Adapter Configuration Wizard

SQL Server (MS JDBC driver)
jdbc:microsoft:sqlserve
r://localhost\\NAME:143
3;SelectMethod=cursor;d
atabasename=???

(DataDirect driver)
jdbc:oracle:sqlserver:/
/localhost

(MS JDBC driver)
com.microsoft.jdbc.sqls
erver.SQLServerDriver

(DataDirect driver)
com.oracle.ias.jdbc.sql
server.SQLServerDriver

(MS JDBC driver)
.\SQLServer2000\msbase.
jar, msutil.jar,
mssqlserver.jar

(DataDirect driver)
.\DataDirect\YMbase.jar
, YMoc4j.jar,
YMutil.jar,
YMsqlserver.jar

Sybase (jconn driver)
jdbc:sybase:Tds:localho
st:5001/NAME

(DataDirect driver)
jdbc:oracle:sybase://lo
calhost:5001

(jconn driver)
com.sybase.jdbc2.jdbc.S
ybDriver

(DataDirect driver)
com.oracle.ias.jdbc.syb
ase.SybaseDriver

(jconn driver)
.\Sybase-jconn\jconn2.j
ar

(DataDirect driver)
.\DataDirect\YMbase.jar
, YMoc4j.jar,
YMutil.jar,
YMsybase.jar

Oracle Olite
Database

URL:
jdbc:polite4:@localhost
:100:orabpel

Driver Class:
oracle.lite.poljdbc.POL
JDBCDriver

Oracle_
Home\integration\orabpe
l\lib\olite40.jar

Note: To create an Oracle Lite database connection, follow the steps
for a third-party JDBC driver exactly (because the existing wizard and
libraries for the Oracle Lite database are not what you expect and
require extra configuration). Table 4–21 provides information for
connecting to an Oracle Lite database.

Table 4–21 (Cont.) Information for Connecting to Third-Party Databases

Database URL Driver Class Driver Jar

Stored Procedure and Function Support

Oracle Application Server Adapter for Databases 4-55

■ Design Time: WSDL and XSD Generation

■ Run Time: Before Stored Procedure Invocation

■ Run Time: After Stored Procedure Invocation

■ Advanced Topics

Design Time: Using the Adapter Configuration Wizard
The Adapter Configuration Wizard – Stored Procedures is used to generate an adapter
service WSDL and the necessary XSD. The adapter service WSDL encapsulates the
underlying stored procedure or function as a Web service with a WSIF JCA binding.
The XSD describes the procedure or function, including all the parameters and their
types. This XSD provides the definition used to create instance XML that is submitted
to the database adapter at run time.

Using Top-Level Standalone APIs
This section describes how to use the wizard with APIs that are not defined in PL/SQL
packages. You use the Adapter Configuration Wizard – Stored Procedures to select a
procedure or function and generate the XSD. See "The Adapter Configuration Wizard"
on page 4-18 if you are not familiar with how to start the wizard.

In the wizard, select Database Adapter, as shown in Figure 4–25.

Figure 4–25 Selecting the Database Adapter in the Adapter Configuration Wizard

After entering a service name (for example, ProcedureProc) and an optional
description for the service, you associate a connection with the service, as shown in
Figure 4–26. You can select an existing connection from the list or create a new
connection.

Stored Procedure and Function Support

4-56 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 4–26 Setting the Database Connection in the Adapter Configuration Wizard

For the Operation Type, select Call a Stored Procedure or Function, as shown in
Figure 4–27.

Figure 4–27 Calling for a Stored Procedure or Function in the Adapter Configuration
Wizard

Next you select the schema and procedure or function. You can select a schema from
the list or select <Default Schema>, in which case the schema associated with the
connection is used. If you know the procedure name, enter it in the Procedure field. If
the procedure is defined inside a package, then you must include the package name, as
in EMPLOYEE.GET_NAME.

If you do not know the schema and procedure names, click Browse to access the
Stored Procedures window, shown in Figure 4–28.

Stored Procedure and Function Support

Oracle Application Server Adapter for Databases 4-57

Figure 4–28 Searching for a Procedure or Function

Select a schema from the list or select <Default Schema>. The available procedures
are displayed in the left window. To search for a particular API in a long list of APIs,
enter search criteria in the Search field. For example, to find all APIs that begin with
XX, enter XX% and click the Search button. Clicking the Show All button displays all
available APIs.

Figure 4–29 shows how you can select the PROC procedure and click the Arguments
tab. The Arguments tab displays the parameters of the procedure, including their
names, type, mode (IN, IN/OUT or OUT) and the numeric position of the parameter in
the definition of the procedure.

Stored Procedure and Function Support

4-58 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 4–29 Viewing the Arguments of a Selected Procedure

Figure 4–30 shows how the Source tab displays the code that implements the
procedure. Text that matches the name of the procedure is highlighted.

Figure 4–30 Viewing the Source Code of a Selected Procedure

After you select a procedure or function and click OK, information about the API is
displayed, as shown in Figure 4–31. Use Back or Browse to make revisions, or Next
followed by Finish to conclude.

Stored Procedure and Function Support

Oracle Application Server Adapter for Databases 4-59

Figure 4–31 Viewing Procedure or Function Details in the Adapter Configuration Wizard

When you have finished using the Adapter Configuration Wizard, two files are added
to the existing project: servicename.wsdl (for example, ProcedureProc.wsdl)
and the generated XSD. The generated XSD file is named schema_package_
procedurename.xsd. In this case, SCOTT_PROC.xsd is the name of the generated
XSD file.

Using Packaged APIs and Overloading
Using APIs defined in packages is similar to using standalone APIs. The only
difference is that you can expand the package name to see a list of all the APIs defined
within the package, as shown in Figure 4–32.

APIs that have the same name but different parameters are called overloaded APIs. As
shown in Figure 4–32, the package called PACKAGE has two overloaded procedures
called OVERLOAD.

Stored Procedure and Function Support

4-60 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 4–32 A Package with Two Overloaded Procedures

As Figure 4–33 shows, the code for the entire PL/SQL package is displayed, regardless
of which API from the package is selected when you view the Source tab. Text that
matches the name of the procedure is highlighted.

Figure 4–33 Viewing the Source Code of an Overloaded Procedure

After you select a procedure or function and click OK, information about the API is
displayed, as shown in Figure 4–34. The schema, procedure name, and parameter list
are displayed. Note how the procedure name is qualified with the name of the package
(PACKAGE.OVERLOAD). Use Back or Browse to make revisions, or Next followed
by Finish to conclude.

Stored Procedure and Function Support

Oracle Application Server Adapter for Databases 4-61

Figure 4–34 Viewing Procedure or Function Details in the Adapter Configuration Wizard

When you have finished using the Adapter Configuration Wizard, two files are added
to the existing project: Overload.wsdl and SCOTT_PACKAGE_OVERLOAD_2.xsd.
The _2 appended after the name of the procedure in the XSD filename differentiates
the overloaded APIs.

Design Time: WSDL and XSD Generation
The Adapter Configuration Wizard – Stored Procedures is capable of creating a WSDL
and a valid XSD that describes the signature of a stored procedure or function. The
following sections describe the relevant structure and content of both the WSDL and
the XSD, and their relationship with each other.

The WSDL–XSD Relationship
In the paragraphs that follow, the operation name, ProcedureProc, and procedure
name, PROC, are taken from an example cited previously (see Figure 4–31 on
page 4-59). The generated WSDL imports the XSD.

<types>
 <schema xmlns=”http://www.w3.org/2001/XMLSchema”>
 <import
namespace=”http://xmlns.oracle.com/pcbpel/adapter/db/SCOTT/PROC/”
 schemaLocation=”SCOTT_PROC.xsd”/>
 </schema>
</types>

The namespace is derived from the schema, package, and procedure name, and
appears as the targetNamespace in the generated XSD.

A root element called InputParameters is created in the XSD for specifying
elements that correspond to the IN and IN/OUT parameters of the stored procedure.
Another root element called OutputParameters is also created in the XSD for
specifying elements only if there are any IN/OUT or OUT parameters. Note that
IN/OUT parameters appear in both root elements.

These root elements are represented in the XSD as an unnamed complexType
definition whose sequence includes one element for each parameter. If there are no IN
or IN/OUT parameters, the InputParameters root element is still created; however,

Stored Procedure and Function Support

4-62 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

the complexType is empty. A comment in the XSD indicates that there are no such
parameters. An example of one of these root elements follows.

<element name="InputParameters"
 <complexType>
 <sequence>
 <element …>
 …
 </sequence>
 </complexType>
</element>

The WSDL defines message types whose parts are defined in terms of these two root
elements.

<message name=”args_in_msg”
 <part name=”InputParameters” element=”db:InputParameters”/>
</message>
<message name=”args_out_msg”
 <part name=”OutputParameters” element=”db:OutputParameters”/>
</message>

The db namespace is the same as the targetNamespace of the generated XSD. Note
that the args_in_msg message type always appears in the WSDL while args_out_
msg is included only if the OutputParameters root element is generated in the XSD.

An operation is defined in the WSDL whose name is the same as the adapter service
and whose input and output messages are defined in terms of these two message
types.

<portType name=”ProcedureProc_ptt”>
 <operation name=”ProcedureProc”>
 <input message=”tns:args_in_msg”/>
 <output message=”tns:args_out_msg”/>
 </operation>
</portType>

The input message always appears while the output message depends on the existence
of the OutputParameters root element in the XSD. The tns namespace is derived
from the operation name and is defined in the WSDL as

xmlns:tns=”http://xmlns.oracle.com/pcbpel/adapter/db/ProcedureProc/”

The root elements in the XSD define the structure of the parts used in the messages
that are passed into and sent out of the Web service encapsulated by the WSDL.

The input message in the WSDL corresponds to the InputParameters root element
from the XSD. The instance XML supplies values for the IN and IN/OUT parameters of
the stored procedure. The output message corresponds to the OutputParameters
root element. This is the XML that gets generated after the stored procedure has
executed. It holds the values of any IN/OUT and OUT parameters.

Supported Primitive Datatypes
Many primitive datatypes have well-defined mappings and therefore are supported
by both the design-time and run-time components. In addition, you can use
user-defined types such as VARRAY, nested tables, and OBJECT. Table 4–22 lists the
primitive datatypes supported by the database adapter for stored procedures.

Stored Procedure and Function Support

Oracle Application Server Adapter for Databases 4-63

The datatype of a parameter defined as being of a certain type not shown in this table,
such as PLS_INTEGER, is often represented by a type that is listed in the table. For
PLS_INTEGER, the underlying database type is BINARY_INTEGER; therefore, those
mappings are used. Thus, the wizard can usually handle a parameter whose primitive
type is not shown above, but which has an underlying type that is supported.

The context in which a type is used is also relevant to how the type is treated. For
example, a parameter of a stored procedure whose type is declared as INTEGER is
actually represented as NUMBER; therefore, the NUMBER mappings take effect. In
contrast, an attribute of a user-defined OBJECT type whose type is INTEGER is
represented by INTEGER; therefore, those mappings are used.

Generated XSD Attributes
Table 4–23 lists the generated XSD attributes.

Table 4–22 Primitive Datatypes Supported by the Database Adapter for Stored
Procedures

SQL or PL/SQL Type XML Schema Type

BINARY_DOUBLE

DOUBLE PRECISION

double

BINARY_FLOAT

FLOAT

REAL

float

BINARY_INTEGER

INTEGER

SMALLINT

int

BLOB

LONG RAW

RAW

base64Binary

CHAR

CLOB

LONG

VARCHAR2

string

DATE

TIMESTAMP

dateTime

DECIMAL

NUMBER

decimal

Table 4–23 Generated XSD Attributes

Attribute Example Purpose

name name="param" Name of an element

type type="string" XML schema type

db:type db:type="VARCHAR2" SQL or PL/SQL type

db:index db:index="1" Position of a parameter

minOccurs minOccurs="0" Minimum occurrences

Stored Procedure and Function Support

4-64 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

The db namespace is used to distinguish attributes used during run time from
standard XML schema attributes. The db:type attribute is used to indicate what the
database type is so that a suitable JDBC type mapping can be obtained at run time. The
db:index attribute is used as an optimization by both the design-time and run-time
components to ensure that the parameters are arranged in the proper order. Parameter
indices begin at 1 for procedures and 0 for functions. The return value of a function is
represented as an OutputParameter element whose name is the name of the function
and whose db:index is 0.

The minOccurs value is set to 0 to allow for an IN parameter to be removed from the
XML. This is useful when a parameter has a default clause defining a value for the
parameter (for example, X IN INTEGER DEFAULT 0). At run time, if no element is
specified for the parameter in the XML, the parameter is omitted from the invocation
of the stored procedure, thus allowing the default value to be used. Each parameter
can appear at most once in the invocation of a stored procedure or function. Therefore,
maxOccurs, whose default value is always 1, is always omitted from elements
representing parameters.

The nillable attribute is always set to true to allow the corresponding element in
the instance XML to have a null value (for example, <X/> or <X></X>). In some cases,
however, to pass schema validation, an element such as this, which does have a null
value, must state this explicitly (for example, <X xsi:nil="true"/>). The
namespace, xsi, used for the nillable attribute, must be declared explicitly in the
instance XML (for example,
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance").

User-Defined Types
The wizard can also generate valid definitions for user-defined types such as
collections (VARRAY and nested tables) and OBJECT. These are created as
complexType definitions in the XSD.

For VARRAY, the complexType definition defines a single element in its sequence,
called name_ITEM, where name is the name of the VARRAY element. All array
elements in the XML are so named. Given the following VARRAY type definition,

SQL> CREATE TYPE FOO AS VARRAY (5) OF VARCHAR2 (10);

and a VARRAY element, X, whose type is FOO, the following complexType is
generated:

<complexType name="FOO">
 <sequence>
 <element name="X_ITEM" db:type="VARCHAR2" minOccurs="0" maxOccurs="5"
nillable="true"/>
 <simpleType>
 <restriction base="string">
 <maxLength value="10"/>
 </restriction>
 </simpleType>
 </sequence>
</complexType>

maxOccurs maxOccurs="1" Maximum occurrences

nillable nillable="true" Permits null values

Table 4–23 (Cont.) Generated XSD Attributes

Attribute Example Purpose

Stored Procedure and Function Support

Oracle Application Server Adapter for Databases 4-65

The minOccurs value is 0 to allow for an empty collection. The maxOccurs value is
set to the maximum number of items that the collection can hold. Note that the
db:index attribute is not used. Having nillable set to true allows individual
items in the VARRAY to be null.

Note the use of the restriction specified on the element of the VARRAY, FOO. This is
used on types such as CHAR and VARCHAR2, whose length is known from the
declaration of the VARRAY (or nested table). It specifies the type and maximum length
of the element. An element value that exceeds the specified length causes the instance
XML to fail during schema validation.

The attribute values of a parameter declared to be of type FOO look as follows in the
generated XSD:

<element name="X" type="db:FOO" db:type="Array" db:index="1" minOccurs="0"
nillable="true"/>

The type and db:type values indicate that the parameter is represented as an array
defined by the complexType called FOO in the XSD. The value for db:index is
whatever the position of that parameter is in the stored procedure.

A nested table is treated almost identically to a VARRAY. The following nested table
type definition,

SQL> CREATE TYPE FOO AS TABLE OF VARCHAR2 (10);

is also generated as a complexType with a single element in its sequence, called
name_ITEM. The element has the same attributes as in the VARRAY example, except
that the maxOccurs value is unbounded because nested tables can be of arbitrary size.

<complexType name="FOO">
 <sequence>
 <element name="X_ITEM" … maxOccurs="unbounded" nillable="true">
 ...
 </element>
 </sequence>
</complexType>

An identical restriction is generated for the X_ITEM element in the VARRAY. The
attributes of a parameter, X, declared to be of this type, are the same as in the VARRAY
example.

An OBJECT definition is also generated as a complexType. Its sequence holds one
element for each attribute in the OBJECT. The following OBJECT,

SQL> CREATE TYPE FOO AS OBJECT (X VARCHAR2 (10), Y NUMBER);

is represented as a complexType called FOO with two sequence elements.

<complexType name="FOO">
 <sequence>
 <element name="X" db:type="VARCHAR2" minOccurs="0" nillable="true"/>
 <simpleType>
 <restriction base="string">
 <maxLength value="10"/>
 </restriction>
 </simpleType>
 <element name="Y" type="decimal" db:type="NUMBER" minOccurs="0"
nillable="true"/>
 </sequence>
</complexType>

Stored Procedure and Function Support

4-66 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

The minOccurs value is 0 to allow for the element to be removed from the XML. This
causes the value of the corresponding attribute in the OBJECT to be set to null at run
time. The nillable value is true to allow empty elements to appear in the XML,
annotated with the xsi:nil attribute, to indicate that the value of the element is null.
Again, the db:index attribute is not used.

Note the use of a restriction on the VARCHAR2 attribute. The length is known from the
declaration of the attribute in the OBJECT.

Complex User-Defined Types
User-defined types can be defined in arbitrarily complex ways. An OBJECT can
contain attributes whose types are defined as any of the aforementioned user-defined
types. This means that the type of an attribute in an OBJECT can be another OBJECT,
VARRAY or a nested table, and so on. The base type of a VARRAY or a nested table can
also be an OBJECT. Allowing the base type of a collection to be another collection
supports multidimensional collections.

Object Type Inheritance
The wizard is capable of generating a valid XSD for parameters whose types are
defined using OBJECT-type inheritance. Given the following type hierarchy,

SQL> CREATE TYPE A AS OBJECT (A1 NUMBER, A2 VARCHAR2 (10)) NOT FINAL;
SQL> CREATE TYPE B UNDER A (B1 VARCHAR2 (10));

and a procedure containing a parameter, X, whose type is B,

SQL> CREATE PROCEDURE P (X IN B) AS BEGIN … END;

the wizard generates an InputParameters element for parameter X as

<element name="X" type="db:B" db:index="1" db:type="Struct" minOccurs="0"
nillable="true"/>

where the definition of OBJECT type B in the XSD is generated as the following
complexType.

<complexType name="B">
 <sequence>
 <element name="A1" type="decimal" db:type="NUMBER" minOccurs="0"
nillable="true"/>
 <element name="A2" db:type="VARCHAR2" minOccurs="0" nillable="true">
 ...
 </element>
 <element name="B1" db:type="VARCHAR2" minOccurs="0" nillable="true">
 ...
 </element>
 </sequence>
</complexType>

Restrictions on the maximum length of attributes A2 and B1 are added appropriately.
Notice how the OBJECT type hierarchy is flattened into a single sequence of elements
that corresponds to all of the attributes in the entire hierarchy.

Object References
The wizard can also generate a valid XSD for parameters that are references to OBJECT
types (for example, object references), or are user-defined types that contain an object
reference somewhere in their definition. In this example,

Stored Procedure and Function Support

Oracle Application Server Adapter for Databases 4-67

SQL> CREATE TYPE FOO AS OBJECT (…);
SQL> CREATE TYPE BAR AS OBJECT (F REF FOO, …);
SQL> CREATE PROCEDURE PROC (X OUT BAR, Y OUT REF FOO) AS BEGIN … END;

the wizard generates complexType definitions for FOO and BAR as already indicated,
except that for BAR, the element for the attribute, F, is generated as

<element name=”F” type=”db:FOO” db:type=”Ref” minOccurs=”0” nillable=”true”/>

where together, the type and db:type attribute values indicate that F is a reference
to the OBJECT type FOO.

For a procedure PROC, the following elements are generated in the
OutputParameters root element of the XSD:

<element name=”X” type=”db:BAR” db:index=”1” db:type=”Struct” minOccurs=”0”
nillable=”true”/>
<element name=”Y” type=”db:FOO” db:index=”2” db:type=”Ref” minOccurs=”0”
nillable=”true”/>

For Y, note the value of the db:type attribute, Ref. Together with the type attribute,
the element definition indicates that Y is a reference to FOO.

Note that there is a restriction on the use of object references that limits their parameter
mode to OUT only. Passing an IN or IN/OUT parameter into an API that is either
directly a REF or, if the type of the parameter is user-defined, contains a REF
somewhere in the definition of that type, is not permitted.

Run Time: Before Stored Procedure Invocation
This section discusses important considerations of stored procedure support.

Value Binding
Consider the extraction of values from the XML and how the run time works given
those values. The possible cases for data in the XML corresponding to the value of a
parameter whose type is one of the supported primitive datatypes value are as
follows:

1. The value of an element is specified (for example, <X>100</X>).

2. The value of an element is not specified (for example, <X/>).

3. The value is explicitly specified as null (for example, <X xsi:nil="true"/>)

4. The element is not specified in the XML at all.

Each case is handled differently.

In the first case, the value is taken from the XML as-is and is converted to the
appropriate object according to its type. That object is then bound to its corresponding
parameter during preparation of the stored procedure invocation.

In the second and third cases, the actual value extracted from the XML is null. The
type converter accepts null and returns it without any conversion. The null value is
bound to its corresponding parameter regardless of its type. Essentially, this is the
same as passing null for parameter X.

The fourth case is allowed only when the parameter corresponding to the missing
element in the XML is an IN parameter and has a declared default clause in the
definition of the stored procedure. For example,

SQL> CREATE PROCEDURE PROC (X IN INTEGER DEFAULT 0) AS BEGIN … END;

Stored Procedure and Function Support

4-68 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Here, no value is bound to the parameter. In fact, the parameter is completely
excluded from the invocation of the stored procedure. This allows the value of 0 to
default for parameter X.

To summarize, the following PL/SQL is executed in each of the four cases:

1. "BEGIN PROC (X=>?); END;" - X = 100

2. "BEGIN PROC (X=>?); END;" - X = null

3. "BEGIN PROC (X=>?); END;" - X = null

4. "BEGIN PROC (); END;" - X = 0

These general semantics also apply to item values of a collection or attribute values of
an OBJECT whose types are one of the supported primitive datatypes. The semantics
of <X/> when the type is user-defined are, however, quite different.

For a collection, whether it is a VARRAY or a nested table, the following behavior can
be expected given a type definition such as

SQL> CREATE TYPE ARRAY AS VARRAY (5) OF VARCHAR2 (10);

and XML for a parameter, X, which has type ARRAY, that appears as follows:

<X>
 <X_ITEM xsi:nil="true"/>
 <X_ITEM>Hello</X_ITEM>
 <X_ITEM xsi:nil="true"/>
 <X_ITEM>World</X_ITEM>
</X>

The first and third elements of the VARRAY are set to null. The second and fourth are
assigned their respective values. No fifth element is specified in the XML; therefore,
the VARRAY instance has only four elements.

Given an OBJECT definition such as

SQL> CREATE TYPE OBJ AS OBJECT (A INTEGER, B INTEGER, C INTEGER);

and XML for a parameter, X, which has type OBJ, that appears as

<X>
 <A>100
 <C xsi:nil="true"/>
</X>

the behavior is that the value of 100 is assigned to attribute A and null is assigned to
attributes B and C. Because there is no element in the instance XML for attribute, B, a
null value, is assigned.

The second case, <X/>, behaves differently if the type of X is user-defined. Rather
than assigning null to X, an initialized instance of the user-defined type is created and
bound instead.

In the preceding VARRAY example, if <X/> or <X></X> is specified, the value bound
to X is an empty instance of the VARRAY. In PL/SQL, this is equivalent to calling the
type constructor and assigning the value to X. For example,

X := ARRAY();

Stored Procedure and Function Support

Oracle Application Server Adapter for Databases 4-69

Similarly, in the preceding OBJECT example, an initialized instance of OBJ, whose
attribute values have all been null assigned, is bound to X. Like the VARRAY case, this
is equivalent to calling the type constructor. For example,

X := OBJ(NULL, NULL, NULL);

To specifically assign a null value to X when the type of X is user-defined, the
xsi:nil attribute must be added to the element in the XML, as in <X
xsi:nil="true"/>.

Datatype Conversions
This section describes the conversion of datatypes such as CLOB, DATE, TIMESTAMP,
and binary datatypes including RAW, LONG RAW and BLOB.

For CLOB parameters, a temporary CLOB is first created. The data extracted from the
XML is then written to it before binding the CLOB to its corresponding parameter. The
temporary CLOB is freed when the interaction completes. For other character types,
such as CHAR and VARCHAR2, the data is simply extracted and bound as necessary.
Note that it is possible to bind an XML document to a CLOB (or VARCHAR2 if it is large
enough). However, appropriate substitutions for <, >, and so on, must first be made
(for example, < for < and > for >).

Note that the XML schema type, dateTime, represents both DATE and TIMESTAMP.
This means that the XML values for both datatypes must adhere to the XML schema
representation for dateTime. Therefore, a simple DATE string, 01-JAN-05 is invalid.
XML schema defines dateTime as YYYY-MM-DDTHH:mm:ss. Therefore, the correct
DATE value is 2005-01-01T00:00:00.

Data for binary datatypes must be represented in a human readable manner. The
chosen XML schema representation for binary data is base64Binary. The type
converter uses the javax.mail.internet.MimeUtility encode and decode APIs
to process binary data. The encode API must be used to encode all binary data into
base64Binary form so that it can be used in an XML file. The type converter uses the
decode API to decode the XML data into a byte array. This is then bound either
directly, as is the case with RAW and LONG RAW parameters, or is used to create a
temporary BLOB, which is then bound to its associated BLOB parameter. The
temporary BLOB is freed when the interaction completes.

Conversions for the remaining datatypes are straightforward and require no
additional information.

Run Time: After Stored Procedure Invocation
After the procedure (or function) executes, the values for any IN/OUT and OUT
parameters are retrieved. These correspond to the values of the elements in the
OutputParameters root element in the generated XSD.

Datatype Conversions
Conversions of the data retrieved are straightforward. However, BLOB, CLOB (and
other character data), as well as RAW and LONG RAW conversions, require special
attention.

When a CLOB is retrieved, the entire contents of that CLOB are written to the
corresponding element in the generated XML. Standard DOM APIs are used to
construct the XML. This means that character data, as for types like CLOB, CHAR, and
VARCHAR2, is massaged as needed to make any required substitutions so that the
value is valid and can be placed in the XML for subsequent processing. Therefore,

Stored Procedure and Function Support

4-70 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

substitutions for < and >, for example, in an XML document stored in a CLOB are
made so that the value placed in the element within the generated XML for the
associated parameter is valid.

Raw data, such as for RAW and LONG RAW types, is retrieved as a byte array. For
BLOBs, the BLOB is first retrieved, and then its contents are obtained, also as a byte
array. The byte array is then encoded using the
javax.mail.internet.MimeUtility encode API into base64Binary form. The
encoded value is then placed in its entirety in the XML for the corresponding element.
The MimeUtility decode API must be used to decode this value back into a byte
array.

Conversions for the remaining datatypes are straightforward and require no
additional information.

Null Values
Elements whose values are null appear as empty elements in the generated XML and
are annotated with the xsi:nil attribute. This means that the xsi namespace is
declared in the XML that is generated. Generated XML for a procedure PROC, which
has a single OUT parameter, X, whose value is null, looks as follows:

<db:OutputParameters … xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
 <X xsi:nil=”true”/>
</db:OutputParameters>

The db namespace is also declared (that is, xmlns:db="..."). Note that XML
elements for parameters of any type (including user-defined types) appear this way if
their value is null.

Function Return Values
The return value of a function is treated as an OUT parameter at position 0 whose
name is the name of the function itself. For example,

CREATE FUNCTION FACTORIAL (X IN INTEGER) RETURN INTEGER AS
BEGIN
 IF (X <= 0) THEN RETURN 1;
 ELSE RETURN FACTORIAL (X - 1);
 END IF;
END;

An invocation of this function with a value of 5, for example, results in a value of 120
and appears as <FACTORIAL>120</FACTORIAL> in the XML generated in
OutputParameters.

Advanced Topics
This section discusses scenarios for types that are not supported directly using the
stored procedure functionality that the database adapter provides. The following
sections describe workarounds that address the need to use these datatypes.

Support for REF CURSOR
Neither the design-time nor run-time components support REF CURSOR types
directly. The solution is to use a collection of an OBJECT type. Because the number of
rows returned by a REF CURSOR is usually unknown, it is best to use a nested table as
the collection type. This solution involves using a Java stored procedure to convert a
ResultSet into an instance of the declared collection type. A sample tutorial
illustrating this is provided in the following directory:

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

Oracle Application Server Adapter for Databases 4-71

Oracle_Home\integration\orabpel\samples\tutorials\122.DBAdapter\ResultSetConverter

Support for PL/SQL BOOLEAN
JDBC does not support passing BOOLEAN parameters. Therefore, the run-time
component, as in the case of REF CURSOR, cannot directly support parameters
declared to be of this type. The solution is to define a wrapper procedure that
substitutes a supported datatype, such as INTEGER, for each BOOLEAN parameter. For
example, suppose you defined the following stored procedure:

CREATE PROCEDURE BOOLPROC (B BOOLEAN) AS BEGIN...END;

A wrapper procedure can be written as follows:

CREATE PROCEDURE BOOLWRAP (X INTEGER) AS
BEGIN
 IF (X = 1) THEN BOOLPROC (TRUE);
 ELSE BOOKPROC (FALSE);
 END IF;
END;

See Oracle Database JDBC Developer’s Guide and Reference for more information.

Support for PL/SQL RECORD
Support for PL/SQL RECORD parameters cannot be provided directly. Like the
BOOLEAN case, however, the solution involves creating wrapper procedures. For each
RECORD parameter, an OBJECT type is defined with attributes that correspond with
the fields of the RECORD type. Use JDeveloper BPEL Designer to create a SQL file that
contains the necessary OBJECT type definitions, as well as APIs for converting from
the RECORD type to the OBJECT type, and vice-versa. A wrapper is written that
substitutes each RECORD type with its corresponding OBJECT for each such parameter.
The wrapper executes the underlying stored procedure, using the conversion APIs to
do the necessary conversions in both directions. For a sample tutorial, go to

Oracle_Home\integration\orabpel\samples\tutorials\122.DBAdapter\JPublisherWrapper

Use Case for Creating and Configuring a Stored Procedure in JDeveloper
BPEL Designer

This tutorial describes how to integrate a stored procedure into Oracle BPEL Process
Manager with JDeveloper BPEL Designer. Other tutorials that demonstrate stored
procedures and functions are File2StoredProcedure, JPublisherWrapper, and
ResultSetConverter. Go to

Oracle_Home\integration\orabpel\samples\tutorials\122.DBAdapter

This section contains the following topics:

■ Creating a Stored Procedure

■ Creating a Database Connection

■ Creating a Workspace and a Greeting Process

■ Creating a Partner Link

■ Creating an Invoke Activity

■ Creating an Initial Assign Activity

■ Creating a Second Assign Activity

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

4-72 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

■ Validating, Compiling, and Deploying the Greeting Process

■ Running the Greeting Process

Creating a Stored Procedure
1. Connect to the scott schema of the Oracle database using SQL*Plus. This is the

schema in which to create the stored procedure. This example assumes tiger is
the password.

sqlplus scott/tiger

2. Create the stored procedure (note the blank space after Hello):

 SQL> CREATE PROCEDURE HELLO (NAME IN VARCHAR2, GREETING OUT VARCHAR2) AS
 2 BEGIN
 3 GREETING := 'Hello ' || NAME;
 4 END;
 5 /

 Procedure created.

Creating a Database Connection
Use the Create Database Connection Wizard in JDeveloper BPEL Designer to create a
connection to the scott schema in which you created the stored procedure.

1. Go to JDeveloper BPEL Designer.

2. Select Connection Navigator from the View main menu.

3. Right-click Database in the Connection Navigator window and select New
Database Connection.

This starts the Create Database Connection Wizard.

4. Click Next on the Welcome window.

5. Enter a name (for example, myConnection) in the Connection Name field of the
Type window.

6. Select the database connection type (for example, Oracle (JDBC)) from the
Connection Type list, and click Next.

7. Enter scott in the Username field of the Authentication window.

8. Enter the password for scott in the Password field (tiger for this example).

9. Leave the remaining fields as they are, and click Next.

10. Enter the following connection information. If you do not know this information,
contact your database administrator.

Note: Stored procedures are supported for Oracle databases only.

Field Example of Value

Driver thin

Host Name localhost

JDBC Port 1521

SID ORCL

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

Oracle Application Server Adapter for Databases 4-73

11. Click Next.

12. Click Test Connection on the Test window.

If the connection was successful, the following message appears:

Success!

13. Click Finish.

Creating a Workspace and a Greeting Process
1. Select Application Navigator from the View main menu in JDeveloper BPEL

Designer.

2. Select New from the File main menu.

3. Double-click Workspace in the Items window to display the Create Workspace
window.

4. Enter a name (for example, myWorkspace) in the Workspace Name field and
accept the default path in the Directory Name field.

5. Deselect the Add a New Empty Project check box.

6. Click OK.

7. Right-click this new workspace in the Applications Navigator section.

8. Select New Project.

9. Double-click BPEL Process Project in the Items window to display the BPEL
Process Project window.

10. Enter Greeting in the BPEL Process Name field.

11. Select Synchronous BPEL Process from the Template list.

12. Leave the Use Default check box selected.

13. Click OK.

The bpel.xml, Greeting.bpel, and Greeting.wsdl files are created in the
Applications Navigator.

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

4-74 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Creating a Partner Link
1. Ensure that Process Activities is selected in the drop-down list of the Component

Palette section in the upper right section of JDeveloper BPEL Designer.

2. Drag and drop a PartnerLink activity onto the right side of the designer window
under the Partner Links header.

The Create Partner Link window appears.

3. Enter Hello in the Name field.

4. Click the third icon at the top (the Define Adapter Service icon). This starts the
Adapter Configuration Wizard.

5. Click Next on the Welcome window.

6. Select Database Adapter on the Adapter Type window and click Next.

7. Enter Hello in the Service Name field on the Service Name window. This is the
same name as that of the partner link.

8. Click Next.

9. Select the database connection in the Connection field on the Service Connection
page that you created for the scott schema in "Creating a Database Connection"
on page 4-72.

10. Ensure that eis/DB/connection_name displays in the Database Server JNDI Name
field. The connection_name is the name you selected in the Connection field and
the connection to the scott schema that you created in "Creating a Database
Connection" on page 4-72. The name is case sensitive. Ensure that it correctly
matches the case of the connection name.

11. Click Next.

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

Oracle Application Server Adapter for Databases 4-75

12. Select Call a Stored Procedure or Function on the Operation Type window.

13. Click Next.

The Specify Stored Procedure window appears.

14. Click Browse to the right of the Procedure field.

The Stored Procedures window appears.

15. Leave <Default Schema> selected in the Schema list. This defaults to the scott
schema in which the stored procedure is defined.

16. Select Hello in the Stored Procedures navigation tree.

The Arguments tab displays the parameters of the stored procedure.

17. Click the Source tab to display the Hello stored procedure source code. You
entered this syntax when you created the stored procedure using SQL*Plus in
"Creating a Stored Procedure" on page 4-72.

Note: As an alternative, you can also enter Hello in the Search field,
click Search to display this stored procedure for selection in the
Stored Procedures navigation tree, and then select it.

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

4-76 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

18. Click OK.

The Specify Stored Procedure window displays your selections. They appear as
they did when the Arguments tab displayed in the Stored Procedures window in
Step 16.

19. Click Next.

20. Click Finish to complete adapter configuration.

The Create Partner Link window is automatically completed. The window looks
as follows:

Field Value

Name Hello

WSDL File file:/c:/OraBPELPM/integration/jdev/jdev/mywork/myWorkspace/Gre
eting/Hello.wsdl

Note: OraBPELPM is the Oracle home directory used in this example.
In addition, this directory path with a drive letter represents an
example on Windows operating systems. If running this tutorial on
Unix operating systems, your directory path varies.

Partner Link Type Hello_plt

My Role Leave unspecified.

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

Oracle Application Server Adapter for Databases 4-77

21. Click Apply.

22. Click OK.

23. Select Save All from the File main menu.

The following files appear under Greeting > Integration Content in the
Applications Navigator. These files contain the parameters you specified with the
Adapter Configuration Wizard.

■ Hello.wsdl

Corresponds with the new stored procedure partner link

■ SCOTT_HELLO.xsd

Provides the definition of the stored procedure, including its parameters

Creating an Invoke Activity
You now create an invoke activity to specify an operation you want to invoke for the
service (identified by the Hello partner link).

1. Drag and drop an invoke activity below the receiveInput Receive activity.

2. Double-click the invoke activity to display the Invoke window.

3. Enter the following details:

The Operation (Hello) field is automatically filled in.

4. Click the first icon to the right of the Input Variable field. This is the automatic
variable creation icon.

Partner Role Hello_role

Field Value

Name Greet

Partner Link Hello

Field Value

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

4-78 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

A variable named Greet_Hello_InputVariable automatically appears in the Name
field. This variable provides the value for the in parameter of the stored
procedure. The type is http://xmlns.oracle.com/pcbpel/adapter/db/Hello/}args_
in_msg.

5. Ensure that Global Variable is selected.

6. Click OK on the Create Variable window.

7. Click the first icon to the right of the Output Variable field.

8. A variable named Greet_Hello_OutputVariable automatically appears in the
Name field. This variable stores the value of the out parameter of the procedure
after it executes. The type is
http://xmlns.oracle.com/pcbpel/adapter/db/Hello/}args_out_msg.

9. Ensure that Global Variable is selected.

10. Click OK in the Create Variable window.

Your selections for the Invoke window appear.

11. Click OK in the Invoke window.

12. Select Save All from the File main menu.

The process displays a link from the Greet Invoke activity to the Hello partner
link.

Creating an Initial Assign Activity
You now create an Assign activity to assign the input value to the in parameter of the
stored procedure.

1. Drag and drop an Assign activity from the Component Palette section to above
the Greet Invoke activity.

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

Oracle Application Server Adapter for Databases 4-79

2. Double-click the assign icon to display the Assign window.

3. Click the General tab.

4. Enter Input in the Name field.

5. Click Apply.

6. Click the Copy Rules tab.

7. Click Create to display the Create Copy Rule window.

8. Enter the following values:

The Create Copy Rule window appears as follows:

Field Value

From

■ Type Variable

■ Variables Expand and select Variables, then inputVariable, then payload, then
client:GreetingProcessRequest, and then client:input.

To

■ Type Variable

■ Variables Expand and select Variables, then Greet_Hello_InputVariable, then
InputParameters, then ns2:InputParameters, and then NAME.

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

4-80 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

9. Click OK to close the Create Copy Rule window.

10. Click OK to close the Assign window.

11. Select Save All from the File main menu.

Creating a Second Assign Activity
You now create an Assign activity to retrieve the value of the out parameter of the
stored procedure.

1. Drag and drop an Assign activity from the Component Palette section to below
the Greet Invoke activity.

2. Double-click the assign icon to display the Assign window.

3. Click the General tab.

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

Oracle Application Server Adapter for Databases 4-81

4. Enter Output in the Name field.

5. Click Apply.

6. Click the Copy Rules tab.

7. Click Create to display the Create Copy Rule window.

8. Enter the following values:

9. Click OK to close the Create Copy Rule window.

10. Click OK to close the Assign window.

The Greeting process appears as follows in JDeveloper BPEL Designer.

11. Select Save All from the File main menu.

Validating, Compiling, and Deploying the Greeting Process
1. Go to the Applications Navigator section.

2. Right-click Greeting.

Field Value

From

■ Type Variable

■ Variables Expand and select Variable, then Greet_Hello_OutputVariable, then
OutputParameters, then ns2:OutputParameters, and then GREETING.

To

■ Type Variable

■ Variables Expand and select Variables, then outputVariable, then payload, then
client:GreetingProcessResponse, and then client:result.

Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer

4-82 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

3. Select Deploy, then LocalBPELServer, and then Deploy to default domain.

4. Enter the domain password (initially set to bpel) when prompted.

5. Click OK.

This compiles the BPEL process. Review the bottom of the window for any errors.
If there are no errors, deployment was successful.

Running the Greeting Process
1. Log in to Oracle BPEL Console using Internet Explorer by selecting Start, then All

Programs, then Oracle - Oracle_Home, then Oracle BPEL Process Manager 10.1.2,
and then BPEL Console, or by running the $ORACLE_
HOME/integration/orabpel/bin/startorabpel.sh script for UNIX.

2. Enter the password (initially set to bpel) when prompted.

The Dashboard tab of Oracle BPEL Console appears. Note that your BPEL
process, Greeting, now appears in the Deployed BPEL Processes list.

3. Click Greeting.

The Testing this BPEL Process page appears with the Initiate tab selected.

4. Enter your first name in the input field (for example, John).

5. Click Post XML Message.

After the procedure executes and the BPEL process finishes the value appears as
follows:

Value: <GreetingProcessResponse>
 <result>Hello John<result>
 </GreetingProcessResponse>

6. Click Audit Instance.

The Instances tab of Oracle BPEL Console appears, along with the sequence of
process activities.

7. Click More... on the Greet activity to see the input to and output from the stored
procedure.

Note the <NAME> tag and its value in the <InputParameters> element. This
value came from the inputVariable and was set by the Input Assign activity.

Note the <GREETING> tag and its value in the <OutputParameters> element.
This value came from the output parameter of the stored procedure. The value
was then assigned to the outputVariable by the Output Assign activity.

Summary

Oracle Application Server Adapter for Databases 4-83

8. Click the Flow tab to view the process flow.

The process diagram appears.

9. Click any of the activities to view the XML as it passed through the BPEL process.
For example, click the Greet Invoke activity to display the following:

Summary
This chapter describes how to use the database adapter to communicate with Oracle
and third-party databases. The Adapter Configuration Wizard and advanced

Summary

4-84 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

configuration capabilities are explained, as is support for stored procedures and
functions. A use case is also provided that describes how to create and configure a
stored procedure in JDeveloper BPEL Designer.

Oracle Application Server Adapter for Java Message Service 5-1

5
Oracle Application Server Adapter for Java

Message Service

This chapter describes how to use the Oracle Application Server Adapter for Java
Message Service (JMS adapter), which enables a BPEL process to interact with JMS.

This chapter contains the following topics:

■ Introduction to the JMS Adapter

■ JMS Adapter Features

■ Use Cases for the JMS Adapter

■ Summary

Introduction to the JMS Adapter
The JMS architecture uses one client interface to many messaging servers. The JMS
model has two messaging domains: point-to-point and publish-subscribe. In the
point-to-point domain, messages are exchanged through a queue and each message is
delivered to only one receiver. In the publish-subscribe model, messages are sent to a
topic and can be read by many subscribed clients. For JMS adapter example files, go to

Oracle_Home\integration\orabpel\samples\tutorials\123.JmsAdapter

JMS Adapter Features
The JMS adapter includes the following features:

■ Based on JMS version 1.0.2b

■ Is a generic JMS adapter and can work with any JMS provider. It has been certified
against OC4J JMS, Oracle JMS (OJMS based on advanced queuing (AQ)), TIBCO
JMS, and IBM Websphere MQSeries. (JMS providers OJMS 8.1.7, 9.0.1.4, and 9.2,
and IBM MQSeries JMS 5.2 and 5.3).

■ Supports JMS topics and queues

■ Supports byte and text message types only in this release. The Adapter
Configuration Wizard provides the Native Format Builder Wizard for consuming
native data payloads at run time. The Native Format Builder Wizard creates XSD
definitions for the underlying native data.

■ Supports JMS headers and properties

■ Supports the JMS message selector for performing filtering while subscribing to
JMS topics and queues. This parameter is based on the SQL 92 language for

5-2 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

filtering messages based on fields present in the JMS header and properties
section.

■ Supports specifying a durable JMS subscriber

■ Supports persistent and nonpersistent modes of a JMS publisher

■ The JMS API specifies three types of acknowledgments that can be sent by the JMS
publisher:

– DUPS_OK_ACKNOWLEDGE, for consumers that are not concerned about
duplicate messages

– AUTO_ACKNOWLEDGE, in which the session automatically acknowledges the
receipt of a message

– CLIENT_ACKNOWLEDGE, in which the client acknowledges the message by
calling the message's acknowledge method

A transaction enables an application to coordinate a group of messages for production
and consumption, treating messages sent or received as a single unit. When an
application commits a transaction, all messages it received within the transaction are
removed by the JMS provider. The messages it sent within the transaction are
delivered as one unit to all JMS consumers. If the application rolls back the transaction,
the messages it received within the transaction are returned to the messaging system
and the messages it sent are discarded. The JMS adapter supports JMS transactions. A
JMS-transacted session supports transactions that are located within the session. A
JMS-transacted session's transaction does not have any effects outside of the session.

See Oracle Application Server Adapter Concepts for information on JMS adapter
architecture, adapter integration with Oracle BPEL Process Manager, and adapter
deployments.

Use Cases for the JMS Adapter
The following use cases demonstrate the procedure for configuring a JMS adapter and
examine the resulting WSDL files and associated oc4j-ra.xml files.

Concepts
Messaging is any mechanism that allows communication between programs.
Messages are structured data that one application sends to another. Message-oriented
middleware (MOM) is an infrastructure that supports scalable enterprise messaging.
MOM ensures fast, reliable asynchronous communication, guaranteed message
delivery, receipt notification, and transaction control. JMS is a Java interface developed
by Sun Microsystems for producing, sending, and receiving messages of an enterprise
messaging system. JMS is an API that JMS vendors implement. Oracle provides two
implementations of JMS: OC4J JMS and Oracle JMS based on Oracle advanced queues.
A JMS producer creates JMS messages and a JMS consumer consumes JMS messages.

JMS supports two messaging paradigms: point-to-point (queues) and
publish/subscribe (topics).

Point-to-Point
In point-to-point messaging, the messages are stored in a queue until they are
consumed. One or more producers write to the queue and one or more consumers
extract messages from the queue. The JMS consumer sends an acknowledgment after
consumption of a message; this results in purging of the message from the queue.

Use Cases for the JMS Adapter

Oracle Application Server Adapter for Java Message Service 5-3

Publish/Subscribe
In publish/subscribe messaging, producers publish messages to a topic and the
consumer subscribes to a particular topic. Many publishers can publish to the same
topic, and many consumers can subscribe to the same topic. All messages published to
the topic by the producers are received by all consumers subscribed to the topic. By
default, subscribers receive messages only when they are active. However, JMS API
supports durable subscriptions that ensure that consumers receive messages that were
published even when they are not up and running. The durable subscription involves
registering the consumer with a unique ID for retrieving messages that were sent
when the consumer was inactive. These messages are persisted by the JMS provider
and are either sent to the consumer when it becomes active again or purged from
storage if the message expires. The JMS producer can be set either to persistent or
nonpersistent mode. The messages are not persisted in the latter case and can be used
only for nondurable subscriptions.

The JMS API supports both synchronous or asynchronous communication for message
consumption. In the synchronous case, the consumer explicitly calls the receive()
method on the topic or queue. In the asynchronous case, the JMS client registers a
message listener for the topic or queue and the message is delivered by calling the
listener's onMessage() method.

Destination, Connection, Connection Factory, and Session
The destination property contains the addressing information for a JMS queue or
topic.

Connections represent a physical connection to the JMS provider. The connection
factory is used to create JMS connections. A session is used to create a destination, JMS
producer, and JMS consumer objects for a queue or topic.

Structure of a JMS Message
The JMS message has a mandatory standard header element, optional properties
element, and optional standard payload element. The payload can be a text message,
byte message, map message, stream message, or object message. The properties
element is JMS provider-specific and varies from one JMS provider to another.

JMS Header Properties
Table 5–1 describes the JMS header properties.

Table 5–1 JMS Header Properties

Property Name Description

JMSDestination The destination to which the message is sent, and is set by the
JMS producer

JMSDeliveryMode Set to persistent or nonpersistent mode by the JMS consumer

JMSExpiration Duration of the message before the expiration is set by the
consumer

JMSPriority Number between 0 and 9 set by the consumer. Larger numbers
represent a higher priority.

JMSMessageID Unique message identifier set by the consumer

JMSTimestamp Time stamp when the message was sent to the JMS provider for
forwarding

JMSCorrelationId Set by both producers and consumers for linking the response
message with the request message. This is an optional attribute.

5-4 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Using the Adapter Configuration Wizard to Configure a JMS Adapter
This section describes how to create an adapter service for a partner link.

1. Click Define Adapter Service (third icon) in the Create Partner Link window, as
shown in Figure 5–1:

Figure 5–1 Create Partner Link Window

The Adapter Configuration Wizard - Welcome window appears.

2. If you do not want to see this window each time you use the Adapter
Configuration Wizard, select the Skip this Page Next Time check box. Then click
Next.

JMSReplyTo Optional attribute indicating the destination to which to send a
message reply. Can be set by the producer and consumer.

JMSType JMS message type

JMSRedelivered Set by the JMS provider to indicate that the provider has tried to
send this message once before to the consumer and has failed

Table 5–1 (Cont.) JMS Header Properties

Property Name Description

Use Cases for the JMS Adapter

Oracle Application Server Adapter for Java Message Service 5-5

Figure 5–2 Welcome Window for the Adapter Configuration Wizard

3. Select JMS Adapter from the list of available adapter types and click Next.

Figure 5–3 Adapter Type Window

The Service Name window appears.

4. Enter a name for the service. You may also add an optional description. Click
Next.

5-6 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 5–4 Service Name Window

The JMS Connection window appears.

5. Enter the JMS connection JNDI name and click Next.

Figure 5–5 JMS Connection Window

See "oc4j-ra.xml file" on page 5-12 for more information.

The Operation window appears.

6. Select Consume Message or Produce Message. The operation name is filled in
automatically. Click Next.

Note: The JNDI name is key in determining the JMS type. The name
must match an endpoint in the oc4j-ra.xml file, which defines the
configuration properties.

Use Cases for the JMS Adapter

Oracle Application Server Adapter for Java Message Service 5-7

Figure 5–6 Operation Window

In this case, Consume Message was selected. This enables the adapter to consume
(receive) inbound messages from a JMS destination. The Consume Operation
Parameters window appears.

7. Enter values for the following fields:

■ Destination Name

The JNDI name of the JMS queue or topic from which to receive the message.
The name to enter is based on the type of JMS provider you are using. See the
following sections for details:

– "Configuring for OJMS" on page 5-13

– "Configuring for OC4J JMS" on page 5-15

– "Configuring for TIBCO JMS" on page 5-16

– "Configuring for IBM Websphere JMS" on page 5-17

■ Message Body Type

Select either TextMessage or BytesMessage.

The StreamMessage and MapMessage message types are not supported in
this release.

■ Durable Subscriber ID

This field is optional. If you are setting up a durable subscriber, then the
durable subscriber ID is required. Normally a subscriber loses messages if it
becomes disconnected, but a durable subscriber downloads stored messages
when it reconnects.

■ Message Selector

This field is also optional. It filters messages based on header and property
information. The message selector rule is a Boolean expression. If the
expression is true, then the message is consumed. If the expression is false,
then the message is rejected.

For example, you can enter logic such as:

5-8 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

– JMSPriority > 3. Based on this, messages with a priority greater than 3 are
consumed; all other messages are rejected.

– JMSType = 'car' AND color = 'blue' AND weight > 2500

– Country in ('UK', 'US', 'France')

■ Use MessageListener

This field is set to true by default, which means that the server does an
asynchronous callback to the adapter. If this is set to false, the adapter
performs a synchronous blocking receive.

After you enter the appropriate parameters, click Next.

Figure 5–7 Consume Operation Parameters Window

8. The Messages window appears. These settings define the correct schema for the
message payload.

You can perform one of the following:

■ Check Native format translation is not required (Schema is Opaque), which
disables the rest of the fields.

■ Click Define Schema for Native Format to start the Native Format Builder
Wizard, which guides you through the process of defining the native format.

■ Enter the path for the schema file URL (or browse for the path).

The following steps demonstrate the last option: browsing for the schema file
URL. Click the Browse button.

Note: This example shows a consume message operation. For a
produce message operation, this window is different. See "Produce
Message Procedure" on page 5-12 to see how this part of the
procedure differs.

Use Cases for the JMS Adapter

Oracle Application Server Adapter for Java Message Service 5-9

Figure 5–8 Messages Window

The Type Chooser window appears, with the Type Explorer navigation tree.

9. Browse the tree and select the appropriate schema type. Then click OK.

Figure 5–9 Selecting a Schema from the Type Chooser Window

The Messages window appears again, this time with the Schema File URL field
and the Schema Element field filled in.

5-10 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Figure 5–10 Completed Messages Window

10. Click Next.

The Finish window appears. This box shows the path and name of the adapter file
that the wizard creates.

11. Click Finish.

The Create Partner Link window appears with the fields populated.

Figure 5–11 Completed Create Partner Link Window

12. Click OK.

Generated WSDL File
The following WSDL file is generated by the Adapter Configuration Wizard:

<definitions
 name="JMS_Example"
 targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/jms/JMS_Example/"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/adapter/jms/JMS_Example/"
 xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/"

Use Cases for the JMS Adapter

Oracle Application Server Adapter for Java Message Service 5-11

 xmlns:opaque="http://xmlns.oracle.com/pcbpel/adapter/opaque/"
 xmlns:pc="http://xmlns.oracle.com/pcbpel/"
 xmlns:hdr="http://xmlns.oracle.com/pcbpel/adapter/jms/"
 >

This code segment defines the name of the adapter, and the locations of various
necessary schemas and other definition files.

 <import namespace="http://xmlns.oracle.com/pcbpel/adapter/jms/"
 location="jmsAdapterInboundHeader.wsdl"/>

This code segment imports the necessary namespace.

 <types>
 <schema targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/opaque/"
 xmlns="http://www.w3.org/2001/XMLSchema" >
 <element name="opaqueElement" type="base64Binary" />
 </schema>
 </types>
 <message name="Consume_Message_msg">
 <part name="opaque" element="opaque:opaqueElement"/>
 </message>
 <portType name="Consume_Message_ptt">
 <operation name="Consume_Message">
 <input message="tns:Consume_Message_msg"/>
 </operation>
 </portType>

This code segment defines the message type, name, and the port type for the partner
link.

 <binding name="Consume_Message_binding" type="tns:Consume_Message_ptt">
 <pc:inbound_binding />
 <operation name="Consume_Message">
 <jca:operation
 ActivationSpec="oracle.tip.adapter.jms.inbound.JmsConsumeActivationSpec"
 DestinationName="jms/DemoQue"
 UseMessageListener="true"
 PayloadType="TextMessage"
 OpaqueSchema="true" >
 </jca:operation>
 <input>
 <jca:header message="hdr:InboundHeader_msg" part="inboundHeader"/>
 </input>
 </operation>
 </binding>

This code segment defines the necessary bindings for the consume message operation,
the target queue, and identifies the message header.

 <service name="JMS_Example2">
 <port name="Consume_Message_pt" binding="tns:Consume_Message_binding">
 <jca:address location="eis/Jms/topics.xml" />
 </port>
 </service>
 <plt:partnerLinkType name="Consume_Message_plt" >
 <plt:role name="Consume_Message_role" >
 <plt:portType name="tns:Consume_Message_ptt" />
 </plt:role>
 </plt:partnerLinkType>
</definitions>

5-12 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

This last part defines the database connection, the connection factory (as defined in the
oc4j-ra.xml file), and the name and role of the partnerLinkType and portType.

oc4j-ra.xml file
The oc4j-ra.xml file defines the endpoints for the JMS connection factories. The
connection factories include configuration properties for each endpoint. Endpoints are
added to accommodate different types of connections, as demonstrated in the
following sections. The following example is from the generic oc4j-ra.xml file:

<?xml version="1.0"?>
<!DOCTYPE oc4j-connector-factories PUBLIC "-//Oracle//DTD Oracle Connector
 9.04//EN" "http://xmlns.oracle.com/ias/dtds/oc4j-connector-factories-9_04.dtd">
<oc4j-connector-factories>
 <connector-factory location="eis/MyJmsTopic1" connector-name="Jms Adapter">
 <config-property name="connectionFactoryLocation"
 value="jms/TopicConnectionFactory"/>
 <config-property name="factoryProperties" value=""/>
 <config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE"/>
 <config-property name="isTopic" value="true"/>
 <config-property name="isTransacted" value="true"/>
 <config-property name="username" value="admin"/>
 <config-property name="password" value="welcome"/>
</connector-factory>
<connector-factory location="eis/MyJmsTopic2" connector-name="Jms Adapter">
 <config-property name="connectionFactoryLocation"

...
</oc4j-connector-factories>

Produce Message Procedure
A produce message operation has certain differences in the definition procedure,
particularly in Step 7 on page 5-7 of "Using the Adapter Configuration Wizard to
Configure a JMS Adapter". Instead of specifying consume operation parameters, you
specify the following produce operation parameters. This enables the adapter to
produce (send) outbound messages for a JMS destination. The Produce Operation
Parameters window is shown in Figure 5–12.

■ Destination Name:

The JNDI name of the JMS queue or topic to which to deliver the message. The
name to enter is based on the type of JMS provider you are using. See the
following sections for detail:

– "Configuring for OJMS" on page 5-13

– "Configuring for OC4J JMS" on page 5-15

– "Configuring for TIBCO JMS" on page 5-16

– "Configuring for IBM Websphere JMS" on page 5-17

■ Message Body Type:

The supported values are TextMessage or BytesMessage. The StreamMessage
and MapMessage message types are not supported in this release.

■ Delivery Mode:

Use Cases for the JMS Adapter

Oracle Application Server Adapter for Java Message Service 5-13

The values are Persistent or Nonpersistent. A persistent delivery mode specifies a
persistent JMS publisher; that is, a publisher that stores messages for later use by a
durable subscriber. A durable subscriber is a consume message with a durable
subscriber ID in the corresponding field in step 7 on page 5-7 of "Using the
Adapter Configuration Wizard to Configure a JMS Adapter". A nondurable
subscriber loses any messages that are produced when the adapter is not active. A
durable subscriber downloads messages that have been stored in the persistent
publisher, and therefore does not have to remain active at all times to receive all
the messages.

■ Priority:

Select a priority value, with 9 representing the highest priority and 0 representing
the lowest priority. The default is 4.

■ TimeToLive:

The amount of time before the message expires and is no longer available to be
consumed.

Figure 5–12 Produce Operation Parameters Window

Configuring for OJMS
Configure the OJMS provider within the resource-provider element in the global
application.xml file. You can configure the resource provider with a URL
property. The following demonstrates a URL configuration:

<resource-provider class="oracle.jms.OjmsContext" name="ojmsdemo">
 <description>OJMS/AQ</description>
 <property name="url" value="jdbc:oracle:thin:@localhost:1521:my" />
 <property name="username" value="jmsuser" />
 <property name="password" value="jmsuser" />
</resource-provider>

In the oc4j-ra.xml file, add the following code segments:

<connector-factory location="eis/aqjms/Topic" connector-name="Jms Adapter">
 <config-property name="connectionFactoryLocation"
 value="java:comp/resource/ojmsdemo/TopicConnectionFactories/myTCF" />
 <config-property name="factoryProperties" value="" />
 <config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE" />

5-14 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 <config-property name="isTopic" value="true" />
 <config-property name="isTransacted" value="true" />
 <config-property name="username" value="jmsuser" />
 <config-property name="password" value="jmsuser" />
</connector-factory>
<connector-factory location="eis/aqjms/Queue" connector-name="Jms Adapter">
 <config-property name="connectionFactoryLocation" value="
 java:comp/resource/ojmsdemo/QueueConnectionFactories/myQCF" />
 <config-property name="factoryProperties" value="" />
 <config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE" />
 <config-property name="isTopic" value="false" />
 <config-property name="isTransacted" value="true" />
 <config-property name="username" value="jmsuser" />
 <config-property name="password" value="jmsuser" />
</connector-factory>

In this case, correct JMS connection JNDI names for Step 5 on page 5-6 of "Using the
Adapter Configuration Wizard to Configure a JMS Adapter" are eis/aqjms/Topic
or eis/aqjms/Queue.

Set the isTransacted value in the oc4j-ra.xml file to true. Setting it to false
leads to exception errors.

Access the OJMS Resources
The OJMS syntax for the connection factory is as follows:

java:comp/resource + JMS_provider_name + TopicConnectionFactories + user_defined_
name

or

java:comp/resource + JMS_provider_name + QueueConnectionFactories + user_defined_
name

The user_defined_name can be anything and does not match any other
configuration. The ConnectionFactories details what type of factory is being
defined. For this example, the JMS provider name is defined in the
resource-provider element as ojmsdemo.

For a queue connection factory: Because the JMS provider name is ojmsdemo and you
decide to use a name of myQCF, the connection factory name is
java:comp/resource/ojmsdemo/QueueConnectionFactories/myQCF.

For a topic connection factory: Because the JMS provider name is ojmsdemo and you
decide to use a name of myTCF, the connection factory name is
java:comp/resource/ojmsdemo/TopicConnectionFactories/myTCF.

The user-defined names of myQCF and myTCF are not used for anything else in your
logic. Therefore, you can choose any name.

Destination
The OJMS syntax for any destination is as follows:

java:comp/resource + JMS_provider_name + Topics + Destination_name

or

java:comp/resource + JMS_provider_name + Queues + Destination_name

The topic or queue details which type of destination is being defined. The destination
name is the actual queue or topic name defined in the database.

Use Cases for the JMS Adapter

Oracle Application Server Adapter for Java Message Service 5-15

For this example, the JMS provider name is defined in the resource-provider
element as ojmsdemo. In the database, the queue name is aqQueue.

For a queue: If the JMS provider name is ojmsdemo and the queue name is aqQueue,
the JNDI name for the queue is
java:comp/resource/ojmsdemo/Queues/aqQueue.

For a topic: If the JMS provider name is ojmsdemo and the topic name is aqTopic,
the JNDI name for the topic is
java:comp/resource/ojmsdemo/Topics/aqTopic.

OJMS and Remote Databases
To configure the adapter to use a remote database, the entries in the
application.xml file must look as follows:

<resource-provider class="oracle.jms.OjmsContext" name="ojmsdemo">
<description>OJMS/AQ</description>
<property name="url"
value="jdbc:oracle:thin:@remote-host:remote-port:remote-sid" />
<property name="username" value="jmsuser" />
@ <property name="password" value="jmsuser" />
</resource-provider>

Configuring for OC4J JMS
If the OC4J JMS server is running on another remote host, you can configure the JMS
adapter to talk to the server by using the following connector entry. Note that the only
difference with this connector entry is in the factory properties. The factory properties
can establish a JNDI context for the adapter. Substitute [hostname] with the
hostname of the server on which the OC4J JMS server is running. If the RMI port of the
remote OC4J instance is not the default value (23791), you must specify the RMI port
in the provider URL (that is, ormi://remotehost.domain.com:23795).

<connector-factory location="eis/RemoteOC4JJMS/Queue" connector-name="Jms
Adapter">
 <config-property name="connectionFactoryLocation"
 value="jms/QueueConnectionFactory" />
 <config-property name="factoryProperties"
value="java.naming.factory.initial=com.evermind.server.ApplicationClientInitialCon
textFactory;java.naming.provider.url=ormi://[hostname];
java.naming.security.principal=admin;java.naming.security.credentials=welcome" />
 <config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE" />
 <config-property name="isTopic" value="false" />
 <config-property name="isTransacted" value="true" />
 <config-property name="username" value="admin" />
 <config-property name="password" value="welcome" />
</connector-factory>

In this case, the correct JMS connection JNDI name for Step 5 on page 5-6 of "Using the
Adapter Configuration Wizard to Configure a JMS Adapter" is
eis/RemoteOC4JJMS/Queue.

In addition, you must have the file META-INF/application-client.xml in the
classpath. The contents of the file can be the following:

<application-client/>

To put this file in the classpath, put the above contents into the file at Oracle_
Home\integration\orabpel\system\classes\META-INF\application-cli
ent.xml and restart Oracle BPEL Server.

5-16 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

If you set isTransacted to true in the oc4j-ra.xml file for an outbound
connection, you receive an error. Do not set this value to true for outbound
connections.

Destination Name
The destination name for OC4J JMS is either a JNDI location (for example,
jms/demoQueue or jms/demoTopic) or the actual name of the destination as
configured in jms.xml (for example, Demo Queue or Demo Topic).

Configuring for TIBCO JMS
The BPEL OC4J application.xml file should contain the following jar file, where
Tibco EMS is installed in C:\tibco\ems. The JMS and JNDI jar files are already
present in the classpath and do not need to be included.

<library path=”C:\tibco\ems\clients\java\tibjms.jar” />

Create the appropriate endpoints for the JMS connection factories in oc4j-ra.xml.
After this change is made, restart Oracle BPEL Server. Here are the appropriate code
segments. You can modify the necessary parameters and use this for your purpose:

<connector-factory location="eis/tibjms/Topic" connector-name="Jms Adapter">
 <config-property name="connectionFactoryLocation"
 value="TopicConnectionFactory" />
 <config-property name="factoryProperties"
value="java.naming.factory.initial=com.tibco.tibjms.naming.TibjmsInitialContextFac
tory;java.naming.provider.url=tibjmsnaming://localhost:7222;java.naming.security.p
rincipal=admin;java.naming.security.credentials=password" />
 <config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE" />
 <config-property name="isTopic" value="true" />
 <config-property name="isTransacted" value="true" />
 <config-property name="username" value="admin" />
 <config-property name="password" value="password" />
</connector-factory>
<connector-factory location="eis/tibjms/Queue" connector-name="Jms Adapter">
 <config-property name="connectionFactoryLocation"
 value="QueueConnectionFactory" />
 <config-property name="factoryProperties"
value="java.naming.factory.initial=com.tibco.tibjms.naming.TibjmsInitialContextFac
tory;java.naming.provider.url=tibjmsnaming://localhost:7222;java.naming.security.p
rincipal=admin;java.naming.security.credentials=password" />
 <config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE" />
 <config-property name="isTopic" value="false" />
 <config-property name="isTransacted" value="true" />
 <config-property name="username" value="admin" />
 <config-property name="password" value="password" />
</connector-factory>

In this case, correct JMS connection JNDI names for Step 5 on page 5-6 of "Using the
Adapter Configuration Wizard to Configure a JMS Adapter" are eis/tibjms/Topic
or eis/tibjms/Queue.

When using Tibco JMS, always set the ClientID property as follows in the Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\applica
tion-deployments\default\FtpAdapter\oc4j-ra.xml file:

<config-property name="factoryProperties"
 value="ClientID=clientId{time}"/>

Use Cases for the JMS Adapter

Oracle Application Server Adapter for Java Message Service 5-17

The substring {time} instructs the run time to replace it with the value of Java
System.currentTimeMillis(). The other supported substitutions are:

■ {checksum}

A checksum based on the values of the oc4j-ra.xml connection factory
properties (referenced through jca:address).

■ {sequence}

Next member of an increasing series of integers starting at zero.

These settings enable you to specify a fixed or a variable ClientID in oc4j-ra.xml.

Direct Connection
A direct connection can also be defined instead of the JNDI connection. A direct
connection is necessary for the Solaris middle tier. Use the following direct connection
entry in the oc4j-ra.xml file, instead of the JNDI entry.

<connector-factory location="eis/tibjmsDirect/Topic" connector-name="Jms
Adapter">
 <config-property name="connectionFactoryLocation"
 value="com.tibco.tibjms.TibjmsTopicConnectionFactory"/>
 <config-property name="factoryProperties"
 @ value="ServerUrl=tcp://152.69.159.188:7222;UserName=admin;UserPassword=passwor
d"/>
 <config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE"/>
 <config-property name="isTopic" value="true"/>
 <config-property name="isTransacted" value="true"/>
 <config-property name="username" value="admin"/>
 @ <config-property name="password" value="password"/>
</connector-factory>

Destination Name
The destination name is the name of the topic or queue as listed in the Tibco JMS
server. For example, the sample queue is called queue.sample while the sample
topic is called topic.sample.

When you need to distinguish between a queue or topic, you can prefix the name with
either $topics: or $queues: depending on the type of destination. For example, the
destination name $queues:common refers to a queue that is distinct from the topic
called $topics:common. Note that you must escape the $ character in the .wsdl file
for the partner link because the adapter framework processes the $ as a special
character. The escape character is the backslash (\).

Configuring for IBM Websphere JMS
The BPEL OC4J application.xml file should contain the following jar files,
assuming MQ Series is installed in the C:\mqseries directory.

<library path="C:\mqseries\java\lib\com.ibm.mq.jar" />

<library path="C:\mqseries\java\lib\com.ibm.mqjms.jar" />

Create the appropriate endpoints for the JMS connection factories in oc4j-ra.xml.
After this change is made, you must restart Oracle BPEL Server. Here are the
appropriate code segments. You can modify the necessary parameters and use this for
your purpose.

<connector-factory location="eis/mqseries/Queue" connector-name="Jms Adapter">
 <config-property name="connectionFactoryLocation"

5-18 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 value="com.ibm.mq.jms.MQQueueConnectionFactory" />
 <config-property name="factoryProperties"
value="QueueManager=my.queue.manager;TransportType=1;HostName=myhost.com;Port=1414
;Channel=MYCHANNEL" />
 <config-property name="acknowledgeMode" value="AUTO_ACKNOWLEDGE" />
 <config-property name="isTopic" value="false" />
 <config-property name="isTransacted" value="true" />
 <config-property name="username" value="MUSR_MQADMIN" />
 <config-property name="password" value="password" />
</connector-factory>

In this case, the correct JMS connection JNDI name for Step 5 on page 5-6 of "Using the
Adapter Configuration Wizard to Configure a JMS Adapter" is
eis/mqseries/Queue.

Destination Name
The destination name is the name of the topic or queue listed in your MQ Series
configuration. For example, the name of the queue can be
queue:///MYQUEUE?targetClient=1.

Summary
This chapter describes how to use the Adapter Configuration Wizard to configure a
JMS adapter, the options available for this adapter, and how to configure adapters for
different application servers.

Native Format Builder Wizard 6-1

6
Native Format Builder Wizard

This chapter describes the Native Format Builder Wizard, which enables you to create
native schemas used for translation. Use cases and constructs for the schema are also
provided.

This chapter contains the following topics:

■ Creating Native Schema Files with the Native Format Builder Wizard

■ Understanding Native Schema

■ Native Schema Constructs

■ Summary

Creating Native Schema Files with the Native Format Builder Wizard
Oracle BPEL Process Manager requires native schemas for translation, which are based
on XML schema. However, not all commonly used formats use XML schema files. To
address this situation, Oracle BPEL Process Manager provides the Native Format
Builder Wizard. This wizard is accessible from the Define Schema for Native Format
button of the Messages window of the Adapter Configuration Wizard shown in
Figure 6–1. The Messages window is the last window to display in the Adapter
Configuration Wizard prior to the Finish window.

Figure 6–1 Starting the Native Format Builder Wizard

Creating Native Schema Files with the Native Format Builder Wizard

6-2 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Supported Formats
The Native Format Builder Wizard guides you through the creation of a native schema
file from the following formats shown in Figure 6–2. A sample data file format for the
selected type must already exist; you cannot create a native schema without one. You
can also select to modify an existing native schema previously created with this
wizard, except for those generated from a DTD or COBOL Copybook.

Figure 6–2 Native Format Builder Wizard

Delimited (such as CSV files)
This option enables you to create native schemas for records, where the fields are
separated by a value such as a comma or pound sign.

Fixed Length (Positional)
This option enables you to create native schemas for records, where the fields are all
fixed lengths.

DTD
This option enables you to generate native schema from the user-supplied DTD.

COBOL Copybook
This option enables you to generate native schema from the user-supplied COBOL
Copybook definition.

A COBOL mainframe application typically uses a COBOL Copybook file to define its
data layout. The converter creates a native schema from a copybook such that the
runtime translator can parse the associated data file.

A COBOL Copybook is typically a collection of group items (structures). These group
items contain other items, which can be groups or elementary items. Elementary items
are items that cannot be further subdivided. For example:

01 Purchase-Order

Creating Native Schema Files with the Native Format Builder Wizard

Native Format Builder Wizard 6-3

 05 Buyer
 10 BuyerName PIC X(5) USAGE DISPLAY.
 04 Seller
 08 SellerName PICTURE XXXXX.

Purchase-order is a group item with two child group items (Buyer, Seller). The
numbers 01, 05, 04, and so on indicate the level of the group (that is, the hierarchy of
data within that group).

Groups can be defined that have different level-numbers for the same level in the
hierarchy. For example, Buyer and Seller have different level numbers, but are at
the same level in the hierarchy. A group item includes all group and elementary items
that follow it until a level number less than or equal to the level number of that group
is encountered.

Each of the group items (Buyer and Seller) has a child elementary item. The PIC or
PICTURE clause defines the data layout. For example, BuyerName defines an
alphanumeric type of size equal to five characters. SellerName has exactly the same
data layout as BuyerName.

Group items in COBOL can be mapped to elements in XML schema with the
complexType. Similarly, elementary items can be mapped to elements of type simple
type with certain native format annotations to help the run time translator parse the
corresponding data file.

For example, the Buyer item can be mapped to the following definition:

<!--COBOL declaration : 05 Buyer-->
<element name="Buyer">
 <complexType>
 <sequence>
 <!--COBOL declaration : 10 Name PIC X(5)-->
 <element name="Name" type="string" nxsd:style="fixedLength"
 nxsd:padStyle="tail" nxsd:paddedBy=" " nxsd:length="5"/>
 </sequence>
 </complexType>
</element>

User Inputs

You are expected to provide the following information:

■ Target namespace for the native schema to be generated

■ Character set of the host computer on which the data file was generated. By
default this is set to EBCDIC (ebcdic-cp-us).

■ Byte order of the host computer on which the data file was generated. By default
this is set to big endian.

■ Record delimiter, which is typically the newline character, or no delimiter, or any
user-supplied string

■ Container tag name for generated native schema. By default, this is set to
Root-Element.

COBOL Clauses

Table 6–1 describes COBOL clauses. The numeric types covered in Table 6–1 are stored
as one character per digit. Support for clauses is defined as follows:

■ Y indicates the clause is supported.

Creating Native Schema Files with the Native Format Builder Wizard

6-4 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

■ N indicates the clause is not supported.

■ I indicates the clause is ignored.

The numeric types covered in Table 6–1 are stored as one character per digit. Table 6–2
covers numeric types that are stored in a more efficient manner.

Table 6–1 COBOL Clauses (Numeric Types Stored as One Character Per Digit)

COBOL
Clause

Design Time
Support

Runtime
Support

Supported
Synonyms Comments

PIC X(n) Y Y XXX… Alphanumeric – An allowable
character from the character set of the
computer. Each X corresponds to 1
byte.

PIC A(n) Y Y AA… Alphabetic – Any letter of the alphabet
or space. Each A corresponds to 1 byte.

PIC 9(n)
DISPLAY

Y Y 9999… Any character position that contains a
numeral. Each 9 is counted in the size
of the item.

OCCURS n
TIMES

Y Y Fixed length array

JUSTIFIED Y Y For A and X types. Right justifies with
the space pad.

REDEFINES Y Y Allows the same computer memory
area to be described by different data
items.

PIC
9(m)V9(n)
DISPLAY

Y Y Size = n+m bytes

OCCURS
DEPENDING
ON

Y Y

BLANK WHEN
ZERO

I I Ignored

RENAMES N N This is rarely seen in COBOL
Copybooks

INDEX N N 4-byte index

SYNCHRONIZE
D

I I SYNC

POINTER N N

PROCEDURE-P
OINTER

FILLER Y Y

Table 6–2 COBOL Clauses (Numeric Types Stored More Efficiently)

COBOL
Clause

Design Time
Support

Runtime
Support

Supported
Synonyms Comments

USAGE [IS] Y Y Both these keywords are optional.

Creating Native Schema Files with the Native Format Builder Wizard

Native Format Builder Wizard 6-5

The following clauses can be added to impact the sign position.

■ SIGN IS LEADING

Used with signed zoned numerics.

■ SIGN IS TRAILING

Used with signed zoned numerics.

■ SIGN IS LEADING SEPARATE

The character S is counted in the size

■ SIGN IS TRAILING SEPARATE

The character S is counted in the size

PIC 9(n)
COMP

Y Y COMPUTAT
IONAL,
BINARY,
COMP-4

Length varies with n:

■ n = 1-4 (2 bytes)

■ n = 5-9 (4 bytes)

■ n = 10-18 (8 bytes)

COMP-1 Y Y COMPUTAT
IONAL-1

Single precision, floating point number
that is 4 bytes long.

COMP-2 Y Y COMPUTAT
IONAL-2

Double precision, floating point
number that is 8 bytes long.

PIC 9(n)
COMP-3

Y Y PACKED-D
ECIMAL,
COMPUTAT
IONAL-3

Two digits are stored in each byte. An
additional half byte at the end is
allocated for the sign, even if the value
is unsigned.

PIC 9(n)
COMP-4

Y Y COMPUTAT
IONAL-4

Treated the same as a COMP type and
given its own data type in case custom
behavior must be added.

PIC 9(n)
COMP-5

N N Capacity of the native binary
representation.

PIC S9(n)
DISPLAY

Y Y PIC S99… Sign nibble in the right-most zone by
default. S is not counted in the size.

PIC S9(n)
COMP

Y Y Same as COMP. Negative numbers are
represented as two’s complement.

PIC S9(n)
COMP-3

Y Y

PIC
9(m)V9(n)
COMP

Y Y Length is the same as COMP.

PIC
9(m)V9(m)
COMP-3

Y Y Length = Ceiling ((n+m+1)/2)

Note: These assume that the numerics are stored using IBM COBOL
format. If these are generated for other platforms with different data
storage formats, a custom data handler for that type must be written.

Table 6–2 (Cont.) COBOL Clauses (Numeric Types Stored More Efficiently)

COBOL
Clause

Design Time
Support

Runtime
Support

Supported
Synonyms Comments

Creating Native Schema Files with the Native Format Builder Wizard

6-6 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Table 6–3 describes picture editing types.

Edited pictures are more for presentation purposes and are rarely seen in data files. It
is assumed that the editing symbols are also present in the data. For example, if you
have:

05 AMOUNT PIC 999.99

Then this field is six bytes wide and has a decimal point in the data.

Simple, special, and fixed insertion are handled by this method. Floating insertion,
zero suppression, and replacement insertion are not supported.

Native Format Builder Wizard Windows
For delimited and fixed-length files, you are guided through windows that prompt
you for the following information to create definitions in native schema format:

■ The data file to sample (from which to create a native schema) and its encoding

■ The number of rows to skip and the number of rows to sample in the file

■ If the file contains multiple records, are they the same type or different types

■ The target namespace, container element name, and record name

■ The record delimiter (for example, end-of-line) and field delimiter (for example,
comma or pound sign) or field length

■ The field properties (such as name, datatype, delimiter, and length)

DTD and COBOL Copybook files already include definitions in their native formats.
For these formats, the Native Format Builder Wizard prompts you for the following
information to create native schema versions of these definitions.

■ The filename of the DTD or COBOL Copybook definition, namespace, and root
element

■ The character set, byte order, and records delimiter (for COBOL Copybook only)

As you move through the wizard windows, the native schema file being created
displays at the bottom. This enables you to watch the native schema file being built.
The final window displays the generated native schema for the native format shown in
Figure 6–3. You can edit this format before clicking Next.

Table 6–3 Edited Pictures

Edited Pictures Supported Editing Types Unsupported Editing Types

Edited
alphanumeric

Simple Insertion: B(blank) 0 / ,

Edited float
numeric

Special insertion: . (period)

Edited numeric ■ Simple Insertion: B(blank) 0
/ ,

■ Special insertion: . (period)

■ Fixed Insertion: cs + - CR
DB (Inserts a symbol at the
beginning or end)

■ Floating Insertion: cs + -

■ Zero suppression: Z *

■ Replacement insertion: Z * + -
c

Understanding Native Schema

Native Format Builder Wizard 6-7

Figure 6–3 Native Schema Generated From Native Format

When you click Finish, you are returned to the Messages window of the Adapter
Configuration Wizard shown in Figure 6–1 on page 6-1. The Schema File URL and
Schema Element fields are filled in with details about your newly created native
schema file. You can now use the Adapter Configuration Wizard to create a WSDL file
for the adapter to communicate with your BPEL process.

Understanding Native Schema
This section provides use cases and explains various constructs of native schema to
translate the native format data to XML.

This section contains the following topics:

■ Use Cases for the Native Format Builder

■ Native Schema Constructs

Use Cases for the Native Format Builder
This section contains the following topics:

■ Defining a Comma-Separated Value File Structure

■ Defining a * Separated Value File Structure

■ Defining a Fixed Length Structure

■ Defining a More Complex Structure - Invoice

■ COBOL Copybook

Note: Not all native schemas can be generated from the Native
Format Builder Wizard. This wizard can handle only basic scenarios.
This section describes the capabilities of the native schema using
various examples and use cases.

Understanding Native Schema

6-8 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Defining a Comma-Separated Value File Structure
A comma-separated value (CSV) file is a common non-XML file structure. A CSV file
may or may not have the first few line as headers, in which case, you may want to
ignore them.

Native Data Format to Be Translated The following native data format is provided:

Name,Street,City,State,Country
Oracle India Private Limited, Lexington Towers, Bangalore, Karnataka, India
Intel India Private Limited, Ring Road, Bangalore, Karnataka, India

Native Schema The corresponding native schema definition can be defined as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 xmlns:tns="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:encoding="US-ASCII"
 nxsd:headerLines="1"
 nxsd:stream="chars"
 nxsd:version="NXSD">

 <xsd:element name="AddressBook">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Address" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," >
 </xsd:element>
 <xsd:element name="Street" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," >
 </xsd:element>
 <xsd:element name="City" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," >
 </xsd:element>
 <xsd:element name="State" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="," >
 </xsd:element>
 <xsd:element name="Country" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" >
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

The nxsd:headerLines="1" in the schema above, at the xsd:schema construct,
means to skip one line in the native data before actually translating the rest of the data.
This is because the first line is a header line. If set, nxsd:stream="chars" means the
data is to be read as characters. If set, nxsd:stream="bytes" means to read the
native data as bytes. For each of the element declarations, Name, Street, City,

Understanding Native Schema

Native Format Builder Wizard 6-9

State, Country, which have a corresponding scalar data, the
nxsd:style="terminated" defines that the corresponding data is stored in
terminated style. The actual terminator is then defined by the
nxsd:terminatedBy="," attribute specified at that construct. See "Defining
Terminated Data" on page 6-24 for details on the terminated style.

Translated XML Using the Native Schema The native data using the corresponding native
schema format is translated to the following XML:

<AddressBook xmlns="http://www.oracle.com/ias/processconnect">
 <Address>
 <Name>Oracle India Private Limited</Name>
 <Street>Lexington Towers</Street>
 <City>Bangalore</City>
 <State>Karnataka</State>
 <Country>India</Country>
 </Address>
 <Address>
 <Name>Intel India Private Limited</Name>
 <Street>Ring Road</Street>
 <City>Bangalore</City>
 <State>Karnataka</State>
 <Country>India</Country>
 </Address>
</AddressBook>

Defining a * Separated Value File Structure
The use case defined above is just one specific case of the *SV class, where the
wildcard can be substituted by any character or string (for example, for the native data
containing a + separated value).

Native Data Format to Be Translated The following native data format is provided:

a+b+c+d+e
f+g+h+i+j

Native Schema The corresponding native schema definition is similar to the one in the
previous use case except that in lieu of nxsd:terminatedBy="," you now define
the terminated by format as nxsd:terminatedBy="+". See "Defining Terminated
Data" on page 6-24 for details on the terminated style.

Defining a Fixed Length Structure
In this example, the native data used is the same as in the CSV case. The only
difference is that here the data is fixed length, and not CSV.

Native Data Format to Be Translated The following native data format is provided:

Name Street City State Country
Oracle India Private Limited Lexington Towers Bangalore Karnataka India
Intel India Private Limited Outer Ring Road Bangalore Karnataka India

Native Schema The corresponding native schema definition is similar to the definition
of the CSV, but the style now changes from nxsd:style="terminated" to
nxsd:style="fixedLength" along with the relevant attributes for the fixed length
style. For the style fixed length, the one mandatory attribute is the length:
nxsd:length. The value of nxsd:length is the actual length of the data to be read.

Understanding Native Schema

6-10 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

The complete definition for fixed length style for the native data above can be defined
as follows:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 xmlns:tns="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:encoding="US-ASCII"
 nxsd:headerLines="1"
 nxsd:stream="chars"
 nxsd:version="NXSD">

 <xsd:element name="AddressBook">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Address" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Name" type="xsd:string" nxsd:style="fixedLength"
 nxsd:length="31">
 </xsd:element>
 <xsd:element name="Street" type="xsd:string" nxsd:style="fixedLength"
 nxsd:length="19">
 </xsd:element>
 <xsd:element name="City" type="xsd:string" nxsd:style="fixedLength"
 nxsd:length="10">
 </xsd:element>
 <xsd:element name="State" type="xsd:string" nxsd:style="fixedLength"
 nxsd:length="10">
 </xsd:element>
 <xsd:element name="Country" type="xsd:string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>

See "Defining Fixed Length Data" on page 6-21 for details on the fixed length style.

Defining a More Complex Structure - Invoice
An invoice is a more complex structure than the structure in the previous CSV, *SV,
and fixed length use cases. An invoice usually contains buyer information, seller
information, and line items.

Native Data Format to Be Translated The following native data format for an invoice is
provided:

6335722^Company One^First Street 999 San Jose 95129USCA650-801-6250
 ^Oracle^Bridge Parkway 1600 Redwood Shores 94065USCA650-506-7000
001|BPEL Process Manager Enterprise Edition|20000,2,+40000+
002|BPEL Process Manager Standard Edition|10000,5,+50000+
003|BPEL Process Manager Developer Edition|1000,20,+20000+#110000

Understanding Native Schema

Native Format Builder Wizard 6-11

The first line in the native data is purchaser details, followed by seller details, followed
by line items, and finally the total for the line items. Both purchaser and seller have the
same structure:

■ The first 7 characters are the UID

■ This is followed by the buyer/seller name surrounded by “^”

■ This is followed by the address until the end of the line

This address contains a fixed length street, city, and so on. The last line item ends with
the sharp symbol “#”, followed by the line-item total.

Native Schema The native schema definition corresponding to the preceding native data
can be defined as follows:

<schema attributeFormDefault="qualified" elementFormDefault="qualified"

targetNamespace="http://xmlns.oracle.com/ias/pcbpel/fatransschema/demo"
 xmlns:tns="http://xmlns.oracle.com/ias/pcbpel/fatransschema/demo"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 nxsd:version="NXSD" nxsd:stream="chars">

 <element name="invoice" type="tns:invoiceType" />

 <complexType name="invoiceType">
 <sequence>
 <element name="purchaser" type="tns:partnerType" />
 <element name="seller" type="tns:partnerType" />
 <element name="line-item" type="tns:line-itemType"
 maxOccurs="unbounded" nxsd:style="array"
 nxsd:cellSeparatedBy="${eol}" nxsd:arrayTerminatedBy="#"/>
 <element name="total" type="double" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}"/>
 </sequence>
 </complexType>

 <complexType name="partnerType">
 <sequence>
 <element name="uid" type="string" nxsd:style="fixedLength"
 nxsd:length="7" nxsd:padStyle="tail" nxsd:paddedBy=" "/>
 <element name="name" type="string" nxsd:style="surrounded"
 nxsd:surroundedBy="^"/>
 <element name="address" type="tns:addressType" />
 </sequence>
 </complexType>

 <complexType name="addressType">
 <sequence>
 <element name="street1" type="string" nxsd:style="fixedLength"
 nxsd:length="15" nxsd:padStyle="tail" nxsd:paddedBy=" "/>
 <element name="street2" type="string" nxsd:style="fixedLength"
 nxsd:length="10" nxsd:padStyle="tail" nxsd:paddedBy=" "/>
 <element name="city" type="string" nxsd:style="fixedLength"
 nxsd:length="15" nxsd:padStyle="tail" nxsd:paddedBy=" "/>
 <element name="postal-code" type="string" nxsd:style="fixedLength"
 nxsd:length="5" nxsd:padStyle="none"/>
 <element name="country" type="string" nxsd:style="fixedLength"
 nxsd:length="2" nxsd:padStyle="none"/>
 <element name="state" type="string" nxsd:style="fixedLength"

Understanding Native Schema

6-12 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 nxsd:length="2" nxsd:padStyle="none"/>
 <element name="phone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}"/>
 </sequence>
 </complexType>

 <complexType name="line-itemType">
 <sequence>
 <element name="uid" type="string" nxsd:style="fixedLength"
 nxsd:length="3" nxsd:padStyle="none"/>
 <element name="description" type="string" nxsd:style="surrounded"
 nxsd:surroundedBy="|"/>
 <element name="price" type="double" nxsd:style="terminated"
 nxsd:terminatedBy=","/>
 <element name="quantity" type="integer" nxsd:style="terminated"
 nxsd:terminatedBy=","/>
 <element name="line-total" type="double" nxsd:style="surrounded"
 nxsd:surroundedBy="+"/>
 </sequence>
 </complexType>

</schema>

Translated XML Using the Native Schema The translated XML looks as follows:

<invoice xmlns="http://xmlns.oracle.com/pcbpel/demoSchema/invoice-nxsd">
 <purchaser>
 <uid>6335722</uid>
 <name>Company One</name>
 <address>
 <street1>First Street</street1>
 <street2>999</street2>
 <city>San Jose</city>
 <postal-code>95129</postal-code>
 <country>US</country>
 <state>CA</state>
 <phone>650-801-6250</phone>
 </address>
 </purchaser>
 <seller>
 <uid/>
 <name>Oracle</name>
 <address>
 <street1>Bridge Parkway</street1>
 <street2>1600</street2>
 <city>Redwood Shores</city>
 <postal-code>94065</postal-code>
 <country>US</country>
 <state>CA</state>
 <phone>650-506-7000</phone>
 </address>
 </seller>
 <line-item>
 <uid>001</uid>
 <description>BPEL Process Manager Enterprise Edition</description>
 <price>20000</price>
 <quantity>2</quantity>
 <line-total>40000</line-total>
 </line-item>
 <line-item>
 <uid>002</uid>

Understanding Native Schema

Native Format Builder Wizard 6-13

 <description>BPEL Process Manager Standard Edition</description>
 <price>10000</price>
 <quantity>5</quantity>
 <line-total>50000</line-total>
 </line-item>
 <line-item>
 <uid>003</uid>
 <description>BPEL Process Manager Developer Edition</description>
 <price>1000</price>
 <quantity>20</quantity>
 <line-total>20000</line-total>
 </line-item>
 <total>110000</total>
</invoice>

COBOL Copybook
A demonstration is provided that shows how the file adapter and FTP adapter process
a file in COBOL Copybook format (through use of the Native Format Builder Wizard)
to create a native schema file for translation. For a demonstration that uses the Native
Format Builder Wizard to convert a COBOL Copybook file to a native schema file, go
to

Oracle_Home\integration\orabpel\samples\tutorials\121.FileAdapter\CobolCopyBook

The following COBOL Copybook examples are also provided:

■ Multiple Root Levels

■ Single Root Level, Virtual Decimal, Fixed Length Array

■ Variable Length Array

■ Numeric Types

Multiple Root Levels

A COBOL Copybook can have multiple root levels. If all root levels are at 01 level,
each such group implicitly redefines the other.

01 PAYROLL-E-RECORD.
 05 PAYROLL-E-EMPLOYEE-NUMBER PIC X(10).
 05 PAYROLL-E-TRANS-CODE PIC X(02).
 05 PAYROLL-E-NAME PIC X(08).
 05 FILLER PIC X(25).

01 PAYROLL-F-RECORD.
 05 PAYROLL-F-EMPLOYEE-NUMBER PIC X(10).
 05 PAYROLL-F-TRANS-CODE PIC X(02).
 05 PAYROLL-F-IDENTIFIER-VALUE PIC X(03).
 05 PAYROLL-F-NAME PIC X(30).

01 PAYROLL-H-RECORD.
 05 PAYROLL-H-EMPLOYEE-NUMBER PIC X(10).
 05 PAYROLL-H-TRANS-CODE PIC X(02).
 05 PAYROLL-H-HED-NUMBER PIC 9(03).
 05 FILLER PIC X(30).

The generated schema:

<?xml version="1.0" encoding="UTF-8" ?>
<!--Native format was generated from COBOL copybook :

Understanding Native Schema

6-14 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

D:\work\jDevProjects\CCB\Copybooks\payroll.cpy-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"
 targetNamespace="http://TargetNamespace.com/ccb/implicitRedefines"
 xmlns:tns="http://TargetNamespace.com/ccb/implicitRedefines"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:version="NXSD" nxsd:encoding="cp037" nxsd:byteOrder="bigEndian"
 nxsd:stream="chars">
 <xsd:element name="Payroll-Records">
 <xsd:complexType>
 <!--Please add values for nxsd:lookAhead attributes for the elements in the
 choice model group.-->
 <xsd:choice minOccurs="1" maxOccurs="unbounded">
 <!--COBOL declaration : 01 PAYROLL-E-RECORD -->
 <xsd:element name="PAYROLL-E-RECORD" nxsd:lookAhead="" nxsd:lookFor="">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 05 PAYROLL-E-EMPLOYEE-NUMBER PIC X(10)-->
 <xsd:element name="PAYROLL-E-EMPLOYEE-NUMBER" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="10"/>
 <!--COBOL declaration : 05 PAYROLL-E-TRANS-CODE PIC X(02)-->
 <xsd:element name="PAYROLL-E-TRANS-CODE" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="2"/>
 <!--COBOL declaration : 05 PAYROLL-E-NAME PIC X(08)-->
 <xsd:element name="PAYROLL-E-NAME" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="8"/>
 <!--COBOL declaration : 05 FILLER PIC X(25)-->
 <xsd:element name="FILLER" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="25"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!--COBOL declaration : 01 PAYROLL-F-RECORD -->
 <xsd:element name="PAYROLL-F-RECORD" nxsd:lookAhead="" nxsd:lookFor="">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 05 PAYROLL-F-EMPLOYEE-NUMBER PIC X(10)-->
 <xsd:element name="PAYROLL-F-EMPLOYEE-NUMBER" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="10"/>
 <!--COBOL declaration : 05 PAYROLL-F-TRANS-CODE PIC X(02)-->
 <xsd:element name="PAYROLL-F-TRANS-CODE" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="2"/>
 <!--COBOL declaration : 05 PAYROLL-F-IDENTIFIER-VALUE PIC X(03)-->
 <xsd:element name="PAYROLL-F-IDENTIFIER-VALUE" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="3"/>
 <!--COBOL declaration : 05 PAYROLL-F-NAME PIC X(30)-->
 <xsd:element name="PAYROLL-F-NAME" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="30"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

Understanding Native Schema

Native Format Builder Wizard 6-15

 <!--COBOL declaration : 01 PAYROLL-H-RECORD -->
 <xsd:element name="PAYROLL-H-RECORD" nxsd:lookAhead="" nxsd:lookFor="">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 05 PAYROLL-H-EMPLOYEE-NUMBER PIC X(10)-->
 <xsd:element name="PAYROLL-H-EMPLOYEE-NUMBER" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="10"/>
 <!--COBOL declaration : 05 PAYROLL-H-TRANS-CODE PIC X(02)-->
 <xsd:element name="PAYROLL-H-TRANS-CODE" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="2"/>
 <!--COBOL declaration : 05 PAYROLL-H-HED-NUMBER PIC 9(03)-->
 <xsd:element name="PAYROLL-H-HED-NUMBER" type="xsd:long"
 nxsd:style="fixedLength" nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="3"/>
 <!--COBOL declaration : 05 FILLER PIC X(30)-->
 <xsd:element name="FILLER" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="30"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

The top-level payroll records are enclosed in a choice model group. Each payroll
record also has two attributes: nxsd:lookAhead and nxsd:lookFor that help
identify the type of record during runtime processing of the data file. Therefore, you
must add values for these attributes. For example, assume PAYROLL-F-RECORD
occurs when the PAYROLL-F-TRANS-CODE field has a value of FR. The record
element then looks as follows:

<xsd:element name="PAYROLL-F-RECORD" nxsd:lookAhead="10" nxsd:lookFor="FR">

The value 10 indicates the position of the lookahead field.

The following COBOL Copybook has multiple root elements at the 05 level:

05 ORG-NUM PIC 99.
05 EMP-RECORD.
 10 EMP-SSN PIC 9(4)V(6).
 10 EMP-WZT PIC 9(6).

The generated schema:

<?xml version="1.0" encoding="UTF-8" ?>
<!--Native format was generated from COBOL copybook :
D:\work\jDevProjects\CCB\Copybooks\multipleRoot.cpy-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"
 targetNamespace="http://TargetNamespace.com/ccb/multipleRoots"
 xmlns:tns="http://TargetNamespace.com/ccb/multipleRoots"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:version="NXSD" nxsd:encoding="ASCII"
 nxsd:byteOrder="littleEndian" nxsd:stream="chars">
 <xsd:element name="emp-info">
 <xsd:complexType>

Understanding Native Schema

6-16 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 <xsd:sequence minOccurs="1" maxOccurs="unbounded">
 <!--COBOL declaration : 05 ORG-NUM PIC 99-->
 <xsd:element name="ORG-NUM" type="xsd:long" nxsd:style="fixedLength"
 nxsd:padStyle="head" nxsd:paddedBy="0" nxsd:length="2"/>
 <!--COBOL declaration : 05 EMP-RECORD-->
 <xsd:element name="EMP-RECORD">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 10 EMP-SSN PIC 9(4)V(6)-->
 <xsd:element name="EMP-SSN" type="xsd:decimal"
 nxsd:style="virtualDecimal" extn:assumeDecimal="4"
 extn:picSize="9"/>
 <!--COBOL declaration : 10 EMP-WZT PIC 9(6)-->
 <xsd:element name="EMP-WZT" type="xsd:long"
 nxsd:style="fixedLength" nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="6"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

In this (non-01 level) case, an unbounded sequence of the root level items is generated.

Single Root Level, Virtual Decimal, Fixed Length Array

The following COBOL Copybook has a single root level item PO-RECORD. In a single
root level case, the level number does not matter because the converter’s behavior is
the same. This COBOL Copybook also shows an example of a field declared as a
virtual decimal (PO-ITEM-PRICE).

05 PO-RECORD.
 10 PO-BUYER.
 15 PO-UID PIC 9(7).
 15 PO-NAME PIC X(15).
 15 PO-ADDRESS.
 20 PO-STREET PIC X(15).
 20 PO-CITY PIC X(10).
 20 PO-ZIP PIC 9(5).
 20 PO-STATE PIC X(2).
 10 PO-ITEM.
 15 POITEM OCCURS 3 TIMES.
 20 PO-LINE-ITEM.
 25 PO-ITEM-ID PIC 9(3).
 25 PO-ITEM-NAME PIC X(40).
 25 PO-ITEM-QUANTITY PIC 9(2).
 25 PO-ITEM-PRICE PIC 9(5)V9(2).
 10 PO-TOTAL PIC 9(7)V9(2).

The generated schema:

<?xml version="1.0" encoding="UTF-8" ?>
<!--Native format was generated from COBOL copybook : D:\work\
jDevProjects\CCB\Copybooks\po-ccb.cpy-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"
 targetNamespace="http://TargetNamespace.com/ccb/singleRoot"
 xmlns:tns="http://TargetNamespace.com/ccb/singleRoot"

Understanding Native Schema

Native Format Builder Wizard 6-17

 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:version="NXSD" nxsd:encoding="cp037" nxsd:byteOrder="bigEndian"
 nxsd:stream="chars">
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 05 PO-RECORD -->
 <xsd:element name="PO-RECORD" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 10 PO-BUYER-->
 <xsd:element name="PO-BUYER">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 15 PO-UID PIC 9(7)-->
 <xsd:element name="PO-UID" type="xsd:long"
 nxsd:style="fixedLength" nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="7"/>
 <!--COBOL declaration : 15 PO-NAME PIC X(15)-->
 <xsd:element name="PO-NAME" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="15"/>
 <!--COBOL declaration : 15 PO-ADDRESS-->
 <xsd:element name="PO-ADDRESS">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 20 PO-STREET PIC X(15)-->
 <xsd:element name="PO-STREET" type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail" nxsd:paddedBy=" "
 nxsd:length="15"/>
 <!--COBOL declaration : 20 PO-CITY PIC X(10)-->
 <xsd:element name="PO-CITY" type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail" nxsd:paddedBy=" "
 nxsd:length="10"/>
 <!--COBOL declaration : 20 PO-ZIP PIC 9(5)-->
 <xsd:element name="PO-ZIP" type="xsd:long"
 nxsd:style="fixedLength"
 nxsd:padStyle="head" nxsd:paddedBy="0"
 nxsd:length="5"/>
 <!--COBOL declaration : 20 PO-STATE PIC X(2)-->
 <xsd:element name="PO-STATE" type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail" nxsd:paddedBy=" "
 nxsd:length="2"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!--COBOL declaration : 10 PO-ITEM-->
 <xsd:element name="PO-ITEM">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 15 POITEM OCCURS 3 TIMES-->
 <xsd:element name="POITEM" minOccurs="3" maxOccurs="3">
 <xsd:complexType>
 <xsd:sequence>

Understanding Native Schema

6-18 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 <!--COBOL declaration : 20 PO-LINE-ITEM-->
 <xsd:element name="PO-LINE-ITEM">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 25 PO-ITEM-ID PIC 9(3)-->
 <xsd:element name="PO-ITEM-ID" type="xsd:long"
 nxsd:style="fixedLength"
 nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="3"/>
 <!--COBOL declaration : 25 PO-ITEM-NAME PIC X(40)-->
 <xsd:element name="PO-ITEM-NAME"
 type="xsd:string"
 nxsd:style="fixedLength"
 nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="40"/>
 <!--COBOL declaration : 25 PO-ITEM-QUANTITY PIC 9(2)-->
 <xsd:element name="PO-ITEM-QUANTITY"
 type="xsd:long"
 nxsd:style="fixedLength"
 nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="2"/>
 <!--COBOL declaration : 25 PO-ITEM-PRICE PIC 9(5)V9(2)-->
 <xsd:element name="PO-ITEM-PRICE"
 type="xsd:decimal"
 nxsd:style="virtualDecimal"
 extn:assumeDecimal="5"
 extn:picSize="7"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <!--COBOL declaration : 10 PO-TOTAL PIC 9(7)V9(2)-->
 <xsd:element name="PO-TOTAL" type="xsd:decimal"
 nxsd:style="virtualDecimal" extn:assumeDecimal="7"
 extn:picSize=" "/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Variable Length Array

05 EMP-RECORD .
 10 EMP-NAME PIC X(30).
 10 EMP-DIV-NUM PIC 9(5).
 10 DIV-ENTRY OCCURS 1 TO 50 TIMES
 DEPENDING ON EMP-DIV-NUM.
 20 DIV-CODE PIC X(30).

The generated schema:

<?xml version="1.0" encoding="UTF-8" ?>
<!--Native format was generated from COBOL copybook : D:\work\

Understanding Native Schema

Native Format Builder Wizard 6-19

jDevProjects\CCB\Copybooks\odo.cpy-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"
 targetNamespace="http://TargetNamespace.com/ccb/varLengthArray"
 xmlns:tns="http://TargetNamespace.com/ccb/varLengthArray"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:version="NXSD" nxsd:encoding="cp037" nxsd:byteOrder="bigEndian"
 nxsd:stream="chars">
 <xsd:element name="Root-Element">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration :05 EMP-RECORD -->
 <xsd:element name="EMP-RECORD" minOccurs="1" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:appinfo>
 <nxsd:variables>
 <nxsd:variable name="DIV-ENTRY_var0"/>
 </nxsd:variables>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 10 EMP-NAME PIC X(30)-->
 <xsd:element name="EMP-NAME" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="30"/>
 <!--COBOL declaration : 10 EMP-DIV-NUM PIC 9(5)-->
 <xsd:element name="EMP-DIV-NUM" type="xsd:long"
 nxsd:style="fixedLength" nxsd:padStyle="head"
 nxsd:paddedBy="0" nxsd:length="5">
 <xsd:annotation>
 <xsd:appinfo>
 <nxsd:variables>
 <nxsd:assign name="DIV-ENTRY_var0" value="${0}"/>
 </nxsd:variables>
 </xsd:appinfo>
 </xsd:annotation>
 </xsd:element>
 <!--COBOL declaration : 10 DIV-ENTRY OCCURS 1 TO 50 TIMES DEPENDING ON
 EMP-DIV-NUM-->
 <xsd:element name="DIV-ENTRY" nxsd:style="array"
 nxsd:arrayLength="${DIV-ENTRY_var0}" minOccurs="1"
 maxOccurs="50">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 20 DIV-CODE PIC X(30)-->
 <xsd:element name="DIV-CODE" type="xsd:string"
 nxsd:style="fixedLength" nxsd:padStyle="tail"
 nxsd:paddedBy=" " nxsd:length="30"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Understanding Native Schema

6-20 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Numeric Types

01 NUMERIC-FORMATS.
 05 Salary PIC 9(5) COMP-3.
 05 Rating PICTURE S9(5).
 05 Age PIC 9(3) USAGE COMP.
 05 Revenue PIC 9(3)V9(2).
 05 Growth PIC S9(3) SIGN IS LEADING.
 05 Computation COMP-1.

The generated schema:

<?xml version="1.0" encoding="UTF-8" ?>
<!--Native format was generated from COBOL copybook :
D:\work\jDevProjects\CCB\Copybooks\numeric.cpy-->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:extn="http://xmlns.oracle.com/pcbpel/nxsd/extensions"
 targetNamespace="http://TargetNamespace.com/ccb/numeric"
 xmlns:tns="http://TargetNamespace.com/ccb/numeric"
 elementFormDefault="qualified" attributeFormDefault="unqualified"
 nxsd:version="NXSD" nxsd:encoding="cp037" nxsd:byteOrder="bigEndian"
 nxsd:stream="bytes">
 <xsd:element name="Numerics">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration :01 NUMERIC-FORMATS-->
 <xsd:element name="NUMERIC-FORMATS" minOccurs="1" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:sequence>
 <!--COBOL declaration : 05 Salary PIC 9(5) COMP-3-->
 <xsd:element name="Salary" type="xsd:long" nxsd:style="comp3"
 extn:sign="unticked" extn:picSize="5"/>
 <!--COBOL declaration : 05 Rating PICTURE S9(5)-->
 <xsd:element name="Rating" type="xsd:string"
 nxsd:style="signZoned" extn:sign="ticked"
 extn:picSize="5" extn:signPosn="tailUpperNibble"/>
 <!--COBOL declaration : 05 Age PIC 9(3) USAGE COMP-->
 <xsd:element name="Age" type="xsd:long" nxsd:style="comp"
 extn:picSize="3" extn:sign="unticked"/>
 <!--COBOL declaration : 05 Revenue PIC 9(3)V9(2)-->
 <xsd:element name="Revenue" type="xsd:decimal"
 nxsd:style="virtualDecimal" extn:assumeDecimal="3"
 extn:picSize="5"/>
 <!--COBOL declaration : 05 Growth PIC S9(3) SIGN IS LEADING-->
 <xsd:element name="Growth" type="xsd:string"
 nxsd:style="signZoned" extn:sign="ticked"
 extn:picSize="3" extn:signPosn="headUpperNibble"/>
 <!--COBOL declaration : 05 Computation COMP-1-->
 <xsd:element name="Computation" type="xsd:float"
 nxsd:style="comp1" extn:sign="ticked"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Understanding Native Schema

Native Format Builder Wizard 6-21

In this case, all the numeric types follow formats specified according to IBM COBOL
formats. If the data file originates from a different system using different layouts, the
generated schema requires modification.

Native Schema Constructs
This section contains the following topics:

■ Defining Fixed Length Data

■ Defining Terminated Data

■ Defining Surrounded Data

■ Defining Lists

■ Defining Arrays

■ Conditional Processing

■ Defining Dates

■ Using Variables

Defining Fixed Length Data
Fixed length data in the native format can be defined in the native schema using the
fixed length style. There are three types of fixed length:

■ With padding

■ Without padding

■ With the actual length also being read from the native data

Native Data Format to Be Translated: With Padding The actual data may be less than the
length specified. In this case, you can specify the paddedBy and padStyle as head or
tail. When the data is read, the pads are trimmed accordingly.

GBP*UK000012550.00

Native Schema: With Padding

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="fixedlength">
 <complexType>
 <sequence>
 <element name="currency_code" nxsd:style="fixedLength" nxsd:length="4"
 nxsd:padStyle="tail" nxsd:paddedBy="*">
 <simpleType>
 <restriction base="string">
 <maxLength value="4" />
 </restriction>
 </simpleType>
 </element>
 <element name="country_code" nxsd:style="fixedLength" nxsd:length="2"

Understanding Native Schema

6-22 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 nxsd:padStyle="none">
 <simpleType>
 <restriction base="string">
 <length value="2" />
 </restriction>
 </simpleType>
 </element>
 <element name="to_usd_rate" nxsd:style="fixedLength" nxsd:length="12"
 nxsd:padStyle="head" nxsd:paddedBy="0">
 <simpleType>
 <restriction base="string">
 <maxLength value="12" />
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: With Padding

<fixedlength xmlns="http://www.oracle.com/ias/processconnect">
 <currency_code>GBP</currency_code>
 <country_code>UK</country_code>
 <to_usd_rate>12550.00</to_usd_rate>
</fixedlength>

Native Data Format to Be Translated: Without Padding To define a fixed length data in native
schema, you can use the fixed length style. In case the actual data is less than the
length specified, the white spaces are not trimmed.

GBP*UK000012550.00

Native Schema: Without Padding

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="fixedlength">
 <complexType>
 <sequence>
 <element name="currency_code" nxsd:style="fixedLength" nxsd:length="4">
 <simpleType>
 <restriction base="string">
 <maxLength value="4" />
 </restriction>
 </simpleType>
 </element>
 <element name="country_code" nxsd:style="fixedLength" nxsd:length="2">
 <simpleType>
 <restriction base="string">
 <length value="2" />
 </restriction>

Understanding Native Schema

Native Format Builder Wizard 6-23

 </simpleType>
 </element>
 <element name="to_usd_rate" nxsd:style="fixedLength" nxsd:length="12">
 <simpleType>
 <restriction base="string">
 <maxLength value="12" />
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: Without Padding

<fixedlength xmlns="http://www.oracle.com/ias/processconnect">
 <currency_code>GBP*</currency_code>
 <country_code>UK</country_code>
 <to_usd_rate>000012550.00</to_usd_rate>
</fixedlength>

Native Data Format to Be Translated: Actual Length Also Being Read from the Native Data

When the length of the data is also stored in the native stream, this style is used to first
read the length, and subsequently read the data according to the length read.

03joe13DUZac.1HKVmIY

Native Schema: Actual Length Also Being Read from the Native Data

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="fixedlength">
 <complexType>
 <sequence>
 <element name="user" type="string" nxsd:style="fixedLength"
 nxsd:identifierLength="2" />
 <element name="encr_user" type="string" nxsd:style="fixedLength"
 nxsd:identifierLength="2" />
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: Actual Length Also Being Read from the Native Data

<fixedlength xmlns="http://www.oracle.com/ias/processconnect">
 <user>joe</user>
 <encr_user>DUZac.1HKVmIY</encr_user>
</fixedlength>

Understanding Native Schema

6-24 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Defining Terminated Data
This format is used when the terminating mark itself is supposed to be treated as part
of the actual data and not as a delimiter. When it is not clear whether the mark is part
of actual data or not, you can use the nxsd:quotedBy to be safe. Specifying
nxsd:quotedBy means the corresponding native data may or may not be quoted. If it
is quoted, the actual data is read from the begin quote to the end quote as specified in
nxsd:quotedBy. Otherwise, it is read until the terminatedBy is found.

The following examples are provided:

■ Optionally quoted

■ Not quoted

Native Data Format to Be Translated: Optionally Quoted

Fred,"2 Old Street, Old Town,Manchester",20-08-1954,0161-499-1718

Native Schema: Optionally Quoted

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="terminated">
 <complexType>
 <sequence>
 <element name="PersonName" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
 </complexType>
</element>

Translated XML Using the Native Schema: Optionally Quoted

<terminated xmlns="http://www.oracle.com/ias/processconnect">
 <PersonName>Fred</PersonName>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
</terminated>

Native Data Format to Be Translated: Not Quoted

This is used when the data is terminated by a particular string or character.

1020,16,18,,1580.00

Native Schema: Not Quoted

<?xml version="1.0" encoding="US-ASCII"?>

Understanding Native Schema

Native Format Builder Wizard 6-25

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="terminated">
 <complexType>
 <sequence>
 <element name="product" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="ordered" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="inventory" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="backlog" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," />
 <element name="listprice" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: Not Quoted

<terminated xmlns="http://www.oracle.com/ias/processconnect">
 <product>1020</product>
 <ordered>16</ordered>
 <inventory>18</inventory>
 <backlog></backlog>
 <listprice>1580.00</listprice>
</terminated>

Defining Surrounded Data
This is used when the native data is surrounded by a mark.

The following examples are provided:

■ Left and right surrounding marks are different

■ Left and right surrounding marks are the same

Native Data Format to Be Translated: Left and Right Surrounding Marks Are Different

(Ernest Hemingway Museum){Whitehead St.}

Native Schema: Left and Right Surrounding Marks Are Different

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://www.oracle.com/ias/processconnect"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

Understanding Native Schema

6-26 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

<element name="limstring">
 <complexType>
 <sequence>
 <element name="Landmark" type="string" nxsd:style="surrounded"
nxsd:leftSurroundedBy="(" nxsd:rightSurroundedBy=")" />
 <element name="Street" type="string" nxsd:style="surrounded"
nxsd:leftSurroundedBy="{" nxsd:rightSurroundedBy="}" />
 </sequence>
 </complexType>
</element>
</schema>

Translated XML Using the Native Schema: Left and Right Surrounding Marks Are Different

<limstring xmlns="http://www.oracle.com/ias/processconnect">
 <Landmark>Ernest Hemingway Museum</Landmark>
 <Street>Whitehead St.</Street>
</limstring>

Native Data Format to Be Translated: Left and Right Surrounding Marks Are the Same

.FL..Florida Keys.+Key West+

Native Schema: Left and Right Surrounding Marks Are the Same

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://www.oracle.com/ias/processconnect"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">
<element name="limstring">
 <complexType>
 <sequence>
 <element name="State" type="string" nxsd:style="surrounded"
nxsd:surroundedBy="."/>
 <element name="Region" type="string" nxsd:style="surrounded"
nxsd:surroundedBy="." />
 <element name="City" type="string" nxsd:style="surrounded"
nxsd:surroundedBy="+" />
 </sequence>
 </complexType>
</element>
</schema>

Translated XML Using the Native Schema: Left and Right Surrounding Marks Are the Same

<limstring xmlns="http://www.oracle.com/ias/processconnect">
 <State>FL</State>
 <Region>Florida Keys</Region>
 <City>Key West</City>
</limstring>

Defining Lists
This format is for lists with the following characteristics:

■ All items separated by the same mark, except the last item (bounded)

Understanding Native Schema

Native Format Builder Wizard 6-27

■ All items separated by the same mark, including the last item (unbounded)

Native Data Format to Be Translated: All Items Separated by the Same Mark, But the Last Item
Terminated by a Different Mark (Bounded)

125,200,255

Native Schema: All Items Separated by the Same Mark, But the Last Item Terminated by a Different
Mark (Bounded)

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="list" type="tns:Colors" />

<complexType name="Colors" nxsd:style="list" nxsd:itemSeparatedBy=","
 nxsd:listTerminatedBy="${eol}">

 <sequence>
 <element name="Red" type="string" />
 <element name="Green" type="string" />
 <element name="Blue" type="string" />
 </sequence>
</complexType>

</schema>

Translated XML Using the Native Schema: All Items Separated by the Same Mark, But the Last
Item Terminated by a Different Mark (Bounded)

<list xmlns="http://www.oracle.com/ias/processconnect">
 <Red>125</Red>
 <Green>200</Green>
 <Blue>255</Blue>
</list>

Native Data Format to Be Translated: All Items Separated by the Same Mark, Including the Last
Item (Unbounded)

configure;startup;runtest;shutdown;

Native Schema: All Items Separated by the Same Mark, Including the Last Item (Unbounded)

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

Understanding Native Schema

6-28 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

<element name="list" type="tns:CommandSet" />

<complexType name="CommandSet" nxsd:style="list" nxsd:itemSeparatedBy=";">
 <sequence>
 <element name="Cmd1" type="string" />
 <element name="Cmd2" type="string" />
 <element name="Cmd3" type="string" />
 <element name="Cmd4" type="string" />
 </sequence>
</complexType>

</schema>

Translated XML Using the Native Schema: All Items Separated by the Same Mark, Including the
Last Item (Unbounded)

<list xmlns="http://www.oracle.com/ias/processconnect">
 <Cmd1>configure</Cmd1>
 <Cmd2>startup</Cmd2>
 <Cmd3>runtest</Cmd3>
 <Cmd4>shutdown</Cmd4>
</list>

Defining Arrays
This is for an array of complex types where the individual cells are separated by a
separating character and the last cell of the array is terminated by a terminating
character.

The following examples are provided:

■ All cells separated by the same mark, except the last cell (bounded)

■ All cells separated by the same mark, including the last cell (unbounded)

■ Cells not separated by any mark, except the last cell (bounded)

■ The number of cells also being read from the native data

Native Data Format to Be Translated: All Cells Separated by the Same Mark, But the Last Cell
Terminated by a Different Mark (Bounded)

"Smith, John","1 Old Street, Old Town, Manchester",,"0161-499-1717".
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718".
"Smith, Bob",,,0161-499-1719.#

Native Schema: All Cells Separated by the Same Mark, But the Last Cell Terminated by a Different
Mark (Bounded)

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="array">
 <complexType>
 <sequence>
 <element name="Member" maxOccurs="unbounded"

Understanding Native Schema

Native Format Builder Wizard 6-29

 nxsd:style="array" nxsd:cellSeparatedBy="${eol}"
 nxsd:arrayTerminatedBy="#">
 <complexType>
 <sequence>
 <element name="Name" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="." nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: All Cells Separated by the Same Mark, But the Last Cell
Terminated by a Different Mark (Bounded)

<array xmlns="http://www.oracle.com/ias/processconnect">
 <Member>
 <Name>Smith, John</Name>
 <Address>1 Old Street, Old Town, Manchester</Address>
 <DOB></DOB>
 <Telephone>0161-499-1717</Telephone>
 </Member>
 <Member>
 <Name>Fred</Name>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
 </Member>
 <Member>
 <Name>Smith, Bob</Name>
 <Address></Address>
 <DOB></DOB>
 <Telephone>0161-499-1719</Telephone>
 </Member>
</array>

Native Data Format to Be Translated: All Cells Separated by the Same Mark, Including the
Last Cell (Unbounded)

"Smith, John","1 Old Street, Old Town, Manchester",,"0161-499-1717".
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718".
"Smith, Bob",,,0161-499-1719.

Native Schema: All Cells Separated by the Same Mark, Including the Last Cell
(Unbounded)

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"

Understanding Native Schema

6-30 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="array">
 <complexType>
 <sequence>
 <element name="Member" maxOccurs="unbounded"
 nxsd:style="array" nxsd:cellSeparatedBy="\r\n">
 <complexType>
 <sequence>
 <element name="Name" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="." nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: All Cells Separated by the Same Mark, Including the
Last Cell (Unbounded)

<array xmlns="http://www.oracle.com/ias/processconnect">
 <Member>
 <Name>Smith, John</Name>
 <Address>1 Old Street, Old Town, Manchester</Address>
 <DOB></DOB>
 <Telephone>0161-499-1717</Telephone>
 </Member>
 <Member>
 <Name>Fred</Name>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
 </Member>
 <Member>
 <Name>Smith, Bob</Name>
 <Address></Address>
 <DOB></DOB>
 <Telephone>0161-499-1719</Telephone>
 </Member>
</array>

Native Data Format to Be Translated: Cells Not Separated by Any Mark, But the Last Cell
Terminated by a Mark (Bounded)

"Smith, John","1 Old Street, Old Town, Manchester",,"0161-499-1717"
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718"
"Smith, Bob",,,0161-499-1719
#

Understanding Native Schema

Native Format Builder Wizard 6-31

Native Schema: Cells Not Separated by Any Mark, But the Last Cell Terminated by a Mark
(Bounded)

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="array">
 <complexType>
 <sequence>
 <element name="Member" maxOccurs="unbounded"
 nxsd:style="array" nxsd:arrayTerminatedBy="#">
 <complexType>
 <sequence>
 <element name="Name" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="\r\n" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: Cells Not Separated by Any Mark, But the Last Cell
Terminated by a Mark (Bounded)

<array xmlns="http://www.oracle.com/ias/processconnect">
 <Member>
 <Name>Smith, John</Name>
 <Address>1 Old Street, Old Town, Manchester</Address>
 <DOB></DOB>
 <Telephone>0161-499-1717</Telephone>
 </Member>
 <Member>
 <Name>Fred</Name>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
 </Member>
 <Member>
 <Name>Smith, Bob</Name>
 <Address></Address>
 <DOB></DOB>
 <Telephone>0161-499-1719</Telephone>
 </Member>
</array>

Native Data Format to Be Translated: The Number of Cells Being Read from the Native Data

Understanding Native Schema

6-32 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

3"Smith, John","1 Old Street, Old Town, Manchester",,"0161-499-1717"
Fred,"2 Old Street, Old Town,Manchester","20-08-1954","0161-499-1718"
"Smith, Bob",,,0161-499-1719

Native Schema: The Number of Cells Being Read from the Native Data

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="arrayidentifierlength">
 <complexType>
 <sequence>
 <element name="Member" maxOccurs="unbounded" nxsd:style="array"
 nxsd:arrayIdentifierLength="1">
 <complexType>
 <sequence>
 <element name="Name" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="," nxsd:quotedBy='"'/>
 <element name="Telephone" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="\r\n" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema: The Number of Cells Being Read from the Native Data

<arrayidentifierlength xmlns="http://www.oracle.com/ias/processconnect">
 <Member>
 <Name>Smith, John</Name>
 <Address>1 Old Street, Old Town, Manchester</Address>
 <DOB></DOB>
 <Telephone>0161-499-1717</Telephone>
 </Member>
 <Member>
 <Name>Fred</Name>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone>0161-499-1718</Telephone>
 </Member>
 <Member>
 <Name>Smith, Bob</Name>
 <Address></Address>
 <DOB></DOB>
 <Telephone>0161-499-1719</Telephone>
 </Member>
</arrayidentifierlength>

Understanding Native Schema

Native Format Builder Wizard 6-33

Conditional Processing
The following examples are provided:

■ Processing one element within a choice model group based on the condition

■ Processing elements based within a sequence model group on the condition

Native Data Format to Be Translated: Processing One Element within a Choice Model Group Based
on the Condition

PO28/06/2004^|ABCD Inc.|Oracle
OracleApps025070,000.00
Database 021230,000.00
ProcessCon021040,000.00
PO01/07/2004^|EFGH Inc.|Oracle
Websphere 025070,000.00
DB2 021230,000.00
Eclipse 021040,000.00
SO29/06/2004|Oracle Apps|5
Navneet Singh
PO28/06/2004^|IJKL Inc.|Oracle
Weblogic 025070,000.00
Tuxedo 021230,000.00
JRockit 021040,000.00
IN30/06/2004;Navneet Singh;Oracle;Oracle Apps;5;70,000.00;350,000.00

Native Schema: Processing One Element within a Choice Model Group Based on the Condition

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 xmlns:tns="http://www.oracle.com/ias/processconnect"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="container">

 <complexType>
 <choice maxOccurs="unbounded" nxsd:choiceCondition="fixedLength"
 nxsd:length="2">

 <element ref="tns:PurchaseOrder" nxsd:conditionValue="PO" />

 <element ref="tns:SalesOrder" nxsd:conditionValue="SO" />

 <element ref="tns:Invoice" nxsd:conditionValue="IN" />

 </choice>
 </complexType>
</element>

<!-- PO -->
<element name="PurchaseOrder" type="tns:POType"/>

<complexType name="POType">
 <sequence>

 <element name="Date" type="string" nxsd:style="terminated"

Understanding Native Schema

6-34 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 nxsd:terminatedBy="^" />
 <element name="Buyer" type="string" nxsd:style="surrounded"
 nxsd:surroundedBy="|" />
 <element name="Supplier" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 <element name="Items">
 <complexType>
 <sequence>
 <element name="Line-Item" minOccurs="3" maxOccurs="3">
 <complexType>
 <group ref="tns:LineItems" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>

<group name="LineItems">
 <sequence>
 <element name="Id" type="string" nxsd:style="fixedLength" nxsd:length="10"
 nxsd:padStyle="none"/>
 <element name="Quantity" type="string" nxsd:style="fixedLength"
 nxsd:identifierLength="2" />
 <element name="Price" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</group>

<!-- SO -->
<element name="SalesOrder" type="tns:SOType" />

<complexType name="SOType">
 <sequence>
 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="|" />
 <element name="Item" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="|" />
 <element name="Quantity" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 <element name="Buyer" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</complexType>

<!-- INV -->
<element name="Invoice" type="tns:INVType" />

<complexType name="INVType">
 <sequence>
 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Purchaser" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Seller" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Item" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Price" type="string" nxsd:style="terminated"

Understanding Native Schema

Native Format Builder Wizard 6-35

 nxsd:terminatedBy=";" />
 <element name="Quantity" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="TotalPrice" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</complexType>

</schema>

Translated XML Using the Native Schema: Processing One Element Within a Choice Model Group
Based on the Condition

<container xmlns="http://www.oracle.com/ias/processconnect">
 <PurchaseOrder>
 <Date>28/06/2004</Date>
 <Buyer>ABCD Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>OracleApps</Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Database </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>ProcessCon</Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <PurchaseOrder>
 <Date>01/07/2004</Date>
 <Buyer>EFGH Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>Websphere </Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>DB2 </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Eclipse </Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <SalesOrder>
 <Date>29/06/2004</Date>

Understanding Native Schema

6-36 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 <Item>Oracle Apps</Item>
 <Quantity>5</Quantity>
 <Buyer>Navneet Singh</Buyer>
 </SalesOrder>
 <PurchaseOrder>
 <Date>28/06/2004</Date>
 <Buyer>IJKL Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>Weblogic </Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Tuxedo </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>JRockit </Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <Invoice>
 <Date>30/06/2004</Date>
 <Purchaser>Navneet Singh</Purchaser>
 <Seller>Oracle</Seller>
 <Item>Oracle Apps</Item>
 <Price>5</Price>
 <Quantity>70,000.00</Quantity>
 <TotalPrice>350,000.00</TotalPrice>
 </Invoice>
</container>

Native Data Format to Be Translated: Processing Elements within a Sequence Model Group Based
on the Condition

PO28/06/2004^|ABCD Inc.|Oracle
OracleApps025070,000.00
Database 021230,000.00
ProcessCon021040,000.00
PO01/07/2004^|EFGH Inc.|Oracle
Websphere 025070,000.00
DB2 021230,000.00
Eclipse 021040,000.00
SO29/06/2004|Oracle Apps|5
Navneet Singh
PO28/06/2004^|IJKL Inc.|Oracle
Weblogic 025070,000.00
Tuxedo 021230,000.00
JRockit 021040,000.00
IN30/06/2004;Navneet Singh;Oracle;Oracle Apps;5;70,000.00;350,000.00

Native Schema: Processing Elements within a Sequence Model Group Based on the Condition

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"

Understanding Native Schema

Native Format Builder Wizard 6-37

 xmlns:tns="http://www.oracle.com/ias/processconnect"
 targetNamespace="http://www.oracle.com/ias/processconnect"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="container">

 <complexType>
 <sequence maxOccurs="unbounded">

 <element ref="tns:PurchaseOrder" minOccurs="0" nxsd:startsWith="PO" />

 <element ref="tns:SalesOrder" minOccurs="0" nxsd:startsWith="SO" />

 <element ref="tns:Invoice" minOccurs="0" nxsd:startsWith="IN" />

 </sequence>
 </complexType>
</element>

<!-- PO -->
<element name="PurchaseOrder" type="tns:POType"/>

<complexType name="POType">
 <sequence>

 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="^" />

 <element name="Buyer" type="string" nxsd:style="surrounded"
 nxsd:surroundedBy="|" />
 <element name="Supplier" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 <element name="Items">
 <complexType>
 <sequence>
 <element name="Line-Item" minOccurs="3" maxOccurs="3">
 <complexType>
 <group ref="tns:LineItems" />
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
</complexType>

<group name="LineItems">
 <sequence>
 <element name="Id" type="string" nxsd:style="fixedLength" nxsd:length="10"
 nxsd:padStyle="none"/>
 <element name="Quantity" type="string" nxsd:style="fixedLength"
 nxsd:identifierLength="2" />
 <element name="Price" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</group>

Understanding Native Schema

6-38 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

<!-- SO -->
<element name="SalesOrder" type="tns:SOType" />

<complexType name="SOType">
 <sequence>
 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="|" />
 <element name="Item" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="|" />
 <element name="Quantity" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 <element name="Buyer" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</complexType>

<!-- INV -->
<element name="Invoice" type="tns:INVType" />

<complexType name="INVType">
 <sequence>
 <element name="Date" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Purchaser" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Seller" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Item" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Price" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="Quantity" type="string" nxsd:style="terminated"
 nxsd:terminatedBy=";" />
 <element name="TotalPrice" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" />
 </sequence>
</complexType>

</schema>

Translated XML Using the Native Schema: Processing Elements within a Sequence Model Group
Based on the Condition

<container xmlns="http://www.oracle.com/ias/processconnect">
 <PurchaseOrder>
 <Date>28/06/2004</Date>
 <Buyer>ABCD Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>OracleApps</Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Database </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>

Understanding Native Schema

Native Format Builder Wizard 6-39

 <Id>ProcessCon</Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <PurchaseOrder>
 <Date>01/07/2004</Date>
 <Buyer>EFGH Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>Websphere </Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>DB2 </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Eclipse </Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <SalesOrder>
 <Date>29/06/2004</Date>
 <Item>Oracle Apps</Item>
 <Quantity>5</Quantity>
 <Buyer>Navneet Singh</Buyer>
 </SalesOrder>
 <PurchaseOrder>
 <Date>28/06/2004</Date>
 <Buyer>IJKL Inc.</Buyer>
 <Supplier>Oracle</Supplier>
 <Items>
 <Line-Item>
 <Id>Weblogic </Id>
 <Quantity>50</Quantity>
 <Price>70,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>Tuxedo </Id>
 <Quantity>12</Quantity>
 <Price>30,000.00</Price>
 </Line-Item>
 <Line-Item>
 <Id>JRockit </Id>
 <Quantity>10</Quantity>
 <Price>40,000.00</Price>
 </Line-Item>
 </Items>
 </PurchaseOrder>
 <Invoice>
 <Date>30/06/2004</Date>
 <Purchaser>Navneet Singh</Purchaser>
 <Seller>Oracle</Seller>

Understanding Native Schema

6-40 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 <Item>Oracle Apps</Item>
 <Price>5</Price>
 <Quantity>70,000.00</Quantity>
 <TotalPrice>350,000.00</TotalPrice>
 </Invoice>
</container>

Defining Dates
This example shows how to define dates.

Native Data Format to Be Translated

11/16/0224/11/02
11-20-2002
23*11*2002
01/02/2003 01:02
01/02/2003 03:04:05

Native Schema

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="dateformat">
 <complexType>
 <sequence>
 <element name="StartDate" type="dateTime" nxsd:dateFormat="MM/dd/yy"
 nxsd:style="fixedLength" nxsd:length="8" />
 <element name="EndDate" type="dateTime" nxsd:dateFormat="dd/MM/yy"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="Milestone" type="dateTime" nxsd:dateFormat="MM-dd-yyyy"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="DueDate" type="dateTime" nxsd:dateFormat="dd*MM*yyyy"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="Date" type="dateTime" nxsd:dateFormat="MM/dd/yyyy hh:mm"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 <element name="Date" type="dateTime" nxsd:dateFormat="MM/dd/yyyy hh:mm:ss"
 nxsd:style="terminated" nxsd:terminatedBy="${eol}" />
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema

<dateformat xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <StartDate>2002-11-16T00:00:00</StartDate>
 <EndDate>2002-11-24T00:00:00</EndDate>
 <Milestone>2002-11-20T00:00:00</Milestone>
 <DueDate>2002-11-23T00:00:00</DueDate>
 <Date>2003-01-02T01:02:00</Date>
 <Date>2003-01-02T03:04:05</Date>
</dateformat>

Understanding Native Schema

Native Format Builder Wizard 6-41

Using Variables
This example shows how to use variables.

Native Data Format to Be Translated

{,;}Fred,"2 Old Street, Old Town,Manchester","20-08-1954";"0161-499-1718"
phone-2
phone-3

Native Schema

<?xml version="1.0" encoding="US-ASCII"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/nxsd/smoketest"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 nxsd:stream="chars"
 nxsd:version="NXSD">

<element name="variable">
 <annotation>
 <documentation>
 1. var1 - variable declaration
 2. var2 - variable declaration with default value
 3. EOL - variable declaration with referencing a system variable
 </documentation>
 <appinfo>
 <junkies/>
 <nxsd:variables>
 <nxsd:variable name="var1" />
 <nxsd:variable name="var2" value="," />
 <nxsd:variable name="SystemEOL" value="${system.line.separator}" />
 </nxsd:variables>
 <junkies/>
 <junkies/>
 <junkies/>
 </appinfo>
 </annotation>

 <complexType>
 <sequence>
 <element name="delims" type="string" nxsd:style="surrounded"
 nxsd:leftSurroundedBy="{" nxsd:rightSurroundedBy="}" >
 <annotation>
 <appinfo>
 <junkies/>
 <junkies/>
 <junkies/>
 <nxsd:variables>
 <nxsd:assign name="var1" value="${0,1}"/>
 <nxsd:assign name="var2" value="${1}" />
 </nxsd:variables>
 </appinfo>
 </annotation>
 </element>

 <element name="PersonName" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${var1}" nxsd:quotedBy=""" />

Native Schema Constructs

6-42 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 <element name="Address" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${var1}" nxsd:quotedBy="""/>
 <element name="DOB" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${var2}" nxsd:quotedBy='"'/>
 <element name="Telephone1" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 <element name="Telephone2" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 <element name="Telephone3" type="string" nxsd:style="terminated"
 nxsd:terminatedBy="${eol}" nxsd:quotedBy='"'/>
 </sequence>
 </complexType>
</element>

</schema>

Translated XML Using the Native Schema

<variable xmlns="http://xmlns.oracle.com/pcbpel/nxsd/smoketest">
 <delims>,;</delims>
 <PersonName>Fred</PersonName>
 <Address>2 Old Street, Old Town,Manchester</Address>
 <DOB>20-08-1954</DOB>
 <Telephone1>0161-499-1718</Telephone1>
 <Telephone2>phone-2</Telephone2>
 <Telephone3>phone-3</Telephone3>
</variable>

Native Schema Constructs
Table 6–4 shows the constructs applicable only on the <schema> tag.

Table 6–4 Constructs Applicable Only on the <schema> Tag

Construct Description

byteOrder The byte order of the native data as bigEndian or
littleEndian.

encoding The encoding in which the actual data is stored. Any legal
encoding supported by java.io.InputStreamReader.

headerLines A positive integer specifying the number of lines to be skipped,
before translating the native data.

headerLinesTerminated
By

Skip until the specified string, before translating the native data.

standalone If declared, adds the standalone attribute in the XML declaration
prolog of the translated XML, with the actual value as that
specified in nxsd:standalone. Allowed values are true and
false.

stream Whether the data is stored as characters or bytes. Allowed
values are CHARS and BYTES.

uniqueMessageSeparato
r

String specifying the unique message separator in the native
data, in case of a batch of messages.

version The type of native data. Possible values are NXSD, DTD, XSD, and
OPAQUE.

xmlversion If declared, adds the XML declaration prolog to the translated
XML with the actual value as that specified in
nxsd:xmlversion. Allowed values are 1.0 and 1.1.

Native Schema Constructs

Native Format Builder Wizard 6-43

Table 6–5 shows the constructs applicable on all tags other than the <schema> tag.

Table 6–5 Constructs Applicable On All Tags Other Than the <schema> Tag

Construct Description

arrayIdentifierLength The length of the array being stored in the native data occupying
the specified length

arrayLength The value of this construct is used as the length of the array,
which can also be a variable resolved to a valid number. This
value overrides any minOccurs and maxOccurs attributes of
the particle where it is specified. Use this feature as follows:

nxsd:style="array" nxsd:arrayLength="10"

This indicates that the array length is 10.

arrayTerminatedBy The last item in the array being terminated by the specified
string

assign Assigns a value to the already declared variable

cellSeparatedBy The cells of the array in the native data being separated by the
specified string

choiceCondition Either fixedLength or terminated

conditionValue Matches the string read from the native stream for the
choiceCondition, against the specified string in the
conditionValue

dateFormat A valid Java date format representing the date in the native data

identifierLength The number of characters and bytes in which the actual length of
the data is stored

itemSeparatedBy The items in the list being separated by the specified string

leftSurroundedBy,

rightSurroundedBy

The native data surrounded

length The length of the native data to be read. Used with fixed length
style.

listTerminatedBy The last item in the list being terminated by the specified string

lookAhead Looks for a match ahead of the current position in the input
stream. If a match is found, the node on which this construct is
specified is processed; otherwise, it is skipped. Use this feature
as follows:

nxsd:lookAhead="20" nxsd:lookFor="abc"

This indicates to skip 20 characters and look for the string abc
starting from that location. If this is found, the node is processed;
otherwise, it is skipped.

paddedBy The string used for padding

padStyle head, tail, or none

quotedBy The native data being quoted by the specified string

skip Skips the specified number of bytes or characters

skipLines Skips the number of lines specified

skipUntil Skips until the string specified

startsWith Looks for the specified string in the native data. If it exists, then
proceeds with the element where it is specified; otherwise, skips
and processes the next element.

Summary

6-44 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Summary
Oracle BPEL Process Manager requires native schemas for translation, which are based
on XML schema. However, not all commonly used formats use XML schema files. This
chapter describes the Native Format Builder Wizard, which enables you to create
native schemas used for translation. The Native Format Builder Wizard guides you
through the creation of a native schema file from delimited formats (such as CSVs),
fixed length formats, DTD formats, and COBOL Copybook formats. This chapter also
provides use cases and constructs for the schema.

style The style used to read the native data from the input stream.
Allowed values are fixedLength, surrounded, terminated,
list, and array.

surroundedBy The native data being surrounded by the specified string

terminatedBy The native data being terminated by the string specified

variable Declares a single variable

variables Declares a set of variables or assigns the already declared
variables a valid value

Table 6–5 (Cont.) Constructs Applicable On All Tags Other Than the <schema> Tag

Construct Description

Troubleshooting and Workarounds A-1

A
Troubleshooting and Workarounds

This appendix describes Oracle BPEL Process Manager troubleshooting methods.

This appendix contains the following topics:

■ Troubleshooting the Oracle Application Server Adapter for Databases

■ Troubleshooting the Oracle Application Server Adapter for Databases When Using
Stored Procedures

■ Troubleshooting the Oracle Application Server Adapter for Files/FTP

■ Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

■ Summary

Troubleshooting the Oracle Application Server Adapter for Databases
The following sections describe possible issues and solutions when using the Oracle
Application Server Adapter for Databases (database adapter).

Could Not Create OracleAS TopLink Session Exception

Problem
At run time, you may see the "Could not create the TopLink session"
exception.

Solution
This common error occurs when the run-time connection is not configured properly.
See "Deployment" on page 4-44 for more information.

Could Not Find Adapter for eis/DB/my_connection

Problem
You may see the "Could not find adapter for eis/DB/my_
connection/...." exception.

Solution
See "Deployment" on page 4-44 for more information.

Troubleshooting the Oracle Application Server Adapter for Databases

A-2 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Changes Through TopLink Mapping Workbench
Changes through TopLink Mapping Workbench require you to run the Adapter
Configuration Wizard again in edit mode to force a refresh of the toplink_
mappings.xml file.

Redeploying from the Command Line
If you redeploy using obant, unless the bpel.xml or .bpel files have changed, the
redeployment is skipped by design.

Cannot Change Customers_table.xsd

Problem
Changes to Customers_table.xsd are not reflected, or you get an exception.

Solution
You cannot specify the XSD format that the database adapter produces. See "XML
Schema Definition (XSD)" on page 4-43 for details.

No Target Foreign Keys Error

Problem
After clicking Finish, or at deployment, you may see the following exception:

Caused by Exception [TOPLINK-0] (OracleAS TopLink - 10g (9.0.4.4) (Build 040705)):
oracle.toplink.exceptions.IntegrityException

Descriptor Exceptions:

Exception [TOPLINK-64] (OracleAS TopLink - 10g (9.0.4.4) (Build 040705)):
oracle.toplink.exceptions.DescriptorException
Exception Description: No target foreign keys have been specified for this
mapping.
Mapping: oracle.toplink.mappings.OneToManyMapping[phonesCollection]
Descriptor: Descriptor(Test.Customers --> [DatabaseTable(CUSTOMERS)])

This generally means that there was a problem in the wizard.

Solution
The simplest solution is to create all constraints on the database first. Also, depending
on the problem, you may only need to fix something in the offline tables, and then run
the wizard again.

If you want to create a one-to-many mapping from CUSTOMERS to PHONES, you
need a foreign key constraint on PHONES.

This procedure assumes that this constraint does not exist on the database, and that
you tried to create it with the wizard and it generated an exception.

■ In your JDeveloper BPEL Designer project, click the plus sign (+) in the
Applications Navigator to add files to your project. Select database >
schemaName > schemaName.schema. This imports all your database objects.

■ Open the PHONES table and manually create the foreign key constraint from
PHONES to CUSTOMERS.

Troubleshooting the Oracle Application Server Adapter for Databases

Troubleshooting and Workarounds A-3

■ Save all.

■ Now open the OracleAS TopLink project. In JDeveloper BPEL Designer, go to
Application Sources > TopLink > TopLink Mappings. In the Structure window,
open CUSTOMERS and double-click the phonesCollection mapping.

You should now see a Table Reference tab in the main window. This was probably
blank previously. From the menu, select the one you just created.

■ Save again.

■ Edit the database partner link.

Click Next to the end in the wizard, and then click Finish and Close.

This refreshes toplink_mappings.xml for your project.

■ Open the toplink_mappings.xml file in JDeveloper BPEL Designer. You may
need to add it to the project first.

■ Search for phonesCollection.

– You should find a tag like this:

<database-mapping>
<attribute-name>phonesCollection</attribute-name>

– Scroll down and you should now see something like this:

<source-key-fields>
<field>CUSTOMERS.someColumn</field>
</source-key-fields>
<target-foreign-key-fields>
<field>PHONES.someColumn</field>
</target-foreign-key-fields>

– If you do not see the tags shown here, then manually add them. This is not the
preferred method because toplink_mappings.xml is a generated file,
which gets refreshed whenever you edit a database partner link.

■ Undeploy the old process in Oracle BPEL Console, and redeploy your fixed
process with a new revision number.

No Primary Key Exception

Problem
After clicking Finish, or at deployment, you may see the following exception:

Caused by Exception [TOPLINK-0] (OracleAS TopLink - 10g (9.0.4.4) (Build 040705)):
oracle.toplink.exceptions.IntegrityException

Descriptor Exceptions:

Exception [TOPLINK-46] (OracleAS TopLink - 10g (9.0.4.4) (Build 040705)):
oracle.toplink.exceptions.DescriptorException
Exception Description: There should be one non-read-only mapping defined for the
primary key field [PHONES.ID].
Descriptor: Descriptor(Test.Phones --> [DatabaseTable(PHONES)])

This probably means that no primary key was defined for PHONES.

Troubleshooting the Oracle Application Server Adapter for Databases

A-4 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Solution
If this exception appears in conjunction with the No Target Foreign Keys error, then
see "No Target Foreign Keys Error" on page A-2 and resolve that problem first.
Otherwise, do the following:

■ Open Application Sources > TopLink > TopLink Mappings.

– In the Structure window, double-click PHONES.

On the first page, you should see Primary Keys:. Ensure that columns are
selected and that they are mapped in the project.

– Save.

■ Edit the database partner link.

Click Next to the end in the wizard, and then click Finish and Close.

■ Open toplink_mappings.xml. For the PHONES descriptor, you should see
something like this:

<primary-key-fields>
<field>PHONES.ID</field>
</primary-key-fields>

– Make sure that there is at least one field, and for that field, make sure you can
find it somewhere else in the toplink_mappings.xml file. If you can, then
this means that the database adapter can detect it. If not, then you must map
this field.

■ Open Application Sources > Test > Phones.

You should see Java code. Add a line as follows:

long id;

■ Save.

■ Now open Application Sources > TopLink > TopLink Mappings.

Double-click PHONES and go to the Structure window.

You should be able to map the id as DirectToField, and set the database field to
ID.

■ Save and then edit the database partner link.

Click Next to the end in the wizard, and then click Finish and Close.

■ Undeploy the old process in Oracle BPEL Console, and redeploy your fixed
process with a new revision number.

dateTime Conversion Exceptions

Problem
You may get a conversion exception when you pass in an xs:dateTime value to the
database adapter.

Solution
If an attribute is of type xs:dateTime, then the database adapter is expecting a string
in one of the following formats:

1999-12-25T07:05:23-8:00

Troubleshooting the Oracle Application Server Adapter for Databases

Troubleshooting and Workarounds A-5

1999-12-25T07:05:23.000-8:00
1999-12-25T15:05:23:000Z
1999-12-25T15:05:23

The format 1999-12-25 is accepted, although it is not a valid xs:dateTime value.
The xs:dateTime format is yyyy-MM-ddTHH:mm:ss.SSSZ, where

■ yyyy is the year (2005, for example)

■ MM is the month (01 through 12)

■ dd is the day (01 through 31)

■ HH is the hour (00 through 23)

■ mm is the minute (00 through 59)

■ ss is the second (00 through 59)

■ SSS is milliseconds (000 through 999), optional

■ Z is the time zone designator (+hh:mm or -hh:mm), optional

A DATE column may exist on an Oracle Database, which can accept the 25-DEC-1999
date format. However, this is not a date format that the database adapter can accept.
The following workaround applies to TopLink only.

■ If you want to pass in the 25-DEC-1999 date format, then map the attribute as a
plain string. The database adapter passes the value through as-is.

– To do this, you must edit the offline database table and change the column
datatype from DATE to VARCHAR2.

■ Save.

■ Edit the database partner link.

Click Next to the end in the wizard, and then click Finish and Close.

While not a valid xs:dateTime format, the format yyyy-mm-dd is a valid xs:date
format.

Issues with Oracle DATE

Problem
The time portion of DATE fields may be truncated on Oracle9 or greater platforms
when using
oracle.toplink.internal.databaseaccess.DatabasePlatform. For
example, 2005-04-28 16:21:56 becomes 2005-04-28T00:00:00.000+08:00.

Or, the millisecond portion of DATE fields may be truncated on Oracle9 or greater
platforms when using
oracle.toplink.internal.databaseaccess.Oracle9Platform. For
example, 2005-04-28 16:21:56.789 becomes
2005-04-28T16:21:56.000+08:00.

Or, you may have trouble with TIMESTAMPTZ (time stamp with time zone) or
TIMESTAMPLTZ (time stamp with local time zone).

Solution
You must set the platformClassName for Oracle platforms, because these include
special workarounds for working with date-time values on Oracle. So, if you are

Troubleshooting the Oracle Application Server Adapter for Databases

A-6 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

connecting to an Oracle9 platform, you must set the platformClassName
accordingly.

Due to an issue with the time portion of DATE being truncated with Oracle9 JDBC
drivers, the property oracle.jdbc.V8Compatible was set when using any Oracle
platform class name. Therefore, use
oracle.toplink.internal.databaseaccess.Oracle9Platform to solve the
time truncation problem.

However, starting with Oracle9, dates started to include millisecond precision. Setting
oracle.jdbc.V8Compatible in response had the drawback of returning the
milliseconds as 000, as an Oracle8 database did. (This also introduced an issue with
null IN/OUT DATE parameters for stored procedure support.) You do not see any
truncation (of the time portion or milliseconds) when using the Oracle9Platform
class.

You must also use the Oracle9Platform class if you have TIMESTAMPTZ and
TIMESTAMPLTZ.

If you want DATE to be treated like a date (with no time portion), set the
attribute-classification in the toplink_mappings.xml to java.sql.Date.

In general, if you are having an issue with a particular database, check to see if
TopLink has a custom platformClassName value for that database, and whether
you are using it.

See "Deployment" on page 4-44 and Table 4–19, " Application Server Connection
Pooling" on page 4-47 for more information.

Handling a Database Adapter Fault
To understand how to handle faults, such as a unique constraint violation on inserts or
when a database or network is temporarily unavailable, see the InsertWithCatch
tutorial at Oracle_
Home\integration\orabpel\samples\tutorials\122.DBAdapter.

BPEL Process Does Not Run Against Another Database

Problem
A BPEL process modeled against one database does not run against another database.

The most likely cause for this problem is that you are using a different schema in the
second database. For example, if you run the wizard and import the table
SCOTT.EMPLOYEE, then, in the toplink_mappings.xml file, you see
SCOTT.EMPLOYEE. If you run the sample in the USER schema on another database,
you get a "table not found" exception.

Solution
Until qualifying all table names with the schema name is made optional, manually edit
toplink_mappings.xml and replace SCOTT. with nothing, as shown in the bold
portions of the following example.

Change:

<project>
 <project-name>toplink_mappings</project-name>
 <descriptors>
 <descriptor>
 <java-class>BPELProcess1.A</java-class>

Troubleshooting the Oracle Application Server Adapter for Databases

Troubleshooting and Workarounds A-7

 <tables>
 <table>SCOTT.A</table>
 </tables>

To:

<project>
 <project-name>toplink_mappings</project-name>
 <descriptors>
 <descriptor>
 <java-class>BPELProcess1.A</java-class>
 <tables>
 <table>A</table>
 </tables>

You must repeat this step every time after running the Adapter Configuration Wizard.

Only One Employee Per Department Appears

Problem
Many departments with many employees are read in, but only one employee per
department appears.

Solution
You must use a transform with a for-each statement. An Assign activity with a
too-simplistic XPath query can result in only the first employee being copied over.

For an example of how to use a transform for database adapter outputs, go to

Oracle_Home\integration\orabpel\samples\tutorials\122.DBAdapter\MasterDetail

Outbound SELECT on a CHAR(X) or NCHAR Column Returns No Rows

Problem
If you use an outbound SELECT to find all employees where firstName = some_
parameter, then you have a problem if firstName on the database is a CHAR
column, as opposed to a VARCHAR2 column.

It is a known problem with some databases that if you insert a CHAR value (for
example, ’Jane’) into a CHAR(8) field, then the database pads the value with extra
spaces (for example, ‘Jane ‘).

If you then execute the query

SELECT ... WHERE firstName = ‘Jane’;

no rows may be returned. Although you are querying for the same value that you
inserted, and some tools such as SQL*Plus and SQL Worksheet operate as expected,
the query does not work with the database adapter.

Note: Having EMPLOYEE on both the SCOTT and USER schemas, and
querying against the wrong table, can result in a problem that is
difficult to detect. For this reason, the database adapter qualifies the
table name with the schema name.

Troubleshooting the Oracle Application Server Adapter for Databases

A-8 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Solution
The best practice is to use a CHAR column for fields that must be fixed, such as SSN,
and VARCHAR2 for columns that can take a variable length, such as firstName.

Transforming the value to add padding may be difficult, and using SELECT to trim the
value on the database (as opposed to padding the other side) requires using SQL
statements. For example:

SELECT ... WHERE trim(firstName) = #firstName;

Note that # is an OracleAS TopLink convention for denoting input parameters.

ORA-00932: Inconsistent Datatypes Exception Querying CLOBs

Problem
When querying on table A, which has a one-to-one relationship to B, where B contains
a CLOB, you may see the following exception:

Exception Description: java.sql.SQLException: ORA-00932: inconsistent
datatypes: expected - got CLOB

Solution
A SELECT returning CLOB values must not use the DISTINCT clause. The simplest
way to avoid DISTINCT is to disable batch attribute reading from A to B. Batch
reading is a performance enhancement that attempts to simultaneously read all Bs of
all previously queried As. This query uses a DISTINCT clause. Use joined reading
instead, or neither joined reading nor batch attribute reading.

Because both DISTINCT and CLOBs are common, you may see this problem in other
scenarios. For example, an expression like the following uses a DISTINCT clause:

SELECT DISTINCT dept.* from Department dept, Employee emp WHERE ((dept.ID =
emp.DEPTNO) and (emp.name = 'Bob Smith'));

See "Relational-to-XML Mappings (toplink_mappings.xml)" on page 4-36 for more
information about batch reading and joined reading.

Merge Sometimes Does UPDATE Instead of INSERT, or Vice Versa

Problem
You may sometimes notice that merge performs an UPDATE when it should do an
INSERT, or vice versa.

Solution
Merge works by first determining, for each element in the XML, whether the
corresponding database row exists or not. For each row, it does an existence check.
There are two known limitations with the existence check.

First, you can configure the existence check to either Check cache or Check database.
You can configure this for each descriptor (mapped table) in your Mapping
Workbench Project. The default is Check database, but TopLink's check database
works like "check cache first, then database" for performance reasons. If a row exists in
the cache, but was deleted from the database (the cache is stale), then you may see an
UPDATE when you expect an INSERT. You can configure caching and a
WeakIdentityMap is used by default, meaning rows are only held in memory while
being processed. However, Java garbage collection is not controlled by the adapter.

Troubleshooting the Oracle Application Server Adapter for Databases

Troubleshooting and Workarounds A-9

Therefore, if you insert a row, delete it in a separate process, and insert it again, all
within a very short time, you may see an INSERT and then an UPDATE. One solution is
to use NoIdentityMap. However, performance may suffer, and if you are doing
SELECT statements on a mapped schema with complex cycles (which you should
avoid!), then the adapter may become trapped in an endless loop when building the
XML.

Second, there is a timing issue to doing a read first and then later an INSERT or
UPDATE. If the same row is simultaneously inserted by multiple invokes, then each
may do an existence check that returns false, and then all attempt an INSERT. This
does not seem realistic, but the following scenario did come up:

A polling receive reads 100 employee rows and their departments from database A.
With maxRaiseSize set to 1, 100 business process instances were initiated. This led
to 100 simultaneous invokes to database B, one for each employee row. No problems
were encountered when existence checking on employee, but some employees had the
same department. Hence, many of the 100 invokes failed because the existence checks
on department were more or less simultaneous.

There are two solutions to this problem. The first is to avoid it. In a data
synchronization-style application, setting maxRaiseSize to unlimited boosts
performance and eliminates this problem. A second solution is to retry the merge in
your BPEL process. Optimistic lock and concurrency exceptions are common, and the
best solution is usually to wait and try again a short time later.

Integrity Violation Occurs with Delete or DeletePollingStrategy

Problem
Child records found an integrity violation with DeletePollingStrategy.

When deleting rows, you must be aware of integrity constraints. For example, if
DEPARTMENT has a one-to-many relationship to EMPLOYEE, that means DEPTID is a
foreign key on EMPLOYEE. If you delete a DEPARTMENT record, but not its employees,
then DEPTID becomes a broken link and this can trigger an integrity constraint.

This problem occurs because you imported a table by itself and did not import its
related tables. For example, if you import only the DEPARTMENT table from the
database and not the EMPLOYEE table, which has an integrity constraint on column
DEPTID, then the database adapter does not know about EMPLOYEE and it cannot
delete a record from DEPARTMENT. You receive an exception.

Solution
Make sure you import the master table and all its privately-owned relationships. Or
set the constraint on the database to CASCADE for deletions, or use a nondelete polling
strategy.

Make sure that the one-to-many relationship between DEPARTMENT and EMPLOYEE is
configured to be privately owned. It is by default, but if the above fails, check the
run-time X-R mappings file. See "Relational-to-XML Mapping" on page 4-4 for more
information.

If the problem is not this simple, OracleAS TopLink supports shallow/two-phase
inserts (but does not support this for DELETE). For example, if A has a foreign key
pointing to B, and B has a foreign key pointing to A, then there is no satisfactory order
by which you can delete both A and B. If you delete A first, then you orphan B. If you
delete B first, then you orphan A. The safest DELETE is a two-phase DELETE that
performs an UPDATE first as follows:

Troubleshooting the Oracle Application Server Adapter for Databases

A-10 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

UPDATE B set A_FK = null;
DELETE from A;
DELETE from B;

Some Queried Rows Appear Twice or Not at All in the Query Result

Problem
When you execute a query, you may get the correct number of rows, but some rows
appear multiple times and others do not appear at all.

This behavior is typically because the primary key is configured incorrectly. If the
database adapter reads two different rows that it thinks are the same (for example, the
same primary key), then it writes both rows into the same instance and the first row’s
values are overwritten by the second row’s values.

Solution
■ Open Application Sources > TopLink > TopLink Mappings. In the Structure

window, double-click PHONES. On the first page, you should see Primary Keys.
Make sure that the correct columns are selected to make a unique constraint.

■ Save and then edit the database partner link.

Click Next to the end, and then click Finish and Close.

■ Open your toplink_mappings.xml file. For the PHONES descriptor, you should
see something like this:

<primary-key-fields>
<field>PHONES.ID1</field>

<field>PHONES.ID2</field>
</primary-key-fields>

Importing a Same-Named Table, with Same Schema Name, but Different Databases

Problem
Importing a table from a database on one host and also importing a table with the
same name, and the same schema name, from a database on another host raises an
error.

Solution
Create one project against database #1 and model the adapter service. Next create a
second project against database #2 and model the adapter service. (Because the
databases are on different hosts, you use different database connections.) Then create a
third project, but do not run the Adapter Configuration Wizard. Instead, copy the
BPEL artifacts (WDSL, XSD, and toplink_mapings.xml) from projects one and
two. Deploy only the third project.

If the two tables are identical, or if the data you are interested in is identical, then you
need not follow the preceding procedure.

Troubleshooting the Oracle Application Server Adapter for Databases

Troubleshooting and Workarounds A-11

Problems Creating a Relationship Manually for a Composite Primary Key

Problem
In the Relationship window of the Adapter Configuration Wizard, all elements of the
primary key appear and cannot be removed. Therefore, a foreign key referring to only
part of the composite primary key cannot be created.

Solution
Because foreign key constraints must map to every part of the primary key (not a
subset), there is no solution. The database adapter allows a foreign key only with a
corresponding primary key at the other end.

Must Fully Specify Relationships Involving Composite Primary Keys
The wizard does not let you create an ambiguous relationship. For example, assume
that a PurchaseOrder has a 1-1 billTo relationship to a Contact. For uniqueness,
the primary key of Contact is name and province. This means PurchaseOrder
must have two foreign keys (bill_to_name and bill_to_province). If there is
only one foreign key (bill_to_name), then the wizard does not allow you to create
that ambiguous 1-1 relationship. Otherwise, the same purchase order can be billed to
multiple people.

Database Adapter Throws an Exception When Using a BFILE
The BFILE, USER DEFINED, OBJECT, STRUCT, VARRAY, and REF types are not
supported.

During Design-Time, Wizard Does Not Allow Deletion of a Table
Because a table may be used for other services inside the same project, it cannot be
deleted within the interface. No problems occur if the unneeded table remains as part
of your project.

Changes to JDeveloper Project Are Made Even If Wizard Is Cancelled

Problem
When you run the Adapter Configuration Wizard, any changes that affect the TopLink
project (importing tables, creating or removing mappings, specifying an expression,
and so on) are applied immediately, and are not undone if you cancel the wizard.

Solution
If you remove one or more of the autogenerated relationships and later want to get
them back, you must reimport the tables containing the corresponding database
constraints.

Problems Removing a Relationship, Then Adding a New Relationship with the Same
Name

Problem
The database adapter can become unstable if, within the same wizard session, you
remove a relationship and then immediately create a relationship with the same name.

Troubleshooting the Oracle Application Server Adapter for Databases

A-12 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Solution
You can do one of the following:

■ Give the new relationship a different name from the one you removed.

■ Finish the wizard after you remove the first relationship. Then, start the wizard
again in edit mode to add the new relationship, using the same name as the
deleted relationship.

Problems Importing Third-Party Database Tables with Unsupported Database Types

Problem
When you import tables from some third-party databases, JDeveloper can encounter
problems handling certain datatypes. You may see error messages such as "Columns
of type VARCHAR cannot have a size specified" or "A primary or
unique key must define at least one column".

Solution
Use the following workaround:

1. Click OK to dismiss the error message; then cancel the wizard.

2. Edit the offline table definition to change the type of the columns mentioned in the
error message to the closest supported type.

3. Run the Adapter Configuration Wizard again and continue with the rest of the
wizard.

The offline table definitions for your project can be found under the Database Objects
> schema name node in the Applications Navigator of JDeveloper BPEL Designer. If
you do not see this node after importing your tables, then you can add it manually by
clicking the Add to project name.jpr button in the Applications Navigator. Then select
the database > schemaName > schemaName.schema file.

See "Configuring Offline Database Tables" on page 4-35 for more information.

Problems Importing Object Tables

Problem
JDeveloper does not currently support importing object tables. If you try to import an
object table, then you see the following message: "The following tables were
’Object Tables’ and aren’t supported offline."

Solution
There is currently no workaround for this problem.

Relationships Not Autogenerated When Tables Are Imported Separately

Problem
If tables are imported one at a time, relationships are not generated even if foreign key
constraints exist on the database.

Troubleshooting the Oracle Application Server Adapter for Databases When Using Stored Procedures

Troubleshooting and Workarounds A-13

Solution
Relationship mappings can be autogenerated only if all the related tables are imported
in one batch. When importing tables, you can select multiple tables to be imported as a
group. If you have related tables, then they should all be imported at the same time.

Primary Key Is Not Saved

Problem
If you try to create a relationship that has the same name as the primary key field
name, then you encounter a problem in which the PK field becomes unmapped.

Solution
To add the PK mapping back manually, follow these instructions:

1. Open the Java source for the descriptor to which you want to add the mapping
(for example, Movies.java).

2. Add a new Java attribute appropriate for the field to which you are mapping. For
example, if the PK of the Movies table is a VARCHAR field named TITLE, then
create a new attribute: "private String title;"

3. Save the Java file.

4. Click the TopLink Mappings node in the Applications - Navigator pane; then
choose the Descriptor from the TopLink Mappings - Structure pane. You see the
newly created attribute in the Descriptor as unmapped (in this example, title).

5. Right-click the new attribute and select Map As > Direct To Field.

6. Double-click the new attribute. The TopLink Mappings editor should appear in the
main JDeveloper window. Change the database field to match the PK field on the
database (in this example, TITLE).

7. Click the Descriptor in the TopLink Mappings - Structure pane. Ensure that the
PK field has a check box next to it in the Primary Keys list.

8. Run the Adapter Configuration Wizard again and continue with the rest of the
wizard.

Troubleshooting the Oracle Application Server Adapter for Databases
When Using Stored Procedures

The following sections describe possible issues and solutions when using the database
adapter for stored procedures.

Design-Time Problems: Unsupported Parameter Types

Problem
Using an unsupported parameter type in the chosen API is a common problem. In the
BOOLEAN example described in "Support for PL/SQL BOOLEAN" on page 4-71, the
procedure BOOLPROC has a single parameter, B, whose type is PL/SQL BOOLEAN,
which is not supported. When the XSD is generated, you see a WSDL write error
indicating that the database type is either not supported or is not implemented.

To generate an XSD for APIs containing parameters whose types are user-defined,
those types must first be defined in the database and be accessible through the

Troubleshooting the Oracle Application Server Adapter for Databases When Using Stored Procedures

A-14 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

associated service connection. This error also occurs if such types have not been
created (that is, implemented) in the database or if the database is inaccessible.

Solution
Ensure that only supported datatypes are used as types for parameters when choosing
an API. If the types are user-defined, check to ensure that the types are defined in the
database and that the database is accessible when the attempt to generate the XSD is
made.

Problem
When the type of one or more of the parameters in the chosen API is a user-defined
type that belongs to a different schema, a design-time problem can occur. Assume type
OBJ is created in SCHEMA2, as in

CREATE TYPE OBJ AS OBJECT (X NUMBER, Y VARCHAR2 (10));

And, a procedure is created in SCHEMA1 that has a parameter whose type is
SCHEMA2.OBJ, as in

CREATE PROCEDURE PROC (O SCHEMA2.OBJ) AS BEGIN … END;

If you attempt to create the XSD for procedure PROC, you see an error message similar
to the following:

Error while writing wsdl file
D:\OraBPEL\integration\jdev\mywork\Workspace\Test\Schema1.wsdl.
Exception: WSDLException: faultCode=OTHER_ERROR: The datatype, OBJ, which belongs
to the schema, SCHEMA2 is currently not supported. The datatype must belong to the
same schema as the stored procedure.

Solution
This is a known limitation of the XSD generator. Therefore, the preceding procedure is
not supported at this time, although the procedure declaration is legal, provided that
the appropriate privileges to access object OBJ have been granted to SCHEMA1.

Run-Time Problems: Parameter Mismatches

Problem
A mismatch between the formal parameters provided by the instance XML and the
actual parameters that are defined in the signature of the stored procedure is a
common run-time problem. When this type of error occurs, the invoke activity that
tried to execute the stored procedure faults, as shown in Figure A–1.

Figure A–1 Example of a Faulted Invoke Due to MIsmatched Parameters

Troubleshooting the Oracle Application Server Adapter for Databases When Using Stored Procedures

Troubleshooting and Workarounds A-15

The bindingFault has three parts—code, summary, and detail. The information for
these parts comes from the java.sql.SQLException that gets thrown by JDBC
when it attempts to execute the stored procedure. The code is the ORA error number,
seen in Figure A–1 as 6550 and as ORA-06550 in the summary and detail parts. The
summary includes an adapter-specific error message followed by the message from
the SQLException and a suggested resolution to the issue. The detail contains just
the message from the SQLException.

As shown in Figure A–1, the ADDEMPLOYEES stored procedure failed to execute due to
"wrong number or types of arguments" passed into the API. Possible causes for this
problem include:

■ An element corresponding to one of the required parameters was not provided in
the instance XML.

Solution: Add the necessary element to resolve the issue.

■ More elements than were specified in the XSD were included in the instance XML.

Solution: Remove the extra elements from the XML.

■ The XSD does not accurately describe the signature of the stored procedure. For
example, if the type of one of the parameters were to change and the XSD was not
regenerated to reflect that change, a type mismatch can occur between the
db:type of the element and the new type of the modified parameter.

Solution: Ensure that the parameters match the signature of the API, as indicated
in the summary part of the bindingFault.

Run-Time Problems: Stored Procedure Not Defined in the Database

Problem
A bindingFault can also occur if the stored procedure is not defined in the database
when an attempt to execute it is made. In this example, the ADDEMPLOYEES API is
invoked, but fails to execute because it is not defined. The invoke activity faults, as
shown in Figure A–2.

Figure A–2

PL/SQL is revealing that "... identifier ADDEMPLOYEES must be declared," which is
an indication that the stored procedure may not be defined in the database. This can
occur, for example, if the procedure was dropped sometime between when the process
was deployed and when the procedure was invoked. This can also occur if the
required privileges to execute the stored procedure have not been granted.

Troubleshooting the Oracle Application Server Adapter for Files/FTP

A-16 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Solution
Ensure that the API is defined in the database, as indicated in the summary, and that
the appropriate privileges to execute that procedure have been granted.

Some run-time errors can occur if the instance XML does not conform to the XSD
generated for the chosen API. XML validation can be enabled in the partner link that
coincides with the execution of the API. Edit the partnerLinkBinding in the BPEL
suitcase located in your process bpel.xml file, as shown in bold:

<partnerLinkBinding name=”PROC”>
 <property name=”wsdlLocation”>Proc.wsdl</property>
 <property name=”validateXML”>true</property>
</partnerLinkBinding>

Adding the validateXML property and setting it to true enables XML validation for
all instance XML passed into the service associated with the partner link that executes
the API.

XML validation can also be enabled globally in Oracle BPEL Console. Click Manage
BPEL Domain and look for the validateXML property. Setting the value to true causes
all XML to be validated. Turning on XML validation helps catch and avoid problems
that are associated with the instance XML (rather than the adapter run time).

Troubleshooting the Oracle Application Server Adapter for Files/FTP
The following sections describe possible issues and solutions when using the Oracle
Application Server Adapter for Files/FTP (file and FTP adapters).

Changing Logical Names with the Adapter Configuration Wizard
If you later rerun the Adapter Configuration Wizard and change a previously specified
logical name to a different name, both the old and new logical names appear in the
bpel.xml file. You must manually edit the bpel.xml file to remove the old logical
name.

Creating File Names with Spaces with the Native Format Builder Wizard
While the Native Format Builder Wizard does not restrict you from creating native
schema file names with spaces, it is recommended that your file names do not have
spaces in them.

Common User Errors
This section describes common user errors.

■ On the Adapter Configuration Wizard - Messages window (Figure 2–5 on
page 2-12), you can select the Native format translation is not required (Schema
is Opaque) check box. Opaque cannot be selected in only one direction. Opaque
must be selected in the both inbound and outbound directions.

■ Messages have a different meaning based on whether they are inbound or
outbound. For example, assume you make the following selections:

– Select 2 from the Publish Messages in Batches of list (Figure 2–3 on page 2-7)
in the inbound direction.

– Select 3 from the Number of Messages Equal list (Figure 2–7 on page 2-20) in
the outbound direction.

Troubleshooting the Oracle Application Server Adapter for Files/FTP

Troubleshooting and Workarounds A-17

If an inbound file contains two records, it is split (debatched) into two messages.
However, because 3 was specified in the outbound direction, a file is not created.
This is because there are not three outbound messages available. Ensure that you
understand the meaning of inbound and outbound messages before selecting
these options.

■ If the file adapter or the FTP adapter is not able to read or get your file,
respectively, it may be because you selected to match file names using the regular
expression (regex), but are not correctly specifying the name (Figure 2–3 on
page 2-7). See Table 2–2 on page 2-9 for details.

■ You may have content that does not require translation (for example, a JPG or GIF
image) that you just want to send "as is." The file is passed through in base-64
encoding. This content is known as opaque. To do this, select the Native format
translation is not required (Schema is Opaque) check box on the Adapter
Configuration Wizard - Messages window (Figure 2–5 on page 2-12). If you select
this check box, you do not need to specify an XSD file for translation.

■ The inbound directory must exist for the file adapter or the FTP adapter to read or
get your file, respectively.

■ If the FTP adapter cannot connect to a remote host, ensure that you have
configured the Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\appl
ication-deployments\default\FtpAdapter\oc4j-ra.xml deployment
descriptor file for adapter instance JNDI name and FTP server connection
information. See "FTP Adapter for Get File Concepts" on page 2-27 for instructions.

■ You cannot use completely static names such as po.txt for outbound files.
Instead, outgoing file names must be a combination of static and dynamic portions.
This is to ensure the uniqueness of outgoing files names, which prevents files from
being inadvertently overwritten. See "Specifying the Outbound File Naming
Convention" on page 2-21 for instructions on creating correct outbound file names.

■ Two header files are created in the Applications Navigator after you finish
running the Adapter Configuration Wizard in both directions:

– typeAdapterInboundHeader.wsdl

Provides information such as the name of the file being processed and its
directory path, as well as data about which message and part define the
header operations

– typeAdapterOutboundHeader.wsdl

Provides information about the outbound file name

where type is either ftp or file.

You can define properties in these header files. For example, you can specify
dynamic inbound and outbound file names through use of the InboundHeader_
msg and OutboundHeader_msg message names in the
typeAdapterInboundHeader.wsdl and
typeAdapterOutboundHeader.wsdl files, respectively.

You can also set header variables that appear in the BPEL process file. Header
variables are useful for certain scenarios. For example, in a file propagation
scenario, files are being moved from one file system to another using the file
adapter. In this case, it is imperative that you maintain file names across the two
systems. Use file headers in both directions and set the file name in the outbound
file header to use the file name in the inbound file header.

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

A-18 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

See the online help available with the Adapters tab of invoke, receive, reply, and
pick - OnMessage branch activities for more information.

■ The Adapter Configuration Wizard - File Modification Time window (Figure 2–11
on page 2-30) prompts you to select a method for obtaining the modification times
of files on the FTP server.

You must perform the following procedure to obtain this information:

1. Determine the modification time format supported by the FTP Server by
running the command mdtm or ls -al (whichever is supported by the
operating system).

2. Determine the time difference between the system time (time on which Oracle
BPEL Server is running) and the file modification time. Obtain the file
modification time by running either mdtm or ls -al on the FTP server.

3. Manually add the time difference to the bpel.xml as a property:

<activationAgents>
 <activationAgent ...>
 <property name="timestampOffset">2592000000</property>

4. Specify the Substring Begin Index field and End Index field values that you
determine by running the mdtm or ls -al command on the FTP server.

Troubleshooting the Oracle Application Server Adapter for Advanced
Queuing

The following sections describe possible issues and solutions when using the Oracle
Application Server Adapter for Advanced Queuing (AQ adapter).

Inbound Errors
The following sections describe possible issues and solutions for inbound errors when
using the AQ adapter.

JNDI Lookup Failed
Sample error:

<timestamp> <WARN> <default.collaxa.cube.activation> <AdapterFramework::Inbound>
 JNDI lookup of 'eis/AQ/aqSample2' failed due to: eis/AQ/aqSample2 not found

<timestamp> <ERROR> <default.collaxa.cube.activation> <AdapterFramework::Inbound>
 Error while performing endpoint Activation: ORABPEL-12510

Unable to locate the JCA Resource Adapter via WSDL port element jca:address.

The Adapter Framework is unable to startup the Resource Adapter specified in the
 WSDL jca:address element: {http://xmlns.oracle.com/pcbpel/wsdl/jca/}address:
 location='eis/AQ/aqSample2'

Problem
It is likely that either 1) the resource adapter’s RAR file has not been deployed
successfully to the OC4J Application Server or 2) the location attribute in
$J2EE_HOME/application-deployments/default/deployed-adapter-name
/oc4j-ra.xml
has not been set to eis/AQ/aqSample2. In the last case, you may have to add a new

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

Troubleshooting and Workarounds A-19

connector-factory entry (connection) to the oc4j-ra.xml. Correct this and then
restart the BPEL/OC4J Application Server.

Solution
1. Look for the file

$J2EE_HOME/application-deployments/default/aqAdapter/
oc4j-ra.xml.

This file should be created when the adapter is deployed, which occurs the first
time Oracle BPEL Process Manager is started. If the adapter is undeployed for
some reason, deploy the adapter with the following command, then follow step 2:

java -jar $J2EE_HOME/admin.jar ormi://localhost admin welcome
-deployconnector -file <path to AQAdapter.rar> -name
AqAdapter>

2. If $J2EE_HOME/application-deployments/default/aqAdapter
/oc4j-ra.xml exists, make sure the JNDI location is defined in oc4j-ra.xml.

For example:

<connector-factory location="eis/AQ/aqSample2" connector-name="AQ Adapter">
 <config-property name="connectionString"
 value="jdbc:oracle:thin:@myhost:1521:appdb2"/>
 <config-property name="userName" value="scott"/>
 <config-property name="password" value="tiger"/>
 </connector-factory>

During Initialization, I/O Exception: Network Adapter Did Not Establish the
Connection
Sample error:

<timestamp> <ERROR> <default.collaxa.cube.activation> <AQ Adapter::Inbound>
 DBConnection_connect: database error while try to connect to
 jdbc:oracle:thin:@localhost:1521:ORCL : Io exception: The Network Adapter could
 not establish the connection

Solution
If the connectionString is correct, make sure the database and listener are up, then
redeploy the process.

If the connectionString is not correct:

1. Change the connectionString in
$J2EE_HOME\application-deployments\default\AqAdapter\
oc4j-ra.xml.

2. Restart Oracle BPEL Process Manager.

Incorrect Username/Password
Sample error:

<timestamp> <ERROR> <default.collaxa.cube.activation> <AdapterFramework::Inbound>
 Error while performing endpoint Activation: ORABPEL-11929
SQL error while creating managed (database) connection.
SQL error while creating managed (database) connection: Error while trying to
 connect to database.
Error while trying to connect to database using connect string
 "jdbc:oracle:thin:@localhost:1521:appdb2 - java.sql.SQLException: ORA-01017:
 invalid username/password; logon denied

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

A-20 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Solution
1. Make sure you have the correct username and password in $J2EE_

HOME\application-deployments\default\AqAdapter\oc4j-ra.xml.

2. Restart Oracle BPEL Process Manager.

Queue Not Found
Sample error:

<timestamp> <ERROR> <default.collaxa.cube.activation> <AQ Adapter::Inbound>
 oracle.AQ.AQException: JMS-190: Queue SCOTT.AQ_SUPPORTED_ADT_IN not found
at oracle.AQ.AQUtil.throwAQEx(AQUtil.java:196)
at oracle.AQ.AQOracleSession.getQueue(AQOracleSession.java:720)
at oracle.tip.adapter.aq.database.Queue.connect(Queue.java:102)
at oracle.tip.adapter.aq.database.MessageReader.init(MessageReader.java:575)

Solution
Create the queue and redeploy the process. If this process is deployed from the
samples, all queue creation scripts are located in sql\create_queues.sql under
each project.

User Does Not Have DBMS_AQIN Privileges, Which Are Required by the AQ Java API
Sample error:

2005-04-20 16:10:52,695> <ERROR> <default.collaxa.cube.activation> <AQ
 Adapter::Inbound> oracle.AQ.AQOracleSQLException: ORA-06550: line 1, column 7:
PLS-00201: identifier 'DBMS_AQIN' must be declared
ORA-06550: line 1, column 7:
PL/SQL: Statement ignored
at oracle.AQ.AQOracleQueue.dequeue(AQOracleQueue.java:1795)
at oracle.AQ.AQOracleQueue.dequeue(AQOracleQueue.java:1307)
at
 oracle.tip.adapter.aq.database.MessageReader.readMessage(MessageReader.java:399)
at
oracle.tip.adapter.aq.inbound.AQActivationSpecDequeuer.run(AQActivationSpecDequeue
r.java:163)
at oracle.tip.adapter.fw.jca.work.WorkerJob.go(WorkerJob.java:51)
at oracle.tip.adapter.fw.common.ThreadPool.run(ThreadPool.java:267)
at java.lang.Thread.run(Thread.java:534)

Solution
Log on to the database using sys as sysdba, GRANT EXECUTE ON SYS.DBMS_AQIN
to <username>;. No deployment is necessary because this failure occurs after the
connection has succeeded, the adapter automatically reconnects until the error is gone
or the process is undeployed.

Translation Error
Sample error:

<timestamp> <ERROR> <default.collaxa.cube.activation> <AQ Adapter::Inbound>
 MessageReader_readMessage: Received TranslationException
<timestamp> <ERROR> <default.collaxa.cube.activation> <AQ Adapter::Inbound>
 ORABPEL-11211
DOM Parsing Exception in translator.
DOM parsing exception in inbound XSD translator while parsing InputStream.
Check the error stack and fix the cause of the error. Contact oracle support if
 error is not fixable.

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

Troubleshooting and Workarounds A-21

at
oracle.tip.pc.services.translation.xlators.xsd.XSDTranslator.translateFromNative(X
SDTranslator.java:131)

Solution
Look for the rejected message and find out why it has failed translation. For instance,
the message may not be XML, or the XML root element may be incorrect, or the
message may be blank. If a rejection handler has been defined for this process, look for
the message in the rejection handler. Otherwise, look for the message in the default
rejection handler, which is located at

Oracle_Home\integration\orabpel\domains\default\archive\jca
\AQMessageRejectionHandler\rejectedMessages

For an example of how a user can define the rejection handler, look in

ORACLE_
HOME\integration\orabpel\samples\tutorials\124.AQAdapter\AQMessa
geRejectionHandler

Subscriber Already Exists When Using MessageRuleSelector
Sample error:

<timestamp> <INFO> <default.collaxa.cube.activation> <AQ Adapter::Inbound>
 Subscriber PriorityOneDequeuer already exists in the database. If the subscriber
 does not contain the rule that you want, please undeploy the business process,
 drop the subscriber with the following sql*plus command, and redeploy. DECLARE
subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('<subscriber_name>', NULL, NULL);
 DBMS_AQADM.REMOVE_SUBSCRIBER(
 queue_name => '<queue_name>',
 subscriber => subscriber); END;

Solution
This is not a problem if the subscriber has been generated with the rule the user
expects. The adapter can create new rule-based subscribers, but cannot modify
existing ones. Hence, the first time you deploy the adapter with a nonnull value for
MessageSelectorRule, a subscriber is created if the consumer does not already
exist, using the consumer as the subscriber and the MessageSelectorRule as the
rule. This message appears in any subsequent redeployment or restart of Oracle BPEL
Process Manager.

You can determine if the rule is what you want for the subscriber by entering the
following SQL command:

SQL> select name, rule, queue from AQ$RuleBased_Raw_In_R;
NAME

RULE
--
QUEUE

PRIORITYONEDEQUEUER
priority = 1
RULEBASED_RAW_IN

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

A-22 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Outbound Errors
As a general note, problems in the outbound direction are often not caught at
deployment time, because an outbound thread is only activated if there is a message
going to outbound.

JNDI Lookup Failed
Sample error:

Adapter Framework unable to create outbound JCA connection.
file:/C:/050420/integration/orabpel/domains/default/tmp/.bpel_File2AQBLOB_
1.0.jar/EnqueueBlobPayload.wsdl [Enqueue_ptt::Enqueue(opaque)] - : The Adapter
 Framework was unable to establish an outbound JCA connection due to the following
 issue: ORABPEL-12510
Unable to locate the JCA Resource Adapter via WSDL port element jca:address.
The Adapter Framework is unable to startup the Resource Adapter specified in the
 WSDL jca:address element: {http://xmlns.oracle.com/pcbpel/wsdl/jca/}address:
 location='eis/AQ/aqSample3'

The reason for this is most likely that either 1) the resource adapter’s RAR file has not
been deployed successfully to the OC4J Application server or 2) the location
attribute in $J2EE_
HOME/application-deployments/default/deployed-adapter-name/oc4j-
ra.xmlhas not been set to eis/AQ/aqSample3. In the last case you may have to add
a new connector-factory entry (connection) to oc4j-ra.xml. Correct this and
then restart the BPEL/OC4J Application Server

Solution
See the solution section for the same problem in the inbound section, as described in
"Inbound Errors" on page A-18.

I/O Exception: Network Adapter Could Not Establish the Connection
2005-04-20 18:41:40,570> <ERROR> <default.collaxa.cube.ws>
 <AdapterFramework::Outbound>
 file:/C:/050420/integration/orabpel/domains/default/tmp/.bpel_File2AQBLOB_
1.0.jar/EnqueueBlobPayload.wsdl [Enqueue_ptt::Enqueue(opaque)] - Could not
 invoke operation 'Enqueue' against the 'AQ Adapter' due to: ORABPEL-12511
Adapter Framework unable to create outbound JCA connection.
file:/C:/050420/integration/orabpel/domains/default/tmp/.bpel_File2AQBLOB_
1.0.jar/EnqueueBlobPayload.wsdl [Enqueue_ptt::Enqueue(opaque)] - : The Adapter
 Framework was unable to establish an outbound JCA connection due to the following
 issue: ORABPEL-11929
SQL error while creating managed (database) connection.
SQL error while creating managed (database) connection: Error while trying to
 connect to database.
Error while trying to connect to database using connect string
 "jdbc:oracle:thin:@localhost:1521:appdb - java.sql.SQLException: Io exception:
 The Network Adapter could not establish the connection"

Solution
If the connectionString is not correct, do the following:

1. Change the connectionString in $J2EE_
HOME\application-deployments\default\AqAdapter\oc4j-ra.xml.

2. Restart Oracle BPEL Process Manager.

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

Troubleshooting and Workarounds A-23

If the connectionString is correct, make sure the database and listener are up. If
you had enabled outbound retry, the message should be automatically retried when
the database and its listener are up.

To configure outbound retry, set the retryMaxCount property and retryInterval
property for the partner link in bpel.xml.

For example, the following configuration means 10 retries, at 60 second intervals.

<partnerLinkBinding name="EnqueueBLOBPayload">
 <property name="wsdlLocation">EnqueueBlobPayload.wsdl</property>
 <property name="retryMaxCount">10</property>
 <property name="retryInterval">60</property>
 </partnerLinkBinding>

Queue Not Found
<timestamp> <ERROR> <default.collaxa.cube.ws> <AQ Adapter::Outbound>
 oracle.AQ.AQException: JMS-190: Queue SCOTT.BLOBPAYLOAD_QUEUE not found
 at oracle.AQ.AQUtil.throwAQEx(AQUtil.java:196)
 at oracle.AQ.AQOracleSession.getQueue(AQOracleSession.java:720)
 at oracle.tip.adapter.aq.database.Queue.connect(Queue.java:102)
 at oracle.tip.adapter.aq.database.MessageWriter.init(MessageWriter.java:231)

Solution
Same solution as the inbound Queue not found problem. Create the queue and
redeploy the process. If this process is deployed from the samples, all queue creation
scripts are located in sql\create_queues.sql under each project.

Incorrect Username/Password
Sample error:

file:/C:/050420/integration/orabpel/domains/default/tmp/.bpel_File2AQBLOB_
1.0.jar/EnqueueBlobPayload.wsdl [Enqueue_ptt::Enqueue(opaque)] - : The Adapter
 Framework was unable to establish an outbound JCA connection due to the following
 issue: ORABPEL-11929
SQL error while creating managed (database) connection.
SQL error while creating managed (database) connection: Error while trying to
 connect to database.
Error while trying to connect to database using connect string
 "jdbc:oracle:thin:@localhost:1521:appdb2 - java.sql.SQLException: ORA-01017:
 invalid username/password; logon denied.

Solution
1. Make sure you have the correct username and password in $J2EE_

HOME\application-deployments\default\AqAdapter\oc4j-ra.xml.

2. Restart Oracle BPEL Process Manager.

User Does Not Have DBMS_AQIN Privileges, Which Are Required by the AQ Java API
Sample error:

<timestamp> <ERROR> <default.collaxa.cube.ws> <AQ Adapter::Outbound>
 oracle.AQ.AQOracleSQLException: ORA-06550: line 1, column 7:
PLS-00201: identifier 'DBMS_AQIN' must be declared
ORA-06550: line 1, column 7:
PL/SQL: Statement ignored
 at oracle.AQ.AQOracleQueue.enqueue(AQOracleQueue.java:1267)

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

A-24 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Solution
Log on to the database using sys as sysdba, GRANT EXECUTE ON SYS.DBMS_AQIN
to <username>;. Again, if you have retry configured for this partner link, retry
automatically happens.

Translation Error
Sample error:

<timestamp> <ERROR> <default.collaxa.cube.ws> <AQ Adapter::Outbound> ORABPEL-11101
Translation Failure.
Translation to native failed. Invalid text 'blahblah' in element: 'Root-Element'.
Check the error stack and fix the cause of the error. Contact oracle support if
 error is not fixable.
at
oracle.tip.pc.services.translation.xlators.nxsd.NXSDTranslatorImpl.translateToNati
ve(NXSDTranslatorImpl.java:502)
at
oracle.tip.adapter.aq.database.MessageWriter.translateToNative(MessageWriter.java:
1102)
at oracle.tip.adapter.aq.database.MessageWriter.doEnqueue(MessageWriter.java:494)

Solution
1. From Oracle BPEL Console, click the Instances tab.

2. Click the failed instance and select Debug.

3. Look for the variable passed to the invoke activity that failed. You should notice
this variable match schema definition. Back track in the Debug window to find
out why.

JDeveloper BPEL Designer Errors

I have an AQ inbound to AQ outbound end-to-end scenario. How do I copy the
priority from an inbound queue to an outbound queue?
Solution: Create both the inbound header and outbound header, and use an assign
activity to copy the priority.

Create the inbound header:

1. Click the receive activity that is linked to the AQ Inbound partner link.

2. Select the Adapters tab and click the flashlight icon to the right of the Header
Variable field.

3. Right click Variables and select Create Variable.

4. Enter a name such as inbound_header.

5. Click Message type and the flashlight icon.

6. If a payloadHeader is not required (most cases):

In the Type Chooser window, click Type Explorer > Message Types > Partner
Links > inbound_partnerlink_name > inbound_service.wsdl > Imported WSDL >
aqAdapterInboundHeader.wsdl > Message Types > Header. Go to step 8.

7. If a payloadHeader is required (only if PayloadHeaderRequired="true" in
the JCA operation section of service_name.wsdl):

In the Type Chooser window, click Type Explorer > Message Types > Partner
Links > inbound_partnerlink_name > Message Types > Header_msg.

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

Troubleshooting and Workarounds A-25

8. Click OK to exit the Type Chooser window.

9. While the variable is still highlighted, click OK to pick this variable.

The variable now appears as the header variable.

10. Click OK to exit the receive activity.

Create the outbound header:

1. Click the invoke activity that is linked to the AQ outbound partner link.

2. Select the Adapters tab and click the flashlight icon to the right of the Header
Variable field.

3. Right click Variables and select Create Variable.

4. Enter a name such as outbound_header.

5. Click Message type and click the flashlight icon.

6. If a payloadHeader is not required (most cases):

In the Type Chooser window, click Type Explorer > Message Types > Partner
Links > outbound_partnerlink_name > outbound_service.wsdl > Imported WSDL
> aqAdapterOutboundHeader.wsdl > Message Types > Header. Go step 8.

7. If a payloadHeader is required, only if PayloadHeaderRequired="true" in
the JCA operation section of service_name.wsdl:

In the Type Chooser window, click Type Explorer > Message Types > Partner
Links > outbound_partnerlink_name > Message Types > Header_msg.

8. Click OK to exit the Type Chooser window.

9. While the variable is still highlighted, click OK to pick this variable.

10. The variable now appears as the header variable. Click OK to exit the receive
activity.

In an Assign activity:

1. Click the Copy Rules tab and select Create.

2. In the From section: drill down to priority for the inbound header variable.

3. In the To section: drill down to priority for the outbound header variable.

4. Click OK to exit Create Copy Rule window.

5. Click OK to exit the Assign window.

I redefined the adapter WSDL by stepping through the wizard again. Why doesn't
my service_name.wsdl change?
Solution:

It did work, but JDeveloper BPEL Designer did not refresh the file properly. Close the
service_name.wsdl file and open it again.

I redefined the adapter service WSDL using the wizard. But at deployment time, I
got the following error:
Process "AQSupportedADTTypes" (revision "1.0") compilation failed.
<timestamp> <ERROR> <default.collaxa.cube.engine.deployment>
 <CubeProcessLoader::create> BPEL validation failed.
BPEL source validation failed, the errors are:
[Error ORABPEL-10007]: unresolved messageType
[Description]: in line 16 of

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

A-26 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

 "C:\050420\integration\orabpel\domains\default\tmp\.bpel_AQSupportedADTTypes_
1.0.jar\AQSupportedADTTypes.bpel", WSDL messageType
 "{http://xmlns.oracle.com/pcbpel/adapter/aq/Enqueue/}Header_msg" of variable
 "out_header" is not defined in any of the WSDL files.
[Potential fix]: Make sure the WSDL messageType
 "{http://xmlns.oracle.com/pcbpel/adapter/aq/Enqueue/}Header_msg" is defined in
 one of the WSDLs referenced by the deployment descriptor.

Solution:

When you redefine the adapter service WSDL, you also need to redefine the header
variables. The creation of header variables the input element in the JCA binding
section which defines the header.

For example:

<input>
 <jca:header message="tns:Header_msg" part="Header"/>
</input>

When the adapter service is redefined, the old WSDL file is overwritten. Delete the old
header variables and recreate them.

Translation Error
Sample error:

<timestamp> <ERROR> <default.collaxa.cube.activation> <AQ Adapter::Inbound>
MessageReader_readMessage: Received TranslationException
<timestamp> <ERROR> <default.collaxa.cube.activation> <AQ Adapter::Inbound>
ORABPEL-11211
DOM Parsing Exception in translator.
DOM parsing exception in inbound XSD translator while parsing InputStream.
Check the error stack and fix the cause of the error. Contact oracle support
if error is not fixable.
at
oracle.tip.pc.services.translation.xlators.xsd.XSDTranslator.translateFromNative(X
SDTranslator.java:131)

Solution:

Look for the rejected message and find out why it has failed translation. The message
may not be XML or the XML root element maybe incorrect, or the message may be
blank. If a rejection handler has been defined for this process, look for the message in
the rejection handler. Otherwise, look for the message in the default rejection handler
which is located at:

ORACLE_
HOME\integration\orabpel\domains\default\archive\jca\AQMessageRe
jectionHandler\rejectedMessages

For an example of how a user can define the rejection handler, look in

ORACLE_
HOME\integration\orabpel\samples\tutorials\124.AQAdapter\AQMessa
geRejectionHandler

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

Troubleshooting and Workarounds A-27

Other Problems

I have a new adapter *.RAR file; how do I redeploy the adapter?
1. Save a copy of

$J2EE_HOME\application-deployments\default\AqAdapter
\oc4j-ra.xml so you have your endpoint information.

2. Undeploy the adapter by entering the following command:

java -jar $JE22_HOME\admin.jar ormi://localhost admin welcome
-undeployconnector -name AqAdapter

3. Deploy the new .rar file by entering the following command:

java -jar $J2EE_HOME/admin.jar ormi://localhost admin welcome
-deployconnector -file <rarfile> -name AqAdapter

4. Modify
$J2EE_HOME\application-deployments\default\AqAdapter
\oc4j-ra.xml to add your endpoints.

5. Restart Oracle BPEL Process Manager. You should not have to redeploy your
business processes.

Subscriber already exists when using MessageRuleSelector
<timestamp> <INFO> <default.collaxa.cube.activation> <AQ Adapter::Inbound>
Subscriber PriorityOneDequeuer already exists in the database. If the
subscriber does not contain the rule that you want, please undeploy the
business process, drop the subscriber with the following sql*plus command,
and redeploy.
DECLARE
 subscriber sys.aq$_agent;
BEGIN
 subscriber := sys.aq$_agent('<subscriber_name>', NULL, NULL);
DBMS_AQADM.REMOVE_SUBSCRIBER(
 queue_name => '<queue_name>',
 subscriber => subscriber);
END;

Solution:

This is not a problem if the subscriber has been generated with the rule the user
expects. The adapter can create new rule-based subscribers, but cannot modify
existing ones. Therefore, the first time you deploy the adapter with a nonnull value for
MessageSelectorRule, a subscriber is created if the consumer does not already
exist, using the consumer as the subscriber and the MessageSelectorRule as the
rule. This message would appear in any subsequent redeployment or restart of Oracle
BPEL Process Manager.

You can determine if the rule is what you want for the subscriber by entering the
following SQL command: select name, rule, queue from AQ$ QUEUE_
TABLE_NAME_R;

SQL> select name, rule, queue from AQ$RuleBased_Raw_In_R;
NAME

RULE
--
QUEUE

Troubleshooting the Oracle Application Server Adapter for Advanced Queuing

A-28 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

PRIORITYONEDEQUEUER
priority = 1
RULEBASED_RAW_IN

You do not have DBMS_AQIN privileges, which are required by the AQ Java API
2005-04-20 16:10:52,695> <ERROR> <default.collaxa.cube.activation> <AQ
Adapter::Inbound>
oracle.AQ.AQOracleSQLException: ORA-06550: line 1, column 7:
PLS-00201: identifier 'DBMS_AQIN' must be declared
ORA-06550: line 1, column 7:
PL/SQL: Statement ignored
at oracle.AQ.AQOracleQueue.dequeue(AQOracleQueue.java:1795)
at oracle.AQ.AQOracleQueue.dequeue(AQOracleQueue.java:1307)
at
oracle.tip.adapter.aq.database.MessageReader.readMessage(MessageReader.java:399)
at
oracle.tip.adapter.aq.inbound.AQActivationSpecDequeuer.run(AQActivationSpecDeq
ueuer.java:163)
at oracle.tip.adapter.fw.jca.work.WorkerJob.go(WorkerJob.java:51)
@ at oracle.tip.adapter.fw.common.ThreadPool.run(ThreadPool.java:267)
at java.lang.Thread.run(Thread.java:534)

Solution:

Log on to the database using sys as sysdba 'GRANT EXECUTE ON SYS.DBMS_
AQIN to username;'. No deployment is necessary because this failure occurs after
the connection has succeeded. The adapter automatically attempts to reconnect until
the error is gone or the process is undeployed.

Failed JNDI Lookup
<timestamp> <WARN> <default.collaxa.cube.activation>
<AdapterFramework::Inbound> JNDI lookup of 'eis/AQ/aqSample2' failed due to:
eis/AQ/aqSample2 not found
<timestamp> <ERROR> <default.collaxa.cube.activation>
<AdapterFramework::Inbound> Error while performing endpoint Activation:
ORABPEL-12510
Unable to locate the JCA Resource Adapter via WSDL port element jca:address.
The Adapter Framework is unable to startup the Resource Adapter specified in
the WSDL jca:address element:
@ {http://xmlns.oracle.com/pcbpel/wsdl/jca/}address:
location='eis/AQ/aqSample2'

Solution:

The reason for this is most likely that either:

1. The resource adapter’s RAR file has not been deployed successfully to the OC4J
Application Server.

2. The Resource Adapters RAR file has not been deployed successfully to the
location attribute in:

 $J2EE_
HOME/application-deployments/default/deployed-adapter-name/oc
4j-ra.xml has not been set to eis/AQ/aqSample2.

In this case, you may have to add a new connector-factory entry (connection)
to the oc4j-ra.xml file. Add the correct entry and then restart the BPEL
Application Server.

How to fix:

Summary

Troubleshooting and Workarounds A-29

1. Look for the file $J2EE_
HOME/application-deployments/default/aqAdapter/oc4j-ra.xml.
This file should be created when the adapter is deployed, which occurs the first
time Oracle BPEL Process Manager is started. If the adapter is undeployed for
some reason, deploy the adapter with the following command, then follow step 2:

java -jar $J2EE_HOME/admin.jar ormi://localhost admin welcome
-deployconnector -file <path to AQAdapter.rar> -name
AqAdapter

2. If $J2EE_
HOME/application-deployments/default/aqAdapter/oc4j-ra.xml
exists, make sure the JNDI location is defined in the oc4j-ra.xml file.

<connector-factory location="eis/AQ/aqSample" connector-name="AQ Adapter">
<config-property name="connectionString"
value="jdbc:oracle:thin:@myhost:1521:appdb2"/>
<config-property name="userName" value="scott"/>
@ <config-property name="password" value="tiger"/>
</connector-factory>

Summary
This appendix describes Oracle BPEL Process Manager troubleshooting methods.

Summary

A-30 Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

Index-1

Index

A
activationAgent property

fatalErrorFailoverProcess, 2-13
ActivationSpec parameters, 2-16
Adapter Configuration Wizard

configuring the database adapter, 4-74
configuring the file adapter, 4-19
starting, 1-1, 2-3, 4-18
stored procedures, 4-55

Adapter Configuration wizard
understanding what happens internally during

design time, 4-31
using with the AQ adapter, 3-6
using with the database adapter, 4-18
using with the file adapter, 2-3
using with the FTP adapter, 2-3
using with the JMS adapter, 5-4

adapter services
defined in the WSDL file, 4-38

adapters
configuring, 1-1
creating header variables, 3-21
definition, 1-1
error handling, 2-12
in JDeveloper BPEL Designer, 1-1
service names, 1-2

ADT payload types
AQ adapter, 3-4

after-read strategy
database adapter, 4-28

APIs, 4-59
application.xml file

configuring OJMS, 5-13
configuring Tibco JMS, 5-16

AQ adapter
ADT payload types, 3-4
AQ header properties, 3-3
correlation identifier, 3-2
dequeue mode, 3-3
enqueue-specific features, 3-2
features, 3-1
generated WSDL file, 3-14
message priority, 3-2
multiconsumer queue, 3-2
payload schema, 3-5

use cases, 3-6
AQ header properties

AQ adapter, 3-3
AQ headers, 3-20
arrayIdentifierLength

construct, 6-43
arrayLength

construct, 6-43
arrays

native schema, 6-28
arrayTerminatedBy

construct, 6-43
assign

construct, 6-43
audit link

following the instance execution process, 4-82

B
batch processing

support with the file and FTP adapters, 2-7
batching

definition, 2-10
byteOrder

construct, 6-42

C
cellSeparatedBy

construct, 6-43
choiceCondition

construct, 6-43
clauses

clauses to add to impact the sign position in
COBOL Copybook, 6-5

supported COBOL Copybook clauses, 6-3
COBOL Copybook

clauses to add to impact the sign position, 6-5
definition, 6-2
multiple root levels, 6-13
Native Format Builder wizard support, 6-2
numeric types, 6-20
single root level, virtual decimal, fixed length

array, 6-16
supported clauses, 6-3
use cases, 6-13

Index-2

user inputs, 6-3
variable length array, 6-18

compiling
FulfillOrder process, 4-81

complex structure
native schema, 6-10

conditional processing
native schema, 6-33

conditionValue
construct, 6-43

config timeout parameter
configuring in the server.xml file, 2-11

connection pooling
database adapter, 4-50

constructs
arrayIdentifierLength, 6-43
arrayLength, 6-43
arrayTerminatedBy, 6-43
assign, 6-43
byteOrder, 6-42
cellSeparatedBy, 6-43
choiceCondition, 6-43
conditionValue, 6-43
dateFormat, 6-43
encoding, 6-42
headerLines, 6-42
headerLinesTerminatedBy, 6-42
identifierLength, 6-43
itemSeparatedBy, 6-43
leftsurroundedBy, 6-43
length, 6-43
listTerminatedBy, 6-43
lookAhead, 6-43
native schema, 6-42
paddedBy, 6-43
padStyle, 6-43
quotedBy, 6-43
rightsurroundedBy, 6-43
skip, 6-43
skipLines, 6-43
skipUntil, 6-43
standalone, 6-42
startsWith, 6-43
stream, 6-42
style, 6-44
surroundedBy, 6-44
terminatedBy, 6-44
uniqueMessageSeparator, 6-42
variable, 6-44
variables, 6-44
version, 6-42
xmlversion, 6-42

control table
database adapter, 4-14

copy rules
creating, 4-79, 4-81

correlation identifier
AQ adapter, 3-2

creating relationships
database adapter, 4-23

CSV
native schema, 6-8

D
database adapter

after-read strategy, 4-28
choosing a polling strategy, 4-50
connection pooling, 4-50
control table, 4-14
creating a partner link, 4-74
creating a project, 4-73
creating an invoke activity, 4-77
creating relationships, 4-23
creating the object model, 4-26
datatype conversions, 4-69
defining keys, 4-22
defining the WHERE clause, 4-26
deleting the rows that were read, 4-29
deployment, 4-44
design overview, 4-2
existence checking, 4-50
features, 4-1
function return values, 4-70
generated XML schema, 4-43
importing and selecting tables, 4-21
inbound distributed polling, 4-51
last updated, 4-14
last-read ID, 4-13
locking, 4-51
logical delete, 4-11
mapping any relational schema to any XML

schema types, 4-8
maxRaiseSize, 4-50
merge operations, 4-9
null values, 4-70
operation type, 4-20
performance, 4-49
physical delete, 4-10
PL/SQL Boolean support, 4-71
PL/SQL RECORD support, 4-71
polling strategies, 4-10
query by example operations, 4-9
REF CURSOR support, 4-70
relational types to XML schema types, 4-7
relational-to-XML mappings, 4-4, 4-36
relationship reading, 4-50
running the FulfillOrder process, 4-82
sequencing table, 4-13, 4-14, 4-30
SQL operations as Web services, 4-8
stored procedure design time WSDL and XSD

generation, 4-61
stored procedures and functions, 4-54
stored procedures at run time, 4-67
supported primitive datatypes, 4-62
third-party database support, 4-52
TopLink mapping workbench project, 4-32
toplink_mappings.xml file, 4-3
tutorials, 4-16
update a field in the table, 4-29

Index-3

use cases, 4-9, 4-16
validating, compiling, and deploying, 4-81
value binding, 4-67

database connection
configuring in the oc4j-ra.xml file, 4-3, 4-19

database operations
DML operations, 4-8

datatype conversions
database adapter, 4-69

dateFormat
construct, 6-43

dates
native schema, 6-40

DBActivationSpec, 4-41
DBInsert process

selecting for a partner link, 4-76
DBReadInteractionSpec, 4-40
DBWriteInteractionSpec, 4-39
debatching

definition, 2-3, 2-10
file adapter use case, 2-40
supported with the file and FTP adapters, 2-3

defining keys
database adapter, 4-22

deleting rows that were read
database adapter, 4-29

delimited format
Native Format Builder wizard support, 6-2

delimiters
file adapter use case, 2-40

deploying
FulfillOrder process, 4-81

deployment
of database adapter, 4-44

dequeue mode
AQ adapter, 3-3

DML operations
merge, 4-9
query by example, 4-9
with the database adapter, 4-8

domain
passwords, 4-82

DTD format
Native Format Builder wizard support, 6-2

E
encoding

construct, 6-42
enqueue-specific features

AQ adapter, 3-2
error handling

fatalErrorFailoverProcess property, 2-13
inbound direction for file and FTP adapters, 2-12
outbound direction for file and FTP

adapters, 2-25
rejectedMessageHandlers property, 2-12
uniqueMessageSeparater property, 2-14

errors
default error directory, 2-15

Esc key
stopping creation of XPath expressions, 4-79, 4-81

existence checking
database adapter, 4-50

F
fatalErrorFailoverProcess property

error handling, 2-13
file adapter

ActivationSpec parameters, 2-16
architecture, 2-3
archiving successfully processed files, 2-6
batch processing, 2-7
batching multiple inbound messages, 2-10
batching multiple outbound files, 2-24
binary data format support, 2-2
Cobol Copybook format support, 2-2
debatching use case, 2-40
delimited format support, 2-2
dynamic outbound file names, 2-23
features, 2-1
file delimiter use case, 2-40
file polling, 2-10
file read concepts, 2-4
file read operation, 2-2
file reading use case, 2-39
file size delivery limitations, 2-6
file write concepts, 2-18
file writing use case, 2-40
fixed positional format support, 2-2
fixed positional use case, 2-40
guaranteed delivery and recovery, 2-15
inbound direction, 2-4
inbound header WSDL file, 2-16
inbound WSDL file, 2-15
including and excluding files, 2-8
limitations on outbound file name lengths, 2-21
logical and physical directory paths, 2-6, 2-20
opaque support, 2-2
outbound file directory, 2-19
outbound file naming conventions, 2-21
outbound header WSDL file, 2-27
outbound WSDL file, 2-26
processing large files, 2-11
supported formats, 2-1
supported naming patterns, 2-7
synchronous reads using an invoke activity, 2-17
translating native data, 2-11
use cases, 2-39
write read operation, 2-2
XML format support, 2-2

file names
limitations on file adapter outbound file name

lengths, 2-21
file polling, 2-10
file reading

file adapter use case, 2-39
file writing

file adapter use case, 2-40

Index-4

fixed length data
native schema, 6-21

fixed length structure
native schema, 6-9

fixed positional
file adapter use case, 2-40

fixed-length positional format
Native Format Builder wizard support, 6-2

from Oracle BPEL Console, 2-15
FTP adapter

ActivationSpec parameters, 2-16
architecture, 2-3
archiving successfully processed files, 2-6
batch processing, 2-7
batching multiple inbound messages, 2-10
batching multiple outbound files, 2-24
binary data format support, 2-1
Cobol Copybook format support, 2-1
creating an Oracle Wallet, 2-38
delimited format support, 2-1
dynamic outbound file names, 2-23
features, 2-1
file inbound file directory, 2-19
file modification times, 2-30
file polling, 2-10
file read concepts, 2-4
file read operation, 2-2
file write concepts, 2-18
file write operation, 2-2
fixed positional format support, 2-1
guaranteed delivery and recovery, 2-15
inbound direction, 2-4, 2-29
inbound header WSDL file, 2-16
inbound WSDL file, 2-15
including and excluding files, 2-8
installing and configuring OpenSSL, 2-35
installing and configuring vsftpd, 2-36
logical and physical directory paths, 2-6, 2-20
opaque support, 2-2
outbound direction, 2-33
outbound file naming conventions, 2-21
outbound header WSDL file, 2-27
outbound WSDL file, 2-26
processing large files, 2-11
restrictions on use of RESTART and RECOVERY

commands, 2-28
secure FTP overview, 2-34
serverLineSeparator property for determining line

separations during binary file transfers, 2-29
specifying connection information to an FTP

server, 2-27
SSL, 2-34
supported formats, 2-1
supported naming patterns, 2-7
translating native data, 2-11
use cases, 2-39, 2-40
using secure FTP, 2-34
XML format support, 2-1

FTP server
specifying configuration information in the

oc4j-ra.xml file, 2-28
specifying connection information to, 2-27

FulfillOrder process
deploying, 4-81
running, 4-82

function return values
database adapter, 4-70

functions
See stored procedures and functions, 4-54

H
header properties

JMS adapter, 5-3
header variables

creating for an adapter, 3-21
specifying, 2-23

headerLines
construct, 6-42

headerLinesTerminatedBy
construct, 6-42

I
IBM Websphere JMS configuration, 5-17
identifierLength

construct, 6-43
importing tables

database adapter, 4-21
inbound distributed polling

database adapter, 4-51
invoke activities

creating, 4-77
invoke activity

synchronous reads using the file adapter, 2-17
itemSeparatedBy

construct, 6-43

J
Java pattern letters

supported with file and FTP adapters, 2-21
JDeveloper BPEL Designer

adapters, 1-1
JDK regular expressions

supported with the file and FTP adapters, 2-7, 2-9
JMS adapter

concepts, 5-1
generated WSDL files, 5-10
header properties, 5-3
IBM Websphere JMS configuration, 5-17
OC4J JMS configuration, 5-15
oc4j-ra.xml file, 5-12
OJMS configuration, 5-13
point-to-point, 5-2
produce message procedure, 5-12
publish/subscribe, 5-3
Tibco JMS configuration, 5-16
use cases, 5-2

Index-5

L
last updated

database adapter, 4-14
last-read ID

database adapter, 4-13
leftsurroundedBy

construct, 6-43
length

construct, 6-43
lists

native schema, 6-26
listTerminatedBy

construct, 6-43
LocalBPELServer

using to deploy a process, 4-82
locking

database adapter, 4-51
logical delete

database adapter, 4-11
logical directory paths, 2-6, 2-20
lookAhead

construct, 6-43

M
maxRaiseSize

database adapter, 4-50
merge

DML operations, 4-9
message priority

AQ adapter, 3-2
message recovery, 2-15
messages

file size delivery limitations with the file
adapter, 2-6

multiconsumer queue
AQ adapter, 3-2

N
namespaces

schema must have a namespace, 2-12
naming patterns

supported with the file and FTP adapters, 2-7
Native Format Builder wizard

COBOL Copybook format support, 6-2
creating native schema files, 6-1
delimited format support, 6-2
DTD format support, 6-2
fixed-length positional format, 6-2
overview of windows, 6-6
starting, 2-12
supported formats, 6-2

native schema files
creating, 6-1

native schemas
arrayIdentifierLength construct, 6-43
arrayLength construct, 6-43
arrays, 6-28
arrayTerminatedBy construct, 6-43

assign construct, 6-43
byteOrder construct, 6-42
cellSeparatedBy construct, 6-43
choiceCondition construct, 6-43
complex structure, 6-10
conditional processing, 6-33
conditionValue construct, 6-43
constructs, 6-42
CSV, 6-8
dateFormat construct, 6-43
dates, 6-40
encoding construct, 6-42
fixed length data, 6-21
fixed length structure, 6-9
headerLines construct, 6-42
headerLinesTerminatedBy construct, 6-42
identifierLength construct, 6-43
itemSeparatedBy construct, 6-43
leftsurroundedBy construct, 6-43
length construct, 6-43
lists, 6-26
listTerminatedBy construct, 6-43
lookAheadconstruct, 6-43
paddedBy construct, 6-43
padStyle construct, 6-43
quotedBy construct, 6-43
rightsurroundedBy construct, 6-43
separated value file structure, 6-9
skip construct, 6-43
skipLines construct, 6-43
skipUntil construct, 6-43
standalone construct, 6-42
startsWith construct, 6-43
stream construct, 6-42
style construct, 6-44
surrounded data, 6-25
surroundedBy construct, 6-44
terminated data, 6-24
terminatedBy construct, 6-44
understanding, 6-7
uniqueMessageSeparator construct, 6-42
use cases, 6-7
variable construct, 6-44
variables, 6-41
variables construct, 6-44
version construct, 6-42
xmlversion construct, 6-42

null values
database adapter, 4-70

O
object models

database adapter, 4-26
object type inheritance, 4-66
OC4J JMS configuration, 5-15
oc4j-ra.xml file

configuring a database connection in, 4-3, 4-19
configuring an FTP server connection in, 2-28
JMS connection factory definitions, 5-12

Index-6

location of, 2-28, 4-46
OJMS configuration, 5-13
opaque format

supported with file and FTP adapters, 2-2
OpenSSL

installing and configuring, 2-35
Oracle Applications adapter, 1-2
Oracle BPEL Console

accessing, 4-82
manually performing message recovery, 2-15
running a process, 4-82

Oracle Wallet
installing and configuring, 2-38

OracleAS Adapter for AQ
See AQ adapter, 3-1

OracleAS Adapter for Files
See file adapter, 2-1

OracleAS Adapter for FTP
See FTP adapter, 2-1

OracleAS Adapter for JMS
See JMS adapter, 5-1

overloading, 4-59

P
paddedBy

construct, 6-43
padStyle

construct, 6-43
partner links

creating, 4-74
passwords

domain, 4-82
payload schema

AQ adapter, 3-5
performance

database adapter, 4-49
physical delete

database adapter, 4-10
PL/SQL Boolean support

database adapter, 4-71
PL/SQL RECORD support

database adapter, 4-71
point-to-point

JMS adapter, 5-2
polling strategies

database adapter, 4-10
polling strategy

database adapter, 4-50
primitive datatypes

supported, 4-62
procedures

See stored procedures and functions, 4-54
processing large files

with the file adapter, 2-11
produce message procedure

JMS adapter, 5-12
projects

creating, 4-73
publish/subscribe

JMS adapter, 5-3

Q
query by example

DML operations, 4-9
quotedBy

construct, 6-43

R
recovery

of messages from Oracle BPEL Console, 2-15
REF CURSOR support

database adapter, 4-70
regex constructs

supported, 2-7, 2-9
rejectedMessageHandlers property

error handling, 2-12
relational-to-XML mappings, 4-36

for database adapter, 4-4
relationship reading

database adapter, 4-50
rightsurroundedBy

construct, 6-43
running

FulfillOrder, 4-82

S
schemas

must have a namespace, 2-12
searching for, 4-56
secure FTP

using with the FTP adapter, 2-34
separated value file structure

native schema, 6-9
sequencing table

database adapter, 4-13, 4-14
sequencing table updates

database adapter, 4-30
serverLineSeparator property

determines line separations during binary file
transfers, 2-29

server.xml file
location of, 2-11
processing large files, 2-11

service names
creating, 2-3
in adapters, 1-2

skip
construct, 6-43

skipLines
construct, 6-43

skipUntil
construct, 6-43

SSL
creating an Oracle Wallet, 2-38
installing and configuring OpenSSL, 2-35
installing and configuring vsftpd, 2-36
secure FTP overview, 2-34

Index-7

using secure FTP with the FTP adapter, 2-34
standalone

construct, 6-42
startsWith

construct, 6-43
stored procedures

creating a stored procedure use case, 4-71
design time WSDL and XSD generation, 4-61
invocation at run time, 4-67, 4-69
overloaded procedures, 4-59
run time, 4-67

stored procedures and functions, 4-56
database adapter, 4-54
viewing details, 4-59

stream
construct, 6-42

style
construct, 6-44

surrounded data
native schema, 6-25

surroundedBy
construct, 6-44

synchronous reads
using the file adapter in an invoke activity, 2-17

T
terminated data

native schema, 6-24
terminatedBy

construct, 6-44
third-party database support

database adapter, 4-52
Tibco JMS configuration, 5-16
TopLink mapping workbench project, 4-32
toplink_mappings.xml file, 4-3, 4-36
translation

native data, 2-25
not required, 2-12
of native data, 2-11
requires native schemas, 6-1

translator
converts native data to XML and back, 2-2

troubleshooting and workarounds
AQ adapter, A-18
database adapter, A-1
file adapter, A-16
FTP adapter, A-16
using stored procedures with the database

adapter, A-13

U
uniqueMessageSeparater property

error handling, 2-14
uniqueMessageSeparator

construct, 6-42
updating a field in a table

database adapter, 4-29
use cases

creating a stored procedure, 4-71
using the AQ adapter, 3-6
using the database adapter, 4-16
using the File and FTP adapters, 2-39
using the JMS adapter, 5-2
using the Native Format Builder, 6-7

user-defined types, 4-64, 4-66

V
validating

FulfillOrder process, 4-81
value binding

database adapter, 4-67
variable

construct, 6-44
variables

automatically creating, 4-77, 4-78
construct, 6-44
native schema, 6-41

version
construct, 6-42

vsftpd server
installing and configuring, 2-36

W
Web services

SQL operations as, 4-8
WHERE clause

database adapter, 4-26
WSDL file

inbound direction for file and FTP adapters, 2-15
outbound direction for file and FTP

adapters, 2-26
selecting for a partner link, 4-76

WSDL files
AQ adapter, 3-14
define the adapter service, 4-38
JMS adapter, 5-10
specifying logical directory paths, 2-6, 2-20

WSIL browser
selecting a service, 4-76

X
XML schema

generated by Adapter Configuration wizard, 4-43
xmlversion

construct, 6-42
XPath expressions

creating, 4-79, 4-81
XSD attributes, 4-63

Index-8

	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	1 Introduction to Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
	Overview of Oracle BPEL Process Manager Technology Adapters
	Summary

	2 Oracle Application Server Adapter for Files/FTP
	Introduction to the File and FTP Adapters
	File and FTP Adapter Features
	File and FTP Adapter Architecture
	File and FTP Adapter Integration with Oracle BPEL Process Manager

	File and FTP Adapter Concepts
	File Adapter Read File Concepts
	Inbound Operation
	Inbound File Directory Specifications
	Specifying Inbound Physical or Logical Directory Paths
	Archiving Successfully Processed Files

	File Matching and Batch Processing
	Specifying a Naming Pattern
	Including and Excluding Files
	Batching Multiple Inbound Messages

	File Polling
	File Processing
	Postprocessing
	Native Data Translation
	Error Handling
	rejectedMessageHandlers Property
	fatalErrorFailoverProcess Property
	uniqueMessageSeparator Property
	Default Error Directory

	Guaranteed Delivery and Recovery from Server Failures
	Inbound Service Name WSDL File
	Inbound Header WSDL File
	Synchronous File Reading Capabilities

	File Adapter Write File Concepts
	Outbound Operation
	Outbound File Directory Creation
	Specifying Outbound Physical or Logic Directory Paths
	Specifying the Outbound File Naming Convention
	Specifying a Dynamic Outbound File Name
	Batching Multiple Outbound Messages

	Native Data Translation
	Error Handling
	Outbound Service Name WSDL File
	Outbound Header WSDL File

	FTP Adapter for Get File Concepts
	FTP Adapter for Put File Concepts

	Using Secure FTP with the FTP Adapter
	Secure FTP Overview
	Installing and Configuring OpenSSL
	Installing and Configuring vsftpd
	Creating an Oracle Wallet
	Setting Up the FTP Adapter

	Use Cases for the File and FTP Adapters
	File Adapter Use Cases
	File Reading
	Message Debatching
	Reading Delimited Content Files
	Reading Positional (Fixed Length) Content Files
	File Writing

	FTP Adapter Use Case

	Summary

	3 Oracle Application Server Adapter for Advanced Queuing
	Introduction to the AQ Adapter
	AQ Adapter Features
	Enqueue-Specific Features (Message Production)
	Dequeue and Enqueue Features
	Supported ADT Payload Types
	Native Format Builder Wizard

	Use Cases for the AQ Adapter
	Adapter Configuration Wizard Walkthrough
	Generated WSDL file

	Dequeuing and Enqueuing Object and ADT Payloads
	Dequeuing One Column of the Object/ADT Payload
	Processing Large Numbers of Messages
	Using Correlation ID for Filtering Messages During Dequeue
	Enqueuing and Dequeuing from Multisubscriber Queues
	Rule-Based Subscription for Multiconsumer Queues
	Using AQ Headers in a BPEL Process
	Header Variables in JDeveloper BPEL Designer
	Configuring a Message Rejection Handler for Data Errors

	Summary

	4 Oracle Application Server Adapter for Databases
	Introduction to the Database Adapter
	Database Adapter Features
	Design Overview

	Database Adapter Concepts
	Relational-to-XML Mapping
	Relational Types to XML Schema Types
	Mapping Any Relational Schema to Any XML Schema

	SQL Operations as Web Services
	DML Operations
	Merge
	querybyExample
	Use Cases for Outbound Invoke Operations

	Polling Strategies
	Physical Delete
	Logical Delete
	Sequencing Table: Last-Read Id
	Sequencing Table: Last Updated
	Control Tables
	Use Cases for Polling Strategies

	Use Cases for the Database Adapter
	The Adapter Configuration Wizard
	Starting the Adapter Configuration Wizard
	Connecting to a Database
	Selecting the Operation Type
	Selecting and Importing Tables
	Defining Primary Keys
	Creating Relationships
	What Happens When Relationships Are Created or Removed
	Different Types of One-to-One Mappings

	Creating the Object Model
	Defining a WHERE Clause
	Choosing an After-Read Strategy
	Delete the Rows that Were Read
	Update a Field in the Table (Logical Delete)
	Update a Sequencing Table

	Internal Processes at Design Time
	Importing Tables
	Creating Relationships
	Generating Design-Time Artifacts

	Advanced Configuration
	The OracleAS TopLink Mapping Workbench Project
	Deleting a Descriptor
	Returning Partial Objects When Querying
	Renaming a Mapping
	Configuring Offline Database Tables

	Relational-to-XML Mappings (toplink_mappings.xml)
	The Service Definition (WSDL)
	DBWriteInteractionSpec
	DBReadInteractionSpec
	DBActivationSpec

	XML Schema Definition (XSD)
	Deployment
	Location of the oc4j-ra.xml File
	Advanced Properties

	Performance
	Outbound Write: Should You Use Merge, Write, or Insert?
	The OracleAS TopLink Cache: When Should You Use It?
	Existence Checking
	Inbound (Polling): maxRaiseSize
	Inbound (Polling): Choosing a Polling Strategy
	Relationship Reading (Batch Attribute and Joined Attribute Reading)
	Connection Pooling
	Inbound Distributed Polling
	Concurrency Control: Pessimistic Locking
	Load Balancing: MaxTransactionSize and Pessimistic Locking

	Third-Party Database Support
	Design Time
	Run Time

	Stored Procedure and Function Support
	Design Time: Using the Adapter Configuration Wizard
	Using Top-Level Standalone APIs
	Using Packaged APIs and Overloading

	Design Time: WSDL and XSD Generation
	The WSDL-XSD Relationship
	Supported Primitive Datatypes
	Generated XSD Attributes
	User-Defined Types
	Complex User-Defined Types
	Object Type Inheritance
	Object References

	Run Time: Before Stored Procedure Invocation
	Value Binding
	Datatype Conversions

	Run Time: After Stored Procedure Invocation
	Datatype Conversions
	Null Values
	Function Return Values

	Advanced Topics
	Support for REF CURSOR
	Support for PL/SQL BOOLEAN
	Support for PL/SQL RECORD

	Use Case for Creating and Configuring a Stored Procedure in JDeveloper BPEL Designer
	Creating a Stored Procedure
	Creating a Database Connection
	Creating a Workspace and a Greeting Process
	Creating a Partner Link
	Creating an Invoke Activity
	Creating an Initial Assign Activity
	Creating a Second Assign Activity
	Validating, Compiling, and Deploying the Greeting Process
	Running the Greeting Process

	Summary

	5 Oracle Application Server Adapter for Java Message Service
	Introduction to the JMS Adapter
	JMS Adapter Features
	Use Cases for the JMS Adapter
	Concepts
	Using the Adapter Configuration Wizard to Configure a JMS Adapter
	Generated WSDL File
	oc4j-ra.xml file
	Produce Message Procedure
	Configuring for OJMS
	Configuring for OC4J JMS
	Configuring for TIBCO JMS
	Direct Connection

	Configuring for IBM Websphere JMS

	Summary

	6 Native Format Builder Wizard
	Creating Native Schema Files with the Native Format Builder Wizard
	Supported Formats
	Delimited (such as CSV files)
	Fixed Length (Positional)
	DTD
	COBOL Copybook
	User Inputs
	COBOL Clauses

	Native Format Builder Wizard Windows

	Understanding Native Schema
	Use Cases for the Native Format Builder
	Defining a Comma-Separated Value File Structure
	Native Data Format to Be Translated
	Native Schema
	Translated XML Using the Native Schema

	Defining a * Separated Value File Structure
	Native Data Format to Be Translated
	Native Schema

	Defining a Fixed Length Structure
	Native Data Format to Be Translated
	Native Schema

	Defining a More Complex Structure - Invoice
	Native Data Format to Be Translated
	Native Schema
	Translated XML Using the Native Schema

	COBOL Copybook
	Multiple Root Levels
	Single Root Level, Virtual Decimal, Fixed Length Array
	Variable Length Array
	Numeric Types

	Native Schema Constructs
	Defining Fixed Length Data
	Native Data Format to Be Translated: With Padding
	Native Schema: With Padding
	Translated XML Using the Native Schema: With Padding
	Native Data Format to Be Translated: Without Padding
	Native Schema: Without Padding
	Translated XML Using the Native Schema: Without Padding
	Native Data Format to Be Translated: Actual Length Also Being Read from the Native Data
	Native Schema: Actual Length Also Being Read from the Native Data
	Translated XML Using the Native Schema: Actual Length Also Being Read from the Native Data

	Defining Terminated Data
	Native Data Format to Be Translated: Optionally Quoted
	Native Schema: Optionally Quoted
	Translated XML Using the Native Schema: Optionally Quoted
	Native Data Format to Be Translated: Not Quoted
	Native Schema: Not Quoted
	Translated XML Using the Native Schema: Not Quoted

	Defining Surrounded Data
	Native Data Format to Be Translated: Left and Right Surrounding Marks Are Different
	Native Schema: Left and Right Surrounding Marks Are Different
	Translated XML Using the Native Schema: Left and Right Surrounding Marks Are Different
	Native Data Format to Be Translated: Left and Right Surrounding Marks Are the Same
	Native Schema: Left and Right Surrounding Marks Are the Same
	Translated XML Using the Native Schema: Left and Right Surrounding Marks Are the Same

	Defining Lists
	Native Data Format to Be Translated: All Items Separated by the Same Mark, But the Last Item Terminated by a Different Mark (Bounded)
	Native Schema: All Items Separated by the Same Mark, But the Last Item Terminated by a Different Mark (Bounded)
	Translated XML Using the Native Schema: All Items Separated by the Same Mark, But the Last Item Terminated by a Different Mark (Bounded)
	Native Data Format to Be Translated: All Items Separated by the Same Mark, Including the Last Item (Unbounded)
	Native Schema: All Items Separated by the Same Mark, Including the Last Item (Unbounded)
	Translated XML Using the Native Schema: All Items Separated by the Same Mark, Including the Last Item (Unbounded)

	Defining Arrays
	Native Data Format to Be Translated: All Cells Separated by the Same Mark, But the Last Cell Terminated by a Different Mark (Bounded)
	Native Schema: All Cells Separated by the Same Mark, But the Last Cell Terminated by a Different Mark (Bounded)
	Translated XML Using the Native Schema: All Cells Separated by the Same Mark, But the Last Cell Terminated by a Different Mark (Bounded)
	Native Data Format to Be Translated:
	Native Schema:
	Translated XML Using the Native Schema: All Cells Separated by the Same Mark, Including the Last Cell (Unbounded)
	Native Data Format to Be Translated: Cells Not Separated by Any Mark, But the Last Cell Terminated by a Mark (Bounded)
	Native Schema: Cells Not Separated by Any Mark, But the Last Cell Terminated by a Mark (Bounded)
	Translated XML Using the Native Schema: Cells Not Separated by Any Mark, But the Last Cell Terminated by a Mark (Bounded)
	Native Data Format to Be Translated: The Number of Cells Being Read from the Native Data
	Native Schema: The Number of Cells Being Read from the Native Data
	Translated XML Using the Native Schema: The Number of Cells Being Read from the Native Data

	Conditional Processing
	Native Data Format to Be Translated: Processing One Element within a Choice Model Group Based on the Condition
	Native Schema: Processing One Element within a Choice Model Group Based on the Condition
	Translated XML Using the Native Schema: Processing One Element Within a Choice Model Group Based on the Condition
	Native Data Format to Be Translated: Processing Elements within a Sequence Model Group Based on the Condition
	Native Schema: Processing Elements within a Sequence Model Group Based on the Condition
	Translated XML Using the Native Schema: Processing Elements within a Sequence Model Group Based on the Condition

	Defining Dates
	Native Data Format to Be Translated
	Native Schema
	Translated XML Using the Native Schema

	Using Variables
	Native Data Format to Be Translated
	Native Schema
	Translated XML Using the Native Schema

	Native Schema Constructs
	Summary

	A Troubleshooting and Workarounds
	Troubleshooting the Oracle Application Server Adapter for Databases
	Could Not Create OracleAS TopLink Session Exception
	Could Not Find Adapter for eis/DB/my_connection
	Changes Through TopLink Mapping Workbench
	Redeploying from the Command Line
	Cannot Change Customers_table.xsd
	No Target Foreign Keys Error
	No Primary Key Exception
	dateTime Conversion Exceptions
	Issues with Oracle DATE
	Handling a Database Adapter Fault
	BPEL Process Does Not Run Against Another Database
	Only One Employee Per Department Appears
	Outbound SELECT on a CHAR(X) or NCHAR Column Returns No Rows
	ORA-00932: Inconsistent Datatypes Exception Querying CLOBs
	Merge Sometimes Does UPDATE Instead of INSERT, or Vice Versa
	Integrity Violation Occurs with Delete or DeletePollingStrategy
	Some Queried Rows Appear Twice or Not at All in the Query Result
	Importing a Same-Named Table, with Same Schema Name, but Different Databases
	Problems Creating a Relationship Manually for a Composite Primary Key
	Must Fully Specify Relationships Involving Composite Primary Keys
	Database Adapter Throws an Exception When Using a BFILE
	During Design-Time, Wizard Does Not Allow Deletion of a Table
	Changes to JDeveloper Project Are Made Even If Wizard Is Cancelled
	Problems Removing a Relationship, Then Adding a New Relationship with the Same Name
	Problems Importing Third-Party Database Tables with Unsupported Database Types
	Problems Importing Object Tables
	Relationships Not Autogenerated When Tables Are Imported Separately
	Primary Key Is Not Saved

	Troubleshooting the Oracle Application Server Adapter for Databases When Using Stored Procedures
	Design-Time Problems: Unsupported Parameter Types
	Run-Time Problems: Parameter Mismatches
	Run-Time Problems: Stored Procedure Not Defined in the Database

	Troubleshooting the Oracle Application Server Adapter for Files/FTP
	Changing Logical Names with the Adapter Configuration Wizard
	Creating File Names with Spaces with the Native Format Builder Wizard
	Common User Errors

	Troubleshooting the Oracle Application Server Adapter for Advanced Queuing
	Inbound Errors
	JNDI Lookup Failed
	During Initialization, I/O Exception: Network Adapter Did Not Establish the Connection
	Incorrect Username/Password
	Queue Not Found
	User Does Not Have DBMS_AQIN Privileges, Which Are Required by the AQ Java API
	Translation Error
	Subscriber Already Exists When Using MessageRuleSelector

	Outbound Errors
	JNDI Lookup Failed
	I/O Exception: Network Adapter Could Not Establish the Connection
	Queue Not Found
	Incorrect Username/Password
	User Does Not Have DBMS_AQIN Privileges, Which Are Required by the AQ Java API
	Translation Error

	JDeveloper BPEL Designer Errors
	Translation Error
	Other Problems

	Summary

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

