
Oracle® BPEL Process Manager
Developer’s Guide

10g Release 2 (10.1.2)

Part No. B14448-01

October 24, 2005

Oracle BPEL Process Manager Developer’s Guide, 10g Release 2 (10.1.2)

Part No. B14448-01

Copyright © 2005, Oracle. All rights reserved.

Primary Author: Deanna Bradshaw, Mark Kennedy, Craig West

Contributor: Oracle BPEL Process Manager development, product management, and quality assurance
teams

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are “commercial computer software” or “commercial technical
data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments .. xxi

Preface ... xxiii

Intended Audience.. xxiv
Documentation Accessibility ... xxiv
Structure ... xxiv
Related Documents .. xxvii
Conventions ... xxviii

Part I Introduction and Concepts

1 Introduction to Oracle BPEL Process Manager

What Is BPEL? ... 1-2
What Is Oracle BPEL Process Manager? .. 1-2
What Is the BPEL Designer?... 1-3

JDeveloper BPEL Designer ... 1-3
Eclipse BPEL Designer .. 1-4

How to Use This Guide... 1-5
Tutorials and Demonstrations.. 1-7
Summary ... 1-12

2 Getting Started with Oracle BPEL Process Manager

Overview of Oracle BPEL Process Manager Components ... 2-2
Starting Oracle BPEL Process Manager Components ... 2-2
Overview of BPEL Designer Environments.. 2-3

Overview of JDeveloper BPEL Designer .. 2-3
Applications Navigator.. 2-5
Diagram View Window ... 2-6
Source Window ... 2-8
Component Palette ... 2-9
Property Inspector ... 2-10
Structure Window.. 2-11
Log Window ... 2-12

Overview of Eclipse BPEL Designer .. 2-13
Navigator .. 2-15

iv

Process Map and Overview Windows.. 2-15
BPEL Source Window ... 2-17
BPEL Inspector ... 2-17
Log Window ... 2-17
BPEL Palette.. 2-18

Overview of Activities.. 2-19
Overview of Partner Links .. 2-20
Overview of Oracle BPEL Server ... 2-21
Overview of Oracle BPEL Console .. 2-21
Overview of Oracle BPEL Process Manager Services .. 2-22
Overview of Oracle BPEL Process Manager Technology Adapters... 2-23
Summary ... 2-25

3 Building a Simple BPEL Process

Overview of Building a Simple BPEL Process ... 3-1
Creating a New BPEL Project Using Eclipse BPEL Designer .. 3-2
Browsing a New Project .. 3-4
Viewing the WSDL Interface of a BPEL Process.. 3-5
Switching Between the Overview, Process Map, and Source Code ... 3-6

Viewing an Overview of a BPEL Process ... 3-6
Viewing a Detailed Process Map ... 3-7
Viewing BPEL Source Code.. 3-8

Reviewing the BPEL Source Code .. 3-9
Understanding the Sequence Activity ... 3-11
Understanding the Assign Activity.. 3-11

Adding an Assign Activity to the Process Map ... 3-12
Step 1: Viewing the Process Map.. 3-12
Step 2: Inserting an Assign Activity ... 3-12
Step 3: Adding a Copy Rule .. 3-14
Step 4: Defining the From Part (Source) of the Copy Rule.. 3-15
Step 5: Defining the To Part (Destination) of the Copy Rule.. 3-16

Compiling and Deploying the BPEL Process .. 3-16
Testing the BPEL Process ... 3-17
Summary ... 3-19

Part II Reviewing Key BPEL Development Concepts and Code Samples

4 Manipulating XML Data in BPEL

How XML Data Works in BPEL... 4-2
About Data Manipulation and XPath Standards ... 4-2
Initializing a Variable with Expression Constants or Literal XML .. 4-4
Copying Between Variables ... 4-5
Accessing Fields within Complex Type Variables ... 4-6
Assigning Numeric Values ... 4-6
Mathematical Calculations with XPath Standards .. 4-7
Assigning String Literals .. 4-7

v

Concatenating Strings ... 4-8
Assigning Boolean Values .. 4-8
Assigning Date or Time .. 4-9
Manipulating Attributes ... 4-9
Manipulating XML Data Sequences/Arrays .. 4-10

Statically Indexing into an XML Data Sequence .. 4-11
Determining Sequence Size ... 4-12
Dynamically Indexing by Applying a Trailing XPath to an Expression................................. 4-12

Dynamic Indexing Example ... 4-12
Appending New Items to a Sequence... 4-13
Merging Data Sequences... 4-14
Dynamically Indexing with the BPEL getElement Function... 4-14
Merging Data Sequences/Arrays .. 4-15
Appending New Items to a Sequence/Array.. 4-15

Converting from a String to an XML Element... 4-16
Differences Between Document-Style and RPC-Style WSDL Files ... 4-16
Summary ... 4-17

5 Invoking a Synchronous Web Service

Use Case ... 5-2
Synchronous Service Concepts.. 5-2

Examples ... 5-2
The Partner Link... 5-3
Port Types ... 5-4
partnerLinkTypes for Synchronous Services ... 5-4
UDDI and WSIL Directories ... 5-5
The Invoke Activity ... 5-5

Calling a Synchronous Service .. 5-6
Summary .. 5-7

6 Calling an Asynchronous Web Service

Introduction... 6-2
Use Case ... 6-3
Understanding Asynchronous Callback Concepts .. 6-3

partnerLinkTypes for Asynchronous Services .. 6-4
Calling the Service from BPEL ... 6-5
Invoke and Receive Activities .. 6-5
Correlations... 6-6

WS-Addressing ... 6-7
TCP Tunneling ... 6-8

Correlation Sets ... 6-8
The Reply Activity ... 6-8
Dehydration .. 6-9

Calling an Asynchronous Service ... 6-9
Adding a Partner Link for an Asynchronous Service... 6-9
Adding an Invoke Activity .. 6-10

vi

Adding a Receive Activity ... 6-12
Performing Additional Activities ... 6-13

Questions and Answers ... 6-13
Summary ... 6-13

7 Parallel Flow

Introduction... 7-2
Use Case ... 7-2
Understanding Parallel Flow Concepts ... 7-2
Defining a Parallel Flow ... 7-3
The flowN Activity .. 7-4

BPEL Code Example of the FlowN Activity .. 7-7
Summary .. 7-8

8 Conditional Branching

Introduction... 8-2
Use Case ... 8-2
Understanding Conditional Branching Concepts.. 8-2
Conditional Branching .. 8-2

Adding a Switch Activity.. 8-3
The While Activity ... 8-4
Summary .. 8-5

9 Fault Handling

Introduction... 9-2
Use Case ... 9-2
Defining a Fault Handler .. 9-2
Taxonomy of BPEL Faults ... 9-4
Using the Scope Activity... 9-4
Throwing Internal Faults .. 9-7
Returning External Faults ... 9-7

Returning a Fault in a Synchronous Interaction.. 9-8
Returning a Fault in an Asynchronous Interaction... 9-8

Fault Handler Within a Scope .. 9-8
The Empty Activity at runtime .. 9-9

Compensation ... 9-9
The Terminate Activity... 9-10
Catching Run-Time Faults Example .. 9-11
Eclipse BPEL Designer Example .. 9-11
Summary ... 9-15

10 Incorporating Java/J2EE Code in BPEL Processes

Introduction.. 10-2
Use Case .. 10-2
Using Java Code with WSIF Binding .. 10-2
Using Java Code Wrapped as a SOAP Service... 10-2

vii

Embedding Java Code in BPEL .. 10-3
The bpelx:exec Tag.. 10-3
XML Facade ... 10-3
bpelx:exec Built-in Methods .. 10-4

JDeveloper BPEL Designer Example... 10-5
Summary ... 10-6

11 Events and Timeouts

Introduction.. 11-2
Use Case .. 11-2
The pick Activity ... 11-2
The Wait Activity... 11-4
JDeveloper BPEL Designer Example... 11-4
Synchronous Processes... 11-7
Summary ... 11-7

12 Invoking a BPEL Process

Introduction.. 12-2
Use Case .. 12-2
Sending Messages to a BPEL Process from a Java/JSP Application .. 12-2

Invoking a BPEL Process with the Generic Java API... 12-3
Connecting to Oracle BPEL Process Manager with the Locator Class............................. 12-3
Passing XML Messages through Java ... 12-3
Invoking a Two-Way Operation through the Java API ... 12-4
Invoking a One-Way Operation through Java API... 12-5

Retrieving Status/Results from Asynchronous BPEL Processes ... 12-5
Using the Java API from a Remote Client .. 12-6

Invoking a BPEL Process with the Web Service/SOAP Interface ... 12-6
Summary ... 12-7

13 Interaction Patterns

Introduction.. 13-2
One-Way Message ... 13-2

BPEL Process as the Client... 13-2
BPEL Process as the Service... 13-2

Synchronous Interaction .. 13-2
BPEL Process as the Client... 13-3
BPEL Process as the Service... 13-3

Asynchronous Interaction ... 13-3
BPEL Process as the Client... 13-4
BPEL Process as the Service... 13-4

Asynchronous Interaction with Timeout.. 13-4
BPEL Process as the Client... 13-5
BPEL Process as the Service... 13-5

Asynchronous Interaction with a Notification Timer .. 13-5
BPEL Process as the Client... 13-6

viii

BPEL Process as the Service... 13-6
One Request, Multiple Responses... 13-6

BPEL Process as the Client... 13-7
BPEL Process as the Service... 13-7

One Request, One of Two Possible Responses ... 13-7
BPEL Process as the Client... 13-8
BPEL Process as the Service... 13-8

One Request, a Mandatory Response, and an Optional Response ... 13-8
BPEL Process as the Client... 13-9
BPEL Process as the Service... 13-9

Partial Processing .. 13-9
BPEL Process as the Client... 13-10
BPEL Process as the Service... 13-10

Third-Party Interactions ... 13-10
Summary ... 13-11

Part III Oracle BPEL Process Manager Services

14 XSLT Mapper and Transformations

Use Case for Transformation ... 14-2
Creating a Transform Activity... 14-2
The XSLT Mapper ... 14-3

Notes on the Mapper .. 14-5
Step 1: Creating an XSL Map .. 14-5
Step 2: Using the Mapper... 14-5

Simple Copy by Linking Nodes.. 14-6
Setting Constant Values ... 14-6
Functions .. 14-7

Editing Function Parameters.. 14-8
Chaining Functions.. 14-9
Named Templates and User-Defined Functions... 14-9

Editing XPath Expressions... 14-9
Adding XSLT Constructs ... 14-11

Conditional Processing with xsl:if ... 14-11
Conditional Processing with xsl:choose ... 14-12
Handling Repetition or Arrays .. 14-13

Auto Mapping ... 14-14
Auto Map with Confirmation .. 14-16

Generating Dictionaries ... 14-18
Step 3: Testing the Map .. 14-18

Test Window.. 14-19
Generating Reports ... 14-20

Summary ... 14-21

15 Oracle BPEL Process Manager Notification Service

Use Cases for Notification Service... 15-1

ix

Overview of Notification Service Concepts... 15-1
Configuring Notification Service in JDeveloper BPEL Designer.. 15-2

The E-mail Notification Channel .. 15-4
Setting E-mail Attachments .. 15-6
Configuring the E-mail Server ... 15-8
Example ns_emails.xml File ... 15-9

The Voice Notification Channel .. 15-10
Configuring the Wireless Service Provider for Voice... 15-11
Example ns_iaswconfig.xml File ... 15-11

The SMS Notification Channel.. 15-12
Configuring the Wireless Service Provider for SMS... 15-13

Setting E-mail Addresses and Telephone Numbers Dynamically .. 15-13
Selecting Notification Recipients by Browsing the User Directory 15-13
Starting Business Processes with the E-mail Activation Agent.. 15-14

Summary ... 15-15

16 Oracle BPEL Process Manager Workflow Services

Overview of Workflow Services... 16-1
Workflow Functionality: A Procurement Process Example ... 16-3
Workflow Services Components... 16-4

Use Cases for Workflow Services... 16-6
Assigning a Task to a User or Role... 16-6
Using the Various Flow Patterns .. 16-7
Escalation, Expiration, and Delegation.. 16-7
The Worklist Application... 16-8

Workflow Patterns... 16-8
The Modeling Process... 16-10
Editing or Deleting a Workflow.. 16-11
Task Details and Configurations .. 16-11

Task Attributes ... 16-11
Task Outcomes ... 16-13
Advanced Task Configurations ... 16-14

Flex Fields .. 16-15
Restricted Actions... 16-16
Version-Tracking Attributes ... 16-17
Task Notifications and Reminders ... 16-19
Resource Bundles.. 16-19

Task Assignment ... 16-19
Task Assignment Evaluation.. 16-20
Task Assignment Based on External Services.. 16-21
Assigning a Task to a Specific User of a Role and Marking It As Acquired 16-21
Setting Task Assignees from a Dynamic Delimited String.. 16-22
Selecting Users or Groups by Browsing the User Directory ... 16-23

Adding a Task Attachment from a Business Process .. 16-26
Actions Performed on a Task .. 16-29
Simple Workflow .. 16-31

Use Case .. 16-32

x

Customizations for Simple Workflow .. 16-32
Simple Workflow with Automatic Escalation .. 16-33

Use Case .. 16-35
Pattern-Specific Parameters.. 16-35
Customizations for Simple Workflow with Automatic Escalation 16-36

Simple Workflow with Automatic Renewal ... 16-37
Use Case .. 16-39
Pattern-Specific Parameters.. 16-39
Customizations for Simple Workflow with Automatic Renewal 16-39

Sequential Workflow .. 16-40
Use Cases... 16-43
Pattern-Specific Parameters.. 16-43
Customizations for Sequential Workflow .. 16-45

Sequential Workflow with Escalation .. 16-46
Use Case .. 16-47
Pattern-Specific Parameters.. 16-48
Customizations for Sequential Workflow with Escalation.. 16-48

Parallel Workflow ... 16-49
Use Case .. 16-51
Pattern-Specific Parameters.. 16-51
Customizations for Parallel Workflow ... 16-52

Parallel Workflow with Final Reviewer .. 16-52
Use Case .. 16-53
Pattern-Specific Parameters.. 16-53
Customizations for Parallel Workflow with Final Reviewer .. 16-53

Adhoc Workflow... 16-54
Use Case .. 16-55
Customizations for Adhoc Workflow... 16-55

FYI Tasks .. 16-55
Use Case .. 16-55
Customization for FYI Tasks .. 16-56

The User Task 2.0 Macro .. 16-56
Task Continuations ... 16-56

Use Case .. 16-58
Pattern-Specific Parameters.. 16-58
Customization for Task Continuations... 16-58

Outcome-Based Modeling ... 16-59
Payload Updates .. 16-59
Case Statements for Other Task Conclusions .. 16-59

Task Notifications ... 16-60
Channels Used for Notification... 16-61
Notification Messages... 16-61
E-mail Approval .. 16-62
Reminders .. 16-63

Payload Display ... 16-64
Autogenerated JSP .. 16-65

Customizing the Autogenerated JSP... 16-67

xi

Customizing the Mapping File .. 16-67
Customizing the Default JSP .. 16-69
Multibyte Payload in the Task Detail JSP... 16-71

Deploying the Autogenerated JSP .. 16-71
XSL .. 16-71
The Custom JSP URL.. 16-72

APIs.. 16-73
Customizing the Complete Task JSP... 16-73

Configuration for Task Service... 16-73
Autorelease Duration ... 16-73
Actionable E-mail Accounts .. 16-74
Worklist Application URL ... 16-74

Identity Service .. 16-75
Identity Service Providers.. 16-76

The JAZN Provider.. 16-76
XML-Based JAZN Provider Type... 16-77
LDAP-Based JAZN Provider Type (Oracle Internet Directory) 16-77

Third-Party LDAP Server ... 16-77
Custom User Repository Plug-ins ... 16-77

Creating Users and Groups ... 16-77
User and Role Properties ... 16-78
Configuring Identity Service ... 16-79

Structure of the Identity Service Configuration File... 16-79
connection Element .. 16-80
userControls and roleControls Elements .. 16-81
provider Element .. 16-83

Configuration for the XML-Based JAZN Provider ... 16-83
Configuration for the LDAP-Based JAZN Provider (OID).. 16-83

OID Configuration.. 16-84
Middle-Tier Configuration.. 16-85

Configuration for a Third-Party LDAP Server .. 16-86
Configuration for CUSTOM User Repository Plug-ins.. 16-89

Workflow-Related XPath Extension Functions ... 16-89
Approver Functions .. 16-95

Approver Function Syntax .. 16-95
Approver Function Examples ... 16-96

Vacation Request Example .. 16-98
Prerequisites... 16-98
Getting Started: Modeling the Vacation Request Process ... 16-99
Running the Example ... 16-104

Summary ... 16-105

17 Worklist Application

Use Cases for the Worklist Application .. 17-1
Overview of Worklist Application Concepts ... 17-2

Logging In to the Worklist Application... 17-4
Features of the Sample Worklist Application ... 17-4

xii

Task Actions.. 17-10
Routing .. 17-12
Requesting More Information.. 17-13
Task History and Sequence (Version) Numbers ... 17-14
The Payload .. 17-17
Comments ... 17-19
Attachments.. 17-20
Reassignment.. 17-22
Parallel Tasks .. 17-23
Flex Fields and Task Fields Updates... 17-24
Request Status... 17-26
Error Information... 17-28
User and Group Information ... 17-29
Advanced Search ... 17-31
Determining Action Permissions... 17-32

How Changes to a Workflow Appear in the Worklist Application 17-33
Accessing the Worklist Application in Local Languages .. 17-33
Customizing the Worklist Application ... 17-34

Worklist Application Architecture ... 17-34
Login Page... 17-35
Header Info ... 17-36
Task Home (Listing) Page... 17-37
Task Details Page ... 17-37
Additional Pages.. 17-38
Configuration Parameters .. 17-38

Controlling Access to Information and Actions for Different Users 17-39
Building a Worklist Application Using the Worklist Service APIs... 17-40

Worklist Service APIs ... 17-41
Example: Reassigning a Task in a Worklist Application... 17-45

Building a Worklist Application Using the Worklist Service Remote APIs............................ 17-45
Summary ... 17-46

18 Sensors

Use Cases for Sensors ... 18-1
Overview of Sensor Concepts... 18-1

Sensor Public Views.. 18-2
BPEL Reporting Schema ... 18-2

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer 18-9
Configuring Sensors ... 18-10
Configuring Sensor Actions... 18-12
Creating a Custom Data Publisher ... 18-15
Registering the Sensors and Sensor Actions in bpel.xml .. 18-19

Sensors and Oracle BPEL Console ... 18-19
Viewing Sensor and Sensor Action Definitions.. 18-19
Viewing Sensor Data .. 18-20

Summary ... 18-21

xiii

Part IV Development Life Cycle

19 BPEL Process Deployment and Domain Management

Compiling and Deploying a BPEL Process .. 19-2
Compiling and Deploying on JDeveloper BPEL Designer ... 19-2

Compiling Without Deploying on JDeveloper BPEL Designer .. 19-4
Compiling and Deploying on Eclipse BPEL Designer .. 19-5
BPEL Suitcase JAR File ... 19-6

Creating and Managing a BPEL Domain.. 19-8
Changing the Default Domain Password.. 19-8
Changing Oracle BPEL Admin Console Password.. 19-8
Creating a BPEL Domain ... 19-9
Changing Oracle BPEL Server Mode ... 19-9
Deploying a BPEL Suitcase to a Specific Domain .. 19-10
Location of BPEL JAR Suitcase Files in a Specific Domain ... 19-11
Undeploying a BPEL Process from a Specific Domain.. 19-11

Viewing BPEL Processes in Oracle BPEL Console ... 19-12
Dashboard Tab: Viewing Processes.. 19-12
BPEL Processes Tab: Managing the Process Life Cycle... 19-13

Process Life Cycle Recommendations for a Development Environment 19-15
Process Life Cycle Recommendations for a Production Environment 19-15
Example: Life Cycle of Processes... 19-16

Instances Tab: Viewing Process Instances ... 19-21
Activities Tab: Viewing Process Activities .. 19-21

Build and Command Line Tools... 19-23
Apache Ant .. 19-23
bpelc .. 19-23

Examples ... 19-24
schemac... 19-24

Examples ... 19-25
Summary ... 19-26

Part V Reference Information

A Troubleshooting and Workarounds

Troubleshooting Sensors—The Custom Data Publisher... A-1
Poor JMS Performance When Creating or Destroying Connections ... A-1
Data Publisher Is Not Working... A-1
Data Publisher Works, But Business Process Runs Slowly... A-2
Caching Data in the Data Publisher Is Not Supported.. A-2
Unexpected Errors in the Data Publisher .. A-2
Data Extracted to XML Is Difficult to Work With .. A-2

Troubleshooting Oracle BPEL Worklist Application ... A-3
Not Able to Log In to the Worklist Application ... A-3
Information Is Displayed in a Different Language .. A-3
Dates and Times Are Displayed Incorrectly ... A-3

xiv

The User Is Not Permitted to Perform an Action ... A-3
Expected Task Is Not Listed Under Task Titles.. A-3

Summary ... A-4

B Workflow and Notification Reference

Task Manager Service WSDL Operations .. B-1
Task Routing Service WSDL Operations.. B-2
Notification WSDL Operations .. B-2
Identify Service Operations .. B-3
Task Action Handler Business Process ... B-3
Summary ... B-3

C JDeveloper BPEL Designer Activities

Validating when Loading a Process Diagram .. C-2
Activities Overview .. C-2

Tabs Common to Many Activities .. C-3
Assign Activity .. C-3
Catch Activity .. C-4
Compensate Activity .. C-5
Empty Activity .. C-6
Flow Activity ... C-6
FlowN Activity .. C-7
Invoke Activity .. C-8
Java Embedding Activity ... C-9
Notification Activity ... C-10
PartnerLink Activity ... C-10
Pick Activity... C-11
Receive Activity... C-12
Reply Activity .. C-13
Sequence Activity.. C-14
Scope Activity .. C-15
Switch Activity .. C-15
Terminate Activity .. C-16
Throw Activity .. C-17
Transform Activity.. C-17
User Task .. C-18
Wait Activity.. C-19
While Activity.. C-20

Summary ... C-21

D User Task 2.0 Macro

Introduction to User Task 2.0 Macro.. D-2
BPEL User Task Use Case .. D-2
The TaskManager Service .. D-2

Integrating the TaskManager Service into a BPEL Process... D-6
Defining a Partner Link for the TaskManager Service ... D-6

xv

Declare and Initialize the Task Document ... D-7
Initiate the Task .. D-7
Task Completion .. D-8

Using Eclipse BPEL Designer to Integrate the TaskManager Service D-8
Creating a User Interface for the Task ... D-12

List the Assigned Tasks... D-12
Display the Payload Data for a Task... D-14
Update the Payload Data and Complete the Task .. D-15

Additional Capabilities of the TaskManager Service .. D-16
Enabling Expiration/Timeouts for Tasks .. D-16

Sending Notifications .. D-17
Reassigning Tasks .. D-18
Assigning Tasks to Groups and Resolving Roles.. D-18

Summary ... D-18

E Deployment Descriptor Properties

Deployment Descriptor Preference Properties.. E-1
Defining a Preference Property... E-1
Updating a Preference at Run Time ... E-2
Getting the Value of a Preference within a BPEL Process... E-3
Encrypting a Preference Value.. E-3
Use Case for Preference Properties... E-4

Deployment Descriptor Configuration Properties ... E-4
Defining a Configuration Property .. E-4

Summary ... E-8

F Demo User Community

Setting Up JAZN Demo Users .. F-1
Demo Users and Roles.. F-1
Using the Demo User Community in the Order Booking Tutorial ... F-3

Summary ... F-4

G XPath Extension Functions

XPath Extension Functions Available to BPEL Processes.. G-1
abs.. G-1

Property IDs.. G-1
add-dayTimeDuration-to-dateTime... G-1

Property IDs.. G-2
addChildNode ... G-2

Property IDs.. G-2
addQuotes .. G-2

Property IDs.. G-2
appendToList ... G-3

Property IDs.. G-3
authenticate .. G-3

Property IDs.. G-3

xvi

batchProcessActive ... G-3
Property IDs.. G-4

batchProcessCompleted ... G-4
Property IDs.. G-4

clearTaskAssignees ... G-4
Property IDs.. G-4

compare .. G-4
Property IDs.. G-5

compare-ignore-case... G-5
Property IDs.. G-5

copyList .. G-5
Property IDs.. G-6

countNodes .. G-6
Property IDs.. G-6

create-delimited-string ... G-6
Property IDs.. G-6

create-nodeset-from-deliminated-string.. G-7
Property IDs.. G-7

createDeliminatedString .. G-7
Property IDs.. G-7

current-date.. G-7
Property IDs.. G-8

current-dateTime... G-8
Property IDs.. G-8

current-time.. G-8
Property IDs.. G-8

day-from-dateTime ... G-8
Property IDs.. G-9

doc ... G-9
Property IDs.. G-9

ends-with.. G-9
Property IDs.. G-9

format.. G-9
Property IDs.. G-10

format-dateTime.. G-10
Property IDs.. G-10

format-string .. G-10
Property IDs.. G-10

formatDate ... G-10
Property IDs.. G-11

genEmptyElem .. G-11
Property IDs.. G-11

generate-guid... G-11
Property IDs.. G-11

generateGUID.. G-11
Property IDs.. G-12

get-content-as-string ... G-12

xvii

Property IDs.. G-12
get-localized-string ... G-12

Property IDs.. G-13
getChildElement.. G-13

Property IDs.. G-13
getContentAsString... G-13

Property IDs.. G-13
getConversationId... G-13

Property IDs.. G-13
getCreator... G-14

Property IDs.. G-14
getCurrentDate .. G-14

Property IDs.. G-14
getCurrentDateTime... G-14

Property IDs.. G-14
getCurrentTime ... G-14

Property IDs.. G-15
getDomainId .. G-15

Property IDs.. G-15
getElement.. G-15

Property IDs.. G-15
getGroupIdsFromGroupAlias... G-15

Property IDs.. G-15
getGroupProperty ... G-16

Property IDs.. G-16
getInstanceId.. G-16

Property IDs.. G-16
getLinkStatus ... G-16

Property IDs.. G-16
getManager .. G-17

Property IDs.. G-17
getMessage ... G-17

Property IDs.. G-17
getNodeValue .. G-17

Property IDs.. G-17
getNodes... G-18

Property IDs.. G-18
getNumberOfTaskApprovals.. G-18

Property IDs.. G-18
getPreference.. G-18

Property IDs.. G-18
getPreviousTaskApprover... G-18

Property IDs.. G-19
getProcessId ... G-19

Property IDs.. G-19
getProcessOwnerId... G-19

Property IDs.. G-19

xviii

getProcessURL... G-19
Property IDs.. G-19

getProcessVersion ... G-19
Property IDs.. G-20

getReportees... G-20
Property IDs.. G-20

getTaskAttachmentByIndex .. G-20
Property IDs.. G-20

getTaskAttachmentByName.. G-20
Property IDs.. G-20

getTaskAttachmentContents ... G-21
Property IDs.. G-21

getTaskAttachmentsCount .. G-21
Property IDs.. G-21

getTaskAutoReleaseDuration.. G-21
Property IDs.. G-21

getTaskReminderDuration .. G-21
Property IDs.. G-22

getUserAliasId ... G-22
Property IDs.. G-22

getUserIdsFromGroupAlias .. G-22
Property IDs.. G-22

getUserProperty .. G-22
Property IDs.. G-23

getUserRoles .. G-23
Property IDs.. G-23

getUsersInGroup... G-23
Property IDs.. G-24

getVariableData... G-24
Property IDs.. G-24

getVariableProperty.. G-24
Property IDs.. G-25

hours-from-dateTime ... G-25
Property IDs.. G-25

implicit-timezone .. G-25
Property IDs.. G-25

index-within-string ... G-25
Property IDs.. G-26

integer ... G-26
Property IDs.. G-26

isUserInRole ... G-26
Property IDs.. G-26

last-index-within-string.. G-26
Property IDs.. G-27

lookupUser... G-27
Property IDs.. G-27

left-trim ... G-27

xix

Property IDs.. G-27
listUsers .. G-28

Property IDs.. G-28
lookup-table ... G-28

Property IDs.. G-28
lookup-xml ... G-29

Property IDs.. G-29
lookupUser... G-29

Property IDs.. G-29
lookupGroup ... G-29

Property IDs.. G-30
lower-case... G-30

Property IDs.. G-30
matches ... G-30

Property IDs.. G-30
max-value-among-nodeset .. G-30

Property IDs.. G-31
mergeChildNodes ... G-31

Property IDs.. G-31
min-value-among-nodeset... G-31

Property IDs.. G-32
minutes-from-dateTime ... G-32

Property IDs.. G-32
month-from-dateTime .. G-32

Property IDs.. G-32
parseEscapedXML .. G-32

Property IDs.. G-32
processXSLT... G-33

Property IDs.. G-33
processXSLT... G-33

Property IDs.. G-33
processXSQL .. G-33

Property IDs.. G-34
query-database .. G-34

Property IDs.. G-34
readFile ... G-34

Property IDs.. G-34
right-trim .. G-34

Property IDs.. G-35
search .. G-35

Property IDs.. G-35
seconds-from-dateTime.. G-35

Property IDs.. G-35
sequence-next-val.. G-35

Property IDs.. G-36
setNodeValue... G-36

Property IDs.. G-36

xx

square-root ... G-36
Property IDs.. G-37

subtract-dayTimeDuration-from-dateTime .. G-37
Property IDs.. G-37

timezone-from-dateTime ... G-37
Property IDs.. G-37

translateFromNative... G-38
Property IDs.. G-38

translateToNative.. G-38
Property IDs.. G-38

upper-case .. G-38
Property IDs.. G-38

year-from-dateTime.. G-39
Property IDs.. G-39

Summary ... G-39

Index

xxi

Send Us Your Comments

Oracle BPEL Process Manager Developer’s Guide, 10g Release 2 (10.1.2)

Part No. B14448-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com

■ FAX: 650-506-7375. Attn: Oracle Application Server Documentation Manager

■ Postal service:

Oracle Corporation
Oracle Application Server Documentation
500 Oracle Parkway, Mailstop 1op4
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xxii

xxiii

Preface

This manual describes how to use Oracle BPEL Process Manager.

This preface contains the following topics:

■ Intended Audience

■ Documentation Accessibility

■ Structure

■ Related Documents

■ Conventions

xxiv

Intended Audience
This manual is intended for anyone who is interested in using Oracle BPEL Process
Manager.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation Screen readers may not always
correctly read the code examples in this document. The conventions for writing code
require that closing braces should appear on an otherwise empty line; however, some
screen readers may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

TTY Access to Oracle Support Services Oracle provides dedicated Text Telephone
(TTY) access to Oracle Support Services within the United States of America 24 hours a
day, seven days a week. For TTY support, call 800.446.2398.

Structure
This guide consists of the following chapters and appendices:

Part I, "Introduction and Concepts"
This part introduces Oracle BPEL Process Manager.

Chapter 1, "Introduction to Oracle BPEL Process Manager"
This chapter provides a brief introduction to the Business Process Execution Language
(BPEL), how Oracle BPEL Process Manager supports BPEL, and the types of BPEL
designers available with Oracle BPEL Process Manager that enable you to design BPEL
processes (either JDeveloper BPEL Designer and Eclipse BPEL Designer). An overview
of how to use the information in this guide and references to additional tutorials and
demonstrations installed with Oracle BPEL Process Manager is also provided.

Chapter 2, "Getting Started with Oracle BPEL Process Manager"
This chapter describes how to get started with key Oracle BPEL Process Manager
components, including the JDeveloper BPEL Designer, Eclipse BPEL Designer, and
Oracle BPEL Console. Key design concepts are also described.

xxv

Chapter 3, "Building a Simple BPEL Process"
This chapter discusses how to install the JDeveloper BPEL Designer and how to build,
deploy, and test a simple BPEL process, a synchronous Hello World application.

Part II, "Reviewing Key BPEL Development Concepts and Code Samples"
This part introduces key BPEL development concepts and code samples.

Chapter 4, "Manipulating XML Data in BPEL"
This chapter provides details about the role that XPath functionality plays in
manipulating XML data.

Chapter 5, "Invoking a Synchronous Web Service"
This chapter discusses the components necessary to perform a synchronous callback,
examines how these components are coded, and shows how to set up a synchronous
callback using Eclipse BPEL Designer.

Chapter 6, "Calling an Asynchronous Web Service"
This chapter describes the components necessary to perform asynchronous messaging.

Chapter 7, "Parallel Flow"
This chapter describes how to use parallel flows to enable BPEL to perform multiple
tasks at the same time.

Chapter 8, "Conditional Branching"
This chapter describes how to use conditional branching decision points to control the
flow of execution of the process.

Chapter 9, "Fault Handling"
This chapter describes how to use fault handling to enable a BPEL process to manage
error messages or other exceptions returned by services.

Chapter 10, "Incorporating Java/J2EE Code in BPEL Processes"
This chapter demonstrates how a developer can embed a section of Java code into a
BPEL process.

Chapter 11, "Events and Timeouts"
This chapter describes how to enable a BPEL process to time out or give up waiting
and continue with the rest of a flow after a certain amount of time.

Chapter 12, "Invoking a BPEL Process"
This chapter describes how a Java/JSP application can call a BPEL process to perform
functions or use services.

Chapter 13, "Interaction Patterns"
This chapter identifies common interaction patterns between a BPEL process and
another application, and shows the best use practices for each.

Part III, "Oracle BPEL Process Manager Services"
This part describes how Oracle BPEL Process Manager extends key BPEL development
concepts to include support for services.

xxvi

Chapter 14, "XSLT Mapper and Transformations"
This chapter lists important features of the XSLT mapper and provides step-by-step
instructions for mapping a sample purchase order schema to an invoice schema.

Chapter 15, "Oracle BPEL Process Manager Notification Service"
This chapter describes how to use the notification service.

Chapter 16, "Oracle BPEL Process Manager Workflow Services"
This chapter defines some basic workflow services terms. Workflow services features
are introduced and then discussed in more detail. The discussion of how to model a
workflow is followed by a vacation request workflow example.

Chapter 17, "Worklist Application"
This chapter describes how to use the Oracle BPEL Worklist Application. You can take
actions on tasks such as approving an employee vacation request, evaluating a job
applicant, or escalating a purchasing decision. Based on your user profile, you see all
the tasks relevant to you and can specify search criteria for displaying tasks.

Chapter 18, "Sensors"
This chapter describes how to use and set up sensors for a BPEL process.

Part IV, "Development Life Cycle"
This part describes how to run BPEL processes from the Oracle BPEL Console.

Chapter 19, "BPEL Process Deployment and Domain Management"
This chapter discusses how to deploy processes.

Part V, "Reference Information"
This part provides reference details about activities, transformation functions, and
troubleshooting issues

Appendix A, "Troubleshooting and Workarounds"
The appendix describes Oracle BPEL Process Manager troubleshooting methods.

Appendix B, "Workflow and Notification Reference"
This appendix describes workflow and notification service operations.

Appendix C, "JDeveloper BPEL Designer Activities"
This appendix describes the activities available for use when designing a BPEL process
in JDeveloper BPEL Designer.

Appendix D, "User Task 2.0 Macro"
This appendix describes the User Tasks 2.0 macro, which supports user tasks from
release 2.0. The user task 2.0 macro is available for backward compatibility and is
replaced in this release.

Appendix E, "Deployment Descriptor Properties"
This chapter discusses deployment descriptor preference properties and deployment
descriptor configuration properties.

xxvii

Appendix F, "Demo User Community"
This appendix describes the demo user community for Oracle BPEL Process Manager.

Appendix G, "XPath Extension Functions"
This appendix describes the XPath extension functions.

Related Documents
For more information, see the following Oracle resources:

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

To download Oracle BPEL Process Manager documentation, technical notes, or other
collateral, visit the Oracle BPEL Process Manager site at Oracle Technology Network
(OTN):

http://www.oracle.com/technology/bpel/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

xxviii

See the Business Process Execution Language for Web Services Specification, available at the
following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbizspec/html/bp
el1-1.asp

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in a
glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to start SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name, and
location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization
parameter to true.

Connect as oe user.

The JRepUtil class implements these methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font represents
placeholders or variables.

You can specify the parallel_clause.

Run old_release.SQL where old_release
refers to the release you installed prior to
upgrading.

xxix

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements.
They are displayed in a monospace (fixed-width) font and separated from normal text
as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to the
example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password
DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the order
and with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

SELECT last_name, employee_id FROM
employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

xxx

Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and
provides examples of their use.

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names of
tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

Choose Start > How to start a program. To start the Database Configuration Assistant,
choose Start > Programs > Oracle - HOME_
NAME > Configuration and Migration Tools >
Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<), right
angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|), and
dash (-). The special character backslash (\)
is treated as an element separator, even
when it appears in quotes. If the file name
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive. The
escape character in a command prompt is
the caret (^). Your prompt reflects the
subdirectory in which you are working.
Referred to as the command prompt in this
manual.

C:\oracle\oradata>

Special characters The backslash (\) special character is
sometimes required as an escape character
for the double quotation mark (") special
character at the Windows command
prompt. Parentheses and the single
quotation mark (’) do not require an escape
character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"
C:\>imp SYSTEM/password FROMUSER=scott
TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_NAMETNSListener

Convention Meaning Example

Part I
Introduction and Concepts

This part introduces Oracle BPEL Process Manager.

This part contains the following chapters:

■ Chapter 1, "Introduction to Oracle BPEL Process Manager"

■ Chapter 2, "Getting Started with Oracle BPEL Process Manager"

■ Chapter 3, "Building a Simple BPEL Process"

Introduction to Oracle BPEL Process Manager 1-1

1
Introduction to Oracle BPEL Process

Manager

This chapter provides a brief introduction to the Business Process Execution Language
(BPEL), how Oracle BPEL Process Manager supports BPEL, and the types of BPEL
designers available with Oracle BPEL Process Manager that enable you to design BPEL
processes (JDeveloper BPEL Designer and Eclipse BPEL Designer). An overview of
how to use the information in this guide and references to additional tutorials and
demonstrations installed with Oracle BPEL Process Manager are also provided.

This chapter contains the following topics:

■ What Is BPEL?

■ What Is Oracle BPEL Process Manager?

■ What Is the BPEL Designer?

■ How to Use This Guide

■ Tutorials and Demonstrations

■ Summary

Note: Oracle recommends that you perform the tutorials described
in Oracle BPEL Process Manager Quick Start Guide and Oracle BPEL
Process Manager Order Booking Tutorial before using this guide. These
tutorials provide you with an introduction to designing and deploying
BPEL processes.

What Is BPEL?

1-2 Oracle BPEL Process Manager Developer’s Guide

What Is BPEL?
The Business Process Execution Language (BPEL) is an XML-based language for
enabling task sharing across multiple enterprises using a combination of Web services.
BPEL is based on the XML schema, simple object access protocol (SOAP), and Web
services description language (WSDL). BPEL provides enterprises with an industry
standard for business process orchestration and execution. Using BPEL, you design a
business process that integrates a series of discrete services into an end-to-end process
flow. This integration reduces process cost and complexity. The BPEL language enables
you to define how to:

■ Send XML messages to, and asynchronously receive XML messages from, remote
services

■ Manipulate XML data structures

■ Manage events and exceptions

■ Design parallel flows of process execution

■ Undo portions of processes when exceptions occur

What Is Oracle BPEL Process Manager?
Oracle BPEL Process Manager provides a framework for easily designing, deploying,
monitoring, and administering processes based on BPEL standards. Oracle BPEL
Process Manager provides support for the following features:

■ Web service standards such as XML, SOAP, and WSDL

■ Dehydration (enables the states of long-running processes to be automatically
maintained in a database) and correlation of asynchronous messages

■ Service-oriented architecture (SOA)

■ Parallel processing of tasks

■ Fault handling and exception management during both design time and run time

■ Event timeouts and notifications

■ Compensation mechanisms for the implementation of long-running transactions

■ Scalability and reliability of processes

■ Management and administration of processes

■ Version control

■ Audit trails for tracing business flow history

■ Installation on multiple operating systems and integration with multiple
application servers (for example, Oracle Application Server, WebSphere,
WebLogic, and JBoss) and databases.

See Also:

■ http://www.oracle.com/technology/bpel for specific
BPEL details, including links to BPEL specifications, white papers,
product demonstrations, and discussion groups

■ Chapter 4, "Manipulating XML Data in BPEL" through
Chapter 13, "Interaction Patterns" for a review of key BPEL
development concepts and code samples

What Is the BPEL Designer?

Introduction to Oracle BPEL Process Manager 1-3

Oracle BPEL Process Manager adds value and ease of use to BPEL functionality by
providing support for the following in JDeveloper BPEL Designer:

■ Transformations, workflows, worklists, notifications, and sensors

■ Technology adapters (file, FTP, database, advanced queuing (AQ), and Java
Messaging Service (JMS))

What Is the BPEL Designer?
Oracle BPEL Process Manager provides support for two types of BPEL designer
environments for graphically designing BPEL processes:

■ JDeveloper BPEL Designer

■ Eclipse BPEL Designer

You design BPEL processes by dragging and dropping elements (known as activities)
into the process and editing their property pages. This eliminates the need to write
BPEL code. You integrate BPEL processes with external services (known as partner
links). You also use wizards to integrate adapters and services such as workflows,
transformations, notifications, sensors, and worklist task management with the
process. Both BPEL designers can deploy the developed processes directly to Oracle
BPEL Console. This facilitates the development and maintenance of BPEL processes.

JDeveloper BPEL Designer
JDeveloper BPEL Designer is integrated with Oracle JDeveloper 10g. Oracle
JDeveloper 10g is an integrated development environment (IDE) for building
applications and Web services using Java, XML, and SQL standards. Oracle JDeveloper
10g supports the entire development life cycle with integrated features for designing,
coding, debugging, testing, profiling, tuning, and deploying applications. A visual and
declarative development approach and the Oracle Application Development
Framework (ADF) work together to simplify application development and reduce
coding tasks.

JDeveloper BPEL Designer uses BPEL as its native format. This means that processes
built with JDeveloper BPEL Designer are 100% portable. JDeveloper BPEL Designer
also enables you to view and modify the BPEL source without decreasing the
usefulness of the tool.

Oracle BPEL Process Manager provides support for the following services and
adapters in JDeveloper BPEL Designer:

■ Transformations, workflows, worklists, notifications, and sensors

■ Technology adapters (file, FTP, database, AQ, and JMS)

Figure 1–1 shows JDeveloper BPEL Designer with a BPEL process being designed.

See Also:

■ Oracle Application Server Integration Installation Guide for a list of
supported operation systems

■ Oracle BPEL Process Manager Quick Start Guide for additional
Oracle BPEL Process Manager introductory details

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
User’s Guide for details about technology adapters

What Is the BPEL Designer?

1-4 Oracle BPEL Process Manager Developer’s Guide

Figure 1–1 JDeveloper BPEL Designer

Eclipse BPEL Designer
Eclipse BPEL Designer is integrated with the Eclipse platform. Eclipse is designed for
building integrated development environments (IDEs) to create applications such as
Web sites, embedded Java programs, C++ programs, and Enterprise JavaBeans. Eclipse
provides you with mechanisms to use and rules to follow that lead to seamlessly
integrated tools. These mechanisms are exposed through API interfaces, classes, and
methods. Eclipse also provides useful building blocks and frameworks that facilitate
developing new tools.

Eclipse BPEL Designer is a plug-in for the Eclipse 3.0 platform. Eclipse BPEL Designer
uses standard BPEL, meaning that processes you design can be used with other BPEL
servers (and vice-versa).

The JDeveloper BPEL Designer services and adapters described in "JDeveloper BPEL
Designer" on page 1-3 are not currently available on Eclipse BPEL Designer.

Figure 1–2 shows Eclipse BPEL Designer with a BPEL process being designed.

See Also:

■ "Overview of JDeveloper BPEL Designer" on page 2-3 for a
description of the sections of JDeveloper BPEL Designer shown in
Figure 1–1

■ Oracle BPEL Process Manager Quick Start Guide and Oracle BPEL
Process Manager Order Booking Tutorial for tutorials that use
JDeveloper BPEL Designer

■ Online Help available from the Help main menu for additional
details about Oracle JDeveloper 10g

How to Use This Guide

Introduction to Oracle BPEL Process Manager 1-5

Figure 1–2 Eclipse BPEL Designer

How to Use This Guide
This guide is divided into several parts designed to first familiarize you with key
BPEL development concepts and features and then describe how Oracle BPEL Process
Manager adds value and ease of use to BPEL functionality. This guide layout is
described in Table 1–1.

Notes: Throughout this guide, the Eclipse BPEL Designer
installation directory is referred to as c:\orabpel. If you have
installed Eclipse BPEL Designer into a different directory, make the
appropriate substitution throughout this guide.

See Also:

■ "Overview of Eclipse BPEL Designer" on page 2-13 for a
description of the sections of Eclipse BPEL Designer shown in
Figure 1–2

■ Chapter 3, "Building a Simple BPEL Process" for a tutorial that
enables you to design and deploy a simple Hello World BPEL
process

■ http://www.eclipse.org for complete details about Eclipse

■ http://www.oracle.com/technology/bpel for software
download instructions and for details about running Oracle BPEL
Process Manager and Eclipse BPEL Designer on Eclipse (including
tutorials)

How to Use This Guide

1-6 Oracle BPEL Process Manager Developer’s Guide

Table 1–1 Developer’s Guide Contents

Part Description

Part I, "Introduction and
Concepts"

Chapters in this part provide an overview of the following
topics:

■ BPEL specifications, Oracle BPEL Process Manager, and
BPEL designers (JDeveloper BPEL Designer and Eclipse
BPEL Designer)

■ Starting and stopping key Oracle BPEL Process Manager
components

■ An introduction to JDeveloper BPEL Designer and Eclipse
BPEL Designer, including an overview of designer window
sections, and a description of project files and the drag and
drop activity functionality you follow to design and deploy
a BPEL process

■ Oracle BPEL Console for running a deployed BPEL
processes

■ A Hello World BPEL process that you design and deploy in
both JDeveloper BPEL Designer and Eclipse BPEL Designer

Part II, "Reviewing Key
BPEL Development
Concepts and Code
Samples"

Chapters in this part introduce you to key BPEL development
concepts and associated code samples. These chapters are useful
for any developer interested in understanding the underlying
functionality of BPEL. Specific topics discussed include the
following:

■ XML document manipulation

■ Synchronous and asynchronous services invocation

■ Parallel flows

■ Conditioning branching

■ Fault handling and exception management

■ Java/J2EE Code integration in BPEL processes

■ Events and timeouts

■ BPEL process invocation

■ Interaction patterns

Part III, "Oracle BPEL
Process Manager Services"

Once you have gained a solid knowledge of the key BPEL
development concepts described in Part II, you are ready to
learn how Oracle BPEL Process Manager adds extensions to
BPEL functionality to provide support for the following services:

■ Workflows

■ Transformations

■ Worklists

■ Notifications

■ Sensors

Part IV, "Development Life
Cycle"

Chapters in this part describe how to run and manage deployed
BPEL processes from Oracle BPEL Console.

Part V, "Reference
Information"

Appendices in this part provide reference details about
troubleshooting, supported activities, user accounts, XPath
expression functions, and other issues.

Tutorials and Demonstrations

Introduction to Oracle BPEL Process Manager 1-7

Tutorials and Demonstrations
In addition to the contents of this guide, the Oracle BPEL Process Manager Quick Start
Guide, and the Oracle BPEL Process Manager Order Booking Tutorial, a series of tutorials,
demonstrations, and references materials are also provided to increase conceptual
knowledge and hands-on experience with Oracle BPEL Process Manager. These
materials are installed with Oracle BPEL Process Manager in the Oracle_
Home\integration\orabpel\samples directory for JDeveloper BPEL Designer
and the c:\orabpel\samples directory for Eclipse BPEL Designer.

Table 1–2 describes the contents of the samples directory. If you are using JDeveloper
BPEL Designer, you can also access details about this directory from the Start Menu by
selecting Start > All Programs > Oracle - Oracle_Home > Oracle BPEL Process
Manager 10.1.2 > Getting Started with Samples.

Table 1–3 describes the BPEL process demonstrations available for use in the demos
directory.

See Also:

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
User’s Guide for specific details about configuring the file, FTP,
database, AQ, and JMS adapters in a BPEL process

■ Oracle Application Server Adapter for Oracle Applications User’s Guide
for information on using the Oracle Applications adapter

Table 1–2 Tutorials, Demonstrations, and Reference Materials

Directory Description

demos Contains a set of common business scenarios and describes how they are
implemented with BPEL. Table 1–3 on page 1-7 provides a specific
description of the available demonstrations.

interop Contains a set of BPEL projects showing the interoperability of Oracle BPEL
Process Manager with Web services implemented with Microsoft .Net,
Apache Axis, and BEA WebLogic

references Contains a BPEL project for activities and concepts defined in the BPEL
language. Table 1–4 on page 1-9 provides a specific description of the
available activities and concepts.

tutorials Contains a set of BPEL processes targeting the various BPEL tasks to which
you are exposed. Table 1–5 on page 1-10 provides a specific description of
the available tutorials.

utils Contains a set of building block services shared by the BPEL samples

Table 1–3 demos Directory Contents

Directory Description

AmazonFlow Describes how to integrate an Amazon Web service with a BPEL
process

BankTransferDemo Describes how to perform a bank transfer

CheckoutDemo Describes an interaction between a Java Server Page (JSP) user
interface and a BPEL process

Tutorials and Demonstrations

1-8 Oracle BPEL Process Manager Developer’s Guide

DocumentReview Describes how to create a business process for reviewing a
document in parallel. A final reviewer reviews comments from each
of the parallel reviewers. A worklist application views and acts on
the tasks.

GoogleFlow Describes how to invoke a Google Web service from a BPEL process

HelpDeskServiceReq
uest

Describes how to process a help desk service request. The
demonstration uses a workflow for accepting or rejecting a service
request.

HotwireDemo Describes how to use correlation sets to create sophisticated and
stateful interactions between a client and a BPEL process

IBMSamples Describes how to execute the BPEL samples shipping with the IBM
Business Process Execution Language for Web Services Java Run
Time (BPWS4J) on Oracle BPEL Server

LoanDemo Describes how to integrate a synchronous credit rating service and
two asynchronous loan processor services into an end-to-end loan
procurement application with a Java Server Page (JSP) user
interface to initiate the process and view loan offer results. Parts of
this demonstration also appear in the Oracle BPEL Process Manager
Quick Start Guide.

LoanDemoPlus Describes how to extend the LoanDemo sample to use Java
embedding exception management, including manual processing
steps and development of a richer custom user interface

LoanDemoPlusWithWo
rkflow

Describes how to extend the LoanDemo sample to use a worklist
application to approve or reject a loan application.

OrderApproval Describes how to approve or reject an order.

ParallelSearch Describes how to use Oracle BPEL Server to perform parallel
synchronous invocations

PaymentProcessor Describes how to use the following key concepts and features:

■ Use a pick activity to control a process flow based on the
outcome of another process (including a timeout for the
process).

■ Modify a process so that a parameter can be updated at run
time without having to redeploy it.

PriorityDemo Describes how to invoke a service n times using a While loop
activity

ResilientDemo Describes how to use a BPEL process to manage run time
exceptions

SalesforceFlow Describes how to integrate the Salesforce.com sForce Web services
into a BPEL process (including authentication, session management,
and dynamic load balancing)

SleepBroker Describes how to use a process that receives a number, creates that
number of branches using the flowN activity, and waits for a period
of time based on the index variable setting

TimeOffRequestDemo Describes how to design user interactions and workflow tasks
within a BPEL process

Table 1–3 (Cont.) demos Directory Contents

Directory Description

Tutorials and Demonstrations

Introduction to Oracle BPEL Process Manager 1-9

Table 1–4 describes the activity and concept code samples available for review and use
in the references directory. The comment lines in each bpel.xml file and .bpel
file describe the specific context in which the activity is being used.

VacationRequest Describes how to approve or reject a vacation request. The
approval/rejection is a one-step process involving the manager of
the user filing the vacation request. This demonstration also
describes the use of workflow for simple approvals, and the use of a
deployment descriptor preference to replace a static parameter
value in the BPEL process.

XSLMapper Describes how to create a transformation that maps a purchase
order schema to an invoice schema.

Table 1–4 references Directory Contents

Directory Activity Description

Assign Shows how to receive an input string, prefix Hello to it using an
assign activity, and asynchronously return the result

Catch Shows how an exception can be raised using the throw activity and
managed using a catch activity

CustomXPathFunctio
n

Shows how to use custom XPath functions within assign activities

DynamicPartnerLink Shows how to update dynamic partner links

Event Shows how to enable an asynchronous BPEL process and use event
handlers to receive and process events while waiting for the
asynchronous callback

Flow Shows how to create parallel paths of execution within a BPEL
process

FlowN Shows how to receive an integer and create that number of
branches

Invoke Shows how to invoke a synchronous integer increment service

JavaExec Shows how to use the BPEL exec extension to invoke a Java class
from within a BPEL process

Link Shows how a link defines dependencies between executions of
activities. In this sample, a link in a flow activity sequences the
execution of two service invocations.

Pick Shows how to invoke an asynchronous loan service and use a BPEL
pick activity to receive an asynchronous response or a timeout
message. If the loan amount is more than 10000, it takes about 30
seconds for the server to process it, causing a timeout to be raised.

Receive Shows how to invoke an asynchronous loan service and wait for an
asynchronous callback message using the BPEL receive activity

Replay Shows how to replay an activity, such as a scope

Reply Shows how to receive a string as input, perform an assign, and use
the reply activity to synchronously return the modified string

Switch Shows how to use a switch activity to return a different text
message based on whether the input value is greater or less than
zero

Table 1–3 (Cont.) demos Directory Contents

Directory Description

Tutorials and Demonstrations

1-10 Oracle BPEL Process Manager Developer’s Guide

Table 1–5 describes the tutorials available for use in the tutorials directory.

Terminate Shows how to invoke a synchronous stock quoting service. The
terminate activity then aborts, causing the final callback invoke
activity to be skipped.

Throw Shows how to throw a BPEL fault (without handling it) and cause
the instance to fault.

Wait Shows how to receive input, wait for 60 seconds, and
asynchronously call back a client

While Shows how to invoke an increment service n times with a while
activity, where n is provided as an input value

Xpath Shows how to receive an invalid application, perform several XPath
copies, and asynchronously return the application. This showcases
the use of namespace-qualified XPath query strings in assign
activities.

XPathFunction Shows how to define and use custom XPath functions within BPEL
assign activities

See Also:

■ Chapter 4, "Manipulating XML Data in BPEL" through
Chapter 13, "Interaction Patterns" for activity development
concepts and code samples

■ Appendix C, "JDeveloper BPEL Designer Activities" for specific
details about activities that you drag and drop in the BPEL
designer

Table 1–5 tutorials Directory Contents

Directory Description

101.HelloWorld This sample takes a string as input, appends Hello to it, and
asynchronously generates a greeting as a response.

102.InvokingProces
ses

This sample invokes a variety of processes, including JSPs and
remote method invocations (RMIs).

103.XMLDocuments This sample shows how to use XML variables and the assign
activity to manipulate XML documents.

104.SyncQuoteConsu
mer

This sample shows how to use the invoke activity to invoke a
synchronous stock quote service.

105.AsyncComposite
LoanBroker

This sample shows how to use the receive activity to receive a
callback from an asynchronous loan processor Web service.

106.ParallelFlows This sample shows how to use the flow activity to define parallel
paths of execution within a process. In this sample, two
asynchronous loan processing services are invoked in parallel.

107.Exceptions This sample shows how to manage faults generated by invoke and
throw activities.

108.Timeouts This sample shows how to define and manage timeouts using the
pick activity.

Table 1–4 (Cont.) references Directory Contents

Directory Activity Description

Tutorials and Demonstrations

Introduction to Oracle BPEL Process Manager 1-11

109.CorrelationSet
s

This sample shows how to use correlation sets to correlate
asynchronous message exchanges between buyer and seller
services. It shows content-based correlation of asynchronous
messages.

110.UserTasks This sample shows how to integrate a user task within a process.

111.CallingSession
Beans

This sample shows how to use the BPEL exec extension to invoke a
session bean from within a BPEL process.

112.Arrays This sample shows how to design a BPEL process that uses arrays.

113.ABCARouting This sample shows how to coordinate the flow of messages across
three services: A, B, and C.

114.XSLTTransforma
tions

This sample shows how to invoke XSLT transformations.

116.SendEmails This sample shows how to send an e-mail in a BPEL process.

117.ReceiveEmails This sample shows how to receive an e-mail in a BPEL process.

118.JMSService This sample shows how to use JMS to select a JMS buyer process at
Oracle BPEL Console and initiate a buyer flow. This sends a JMS
message that is retrieved by a listener that outputs a message and
sends a JMS response to the seller.

119.JMSTopics This sample provides JMS samples for use with JBoss, OC4J, and
WebLogic.

120.XSQLExecution This sample shows how to execute XSQL.

121.FileAdapter These samples show how to use the functionality of the file adapter.

122.DBAdapter These samples show how to use the functionality of the database
adapter.

123.JMSAdapter These samples show how to use the functionality of the JMS
adapter.

124.AQAdapter These samples show how to use the functionality of the AQ adapter.

125.ReportsSchema This sample shows how to build custom reports using the BPEL
Process Manager reports schema. This sample highlights the use of
sensors to track key milestones as part of process execution.

126.DataAggregator This sample shows how to take a single XML document, divide it
into several smaller documents, perform tasks on each smaller
document, reassemble the smaller documents into a single XML
document, and return the single document to the invoker.

127.OrderBookingTu
torial

This sample shows how to how to design and execute a
sophisticated process that uses synchronous and asynchronous
services, parallel flows of execution, conditional branching logic,
fault handling and exceptions management, transformations, file
adapter and database adapter functionality, and human workflow,
notification, and sensor functionality.

128.GoogleFlow This sample shows a process that uses an external Web service to
present information to the client. Processes designed with and
without sensors are used.

129.FTPAdapter These samples show how to use the functionality of the FTP
adapter.

130.SendEmailWithA
ttachments

This sample shows how to send an e-mail with attachments.

Table 1–5 (Cont.) tutorials Directory Contents

Directory Description

Summary

1-12 Oracle BPEL Process Manager Developer’s Guide

Summary
This chapter introduces BPEL, how Oracle BPEL Process Manager supports BPEL, and
the types of BPEL designers available with Oracle BPEL Process Manager that enable
you to design BPEL processes (JDeveloper BPEL Designer and Eclipse BPEL
Designer). An overview of how to use this guide and references to additional tutorials,
demonstrations, and other helpful materials installed with Oracle BPEL Process
Manager are also provided.

701.LargeProcesses This sample shows how support is provided for processes with a
large number of work items (10,000 or more).

702.Bindings This sample shows how to:

■ Integrate Enterprise Java Beans (EJB) in a BPEL process

■ Call the HTTP get method from a BPEL process

■ Call a Java method from a BPEL process

See Also: The following guides for additional tutorials you can run:

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

Table 1–5 (Cont.) tutorials Directory Contents

Directory Description

Getting Started with Oracle BPEL Process Manager 2-1

2
Getting Started with Oracle BPEL Process

Manager

This chapter describes how to start key Oracle BPEL Process Manager components,
including JDeveloper BPEL Designer, Eclipse BPEL Designer, Oracle BPEL Server, and
Oracle BPEL Console. An overview of the main sections of JDeveloper BPEL Designer
and Eclipse BPEL Designer that you use to design BPEL processes is also provided.
Key BPEL design components such as activities and partner links and the services and
adapters that Oracle BPEL Process Manager provides to add value and ease of use to
standard BPEL functionality are also described.

This chapter contains the following topics:

■ Overview of Oracle BPEL Process Manager Components

■ Starting Oracle BPEL Process Manager Components

■ Overview of BPEL Designer Environments

■ Overview of Activities

■ Overview of Partner Links

■ Overview of Oracle BPEL Server

■ Overview of Oracle BPEL Console

■ Overview of Oracle BPEL Process Manager Services

■ Overview of Oracle BPEL Process Manager Technology Adapters

■ Summary

Overview of Oracle BPEL Process Manager Components

2-2 Oracle BPEL Process Manager Developer’s Guide

Overview of Oracle BPEL Process Manager Components
The Oracle BPEL Process Manager consists of the three components shown in
Figure 2–1.

Figure 2–1 Oracle BPEL Process Manager Components

Each component enables you to perform a specific set of tasks:

■ The design environment (JDeveloper BPEL Designer or Eclipse BPEL Designer)
enables you to design and deploy BPEL processes. You design BPEL processes by
dragging and dropping elements (known as activities) into the process and editing
their property pages. You integrate BPEL processes with external services that you
also design and edit (known as partner links). You also use wizards to integrate
technology adapters and services such as workflows, worklists, transformations,
notifications, and sensors with the process.

■ When design is complete, you deploy the process from the design environment to
Oracle BPEL Server.

■ If deployment is successful, you can run and manage the BPEL process from
Oracle BPEL Console.

This chapter provides an overview of getting started with these components.

Starting Oracle BPEL Process Manager Components
As described in Chapter 1, "Introduction to Oracle BPEL Process Manager", Oracle
BPEL Process Manager provides support for two types of BPEL designer
environments for graphically designing and deploying BPEL processes:

■ JDeveloper BPEL Designer

■ Eclipse BPEL Designer

Follow these instructions to start Oracle BPEL Process Manager components on
JDeveloper BPEL Designer and Eclipse BPEL Designer.

1. Select Start > All Programs > Oracle - Oracle_Home > Oracle BPEL Process
Manager version_number > Start BPEL PM Server to start Oracle BPEL Server,
which enables you to use the BPEL designer.

2. For JDeveloper BPEL Designer only, select Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process Manager version_number > JDeveloper
BPEL Designer. The designer enables you to design and deploy BPEL processes
graphically.

Design

Designer

Deployment Management

Oracle
BPEL

Console

JDeveloper
BPEL

Designer

Eclipse
BPEL

Designer

BPEL
Server

Overview of BPEL Designer Environments

Getting Started with Oracle BPEL Process Manager 2-3

3. For Eclipse BPEL Designer only, select Start > All Programs > Oracle - Oracle_
Home > Oracle BPEL Process Manager version_number > BPEL Designer. The
designer enables you to design and deploy BPEL processes graphically.

4. Select Start > All Programs > Oracle - Oracle_Home > Oracle BPEL Process
Manager version_number > Developer Prompt to open up a command prompt at
the Oracle_Home\integration\orabpel\samples directory. This enables
you to access tutorials, demonstrations, and reference materials and start any
required tutorial Web services.

5. Select Start > All Programs > Oracle - Oracle_Home > Oracle BPEL Process
Manager version_number > BPEL Console to start Oracle BPEL Console from
which to run, monitor, and administer BPEL processes.

6. For JDeveloper BPEL Designer only, select Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process Manager 10.1.2 > Sample Worklist
Application to start the sample Oracle BPEL Worklist Application.

7. For JDeveloper BPEL Designer only, select Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process Manager 10.1.2 > Getting Started with
Samples for an overview of available tutorials, demonstrations, and reference
materials in the Oracle_Home\integration\orabpel\samples directory.

Overview of BPEL Designer Environments
This section provides an overview of the two types of BPEL designer environments for
which Oracle BPEL Process Manager provides support:

■ Overview of JDeveloper BPEL Designer

■ Overview of Eclipse BPEL Designer

Overview of JDeveloper BPEL Designer
This section provides an overview of JDeveloper BPEL Designer. In this overview, you
first create a workspace and a project. A workspace is a container in which to place
projects. A project contains the BPEL process.

1. Create a workspace by selecting File > New > Application Workspace and
providing the required details in the Create Application Workspace window
(including selecting not to add a new empty project).

2. Right-click the newly created workspace and select New Project.

3. Double-click BPEL Process Project and provide the required details (including
BPEL process name) in the BPEL Process Project window. A single project can
contain only one BPEL process.

Note: The version number that appears after Oracle BPEL Process
Manager in the Start Menu sequence is determined by whether you
are using JDeveloper BPEL Designer or Eclipse BPEL Designer.

See Also: http://www.oracle.com/technology/bpel for
software download instructions and for details about running Oracle
BPEL Process Manager and Eclipse BPEL Designer on Eclipse
(including tutorials)

Overview of BPEL Designer Environments

2-4 Oracle BPEL Process Manager Developer’s Guide

After you create the workspace and project, JDeveloper BPEL Designer displays the
sections shown in Figure 2–2. You can also access this view by selecting View >
Applications Navigator and double-clicking the .bpel file of the project. In this
example, the project is an asynchronous type and is named OrderBooking.

Figure 2–2 JDeveloper BPEL Designer Sections

Each section of this view enables you to perform specific design and deployment
tasks. Table 2–1 identifies the sections listed in Figure 2–2 and provides references to
sections that describe their capabilities.

Note: Do not create a project name that begins with a number.

Table 2–1 JDeveloper BPEL Designer Sections

Section Location in Figure 2–2 See Section

Applications Navigator Upper left "Applications Navigator" on
page 2-5

Diagram View window and
Source window

Middle "Diagram View Window" on
page 2-6 and "Source Window"
on page 2-8

Process Activities selection of
the Component Palette

Upper right "Component Palette" on page 2-9

Property Inspector section Lower right "Property Inspector" on
page 2-10

Overview of BPEL Designer Environments

Getting Started with Oracle BPEL Process Manager 2-5

Applications Navigator
The Application Navigator shown in the upper left part of Figure 2–2 displays the
project files. Double-click a node (for example, the Integration Content node) to
display its contents. Right-click a node to display a context-sensitive menu of
commands. The menu commands that are available depend on the node selected. For
example, if you right-click the FulfillOrder project in Figure 2–3, you can compile and
deploy this BPEL process to Oracle BPEL Server.

Figure 2–3 shows the files that appear under the Integration Content folder when you
first create a project in JDeveloper BPEL Designer (in this example, named
FulfillOrder inside a workspace named OrderBookworkspace).

Figure 2–3 Applications Navigator

Table 2–2 describes these initial project files.

As you design the project, additional files, folders, and elements can appear in the
Applications Navigator. For example, Figure 2–4 shows the files that appear for a
project in which you imported a schema (OrderBookingPO.xsd), configured the
database adapter (under the Application Sources node), and created a transform

Structure Window Lower left "Structure Window" on page 2-11

Log Window Bottom "Log Window" on page 2-12

See Also: Oracle BPEL Process Manager Quick Start Guide and Oracle
BPEL Process Manager Order Booking Tutorial for tutorials in which you
create workspaces and projects

Table 2–2 Initial Project Files

File Description

bpel.xml The deployment descriptor file that defines the locations of the WSDL
files for services to be called by this BPEL process flow. This file
references the public interface for the service.

FulfillOrder.bpel The source file, which, depending upon the project type you selected,
initially contains a minimal set of activities (if you selected to create an
asynchronous project, then receive and invoke activities appear). You
add syntax to this file when you drag and drop activities, create
variables, create partner links, and so on.

FulfillOrder.wsdl The WSDL client interface, which defines the input and output
messages for this BPEL process flow, the supported client interface and
operations, and other features. This functionality enables the BPEL
process flow to be called as a service.

Table 2–1 (Cont.) JDeveloper BPEL Designer Sections

Section Location in Figure 2–2 See Section

Overview of BPEL Designer Environments

2-6 Oracle BPEL Process Manager Developer’s Guide

activity (Transformation_1.xsl under the Web Content > Miscellaneous Files folder).
The Application Sources node contains Java source files. The Java classes are used
inside callouts from the BPEL process. Additional folders can appear, such as
BPEL-INF (a special directory for Java JAR files).

Figure 2–4 Applications Navigator (Expanded)

Diagram View Window
The Diagram View shown in the middle of Figure 2–2 provides a visual view of the
BPEL process that you design. This view displays when you perform one of the
following actions:

■ Double-click the .bpel file name in the Applications Navigator

■ Click the Diagram View tab at the bottom of the window with the .bpel file
selected

Figure 2–5 shows the activities automatically created with an asynchronous project. In
the tutorials described in Oracle BPEL Process Manager Quick Start Guide and Oracle
BPEL Process Manager Order Booking Tutorial, you add to the BPEL process by dragging
and dropping activities, creating variables, creating partner links, and so on.

Note: If you want to learn more about the Application Navigator,
place the cursor in this section and press F1 to display online Help.

Overview of BPEL Designer Environments

Getting Started with Oracle BPEL Process Manager 2-7

Figure 2–5 Diagram View (After Creation of an Asynchronous Project)

As you design the project by dragging and dropping activities, creating partner links,
and so on, the Diagram View changes. Figure 2–6 shows the Diagram View later in
the design phase after adding a partner link (in this example, named DBInsert) and
the necessary activities (invoke, receive, assign, transform, and others).

Figure 2–6 Diagram View (After Design Phase)

Overview of BPEL Designer Environments

2-8 Oracle BPEL Process Manager Developer’s Guide

Source Window
Click Source at the bottom to view the syntax inside the BPEL process project files. As
you drag and drop activities and partner links, and perform other tasks, the syntax in
these source files is immediately updated to reflect these changes. For example,
Figure 2–7 shows the CreditRatingService partner link icon and property sheet that
have just been created.

Figure 2–7

Click Source at the bottom of the window. Figure 2–8 shows part of the Source of a
.bpel file. Details about the CreditRatingService partner link you created appear in
the file.

Overview of BPEL Designer Environments

Getting Started with Oracle BPEL Process Manager 2-9

Figure 2–8 Source View of a .bpel File

Component Palette
Activities are the building blocks of the BPEL process. The Process Activities selection
of the Component Palette shown in the upper right part of Figure 2–2 displays a set of
activities that you drag and drop into the Diagram View of the BPEL process. The
Component Palette displays only those pages relevant to the state of the Diagram
View. Process Activities is nearly always visible. However, if you are designing a
transformation in a transform activity, the Component Palette only displays selections
relevant to that activity, such as String Functions, Mathematical Functions, and
Node-set Functions.

Figure 2–9 shows the Process Activities selection of the Component Palette.

See Also: The following documentation for examples and
descriptions of the types of syntax that appear in project files:

■ Chapter 4, "Manipulating XML Data in BPEL" through
Chapter 13, "Interaction Patterns"

■ Oracle_Home\integration\orabpel\samples directory

Overview of BPEL Designer Environments

2-10 Oracle BPEL Process Manager Developer’s Guide

Figure 2–9 Component Palette - Process Activities

Figure 2–10 shows the String Functions category of the Component Palette that
displays when you work in the transformation window of a transform activity.

Figure 2–10 Component Palette - Functions

Property Inspector
The Property Inspector shown in the lower right part of Figure 2–2 enables you to
view details about an activity. Single-click an activity in the Diagram View. For
example, single-clicking the receiveInput receive activity shown in Figure 2–2 on
page 2-4 displays the information shown in Figure 2–11.

Note: If you want to learn more about the Component Palette, place
the cursor in this section and press F1 to display online Help.

Overview of BPEL Designer Environments

Getting Started with Oracle BPEL Process Manager 2-11

Figure 2–11 Property Inspector

Structure Window
The Structure Window shown in the lower left part of Figure 2–2 offers a structural
view of the data in the project currently selected in the Diagram View. You can
perform a variety of tasks from this section, including:

■ Importing project schemas

■ Defining message types

■ Managing (creating, editing, and deleting) elements such as variables, aliases,
correlation sets, partner links, and sensors

■ Editing activities in the BPEL process flow sequence that displays in the Diagram
View

Figure 2–12 shows the Structure Window. In this example, the window has been
expanded to display the imported project schemas and the sequence of activities in the
Diagram View for the FulfillOrder project shown in Figure 2–6 on page 2-7.

Figure 2–12 Structure Window (Expanded)

Overview of BPEL Designer Environments

2-12 Oracle BPEL Process Manager Developer’s Guide

Log Window
You validate, compile, and deploy a process by right-clicking the project name in the
Applications Navigator and selecting Deploy. The Log Window shown at the bottom
of Figure 2–2 then displays messages about the status of the deployment.

The following things must be true of a valid BPEL process:

■ The process must have an input variable.

■ A partnerLink must be selected.

■ A partner role must be selected.

■ Prototype must not be empty.

■ Operation must not be empty.

■ The input variable type must match the partner link operation type.

Figure 2–13 shows a successful deployment message for a BPEL process. You can then
run, monitor, and administer the process from Oracle BPEL Console.

Figure 2–13 Successful Deployment Message

If deployment is unsuccessful, messages appear that describe the type and location of
the error, as shown in Figure 2–14. Double-click the error to navigate directly to the
offending line in the source file referenced.

Figure 2–14 Unsuccessful Deployment Message

Note: If you want to learn more about the Structure Window, place
the cursor in this section and press F1 to display online Help.

Note: If you want to learn more about the Log Window, place the
cursor in this section and press F1 to display online Help.

Overview of BPEL Designer Environments

Getting Started with Oracle BPEL Process Manager 2-13

Overview of Eclipse BPEL Designer
This section provides an overview of Eclipse BPEL Designer. Eclipse BPEL Designer is
similar to JDeveloper BPEL Designer. Differences between the two BPEL designers are
described. In this overview, you first create a project for the BPEL process.

1. Select File > New > Project to display the New Project window.

2. Select Oracle BPEL Project (the default selection) and click Next to display the
Create a BPEL Project window.

3. Provide the required details (including BPEL process name) and click Finish. A
single project can contain only one BPEL process.

After you create the project, Eclipse BPEL Designer displays the sections shown in
Figure 2–15. You can also access this view by double-clicking the .bpel file of the
project and selecting Process Map. In this example, the project is named
myCreditFlow.

See Also:

■ "Overview of Oracle BPEL Console" on page 2-21

■ Chapter 19, "BPEL Process Deployment and Domain
Management" for specific details about deploying and running
BPEL processes

Note: Do not create a project name that begins with a number.

Overview of BPEL Designer Environments

2-14 Oracle BPEL Process Manager Developer’s Guide

Figure 2–15 Eclipse BPEL Designer Sections

In addition, the BPEL Palette of activities displays on this page. If the BPEL Palette
does not currently display, perform the following steps:

1. Select Show View > Other from the Windows main menu

2. Select BPEL > BPEL Palette on the Show View window, and click OK to display
the BPEL Palette in Eclipse BPEL Designer.

Figure 2–16 BPEL Palette

Overview of BPEL Designer Environments

Getting Started with Oracle BPEL Process Manager 2-15

Each section of this view enables you to perform specific design and deployment
tasks. Table 2–3 identifies the sections listed in Figure 2–15 and Figure 2–16 and
provides references to sections that describe their capabilities.

Navigator
The Navigator shown in the upper left part of Figure 2–15 displays the project files in
Eclipse BPEL Designer. See Table 2–2 on page 2-5 for descriptions of the files that
initially appear when you first create a project. Eclipse BPEL Designer also includes an
additional project file: build.xml. This is an Apache Ant file used for compiling and
deploying processes in Eclipse BPEL Designer.

Figure 2–17 Navigator

Process Map and Overview Windows
The Process Map shown in the middle of Figure 2–15 provides a visual view of the
BPEL process that you design. The Process Map is similar to the Diagram View
window in JDeveloper BPEL Designer. This view displays when you perform one of
the following actions:

■ Double-click the .bpel file name in the Applications Navigator

Table 2–3 Eclipse BPEL Designer Sections

Section Location See Section

Navigator Upper left of Figure 2–15 "Navigator" on page 2-15

Process Map window,
Overview Window, and
BPEL Source window

Middle of Figure 2–15 "Process Map and Overview
Windows" on page 2-15 and
"BPEL Source Window" on
page 2-17

BPEL Inspector Left side of Figure 2–15 "BPEL Inspector" on page 2-17

Log Window Bottom of Figure 2–15 "Log Window" on page 2-17

BPEL Palette Figure 2–16 "BPEL Palette" on page 2-18

See Also:

■ Chapter 3, "Building a Simple BPEL Process" for a tutorial that
enables you to design and deploy a simple Hello World BPEL
process

■ http://www.eclipse.org for complete details about
graphically designing processes in the Eclipse environment

■ http://www.oracle.com/technology/bpel for details
about software downloads and running Oracle BPEL Process
Manager and Eclipse BPEL Designer on Eclipse (including
tutorials)

Overview of BPEL Designer Environments

2-16 Oracle BPEL Process Manager Developer’s Guide

■ Click the BPEL Designer tab; then click the Process Map tab

Figure 2–18 shows the activities automatically created with an asynchronous project.
You add to the process by dragging and dropping activities, creating variables,
creating partner links, and so on.

Figure 2–18 Process Map Window

Click Overview to display an overview on the BPEL process, as shown in Figure 2–19.
You can perform tasks such as adding partner links and creating variables in the
Overview window.

Figure 2–19 Overview Window

Overview of BPEL Designer Environments

Getting Started with Oracle BPEL Process Manager 2-17

BPEL Source Window
The BPEL Source window is similar to that in JDeveloper BPEL Designer. Click
Source Window to view the syntax inside the project files, which is similar to that
shown for JDeveloper BPEL Designer in Figure 2–8 on page 2-9.

BPEL Inspector
The BPEL Inspector enables you to perform tasks such as editing existing activities,
adding copy rules to an assign activity, creating global variables, creating partner
links, and so on. Figure 2–20 shows the BPEL Inspector.

Figure 2–20 BPEL Inspector

Log Window
You validate, compile, and deploy a process by clicking the Build BPEL Project icon in
the tool bar.

The Log Window at the bottom of Eclipse BPEL Designer then displays messages
about the status of the deployment. Figure 2–21 shows a successful deployment
message for a BPEL process. You can then run, monitor, and administer the process
from Oracle BPEL Console.

See Also: The following tutorials that use Eclipse BPEL Designer to
design BPEL processes:

■ Chapter 3, "Building a Simple BPEL Process" for instructions on
building a Hello World tutorial

■ http://www.oracle.com/technology/bpel for links to
tutorials that introduce key BPEL concepts

Overview of BPEL Designer Environments

2-18 Oracle BPEL Process Manager Developer’s Guide

Figure 2–21 Log Window

BPEL Palette
The BPEL Palette is similar to the Process Activities selection of the Component
Palette in JDeveloper BPEL Designer. The BPEL Palette displays a set of activities that
you drag and drop into the Process Map of the BPEL process. The set of activities
available with Eclipse BPEL Designer differs slightly from those available with
JDeveloper BPEL Designer. For example, unlike JDeveloper BPEL Designer, a partner
link is not listed as a BPEL Palette activity in Eclipse BPEL Designer. JDeveloper BPEL
Designer also includes additional activities for transformations, user tasks
(workflows), and notifications.

Figure 2–22 BPEL Palette

See Also:

■ "Overview of Oracle BPEL Console" on page 2-21

■ Chapter 19, "BPEL Process Deployment and Domain
Management" for specific details about deploying and running
BPEL processes

See Also: "Overview of Oracle BPEL Process Manager Services" on
page 2-22

Overview of Activities

Getting Started with Oracle BPEL Process Manager 2-19

Overview of Activities
The term activities has been mentioned frequently in both Chapter 1, "Introduction to
Oracle BPEL Process Manager" and in this chapter. Activities are the building blocks of
a BPEL process. JDeveloper BPEL Designer and Eclipse BPEL Designer both include a
set of activities that you drag and drop into a BPEL process. You then double-click an
activity to define its attributes (property values). Figure 2–6 on page 2-7 provides an
example of this design process. Activities enable you to perform specific tasks within a
process. For example:

■ An assign activity enables you to manipulate data, such as copying the contents of
one variable to another.

■ An invoke activity enables you to invoke a service (identified by its partner link)
and specify an operation for this service to perform.

■ A receive activity waits for an asynchronous callback response message from a
service.

Figure 2–23 shows an example of a property window (for this example, an invoke
activity). In this example, you invoke a partner link named CreditRatingService and
define its attributes.

Figure 2–23 Invoke Activity Example

Overview of Partner Links

2-20 Oracle BPEL Process Manager Developer’s Guide

Overview of Partner Links
The term partner link has also been mentioned frequently in both Chapter 1,
"Introduction to Oracle BPEL Process Manager" and in this chapter. A partner link
enables you to define the external services with which the BPEL process is to interact.
Figure 2–24 shows the partner link icon (in this example, named CreditRatingService).

Figure 2–24 PartnerLink Icon

A partner link type characterizes the conversational relationship between two services
by defining the roles played by each service in the conversation and specifying the
port type provided by each service to receive messages within the context of the
conversation. Figure 2–6 on page 2-7 shows an example of a partner link named
DBInsert being invoked by a BPEL process.

Figure 2–25 shows an example of the attributes of a partner link for a service named
RapidDistributors.

Figure 2–25 PartnerLink Window

See Also:

■ Appendix C, "JDeveloper BPEL Designer Activities" for
descriptions of available activities

■ Part II, "Reviewing Key BPEL Development Concepts and Code
Samples" for activity concepts and code examples

■ Oracle_Home\integration\orabpel\samples
directory\references directory for additional activity code
examples

■ Oracle BPEL Process Manager Quick Start Guide and Oracle BPEL
Process Manager Order Booking Tutorial for tutorials in which you
drag and drop activities in BPEL processes and define their
attributes

Overview of Oracle BPEL Console

Getting Started with Oracle BPEL Process Manager 2-21

Table 2–4 describes the fields of the PartnerLink window.

Overview of Oracle BPEL Server
After you complete the design of the BPEL process, you compile and deploy the
process to Oracle BPEL Server. If compilation and deployment are successful, you can
run and manage the BPEL process from Oracle BPEL Console.

Deployment sends the Oracle BPEL Process Manager archive (a set of files in a JAR file
with a directory structure similar to the project directory structure) to Oracle BPEL
Server. The deployment operation automatically validates and compiles the project
directory into the BPEL archive.

Overview of Oracle BPEL Console
Oracle BPEL Console enables you to run, monitor, and administer BPEL processes
designed and deployed with either JDeveloper BPEL Designer or Eclipse BPEL
Designer. You can also manage BPEL domains from Oracle BPEL Console. Access
Oracle BPEL Console by selecting Start > All Programs > Oracle - Oracle_Home >
Oracle BPEL Process Manager version_number > BPEL Console.

Figure 2–26 shows the main page of Oracle BPEL Console. In this example, a number
of deployed BPEL processes and external services appear in the Dashboard tab.

Table 2–4 PartnerLink Window Fields

Field Description

Name A unique and recognizable name you provide for the partner link.

WSDL File The name and location of the Web Services Description Language
(WSDL) file that you select for the partner link. Click the flashlight
icon (second icon from the left above the WSDL File field) to access a
window for selecting the WSDL file to use.

Partner Link Type The partner link defined in the WSDL file.

My Role The role performed by the BPEL process. In this case, the BPEL process
is the requester.

Partner Type The role performed by the partner link (in this example, the
RapidDistributors service). In this case, RapidDistributors is the
provider.

See Also: Chapter 19, "BPEL Process Deployment and Domain
Management"

Overview of Oracle BPEL Process Manager Services

2-22 Oracle BPEL Process Manager Developer’s Guide

Figure 2–26 Oracle BPEL Console

Overview of Oracle BPEL Process Manager Services
Oracle BPEL Process Manager and JDeveloper BPEL Designer provide support for
services that add value and ease of use to BPEL functionality.

Table 2–5 identifies and describes the services and provides references to sections of
this guide that describe their capabilities.

See Also:

■ "Testing the BPEL Process" on page 3-17 for an Eclipse BPEL
Designer tutorial in which you run a deployed process from
Oracle BPEL Console

■ Chapter 19, "BPEL Process Deployment and Domain
Management" for specific details about running a deployed
process from Oracle BPEL Console

■ Oracle BPEL Process Manager Quick Start Guide and Oracle BPEL
Process Manager Order Booking Tutorial for tutorials in which you
run deployed BPEL processes

Overview of Oracle BPEL Process Manager Technology Adapters

Getting Started with Oracle BPEL Process Manager 2-23

Overview of Oracle BPEL Process Manager Technology Adapters
The Partner Link Window shown in Figure 2–25 on page 2-20 also enables you to take
advantage of another key feature that Oracle BPEL Process Manager and JDeveloper
BPEL Designer provide. Click the Define Adapter Service icon shown in Figure 2–27
to access the Adapter Configuration wizard.

Table 2–5 Oracle BPEL Process Manager Services

Types Description See Section

Transformations A transform activity is provided that enables you
to create transformations that map source data to
target data. For example, you can map incoming
purchase order source data into outgoing
purchase order acknowledgment target data.

Chapter 14, "XSLT
Mapper and
Transformations"

"Transform
Activity" on
page C-17

Notifications A notification activity enables you to send
notification about an event to a user, group, or
destination address. You can send a notification
by e-mail, voice mail, or short message service
(SMS).

Chapter 15,
"Oracle BPEL
Process Manager
Notification
Service"

"Notification
Activity" on
page C-10

Workflows Workflow enables you to integrate systems and
services with human workflow into a single
process flow.

A user task activity is provided that invokes the
Workflow wizard. This enables you to:

■ Select a workflow pattern to use

■ Specify workflow details

■ Specify a task outcome (such as accept or
reject)

■ Specify the notification types (for example, if
a task completes, errors out, or expires, and
which recipients are notified of this action)

■ Specify the initial assignee for a task

The criteria that you define with the Workflow
wizard enables you to use the Oracle BPEL
Worklist Application when you run the BPEL
process.

Chapter 16,
"Oracle BPEL
Process Manager
Workflow
Services"

"User Task" on
page C-18

Oracle BPEL Worklist
Application

Oracle BPEL Worklist Application takes actions
on tasks such as approving an employee
vacation request, evaluating a job applicant, or
escalating a purchasing decision. Based on the
user profile, you access a URL that enables you
to see all the tasks relevant to you and specify
search criteria for displaying tasks.

Chapter 17,
"Worklist
Application"

Sensors You create sensors that you assign to activities,
variables, and faults that you want to monitor
during BPEL process run time.

Chapter 18,
"Sensors"

See Also: Oracle BPEL Process Manager Order Booking Tutorial for
tutorials that describe how to design BPEL processes that use the
services described in Table 2–5

Overview of Oracle BPEL Process Manager Technology Adapters

2-24 Oracle BPEL Process Manager Developer’s Guide

Figure 2–27 Defining an Adapter

Adapters enable you to integrate the BPEL processes with access to file systems,
database tables, database queues, Java Message Services (JMS), and Oracle E-Business
Suite. This wizard enables you to configure the types of adapters shown in Figure 2–28
for use with the BPEL process:

Figure 2–28 Adapter Types

When you select an adapter type, the Service Name window shown in Figure 2–29
prompts you to enter a name. For this example, File Adapter was selected in
Figure 2–28. When the wizard completes, a WSDL file by this service name appears in
the Applications Navigator for the BPEL process (for this example, named
ReadFile.wsdl). This file includes the adapter configuration settings you specify with
this wizard. Other configuration files (such as header files and files specific to the
adapter) are also created and display in the Applications Navigator.

Figure 2–29 Adapter Service Name

Summary

Getting Started with Oracle BPEL Process Manager 2-25

The Adapter Configuration wizard windows that appear after the Service Name
window are based on the adapter type you selected. These configuration windows and
the information you must provide are described in later chapters of this guide.

Summary
This chapter describes how to start key Oracle BPEL Process Manager components,
including JDeveloper BPEL Designer, Eclipse BPEL Designer, Oracle BPEL Server, and
Oracle BPEL Console. An overview of the main sections of JDeveloper BPEL Designer
and Eclipse BPEL Designer that you use to design BPEL processes is also provided.
Key BPEL design components such as activities and partner links and the services and
adapters that Oracle BPEL Process Manager provides to add value and ease of use to
standard BPEL functionality are also described.

See Also:

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
User’s Guide for specific details about configuring the file, FTP,
database, AQ, and JMS adapters in a BPEL process

■ Oracle Application Server Adapter for Oracle Applications User’s Guide
for information on using the Oracle Applications adapter

■ "PartnerLink Activity" on page C-10

■ Oracle BPEL Process Manager Order Booking Tutorial for tutorials
that describe how to design BPEL processes that use the database
adapter and file functionality of the file adapter

Summary

2-26 Oracle BPEL Process Manager Developer’s Guide

Building a Simple BPEL Process 3-1

3
Building a Simple BPEL Process

In this chapter, you create, build, deploy, and test a a simple BPEL process: a
synchronous Hello World application. It accepts a name as an input message and
returns the message Hello followed by the name through a synchronous reply. You will
design the process in Eclipse BPEL Designer, but alternatively, you can use JDeveloper
BPEL Designer, which provides similar functionality.

This chapter contains the following topics:

■ Overview of Building a Simple BPEL Process

■ Creating a New BPEL Project Using Eclipse BPEL Designer

■ Browsing a New Project

■ Viewing the WSDL Interface of a BPEL Process

■ Switching Between the Overview, Process Map, and Source Code

■ Reviewing the BPEL Source Code

■ Adding an Assign Activity to the Process Map

■ Compiling and Deploying the BPEL Process

■ Testing the BPEL Process

■ Summary

Overview of Building a Simple BPEL Process
The Hello World application is familiar to anyone who has taken an introductory
programming class. Here it is given as an example of a BPEL process that accepts
input, manipulates the input, and returns an output through a synchronous reply.

The input for a BPEL process comes from a client application. In this chapter, you will
use Oracle BPEL Console as the client application. BPEL processes can also use a
Java/JSP interface or a SOAP client as the client application. The client application has
a partner link with the BPEL process. This link defines the role of each party, the types
of data each accepts and returns, and so on. The WSDL file contains the definition of
the partner links. Figure 3–1 provides an overview of how the Hello World process
will work.

See Also: http://www.oracle.com/technology/bpel for
software download instructions and for details about running Oracle
BPEL Process Manager and Eclipse BPEL Designer on Eclipse
(including tutorials)

Creating a New BPEL Project Using Eclipse BPEL Designer

3-2 Oracle BPEL Process Manager Developer’s Guide

Figure 3–1 The Hello World BPEL Process

The Hello World process accepts the input from the partner link with a receive activity,
which repackages the data into a variable. The greeting is then added using an assign
activity, and the result is sent back through the partner link as output using the reply
activity.

Creating a New BPEL Project Using Eclipse BPEL Designer
You can use the New Project wizard in Eclipse BPEL Designer to generate
automatically the skeleton of a BPEL project. This skeleton contains the BPEL source, a
WSDL interface, a BPEL deployment descriptor, and an Ant script for compiling and
deploying the BPEL process.

To create a new BPEL project:

1. Open Eclipse BPEL Designer by selecting Start, then All Programs, then Oracle -
Oracle_Home, then Oracle BPEL Process Manager version_number, and then
BPEL Designer.

2. Ensure that Oracle BPEL Server is running. See "Starting Oracle BPEL Process
Manager Components" on page 2-2 for instructions.

3. From the File menu, click New, then Project.

4. Select Oracle BPEL Project.

5. Click Next.

See Also: See "Reviewing the BPEL Source Code" section on
page 3-9 for more information on these activities

Deployment Descriptor
(bpel.xml)

BPEL Process -
HelloWorld.bpel

<receive>

WSDL
Client

PartnerLink

set
greeting
<assign>

BPEL
Console

Java / JSP

SOAP
Client

Client
Application

Or

Or

<reply>

Input
Message
<variable>

Output
Message
<variable>

Creating a New BPEL Project Using Eclipse BPEL Designer

Building a Simple BPEL Process 3-3

6. Enter SyncHelloWorld as the BPEL process name.

Do not create a project names that begin with numbers.

7. (Optional) Enter http://tutorial.oracle.com as the namespace (replacing the one
provided by default).

8. Change the template to Synchronous BPEL Process.

9. Leave the Use default check box selected, and click Finish.

Browsing a New Project

3-4 Oracle BPEL Process Manager Developer’s Guide

Browsing a New Project
The New Project wizard creates an initial set of project files for a new synchronous
BPEL process, with all the necessary source files. Figure 3–2 provides an overview of
how a new project appears in Eclipse BPEL Designer.

Figure 3–2 A New BPEL Process

Table 3–1 describes the initial project files that are created:

Table 3–1 BPEL Process Files

File Description

.project Eclipse BPEL Designer format project file.

bpel.xml The deployment descriptor for the process. This file defines the
locations of the WSDL files for services called by this process
flow, along with other project-specific parameters.

build.xml Apache Ant script for compiling and deploying this process.

Viewing the WSDL Interface of a BPEL Process

Building a Simple BPEL Process 3-5

Viewing the WSDL Interface of a BPEL Process
After you create a new BPEL process, you can edit its WSDL file. WSDL files define the
interface to the process flow, messages that it accepts and returns, operations that are
supported, and so on. You can edit the WSDL file for the BPEL process in text mode in
Eclipse BPEL Designer or in any other text editor. If you edit the WSDL file, you must
refresh the client interface for the flow, if it is currently open in Eclipse BPEL Designer.
In this tutorial, you will not edit the WSDL file; you only view it.

To view the input and output messages of the BPEL process:

1. In the Navigator, expand SyncHelloWorld and double-click the
SyncHelloWorld.wsdl file.

2. Scroll through the WSDL file.

The New Project wizard created the SyncHelloWorldRequest complexType
element, which the flow accepts as input (in a document-literal style WSDL
message), and a SyncHelloWorldResponse element that it returns.

SyncHelloWorld.bpel The BPEL source code for the process. The New Project wizard
creates an empty flow, with just the minimum activities and
definitions for the selected flow type. For a synchronous BPEL
process, the only activities are a receive activity to initiate the
flow from a synchronous client request and a reply activity to
return the output.

SyncHelloWorld.wsdl The WSDL (client) interface for this process. This file defines the
input and output messages for this flow, the client interface and
operations supported, and the BPEL partnerLinkTypes, so
the flow can be incorporated into other processes. The New
Project wizard generates a document-literal style WSDL that
takes a string input message and returns a string response
message.

Table 3–1 (Cont.) BPEL Process Files

File Description

Switching Between the Overview, Process Map, and Source Code

3-6 Oracle BPEL Process Manager Developer’s Guide

3. Close the (unmodified) SyncHelloWorld.wsdl window in the designer by clicking
its Close button on the SyncHelloWorld.wsdl tab.

Switching Between the Overview, Process Map, and Source Code
This section describes how to view the BPEL file in three different ways.

■ Viewing an Overview of a BPEL Process

■ Viewing a Detailed Process Map

■ Viewing BPEL Source Code

Viewing an Overview of a BPEL Process
To display a visual overview of a BPEL process, double-click SyncHelloWorld.bpel in
the Navigator, if it is not already open. Whenever you create a new BPEL project, the
visual overview automatically opens.

On the left side of the overview is the client interface, which displays operations
exposed by the process and any asynchronous callback operations (there are none for
this process). Eclipse BPEL Designer automatically puts any partner link named client

Note: You can currently edit the WSDL file for the BPEL process in
text mode in Eclipse BPEL Designer (or in any other text editor). If you
edit the WSDL file (which you do not perform as part of this tutorial),
you must refresh the client interface for the flow, if it is currently open
in Eclipse BPEL Designer.

Switching Between the Overview, Process Map, and Source Code

Building a Simple BPEL Process 3-7

on the left side of the window. All other partner links are displayed in a list on the
right.

Figure 3–3 Overview of the SyncHelloWorld Process

Viewing a Detailed Process Map
The detailed process map provides a visual representation of the flow logic used for
the process, from start to end. To display and edit the process map, click Process Map
in the middle pane of the Eclipse BPEL Designer. Alternatively, you can click the Edit
Process Map link. An Inspector pane appears on the right after you drill down into
the Process Map view.

At the top of the window, the Overview and Process Map links allow you to shift
from the current view (which is the Overview view) to the Process Map view, and
back.

Switching Between the Overview, Process Map, and Source Code

3-8 Oracle BPEL Process Manager Developer’s Guide

Figure 3–4 Detailed Process Map of the SyncHelloWorld Process

Viewing BPEL Source Code
At the bottom of the window, you can use the BPEL Designer and BPEL Source tabs
to switch between graphical editing mode (BPEL Designer) and text-editing mode for
the source code of the BPEL process (BPEL Source). Two-way editing is enabled; that
is, changes you make in one mode are reflected in the other modes.

Click the BPEL Source tab of the editor window to display the syntax.

Reviewing the BPEL Source Code

Building a Simple BPEL Process 3-9

Figure 3–5 Source Code of SyncHelloWorld Process

Reviewing the BPEL Source Code
You can use BPEL Source mode to review the BPEL code generated by Eclipse BPEL
Designer. This helps you to understand what the designer does, because everything
you do in the designer is saved in standard BPEL source code. This also enables you to
learn BPEL if you are not already familiar with it.

The source code has the following main components:

■ Process Element

■ Partner Links

■ Global Variables

■ Main Body of the Process

Process Element
The process element, which appears first, defines the name and target namespace
you specified.

<process name="SyncHelloWorld"
 targetNamespace="http://tutorial.oracle.com"
 suppressJoinFailure="yes" xmlns:tns="http://tutorial.oracle.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension">

Partner Links
After the process element are the partner links, which define the other services or
processes with which the process interacts. In this case, the only partner link created
automatically by the wizard is the one for the client interface to this BPEL process.

<partnerLinks>

Reviewing the BPEL Source Code

3-10 Oracle BPEL Process Manager Developer’s Guide

 <partnerLink name="client"
 <!-- comments... -->
 partnerLinkType="tns:SyncHelloWorld"
</partnerLinks>
 myRole="SyncHelloWorldProvider"/>

Global Variables
After the partner links is where you define any global variables that are accessible
throughout the process. The New Project wizard automatically creates global variables
for the input and output messages for the process. As you saw previously, the types
for these two variables are defined in the WSDL for the process.

<variables>
 <!-- Reference to the message passed as input during initiation -->
 <variable name="input"
 messageType="tns:SyncHelloWorldRequestMessage"/>
 <!-- Reference to the message that will be returned to the
 requester
 -->
 <variable name="output"
 messageType="tns:SyncHelloWorldResponseMessage"/>
</variables>

Main Body of the Process
After the global variables is the main body of the process, which is any single BPEL
activity. This is typically a compound activity that contains subactivities. When you
create a new synchronous process, the New Project wizard creates a sequence (which
in BPEL is a set of activities executed sequentially) that contains a receive activity to
obtain the input message from the client to start the process. This is followed by a
reply activity to return the result synchronously to the client.

<sequence name="main">
 <!-- Receive input from requester.
 Note: This maps to operation defined in SyncHelloWorld.wsdl
 -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:SyncHelloWorld"
 operation="process" variable="input"
 createInstance="yes"/>
 <reply name="replyOutput"
 partnerLink="client"
 portType="tns:SyncHelloWorld"
 operation="process"
 variable="output"/>
</sequence>

Finally, the process is closed:

</process>

In the next section, you can begin to edit this BPEL process to add logic to convert the
input into a greeting.

Reviewing the BPEL Source Code

Building a Simple BPEL Process 3-11

Understanding the Sequence Activity
A sequence activity contains one or more activities that perform sequentially in the
order in which they are listed within the sequence element; that is, in lexical order.
The sequence activity completes when the final activity in the sequence has completed.

 <sequence standard-attributes>
 standard-elements
 activity+
 </sequence>

For example:

<sequence>
 <flow>
 ...
 </flow>
 <scope>
 ...
 </scope>
 <pick>
 ...
 </pick>
</sequence>

Understanding the Assign Activity
The assign activity assigns values to variables. Copy rules are added to the assign to
specify which data is being copied into which variable.

The following code sample from the HelloWorld.bpel file located at
C:\orabpel\samples\tutorials\101.HelloWorld for Eclipse BPEL Designer.

<assign>
<copy>

<from expression="concat('Hello ',bpws:getVariableData('input',
 'payload','/tns:name'))"/>

<to variable="output" part="payload" query="/result"/>
</copy>

</assign>

If you are using JDeveloper BPEL Designer, this sample is available in Oracle_
Home\integration\orabpel\samples\tutorials\101.HelloWorld.

Hello World is the first sample application used in the tutorials. It accepts input from
the user, adds Hello with a trailing blank space to the beginning of the input payload,
and copies the result to the output payload.

See Also: "Sequence Activity" on page C-14

See Also:

■ "Assign Activity" on page C-3

■ C:\orabpel\samples\references\Assign (for Eclipse BPEL
Designer)

■ Oracle_
Home\integration\orabpel\samples\references\Assign (for
JDeveloper BPEL Designer)

Adding an Assign Activity to the Process Map

3-12 Oracle BPEL Process Manager Developer’s Guide

Adding an Assign Activity to the Process Map
In this section, you learn how to add a new activity to the BPEL process. You will
follow these steps:

1. Step 1: Viewing the Process Map

2. Step 2: Inserting an Assign Activity

3. Step 3: Adding a Copy Rule

4. Step 4: Defining the From Part (Source) of the Copy Rule

5. Step 5: Defining the To Part (Destination) of the Copy Rule

Step 1: Viewing the Process Map
Return to BPEL Designer mode and ensure that you are in Process Map view. You
now see a graphical representation of the flow for the BPEL process. As described
previously, the initial process created by the New Project wizard for a synchronous
process just receives the input for the process operation from the client and returns the
response with a synchronous reply.

Step 2: Inserting an Assign Activity
You now insert an assign activity into the process. A BPEL assign activity provides a
mechanism for doing simple data manipulation using XPath expressions.

You use the assign to concatenate the string “Hello “ with the string name input
message and copy the resulting string into the output message.

To insert a new activity into the process, find it in the BPEL Palette (you can click the
More Activities link to see additional activities supported in BPEL Designer mode)
and drag it to the location in the flow in which you want to insert it.

1. Drag an assign from the palette and drop it between the process receive activity
and the reply response activity:

Adding an Assign Activity to the Process Map

Building a Simple BPEL Process 3-13

The new assign activity is initially selected. You can edit attributes for it in the
BPEL Inspector window on the right.

2. Enter a value for the optional name attribute, such as createReturnStr (and press
Enter).

Note: The text field in which you enter the name is not selected until
you click there.

Adding an Assign Activity to the Process Map

3-14 Oracle BPEL Process Manager Developer’s Guide

Step 3: Adding a Copy Rule
Next, you are ready to add a copy rule:

1. In the tasks drop-down list (the down arrow to the right of the assign activity
heading), click Add Copy Rule.

This displays the Copy Rule window, which you use to perform the data
manipulation. In BPEL, an assign statement can have many copy rules, each using
variable data, XPath queries, XPath expressions, and literals to do simple data
manipulation and transformation.

Each Copy Rule window for an assign activity has a From part, which specifies the
source data, and a To part, which specifies a variable or element part as the
destination for the data.

Adding an Assign Activity to the Process Map

Building a Simple BPEL Process 3-15

Step 4: Defining the From Part (Source) of the Copy Rule
After you have added the copy rule, you are ready to define its From (source) part.

Click Expression in the From part. Enter the following expression in the text field:

concat(’Hello ’, bpws:getVariableData('input', 'payload',
 '/SyncHelloWorldRequest/input’))

Alternatively, use the XPath function wizard to complete this with the following steps:

1. Click the ... context sensitive BPEL assistant button to start the BPEL Function
Wizard.

2. Select the contact function and click Next.

3. Enter "Hello " for the firstString (note the trailing space after the o).

4. For the nextString, click the drop-down arrow to use the XPath picker and choose
the Variable input, the Part payload, and the XPath Query input.

5. Click Finish and you see the same concat expression described previously (except
that the wizard includes the name prefix tns: for the XPath expression).

Whether you enter it directly or use the wizard, this expression says to concatenate the
literal string Hello with the string element that is accessed by the XPath query
/SyncHelloWorldRequest/input within the part payload of the variable input.

Note: Oracle recommends that more complex data transformations
be done using XQuery, XSLT, Java, commercial toolkits, or as a service.
See http://www.oracle.com/technology/bpel for more
information.

See Also: Chapter 14, "XSLT Mapper and Transformations"

Compiling and Deploying the BPEL Process

3-16 Oracle BPEL Process Manager Developer’s Guide

Step 5: Defining the To Part (Destination) of the Copy Rule
Next, you can complete the To section of the Copy Rule window to copy the
concatenated string into the helloString element in the reply message.

Follow these steps:

1. In the To section, click the down arrow after the field.

2. Select output, then payload, thenSyncHelloWorldResponse, and then result
string:

This causes Eclipse BPEL Designer to automatically generate the XPath query
string $output/payload/tns:SyncHelloWorldResponse/tns:result and enter it in
the field.

Again, you can always enter queries directly into the field if you choose. Note that
the wizard uses fully qualified names (including the namespaces) in the query
string, but in both of these examples the namespaces are actually optional.

3. Click Done.

Next, you are ready to compile and deploy the BPEL process, and then test it.

Compiling and Deploying the BPEL Process
To compile and deploy the BPEL process:

1. Save the process.

2. Click the Build BPEL Project button on the Workbench toolbar to compile and
deploy the process.

See Also: The following documentation for more information on
XPath expressions and queries:

■ The XML Path Language (XPath) Specification at
http://www.w3.org/TR/1999/REC-xpath-19991116

■ The Business Process Execution Language for Web Services
Specification at
http://www.ibm.com/developerworks/webservices/lib
rary/ws-bpel, which describes the bpws:getVariableData
XPath function in Section 14.1

■ The BPEL Tutorials link at
http://www.oracle.com/technology/bpel, for tutorials 2
(Developing a Credit Flow BPEL Process) and 3 (Manipulating
XML Documents in BPEL)

Testing the BPEL Process

Building a Simple BPEL Process 3-17

This compiles the flow and packages all its components into a BPEL suitcase JAR file.
You can then deploy this JAR file to Oracle BPEL Server by copying it into the
appropriate deployment directory. The build.xml file generated by the wizard also
automatically deploys the suitcase to the local server’s default domain, in this case
C:\orabpel\domains\default\deploy. (Note that this action is the same as
running obant from the command line.)

Testing the BPEL Process
After you have compiled and deployed the BPEL process, you can test it by using the
automatically generated test interface in Oracle BPEL Console.

To test the SyncHelloWorld BPEL process:

1. Access the console at http://localhost:9700/BPELConsole or by selecting
Start, then All Programs, then Oracle - Oracle_Home, then Oracle BPEL Process
Manager version_number, and then BPEL Console.

Alternatively, you can click the Open BPEL Console button on the Workbench
toolbar to open a browser window that points to the console.

2. Log in to the default domain to access the Dashboard tab:

Note: To see the contents of the BPEL suitcase JAR file, open the file
C:\orabpel\domains\default\deploy\bpel_
SyncHelloWorld_1.0.jar with any tool for opening JAR files (for
example, WinZip).

Testing the BPEL Process

3-18 Oracle BPEL Process Manager Developer’s Guide

3. Click the SyncHelloWorld BPEL process link.

4. Complete the HTML test form interface.

5. Enter the name (for this example, Jane Doe) in the input field and click Post XML
Message to initiate the process:

Summary

Building a Simple BPEL Process 3-19

You now see the results, because it is a synchronous operation.

6. To see the visual audit trail for this completed instance, click the Visual Flow link.

The visual audit trail displays a representation of the current state and history of
execution of the instance (which in this case has completed), with the same look
and feel as Eclipse BPEL Designer. You can select activities in the audit trail to
view their details. You can also click the Audit tab to see the text audit trail or the
Debug tab to see the debugger for this instance.

7. Click the reply client activity at the bottom of the audit trail to see the returned
XML message for the process, as shown previously.

Summary
This chapter discusses some of the basic concepts of a BPEL process, and shows the
steps necessary to create a BPEL process. These steps are shown in Eclipse BPEL
Designer, but you can also use JDeveloper BPEL Designer. This process is run from
Oracle BPEL Console, and is a synchronous Web service that can be used as a building
block for other BPEL processes or invoked using standard Web services interfaces.

Summary

3-20 Oracle BPEL Process Manager Developer’s Guide

Part II
Reviewing Key BPEL Development

Concepts and Code Samples

This part introduces key BPEL development concepts and code samples.

This part contains the following chapters:

■ Chapter 4, "Manipulating XML Data in BPEL"

■ Chapter 5, "Invoking a Synchronous Web Service"

■ Chapter 6, "Calling an Asynchronous Web Service"

■ Chapter 7, "Parallel Flow"

■ Chapter 8, "Conditional Branching"

■ Chapter 9, "Fault Handling"

■ Chapter 10, "Incorporating Java/J2EE Code in BPEL Processes"

■ Chapter 11, "Events and Timeouts"

■ Chapter 12, "Invoking a BPEL Process"

■ Chapter 13, "Interaction Patterns"

Manipulating XML Data in BPEL 4-1

4
Manipulating XML Data in BPEL

This chapter describes how to manipulate XML data in BPEL, including the large role
that XPath expressions play in manipulating XML data.

This chapter contains the following topics:

■ How XML Data Works in BPEL

■ About Data Manipulation and XPath Standards

■ Initializing a Variable with Expression Constants or Literal XML

■ Copying Between Variables

■ Accessing Fields within Complex Type Variables

■ Assigning Numeric Values

■ Mathematical Calculations with XPath Standards

■ Assigning String Literals

■ Concatenating Strings

■ Assigning Boolean Values

■ Assigning Date or Time

■ Manipulating Attributes

■ Manipulating XML Data Sequences/Arrays

■ Converting from a String to an XML Element

■ Differences Between Document-Style and RPC-Style WSDL Files

■ Summary

See Also: The sample files located at
C:\orabpel\samples\tutorials\103.XMLDocuments for
Eclipse BPEL Designer and Oracle_
Home\integration\orabpel\samples\tutorials\103.XMLDo
cuments for JDeveloper BPEL Designer

Note: Most examples in this chapter assume that the WSDL file
defining the associated message types is document-literal style rather
than the RPC style. There is a difference in how XPath query strings
are formed for RPC-style WSDL definitions. If you are working with a
type defined in an RPC WSDL file, see "Differences Between
Document-Style and RPC-Style WSDL Files" on page 4-16.

4-2 Oracle BPEL Process Manager Developer’s Guide

How XML Data Works in BPEL
In a BPEL process, every piece of data is XML. This includes the messages passed to
and from the BPEL process, the messages exchanged with external services, and local
variables used by the flow. You define the types for these messages and variables with
the XML schema, usually in the WSDL file for the flow or in the WSDL files for the
services it invokes. Therefore, all variables in BPEL are XML data, and any BPEL
process uses much of its code to manipulate these XML variables. This typically
includes performing data transformation between representations required for
different services, and local manipulation of data (for example, to combine the results
from several service invocations).

About Data Manipulation and XPath Standards
The starting point for data manipulation in BPEL is the assign activity, which builds on
the XPath standard. XPath queries, expressions, and functions play a large part in this
type of manipulation. In addition, more advanced methods are also available that
involve using XQuery, XSLT, or Java (usually to do more complex data transformation
or manipulation). This chapter reviews the various methods from the simplest to the
most advanced. The explanations are largely by example, providing an introduction to
the supporting specifications without repeating their details. The rest of this section
provides a general overview of how to manipulate XML data in BPEL. It summarizes
the key building blocks used in various combinations and provides examples. The
remaining sections discuss and illustrate how to apply these building blocks to
perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to
calculate the value of an expression and store it in a variable. A copy element within
the activity specifies the source and target of the assignment (what to copy from and
to), which must be of compatible types. The formal syntax as shown in the Business
Process Execution Language for Web Services Specification specification is as follows:

<assign standard-attributes>
 standard-elements
 <copy>+
 from-spec
 to-spec
 </copy>
</assign>

This syntax is described in detail in that specification. The from-spec and to-spec
typically specify a variable or variable part, as in:

<assign>
 <copy>
 <from variable="c1" part="address"/
 <to variable="c3"/>
 </copy>
</assign>

Rather than repeating all syntax details, this chapter shows and describes excerpts
taken primarily from sample projects provided in the
C:\orabpel\samples\references directory for Eclipse BPEL Designer and
Oracle_Home\integration\orabpel\references directory for JDeveloper
BPEL Designer.

About Data Manipulation and XPath Standards

Manipulating XML Data in BPEL 4-3

XPath standards play a key role in the assign activity, as summarized in this section.
Brief examples are shown here as an introduction; examples with more context and
explanation are provided in the sections that follow.

■ XPath queries: An XPath query is used to select a field within a source or target
variable part. The from or to clause can include a query attribute whose value is
an XPath query string, as shown in the following example:

<from variable="input" part="payload"
 query="/p:CreditFlowRequest/p:ssn">

For XPath version 1.0, the value of the query attribute must be an absolute location
path that selects exactly one node. You can find further details about the query
attribute and XPath standards syntax in the Business Process Execution Language for
Web Services Specification (section 14.3) and the XML Path Language (XPath)
Specification, respectively.

■ XPath expressions: You use an XPath expression (specified in an expression
attribute in the from clause) to indicate a value to be stored in a variable. For
example:

<from expression="100"/>

The expression can be any general expression—that is, an XPath expression that
evaluates to any XPath value type. For more information about XPath expressions,
see section 9.1.4 of the XML Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:

■ Core XPath functions: XPath includes support for a large number of built-in
functions, including functions for string manipulation (such as concat), numeric
functions (like sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the
XML Path Language (XPath) Specification.

■ BPEL XPath extension functions: BPEL adds several extension functions to the
core XPath core functions, enabling XPath expressions to access information from
a process. The extensions are defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/ and
indicated by the prefix bpws:

<from expression= “bpws:getVariableData('input', 'payload', '/p:value') + 1"/>

For more information, see sections 9.1 and 14.1 of the Business Process Execution
Language for Web Services Specification.

■ Oracle BPEL Extension XPath functions: Oracle provides some additional XPath
functions that use the capabilities built into BPEL and XPath standards for adding
new functions.

Note: If you used the tutorials with either BPEL designer
(JDeveloper BPEL Designer or Eclipse BPEL Designer) to add an
assign activity to the process, you supplied details about the activity
in a Copy Rule window that included a From section and a To section.
This reflects the underlying BPEL source code syntax shown
previously in this section.

4-4 Oracle BPEL Process Manager Developer’s Guide

These functions are defined in the namespace
http://schemas.oracle.com/xpath/extension and indicated by the
prefix ora:. If you have Oracle BPEL Process Manager installed locally, Oracle
BPEL Console lists and describes all available XPath functions through the
following URL:
http://localhost:9700/BPELConsole/domain.jsp?mode=xpath.

■ Custom functions: You can also create custom XPath functions. If you do, you
must register them in the BPEL process deployment descriptor or in the
C:\orabpel\domains\default\config\xpath-functions.xml file for
Eclipse BPEL Designer or the Oracle_
Home\integration\orabpel\domains\default\config\xpath-functio
ns.xml file for JDeveloper BPEL Designer.

Then, package the source implementing them into a BPEL suitcase or Oracle BPEL
Process Manager startup environment. For more information about writing
custom XPath functions, refer to:
http://www.oracle.com/technology/bpel

Sophisticated data manipulation can be difficult to perform with the BPEL assign
activity and the core XPath functions. However, you can perform complex data
manipulation and transformation by using XSLT or Java, or as a Web service. For more
information on calling Java code from within BPEL, see the tutorial under the BPEL
Tutorials link at http://www.oracle.com/technology/bpel. For XSLT, Oracle
BPEL Process Manager includes XPath functions that execute these transformations.

The following sections show related definitions in the BPEL and WSDL files that help
explain the examples.

Initializing a Variable with Expression Constants or Literal XML
It is often useful to assign literal XML to a variable in BPEL, for example, to initialize a
variable before copying dynamic data into a specific field within the XML data content
for the variable. This is also useful for testing purposes when you want to hard code
XML data values into the process.

This example assigns a literal result element to the payload part of the output
variable.

<assign>
 <!-- copy from literal xml to the variable -->
 <copy>
 <from>
 <result xmlns="http://samples.otn.com">
 <name/>
 <symbol/>
 <price>12.3</price>
 <quantity>0</quantity>

See Also: The following XPath and XQuery transformation code
examples:

■ C:\orabpel\samples\tutorials\114.XSLTTransformations
(for Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\114.XSLTTr
ansformations (for JDeveloper BPEL Designer)

■ Chapter 14, "XSLT Mapper and Transformations"

Copying Between Variables

Manipulating XML Data in BPEL 4-5

 <approved/>
 <message/>
 </result>
 </from>
 <to variable="output" part="payload"/>
 </copy>
</assign>

Copying Between Variables
Although this type of manipulation is not very commonly done, it does serve as a
good starting point for illustrating copying between variables or variable parts,
because of its simplicity. It copies directly from one variable (or part) to another
variable of a compatible type, without needing to specify a particular field within
either variable. In other words, there is no need to specify an XPath query.

The following example performs two assignments, first copying between two
variables of the same type and then copying a variable part to another variable with
the same type as that part.

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part = "address"/>
 <to variable="c3"/>
 </copy>
</assign>

The BPEL file defines the variables as follows:

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="x:address"/>

The WSDL file defines the person message type as follows:

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

See Also: The following samples:

■ C:\orabpel\samples\references\Assign (for Eclipse
BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\Assig
n (for JDeveloper BPEL Designer)

See Also: Section 9.3.2 of the Business Process Execution Language for
Web Services Specification for this code example

4-6 Oracle BPEL Process Manager Developer’s Guide

Accessing Fields within Complex Type Variables
Given the types of definitions present in most WSDL files, you must go down to the
level of copying from or to a field within part of a complex type variable. To do this,
you specify an XPath query in the from or to clause of the assign activity.

This example copies the ssn field from the CreditFlow process’s input message into
the ssn field of the credit rating service’s input message.

<assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:CreditFlowRequest/tns:ssn"/>
 <to variable="crInput" part="payload" query="/tns:ssn"/>
 </copy>
</assign>

The BPEL file defines the variables involved in this assignment as follows:

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>
<variable name="crInput"
 messageType="services:CreditRatingServiceRequestMessage"/>

The crInput variable is used as an input message to a credit rating service. It
message type, CreditFlowRequestMessage, is defined in
CreditFlowService.wsdl as follows:

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in
CreditRatingService.wsdl as follows:

<message name="CreditRatingServiceRequestMessage">
 <part name="payload" element="tns:ssn"/>
</message>

Assigning Numeric Values
The following example shows how to assign an XPath expression with the integer
value 100.

<assign>
 <!-- copy from integer expression to the variable -->
 <copy>
 <from expression="100"/>
 <to variable="output" part="payload" query="/p:result/p:quantity"/>
 </copy>

See Also: The following samples:

■ C:\bpelz\workspace\CreditFlow (for Eclipse BPEL
Designer)

■ C:\orabpel\samples\utils\CreditRatingService (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\utils\CreditRati
ngService (for JDeveloper BPEL Designer)

Assigning String Literals

Manipulating XML Data in BPEL 4-7

</assign>

Mathematical Calculations with XPath Standards
You can use simple mathematical expressions like the one in the following example,
which increments a numeric value.

In this example, the BPEL XPath function getVariableData retrieves the value
being incremented. The arguments to getVariableData are equivalent to the
variable, part, and query attributes of the from clause (including the last two
arguments, which are optional).

<assign>
 <copy>
 <from expression="bpws:getVariableData('input', 'payload',
 '/p:value') + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

Assigning String Literals
This example copies an expression evaluating to the string literal 'GE' to the symbol
field within the indicated variable part. (Note the use of the double and single quotes.)

<assign>
 <!-- copy from string expression to the variable -->
 <copy>
 <from expression="'GE'"/>
 <to variable="output" part="payload" query="/p:result/p:symbol"/>
 </copy>
</assign>

See Also: The following samples:

■ C:\orabpel\samples\references\Assign (for Eclipse
BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\Assig
n (for JDeveloper BPEL Designer)

See Also: The following samples:

■ C:\orabpel\samples\references\Assign (for Eclipse
BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\Assig
n (for JDeveloper BPEL Designer)

See Also: The following samples:

■ C:\orabpel\samples\references\Assign (for Eclipse
BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\Assig
n (for JDeveloper BPEL Designer)

4-8 Oracle BPEL Process Manager Developer’s Guide

Concatenating Strings
Rather than copy the value of one string variable (or variable part or field) to another,
you may first want to perform string manipulation, such as concatenating several
strings together. In Chapter 3, "Building a Simple BPEL Process", the string 'Hello '
was concatenated with a name supplied in an input message. A similar example from
the assign reference sample is shown in the following syntax. The concatenation is
accomplished with the core XPath function named concat; in addition, the variable
value involved in the concatenation is retrieved with the BPEL XPath function
getVariableData.

In this example, getVariableData fetches the value of the name field from the
input variable’s payload part. The string literal 'Hello ' is then concatenated to
the beginning of this value.

<assign>
 <!-- copy from XPath expression to the variable -->
 <copy>
 <from expression="concat('Hello ',
 bpws:getVariableData('input', 'payload', '/p:name'))"/>
 <to variable="output" part="payload" query="/p:result/p:message"/>
 </copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the
XML Path Language (XPath) Specification.

Assigning Boolean Values
In this example, the XPath expression in the from clause is a call to XPath’s Boolean
function true, and the specified approved field is set to true. The function false is
also available.

<assign>
 <!-- copy from boolean expression function to the variable -->
 <copy>
 <from expression="true()"/>
 <to variable="output" part="payload" query="/result/approved"/>
 </copy>
</assign>

See Also: The following samples:

■ C:\orabpel\samples\references\Assign (for Eclipse
BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\Assig
n (for JDeveloper BPEL Designer)

See Also: The following samples:

■ C:\orabpel\samples\references\Assign (for Eclipse
BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\Assig
n (for JDeveloper BPEL Designer)

Manipulating Attributes

Manipulating XML Data in BPEL 4-9

Assigning Date or Time
You can assign the current value of a date or time field by using the BPEL XPath
function getCurrentDate, getCurrentTime, or getCurrentDateTime,
respectively. In addition, if you have a date-time value in the standard XSD format,
you can convert it to characters more suitable for output by calling the BPEL XPath
function formatDate.

For related information, see section 9.1.2 of the Business Process Execution Language for
Web Services Specification.

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
 <copy>
 <from expression="ora:getCurrentDate()"/>
 <to variable="output" part="payload"
 query="/invoice/invoiceDate"/>
 </copy>
</assign>

In the next example, the formatDate function converts the date-time value provided
in XSD format to the string 'Jun 10, 2003' (and assigns it to the string field
formattedDate).

<!-- execute the XPath extension function formatDate() -->
<assign>
 <copy>
 <from expression="ora:formatDate('2003-06-10T15:56:00',
 'MMM dd, yyyy')"/>
 <to variable="output" part="payload"
 query="/invoice/formattedDate"/>
 </copy>
</assign>

Manipulating Attributes
You may want to copy to or from something defined as an XML attribute. An at sign
(@) in XPath query syntax refers to an attribute instead of a child element.

The following code example fetches and copies the custId attribute from this XML
data:

 <invalidLoanApplication xmlns="http://samples.otn.com">
 <application xmlns = "http://samples.otn.com/XPath/autoloan">
 <customer custId = "111" >
 <name>
 Mike Olive
 </name>
 ...
 </customer>
 ...
 </application>

See Also: The following samples:

■ C:\orabpel\samples\references\XPathFunction (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\XPath
Function (for JDeveloper BPEL Designer)

4-10 Oracle BPEL Process Manager Developer’s Guide

 </invalidLoanApplication>

The following example selects the custId attribute of the customer field and assigns
it to the variable custId:

<assign>
 <!-- get the custId attribute and assign to variable custId -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/@custId"/>
 <to variable="custId"/>
 </copy>
</assign>

The namespace prefixes in this example are optional and not integral to the example.

The WSDL file defines a customer to have a type in which custId is defined as an
attribute, as follows:

<complexType name="CustomerProfileType">
 <sequence>
 <element name="name" type="string"/>
 ...
 </sequence>
 <attribute name="custId" type="string"/>
</complexType>

Manipulating XML Data Sequences/Arrays
Data sequences are one of the most basic data models used in XML. However,
manipulating them can be nontrivial. One of the most common data sequence patterns
used in BPEL processes are arrays. Based on XML schema, the way you can identify a
data sequence definition is by its attribute maxOccurs being set to a value of more
than one or marked as unbounded. See the XML schema specification for more
information. The examples in this section illustrate several basic ways of manipulating
data sequences in BPEL. However, there are other associated requirements, such as
performing looping or dynamic referencing of endpoints. For additional code samples
and further information regarding real-world use cases for data sequence
manipulation in BPEL, see http://www.oracle.com/technology/bpel.

Each of the following sections describes a particular requirement for data sequence
manipulation. For a code example that describes all data sequences, see
ArraySample.bpel, which takes a data sequence as input and loops through it,
adding together individual line items in each data sequence element into a total value.

See Also: The following samples:

■ C:\orabpel\samples\references\XPath (for Eclipse BPEL
Designer)

■ Oracle_
Home\integration\orabpel\samples\references\XPath
(for JDeveloper BPEL Designer)

Manipulating XML Data Sequences/Arrays

Manipulating XML Data in BPEL 4-11

Statically Indexing into an XML Data Sequence
The following two examples illustrate how to use XPath functionality to select a data
sequence element when the index of the element you want is known at design time.
(In these cases, it is the first element.)

In the following example, addresses[1] selects the first element of the addresses
data sequence:

<assign>
 <!-- get the first address and assign to variable address -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[1]"/>
 <to variable="address"/>
 </copy>
</assign>

In this query, addresses[1] is equivalent to addresses[position()=1], where
position is one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path
Language (XPath) Specification). The query in the next example calls the position
function explicitly to select the first element of the addresses data sequence. It then
selects that address’s street element (which the activity assigns to the variable
street1).

<assign>
 <!-- get the first address's street and assign to street1 -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[position()=1]
 /autoloan:street"/>
 <to variable="street1"/>
 </copy>
</assign>

If you review the definition of the input variable and its payload part in the WSDL file,
you go several levels down before coming to the definition of the addresses field.
There you see the maxOccurs=“unbounded” attribute.The two XPath indexing
methods are functionally identical; you can use whichever you prefer.

See Also: The ArraySample.bpel sample file located at:

■ C:\orabpel\samples\tutorials\112.Arrays (for Eclipse
BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\112.Ar
rays (for JDeveloper BPEL Designer)

See Also: The following samples:

■ C:\orabpel\samples\references\XPath (for Eclipse BPEL
Designer)

■ Oracle_
Home\integration\orabpel\samples\references\XPath
(for JDeveloper BPEL Designer)

4-12 Oracle BPEL Process Manager Developer’s Guide

Determining Sequence Size
If you need to know the run-time size of a data sequence—that is, the number of nodes
or data items in the sequence—you can get it by using the combination of the XPath
built-in count() function and the BPEL built-in getVariableData() function.

This example calculates the number of elements in the item sequence and assigns it to
the integer variable lineItemSize:

<assign>
 <copy>
 <from expression="count(bpws:getVariableData(’outpoint’, ’payload’,
 '/p:invoice/p:lineItems/p:item')"/>
 <to variable="lineItemSize"/>
 </copy>
</assign>

Dynamically Indexing by Applying a Trailing XPath to an Expression
Often a dynamic value is needed to index into a data sequence — that is, you need to
get the nth node out of a sequence, where the value of n is defined at run time. This
section covers the following methods for dynamically indexing by applying a trailing
XPath into expressions:

■ Dynamic Indexing Example

■ Appending New Items to a Sequence

■ Merging Data Sequences

■ Dynamically Indexing with the BPEL getElement Function

■ Merging Data Sequences/Arrays

■ Appending New Items to a Sequence/Array

Dynamic Indexing Example
The dynamic indexing method shown here applies a trailing XPath to the result of
bwps:getVariableData(), instead of using an XPath as the last argument of
bpws:getVariableData(). The trailing XPath references to an integer-based index
variable within the position predicate (that is, [...]):

<variable name="idx" type="xsd:integer"/>
...
<assign>
 <copy>
 <from expression="bpws:getVariableData('input','payload'
)/p:line-item[bpws:getVariableData('idx')]/p:line-total" />
 <to variable="lineTotalVar" />
 </copy>
</assign>

See Also: The following samples:

■ C:\orabpel\samples\references\XPathFunction (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\XPath
Function (for JDeveloper BPEL Designer)

Manipulating XML Data Sequences/Arrays

Manipulating XML Data in BPEL 4-13

Assume at run time that the idx integer variable holds 2 as its value. The preceding
expression within the from is equivalent to:

<from expression="bpws:getVariableData('input','payload'
)/p:line-item[2]/p:line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind
the bwps:getVariableData() function is compared with the one used inside the
function.

Using the same example (where payload is the message part of element
"p:invoice"), if the XPath is used within the getVariableData() function, the
root element name ("/p:invoice") must be specified at the beginning of the XPath.

For example:

bpws:getVariableData('input', 'payload',
'/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps:getVariableData()function, the root
element name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getVariableData() function is already the
root element. Specifying the root element name again in the XPath is redundant and is
standard XPath semantics.

Appending New Items to a Sequence
The bpelx:append extension under assign enables BPEL processes to append new
elements to an existing parent element:

 <assign name="assign-3">
 <copy>
 <from expression="bpws:getVariableData('idx')+1" />
 <to variable="idx"/>
 </copy>
 <bpelx:append>
 <bpelx:from variable="partInfoResultVar" part="payload" />
 <bpelx:to variable="output" part="payload" />
 </bpelx:append>
 ...
 </assign>

The <bpelx:append> logic in this example appends the payload element of the
partInfoResultVar variable as a child to the payload element of the output
variable. In order words, the payload element of output variable is used as the parent
element.

See Also: The following samples:

■ C:\orabpel\samples\tutorials\126.DataAggregator\Agg
regationTutorial (for Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\126.Da
taAggregator\AggregationTutorial (for JDeveloper BPEL
Designer)

4-14 Oracle BPEL Process Manager Developer’s Guide

Merging Data Sequences
You can merge two sequences into a single data sequence. This pattern is common
when the data sequences are in an array (that is, the sequence of data items of
compatible types).

To accomplish the merging logic, use the following two append operations under
assign:

<assign>
 <!-- initialize "mergedLineItems" variable
 to an empty element -->
 <copy>
 <from> <p:lineItems /> </from>
 <to variable="mergedLineItems" />
 </copy>
 <bpelx:append>
 <bpelx:from variable="input" part="payload"
 query="/p:invoice/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
 <bpelx:append>
 <bpelx:from variable="literalLineItems"
 query="/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
</assign>

Dynamically Indexing with the BPEL getElement Function
If you do not want to use the two-step process of creating an XPath query to
dynamically index into a sequence, you can use the XPath function getElement
instead. This function takes a sequence and an index (which can be a dynamic value,
such as a variable) and returns the appropriate sequence element.

<variable name="lineItemIndex" type="xsd:int"/>
...
<!-- execute the XPath extension function getElement(arrayOfElements[],
index) to fetch one element from an array of elements
-->
<assign>
 <copy>
 <from expression="ora:getElement('output', 'payload',
 '/invoice/lineItems/item',
 bpws:getVariableData('lineItemIndex'))"/>
 <to variable="myLineItem"/>
 </copy>
</assign>

See Also: The ArraySample.bpel sample file located at:

■ C:\orabpel\samples\tutorials\112.Arrays (for Eclipse
BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\112.Ar
rays (for JDeveloper BPEL Designer)

Manipulating XML Data Sequences/Arrays

Manipulating XML Data in BPEL 4-15

Merging Data Sequences/Arrays
You can merge two sequences of compatible types into a single sequence. To do so, use
the XPath function mergeChildNodes.

<!-- execute the XPath extension function mergeChildNodes(e1, e2) and assign to a
variable -->
<assign>
 <copy>
 <from expression="ora:mergeChildNodes(
 bpws:getVariableData('input', 'payload', '/invoice/lineItems'),
 bpws:getVariableData('literalLineItems'))"/>
 <to variable="mergedLineItems"/>
 </copy>
</assign>

Appending New Items to a Sequence/Array
Use the BPEL XPath function addChildNode enables BPEL processes to append new
elements to an existing sequence.

<!-- execute the XPath extension function addChildNode(Element e, Node childNode)
-->
<assign>
 <copy>
 <from expression="ora:addChildNode(bpws:getVariableData('output',
 'payload', '/invoice/lineItems'),
 bpws:getVariableData('escapedLineItem'))"/>
 <to variable="output" part="payload" query="/invoice/lineItems"/>
 </copy>
</assign>

See Also: The following samples:

■ C:\orabpel\samples\references\XPathFunction (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\XPath
Function (for JDeveloper BPEL Designer)

See Also: The following samples:

■ C:\orabpel\samples\references\XPathFunction (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\XPath
Function (for JDeveloper BPEL Designer)

See Also: The following samples:

■ C:\orabpel\samples\references\XPathFunction (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\XPath
Function (for JDeveloper BPEL Designer)

4-16 Oracle BPEL Process Manager Developer’s Guide

Converting from a String to an XML Element
Sometimes a service is defined to return a string, but the content of the string is
actually XML data. The problem is that, although BPEL provides support for
manipulating XML data (using XPath queries, expressions, and so on), this
functionality is not available if the variable or field is of type string. With Java, you use
DOM functions to convert the string to a structured XML object type. You can use the
BPEL XPath function parseEscapedXML to do the same thing. This function takes
XML data, parses it through DOM, and returns structured XML data that can be
assigned to a typed BPEL variable.

<!-- execute the XPath extension function
parseEscapedXML('<item>') and assign to a variable
-->
<assign>
 <copy>
 <from expression="ora:parseEscapedXML(
 '<item xmlns="http://samples.otn.com"
 sku="006">
 <description>sun ultra sparc VI server
 </description>
 <price>1000
 </price>
 <quantity>2
 </quantity>
 <lineTotal>2000
 </lineTotal>
 </item>')"/>
 <to variable="escapedLineItem"/>
 </copy>
</assign>

Differences Between Document-Style and RPC-Style WSDL Files
All of the examples shown up to this point have been for document-style WSDL files,
in which a message is defined with an XML schema element, as in the following
example:

<message name="LoanFlowRequestMessage">
<part name="payload" element="s1:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an
XML schema type, as in:

<message name="LoanFlowRequestMessage">
<part name="payload" type="s1:LoanApplicationType"/>
</message>

This affects the material in this chapter because there is a difference in how XPath
queries are constructed for the two WSDL message styles. For an RPC-style message,

See Also: The following samples:

■ C:\orabpel\samples\references\XPathFunction (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\references\XPath
Function (for JDeveloper BPEL Designer)

Summary

Manipulating XML Data in BPEL 4-17

the top-level element (and therefore the first node in an XPath query string) is the part
name (payload in the previous example). In document-style, the top-level node is the
element name (for example, loanApplication).

The following example shows what an XPath query string looks like if the
LoanServices used in BPEL demo applications (such as LoanFlow) were RPC style.

RPC-Style WSDL
<message name="LoanServiceResultMessage">
 <part name="payload" type="s1:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
 <sequence>
 <element name="providerName" type="string"/>
 <element name="selected" type="boolean"/>
 <element name="approved" type="boolean"/>
 <element name="APR" type="double"/>
 </sequence>
</complexType>

BPEL
<variable name="output"
 messageType="tns:LoanServiceResultMessage"/>
...
<assign>
 <copy>
 <from expression="9.9"/>
 <to variable="output" part="payload" query="/payload/APR"/>
 </copy>
</assign>

Summary
This chapter provides an overview of the role of XML data in BPEL processes,
including describing the large role that XPath expressions play in manipulating XML
data.

See Also: The following samples:

■ C:\orabpel\samples\utils\AsyncLoanService
(LoanServices for Eclipse BPEL Designer)

■ C:\orabpel\samples\demos\LoanDemo\LoanFlow (BPEL
demo application for Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\utils\AsyncLoanS
ervice (LoanServices for JDeveloper BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\demos\LoanDemo\L
oanFlow (BPEL demo application for JDeveloper BPEL Designer)

4-18 Oracle BPEL Process Manager Developer’s Guide

Invoking a Synchronous Web Service 5-1

5
Invoking a Synchronous Web Service

Synchronous Web services provide an immediate response to a query. BPEL can
connect to synchronous Web services through a partner link, send data, and receive
the reply using a synchronous callback. This chapter explains how to establish a
partner link and set up a synchronous callback. Only one port type is required for a
synchronous callback.

This chapter discusses the components necessary to perform a synchronous callback,
examines how these components are coded, and shows how to set up a synchronous
callback using Eclipse BPEL Designer.

This chapter contains the following topics:

■ Use Case

■ Synchronous Service Concepts

■ Calling a Synchronous Service

■ Summary

5-2 Oracle BPEL Process Manager Developer’s Guide

Use Case
This chapter uses an example of a BPEL process sending a stock code to a Web service
and receiving a stock quote in return.

Synchronous Service Concepts
The key concepts necessary for a synchronous callback are the partner link and the
invoke activity. A partner link defines the location and the role of the Web services that
the BPEL process connects to in order to perform tasks, as well as the variables used to
carry information between the Web service and the BPEL process. A partner link is
required for each Web service that the BPEL process calls.

The invoke activity opens a port in the BPEL process to send and receive data. It uses
this port to submit the required data and receive the response. In the credit rating
service example, the invoke activity submits the stock code entered by the customer to
the stock quote service and receives a stock quote in return. For synchronous callbacks,
only one port is needed for both the send and receive functions.

Each domain has the attribute syncMaxWaitTime. This attribute has a default of 60
seconds, but can be reconfigured by the domain administrator. If the BPEL process
does not receive a reply within the specified time, then the activity fails.

Examples
This section examines how synchronous functionality is defined in the stock quote
Web service’s StockQuoteService.wsdl file (the Web service to be called) and the
client’s QuoteConsumer.bpel file and bpel.xml deployment description file.

See Also: The following sample files:

■ C:\orabpel\samples\tutorials\104.SyncQuoteConsumer

■ Oracle_
Home\integration\orabpel\samples\tutorials\104.Sy
ncQuoteConsumer

Synchronous Service Concepts

Invoking a Synchronous Web Service 5-3

The Partner Link
In the BPEL code, the partner link defines the link name and type, and the role of the
BPEL process in interacting with the partner service.

From the BPEL source code, the partner link definition is as follows:

<partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information associated
 with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client" partnerLinkType="samples:QuoteConsumer"
 myRole="QuoteConsumerProvider" partnerRole="QuoteConsumerRequester"/>
 <partnerLink
name="StockQuoteService"partnerLinkType="services:StockQuoteService"
 partnerRole="StockQuoteServiceProvider"/>
</partnerLinks>

Partner links are followed by global variable definitions that are accessible throughout
the BPEL process. The types for these variables are defined in the WSDL for the
process itself.

<variables>
 <!-- Reference to the message passed as input during initiation -->
 <variable name="input" messageType="tns:QuoteConsumerRequestMessage"/>
 <!-- Reference to the message that will be sent back to the

See Also: The following files used as examples in this chapter:

If using Eclipse BPEL Designer:

■ C:\orabpel\samples\tutorials\104.SyncQuoteConsumer\
QuoteConsumer.bpel

■ C:\orabpel\samples\tutorials\104.SyncQuoteConsumer\
bpel.xml

■ C:\orabpel\samples\tutorials\104.SyncQuoteConsumer\
QuoteConsumer.wsdl

■ C:\orabpel\samples\utils\StockQuoteService\StockQuo
teService.wsdl

If using JDeveloper BPEL Designer:

■ Oracle_
Home\integration\orabpel\samples\tutorials\104.Sy
ncQuoteConsumer.bpel

■ Oracle_
Home\integration\orabpel\samples\tutorials\104.Sy
ncQuoteConsumer\bpel.xml

■ Oracle_
Home\integration\orabpel\samples\tutorials\104.Sy
ncQuoteConsumer.wsdl

■ Oracle_
Home\integration\orabpel\samples\utils\104.StockQ
uoteService.wsdl

5-4 Oracle BPEL Process Manager Developer’s Guide

 requestor during callback
 -->
 <variable name="output" messageType="tns:QuoteConsumerResultMessage"/>
 <variable name="request" messageType="services:StockQuoteServiceRequest"/>
 <variable name="response" messageType="services:StockQuoteServiceResponse"/>
</variables>

The WSDL file defines the interface to your BPEL process—the messages that it
accepts and returns, operations that are supported, and other parameters.

Port Types
A port type is a collection of related operations implemented by a participant in a
conversation. A port type defines what information is passed back and forth, the form
of that information, and so forth. A synchronous callback requires only one port type
that both sends a request and receives the response, while an asynchronous callback
(one where the reply is not immediate) requires two port types, one to send the
request, and another to receive the reply when it arrives.

partnerLinkTypes for Synchronous Services
This section examines the Web service’s .wsdl file, and identifies the sections of the
file that enable it to work with BPEL processes.

View the partnerLinkType section of the QuoteConsumer.wsdl file. The
partnerLinkType defines the following characteristics of the conversation between
the BPEL process and the loan application approver Web service:

■ The role (operation) played by each

■ The portType provided by each for receiving messages within the context of the
conversation

<!--
 PartnerLinkType definition
 -->
 <!-- the QuoteConsumer partnerLinkType binds the service and
 requestor portType into an asynchronous conversation.
 -->
 <plnk:partnerLinkType name="QuoteConsumer">
 <plnk:role name="QuoteConsumerProvider">
 <plnk:portType name="tns:QuoteConsumer"/>
 </plnk:role>
 <plnk:role name="QuoteConsumerRequester">
 <plnk:portType name="tns:QuoteConsumerCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

View the portType section of the QuoteConsumer.wsdl file. This is the stock quote
Web service to which the client submits the stock code that the customer has entered.

<!--
 PortType definition
 -->

 <!-- portType implemented by the QuoteConsumer BPEL process -->
 <portType name="QuoteConsumer">
 <operation name="initiate">
 <input message="tns:QuoteConsumerRequestMessage"/>
 </operation>

Synchronous Service Concepts

Invoking a Synchronous Web Service 5-5

 </portType>

 <!-- portType implemented by the requester of QuoteConsumer BPEL process
 for asynchronous callback purposes
 -->
 <portType name="QuoteConsumerCallback">
 <operation name="onResult">
 <input message="tns:QuoteConsumerResultMessage"/>
 </operation>
 </portType>

Synchronous services have one port type. The port initiates the synchronous process
and calls back the client with the response. In this example, the portType
CreditRatingService receives the stock code and returns the stock quote.

UDDI and WSIL Directories
A Universal Description, Discovery, and Integration (UDDI) browser is provided for
looking up services when creating a partner link.

Web Services Inspection Language (WSIL) and UDDI assist in the publishing and
discovery of services.

UDDI is a Web-based distributed directory that enables businesses to list themselves
on the Internet and discover each other, similar to a traditional phone book's yellow
and white pages. The specification provides a high level of functionality through
SOAP by specifically requiring an infrastructure to be deployed.

WSIL approaches service discovery in a decentralized fashion, where service
description information can be distributed to any location using a simple extensible
XML document format. Unlike UDDI, it is not concerned with business entity
information, nor does it specify a particular service description format. WSIL works
under the assumption that you are already familiar with the service provider, and
relies on other service description mechanisms such as the Web Services Description
Language (WSDL).

The Invoke Activity
The invoke activity includes the request global input variable defined in the
variables section. The request global input variable is used by the credit rating
Web service. This variable contains the customer’s social security number. The
response variable contains the credit rating returned by the credit rating service.

<sequence>
<!-- Receive input from requestor.
 Note: This maps to operation defined in QuoteConsumer.wsdl
 -->
<receive name="receiveInput" partnerLink="client" portType="samples:QuoteConsumer"
operation="initiate" variable="input" createInstance="yes"/>
<assign>
<copy>
<from variable="input" part="payload" query="/tns:symbol"/>
<to variable="request" part="symbol" query="/symbol"/>
</copy>
</assign>
<!-- Generate content of output message based on the content of the
 input message.
 -->
<invoke name="invokeStockQuoteService" partnerLink="StockQuoteService"/>
<assign>

5-6 Oracle BPEL Process Manager Developer’s Guide

<copy>
<from variable="response" part="result" query="/result"/>
<to variable="output" part="payload" query="/tns:result"/>
</copy>
</assign>
<!-- Asynchronous callback to the requester.
 Note: the callback location and correlation id is transparently
handled
 using WS-addressing.
 -->
<invoke name="replyOutput" partnerLink="client"
portType="samples:QuoteConsumerCallback" operation="onResult"
inputVariable="output"/>
</sequence>

Calling a Synchronous Service
This section examines the QuoteConsumer.bpel application to explore the concepts
involved with a synchronous callback operation. You may import the project file at this
location to examine the application. For a more step-by-step approach, see
http://www.oracle.com/technology/bpel and download the files under BPEL
Training Materials.

An overview of the QuoteConsumer.bpel file in JDeveloper BPEL Designer reveals a
simple application with five activities:

The receive activity receives input from the user, as defined in the
QuoteConsumer.wsdl file. The first assign activity packages the data from the client
in a way that is accepted by the QuoteConsumer service. The synchronous callback

Summary

Invoking a Synchronous Web Service 5-7

labeled process then sends the repackaged data to the QuoteConsumer service and
receives a response. This response is repackaged by a second assign activity into a
form that can be accepted by the client application. Finally, the repackaged response is
sent back to the client.

The following BPEL code that performs the synchronous callback is on lines 61-91:

<assign>
<copy>

<from variable="input" part="payload" query="/tns:symbol"/>
<to variable="request" part="symbol" query="/symbol"/>

</copy>
</assign>
<invoke name="invokeStockQuoteService" partnerLink="StockQuoteService"

 portType="services:StockQuoteService" operation="process"
 inputVariable="request" outputVariable="response"/>

<!-- Generate content of output message based on the content of the
 input message.
 -->

<assign>
<copy>

<from variable="response" part="result" query="/result"/>
<to variable="output" part="payload" query="/tns:result"/>

</copy>
</assign>

Summary
This chapter describes the concepts for a BPEL process that invokes a synchronous
Web service and adds a partner link. This service takes a stock code as input from a
client and synchronously returns a stock quote.

See Also: The following samples:

■ C:\orabpel\samples\tutorials\104.SyncQuoteConsumer
(for Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\104.Sy
ncQuoteConsumer (for JDeveloper BPEL Designer)

5-8 Oracle BPEL Process Manager Developer’s Guide

Calling an Asynchronous Web Service 6-1

6
Calling an Asynchronous Web Service

This chapter describes how to call an asynchronous Web service. Asynchronous
messaging styles are extremely useful for environments in which a service, such as a
loan processor, can take a long time to process a client request. Asynchronous services
also provide a more reliable fault-tolerant and scalable architecture.

This chapter contains the following topics:

■ Introduction

■ Use Case

■ Understanding Asynchronous Callback Concepts

■ Calling an Asynchronous Service

■ Questions and Answers

■ Summary

6-2 Oracle BPEL Process Manager Developer’s Guide

Introduction
Figure 6–1 provides an overview of a BPEL process in conversation with an
asynchronous loan processor Web service. This Web service processes a client’s loan
application request and returns a loan offer. Note carefully the boxed area in which the
BPEL process uses an invoke activity to initiate the loan application request. The
contents of this request are contained in a request variable that is sent to the loan
processor Web service. A correlation ID unique to the client and partner link initiating
the request is also sent. Since the loan request can take anywhere from a few minutes
to a few days to process, it provides an asynchronous interface. The correlation ID
ensures that the correct loan offer response is returned to the corresponding loan
application requester.

The BPEL process uses a receive activity to wait for a callback response from the Web
service. The contents of this response are then stored in a response variable in the
BPEL process.

Figure 6–1 Asynchronous Service Invocation

The remaining sections in this chapter provide specific details about the asynchronous
functionality shown in Figure 6–1.

Async
Loan

Processor
Service

WSDL

d3

d4

Deployment Descriptor
(bpel.xml)

BPEL Process

<receive>

WSDL
Client

PartnerLink

prepare
loanApp
<assign>

Initiate
service

<invoke>

Wait for
callback

<receive>

Read
offer

<assign>

BPEL
Console

Client
Application

<reply>

Input
<variable>

Output
<variable>

Response
<variable>

Request
<variable>

d1

d2

LoanService
PartnerLink

Initiate Port

Callback Port

Dehydration Point
For scalability and reliability,
in-flight instances are pushed
to DB until callback is received

Understanding Asynchronous Callback Concepts

Calling an Asynchronous Web Service 6-3

Use Case
United Loan publishes an asynchronous Web service that can take anywhere from
several minutes to several days to process a client’s loan application request and
return a loan offer. This example discusses how to integrate a BPEL process with this
asynchronous loan application approver Web service.

This example illustrates the key design concepts for requesting information from an
asynchronous service, and then receiving the response. The asynchronous United Loan
service in this example is another BPEL process; however, the same BPEL call can
interact with any properly designed Web service. The target Web service’s .wsdl file
contains the information necessary to request and receive the desired information.

Understanding Asynchronous Callback Concepts
This section examines how asynchronous functionality is defined in the loan
application approver Web service’s LoanService.wsdl file (the Web service to be
called) and the client’s LoanBroker.bpel file and bpel.xml deployment
description file.

See Also: The following sample files for examples of an
asynchronous Web service that is not a BPEL process:

■ C:\orabpel\samples\interop\axis\BPELCallingAsyncAXI
S

■ Oracle_
Home\integration\orabpel\samples\interop\axis\BPE
LCallingAsyncAXIS

See Also: The following files described in this chapter:

If using Eclipse BPEL Designer:

■ C:\orabpel\samples\utils\AsyncLoanService\LoanServi
ce.wsdl

■ C:\orabpel\samples\tutorials\105.AsyncCompositeLoan
Broker\ LoanBroker.bpel

■ C:\orabpel\samples\tutorials\105.AsyncCompositeLoan
Broker\bpel.xml

If using JDeveloper BPEL Designer:

■ Oracle_
Home\integration\orabpel\samples\utils\AsyncLoanS
ervice\LoanService.wsdl

■ Oracle_
Home\integration\orabpel\samples\tutorials\105.As
yncCompositeLoanBroker\LoanBroker.xml

■ Oracle_
Home\integration\orabpel\samples\tutorials\105.As
yncCompositeLoanBroker\bpel.xml

6-4 Oracle BPEL Process Manager Developer’s Guide

partnerLinkTypes for Asynchronous Services
This section examines the Web service’s .wsdl file, and identifies the sections of the
file that enable it to work with BPEL processes.

View the portType section of the LoanService.wsdl file. This is the loan
application approver Web service to which the client submits the loan application
request.

Asynchronous services have two port types. Each port type performs a one-way
operation: one port type initiates the asynchronous process and the other calls back the
client with the asynchronous response. In this example, the portType LoanService
receives the client’s loan application request and the portType
LoanServiceCallback asynchronously calls back the client with the loan offer
response.

 <!-- portType implemented by the LoanService BPEL process -->
 <portType name="LoanService">
 <operation name="initiate">
 <input message="tns:LoanServiceRequestMessage"/>
 </operation>
 </portType>

 <!-- portType implemented by the requester of LoanService BPEL process
 for asynchronous callback purposes
 -->
 <portType name="LoanServiceCallback">
 <operation name="onResult">
 <input message="tns:LoanServiceResultMessage"/>
 </operation>
 </portType>

View the partnerLinkType section of the LoanService.wsdl file. The
partnerLinkType defines the following characteristics of the conversation between
the BPEL process and the loan application approver Web service:

■ The role (operation) played by each

■ The portType provided by each for receiving messages within the context of the
conversation

Partner link types in asynchronous services have two roles: one for the Web service
provider and one for the client requester.

In this conversation, the LoanServiceProvider role and LoanService portType
are used for client request messages and the LoanServiceRequester role and
LoanServiceCallback portType are used for asynchronously returning (calling
back) response messages to the client.

<!-- the LoanService partnerLinkType binds the service and
 requestor portType into an asynchronous conversation.
 -->
 <plnk:partnerLinkType name="LoanService">
 <plnk:role name="LoanServiceProvider">
 <plnk:portType name="tns:LoanService"/>
 </plnk:role>
 <plnk:role name="LoanServiceRequester">
 <plnk:portType name="tns:LoanServiceCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

Understanding Asynchronous Callback Concepts

Calling an Asynchronous Web Service 6-5

Note also that two port types are now combined into this single asynchronous BPEL
process: portType="services:LoanService" of the invoke activity and
portType="services:LoanServiceCallback" of the receive activity. Port
types are essentially a collection of operations to be performed. For this BPEL process,
there are two operations to perform: initiate in the invoke activity and onResult
in the receive activity.

Calling the Service from BPEL
The following two files are associated with your BPEL process, and define how the
process interfaces with the Web service.

View the partnerLinks section of the LoanBroker.bpel file. The services with
which a process interacts are designed as partner links. Each partner link is
characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that
partner link. This is critical in correlating responses to different partner links for
simultaneous requests of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this
example, the second partner link, LoanService, is used by the loan application
approver Web service.

 <!-- This process invokes the asynchronous LoanService. -->

 <partnerLink name="LoanService"
 partnerLinkType="services:LoanService"
 myRole="LoanServiceRequester"
 partnerRole="LoanServiceProvider"/>
 </partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role
indicates the role of the partner in this conversation. Each partnerLinkType has a
myRole and a partnerRole attribute in asynchronous processes.

Open the bpel.xml deployment descriptor file of
samples\tutorials\105.AsyncCompositeLoanBroker. The loan application
approver Web service appears. This properties id information is added to the file
when you create a second partner link type.

<?xml version="1.0"?>
<bpel-process id="LoanBroker" src="LoanBroker.bpel"
 wsdlLocation="LoanBroker.wsdl">
 <properties id="LoanService">
 <property name="wsdlLocation">
 http://hslattertest-pc:9700/orabpel/default/UnitedLoan/UnitedLoan?wsdl</property>
 </properties>

Invoke and Receive Activities
View the variables and sequence sections of the LoanBroker.bpel file. Two
areas of particular interest are:

■ An invoke activity invokes a synchronous Web service (as discussed in Chapter 5,
"Invoking a Synchronous Web Service") or initiates an asynchronous service.

See Also: "Adding a Partner Link for an Asynchronous Service" on
page 6-9 for instructions on creating a partner link

6-6 Oracle BPEL Process Manager Developer’s Guide

The invoke activity includes the request global input variable defined in the
variables section. The request global input variable is used by the loan
application approver Web service. This variable contains the contents of the initial
loan application request document.

■ A receive activity that waits for the asynchronous callback from the loan
application approver Web service. The receive activity also includes the response
global output variable defined in the variables section. This variable contains
the loan offer response. The receive activity asynchronously waits for a callback
message from a service. While the BPEL process is waiting, it is dehydrated, or
compressed and stored, until the callback message arrives.

 <variables>

 <variable name="request"
 messageType="services:LoanServiceRequestMessage"/>
 <variable name="response"
 messageType="services:LoanServiceResultMessage"/>
 </variables>

 <sequence>

 <!-- initialize the input of LoanService -->
 <assign>
 <!-- initiate the remote process -->
 <invoke name="invoke" partnerLink="LoanService"
 portType="services:LoanService"
 operation="initiate" inputVariable="request"/>

 <!-- receive the result of the remote process -->
 <receive name="receive_invoke" partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID
unique to the client request is also sent (using WS-Addressing). Because multiple
processes may be waiting for service callbacks, Oracle BPEL Server must know which
BPEL process instance is waiting for a callback message from the loan application
approver Web service. The correlation ID enables Oracle BPEL Server to correlate the
response with the appropriate requesting instance.

Correlations
Because there may be many active instances at any given point in time, Oracle BPEL
Server must be able to direct Web service responses to the correct BPEL process
instance. There are several supported methods for identifying asynchronous messages
to ensure that asynchronous callbacks locate the appropriate client:

■ WS-Addressing

Web Services Addressing (WS-Addressing) is a public specification and is the
default correlation method supported by Oracle BPEL Process Manager. No

See Also: The following sections for instructions on creating invoke
and receive activities:

■ "Adding an Invoke Activity" on page 6-10

■ "Adding a Receive Activity" on page 6-12

Understanding Asynchronous Callback Concepts

Calling an Asynchronous Web Service 6-7

editing of the .bpel and .wsdl files is required to use WS-Addressing.
WS-Addressing uses simple object access protocol (SOAP) headers for
asynchronous message correlation. Messages are independent of the transport or
application used. Figure 6–2 provides an overview.

Figure 6–2 Callback with WS-Addressing Headers

Figure 6–2 shows how messages are passed along with WS headers so that the
response can be sent to the correct destination.

The example in this chapter uses WS-Addressing for correlation. TCP tunneling
can be used for viewing the messages.

■ Correlation Sets

This method uses message content for correlation. You must define correlation sets
in your .bpel file. Use this method for services that do not support
WS-Addressing or for certain sophisticated conversation patterns, for example,
when the conversation is in the form A > B > C > A instead of A > B > A.

WS-Addressing
WS-Addressing defines the following information typically provided by transport
protocols and messaging systems. This information is processed independently of the
transport or application:

■ Endpoint location (reply-to address)

The reply-to address specifies the location at which a BPEL client is listening for a
callback message.

■ Conversation ID

Initiate
service

<invoke>

Wait for
callback

<receive>

Async
Loan

Processor
Service

BPEL Process
HelloWorld.bpel

WSDL
LoanService
PartnerLink

d3

loanApp
<variable>

d3

loanOffer
<variable>

WS-Addressing Header:
· callback location
· correlation id (relatesTo)

d4

WS-Addressing Header:
· correlation id (relatesTo)

Note 1: the correlation id allows
the BPEL server to know which
instance of the process is
waiting for this callback
messages.

Note 2: The alternative
approach is to use
content-based correlation
using <correlationSet>

d3

[2.05] receive
[2.06] process
[2.22] callback

Initiate Port

Callback Port

6-8 Oracle BPEL Process Manager Developer’s Guide

Use TCP tunneling to view SOAP messages exchanged between the BPEL process
flow and the Web service (including those containing the correlation ID). You can
see the exact SOAP messages that are sent to, or received from, services with
which a BPEL process flow communicates.

You insert a software listener between your BPEL process flow and the Web
service. Your BPEL process flow communicates with the listener (called a TCP
tunnel). The listener forwards your messages to the Web service, and also displays
them. Responses from the Web service are returned to the tunnel, which displays
and forwards them back to the BPEL process.

TCP Tunneling The messages that are exchanged between programs and services can be
seen through TCP tunneling. This is particularly useful with Web services/BPEL
processes when you want to see the exact SOAP messages exchanged between the
flow and Web services.

To monitor the SOAP messages, insert a software listener in between your flow and
the service. Your flow communicates with the listener (called a TCP Tunnel) and the
listener forwards your messages to the service, as well as displaying them. Likewise,
responses from the service are returned to the tunnel, which displays them and then
forwards them back to the flow.

To see all the messages exchanged between Oracle BPEL Server and a Web service, you
need only a single TCP tunnel for synchronous services because all the pertinent
messages are communicated in a single request/reply interaction with the service. For
asynchronous services, you must set up two tunnels, one for the invocation of the
service and another for the callback port of the flow.

If you are a JDeveloper BPEL Designer user, you can also use the built-in Packet
Monitor to see SOAP messages for both synchronous and asynchronous services.

Correlation Sets
Correlation sets are a BPEL mechanism that provides for the correlation of
asynchronous messages based on message body contents.

The Reply Activity
The reply activity enables the business process to send a message in reply to a message
that was received through a receive. The combination of a receive and a reply forms a
request-response operation on the WSDL portType for the process.

See Also: The following documentation, which is accessible from
http://www.oracle.com/technology/bpel:

■ Web Services Addressing (WS-Addressing) Specification for complete
details about WS-Addressing

■ BPEL-TN001: TCP Tunneling the Oracle BPEL Process Manager for
instructions on using TCP tunneling to view SOAP messages

See Also: The following correlation set examples:

■ C:\orabpel\samples\tutorials\109.CorrelationSets
(for Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\109.Co
rrelationSets (for JDeveloper BPEL Designer)

Calling an Asynchronous Service

Calling an Asynchronous Web Service 6-9

 <reply partnerLink="ncname" portType="qname" operation="ncname"
 variable="ncname"? faultName="qname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?>+
 </correlations>
 </reply>

Dehydration
A dehydration point is also established between the invoke activity and receive
activity. (See Figure 6–1 on page 6-2.) Dehydration automatically maintains
long-running asynchronous processes (such as this one with the loan application
approver Web service) and their current state information in a database while they
wait for asynchronous callbacks. Storing the process in a database preserves the
process and prevents any loss of state or reliability if a system shuts down or a
network problem occurs. This capability increases both BPEL process reliability and
scalability and is used to support clustering and failover.

Calling an Asynchronous Service
This section provides an overview of the tasks required to add asynchronous
functionality to your BPEL process:

■ Adding a Partner Link for an Asynchronous Service

■ Adding an Invoke Activity

■ Adding a Receive Activity

■ Performing Additional Activities

Adding a Partner Link for an Asynchronous Service
These instructions describe how to create a partner link named LoanService for the
loan application approver Web service.

1. Double-click LoanBroker.bpel in the Applications Navigator.

2. Right-click either side of the BPEL process (in the yellow area).

3. Select Create Partner Link from the menu.

The Create Partner Link window appears.

4. Enter the following details to create a second partner type and select the loan
application approver Web service:

See Also:

■ "Reply Activity" on page C-13

■ C:\orabpel\samples\references\Reply (for Eclipse BPEL
Designer)

■ Oracle_
Home\integration\orabpel\samples\references\Reply
(for JDeveloper BPEL Designer)

6-10 Oracle BPEL Process Manager Developer’s Guide

5. Click OK.

A new partner link for the loan application approver Web service (United Loan)
appears.

Adding an Invoke Activity
Follow these instructions to create an invoke activity and a global input variable
named request. This activity initiates asynchronous BPEL process activity with the
loan application approver Web service (United Loan). The loan application approver
Web service uses the request input variable to receive the loan request from the client.

1. Drag an invoke activity from the Component Palette to after the receive activity.

2. Right-click either side of the BPEL process and select Variables from the menu.

The Variables window appears.

3. Select Variables and right-click, then select Create Variable.

See Also: "partnerLinkTypes for Asynchronous Services" on
page 6-4 for conceptual details about partner links

Calling an Asynchronous Service

Calling an Asynchronous Web Service 6-11

The Create Variable dialog box appears.

4. Enter the variable name and select the variable type from the options provided:

5. Click OK.

6. Return to the Invoke window.

7. Select the LoanService partner link from the Partner Link list and initiate from
the Operation list of the Invoke window.

8. Select the input variable you created in Step 4.

There is no output variable specified because the output variable is returned in the
receive operation. The invoke activity and the global input variable are created.

See Also: "Invoke and Receive Activities" on page 6-5 for conceptual
details about the invoke activity

6-12 Oracle BPEL Process Manager Developer’s Guide

Adding a Receive Activity
Follow these instructions to create a receive activity and a global output variable
named response. This activity waits for the loan application approver Web service’s
callback operation. The loan application approver Web service uses this output
variable to send the loan offer result to the client.

1. Drag a receive activity from the BPEL Palette to after the invoke activity you
created in "Adding an Invoke Activity" on page 6-10.

2. Change the receive activity name to receive_invoke.

3. Create a variable by invoking the Create Variable window as you did in Step 2 on
page 6-10.

4. Enter the following details:

5. Click Done.

6. Return to the Receive window.

7. Select LoanService from the Partner Link list and onResult from the Operation
list. Do not select the Create Instance check box.

8. Select the variable you created in Step 4.

Summary

Calling an Asynchronous Web Service 6-13

9. Click OK.

The receive activity and the output variable are created. Note that because the
initial receive activity in the LoanBroker.bpel file created the initial BPEL process
instance, a second instance does not need to be created.

Performing Additional Activities
In addition to the asynchronous-specific tasks, you must perform the following tasks.

■ Create an initial assign activity for data manipulation in front of the invoke
activity that copies the client’s input variable loan application request document
payload into the loan application approver Web service’s request variable
payload.

■ Create a second assign activity for data manipulation after the receive activity that
copies the loan application approver Web service’s response variable loan
application results payload into the output variable for the client to receive.

Questions and Answers

What does the createInstance attribute do?
You may have noticed a createInstance attribute in the initial receive activity of
the sequence section of the LoanBroker.bpel file. In this initial receive activity,
the createInstance element is set to yes. This starts a new instance of the BPEL
process. At least one instance startup is required for a conversation. For this reason,
you set the createInstance variable to no in the second receive activity.

 <!-- receive input from requestor -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:LoanBroker"
 operation="initiate" variable="input"
 createInstance="yes"/>

Summary
This chapter describes the concepts for a BPEL process that invokes an asynchronous
Web service. This service takes a loan application request document as input from a
client and asynchronously returns an approved loan offer.

6-14 Oracle BPEL Process Manager Developer’s Guide

Parallel Flow 7-1

7
Parallel Flow

Parallel flows enable a BPEL process to perform multiple tasks at the same time, which
is especially useful when you need to perform several time-consuming and
independent tasks.

This chapter contains the following topics:

■ Introduction

■ Use Case

■ Understanding Parallel Flow Concepts

■ Defining a Parallel Flow

■ The flowN Activity

■ Summary

7-2 Oracle BPEL Process Manager Developer’s Guide

Introduction
Figure 7–1 provides an overview of the BPEL process performing a parallel flow to
retrieve loan offers from two different Web services. Two asynchronous callbacks
execute in parallel, so that one callback does not have to wait for the other to complete
first. Each response is stored in a different global variable.

Figure 7–1 Parallel Flow Invocation

Use Case
Since the United Loan service can take up to several days to return a loan offer and
you also want to collect a loan offer from StarLoan, define your BPEL process so both
tasks run in parallel.

This example shows how to program the BPEL flow to perform two asynchronous
callbacks to loan services in parallel.

Understanding Parallel Flow Concepts
Sometimes the BPEL process must gather information from multiple asynchronous
sources. Since each callback can take an undefined amount of time (hours or days), it
takes too long to call each service one at a time. By breaking the calls into a parallel
flow, the BPEL process can invoke multiple Web services at once, and receive the
responses as they come in. This is much more time efficient.

See Also: The following samples:

■ C:\orabpel\samples\tutorials\106.ParallelFlows
(for Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\106.Pa
rallelFlows (for JDeveloper BPEL Designer)

Star
Loan

United
Loan

Initiate
service

<invoke>

Wait for
callback

<receive>

Wait for
callback

<receive>

<flow>

<sequence> <sequence>

BPEL
Process

WSDLWSDL

Initiate
service

<invoke>

Defining a Parallel Flow

Parallel Flow 7-3

Defining a Parallel Flow
A flow activity typically contains a number of sequence activities, and each sequence
is performed in parallel. A flow activity can also contain other activities (although not
in this example).

<flow name="flow-1">
 <sequence>

<scope name="UnitedLoan">
 <sequence>

<invoke name="invoke-2" partnerLink="unitedLoan"
 portType="services:LoanService" operation="initiate"
 inputVariable="loanApplication"/>
 <receive createInstance="no" name="receive-1"

 partnerLink="unitedLoan"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="loanOffer1"/>
 </sequence>
 </scope>
 </sequence>
 <sequence>
 <scope name="StarLoan">
 <sequence>
 <invoke name="invoke-1" partnerLink="StarLoan"
 portType="services:LoanService" operation="initiate"
 inputVariable="loanApplication"/>

<pick name="pick-1">.
.
.

</pick>
</sequence>

</scope>
</sequence>

</flow>

The above example shows two sequences, but the flow can have many sequences.

Follow these instructions to create a flow activity and a global input variable named
request. This activity initiates an asynchronous BPEL process activity with a loan
offer Web service (United Loan). The loan offer service uses the request input variable
to receive the loan request from the client.

This example shows how to create a flow activity in Eclipse BPEL Designer.

1. Click BPEL Designer > Process Map.

2. Drag a flow activity from the BPEL Palette into a scope activity.

7-4 Oracle BPEL Process Manager Developer’s Guide

3. The flow activity includes two branches, each with a box for functional elements.
Populate these boxes as you do a scope activity, either by building a function with
BPEL Palette activities or by dragging activities from your Process Map into the
boxes.

The flowN Activity
In the flow activity the number of parallel branches are determined by the BPEL code.
However, often the number of branches required is different depending on the
available information. The flowN activity creates multiple flows equal to the value of

See Also: The following documentation for examples of creating
flow activities in JDeveloper BPEL Designer:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ "Flow Activity" on page C-6

The flowN Activity

Parallel Flow 7-5

N, which is defined at runtime based on the data available and logic within the
process. An index variable increments each time a new branch is created, until the
index variable reaches the value of N.

The FlowN activity performs activities on an arbitrary number of data elements. As
the number of elements changes, the BPEL process adjusts accordingly.

The branches created by flowN perform the same activities, but use different data.
Each branch will use the index variable to look up input variables. The index variable
can be used in the XPATH expression to acquire the data specific for that branch.

For example, if there is an array of data the BPEL process uses a count activity to
determine the number of elements in the array. Then the process sets N to be the
number of elements. The index variable starts at a preset value (zero is the default),
and flowN creates a branches to retrieve each element of the array and perform
activities using data contained in that element. These branches are generated and
performed in parallel, using all the values between the initial index value and N.
FlowN terminates when the index variable reaches the value of N. So if the array
contain 3 elements, N is set to 3. Assuming the index variable begins at 1, the flowN
activity creates three parallel branches with indexes 1, 2, and 3.

FlowN can use data from other sources as well, including data obtained from web
services.

The following figure shows a console view of a flowN activity that looks up three
hotels. This is different from the view because instead of showing the BPEL process, it
shows how the process has actually executed. In this case there are three hotels, but the
number of branches changes to match the number of hotels available:

Figure 7–2 A Console View of the Execution of a FlowN activity

7-6 Oracle BPEL Process Manager Developer’s Guide

In the JDev version of the BPEL Designer, a flowN activity appears as follows:

Figure 7–3 FlowN Activity Setup in the Diagram View

By double clicking on the flowN activity, the flowN Wizard appears:

This wizard allows you to set the name of the flowN activity, enter an expression for
calculating the value of N, and defining the index variable.

The flowN Activity

Parallel Flow 7-7

BPEL Code Example of the FlowN Activity
The following is a reference implementation from a .bpel file that uses the flowN
activity to look up information on an arbitrary number of hotels:

 <sequence name="main">
 <!-- Received input from requestor.
 Note: This maps to operation defined in NflowHotels.wsdl
 The requestor send a set of hotels names wrapped into the "inputVariable"
 -->

The receive activity calls the client partner link to get the information flowN needs
to define N and look up hotel information.

 <receive name="receiveInput" partnerLink="client"
portType="client:NflowHotels" operation="initiate" variable="inputVariable"
createInstance="yes"/>
 <!--
 The 'count()' Xpath function is used to get the number of hotelName
 noded passed in.
 For lisibility, an intermediate varaible called "NbParallelFlow" is
 used to store the number of N flows being executed
 -->
 <assign name="getHotelsN">
 <copy>
 <from
expression="count(bpws:getVariableData('inputVariable','payload','/client:NflowHot
elsProcessRequest/client:ListOfHotels/client:HotelName'));"/>
 <to variable="NbParallelFlow"/>
 </copy>
 </assign>
 <!-- Initiating the FlowN activity
 The N value is initialized with the value stored in the "NbParallelFlow"
variable
 The variable call "Index" is defined as the index variable
 NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
 -->

The flowN activity begins here. After defining a name for the activity of FlowN, N is
defined as a value from the inputVariable, which is the number of hotel entries. The
activity also assigns “index” as the index variable.

 <bpelx:flowN name="FlowN" N="bpws:getVariableData('NbParallelFlow')"
indexVariable="Index">
 <sequence name="Sequence_1">
 <!-- Fetching each hotelName by indexing the "inputVariable" with the
"Index" variable.
 Note the usage of the "concat()" Xpath function to create the
expression
 accessing the array element.
 -->

The following copy rule uses the index variable to concatenates the hotel entries into a
list.

 <assign name="setHotelId">
 <copy>
 <from
expression="bpws:getVariableData('inputVariable','payload',concat('/client:NflowHo
telsProcessRequest/client:ListOfHotels/client:HotelName[',bpws:getVariableData('In
dex'),']'))"/>

7-8 Oracle BPEL Process Manager Developer’s Guide

 <to variable="InvokeHotelDetailInputVariable" part="payload"
query="/ns2:hotelInfoRequest/ns2:id"/>
 </copy>
 </assign>

Using the hotel information, an invoke looks up detailed information for each hotel
through a Web service.

 <!-- For each hotel, invoke the Web service giving detailed information on
the hotel
 -->
 <invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
portType="ns2:getHotelDetail" operation="process"
inputVariable="InvokeHotelDetailInputVariable"
outputVariable="InvokeHotelDetailOutputVariable"/>
 <!-- This procees doesn't do anything with the retrieved inforamtion.
 In the real life, it could be then used to continue the process.
 Note: Meanwhile an indexing variable is used, unlike a while loop, the
activities a executed
 in parallel, not sequentially.
 -->
 </sequence>
 </bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client partner
link:

 <invoke name="callbackClient" partnerLink="client"
portType="client:NflowHotelsCallback" operation="onResult"
inputVariable="outputVariable"/>
 </sequence>
 </sequence>

Summary
This chapter shows how to create a parallel flow using the flow activity to perform
multiple tasks simultaneously. This BPEL process performs two asynchronous
callbacks in parallel, which can take considerably less time than performing the two
callbacks in series. Another activity called flowN allows the BPEL PM to use data to
spawn the necessary number of parallel flows at run time, and to perform the same
activities on multiple data elements. Therefore, as the information available to the
BPEL process changes, so does the behavior of the process.

Conditional Branching 8-1

8
Conditional Branching

This chapter describes conditional branching. Conditional branching introduces
decision points to control the flow of execution of a BPEL process.

This chapter contains the following topics:

■ Introduction

■ Use Case

■ Understanding Conditional Branching Concepts

■ Conditional Branching

■ The While Activity

■ Summary

8-2 Oracle BPEL Process Manager Developer’s Guide

Introduction
Figure 8–1 provides an overview of the BPEL process performing a conditional
branching activity to select a path (or branch) based on two pieces of data; in this case,
two loan offers.

Figure 8–1 Conditional Branching

Use Case
The BPEL process has collected two loan offers, one from United Loan and another
from Star Loan. This chapter describes how to design the BPEL process to select the
loan with the lowest annual percentage rate (APR) automatically.

Understanding Conditional Branching Concepts
BPEL applies logic to make choices through conditional branching. A number of
branches are set up, and each branch has a condition in the form of an XPath
expression. If the expression is true, then the branch is executed. If the expression is
false, then the BPEL process moves to the next branch condition, until it either finds a
valid branch condition, encounters an otherwise branch, or runs out of branches. If
more than one branch condition is true, then the first true branch is executed.

Conditional Branching
In Chapter 7, "Parallel Flow", the flow activity of the BPEL process gathered two loan
offers at the same time, but did not do any comparison of the offers. Each offer was
stored in its own global variable. To compare the two offers and make decisions based
on that comparison, the BPEL flow requires a switch activity.

A switch activity, like a flow activity, has multiple branches. In this example, there are
only two branches. The first branch is executed if a case condition containing an XPath
Boolean expression is met; otherwise, the second branch is executed.

<switch name="switch-1">
<case condition="bpws:getVariableData('loanOffer1','payload',
'/autoloan:loanOffer/autoloan:APR') <;

Select
starLoan
<assign>

<switch>

<case
conditon 1>

<otherwise>

BPEL
Process

condition 1 Boolean XPATH Expression

Select
unitedLoan
<assign>

?

Conditional Branching

Conditional Branching 8-3

bpws:getVariableData('loanOffer2','payload','/autoloan:loanOffer/autoloan:APR
')">

<assign name="selectUnitedLoan">
<copy>

<from variable="loanOffer1" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>

</copy>
</assign>

</case>
<otherwise>

<assign name="selectStarLoan">
<copy>
<from variable="loanOffer2" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>

</copy>
</assign>

</otherwise>
</switch>

Adding a Switch Activity
To add a switch activity to your BPEL flow in JDeveloper BPEL Designer:

1. Drag a switch activity from the Component Palette into your BPEL flow.

2. The switch activity includes two branches by default, each with a box for
functional elements.

8-4 Oracle BPEL Process Manager Developer’s Guide

3. Click the first branch to highlight it, right-click, and select Edit from the menu.

The Switch Case window appears.

4. Enter an XPath Boolean expression in the Expression field. If this expression is
true, then the first branch is executed. If it is false, then the second branch is
executed. You may also include comments in the Name field.

In the case of the MyLoanFlow tutorial, the two loan offers are stored in the global
variables loanOffer2 and loanOffer1. Each loan offer contains several pieces of
data; one of those pieces of data is the APR of the loan offer. The BPEL flow chooses
the loan with the lowest APR. Therefore, if loanOffer1 has a higher APR, then the
first branch selects loanOffer2 by assigning loanOffer2’s payload to
selectedLoanOffer’s payload. However, if loanOffer1 does not have a lower
APR than loanOffer2, then the otherwise case assigns loanOffer1’s payload to
selectedLoanOffer’s payload.

The XPath Boolean expression for this case is:

bpws:getVariableDate(’loanOffer1’,’payload’,’/loanOffer/APR’) >
bpws:getVariableData(’loanOffer2’,’payload’,’/loanOffer/APR’)

The While Activity
The while looping conditional activity enables you to repeat an activity until a certain
success criteria has been met. For example, if a critical Web service is returning a
service busy message in response to requests, you can use the while activity to keep
polling the service until it becomes available. The condition for the while activity is
that the latest message received from the service is busy, and the operation within the
while activity is to check the service again. Once a the Web service returns a message
other than “service busy”, the while activity terminates and the BPEL process
continues (ideally with a valid response from the Web service).

See Also: The following documentation for examples of creating
switch activities in JDeveloper BPEL Designer:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ "Switch Activity" on page C-15

■ Oracle_
Home\integration\orabpel\samples\references\Switc
h (for JDeveloper BPEL Designer)

■ c:\orabpel\samples\references\Switch (for Eclipse
BPEL Designer)

Summary

Conditional Branching 8-5

The following syntax is from the Business Process Execution Language for Web Services
Specification:

 <while condition="bool-expr" standard-attributes>
 standard-elements
 activity
 </while>

Summary
This chapter discusses the concepts and procedures for creating a conditional flow that
selects different behavior based on comparing two pieces of information. The BPEL
process in this example considers two loan offers, and selects the offer with the lower
APR. This chapter also discusses the while looping conditional activity.

See Also: The following documentation for examples of defining a
while activity in JDeveloper BPEL Designer:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ "While Activity" on page C-20

■ Oracle_
Home\integration\orabpel\samples\references\While
(for JDeveloper BPEL Designer)

■ c:\orabpel\samples\references\While (for Eclipse BPEL
Designer)

8-6 Oracle BPEL Process Manager Developer’s Guide

Fault Handling 9-1

9
Fault Handling

Fault handling allows a BPEL process to deal with error messages or other exceptions
returned by outside Web services, and to generate error messages in response to
business or run time faults.

This chapter contains the following topics:

■ Introduction

■ Use Case

■ Defining a Fault Handler

■ Taxonomy of BPEL Faults

■ Using the Scope Activity

■ Throwing Internal Faults

■ Returning External Faults

■ Fault Handler Within a Scope

■ Compensation

■ The Terminate Activity

■ Catching Run-Time Faults Example

■ Eclipse BPEL Designer Example

■ Summary

9-2 Oracle BPEL Process Manager Developer’s Guide

Introduction
Web services occasionally return errors or faults instead of the data normally expected.
There are two kinds of faults: business faults and run time faults. Business faults are
the result of a problem with the information, for example when a social security
number is not found in the database. Run time faults are the result of problems within
the BPEL process or the Web service themselves, as when data cannot be copied
properly because the variable name is incorrect.

Use Case
This chapter uses an example of a credit rating service returning a negative credit
message instead of a credit rating number. This chapter also shows how to add a fault
handler to your BPEL process to process the message.

Defining a Fault Handler
Fault handlers define how the BPEL process responds when the Web services return
data other than what is normally expected (for example, returning an error message
instead of a number). An example of a fault handler is where the Web service normally
returns a credit rating number, but instead returns a negative credit message. In this
example, the credit rating variable is set at -1000, as shown in Figure 9–1.

See Also: The following samples:

■ C:\orabpel\samples\tutorials\107.Exceptions (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\107.Ex
ceptions (for JDeveloper BPEL Designer)

Defining a Fault Handler

Fault Handling 9-3

Figure 9–1 Fault Handling

The following code segment defines the fault handler for this operation:

<faultHandlers>
<catch faultName="services:NegativeCredit" faultVariable="crError">
<assign name="assign-2">

<copy>
<from expression="-1000">
</from>
<to variable="input" part="payload"

 query="/autoloan:loanApplication/autoloan:creditRating"/>
</copy>

</assign>
</catch>

</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is
a catch activity, which defines the fault name and variable, and the copy instruction
that sets the creditRating variable to -1000.

When selecting Web services for the BPEL process, determine the possible faults that
may be returned and set up a fault handler for each one.

BPEL
Process

<receive>

Credit
Rating
Service

Negative
Credit

<scope>

WSDL

prepare
crin

<assign>

<scope>

credit to
-1000

<assign>

Read
crOut

<assign>

WSDL

d1

d3

f1

<reply>d2

call
service

<invoke>

9-4 Oracle BPEL Process Manager Developer’s Guide

Taxonomy of BPEL Faults
A BPEL fault has a fault name called a Qname and a possible messageType. There are
two categories of faults in BPEL: business fault and run-time fault.

Business faults are application specific faults that are generated when there is a
problem with the information being processed. A business fault occurs when an
application executes a throw activity or when an invoke activity receives a fault as a
response. The fault name of a business fault is specified by the BPEL process. The
messageType, if applicable, is defined in the WSDL.

Using the Scope Activity
The scope activity is one of the key BPEL development tools. A scope is a container
and a context for other activities. A scope provides handlers for faults, events, and
compensation, as well as data variables and correlation sets. Using a scope simplifies
your BPEL flow by grouping functional structures together, allowing you to collapse
them into what appears to be a single element in the BPEL designer (either JDeveloper
BPEL Designer or Eclipse BPEL Designer).

The following code example shows a scope activity. In this case, the process for getting
a credit rating based on a customer’s social security number has been placed inside a
scope named getCreditRating. At the level of the BPEL code, this identifies
functional blocks of code and sets them apart visually. In the BPEL designer (either
Eclipse BPEL Designer or JDeveloper BPEL Designer), the activities contained inside
the scope can be collapsed into a single visual element, or expanded when necessary.

<scope name="getCreditRating">
<variables>

<variable name="crError"
 messageType="services:CreditRatingServiceFaultMessage"/>

</variables>
<assign name="assign-2">

<copy>
<to variable="input" part="payload"
query="/autoloan:loanApplication/autoloan:creditRating"/>

</copy>
</assign>

</sequence>
</scope>

In the user interface, the getCreditRating scope appears as the following when
expanded:

See Also: BPEL Technical Note #007, Managing BPEL Run-time
Exceptions, at:
http://www.oracle.com/technology/products/ias/bpel/h
tdocs/orabpel_technotes.tn007.html for more detailed
information on BPEL fault codes

Using the Scope Activity

Fault Handling 9-5

The collapsed scope appears as a single design element, as follows:

To add a scope (for this example, using Eclipse BPEL Designer):

1. From the BPEL Palette (by default, in the upper right corner of the Designer in the
Process Map view), click More Activities to open the full palette menu.

9-6 Oracle BPEL Process Manager Developer’s Guide

2. Click and drag a scope into the Process Map.

3. Open the scope by double-clicking it or by single-clicking the + sign.

Returning External Faults

Fault Handling 9-7

4. Drag activities from the BPEL Palette to build the function within the scope. You
can also drag the activities composing a function from your existing flow in the
Process Map and drop them into the scope.

Throwing Internal Faults
A BPEL application can generate fault messages as well as receive them. The throw
activity has three elements: its name, the name of the faultName, and the
faultVariable. If you add a throw activity to your BPEL process, it automatically
includes a copy rule that copies the fault name and type into the output payload.
Here is a code sample of a throw activity:

<throw name="delay" faultName="fault-1" faultVariable="fVar"/>
<invoke name="invokeStockQuoteService" partnerLink="StockQuoteService"/>
<assign>
 <copy>

<from variable="response" part="result" query="/result"/>
<to variable="output" part="payload" query="/tns:result"/>

</copy>
</assign>

You can see the fault elements, name, and partner link of the service to which the
BPEL process sends the fault, and the copy rule that packages the message.

Returning External Faults
A BPEL process can also send a fault to another application to indicate a problem, as
opposed to throwing an internal fault. In a synchronous operation, the reply activity

See Also: The following documentation for examples of creating
scope activities in JDeveloper BPEL Designer:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ "Scope Activity" on page C-15

See Also: The following documentation for examples of creating
throw activities:

■ "Throw Activity" on page C-17

■ Oracle_
Home\integration\orabpel\samples\references\Throw
(for JDeveloper BPEL Designer)

■ c:\orabpel\samples\references\Throw (for Eclipse BPEL
Designer)

9-8 Oracle BPEL Process Manager Developer’s Guide

can return the fault. In an asynchronous operation, the invoke activity performs this
function.

Returning a Fault in a Synchronous Interaction
The syntax of a reply activity that returns a fault in a synchronous interaction is as
follows:

<reply partnerlinke="partner-link-name"
 portType="port-type-name"
 operation="operation-name"
 variable="variable-name" (optional)
 faultName="fault-name">
</reply>

Always returning a fault in response to a synchronous request is not very useful. A
useful way of employing this activity is to make it part of a conditional branch, where
the first branch is executed if the data requested is available. If the requested data is
not available, then the BPEL process returns a fault with this information.

Returning a Fault in an Asynchronous Interaction
In an asynchronous interaction, the client does not wait for a reply; the reply activity is
not used to return a fault. Instead, the BPEL process returns a fault using a callback
operation on the same port type that normally receives the requested information,
with an invoke activity.

Fault Handler Within a Scope
If a fault is not handled, it creates a faulted state that migrates up through the
application and can throw the entire process into a faulted state. To prevent this,
contain the parts of the process that have the potential to receive faults within a scope.
A scope includes fault handling capabilities. The catch activity works within a scope to
catch faults and exceptions before they can throw the entire process into a faulted
state.

You can specify specific fault names in the catch activity to respond in a specific way to
an individual fault. There is also a catchAll activity that catches any faults not already
handled by name-specific catch activities.

See Also: Chapter 8, "Conditional Branching" for more information
on setting up the conditional structure

See Also: The following documentation for examples of creating
fault handling:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ "Catch Activity" on page C-4

■ Oracle_
Home\integration\orabpel\samples\references\Catch
(for JDeveloper BPEL Designer)

■ c:\orabpel\samples\references\Catch (for Eclipse BPEL
Designer)

Compensation

Fault Handling 9-9

The Empty Activity at runtime
There is often a need to use an activity that does nothing (for example, when a fault
needs to be caught and suppressed). The empty activity enables you to insert a no-op
instruction into a business process. The syntax to use is minimal:

 <empty standard-attributes>
 standard-elements
 </empty>

If no catch or catchAll is selected, the fault is not caught by the current scope and is
rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown to)
the global process scope, and there is no matching fault handler for the fault at the
global level, the process terminates abnormally. This is as though a terminate activity
had been performed.

Consider the following example:

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar">
 <empty/>
 </catch>
 <catch faultName="x:foo" faultVariable="bar">
 <empty/>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
</faulthandlers>

Assume that a fault named x:foo is thrown. The first catch is selected if the fault
carries no fault data. If there is fault data associated with the fault, the third catch is
selected if the type of the fault's data matches the type of variable bar. Otherwise, the
default catchAll handler is selected. Finally, a fault with a fault variable whose type
matches the type of bar and whose name is not x:foo is processed by the second
catch. All other faults are processed by the default catchAll handler.

Compensation
Compensation is when the BPEL process cannot complete a series of operations after
some of them have already completed and the BPEL process must backtrack and undo
the previously completed transactions. For example, if a BPEL process is designed to
book a rental car, a hotel, and a flight, it may book the car and the hotel and then be
unable to book a flight for the right day. In this case, the BPEL flow performs
compensation by going back and unbooking the car and the hotel.

The compensation handler can be invoked by using the compensate activity, which
names the scope for which the compensation is to be performed (that is, the scope
whose compensation handler is to be invoked). A compensation handler for a scope is
available for invocation only when the scope completes normally. Invoking a
compensation handler that has not been installed is equivalent to the empty activity (it

See Also:

■ "Catch Activity" on page C-4

■ "Empty Activity" on page C-6

9-10 Oracle BPEL Process Manager Developer’s Guide

is a no-op). This ensures that fault handlers do not have to rely on state to determine
which nested scopes have completed successfully. The semantics of a process in which
an installed compensation handler is invoked more than once are undefined.

Note that in case an invoke activity has a compensation handler defined inline, the
name of the activity is the name of the scope to be used in the compensate activity.

<compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

The ability to explicitly invoke the compensate activity is the underpinning of the
application-controlled error-handling framework of BPEL4WS. This activity can be
used only in the following parts of a business process:

■ In a fault handler of the scope that immediately encloses the scope for which
compensation is to be performed.

■ In the compensation handler of the scope that immediately encloses the scope for
which compensation is to be performed.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the instances of the
compensation handlers in the successive iterations are invoked in reverse order.

If the compensation handler for a scope is absent, the default compensation handler
invokes the compensation handlers for the immediately enclosed scopes in the reverse
order of the completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity,
causes this default behavior to be invoked explicitly. This is useful when an enclosing
fault or compensation handler must perform additional work, such as updating
variables or sending external notifications, in addition to performing default
compensation for inner scopes. Note that the compensate activity in a fault or
compensation handler attached to scope S causes the default-order invocation of
compensation handlers for completed scopes directly nested within S. The use of this
activity can be mixed with any other user-specified behavior except the explicit
invocation of <compensate scope="Sx"/> for scope Sx nested directly within S.
Explicit invocation of compensation for such a scope nested within S disables the
availability of default-order compensation, as expected.

The Terminate Activity
The terminate activity immediately terminates the behavior of a business process
instance within which the terminate activity is performed. All currently running
activities must be terminated as soon as possible without any fault handling or
compensation behavior. Note that this does not give you any notification of the status
of the BPEL process. If you are going to use the terminate activity, first program
notifications to the interested parties.

<terminate standard-attributes>
 standard-elements
 </terminate>

See Also: "Compensate Activity" on page C-5

Eclipse BPEL Designer Example

Fault Handling 9-11

Catching Run-Time Faults Example
The following procedure shows you how to use the provided examples to generate a
fault and define a fault handler to catch it. In this case, you modify a WSDL file to
generate a fault, and create a catch attribute to catch it.

1. Import RuntimeFault.wsdl into your process WSDL (under the Oracle_
Home\integration\orabpel\system\xmllib directory).

2. Declare a variable with messageType “bpelx:RuntimeFaultMessage”.

3. Catch it using <catch faultName="bpelx:remoteFault" |
“bpelx:bindingFault” faultName="varName">.

Eclipse BPEL Designer Example
To define a fault handler in Eclipse BPEL Designer, follow these steps:

1. Wrap the activity in a scope by selecting a scope from the BPEL Palette, and
dragging it into your BPEL process just above the invoke credit rating activity.

See Also: The following documentation for examples of creating
terminate activities:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ "Terminate Activity" on page C-16

■ c:\orabpel\samples\references\Terminate (for Eclipse
BPEL Designer)

■ Oracle_Home\integration\orabpel\samples\Terminate
(for JDeveloper BPEL Designer)

9-12 Oracle BPEL Process Manager Developer’s Guide

2. Expand the scope and drag the invoke credit rating activity into the scope.

At the bottom of the scope area, there are three icons: a caution sign, a lightning
bolt, and a clock.

3. Click the caution sign, and select Add catch.

Eclipse BPEL Designer Example

Fault Handling 9-13

The New Catch Wizard window appears:

4. Select the fault name and the fault variable from the drop-down menus provided.

This defines where the fault comes from and what fault activates this fault handler.

5. Drag an assign activity into the BPEL process below the catch activity.

9-14 Oracle BPEL Process Manager Developer’s Guide

6. Add copy rules to the assign activity.

This defines what the BPEL flow does when it receives the defined fault.

Summary

Fault Handling 9-15

7. Click the Upper Element button to return to the Process Map view.

Summary
BPEL supports fault handlers to cope with faults, errors, or exceptions returned by the
called Web services. This chapter demonstrates the application of a fault handler, a
fault handler’s structure, and how to create a fault handler in a BPEL process.

See Also: The following documentation for examples of defining
fault handling:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ "Catch Activity" on page C-4

■ Oracle_
Home\integration\orabpel\samples\references\Catch
(for JDeveloper BPEL Designer)

■ c:\orabpel\samples\references\Catch (for Eclipse BPEL
Designer)

9-16 Oracle BPEL Process Manager Developer’s Guide

Incorporating Java/J2EE Code in BPEL Processes 10-1

10
Incorporating Java/J2EE Code in BPEL

Processes

This chapter demonstrates how you can embed sections of Java code into a BPEL
process.

This chapter contains the following topics:

■ Introduction

■ Use Case

■ Using Java Code with WSIF Binding

■ Using Java Code Wrapped as a SOAP Service

■ Embedding Java Code in BPEL

■ JDeveloper BPEL Designer Example

■ Summary

10-2 Oracle BPEL Process Manager Developer’s Guide

Introduction
This chapter demonstrates how you can embed sections of Java code into a BPEL
process. This is particularly useful when there is already Java code that can perform
the desired function, and you want to use the existing code rather than start over with
BPEL.

Use Case
You have a customer entity bean that retrieves a social security number based on an
e-mail id. How can you invoke that bean from within the BPEL process?

Using Java Code with WSIF Binding
Java code can be used from the BPEL process if the Java application has a BPEL
compatible interface. Two compatible interfaces are as follows:

■ WSIF binding

■ Wrapping as a SOAP service

WSIF Binding is the most common way of using Java code in a BPEL process.

WSIF binding enables a BPEL process to invoke an EJB through native J2EE protocol
(local or RMI).

With WSIF binding, a section of the WSDL file defines the protocol for communicating
between Java and XML. This approach maintains Java’s transactionality and does not
sacrifice performance, but has less interoperability (each application server needs a
specific binding) and currently less tool support than SOAP services. The binding
must currently be written by hand.

Using Java Code Wrapped as a SOAP Service
A Java application wrapped as a SOAP service appears as any other Web service,
which can be used by many different kinds of applications. There are also tools
available for writing SOAP wrappers. However, a Java application wrapped as a
SOAP service:

■ Sacrifices performance, because interactions are constantly being mapped back
and forth between the Java code and the SOAP wrapper

See Also:

■ C:\orabpel\samples\tutorials\702.Bindings for
Eclipse BPEL Designer or Oracle_
Home\integration\orabpel\samples\tutorials\702.Bi
ndings for examples of WSIF bindings for EJB, HTTP, and Java.
Bindings must be written to match the application server.

■ C:\orabpel\samples\demos\BankTransferDemo\BankTrans
ferFlow (for Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\demos\BankTransf
erDemo\BankTransferFlow (for JDeveloper BPEL Designer)

Embedding Java Code in BPEL

Incorporating Java/J2EE Code in BPEL Processes 10-3

■ Loses interoperability, that is, the ability to perform several operations in an
all-or-none mode (such as debiting one bank account while crediting another,
where either both transactions must be completed, or neither of them)

Embedding Java Code in BPEL
Another way to make use of Java in a BPEL process is to embed the code directly into
the BPEL process using the Java BPEL exec extension bpelx:exec. The benefits of
this approach are speed and transactionality. However, only fairly small segments of
code can be incorporated.

The bpelx:exec Tag
The BPEL tag bpelx:exec enables you to embed a snippet of Java code within a
BPEL process. The server executes any snippet of Java code contained within a
bpelx:exec activity, within its JTA transaction context.

Java exceptions are converted into BPEL faults and put into a BPEL process.

The Java snippet can propagate its JTA transaction to session and entity beans that it
calls.

XML Facade
An XML facade can be used to simplify DOM manipulation. Oracle BPEL Process
Manager provides a lightweight JAXB-like Java object model on top of XML (called a
facade). XML facade provides a Java bean-like front end for an XML
document/element that has a schema. Facade classes can provide easy manipulation
of the XML document and element in Java programs.

The facade classes are generated using the schemac tool shipped with Oracle BPEL
Process Manager. You can run schemac *.wsdl / *.xsd to generate the facades
from WSDL or XSD files.

Oracle ships a sample that showcases the use of facade classes in Java binding. This is
similar to your use case. This sample is in the following directories:

■ c:\orabpel\samples\tutorials\702.Bindings\JavaBinding (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\702.Bindings\JavaB
inding (for JDeveloper BPEL Designer)

Review the sample to see how it is done. Some points of interest in that sample are as
follows:

1. In build.xml, you can see a task called schemac. This is basically the same as
doing schemac at the command line. This generates the source of the facade
classes.

2. The Java binding provider class HelperService.java is under
702.Bindings\JavaBinding\src\com\otn\services. It has one method:

public CommentsType addComment(CommentsType payload, CommentType comment)

which uses the facade classes CommentsType and CommentType.

3. In HelperService.wsdl, a Java binding service is defined. See the
format:typeMapping section of Java binding:

10-4 Oracle BPEL Process Manager Developer’s Guide

 <format:typeMapping encoding="Java" style="Java">
 <format:typeMap typeName="tns:commentType"
formatType="com.otn.services.CommentType" />
 <format:typeMap typeName="tns:commentsType"
formatType="com.otn.services.CommentsType" />
 </format:typeMapping>

which maps XML types to the corresponding facade classes.

bpelx:exec Built-in Methods
A set of built-in methods enable you to read and update scope variables, instance
metadata, and audit trails. Table 10–1 describes these methods.

See Also: "schemac" on page 19-24

Table 10–1 Built in Methods for <bpelx:exec>

Method Name Description

Object lookup(String name) JNDI access

Locator getLocator() BPEL PM Locator

long getInstanceId() Unique id associated with each instance

String setTitle(String title) /
String getTitle()

Title of this instance

String setStatus(String status) /
String getStatus()

Status of this instance

void setIndex(int i, String value)
/ String getIndex(int i)

Six indexes can be used for search

void setPriority(int priority) /
int getPriority()

Priority

void setCreator(String creator) /
String getCreator()

Who initiated this instance

void setCustomKey(String customKey
) / String getCustomKey()

Second primary key

void setMetadata(String metadata)
/ String getMetadata ()

Metadata for generating lists

String getPreference(String key) Access preference defined in bpel.xml

void addAuditTrailEntry(String
message, Object detail)

Add an entry to the audit trail

void addAuditTrailEntry(Throwable t) Access file stored in the suitcase

Object getVariableData(String name)
throws BPELFault

Access and update variables stored in the
scope

Object getVariableData(String name,
String partOrQuery) throws BPELFault

Object getVariableData(String name,
String part, String query)

void setVariableData(String name,
Object value)

void setVariableData(String name,
String part, Object value)

JDeveloper BPEL Designer Example

Incorporating Java/J2EE Code in BPEL Processes 10-5

JDeveloper BPEL Designer Example
JDeveloper BPEL Designer enables you to add the bpelx:exec activity, and copy the
code snippet into a dialog box.

1. Select the Java Embedding activity (with the coffee cup icon) from the Component
Palette.

2. Drag the activity into your BPEL process.

3. Double-click the Java Embedding activity.

4. The Java Embedding window appears. Enter (or cut and paste) the Java code into
the Code Snippet field:

void setVariableData(String name,
String part, String query, Object
value)

Table 10–1 (Cont.) Built in Methods for <bpelx:exec>

Method Name Description

10-6 Oracle BPEL Process Manager Developer’s Guide

Summary
This chapter demonstrates how you can embed sections of Java code into a BPEL
process. One way to integrate an existing Java component into a BPEL process is by
including an inline code snippet using bpelx:exec. This snippet is executed within
the transaction context of Oracle BPEL Server. This method allows you to propagate
that transaction to your own session and entity beans.

A set of built-in methods enable the bpelx:exec snippet to read and update
variables, change instance meta data, and throw faults.

An XML facade can be used within code to simplify DOM manipulation.

See Also: "Java Embedding Activity" on page C-9 for additional
details about this activity

Events and Timeouts 11-1

11
Events and Timeouts

This chapter describes how to use events and timeouts. Since asynchronous Web
services can take a long time to return a response, your BPEL process must be able to
time out or give up waiting and continue with the rest of the flow after a certain
amount of time.

This chapter contains the following topics:

■ Introduction

■ Use Case

■ The pick Activity

■ The Wait Activity

■ JDeveloper BPEL Designer Example

■ Synchronous Processes

■ Summary

11-2 Oracle BPEL Process Manager Developer’s Guide

Introduction
Since asynchronous Web services can take a very long time to return a response, your
BPEL process must be able to time out, or give up waiting and continue with the rest
of the flow after a certain amount of time. The pick activity allows the BPEL flow to
deal with an either/or case; that is, continue when either condition A (receive a
response) or condition B (wait 12 hours) is satisfied. The pick activity can also be used
for other either/or choices as well.

Use Case
In this example, the BPEL process is programmed to wait 1 minute for a Star Loan
response. If Star Loan does not respond in one minute, then the United Loan offer is
automatically selected. In the real world, the time limit is more like 48 hours. However,
for this example you do not want to wait that long to see if your BPEL process is
working properly.

The pick Activity
The pick activity provides two branches, each one with a condition. The branch that
has its condition satisfied first is executed. For the loan offer timeout example, one
branch’s condition is to receive the loan offer, and the other branch’s condition is to
wait a certain amount of time. Figure 11–1 provides an overview.

Figure 11–1 The pick Activity

See Also: The following sample files:

■ C:\orabpel\samples\tutorials\108.Timeouts (for
Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\108.Ti
meouts (for JDeveloper BPEL Designer)

Initiate
service

<invoke>

Wait for
callback

<onMessage>

Logic
Post

Callback

Star
Loan

Logic
Post

Timeout

Time out
in 1M

<onAlarm>

<pick>

BPEL
Process

WSDL

The pick Activity

Events and Timeouts 11-3

The following code segment defines the pick activity for this operation:

 <pick>
 <!-- receive the result of the remote process -->
 <onMessage partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="loanOffer">

 <assign>
 <copy>
 <from variable="loanOffer" part="payload"/>
 <to variable="output" part="payload"/>
 </copy>
 </assign>

 </onMessage>
 <!-- wait for one minute, then timesout -->
 <onAlarm for="PT1M">
 <assign>
 <copy>
 <from>
 <loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Expired</providerName>
 <selected type="boolean">false</selected>
 <approved type="boolean">false</approved>
 <APR type="double">0.0</APR>
 </loanOffer>
 </from>
 <to variable="loanOffer" part="payload"/>
 </copy>
 </assign>
 </onAlarm>
</pick>

The pick activity contains two branches, the onMessage branch and the onAlarm
branch. The onMessage branch contains the code for receiving a reply from the Star
Loan service, while the onAlarm branch contains the code for a timeout, in this case
after one minute. Whichever branch completes first is executed; the other branch is
not.

The onMessage code is the same as the code for receiving a response from the Star
Loan service before the timeout was added.

The onAlarm code has a time associated with it. This time is defined as PT1M in this
case, which means to wait one minute. In this item, S stands for seconds, M for minute,
H for hour, D for day, and Y for year. Therefore, a time limit of 1 year, 3 days, and 15
seconds is entered as PT1Y3D15S. The remainder of the code sets the loan variables
selected and approved to false, sets the annual percentage rate (APR) at 0.0,
and copies this information into the loanOffer variable.

For more detailed information on the time duration format, see the duration section of
the most current XML Schema Part 2: Datatypes document at:

http://www.w3.org/TR/xmlschema-2/#duration

11-4 Oracle BPEL Process Manager Developer’s Guide

The Wait Activity
The wait activity allows you to wait for a given time period or until a certain time has
passed. Exactly one of the expiration criteria must be specified.

<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

JDeveloper BPEL Designer Example
To define a timeout in JDeveloper BPEL Designer, follow these steps:

1. Select the pick attribute from the Component Palette, and drag it into the
appropriate part of your BPEL process. In this case, place it just before the receive
activity for the Star Loan service.

See Also: The following samples:

■ C:\orabpel\samples\references\Pick (for Eclipse BPEL
Designer)

■ Oracle_
Home\integration\orabpel\samples\references\Pick
(for JDeveloper BPEL Designer)

■ "Pick Activity" on page C-11

See Also: The following documentation for examples of defining a
wait activity in JDeveloper BPEL Designer:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ "Wait Activity" on page C-19

JDeveloper BPEL Designer Example

Events and Timeouts 11-5

The pick activity includes the onMessage and onAlarm branches.

2. Edit the onAlarm activity so that the time limit is 1 minute instead of 1 hour by
double-clicking the onAlarm branch.

11-6 Oracle BPEL Process Manager Developer’s Guide

3. Press OK when complete.

4. Double-click the onMessage activity, and edit its attributes to receive the response
from the loan service.

5. Put empty assign activities in the Drop activity here areas below the onMessage
and onAlarm branches. In other instances, this space can contain additional logic
and processing.

Summary

Events and Timeouts 11-7

Synchronous Processes
For synchronous processes that connect to a remote database, you must increase the
syncMaxWaitTime timeout property in the Oracle_
Home\integration\orabpel\domains\default\config\domain.xml file:

<property id="syncMaxWaitTime">
 <name>Delivery result receiver maximum wait time</name>
 <value>60000000</value>
 <comment>
 <![CDATA[The maximum time the process result receiver will wait for a
result before returning. Results from asynchronous BPEL processes are
retrieved synchronously via a receiver that will wait for a result from the
container.
 <p/>
 The default value is 60 seconds.]]>
 </comment>
 </property>

Summary
Instead of performing multiple operations at the same time as with the flow attribute,
the pick activity enables you to define a number of operations such that only the first
one to complete is executed. The example in this chapter is of a pick activity where one
branch is an asynchronous callback from the Star Loan service, and the other branch is
a timeout set at one minute.

Note: For Eclipse BPEL Designer, domain.xml is located in the
c:\orabpel\domains\default\config directory.

11-8 Oracle BPEL Process Manager Developer’s Guide

Invoking a BPEL Process 12-1

12
Invoking a BPEL Process

This chapter shows how a JAVA/JSP application can call a BPEL process in order to
perform functions or use services.

This chapter contains the following topics:

■ Introduction

■ Use Case

■ Sending Messages to a BPEL Process from a Java/JSP Application

■ Summary

12-2 Oracle BPEL Process Manager Developer’s Guide

Introduction
In order for BPEL to be useful, it must be able to interact with Web interfaces. This
chapter shows how a JAVA/JSP application can call a BPEL process to perform
functions or use services. A BPEL process is itself a Web service, defining and
supporting a client interface through WSDL and SOAP. However, BPEL processes
deployed on Oracle BPEL Process Manager are also made available to clients through
a Java API. This chapter describes how to invoke BPEL processes, both synchronous
and asynchronous, through either SOAP or Java.

Use Case
In this example, you can log onto a Web site, enter a social security number, and get a
credit rating in return. The user Web interface is provided by a JSP file, which takes the
input and passes it to a BPEL process to get back a credit rating.

Sending Messages to a BPEL Process from a Java/JSP Application
A BPEL process can be invoked as a Web Service through a WSDL/SOAP interface or
as a Java component through its client Java interface. The application puts the request
in the form of a payload that then goes to the BPEL process. The BPEL process receives
the payload and responds with a payload containing the information that the
application requested.

Figure 12–1 illustrates how an application interacts with a BPEL process through a
client partner link, using one of a number of possible protocols.

Figure 12–1 Application Interaction with a BPEL Process

See Also: The tutorial at
http://www.oracle.com/technology/products/ias/bpel/p
df/orabpel-Tutorial7-InvokingBPELProcesses.pdf

See Also: The following sample files:

■ C:\orabpel\samples\tutorials\102.InvokingProcesses
(for Eclipse BPEL Designer)

■ Oracle_
Home\integration\orabpel\samples\tutorials\102.In
vokingProcesses (for JDeveloper BPEL Designer)

BPEL Process

<receive>

WSDL
Client

PartnerLinkSOAP /
WSD

Java
Business
Delegate

<reply>

Sending Messages to a BPEL Process from a Java/JSP Application

Invoking a BPEL Process 12-3

Invoking a BPEL Process with the Generic Java API
BPEL processes can be invoked using a Java API provided through a stateless session
bean interface. The API is slightly different depending on whether you are invoking a
two-way operation (which has both input and output messages) or a one-way
operation (which just has an input message and returns no result). As such, two code
examples are provided in the samples directory, one for invoking the CreditRating
BPEL process, which provides a synchronous service with a two-way process
operation, and one for initiating the Hello World BPEL process, which is an
asynchronous service with a one-way BPEL initiate operation. These two samples use
a few common building blocks, and are discussed in more detail later.

Connecting to Oracle BPEL Process Manager with the Locator Class
To support a flexible client interface without being affected by server clustering and
other production configuration details, a com.oracle.bpel.client.Locator
class is provided for connecting to Oracle BPEL Process Manager, authenticating if
required, and obtaining handles to services provided by that server. For example, the
Locator class can connect to the default domain on a local Oracle BPEL Process
Manager and fetch a list of BPEL processes deployed on that server. In this case, the
Locator class returns a handle to an
com.oracle.bpel.client.dispatch.IDeliveryService instance. This
instance can invoke or initiate BPEL processes deployed on Oracle BPEL Server:

import com.oracle.bpel.client.Locator;
import com.oracle.bpel.client.dispatch.IDeliveryService;

// Connect to domain “default” using password “bpel”
// null IP address means local server

Locator locator = new Locator("default", "bpel", null);

IDeliveryService deliveryService = (IDeliveryService)locator.lookupService
 (IDeliveryService.SERVICE_NAME);

Passing XML Messages through Java
Because all Web services, including BPEL processes, accept and return XML messages,
any Java API using Web services needs a way to pass XML data through Java. Oracle
BPEL Process Manager has a client class,
com.oracle.bpel.client.NormalizedMessage, which allows you to activate
an XML message dynamically. For example, to activate an input message for the
CreditRatingService from static string XML data, you can use the code:

import com.oracle.bpel.client.NormalizedMessage;
String xml =
"<ssn xmlns=\"http://services.otn.com\">123456789</ssn>";

NormalizedMessage nm = new NormalizedMessage();

Note: The domain password can be changed from Oracle BPEL
Admin Console. If the password has been changed from the default
password, then the instance must be updated with the correct
password.

See Also: "Changing Oracle BPEL Admin Console Password" on
page 19-8

12-4 Oracle BPEL Process Manager Developer’s Guide

nm.addPart("payload", xml);

In practice, you activate NormalizedMessages more dynamically. For full
documentation of the NormalizedMessage class, see the Oracle BPEL Process
Manager Javadocs in:

■ C:\orabpel\docs\apidocs (for Eclipse BPEL Designer)

■ Oracle_Home\integration\orabpel\docs\apidocs (for JDeveloper BPEL
Designer)

Invoking a Two-Way Operation through the Java API
Once a delivery service has been instantiated, it can initiate the BPEL process with a
NormalizedMessage XML message. To invoke a two-way Web service operation
that returns a result synchronously, use one of the IDeliveryService.request()
methods. This method is overloaded and you see the Javadoc for all the available
versions of it. However, here the request() method has the following signature:

public NormalizedMessage request(java.lang.String processId,
 java.lang.String operationName,
 NormalizedMessage message)
 throws java.rmi.RemoteException

A code example of using this API to invoke the CreditRatingService BPEL
process is provided with the Oracle BPEL Process Manager samples and is shown
below.

Full JSP source:

<%@page import="java.util.Map" %>

<%@page import="com.oracle.bpel.client.Locator" %>
<%@page import="com.oracle.bpel.client.NormalizedMessage" %>
<%@page import="com.oracle.bpel.client.dispatch.IDeliveryService" %>
<html>
<head>
<title>Invoke CreditRatingService</title>
</head>
<body>
<%
String ssn = request.getParameter("ssn");
if(ssn == null)
ssn = "123-12-1234";
String xml = "<ssn xmlns=\"http://services.otn.com\">"
+ ssn + "</ssn>";
Locator locator = new Locator("default","bpel",null);
IDeliveryService deliveryService =
(IDeliveryService)locator.lookupService
(IDeliveryService.SERVICE_NAME);
// construct the normalized message and send to oracle bpel process
manager
NormalizedMessage nm = new NormalizedMessage();
nm.addPart("payload", xml);
NormalizedMessage res =
deliveryService.request("CreditRatingService", "process", nm);
Map payload = res.getPayload();
out.println("BPELProcess CreditRatingService executed!
");
out.println("Credit Rating is " + payload.get("payload"));
%>

Sending Messages to a BPEL Process from a Java/JSP Application

Invoking a BPEL Process 12-5

Invoking a One-Way Operation through Java API
The procedure for invoking a one-way BPEL operation through the Java API is very
similar, except that you use the IDeliveryService.post() method (which is also
overloaded). These methods invoke a one-way operation on a BPEL process and thus
return void because a response is not expected (at least not a synchronous response).
In the following code example, the post method is exactly the same as the
request() shown above, except that it returns void:

From the Javadoc for
com.oracle.bpel.client.dispatch.IDeliveryService:

public void post(java.lang.String processId,
 java.lang.String operationName,
 NormalizedMessage message)
 throws java.rmi.RemoteException

Selected JSP source:

<%@page import="com.oracle.bpel.client.Locator" %>
<%@page import="com.oracle.bpel.client.NormalizedMessage" %>
<%@page import="com.oracle.bpel.client.dispatch.IDeliveryService" %>
...
Locator locator = new Locator("default", "bpel", null);
...
NormalizedMessage nm = new NormalizedMessage();
nm.addPart("payload" , xml);
deliveryService.post("HelloWorld", "initiate", nm);
out.println("BPELProcess HelloWorld initiated!");
%>

Retrieving Status/Results from Asynchronous BPEL Processes
If you use the Java API to initiate an asynchronous BPEL process, you must often
consider how to receive the result of the process, because a typical Java client cannot
be called back the same way as a Web service. In some cases, this is not an issue. For
example, the LoanFlowPlus BPEL demonstration application (located in
C:\orabpel\samples\demos\LoanDemoPlus for Eclipse BPEL Designer or
Oracle_Home\integration\orabpel\samples\demos\LoanDemoPlus for
JDeveloper BPEL Designer) avoids this issue by informing users of process progress
through a user task where you can manually approve the final loan offer. In some
cases, the process sends some sort of notification, such as an e-mail message or a JMS

See Also: The following samples:

■ C:\orabpel\samples\tutorials\102.InvokingProcesses\
jsp\invokeCreditRatingService.jsp

■ Oracle_
Home\integration\orabpel\samples\tutorials\102.In
vokingProcesses\jsp\invokeCreditRatingService.jsp

See Also: The following samples:

■ C:\orabpel\samples\tutorials\102.InvokingProcesses\
jsp\invokeHelloWorld.jsp

■ Oracle_
Home\integration\orabpel\samples\tutorials\102.In
vokingProcesses\jsp\invokeHelloWorld.jsp

12-6 Oracle BPEL Process Manager Developer’s Guide

message, when it completes. Also, a Java client can poll for the result of an
asynchronous BPEL process. In this case, the client needs a handle to fetch status
information for a particular instance. While the post() method does not
automatically return such a handle, it does support the client specifying a conversation
ID that can be any unique identifier that the client can later use to identify a specific
instance and retrieve status information for it. See the Javadocs for the
com.oracle.bpel.client.NormalizedMessage class to see the specific field
name for the conversation ID and other properties, which can be set at the time a BPEL
process is instantiated through the Java API. You can also use the
com.oracle.bpel.client.Locator.lookupInstance(String key) method
to locate a specific instance based on a conversation ID.

It is also possible using the supported NormalizedMessage properties to specify the
address of a Web service for the callback and therefore initiate an asynchronous BPEL
process from Java, but receive a SOAP/XML callback to a Web service listener.

This is a more advanced use case. Contact Oracle Support Services for more
information on how to accomplish this in your specific environment.

Using the Java API from a Remote Client
The code examples described in previous sections are executed within the same
application server container in which the Oracle BPEL Process Manager is running.
These APIs are remotable, however, and can be used through RMI from a remote
application server. The RMI client code is different based on the application server in
which the client is running. Work with Oracle Support Services regarding how to use
the Oracle BPEL Process Manager Java API over RMI for your specific client
configuration/environment.

Invoking a BPEL Process with the Web Service/SOAP Interface
Once deployed to Oracle BPEL Server, a BPEL process is automatically published as a
Web service. This means that the process can be accessed through its
XML/SOAP/WSDL interface without any additional developer effort. Supporting a
standard Web services interface means that BPEL processes can be invoked from any
client technology that supports Web services. This includes Microsoft .NET, Sun’s
JAX-RPC implementation, Apache Axis, Oracle JDeveloper, and many other Web
services tool kits available. In addition, it means that BPEL and Oracle BPEL Process
Manager can publish Web services. Those services, both synchronous and
asynchronous, can be invoked from applications and services implemented with
nearly any technology and language.

See Also: The following samples for examples of how to send e-mail
or JMS messages from BPEL processes:

If using Eclipse BPEL Designer:

■ C:\orabpel\samples\tutorials\116.SendEmails

■ C:\orabpel\samples\tutorials\118.JMSService\buyer

If using Eclipse BPEL Designer:

■ Oracle_
Home\integration\orabpel\samples\tutorials\116.Se
ndEmails

■ Oracle_
Home\integration\orabpel\samples\tutorials\118.JM
SService\buyer

Summary

Invoking a BPEL Process 12-7

You access a BPEL process through its Web service interface in the standard way you
access any Web service: by writing a client that uses the BPEL process WSDL interface
definition and SOAP as a protocol.

Summary
Once deployed, a BPEL process is exposed through both a WSDL/SOAP interface and
a business delegate Java interface. The Java business delegate interface allows
Java/JSP applications to initiate new instances of a BPEL process.

The Java business delegate can be used locally or remotely using RMI. The Java
business delegate is JTA aware, allowing the initiation of a process to be part of a
broader transaction.

12-8 Oracle BPEL Process Manager Developer’s Guide

Interaction Patterns 13-1

13
Interaction Patterns

This chapter identifies common interaction patterns between a BPEL process and
another application, and shows the best use practices for each.

This chapter contains the following topics:

■ Introduction

■ One-Way Message

■ Synchronous Interaction

■ Asynchronous Interaction

■ Asynchronous Interaction with Timeout

■ Asynchronous Interaction with a Notification Timer

■ One Request, Multiple Responses

■ One Request, One of Two Possible Responses

■ One Request, a Mandatory Response, and an Optional Response

■ Partial Processing

■ Third-Party Interactions

■ Summary

13-2 Oracle BPEL Process Manager Developer’s Guide

Introduction
This chapter identifies common interaction patterns between a BPEL process and
another application, and shows the best use practices for each.

One-Way Message
A one-way message, or fire and forget, is where the client sends a message to the
service, and the service does not need to reply. Figure 13–1 provides an overview.

Figure 13–1 One-Way Message

BPEL Process as the Client
As the client, the BPEL process needs a valid partner link and an invoke activity with
the target service and the message. As with all partner activities, the WSDL file defines
the interaction.

BPEL Process as the Service
To accept a message from the client, the BPEL process needs a receive activity.

Synchronous Interaction
In a synchronous interaction, a client sends a request to a service, and receives an
immediate reply. The BPEL process can be at either end of this interaction, and must
be coded differently depending on its role. Figure 13–2 provides an overview.

Note: All BPEL interactions require a valid partner link. For the rest
of the examples, assume that there is a valid partner link.

Deployment Descriptor
(bpel.xml)

Client BPEL Process
WSDL

PartnerLink

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>d1<invoke>

Asynchronous Interaction

Interaction Patterns 13-3

Figure 13–2 Synchronous Interaction

BPEL Process as the Client
When the BPEL process is on the client side of a synchronous transaction, it needs an
invoke activity. The port on the client side both sends the request and receives the
reply.

BPEL Process as the Service
When the BPEL process is on the service side of a synchronous transaction, it needs a
receive activity to accept the incoming request, and a reply activity to return either the
requested information or an error message (a fault).

Asynchronous Interaction
In an asynchronous interaction, a client sends a request to a service and waits until the
service replies. Figure 13–3 provides an overview.

Deployment Descriptor
(bpel.xml)

BPEL Process
WSDL
Client

PartnerLink
d1

d2

f1

Call
service

<invoke>

Deployment Descriptor
(bpel.xml)

BPEL Process

<receive>

<reply>
OR

13-4 Oracle BPEL Process Manager Developer’s Guide

Figure 13–3 Asynchronous Interaction

BPEL Process as the Client
When the BPEL process is on the client side of an asynchronous transaction, it needs
an invoke activity to send the request and a receive activity to receive the reply.

BPEL Process as the Service
As with a synchronous transaction, when the BPEL process is on the service side of an
asynchronous transaction it needs a receive activity to accept the incoming request,
and an invoke activity to return either the requested information or a fault.

Asynchronous Interaction with Timeout
In an asynchronous interaction with a timeout, a client sends a request to a service and
waits until it receives a reply, or until a certain time limit is reached, whichever comes
first. Figure 13–4 provides an overview.

Deployment Descriptor
(bpel.xml)

Client BPEL Process
WSDL

PartnerLink

d2

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<invoke>
Get

response
<receive>

<receive>d1
Call

service
<invoke>

Asynchronous Interaction with a Notification Timer

Interaction Patterns 13-5

Figure 13–4 Asynchronous Interaction with Timeout

BPEL Process as the Client
When the BPEL process is on the client side of an asynchronous transaction with a
timeout, it needs an invoke activity to send the request and a pick activity with two
branches: an onMessage branch and an onAlarm branch. If the reply comes after the
time limit has expired, the message goes to the dead letter queue.

BPEL Process as the Service
The behavior is the same as with the asynchronous interaction with the BPEL Process
as the service described in "BPEL Process as the Service" on page 13-4.

Asynchronous Interaction with a Notification Timer
In this interaction, a client sends a request to a service and waits for a reply, although a
notification is sent after a timer expires. The client continues to wait for the reply from
the service even after the timer has expired. Figure 13–5 provides an overview.

Deployment Descriptor
(bpel.xml)

Wait for
callback

<onMessage>

Logic
Post

Callback

Logic
Post

Timeout

Time out
in 1M

<onAlarm>

<pick>

Client BPEL Process

WSDL
PartnerLink

d1

d2

Call
service

<invoke>

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

<invoke>

13-6 Oracle BPEL Process Manager Developer’s Guide

Figure 13–5 Asynchronous Interaction with a Notification Time

BPEL Process as the Client
When the BPEL process is on the client side of this transaction, it needs a scope activity
containing the invoke activity to send the request, and a receive activity to accept the
reply. The onAlarm handler of the scope activity has a time limit and instructions on
what to do when the timer expires. For example, wait 30 minutes, then send a warning
indicating that the process is taking longer than expected.

BPEL Process as the Service
The behavior is the same as with the asynchronous interaction with the BPEL process
as the service described in "BPEL Process as the Service" on page 13-4.

One Request, Multiple Responses
The client sends a single request to a service and receives multiple responses in return.
For example, the request can be to order a product online, and the first response can be
the estimated delivery time, the second response a payment confirmation, and the
third response a notification that the product has shipped. Note that in this example,
the number and types of responses are known. Figure 13–6 provides an overview.

Deployment Descriptor
(bpel.xml)

BPEL Process

WSDL
PartnerLink

d1

d2

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

<invoke>

<scope>

Call
service

<invoke>

<onAlarm>

Notify
Someone

Wait for
Callback
<receive>

One Request, One of Two Possible Responses

Interaction Patterns 13-7

Figure 13–6 One Request, Multiple Responses

BPEL Process as the Client
When the BPEL process is on the client side of this transaction, it needs an invoke
activity to send the request, and a sequence attribute with three receive activities, one
for each reply.

BPEL Process as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

One Request, One of Two Possible Responses
The client sends a single request to a service and receives one of two possible
responses. For example, the request can be to order a product online, and the first
response can be either an in-stock message, or an out-of-stock message. Figure 13–7
provides an overview.

Deployment Descriptor
(bpel.xml)

Client BPEL Process

Call
service

<invoke>

<sequence>

<recieve>

<recieve>

d1

d3

d2

d4

<recieve>

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

<sequence>

</sequence> </sequence>

<invoke>

<invoke>

<invoke>

WSDL
Client

PartnerLink

13-8 Oracle BPEL Process Manager Developer’s Guide

Figure 13–7 One Request, One of Two Possible Responses

BPEL Process as the Client
When the BPEL process is on the client side of this transaction, it needs an invoke
activity to send the request, a pick activity with two branches: one onMessage for the
in-stock response and instructions on what to do if an in-stock message is received,
and another onMessage for the out-of-stock response and instructions on what to do if
an out-of-stock message is received.

BPEL Process as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
switch activity with two branches, one with an invoke activity sending the in-stock
message if the item is available, and another branch with an invoke activity sending
the out-of-stock message if the item is not available.

One Request, a Mandatory Response, and an Optional Response
The client sends a single request to a service and receives one or two responses. For
example, the request can be to order a product online, and the service can send a
delayed message if the product is delayed, and always sends a notification when the
item ships. Figure 13–8 provides an overview.

Deployment Descriptor
(bpel.xml)

<onMessage A>

Logic A Logic B

<onMessage B>

<pick>

Client BPEL Process

WSDL
PartnerLink

d1
Call

service
<invoke>

Deployment Descriptor
(bpel.xml)

Service BPEL Process

Item in stock?

<invoke>
Msg A

<invoke>
Msg B

<otherwise>

<switch>

<receive>

Msg A
or

Msg B

Partial Processing

Interaction Patterns 13-9

Figure 13–8 One Request, a Mandatory Response, and an Optional Response

BPEL Process as the Client
When the BPEL process is on the client side of this transaction, it needs a scope activity
containing the invoke activity to send the request, and a receive activity to accept the
mandatory reply. The onMessage handler of the scope activity is set to accept the
optional message and instructions on what to do if the optional message is received
(for example, notify you that the product has been delayed). The BPEL process waits
to receive the mandatory reply. If the mandatory reply is received first, the BPEL
process continues without waiting for the optional reply.

BPEL Process as the Service
The BPEL service needs a scope activity containing the receive activity and an invoke
activity to send the mandatory shipping message, and the scope’s onAlarm handler to
send the optional delayed message if a timer expires (for example, send the delayed
message if the item is not shipped in 24 hours).

Partial Processing
The client sends a request to a service and receives an immediate response, but
processing continues on the service side. For example, the client sends a request to

Deployment Descriptor
(bpel.xml)

Client BPEL Process

WSDL
PartnerLink

d1

<scope>

Call
service

<invoke>

<onMessage A>

Notify User
of Delay

Wait for
Callback

<receive Msg B>

Msg B

Msg A
(maybe)

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

When
product
ships...

<invokes>
Msg B

Delay?

<invoke>
Msg A

<otherwise>

<pick>

13-10 Oracle BPEL Process Manager Developer’s Guide

purchase a vacation package, and the service sends an immediate reply confirming the
purchase, then continues on to book the hotel, the flight, the rental car, and so on. This
pattern can also include multiple shot callbacks, followed by longer-term processing.
Figure 13–9 provides an overview.

Figure 13–9 Partial Processing

BPEL Process as the Client
In this case, the BPEL client is simple; it needs an invoke activity for each request and a
receive activity for each reply for asynchronous transactions, or just an invoke activity
for each synchronous transaction. Once those transactions are complete, the remaining
work is handled by the service.

BPEL Process as the Service
The BPEL service needs a receive activity for each request, and a reply activity for each
response. Once the responses are finished, the BPEL process can continue with its
processing, using the information gathered in the interaction to perform the necessary
tasks without any further input from the client.

Third-Party Interactions
In some cases, there are more than two applications involved in a transaction (for
example, a buyer, seller, and shipper). In this case, the buyer sends a request to the
seller, the seller sends a request to the shipper, and the shipper sends a notification to
the buyer. This A > B > C > A transaction pattern can also handle many transaction at
once, and therefore needs a mechanism for keeping track of which message goes
where. Figure 13–10 provides an overview.

<receive>
<receive>

<receive>
<receive>

Deployment Descriptor
(bpel.xml)

Client BPEL Process
WSDL

PartnerLink

d2

d4

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

<receive>d1
Call

service
<invoke>

<receive>

d3<invoke>

<receive>

<receive>

<invoke>

<receive>

Summary

Interaction Patterns 13-11

Figure 13–10 Third-Party Interactions

Summary
BPEL processes can serve as both clients or services, and this chapter lists several
common interaction patterns and describes best practices for implementing these
interactions.

See Also: "Correlations" on page 6-6 for more information about
WS-Addressing and Correlation Sets

BPEL Process A
Buyer WSDL

PartnerLink

WSDL
PartnerLink

WSDL
PartnerLink

BPEL Process B
Seller

<receive>
C

d1<invoke>
B

<invoke>
C

<receive>
A

BPEL Process C
Shipper

<invoke>
A

<receive>
BC

d3 d2

13-12 Oracle BPEL Process Manager Developer’s Guide

Part III
Oracle BPEL Process Manager Services

This part describes how Oracle BPEL Process Manager adds value and ease of use to
key BPEL development concepts to support the following services:

This part contains the following chapters:

■ Chapter 14, "XSLT Mapper and Transformations"

■ Chapter 15, "Oracle BPEL Process Manager Notification Service"

■ Chapter 16, "Oracle BPEL Process Manager Workflow Services"

■ Chapter 17, "Worklist Application"

■ Chapter 18, "Sensors"

XSLT Mapper and Transformations 14-1

14
XSLT Mapper and Transformations

This chapter describes features of the XSLT Mapper and provides step-by-step
instructions for mapping a sample purchase order schema to an invoice schema.

This chapter contains the following topics:

■ Use Case for Transformation

■ Creating a Transform Activity

■ The XSLT Mapper

■ Step 1: Creating an XSL Map

■ Step 2: Using the Mapper

■ Step 3: Testing the Map

■ Summary

Use Case for Transformation

14-2 Oracle BPEL Process Manager Developer’s Guide

Use Case for Transformation
Transformation use is demonstrated in the sample XSLMapper.

Creating a Transform Activity
To create a transformation that maps a purchase order schema to an invoice schema,
you drag and drop a transform activity from the Component Palette into your BPEL
process diagram, as shown in Figure 14–1.

Figure 14–1 Invoking the Mapper from the Modeler

Double-click the transform activity and do the following. Figure 14–2 shows the
Transform window.

■ Select the source variable, source part, target variable, and target part.

See:

■ Oracle_
home\integration\orabpel\samples\demos\XSLMapper

■ Oracle BPEL Process Manager Order Booking Tutorial

The XSLT Mapper

XSLT Mapper and Transformations 14-3

■ If the map file already exists, click the flashlight icon (first icon) to browse
mappings.

■ If the map file does not exist, enter a name for the map file in the Mapper File field
and click the magic wand icon (second icon) to create a new mapping.

■ If the map file already exists and you want to edit it, click the note pad icon (third
icon) to edit the mapping.

Figure 14–2 Transform Window

The XSLT Mapper
You use the XSLT Mapper transformation tool to create a map file. Figure 14–3 shows
the layout of the XSLT Mapper.

See Also: The online Help for the Transform window for detailed
descriptions of the fields

The XSLT Mapper

14-4 Oracle BPEL Process Manager Developer’s Guide

Figure 14–3 Layout of the Mapper

The Source and the Target schemas are represented as trees and the nodes in the tree
are represented using a variety of icons. The displayed icon reflects the schema or
property of the node. For example, an XSD attribute is denoted with an icon that is
different from an XSD element; an optional element is represented with an icon that is
different from a mandatory element; a repeating element is represented with an icon
that is different from a nonrepeating element, and so on.

The various properties of the element and attribute are displayed in the Property
Inspector (for example, type, cardinality, and so on). The Function Palette is the
container for all functions provided by the XSLT Mapper. The mapping pane or canvas
is the actual drawing area for dropping functions and connecting them to source and
target nodes.

The XSLT Mapper provides three separate context sensitive menus:

■ One in the source panel

■ One in the target

■ One in the mapper pane or canvas

Step 2: Using the Mapper

XSLT Mapper and Transformations 14-5

Right-click in each of the three separate panels to see what the context menus look like.
A full set of undo, redo, and delete functions are also available in the main Edit and
context menus.

Notes on the Mapper
■ A node in the target tree can be linked only once (that is, you cannot have two

links connecting a node in the target tree).

■ An incomplete function and expression does not result in an XPath expression in
the source view. If you switch from the design view to the source view with one or
more incomplete expressions, the Mapper Messages window displays warning
messages.

Step 1: Creating an XSL Map
The following steps provide a high level overview of how to create an XSL Map using
po.xsd and invoice.xsd file in the Oracle_
home\integration\orabpel\samples\demos\XSLMapper directory.

1. In JDeveloper BPEL Designer, select the workspace project in which you want to
create the new XSL Map.

2. Add the po.xsd and invoice.xsd files to the project.

3. Right-click the selected project and select New.

The New Gallery window appears.

4. In the Categories tree, expand General and select XML.

5. In the Items list, double-click XSL Map.

The Create XSL Map File window appears.

– Schema files that have been added to the project appear under Project
Schema Files.

– Schema files that are not part of the project can be imported using the
Import Schema File facility. Click the Import Schema File icon (first icon
to the right and above the list of schema files).

6. Under Source, expand Project Schema Files > po.xsd. Select PurchaseOrder as the
root element for the source.

7. Under Target, expand Project Schema files > invoice.xsd. Select Invoice as the
root element for the target.

8. Click OK.

A new XSL Map is created.

Step 2: Using the Mapper
This section contains the following topics:

■ Simple Copy by Linking Nodes

■ Setting Constant Values

■ Functions

■ Editing XPath Expressions

Step 2: Using the Mapper

14-6 Oracle BPEL Process Manager Developer’s Guide

■ Adding XSLT Constructs

■ Auto Mapping

■ Generating Dictionaries

Simple Copy by Linking Nodes
To copy an attribute or leaf-element in the source to an attribute or leaf-element in the
target, drag and drop the source to the target. Copy the element PurchaseOrder/ID to
Invoice/ID and the attribute PurchaseOrder/@OrderDate to Invoice/@InvoiceDate, as
shown in Figure 14–4.

Figure 14–4 Linking Nodes

Setting Constant Values
Perform the following steps to set a constant value.

1. Select a node in the target tree.

2. Invoke the context menu by right-clicking the mouse.

3. Select the Set Text menu option.

4. Enter text in the Set Text window.

5. Click OK to save the text.

A T icon is displayed next to a node that has text associated with it.

6. Set a constant value, Discount Applied to Invoice/Comment, as shown in
Figure 14–5. To remove the text associated with a node, invoke the Set Text
window again. Delete the contents and click OK.

Step 2: Using the Mapper

XSLT Mapper and Transformations 14-7

Figure 14–5 Set Text Window

Functions
In addition to the standard XPath 1.0 functions, the Mapper provides a number of
prebuilt extension functions (prefixed with xp20 or orcl) and has the ability to
support user-defined functions and named templates. The extension functions are
prefixed with xp20 or orcl and mimic XPath 2.0 functions.

Perform the following steps to view function definitions and use a function:

1. Select a category of functions (for example, String Functions) from the
Component Palette.

2. Right-click an individual function (for example, lower-case).

3. Select Function Description. A window with a description of the function
appears.

4. Drag a concat function into the mapping pane. This function enables you to
connect the source parameters from the source tree to the function and the output
of the function to the node on the target tree.

5. Concatenate PurchaseOrder > ShipTo > Name > First and PurchaseOrder >
ShipTo > Name > Last. Place the result in Invoice > ShippedTo > Name by
dragging threads from the first and last names and dropping them on the left
handle on the concat function, and also dragging a thread from the ShippedTo
name and connecting it to the right handle on the concat function, as shown in
Figure 14–6.

See Also: The online Help for the Set Text window for detailed
information

Step 2: Using the Mapper

14-8 Oracle BPEL Process Manager Developer’s Guide

Figure 14–6 Using the Concat Function

Editing Function Parameters
To edit the parameters of the concat function, double-click the function icon to launch
the Edit Function - concat window. This window enables you to add, remove, and
reorder parameters. If you want to add a new comma parameter so that the output of
the concat function is Last, First, then click Add to add a comma and reorder the
parameters to get the above output.

Figure 14–7 Editing Function Parameters

See Also: The documentation for the XPath extension functions,
which is described in Appendix G, "XPath Extension Functions" and is
also accessible by clicking Manage BPEL Domain > XPath Library in
Oracle BPEL Console

Step 2: Using the Mapper

XSLT Mapper and Transformations 14-9

Chaining Functions
Complex expressions can be built by chaining functions. To remove all leading and
trailing spaces from the output of the above concat function, use the left-trim and
right-trim functions and chain them as shown in the Figure 14–8.

The chaining function can also be defined by dragging and dropping the function to a
connecting link.

Figure 14–8 Chaining Functions

Named Templates and User-Defined Functions
To use named templates in the design view, you code the template in the source view.
The template is now available in the function palette under the Template category and
can be used like any other function. You can plug in your own set of Java functions,
which appear in the function palette under the User defined Extension Functions
category. They can be used like any other function.

Editing XPath Expressions
To use an XPath expression in a transformation mapping, select Advanced Functions
from the Component Palette, and then drag and drop xpath-expression from the list
into the transformation window, as shown in Figure 14–9.

See Also: The online Help for the Edit Function window by clicking
the Help button to see how to add, remove, and reorder function
parameters

See Also: Oracle_
home\integration\orabpel\samples\demos\XSLMapper\Ext
ensionFunctions\README.txt for more information

Step 2: Using the Mapper

14-10 Oracle BPEL Process Manager Developer’s Guide

Figure 14–9 Editing XPath Expressions

When you double-click the icon, the Edit Function window appears, as shown in
Figure 14–10. You can press the Ctrl key and then the spacebar to invoke the XPath
Building Assistant.

Figure 14–10 Edit Function Window

Figure 14–11 shows the XPath Building Assistant.

Step 2: Using the Mapper

XSLT Mapper and Transformations 14-11

Figure 14–11 The XPath Building Assistant

Adding XSLT Constructs
While mapping complex schemas, it is sometimes essential to conditionally map a
source node to a target or map an array of elements in the source to an array of
elements in the target. The XSLT Mapper provides various XSLT constructs in the
context sensitive menu of the target tree for the preceding scenarios. To add an XSLT
element like for-each, if, or choose to a schema element, select the element in the
target tree. Right-click to bring up the context menu and choose the required XSLT
element in the menu.

Conditional Processing with xsl:if
Note that HQAccount and BranchAccount are part of a choice in the PurchaseOrder
schema; only one of them exists in an actual instance. To illustrate conditional
mapping, copy PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/AccountNumber only if it exists. To do this:

1. Select Invoice/BilledToAccount/AccountNumber in the target tree and right-click
to bring up the context sensitive menu.

2. Select Add XSL Node > if and connect
PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/if.

3. Connect PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/if/AccountNumber.

Figure 14–12 shows the results.

See Also: The online Help for the Edit Function window, which
includes a link to instructions on using the XPath Building Assistant

See Also: Oracle BPEL Process Manager Order Booking Tutorial for an
example of a for-each node

Step 2: Using the Mapper

14-12 Oracle BPEL Process Manager Developer’s Guide

Figure 14–12 Conditional Processing with xsl:if

Conditional Processing with xsl:choose
You can copy PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/AccountNumber, if it exists. Otherwise, copy
PurchaseOrder/BranchAccount to Invoice/BilledToAccount/AccountNumber as
follows:

1. Select Invoice/BilledToAccount/AccountNumber in the target tree and right-click
to bring up the context sensitive menu.

2. Select Add XSL Node > choose and connect
PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/choose/when to define the condition.

3. Connect PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/choose/when/AccountNumber.

4. Select XSL Add Node > choose in the target tree and right-click to bring up the
context sensitive menu.

5. Select Insert XSL node > otherwise from the menu.

6. Connect PurchaseOrder/BranchAccount/AccountNumber to
Invoice/BilledToAccount/choose/otherwise/AccountNumber.

Figure 14–13 shows the results.

Step 2: Using the Mapper

XSLT Mapper and Transformations 14-13

Figure 14–13 Conditional Processing with xsl:choose

Handling Repetition or Arrays
The XSLT Mapper allows repeating elements on the source to be copied to repeating
elements on the target. For example, copy
PurchaseOrder/Items/HighPriorityItems/Item to Invoice/ShippedItems/Item as
follows:

1. Select Invoice/ShippedItems/Item in the target tree and right-click to bring up the
context sensitive menu.

2. Select Add XSL Node > for-each and connect
PurchaseOrder/Items/HighPriorityItems/Item to Invoice/ShippedItems/for-each
to define the iteration.

3. Connect PurchaseOrder/Items/HighPriorityItems/Item/ProductName to
Invoice/ShippedItems/for-each/Item/ProductName.

4. Connect PurchaseOrder/Items/HighPriorityItems/Item/Quantity to
Invoice/ShippedItems/for-each/Item/Quantity.

5. Connect PurchaseOrder/Items/HighPriorityItems/Item/USPrice to
Invoice/ShippedItems/for-each/Item/PriceCharged.

Figure 14–14 shows the results.

Figure 14–14 Handling Repetition or Arrays

Step 2: Using the Mapper

14-14 Oracle BPEL Process Manager Developer’s Guide

Auto Mapping
Mapping nonleaf nodes starts the auto map feature. The system automatically tries to
link all relevant nodes under the selected source and target. Try the auto map feature
by mapping PurchaseOrder > ShipTo > Address to Invoice > ShippedTo > Address.
All nodes under Address are automatically mapped, as shown in Figure 14–15.

Figure 14–15 Auto Mapping

The behavior of the auto map can be tuned by altering the settings in JDeveloper BPEL
Designer preferences or by right-clicking the transformation window and selecting
Auto Map Preferences. This displays the window shown in Figure 14–16.

Note: Executing an auto map automatically inserts xsl:for-each. To
see the auto map in use, drag and drop
PurchaseOrder/Items/LowPriorityItems to Invoice/UnShippedItems;
for-each is automatically created.

Step 2: Using the Mapper

XSLT Mapper and Transformations 14-15

Figure 14–16 Auto Map Preferences

To see potential source mapping candidates for a target node, right-click the target
node, select Show Matches, and click OK in the Auto Map Preferences window. The
Auto Map window appears, as shown in Figure 14–17.

See Also: The online Help for the Auto Map Preferences window by
clicking the Help button to see a description of the fields

Step 2: Using the Mapper

14-16 Oracle BPEL Process Manager Developer’s Guide

Figure 14–17 Auto Mapping Candidates

Auto Map with Confirmation
When the Confirm Auto Map Results preference is set to on, a confirmation window
appears. If matches are found, the potential source-to-target mappings detected by the
XSLT Mapper are displayed, as shown in Figure 14–18. The window enables you to
filter one or more mappings.

See Also: The online Help for the Auto Map window by clicking the
Help button to see a description of the fields

Step 2: Using the Mapper

XSLT Mapper and Transformations 14-17

Figure 14–18 Auto Map with Confirmation

The auto map confirmation window can be also be turned on or off with Confirm
Auto Map Links in the context menu of the mapper pane, as shown in Figure 14–19.

See Also: The online Help for the Auto Map window by clicking the
Help button to see a description of the fields

Step 3: Testing the Map

14-18 Oracle BPEL Process Manager Developer’s Guide

Figure 14–19 Confirm Auto Map Links Selection

Generating Dictionaries
A dictionary is an XML file that captures the synonyms for mappings. Right-click the
mapper pane as shown in Figure 14–19 and select Generate Dictionary. This prompts
you for the dictionary name and the directory in which to place the dictionary. For
example, you may want to map a purchase order to a purchase order
acknowledgment, then reuse most of the map definitions later.

1. Build all the mapping logic for the purchase order and purchase order
acknowledgment.

2. Generate a dictionary for the created map.

3. Create a new map using a different purchase order and purchase order
acknowledgment.

4. Load the previously created dictionary by selecting Preferences > XSL Maps >
Auto Map in the Tools main menu of JDeveloper BPEL Designer.

5. Perform an automatic mapping from the purchase order to the purchase order
acknowledgment.

Step 3: Testing the Map
The XSLT Mapper provides a test utility to test the style sheet or map. The test tool can
be invoked by selecting the Test menu item from the mapper pane context sensitive
menu, as shown in Figure 14–20.

Step 3: Testing the Map

XSLT Mapper and Transformations 14-19

Figure 14–20 Invoking the Test Window

Test Window
The Open button is used to load a sample XML instance file for testing. If you do not
have a source file or if you prefer the system to generate a random source instance,
you can click the Generate button. After you have a sample source instance, you can
generate the result document by clicking the Test, as shown in Figure 14–21.

Step 3: Testing the Map

14-20 Oracle BPEL Process Manager Developer’s Guide

Figure 14–21 Test Window

Generating Reports
You can generate an HTML report with the following information:

■ XSL map file name, source and target schema file names, their root element names,
and their root element namespaces

■ Target document mappings

■ Target fields not mapped (including mandatory fields)

■ Sample transformation map execution

To generate a report, right-click the transformation window and select Generate
Report. The Generate Report window appears in the transformation window, as
shown in Figure 14–22.

Summary

XSLT Mapper and Transformations 14-21

Figure 14–22 The Generate Report Window

Summary
This chapter describes features of the XSLT Mapper, such as:

■ Creating an XSL map file

■ Copying by linking nodes

■ Creating functions

■ Chaining functions

■ Editing XPath expressions

■ Adding XSLT constructs

■ Automatically mapping target and source nodes

■ Generating dictionaries

■ Testing mappings

■ Generating mapping reports

This chapter shows these features by providing step-by-step instructions for mapping
a sample purchase order schema to an invoice schema.

See Also: The online Help for the Generate Report window by
clicking the Help button to see detailed information

Summary

14-22 Oracle BPEL Process Manager Developer’s Guide

Oracle BPEL Process Manager Notification Service 15-1

15
Oracle BPEL Process Manager Notification

Service

The notification service in Oracle BPEL Process Manager enables you to send
notifications from a BPEL process using a variety of channels. Oracle BPEL Process
Manager can deliver these notifications by e-mail, voice message, or short message
service (SMS).

This chapter contains the following topics:

■ Use Cases for Notification Service

■ Overview of Notification Service Concepts

■ Configuring Notification Service in JDeveloper BPEL Designer

■ Summary

Use Cases for Notification Service
Various scenarios may require sending e-mail messages or other types of notifications
to users as part of the process flow. For example, certain types of exceptions that
cannot be handled automatically may require manual intervention. In this case,
JDeveloper BPEL Designer uses the notification service to alert users by voice or
e-mail. In an approval workflow (for example, an expense report approval), you can
send notifications to the task assignee when a specific task requires action, or you can
notify the task creator by e-mail when the approval is complete. In some cases, contact
information (e-mail address or telephone number) is obtained dynamically as part of
the process and in other cases the details are looked up from a user directory.

The tutorial 130.SendEmailWithAttachments demonstrates how to model a
notification in JDeveloper BPEL Designer and send an e-mail with an attachment.

The OrderBooking tutorial demonstrates how to add an e-mail notification to the
POAcknowledge process.

Overview of Notification Service Concepts
Terms used for the notification service include:

■ Notification—an asynchronous message sent to a user by a specific channel. The
message can be sent as an e-mail message, a voice message, or an SMS message.

See: Oracle_Home\integration\orabpel\samples\tutorials\

See: Oracle BPEL Process Manager Order Booking Tutorial

Configuring Notification Service in JDeveloper BPEL Designer

15-2 Oracle BPEL Process Manager Developer’s Guide

■ Actionable notification—a notification to which the user can respond. For
example, workflow sends an e-mail message to a manager to approve or reject a
purchase order. The manager approves or rejects the request by replying to the
e-mail with appropriate content.

■ Oracle Application Server Wireless—the wireless and voice component of Oracle
Application Server. OracleAS Wireless includes a messaging component that
handles the sending and receiving of messages to and from devices. When you
install OracleAS Wireless, you can specify one of the following notification service
options:

– Connect to an external server to deliver messages, such as e-mail or SMS.

– Use Oracle's hosted service at

http://messenger.oracle.com/

Oracle BPEL Process Manager is preconfigured to send notifications using Oracle's
hosted wireless service.

– The notification service supports sending e-mail through SMTP protocol and
receiving e-mail from IMAP- and POP-based e-mail accounts.

Figure 15–1 shows the notification service interfaces and supported service types.

Figure 15–1 Notification Service Interfaces and Supported Service Types

Configuring Notification Service in JDeveloper BPEL Designer
The diagram view in JDeveloper BPEL Designer includes a Notification activity in the
Component Palette, as shown in Figure 15–2.

Oracle Application
Server Wireless
Server

Email
Server

Java
Interface

Web Services
Interface

SMTP
IMAP/
POP

SOAP
call

Notification
Service

Fax
Server

SMS
Server

Voice
Gateway

Configuring Notification Service in JDeveloper BPEL Designer

Oracle BPEL Process Manager Notification Service 15-3

Figure 15–2 Diagram View in JDeveloper BPEL Designer—Notification Activity

To use the notification service, do the following:

1. In Diagram View, select Process Activities from the Component Palette list.

2. Drag and drop a Notification activity from the Process Activities list to a position
below receiveInput and above callbackClient in the diagram.

The Notification Service wizard starts.

3. Click Next on the Welcome window.

The Step 1 of 2: Select a Notification channel window appears.

Configuring Notification Service in JDeveloper BPEL Designer

15-4 Oracle BPEL Process Manager Developer’s Guide

4. Select a notification channel from the following options and click Next.

■ EMail

■ Voice

■ SMS

The next step depends on which notification channel you select.

The E-mail Notification Channel
When you select Email for the notification channel, the Notification Service Wizard -
Step 2 of 2: Specify Email Parameters window appears. Figure 15–3 shows the required
e-mail notification parameters.

See:

■ "The E-mail Notification Channel" on page 15-4 to configure
e-mail notification

■ "The Voice Notification Channel" on page 15-10 to configure voice
message notification

■ "The SMS Notification Channel" on page 15-12 to configure SMS
notification

Configuring Notification Service in JDeveloper BPEL Designer

Oracle BPEL Process Manager Notification Service 15-5

Figure 15–3 Notification Service Wizard - Step 2 of 2: Specify Email Parameters Window

1. Enter information for each field as described in Table 15–1.

2. Click Finish.

The BPEL fragment that invokes the notification service to send the e-mail
message is created.

Table 15–1 E-mail Notification Parameters

Name Description

From Account The name of the account used to send this message. The
configuration details for this e-mail account name must exist on
Oracle BPEL Server.

To The e-mail address to which the message is to be delivered. This
can be a) a static e-mail address entered at the time the message
is created, or b) an e-mail address looked up using the identity
service, or c) a dynamic address from the payload. The XPath
Expression Builder can be used to get the dynamic e-mail
address from the input. See "Setting E-mail Addresses and
Telephone Numbers Dynamically" on page 15-13.

CC and Bcc The e-mail addresses to which the message is copied and blind
copied. This can be a static or dynamic address as described for
the To address.

Reply To The e-mail address to use for replies. This can be a static or
dynamic address as described for the To address.

Subject Subject of the e-mail message. This can be free text or dynamic
text, or a combination. The XPath Expression Builder can be
used to set dynamic text based on data from process variables
that you specify. Dynamic data is automatically enclosed in <%
%> when you use the XPath Expression Builder with free text.

Body Message body of the e-mail message. This can be plain text,
XML, free text, or dynamic text, as described for the Subject
parameter.

Multipart message with n
attachments

Select to specify e-mail attachments. See "Setting E-mail
Attachments" on page 15-6.

The number of attachments if Multipart message is selected.
The number includes the body. For example, if you have a body
and one attachment, specify 2 here.

Configuring Notification Service in JDeveloper BPEL Designer

15-6 Oracle BPEL Process Manager Developer’s Guide

Setting E-mail Attachments
When you send e-mail attachments, you mark the e-mail as a multipart message and
set the number of attachments to send. The number of attachments includes the body
plus the attachments. (For example, to send an e-mail message with one file as an
attachment, set the number to 2.) When sending attachments, set the content body to
have a MultiPart element that contains as many BodyPart elements as the number
of attachments. Each BodyPart has three elements: ContentBody, MimeType, and
BodyPartName. All three elements must be set for each attachment.

To add one attachment to an e-mail message, do the following:

1. Run the Notification Service wizard and select Email for the channel.

2. Specify values for To, Subject, and Body.

3. Select Multipart and enter 2 for the number of attachments. (Note that the number
of attachments must include the body part.)

4. The Notification Service wizard generates the MultiPart element with two body
parts. The first body part is for the message body and the other is used for the
attachment. The Notification Service wizard generates the BPEL fragment with an
assign activity with multiple copy rules. One of the copy rules copies the
attachment, as follows:

<assign name="Assign">
 <copy>
 <from expression="string('Default')"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:FromAccountName"/>
 </copy>
...
<!-- copy statements relate to body and attachment -->
 <copy>
 <from>
 <Content xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <MimeType
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">multipart/mixed
 </MimeType>
 <ContentBody
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <MultiPart
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <BodyPart
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <MimeType
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 <ContentBody
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 <BodyPartName
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 </BodyPart>
 <BodyPart
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <MimeType
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 <ContentBody
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 <BodyPartName
xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 </BodyPart>
 </MultiPart>

Configuring Notification Service in JDeveloper BPEL Designer

Oracle BPEL Process Manager Notification Service 15-7

 </ContentBody>
 </Content>
 </from>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content"/>
 </copy>
 <copy>
 <from expression="string('text/html')"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[1]/
ns1:MimeType"/>
 </copy>
 <copy>
 <from expression="string('NotificationAttachment1.html')"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[1]/
ns1:BodyPartName"/>
 </copy>
 <copy>
 <from expression="string(‘This is a test message from John Cooper')"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[1]/
ns1:ContentBody"/>
 </copy>
 <copy>
 <from expression="string('text/html')"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:MimeType"/>
 </copy>
 <copy>
 <from expression="string('NotificationAttachment2.html')"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:BodyPartName"/>
 </copy>
 <copy>
 <from expression="string('message2')"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:ContentBody"/>
 </copy>
</assign>

5. Search for BodyPart[2] and set the required values. The steps to send the
attachment MyImage.gif, for example, are as follows:

a. Search for BodyPart[2] MimeType and change from expression to copy
’image/gif’ as the MimeType (instead of the autogenerated
’text/html’).

b. Search for BodyPart[2] BodyPartName and change from expression to
copy ’MyImage.gif’ (instead of the autogenerated
’NotificationAttachment2.html’).

c. Search for BodyPart[2] ContentBody and change from expression to
copy the content of MyImage.gif (instead of the autogenerated expression
string(’message2’)).

You can use the readFile XPath function to read the contents of the file:

Configuring Notification Service in JDeveloper BPEL Designer

15-8 Oracle BPEL Process Manager Developer’s Guide

ora:readFile(‘<name of the file in the project | HTTP URL | File URL>’)

Examples:

ora:readFile(‘MyImage.gif’) will read the file from the bpel project
directory
ora:readFile(‘file://c:/MyImage.gif’) will read file from c:\ directory
ora:readFile(‘http://www.oracle.com/MyImage.gif’)

The new BPEL copy statement is as follows:

<copy>
 <from expression="string('image/gif')"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/ns1
:MimeType"/>
 </copy>
 <copy>
 <from expression="string('MyImage.gif')"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/ns1
:BodyPartName"/>
 </copy>
 <copy>
 <from expression="ora:readFile(‘file://c:/MyImage.gif’)"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/ns1
:ContentBody"/>
 </copy>

Configuring the E-mail Server
The file ns_emails.xml in the directory Oracle_
Home\integration\orabpel\system\services\config contains the
configuration for e-mail accounts. Each EmailAccount element sets the configuration
of a specific e-mail account. The name attribute in the EmailAccount element is the
name of the account.

A default e-mail account is specified in the e-mail configuration file. This account is
used when there is no account specified to send an e-mail notification. This account is
also used to send task-related notifications. A default e-mail account must always be
specified in the configuration file.

The EmailAccount element contains OutgoingServerSettings and
IncomingServerSettings attributes. For actionable notifications in a workflow,
both IncomingServerSettings and OutgoingServerSettings are required.

Table 15–2 describes the XML elements for the e-mail notification configuration stored
in the ns_emails.xml file.

See: Oracle_
Home\integration\orabpel\samples\tutorials\130.SendEmail
WithAttachments for an example of sending attachments using e-mail

Table 15–2 XML Elements for the E-mail Notification Configuration File

Name Description

EmailAccount/Name Name of the account. This can be any name, but
must be unique within this server.

Configuring Notification Service in JDeveloper BPEL Designer

Oracle BPEL Process Manager Notification Service 15-9

Example ns_emails.xml File
EmailAccounts xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <EmailAccount>
 <Name>Default</Name>
 <GeneralSettings>
 <FromName>Oracle BPM</FromName>
 <FromAddress>bpm1@dlsun4254.us.oracle.com</FromAddress>
 </GeneralSettings>
 <OutgoingServerSettings>
 <SMTPHost>dlsun4254.us.oracle.com</SMTPHost>
 <SMTPPort>225</SMTPPort>
 </OutgoingServerSettings>
 <IncomingServerSettings>
 <Server>dlsun4254.us.oracle.com</Server>
 <Port>2110</Port>
 <Protocol>pop3</Protocol>
 <UserName>bpm1</UserName>
 <Password ns0:encrypted="false"
xmlns:ns0="http://xmlns.oracle.com/ias/pcbpel/NotificationService">welcome</Passwo
rd>
 <UseSSL>false</UseSSL>

EmailAccount/GeneralSettings/FromNa
me

Name of the From e-mail address

EmailAccount/GeneralSettings/FromAd
dress

E-mail address for the From e-mail address

EmailAccount/OutgoingServerSettings
/SMTPHost

Name of the outgoing SMTP server

EmailAccount/OutgoingServerSettings
/SMTPPort

Port of the outgoing SMTP server

EmailAccount/IncomingServerSettings
/Server

Name of the incoming e-mail server

EmailAccount/IncomingServerSettings
/Port

Port of the incoming e-mail server

EmailAccount/IncomingServerSettings
/UserName

User ID of the e-mail address

EmailAccount/IncomingServerSettings
/Password

User password

EmailAccount/IncomingServerSettings
/Password[encrypted

Encrypted attribute of the password. It is true if
the password is encrypted and false if it is not.
Generally, you should set this to false when you
first enter the password. The server automatically
encrypts the password the first time it reads the
configuration file and sets the attribute to true.

EmailAccount/IncomingServerSettings
/UseSSL

Secure sockets layer (SSL) attribute. It is true if the
incoming server requires SSL and false if it does
not.

EmailAccount/IncomingServerSettings
/Folder

Name of the folder from which to read the incoming
messages

EmailAccount/IncomingServerSettings
/PollingFrequency

Polling interval for reading messages from the
incoming messages folder

Table 15–2 (Cont.) XML Elements for the E-mail Notification Configuration File

Name Description

Configuring Notification Service in JDeveloper BPEL Designer

15-10 Oracle BPEL Process Manager Developer’s Guide

 <Folder>Inbox</Folder>
 <PollingFrequency>1</PollingFrequency>
 <PostReadOperation>
 <MarkAsRead/>
 </PostReadOperation>
 </IncomingServerSettings>
 </EmailAccount>
</EmailAccounts>

The Voice Notification Channel
When you select Voice for the notification channel, the Notification Service Wizard -
Step 2 of 2: Specify Voice Parameters window appears. Figure 15–4 shows the required
voice notification parameters.

Figure 15–4 Notification Service Wizard - Step 2 of 2: Specify Voice Parameters Window

1. Enter information for each field as described in Table 15–3.

2. Click Finish.

The BPEL fragment that invokes the notification service for voice notification is
created.

Table 15–3 Voice Notification Parameters

Name Description

Telephone number The telephone number to which the message is to be delivered.
This can be a) a static telephone number entered at the time the
message is created, or b) a telephone number looked up using
the identity service, or c) a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input.

Body Message body. This can be plain text or XML. Also, this can be
free text or dynamic text, or a combination. The XPath
Expression Builder can be used to set dynamic text based on
data from process variables that you specify. Dynamic data is
automatically enclosed in <% %> when you use the XPath
Expression Builder with free text.

Configuring Notification Service in JDeveloper BPEL Designer

Oracle BPEL Process Manager Notification Service 15-11

Configuring the Wireless Service Provider for Voice
The configuration for the wireless service provider is stored in an XML file, ns_
iaswconfig.xml, which is in

Oracle_Home\integration\orabpel\system\services\config

Table 15–4 describes the XML elements for the voice notification configuration stored
in ns_iaswconfig.xml on the Oracle_Home server.

Example ns_iaswconfig.xml File
<?xml version = '1.0' encoding = 'UTF-8'?>
<!--This XML file stores the details of the IAS Wireless Notification Service-->
<IASWConfiguration xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <!-- URL to the SOAP Service -->
 <SoapURL>http://messenger.oracle.com/xms/webservices</SoapURL>

 <!-- UserName - this username should exist in iAS Wireless schema -->
 <UserName>username</UserName>

 <Password ns0:encrypted="false"
xmlns:ns0="http://xmlns.oracle.com/ias/pcbpel/NotificationService">password</Passw
ord>
</IASWConfiguration>

Table 15–4 XML Elements for the Voice Notification Configuration File

Name Description

/IASWConfiguration/SoapURL URL of the wireless service provider

/IASWConfiguration/UserName Name of the user account with the wireless service
provider

/IASWConfiguration/Password User password

/IASWConfiguration/Password[encr
ypted

Encrypted attribute of the password. It is true if the
password is encrypted and false if it is not.
Generally, you should set this to false when you first
enter the password. The server automatically encrypts
the password the first time it reads the configuration
file and sets the attribute to true.

/IASWConfiguration/ProxyHost Name of the proxy server

/IASWConfiguration/ProxyPort Port number of the proxy server

Note: The username and password are intentionally left blank at
installation. If a username or password is not specified, the wireless
server allows up to 50 notifications from a specific IP address. After 50
notifications, you must get a paid account from

http://messenger.oracle.com

Then you specify the appropriate username and password in the
configuration file, ns_iaswconfig.xml, or by using Oracle
Enterprise Manager 10g Application Server Control Console.

Configuring Notification Service in JDeveloper BPEL Designer

15-12 Oracle BPEL Process Manager Developer’s Guide

The SMS Notification Channel
When you select SMS for the notification channel, the Notification Service Wizard -
Step 2 of 2: Specify SMS Parameters window appears. Figure 15–5 shows the required
voice notification parameters.

Figure 15–5 Notification Service Wizard - Step 2 of 2: Specify SMS Parameters Window

1. Enter information for each field as described in Table 15–5.

2. Click Finish.

The BPEL fragment that invokes the notification service for SMS notification is
created.

Table 15–5 SMS Notification Parameters

Name Description

From number The telephone number from which to send the SMS notification.
This can be a static telephone number entered at the time the
message is created or a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input. See "Setting E-mail
Addresses and Telephone Numbers Dynamically" on page 15-13.

Telephone number The telephone number to which the message is to be delivered.
This can be a) a static telephone number entered at the time the
message is created, or b) a telephone number looked up using
the identity service, or c) a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input.

Subject Subject of the SMS message. This can be free text or dynamic
text, or a combination. The XPath Expression Builder can be
used to set dynamic text based on data from process variables
that you specify. Dynamic data is automatically enclosed in <%
%> when you use the XPath Expression Builder with free text.

Body SMS message body. This must be plain text. This can be free text
or dynamic text as described for the Subject parameter.

Configuring Notification Service in JDeveloper BPEL Designer

Oracle BPEL Process Manager Notification Service 15-13

Configuring the Wireless Service Provider for SMS
As with the voice notification channel, the configuration for the wireless service
provider for SMS is stored in the XML file ns_iaswconfig.xml, which is in

Oracle_Home\integration\orabpel\system\services\config

See "Configuring the Wireless Service Provider for Voice" on page 15-11 to configure a
wireless service provider for SMS.

Setting E-mail Addresses and Telephone Numbers Dynamically
You may need to set e-mail addresses or telephone numbers dynamically based on
certain process variables. You can also look up contact information for a specific user
using the built-in XPath functions for the identity service.

■ To get the e-mail address or telephone number directly from the payload, use the
following XPath:

bpws:getVariableData('<variable name>', '<part>','<input xpath to get an
address>')

For example, to get the e-mail address from variable inputVariable and part
payload based on XPath /client/BPELProcessRequest/client/mail:

<%bpws:getVariableData('inputVariable','payload','/client:BPELProcessRequest/cl
ient:email')%>

You can use the XPath Expression Builder to select the function and enter the
XPath expression to get an address from the input variable.

■ To get the e-mail address or telephone number dynamically from the payload, use
the following XPath:

ora:getUserProperty(userID, propertyName)

The first argument evaluates to the user ID. The second argument is the property
name. Table 15–6 lists the property names that can be used in this XPath function.

The following example gets the e-mail address of the user identified by the
variable inputVariable, part payload, and query
/client:BPELProcessRequest/client:userID:

ora:getUserProperty(bpws:getVariableData(‘inputVariable’,
‘payload’,‘/client:BPELProcessRequest/client:userid’), ‘mail’)

Selecting Notification Recipients by Browsing the User Directory
You can select users or groups to whom you want to send notifications by browsing
the user directory (OID, JAZN/XML, LDAP, and so on) that is configured for use by
Oracle BPEL Process Manager. Click the first icon (the flashlight) to the right of To (or

Table 15–6 Properties for the Dynamic User XPath Function

Property Name Description

mail Look up a user’s e-mail address

telephoneNumber Look up a user’s telephone number

mobile Look up a user’s mobile telephone number

homephone Look up a user’s home telephone number

Configuring Notification Service in JDeveloper BPEL Designer

15-14 Oracle BPEL Process Manager Developer’s Guide

any recipient field) on any assignee window to start the Identity lookup dialog. See
"Selecting Users or Groups by Browsing the User Directory" on page 16-23 for more
information on the Identity lookup dialog.

Starting Business Processes with the E-mail Activation Agent
You use the e-mail activation agent element activationAgents to start business
processes by e-mail. The following steps are required to design a business process to
start by e-mail.

1. Create a business process.

2. Add the e-mail activation agent activationAgents element to bpel.xml.

– See Table 15–7, " E-mail Activation Element and Respective Attributes in
bpel.xml" and "The activationAgents Element Structure in bpel.xml" on
page 15-14.

3. Include a corresponding account name configuration file in the project.

– Name the file the same as the name of the accountName attribute of
activationAgents in bpel.xml. See "The accountName XML File
Structure" on page 15-14.

Table 15–7 describes the activationAgents element and activationAgent
attributes of the activation fragment contained in the bpel.xml file.

The activationAgents Element Structure in bpel.xml
The following code example shows the structure of the activationAgents element
contained in bpel.xml.

<activationAgents>
 <activationAgent

className="com.collaxa.cube.activation.mail.MailActivationAgent"
 heartBeatInterval="60">
 <property name="accountName">test_account</property>
 </activationAgent>
</activationAgents>

The accountName XML File Structure
The following code example shows the structure of the accountName XML file.

<mailAccount xmlns="http://services.oracle.com/bpel/mail/account">
 <userInfo>
 <displayName>[display name]</displayName>
 <organization>[organization name]</organization>

Table 15–7 E-mail Activation Element and Respective Attributes in bpel.xml

Element/Attribute Name Description

/activationAgents/activationA
gent[className]

Name of the activation agent class. Use
com.collaxa.cube.activation.mail.MailActivationAgent
class as the activation agent.

/activationAgents/activationA
gent[heartBeatInterval]

Polling interval of the messages in seconds

/activationAgents/activationA
gent/property
name=”accountName”

Name of the e-mail configuration file. For example, if the account name is
test_account, then the test_account.xml file is included in all the
e-mail-related information.

Summary

Oracle BPEL Process Manager Notification Service 15-15

 <replyTo>[replyTo email address]</replyTo>
 </userInfo>

 <outgoingServer>
 <protocol>smtp</protocol>
 <host>[outgoing smtp server]</host>
 <authenticationRequired>false</authenticationRequired>
 </outgoingServer>

 <incomingServer>
 <protocol>pop3</protocol>
 <host>[incoming pop3 server]</host>
 <email>[pop user name]</email>
 <password>[plain text email password]</password>
 </incomingServer>

 <!-- IMAP server config -->
 <!--
 <incomingServer>
 <protocol>imap</protocol>
 <host>[incoming imap server]</host>
 <email>[imap user name]</email>
 <password>[plain text email password]</password>
 <folderName>InBox</folderName>
 </incomingServer>
 -->

</mailAccount>

Summary
This chapter describes how you can send an e-mail, voice, or short message service
(SMS) message from Oracle BPEL Process Manager.

Summary

15-16 Oracle BPEL Process Manager Developer’s Guide

Oracle BPEL Process Manager Workflow Services 16-1

16
Oracle BPEL Process Manager Workflow

Services

A company's business processes drive the integration of systems and people that
participate in it. The business process and associated systems have a life cycle and
certain behavior. The users who participate in the business process have roles and
privileges to perform tasks in the business process. Using the workflow services of
Oracle BPEL Process Manager, you can blend the integration of systems and services
with human workflow into a single end-to-end process flow, while providing visibility
and enabling exception handling and optimization at various levels.

This chapter contains the following topics:

■ Overview of Workflow Services

■ Use Cases for Workflow Services

■ Workflow Patterns

■ Task Notifications

■ Payload Display

■ Configuration for Task Service

■ Identity Service

■ Workflow-Related XPath Extension Functions

■ Approver Functions

■ Vacation Request Example

■ Summary

Overview of Workflow Services
Workflow services enable you to interleave human interactions with connectivity to
systems and services within an end-to-end process flow. As shown in Figure 16–1,
workflow services are linked to a BPEL process through a WSDL contract, like any
other Web service. The process assigns a task to a user or role and waits for a response.
The users act on the task using Oracle BPEL Worklist Application (Worklist
Application).

See Also: Appendix F, "Demo User Community" for the
organizational hierarchy of the demonstration user community used
in examples throughout this chapter

Overview of Workflow Services

16-2 Oracle BPEL Process Manager Developer’s Guide

Figure 16–1 High-Level View of Workflow Services in Oracle BPEL Process Manager

Terms used in workflow services include:

■ Task—work that needs to be done by a user, role, or group

■ Notification—an e-mail, voice, or short message service (SMS) message that is sent
when a user is assigned a task or informed that the status of the task has changed

■ Worklist—an enumeration of the tasks, or work items, assigned to or of interest to
a user

Features of workflow services include:

■ Task assignment and routing—includes creating tasks from the business process
and assigning the tasks to users or roles. Other task assignment and routing
features include:

– Support for task expiration and automatic renewal

– Support for task delegation, escalation, and reapproval

– Storage of task history information for auditing and the ability to archive and
purge task details based on specified policies

– JSP-based forms for viewing and updating task details

■ Multiple workflow patterns—includes standard patterns such as simple approval,
sequential approval, parallel approval, and so on. Variations on workflow patterns
such as automatic escalation, renewal, and reminders are also supported. You can
also mix and match patterns to create complex patterns.

■ Identity service—interacts with back-end identity management systems to capture
all user information from Java AuthoriZatioN (JAZN) and LDAP. Identity services
provide role-based access control; you can assign permissions to roles and link an
organizational hierarchy to a role model for authorization. You can also do the
following:

– Assign worklist privileges to users, roles, or groups

– Maintain user properties such as name, location, phone, fax, and e-mail.

– Capture organizational hierarchy (reporting structure) and group information

– Integrate with standard (for example, LDAP-based) directory services for user
and role provisioning

See Also: "Workflow Patterns" on page 16-8

See Also: "Workflow Patterns" on page 16-8

See Also: "Identity Service" on page 16-75

Assign Task

Task Complete

Workflow
Services

Worklist
Application

Update
Task

WSDL

Users

BPEL
Process

Overview of Workflow Services

Oracle BPEL Process Manager Workflow Services 16-3

■ Notification service—notifies users of assigned tasks and task changes using
various delivery channels, such as e-mail, voice message, or SMS. With
notification service, you can also do the following:

– Customize the notification content for different types of tasks

– Perform actions on tasks using e-mail

■ The Worklist Application—enables you to access tasks and act on them. The
Worklist Application can be extended or customized based on the application.
With the Worklist Application, you can do the following:

– View tasks assigned to a user or role

– Perform authorized actions on tasks in the worklist

– Filter tasks based on various criteria

– Acquire and check out shared tasks

Workflow Functionality: A Procurement Process Example
The functionality of workflow services can be illustrated using a simple procurement
business process, as shown in Figure 16–2. The business process receives a purchase
list of items from an employee and invokes the approved vendor’s pricing service to
determine the total cost to purchase those items. Then a task is assigned to the
employee’s manager. The manager reviews the total purchase cost and approves or
rejects the request. The activities related to task assignment and getting the outcome of
the task are performed within a scope to separate human workflow from the
automated workflow. If the request is approved, then the vendor’s order service is
invoked to place the order for the requested items. The employee is notified whether
the request is approved (with the order confirmation number received from the order
service) or rejected. This requires a directory service lookup to determine user
information. When the task is assigned to the manager, the manager may need to be
notified that a task is waiting for approval. This requires the invocation of a
notification service. The manager uses the Worklist Application to determine the
details of the task (what approval is being requested and the amount requested) and
then approves it.

See Also: Chapter 15, "Oracle BPEL Process Manager Notification
Service"

See Also: Chapter 17, "Worklist Application"

Overview of Workflow Services

16-4 Oracle BPEL Process Manager Developer’s Guide

Figure 16–2 BPEL Workflow

Workflow Services Components
Figure 16–3 shows the following workflow services components:

■ TaskActionHandler

All workflow business processes use the services of a business process called
TaskActionHandler to put items on a user’s worklist and get responses from users.
This process also maintains the timer events like task expiration, task reminder,
and so on. This business process is predeployed in Oracle BPEL Server. See
Appendix B, "Workflow and Notification Reference" for more information.

■ TaskManagementService

This task service provides task state management and persistence of tasks. In
addition to these services, the task service exposes operations to update a task,
complete a task, escalate/reassign tasks, and so on. The task service is used by the
Worklist Application to retrieve tasks assigned to users. This service also
determines if notifications are to be sent to users and groups when the state of the
task changes. Task service consists of the following services.

See Appendix B, "Workflow and Notification Reference" for more information.

<receive>
Purchase List

<invoke>
Vendor Pricing

Service

<receive>
Get Outcome via

Task Service

<invoke>
Employee
Notification

<invoke>
Vendor Order

Service

?
RejectedApproved

Business Process

<scope>

<invoke>
Assign Task via

Task Service

Overview of Workflow Services

Oracle BPEL Process Manager Workflow Services 16-5

■ TaskRoutingService

The TaskRoutingService offers services to route, escalate, and reassign the task.
See Appendix B, "Workflow and Notification Reference" for more information.

■ Identity service

Identity service is a thin Web service layer on top of the Oracle Application Server
10g security infrastructure or any custom user repository. It enables authentication
and authorization of users and the lookup of user properties, roles, group
memberships and privileges. See "Identity Service" on page 16-75 for more
information.

■ Worklist Application

The Worklist Application is a sample Web-based application that provides the
ability to retrieve tasks based on a variety of filter criteria and to perform task
actions on the selected tasks. See Chapter 17, "Worklist Application" for more
information.

■ Notification service

Notification service delivers notifications with the specified content to the
specified user to any of the following channels: e-mail, telephone voice message,
and SMS. See Chapter 15, "Oracle BPEL Process Manager Notification Service" for
more information.

Figure 16–3 Workflow Services Components

Figure 16–4 shows the interactions between the services and the business process.

Identity
Management

Portal

Worklist

E-mail Client

Task
Action

Handler

Task
Management

Service

Task
Routing
Service

Identity
Service

Worklist
Service

Notification
Service

Database
· OID
· LDAP
· JAZN

Notification
Channels
· E-mail
· Application Server Wireless
 - Voice
 - SMS

BPEL
Process

Workflow Services

Users

Use Cases for Workflow Services

16-6 Oracle BPEL Process Manager Developer’s Guide

Figure 16–4 Workflow Services and Business Process Interactions

Use Cases for Workflow Services
Using workflow services is demonstrated in the VacationRequest,
LoanDemoPlusWithWorkflow, DocumentReview, and HelpDeskServiceRequest
demos.

The following sections describe multiple use cases for workflow services.

Assigning a Task to a User or Role
A vacation request process may start with getting the vacation details from a user and
then routing the request to their manager for approval. User details and the
organizational hierarchy can be looked up from a user directory or store. This
scenario, shown in Figure 16–5, is described in the VacationRequest sample.

See: Oracle_Home\integration\orabpel\samples\demos

Business
Process

TaskActionHandler
Process
Manages task
life cycle

Worklist application
Web application to search
for tasks, view tasks, act
on tasks

Task Manager and Task
Routing Service
Provides task persistence,
taskescalation /
reassignment based on
user info, APIs to
retrieve tasks based on
specified criteria, role
resolution, send
notifications

Worklist Service
Retrieve tasks based on
specified filter, sort tasks,
retrieve task attachments,
and perform actions on
selected tasks

Notification Service
Sends notification to users
by e-mail, voice message,
or short message service

BPEL Engine

Workflow Services

Oracle
Internet

Directory

Identity Service
Provides:
· user/group/role
 lookup
· user authentication
· authorization

User Directory
(one of)

JAZN
XML

LDAP,
Custom

Use Cases for Workflow Services

Oracle BPEL Process Manager Workflow Services 16-7

Figure 16–5 Assigning Tasks to a User or Role from a Directory

Using the Various Flow Patterns
A task may be routed through multiple users through a sequential flow, a parallel
flow, or an adhoc flow. For example, consider a loan request that is part of the loan
approval flow. The loan request may first be assigned to a loan agent role. After a
specific loan agent acquires and accepts the loan, the loan may be routed further
through multiple levels of management if the loan amount is greater that $100,000.
This scenario, shown in Figure 16–6, is described in the LoanDemoPlusWithWorkflow
sample.

Figure 16–6 Flow Patterns and Routing Policies

See "Workflow Patterns" on page 16-8 for the various flow patterns supported by
workflow services. You can use these patterns as building blocks to create complex
workflows.

Escalation, Expiration, and Delegation
A high-priority task can be assigned to a certain user or role based on the task type.
However, if the user does not act on it in a certain time, the task may expire and in
turn be escalated to the manager for further action. As part of the escalation, you may
also notify the users by e-mail or telephone voice message. Similarly, a manager may
delegate tasks from one reportee to another to balance the load between various task
assignees. All tasks defined in BPEL have an associated expiration date. Additionally,
you may specify escalation or renewal policies, as shown in Figure 16–7. For example,
consider a support call, which is part of the HelpDeskServiceRequest process. A

Assign Task

Task Complete

Workflow
ServicesBPEL

Process

OID

LDAP

Change Routing

Get Approvals

All Approvals
Complete

BPEL
Process

Various
Routing
Patterns

Workflow Service

Workflow Patterns

16-8 Oracle BPEL Process Manager Developer’s Guide

high-priority task may be assigned to a certain user and if the user does not respond in
2 days, then the task is routed to the manager for further action.

Figure 16–7 Escalation and Notification

The Worklist Application
Users typically access tasks assigned to them by using the Worklist Application, as
shown in Figure 16–8. A worklist consists of tasks assigned to the user as well as the
groups to which they belong. A task may also include forms and attachments in
addition to other task details such as history, comments, and approval sequence. The
worklist may also be accessed from Oracle Portal or other clients to act on tasks as well
as get productivity reports. The Worklist Application can be customized and extended
based on the specific needs of an application. See Chapter 17, "Worklist Application"
for details about worklist functionality and the sample Worklist Application.

Figure 16–8 Oracle BPEL Worklist Application—Access Tasks, Forms, Attachments, and
Reports

Workflow Patterns
Oracle BPEL Process Manager provides a library of workflow patterns. You can
choose a pattern that meets your business requirement and model your workflow
based on the pattern. Oracle BPEL Process Manager supports the following patterns:

■ Simple workflow (single-user task)—used for a business process that requires a
user's action (or inaction if the user does not act on the task within the allotted
time). Based on the user's action or inaction, the business process modeler defines

Notify Manager

Escalate Task
Workflow Services

1 2 3 4 5 6

87 9 10 11 12 13

1514 16 17 18 19 20

2221 23 24 25 26 27

2928 30 CalendarTask Resolved

BPEL
Process

Notification

Complete Task

List Work Items
Workflow Services

Get Weekly
Productivity

Report Task Details
and History

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-9

what the business process does. See "Simple Workflow" on page 16-31 for more
information.

■ Simple workflow with escalation (extension of a single-user task)—used to
escalate the task, to the user's manager for example, if the user does not respond
within the allotted time. See "Simple Workflow with Automatic Escalation" on
page 16-33 for more information.

■ Simple workflow with renewal (extension of a single-user task)—used to extend
the expiration period if the user does not respond within the allotted time. The
business process modeler specifies how many times the task can be renewed
before it expires. See "Simple Workflow with Automatic Renewal" on page 16-37
for more information.

■ Sequential workflow—used to route tasks to multiple users in a sequence. The
business process modeler specifies the participants for the task as a list or a
management chain. See "Sequential Workflow" on page 16-40 for more
information.

■ Sequential workflow with escalation (extension of a sequential workflow)—used
to escalate the task if a user does not take action within the allotted time. See
"Sequential Workflow with Escalation" on page 16-46 for more information.

■ Parallel workflow—used when multiple users, working in parallel, must take
action, such as in a hiring situation when multiple users vote to hire or reject an
applicant. The business process modeler specifies the voting percentage that is
needed for the outcome to take effect, for example, a majority vote or a unanimous
vote. See "Parallel Workflow" on page 16-49 for more information.

■ Parallel workflow with final reviewer (extension of parallel workflow)—used
when a task is first sent to multiple users in parallel and then sent to a final
reviewer for a decision. See "Parallel Workflow with Final Reviewer" on page 16-52
for more information.

■ Adhoc (or dynamic) workflow—used to assign a task to one user first, who then
decides where the task goes next. The task is routed until one of the assignees
completes it and does not route it further. See "Adhoc Workflow" on page 16-54 for
more information.

■ FYI task—used when a task is sent to a user, but the business process does not
wait for a user response; it just continues. See "FYI Tasks" on page 16-55 for more
information.

■ User Task 2.0 Macro—supports user tasks from Oracle BPEL Process Manager
release 2.0. This user task requires the business process modeler to explicitly
assign task properties and also requires a custom application to view and act on
tasks. The User Task 2.0 Macro is available for backward compatibility and is
replaced with the new workflow services and patterns in this release. See "The
User Task 2.0 Macro" on page 16-56 for more information.

■ Task continuation—used to build complex workflow patterns using the task
continuation (extension) concept. Task continuation allows one workflow to be
continued with another workflow, thus creating a mix of the previously described
patterns to create complex workflows. See "Task Continuations" on page 16-56 for
more information.

Workflow Patterns

16-10 Oracle BPEL Process Manager Developer’s Guide

The Modeling Process
Using the JDeveloper BPEL Designer component of Oracle BPEL Process Manager,
you can model workflow by specifying parameters and answering questions posed by
the Workflow wizard.

Modeling a workflow is a five-step process:

1. Specify the workflow pattern.

2. Specify task details and configurations.

Add the task title, payload, expiration parameter, outcomes, and so on.

3. Specify the assignment policy.

Assign the task to the user, role, or group, and indicate whether it is a static or
dynamic assignment.

See "Task Assignment" on page 16-19 for more information.

4. Specify the pattern-specific policies.

Each pattern defines policies specific to the pattern. For example, sequential
workflow requires routing rules, which may be based on management levels,
titles, and the outcomes that cause a task to be routed further.

5. Specify task notification.

Notifications are sent to alert users of changes to the state of a task. Notifications
can be sent by e-mail, telephone voice message, or SMS.

See "Task Notifications" on page 16-60 and Chapter 15, "Oracle BPEL Process
Manager Notification Service" for more information.

The end result of specifying the parameters is the generation of a BPEL scope that uses
BPEL constructs to orchestrate the workflow. The Workflow wizard in JDeveloper
BPEL Designer automatically generates the BPEL fragment and task configuration, as
shown in Figure 16–9.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-11

Figure 16–9 Pattern-Based Modeling

Editing or Deleting a Workflow
To edit a workflow, you manually edit the invoke and assign activities that are created
when you configure the workflow pattern. For each workflow pattern described in this
chapter, see the discussion on customization for more information.

To delete a workflow, you delete the scope and search block, which automatically
deletes the variables, partner links, and so on.

Task Details and Configurations
When you model a workflow, you specify the values for task attributes such as title,
payload, expiration, and configuration for the task. The configuration includes
possible outcomes of the task, payload display, and so on. The task attributes are
assigned using the BPEL assign activity. The task configuration is captured in an XML
file. The XML file is named taskConfigworkflow_name.xml and is available as
part of the JDeveloper project.

Task Attributes
The following task attributes are shown in Figure 16–10 and Figure 16–11.

■ Task Title (required)

The task title is used to display the task in Oracle BPEL Worklist Application. The
title can include static strings and data from other business process variables.

■ Payload (required)

The task payload is the data in the task. The payload is restricted to BPEL
variables and its substructures.

1

<receive>
Initiate

<receive>
onTaskComplete

<invoke>
assignTask

Check
Outcome

BPEL Process

End

setPayload

Task Row
Sequential, parallel,
Adhoc, FYI ...

Task Details
Title:
Priority:
Creator:
Expiration Date:
Outcomes:

Escalation
Rules

Notifications

Routing Slip
(assignment

policy)

Form
(payload
display)

JDeveloper
BPEL

Designer

Model workflow pattern

2b Automatically
configures
task and
routing slip
for workflow
service

2a Automatically
generates
BPEL
fragment

Workflow Service

1 2 3 4 5 6

87 9 10 11 12 13

1514 16 17 18 19 20

2221 23 24 25 26 27

2928 30

Calendar

OID

LDAP

Workflow Patterns

16-12 Oracle BPEL Process Manager Developer’s Guide

■ Payload Display (required)

The payload display identifies the display mechanism for the payload in the
Worklist Application. Auto generated JSP form is the default option in which a
JSP is generated by inferring the schema of the selected payload. Use the XSL file
option to specify an XSL file for the payload display. Use the JSP URL option to
specify your own JSP that can be used to display the payload. See "Payload
Display" on page 16-64 for more information.

■ Task Creator (optional)

The creator of the task is the user who initiates the task. The creator can be defined
using the XPath Expression Builder. The creator can view the tasks they created
from the Worklist Application if they have access to the application. The creator
can perform some actions specific to the creator from the Worklist Application,
such as withdraw the task. If the creator is not specified, it defaults to the task
owner.

■ Expiration Duration

The expiration duration is the maximum duration that the task can be open. This
is optional for some workflow patterns and is required for other workflow
patterns (such as auto-escalate).

■ Task Priority

If you select the advanced options in the Workflow wizard, you can specify the
priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By
default, the priority of a task is 3.

■ Task Owner (optional)

The task owner can view the tasks belonging to business processes they own and
perform operations on behalf of any of the task assignees. Additionally, the owner
can also reassign, withdraw, or escalate tasks. This optional attribute defaults to
the system user bpeladmin if not specified. The task owner can be specified in
the advanced screens.

■ Identification Key (optional)

The identification key can be used as a user-defined identification for the task. For
example, if the task is meant for approving a purchase order, the purchase order
id can be set as the identification key of the task. Tasks can be searched from the
Worklist Application by the identification key. This attribute has no default value.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-13

Figure 16–10 Workflow Wizard: Task Details

Figure 16–11 Workflow Wizard: Optional Task Details

Task Outcomes
The task outcomes capture the possible outcomes of a task such as Accept, Reject, and
Approve. The outcomes of the task are specified during the creation of the workflow.
The Worklist Application displays these outcomes as the possible actions that a user
can perform. You can select one of the seeded outcomes as the possible actions that a
user can perform. The task outcomes can also have display values that are different

Workflow Patterns

16-14 Oracle BPEL Process Manager Developer’s Guide

from the actual outcome value. This permits outcomes to be internationalized. See
"Resource Bundles" on page 16-19 for more information about internationalization.

Figure 16–12 shows where the conclusions are added. By default, JDeveloper BPEL
Designer displays common outcomes from the following file, which can be changed to
modify the default list of outcomes:

Oracle_Home\integration\jdev\jdev\system10.1.2.0.0.1811\TaskConclusion.xml

Figure 16–12 Task Outcomes

After the workflow is created, you can change the custom actions in the
conclusions element of the task configuration XML file, as shown in bold in the
following code example.

<taskType>
 <task ...>
 <conclusions>
 <conclusion name="ACCEPT">
 <displayValue>Accept</displayValue>
 </conclusion>
 <conclusion name="REJECT">
 <displayValue>Reject</displayValue>
 </conclusion>
 </conclusions>
 ...
 </task>
 <notifications>
 ...
 </notifications>
</taskType>

Advanced Task Configurations
The task also has the following optional configurations. All these configurations are
captured in the task configuration file. The following configurations are available
through the advanced options in the workflow.

■ Flex Fields

■ Restricted Actions

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-15

■ Version-Tracking Attributes

■ Task Notifications and Reminders

■ Resource Bundles

Flex Fields The task object contains flex fields for extending the task to capture any
data in addition to the payload. These flex fields are treated like other header
attributes in the worklist. Tasks can be searched based on data in any of the flex fields.
Flex fields are available for each of the following data types: string, double, long,
and date. When modeling the business process, you can specify which flex fields are
used and a display string for the flex fields. The display value is used by the Worklist
Application for the data (instead of using the name of the flex field itself). This also
permits display values to be internationalized. See "Resource Bundles" on page 16-19
for more information on internationalization. Figure 16–13 shows how you configure
flex fields. Only the flex fields that are configured in this window are displayed in the
Worklist Application.

Figure 16–13 Task Flex Fields

You can change flex field information in the flexFields element of the task
configuration XML file, as shown in bold in the following code example.

<taskType>
 <task ...>
 ...
 <flexFields>
 <flexField name="flexString2">
 <displayValue>displayfor flex string</displayValue>
 </flexField>
 </flexFields>
 ...

Workflow Patterns

16-16 Oracle BPEL Process Manager Developer’s Guide

 </task>
 <notifications>
 ...
 </notifications>
</taskType>

The following flex fields are available:

■ flexString1

■ flexString2

■ flexString3

■ flexString4

■ flexLong1

■ flexLong2

■ flexDouble1

■ flexDouble2

■ flexDate1

■ flexDate2

■ flexDate3

The Workflow wizard in JDeveloper BPEL Designer does not capture the assignment
to the flex fields. The assignments to the flex fields can be manually added in the
workflow BPEL scope. In every workflow that is generated, an assign named
setUserDefinedAttributes in the scope is generated for the workflow. The
assignments to the flex fields can be added in this assign, as shown in the following
BPEL code example.

<sequence>
 <assign name="setUserDefinedAttributes">
 ...
 <copy>
 <from expression="string('value of flex string 1')"/>
 <to variable="WorkflowVar1" query="/task:task/task:flexString1"/>
 </copy>
 </assign>
 ...
<sequence>

Restricted Actions The actions that are performed from the Worklist Application are
common to all business processes. However, you can restrict some actions in a
particular business process. For example, assume that in a loan approval process, the
business requirement is never to suspend a loan application. To model this scenario, at
design time, you can mark Suspend as a restricted action. When an action is marked
as restricted, the Worklist Application does not display the action for this task.
Figure 16–14 shows how restricted actions are configured.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-17

Figure 16–14 Restricted Actions

The following actions can be restricted:

■ Auto Release

■ Reassigned

■ Escalated

■ Renewed

■ Info Requested

After the workflow is created, you can configure restricted actions in the
restrictedActions element of the task configuration XML file, as shown in the
following code example.

<taskType ...>
 <task ...>
 ...
 <restrictedActions>
 <restrictedAction>AUTO RELEASE</restrictedAction>
 <restrictedAction>ESCALATED</restrictedAction>
 <restrictedAction>REASSIGNED</restrictedAction>
 <restrictedAction>RENEWED</restrictedAction>
 <restrictedAction>INFO REQUESTED</restrictedAction>
 <restrictedAction>SUSPENDED</restrictedAction>
 </restrictedActions>
 </task>
 <notifications>
 ...
 </notifications>
</taskType>

Version-Tracking Attributes When a task is modified, Oracle BPEL Process Manager
creates a new version of the task as part of the task history. Changes to some of the
task attributes, such as status, assignees, payload, and attachments, are always tracked
with a new version. In addition, you can mark other attributes of the task as version
tracked, including the title of the task, any flex attributes, and comments. Figure 16–15
shows where the version tracking attributes are specified.

Workflow Patterns

16-18 Oracle BPEL Process Manager Developer’s Guide

Figure 16–15 Version Tracking Attributes

The following attributes can be version tracked:

■ flexString1

■ flexString2

■ flexString3

■ flexString4

■ flexLong1

■ flexLong2

■ flexDouble1

■ flexDouble2

■ flexDate1

■ flexDate2

■ flexDate3

■ title

■ payload

■ identificationKey

■ comments

■ attachments

After the workflow is created, you can change version tracked attributes in the
versionTracking element of the task configuration XML file, as shown in the
following code example.

<taskType>
 <task ...>
 ...
 <versionTracking>
 <attribute>attachments</attribute>
 <attribute>payload</attribute>

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-19

 <attribute>flexString2</attribute>
 <attribute>comments</attribute>
 </versionTracking>
 ...
 </task>
 <notifications>
 ...
 </notifications>
</taskType>

Task Notifications and Reminders As part of workflow modeling, you can optionally
specify notifications and reminders to be sent to users if the task is not acted upon in a
certain time. See "Task Notifications" on page 16-60 for more information.

Resource Bundles Resource bundles can be specified in the task configurations.
Resource bundles are used for the following task configurations:

■ Display value for outcomes

Display values for the outcomes can be plain text or keys in the resource bundle
specified. When the display value is for the format message(key), the display
value is fetched from the resource bundle specified for the task configuration.

■ Display value for flex strings

Display values for the flex strings are treated like the display value for task
outcomes.

■ Notification messages

Notification messages for e-mails can also be internationalized. To get the
internationalized message for notifications, use the XPath extension function
orcl:get-localized-string().

The resource bundle can be part of the BPEL suitcase or in some other location that can
be looked up by the BPEL run-time server. To make the resource bundle available as
part of the BPEL suitcase, add the resource bundle files to the project before deploying
the project.

Resource bundle information is captured in the task configuration file as shown in the
following code example. If the resource bundle is available as part of the project, then
resourceBundleLocation need not be set.

<taskType ...
 resourceBundleName="VacationRequestResource"
 resourceBundleLocation=" VacationRequestResourceLocation"
 ...
 ...
</taskType>

Task Assignment
Tasks can be assigned to both groups and users, as shown in Figure 16–16. When tasks
are assigned to groups, the task can be seen by any user in the group. For a user to act
on a task assigned to a group, the user must acquire the task first. Task assignees can
be specified in one of the following ways.

■ Static assignment

In a static assignment, the assignees are specified at design time. The users can be
typed in or they can be selected by browsing the identity service-supported user
directories.

Workflow Patterns

16-20 Oracle BPEL Process Manager Developer’s Guide

■ Dynamic assignment using XPath expressions

The assignees of the task can be assigned from other business process variables
using the bpws:getVariableData(…) expression and other XPath expressions.
For example, the task can be assigned to the manager of the vacation requester
using the expression

ora:getManager(bpws:getVariableData('inputVariable','payload','/client:
VacationRequestProcessRequest/client:creator'))

Figure 16–16 Dynamic Assignment Using an XPath Expression

Task Assignment Evaluation
The assignee is captured as a node set. In the two modes for specifying the assignees,
the assignee information is represented as follows:

■ Static Assignment

When the assignment is specified by browsing the user directory, the assignees are
visually represented as a comma-separated string. In BPEL, a node set is created
with a node created for each user specified.

■ Dynamic Assignment

The XPath expression evaluates to a node set. The value of each node represents a
user in the assignee list. There can be only one node in the node set, but the value
of each node must be a valid user name. It cannot be a comma-separated string. If
the input expression is a comma-separated string, XSLT can be used to create a
node set from it.

The assignee list is interpreted in different ways for different types of assignments, as
follows:

■ Single assignment

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-21

The task is assigned to all the assignees in the node set. Each of the assignees can
see and approve the task after acquiring it.

■ Sequential task

The task is assigned sequentially to each of the assignees in the node set. For
example, if the assignee is set to a node set, as in

<user xmlns="ns1-namespace>jstein</user>
<user xmlns="ns1-namespace>jcooper</user>
<user xmlns="ns1-namespace>wfaulk</user>

then the task is first assigned to jstein. On their approval, it is assigned to
jcooper, and on jcooper's approval, it is assigned to wfaulk.

■ Parallel task

In a parallel task, a subtask is created for each node in the node set, and the
assignee of each subtask is the value of each node in the node set. For example, if
the assignee is set to a node set, then a subtask is created for jstein, jcooper,
and wfaulk, as follows:

<user xmlns="ns1-namespace>jstein</user>
<user xmlns="ns1-namespace>jcooper</user>
<user xmlns="ns1-namespace>wfaulk</user>

One exception is the sequential task with management chain, where all the assignees
specified are treated as a single assignment for the first assignment. The management
chain is computed from the previous approver of the task.

The DocumentReview demo demonstrates dynamic assignment from a node set. The
DocumentReview process is modeled on the parallel task with the final approver
pattern.

Task Assignment Based on External Services
In a scenario where the task assignment is retrieved from an external service, the
Dynamic assignment using XPath expression option can be used. The element being
pointed to by the XPath expression must be either a node (if assigning to a single user
or group) or a node set (if assigning to multiple users or groups).

Any complex task assignee computation must be done before the workflow is started.
For example, if the assignee of the task should be the one with the least load of all the
possible assignees, then a service can be implemented to compute the assignee, and
the assignee returned from the service can be set as the task assignee using the XPath
option.

Assigning a Task to a Specific User of a Role and Marking It As Acquired
When the task is assigned to a group or multiple users, the task must be acquired
before a user can act on the task. It is also possible to set the task as acquired to a user
from the business process. This can be done by adding a copy rule in the assign
activity named setUserDefinedAttributes. This copy statement sets the
/task:task/task:acquiredBy element of the task, as shown in Figure 16–17. The
acquiredBy value can be computed from a service; for example, a service that does
some load balancing among users computes the acquiredby value. This return value
can be set to the acquiredBy element of the task.

See: Oracle_Home\integration\orabpel\samples\demos

Workflow Patterns

16-22 Oracle BPEL Process Manager Developer’s Guide

Figure 16–17 Copy Rule

Setting Task Assignees from a Dynamic Delimited String
In a scenario in which the assignees are represented as a delimited string (for example,
a comma-separated string), the delimited string must be converted to a node set to set
the task assignees from it. For this purpose, you can use
orcl:create-nodeset-from-delimited-string. The arguments for this
function are as follows:

■ QName in which each node in the node set must be created. The QName can be
represented in two forms:

– task:assignee

– {http://mytask/task}assignee

■ Delimited string

The delimiter used to delimit the string, which can be , (comma) or ;
(semicolon), for example.

For example, the BPEL variable inputVariable, part payload, and query
/client:TestExtensionFunctionProcessRequest/client:input represent
the assignees in a comma-separated format (example, jcooper,jstein,wfaulk)
and this comma-separated list contains the assignees of the task. This string cannot be
used as-is to set the task assignees because the task assignees are expected to be a node
set. To set the assignees, select the dynamic assignment in the task assignees page, as
shown in Figure 16–18, and set it to

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-23

orcl:create-nodeset-from-delimited-string('task:assignee',
bpws:getVariableData('inputVariable','payload',
'/client:TestExtensionFunctionProcessRequest/client:input'), ',')

Figure 16–18 Workflow Wizard—Assignees

Selecting Users or Groups by Browsing the User Directory
Assignees can be selected by browsing the user directory (Oracle Internet Directory
(OID), JAZN/XML, LDAP, and so on) that is configured for use by Oracle BPEL
Process Manager. Clicking the flashlight icon to browse OID users (next to the User(s)
or Group(s) text boxes) produces the Identity lookup dialog window.

In the identity lookup dialog window, shown in Figure 16–19, you can search by
entering a search string such as jcooper, j*, *, and so on. Clicking Lookup
fetches all the users that match the search criteria.

Workflow Patterns

16-24 Oracle BPEL Process Manager Developer’s Guide

Figure 16–19 Identify Lookup Dialog

One or more users or groups can be highlighted and selected by clicking Select.

You can view the hierarchy of a user by highlighting the user and clicking Hierarchy,
as shown in Figure 16–20. Similarly, clicking Reportees displays the reportees of a
selected user or group.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-25

Figure 16–20 User Hierarchy

You can view the details of a user or group by highlighting the user or group and
clicking Detail, as shown in Figure 16–21.

Workflow Patterns

16-26 Oracle BPEL Process Manager Developer’s Guide

Figure 16–21 Detail Information for a User

Adding a Task Attachment from a Business Process
You can add task attachments from the BPEL process and the Worklist Application.
Task attachments can be one of the following types:

■ URI—A URI attachment is a reference to a URL or file location.

■ Content—A content attachment file is a file that is uploaded.

From the BPEL process, you can set attachments on the task variable by adding the
following copy statements in the assign named setUserDefinedAttributes in
the workflow scope.

1. In the Create Copy Rule window, set the From part to be the following XML
Fragment:

<attachment xmlns="http://xmlns.oracle.com/pcbpel/taskservice/task">
 <name/>
 <URI/>
 <content/>
</attachment>

The attachment element in the task object is initially empty, so the attachment
element must be initialized.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-27

2. Select the To part to be the attachment element in the task variable.

3. Add another copy statement that sets the attachment content. For example, if the
attachment is available at a URI captured by the input message, the XPath
extension function ora:readFile is as follows (this is the From expression):

ora:readFile(bpws:getVariableData('inputVariable','payload','/client:DocumentRe
viewProcessRequest/client:URI'))

4. Select the To part as /task:task/task:attachment[1]/task:content of
the task variable that was created by the wizard.

By default, the tree does not add the index 1, so it must be added manually.

Workflow Patterns

16-28 Oracle BPEL Process Manager Developer’s Guide

If the attachment is a URI attachment, the To is set to
/task:task/task:attachment[1]/task:URI of the task variable.

5. Add another copy statement that sets the attachment name.

For example, if the name is captured in a business process variable, select that
element for the copy From.

6. Select the To as /task:task/task:attachment[1]/task:name of the task
variable that was created by the wizard.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-29

By default, the tree does not add the index 1, so it must be added manually.

The DocumentReview demo demonstrates adding task attachments from the BPEL
process. The document review process sends a document to multiple users for their
review. The document to be reviewed is set as a task attachment.

Actions Performed on a Task
The Worklist Application enables users to participate in a BPEL process by performing
tasks that require manual intervention. The worklist user interface displays tasks
specific to the logged-in user based on the user’s permissions and assigned groups and
roles. The types of actions that the user can perform on a task include:

■ Update task details—The task form can include content that needs to be added or
modified by the task reviewer. Additionally, a user can modify flex fields, task
priority, or include comments or attachments to the task.

■ Change outcome for the task—As part of the process model, the workflow
designer can include various custom outcomes for the task (for example, approve
or reject, acknowledge, defer). If a user modifies a task outcome, it is removed
from their worklist and routed to the next approver or back to the business
process based on the workflow pattern.

■ Perform system actions—In addition to the custom actions specified as part of
workflow modeling, the user can perform other system actions such as escalate or
delegate. These actions are available on all tasks based on the user’s privileges.

See: Oracle_Home\integration\orabpel\samples\demos

Workflow Patterns

16-30 Oracle BPEL Process Manager Developer’s Guide

The process owner or workflow administrator can always perform any of these
operations on processes that they own. The various system actions allowed on a
task are as follows:

– Escalate—This operation enables a user to escalate a task to their manager for
further action.

– Reassign—A manager can delegate a task to reportees. Similarly, the process
owner or a user with BPMWorkflowReassign privileges can delegate a specific
task to any other person in the organization.

– Request More Information—Any participant in the workflow can request
more information from the task creator or any of the prior approvers of the
task. When the requested information is submitted, the task is assigned to the
user who requested the information.

– Request More Information with Reapproval—Any participant in the workflow
can request more information from the task creator or any of the prior
approvers of the task and require the approvers who have approved the task
reapprove it. This action is supported only if the current user task supports
sequential approval. For example, assume jcooper created a task and
jstein and wfaulk approved the task in the same order. When the next
approver, cdickens, requests information with reapproval from jcooper
and when jcooper submits the information, jstein and wfaulk approve
the task before it comes to cdickens. If cdickens requests information with
reapproval from jstein and then jstein submits the information, then
wfaulk approves the task before it comes to cdickens.

– Submit More Information—This operation enables a user to respond to a
request for additional information. This action is performed after the user has
made the necessary updates to the task or has added comments or
attachments containing additional information.

– Route—This operation enables a user to enter an outcome and then route the
task in an adhoc fashion to the next user who must review the task.

– Suspend—This operation enables process owners (or users with the
BPMWorkflowSuspend privilege) to put a workflow on hold temporarily. In
this case, task expiration and escalation do not apply until the workflow is
resumed. No actions are permitted on a task that has been suspended (except
resume and withdraw).

– Resume—This operation enables process owners (or users with the
BPMWorkflowSuspend privilege) to remove the hold on a workflow. After a
workflow is resumed, actions can be performed on the task.

– Acquire—This operation enables a user to obtain an exclusive right to work on
a task that is assigned to a group or multiple users. No action can be
performed on a task assigned to a group or multiple users until it is acquired.
Only one user can acquire a task at any given time.

– Release—This operation enables a user to abandon the exclusive right to work
on a task that is assigned to a group or multiple users. After a task is released,
any other user who is assigned to the task can acquire it.

– Renew—If a task is about to expire, a task assignee can renew the task and
request more time to perform the task. This operation is not allowed if the
process modeler has restricted task renewal on the workflow.

– Withdraw—The creator of the task can withdraw any pending task if they are
no longer interested in sending it further through the workflow. A process

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-31

owner can also withdraw a task on behalf of the creator. When a task is
withdrawn, the business process is called back with the state attribute of the
task set to Withdrawn.

Simple Workflow
Simple workflow is used when a task must be acted on by one user. The task can be
assigned to a set of users or groups. If the task is assigned to multiple participants, one
of them must acquire the task and complete it. See "Actions Performed on a Task" on
page 16-29 for a description of the actions a user can perform from the Worklist
Application.

Figure 16–22 shows how simple workflow is implemented in BPEL.

Figure 16–22 A Simple Workflow Implemented in Oracle BPEL Process Manager

Figure 16–23 shows a user task modeled using the simple workflow in JDeveloper
BPEL Designer.

See Also:

■ "Identity Service" on page 16-75 for details on the roles in the
system

■ Chapter 17, "Worklist Application" for information on how to
perform the system actions

setUserDefinedAttributes (assign)
Captures the user-defined attributes of the task, such as assignees,
payload, expiration date

receiveUpdatedTask (receive)
Receives the updated task from the TaskActionHandler business process

setSystemDefinedAttributes (assign)
Captures the system attributes of the task, such as process id,
process version

initiateTask (invoke)
Initiates the task by invoking the TaskManagerService

initiateTaskActionHandler (invoke)
Initiates the TaskActionHandler business process. This process receives
the actions from the Worklist application via the TaskManagerService.

Workflow Patterns

16-32 Oracle BPEL Process Manager Developer’s Guide

Figure 16–23 A Simple Workflow Modeled in JDeveloper BPEL Designer

Use Case
An employee, through the employee portal, submits a vacation request. The portal
initiates a business process that includes a user task modeled using a simple
workflow. The task is assigned to the manager of the employee. When the manager
approves or rejects the vacation request, the employee is notified with the manager's
decision by e-mail. See the VacationRequest example in the samples directory for an
implementation of this use case.

Customizations for Simple Workflow
The following customizations are possible:

■ Changing the assignee after creating the user task

The assign named setUserDefinedAttributes in the generated scope
captures the setting of the task assignee. Depending on whether the task is
assigned to a user or a group, the task attribute assigneeUsers or
assigneeGroups is set. This assignment can be changed to modify the task
assignee. For example, if you are using an external service that does load
balancing or determines task assignee based on contents of the payload, you can

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-33

call this service and set the assignees to a local variable. This variable can then be
used to do a dynamic assignment based on an XPath expression.

■ Changing the outcomes after creating the user task

The outcomes are captured in the XML task configuration file, where they can be
changed manually. See "Task Outcomes" on page 16-13 for more information.

■ Changing the user task to support multiple approvals

A simple workflow (or any variation of simple workflow) does not support
multiple approval because it is intended for a single approval. If reapproval is
required, change the user task to sequential workflow.

Simple Workflow with Automatic Escalation
Simple workflow with automatic escalation is a variation of the simple workflow in
which the task is escalated when the task expires. The rules of escalation are specified
as part of creating the user task. As in a simple workflow, the task can be assigned to a
set of users or groups. See "Actions Performed on a Task" on page 16-29 for a
description of the actions a user can perform from the Worklist Application. If the user
does not perform any of the custom actions before the task expires, the task is
escalated to their manager as specified in the user directory that is configured with the
identity service.

Figure 16–24 shows how simple workflow with automatic escalation is implemented
in Oracle BPEL Process Manager.

Workflow Patterns

16-34 Oracle BPEL Process Manager Developer’s Guide

Figure 16–24 Simple Workflow with Automatic Escalation

Figure 16–25 shows the user task scope modeled using the simple workflow with
automatic escalation.

while (task != completed || errored || expired || withdrawn)

setUserDefinedAttributes (assign)
Captures the user-defined attributes of the task, such
as assignees, payload, expiration date

setEscalationPolicy (assign)
Captures the escalation policy

setSystemDefinedAttributes (assign)
Captures the system attributes of the task, such as process id,
process version

initiateTaskActionHandler (invoke)
Initiates the TaskActionHandler business process. This process receives
the actions from the Worklist application via the TaskManagerService.

receiveUpdatedTask (receive)
Receives the updated task from the TaskActionHandler business process

escalateTask (invoke)
If the task is expired, escalate the task

initiateTask (invoke)
Initiates the task by invoking the TaskManagerService

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-35

Figure 16–25 Simple Workflow with Automatic Escalation in JDeveloper BPEL Designer

Use Case
The HelpDeskServiceRequest process gives users the ability to file help desk service
request tickets. If the person who receives the ticket does not act on it within a
specified time period, the ticket is automatically escalated to their manager. The ticket
is automatically escalated three times if no one has acted on it within a predefined
time, until it gets to the CEO of the company. If the CEO also does not act on it, it
expires.

Pattern-Specific Parameters
Two parameters are specific to this pattern.

■ The maximum number of times the task can be escalated

This required parameter specifies how many times the task is escalated. For
example, if this parameter to set to 2, then the task is assigned to the user jcooper.
If none of the users acts on the task in time, the task is assigned to jcooper (initial
assignee), user jstein (jcooper's manager) and user wfaulk (jstein's manager).

■ The title of a user to whom the task can be escalated

This optional parameter specifies the title of the last user to whom the task can be
escalated. For example, if this parameter is set to Manager, the task is assigned to
user jcooper. If none of the users acts on the task in time, the task is assigned to
jcooper (initial assignee) and user jstein (jcooper's manager), whose title is
Manager.

The title can be typed in or selected from a list of prespecified titles. The list of
titles that are displayed is configured in defaultUserTitles.xml at

Oracle_Home\integration\jdev\jdev\system10.1.2.0.0.1811\

Workflow Patterns

16-36 Oracle BPEL Process Manager Developer’s Guide

When both these parameters are specified, the task is escalated until one of the
conditions causes the escalation to stop. For example, if the maximum number of times
is 4 and the title is Manager, then the task is assigned to jcooper. If none of the users
acts on the task in time, the task is assigned to jcooper (initial assignee), and user jstein
(jcooper's manager), whose title is Manager.

Figure 16–26 shows where these parameters are specified.

Figure 16–26 Escalation

Customizations for Simple Workflow with Automatic Escalation
The customizations in "Customizations for Simple Workflow" on page 16-32 apply to
this pattern, in addition to the following.

■ Changing the duration for the task assignment

When the task is expired and is escalated, the task is renewed for a duration equal
to the initial expiration duration of the task. The BPEL assign named
setEscalationPolicy in the user task scope sets the renewal duration in the
variable oraBPMExpDuration. This copy statement can be changed to change the
expiration duration for the subsequent task assignments.

■ Changing the number of levels of escalation

The BPEL assign named setEscalationPolicy in the user task scope
captures the number of levels of escalation in the variable
oraBPMManagementChain (the query for the copy is
/identityservice:managementChain/identityservice:levels). This
can be changed to any appropriate value.

■ Changing the title of the last user to whom the task is escalated

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-37

The BPEL assign named setEscalationPolicy in the user task scope stores
the title of the last user in the variable oraBPMManagementChain (the query for
the copy is
/identityservice:managementChain/identityservice:uptoTitle).
This can be changed to any appropriate value.

■ Changing the user to whom the task is escalated on task expiration

By default, on task expiration, the task is escalated to the user’s manager. This can
be changed by changing the generated BPEL scope. In the generated BPEL scope,
there is another BPEL scope named escalateTask that performs the escalation.
In the scope, change the escalateTask invoke to invoke the updateTask
operation on the TaskManagerService instead of the escalateTask
operation. The TaskManagerService.wsdl file defines the updateTask
operation. The task assignees (users or groups) to whom the task is escalated must
be set before the operation is invoked. In addition, the state of the task
(task:task/task:state) must be set to ASSIGNED before the operation is
invoked.

Simple Workflow with Automatic Renewal
Simple workflow with automatic renewal is a variation of the simple workflow in
which the task is renewed when the task expires. The rules of renewal are specified as
part of creating the user task. As in a simple workflow, the task can be assigned to a
set of users or groups. See "Actions Performed on a Task" on page 16-29 for a
description of the actions a user can perform from the Worklist Application. If the user
does not perform any of the custom actions before the task expires, the task is renewed
for a specific duration.

Figure 16–27 shows how simple workflow with automatic renewal is implemented in
Oracle BPEL Process Manager.

Workflow Patterns

16-38 Oracle BPEL Process Manager Developer’s Guide

Figure 16–27 Simple Workflow with Automatic Renewal

Figure 16–28 shows the user task scope modeled using the simple workflow with
automatic renewal.

while (task != completed || errored || expired || withdrawn)

setUserDefinedAttributes (assign)
Captures the user-defined attributes of the task,
such as assignees, payload, expiration date

setRenewalPolicy (assign)
Captures the renewal policy

setSystemDefinedAttributes (assign)
Captures the system attributes of the task,
such as process id, process version

initiateTaskActionHandler (invoke)
Initiates the TaskActionHandler business process. This process receives
the actions from the Worklist application via the TaskManagerService.

receiveUpdatedTask (receive)
Receives the updated task from the TaskActionHandler business process

renewTask (invoke)
If the task is expired and has not been renewed the maximum
number times, renew the task

initiateTask (invoke)
Initiates the task by invoking the TaskManagerService

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-39

Figure 16–28 Simple Workflow with Automatic Renewal

Use Case
A business process manages renewal of magazine subscriptions. The rules of the
subscription are that if the user cancels the subscription one month before the
expiration date of the current subscription, then the subscription is cancelled free of
charge. If the user cancels in the last month of the current subscription, then the
subscription is cancelled with a charge. If the user does not cancel, it is renewed.

The process is initiated 60 days before the subscription is up for renewal. The process
contains a user task modeled with the simple workflow with automatic renewal
pattern. When the magazine subscription task is assigned to a user, an e-mail is sent to
the user. The user can go to a portal and renew or cancel the subscription. Depending
on the user action, the business process determines the cancellation or cancellation
with charge or renewal.

Pattern-Specific Parameters
One parameter is specific to this pattern.

■ The maximum number of times the task can be renewed

This required parameter specifies how many times the task is renewed.

Customizations for Simple Workflow with Automatic Renewal
The customizations in "Customizations for Simple Workflow" on page 16-32 apply to
this pattern, in addition to the following:

■ Changing the duration for the task assignment

When the task expires, it is renewed. The renewal duration of the task is the same
as it was for the first task assignment. The BPEL assign named
setRenewalPolicy in the user task scope sets the new expiration duration in

Workflow Patterns

16-40 Oracle BPEL Process Manager Developer’s Guide

the variable oraBPMRenewDuration. This copy statement can be changed to
change the expiration duration for the subsequent task assignments.

■ Changing the number of levels of renewal

The BPEL assign named setRenewalPolicy in the user task scope stores the
maximum number of levels of renewal in the variable
oraBPMMaxTimesRenewed. This can be changed to any appropriate value.

■ Adding logic depending on number of times renewed

The BPEL scope level variable oraBPMNumOfTimesRenewed captures the
number of times the task is renewed. This variable can be used to build additional
logic in the business process.

Sequential Workflow
Sequential workflow is used when a task must be approved by multiple users. The
users or groups to whom the task is assigned can be specified in one of the following
ways:

■ List of users in a management chain

■ List of users or groups from the identity service set during the design time of the
process

■ Dynamic list of users or group from another business process variable

In each of the preceding cases, the task is sequentially assigned to each of the users in
the list. See "Actions Performed on a Task" on page 16-29 for a description of the
actions a user can perform from the Worklist Application. In a sequential workflow, a
request for information with reapproval is permitted.

As part of modeling a sequential workflow, the list of outcomes that cause the task to
be routed can also be specified. For example, if a task has two outcomes, ACCEPT and
REJECT, the business logic might require the task to be routed to the next approver
only if the current user accepts the task. A continue routing expression can also be
specified. If this condition evaluates to true, the task is routed.

Figure 16–29 shows how the sequential workflow is implemented in Oracle BPEL
Process Manager.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-41

Figure 16–29 How Sequential Workflow Is Implemented in BPEL

Based on the assignees, a future approver function is created to capture future
approvers of the task. This function is persisted in the approvers element of the task. If
the management chain assignment is used, the managementChain function is
created. If a list of users is provided (either using static assignment from a user
directory or an XPath function), a list function is created. The list function has a user or
group function in it to represent the assignees. This approver function creation is done
in the assign named setRoutingPolicy in the generated workflow scope. This
function is not changed in normal circumstances; however, it can be changed if a
complicated sequential assignment is being created. For example, first assign to users
jcooper and jstein, then assign to wfaulk, and so on. (The complexity of this
example is multiple users assignment—jstein and jcooper—for the first
assignment).

Examples of approver functions are as follows:

■ managementChain("2", "Manager")

while (task != completed || errored || expired || withdrawn)

setUserDefinedAttributes (assign)
Captures the user-defined attributes of the task, such as
assignees, payload, expiration date

setRoutingPolicy (assign)
Captures the routing policy

setSystemDefinedAttributes (assign)
Captures the system attributes of the task, such as process id,
process version

initiateTaskActionHandler (invoke)
Initiates the TaskActionHandler business process. This process receives
the actions from the Worklist application via the TaskManagerService.

receiveUpdatedTask (receive)
Receives the updated task from the TaskActionHandler business process

routeTaskToNextApprover (invoke)
If the task is completed and the outcome requires routing and the continue
routing expression evaluates to true, route the task to the next approver

initiateTask (invoke)
Initiates the task by invoking the TaskManagerService

Workflow Patterns

16-42 Oracle BPEL Process Manager Developer’s Guide

Routes the task to users in the management chain. The management chain
includes users within two levels and up to a user whose title is Manager.

■ users("jcooper", "jstein")

Routes the task once to users jcooper and jstein.

■ users("jcooper", "jstein", acquiredBy("jcooper"))

Routes the task once to users jcooper and jstein. Also sets the acquiredBy to
jcooper.

■ groups("LoanAgentRole", "Supervisor", acquiredBy("jcooper"))

Routes the task once to groups LoanAgentRole and Supervisor. Sets the
acquired-by to jcooper.

■ list(users("jcooper", "jstein"), groups("LoanAgentRole"),
acquiredBy("jcooper"))

Routes the task once to users jcooper and jstein and group LoanAgentRole
and also sets the acquiredBy to jcooper.

■ list(users("jcooper","jstein")),
list(groups("LoanAgentRole"))

Routes the task to users jcooper and jstein. When one of those users acquires
and acts on the task, routes the task to group LoanAgentRole.

■ adhoc()

The task supports adhoc routing and the next users or groups are specified by the
current approver of the task.

These functions are evaluated when the task must be routed to the next approver. See
"Approver Functions" on page 16-95 for more information, and for how to modify the
value of the approvers element to achieve different results.

Figure 16–30 shows the user task scope modeled using the sequential workflow.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-43

Figure 16–30 Sequential Workflow in JDeveloper BPEL Designer

Use Cases
A loan application processing system receives loan applications. These loan
applications are initially assigned a group called LoanAgentRole. A user in this group
evaluates and approves the loan application and provides a loan offer. If the loan
application amount is greater than 100,000 US dollars, then the loan application and
the initial loan offer are send to the initial approver's manager. After they approve it,
the loan application is routed to their manager. If the loan application amount is less
than or equal to 100,000 US dollars, then the initial loan offer is sent back to the caller.
This use case is demonstrated in the LoanDemoPlusWithWorkflow sample.

Another use case is when a purchase order approval system processes a purchase
order using a business process. An employee belonging to a group named Supervisor
initially evaluates the purchase order. After the initial user approves the purchase
order, their manager approves it. After the manager approves the purchase order, the
purchase order is forwarded to the billing and shipping departments. This use case is
demonstrated in the Order Booking tutorial purchase order approval service.

Pattern-Specific Parameters
The sequential workflow has the following pattern-specific parameters.

■ The approvers assignment policy

■ Outcome that results in the task being routed

■ Continue routing expression

See Also: Oracle BPEL Process Manager Order Booking Tutorial

Workflow Patterns

16-44 Oracle BPEL Process Manager Developer’s Guide

In simple workflow, the assignees are specified for the only assignment of the task. In
sequential workflow, the set of users to whom the task is routed is specified. There are
two ways to specify this.

1. A list of users from a business process variable or a static list set at design time.

2. A management chain. This involves selecting the initial assignees (a set of groups
or users) and parameters to select the management chain. The parameters to select
the management chain include specifying the following attributes:

a. The number of levels in the management chain

This required parameter specifies how many levels in the management chain
are included in the list. For example, if this parameter to set to 2 and the task is
initially assigned to a user jcooper, then both the user jstein (jcooper's
manager) and user wfaulk (jstein's manager) are included in the list, apart
from jcooper (the initial assignee).

b. The title of the last user in the management chain

This optional parameter specifies the title of the last user in the management
chain. For example, if this parameter is set to 'Manager' and the task is
assigned to a user jcooper, user jstein (jcooper's manager) is included in
the list, apart from jcooper (the initial assignee).

The title can be typed in or selected from a list of prespecified titles. The list of
titles is configured in defaultUserTitles.xml at

Oracle_Home\integration\jdev\jdev\system10.1.2.0.0.1811\

When both these parameters are specified, then the task routing is determined by both
the title and the number of levels. The routing continues until one of the
conditions—title or the number of levels—no longer applies. The following examples
illustrate this.

Example: If the maximum level in the management chain is four and the title is
'Manager' and the task is assigned to a user jcooper, then the list includes jcooper
(initial assignee) and user jstein (jcooper's manager), whose title is 'Manager'. The
task is not be routed beyond the “Manager”, even though the maximum number of
levels is set to 4. This is useful in cases where you want the approvals to go up to a
certain management level (for example, Director).

Example: If the maximum level in the management chain is 1 and the title is ‘Director’
and the task is assigned to a user jcooper, then the list includes jcooper (initial
assignee) and user jstein (jcooper’s manager, whose title is ‘Manager’). It does not
include wfaulk (jstein’s manager, whose title is ‘Director’) because the task was
already routed to one user beyond the initial assignee.

There are also two parameters that determine if the task must be routed.

1. The list of outcomes that cause the task to be routed can also be specified. For
example, if a task has two outcomes, ACCEPT and REJECT, the business logic
might require the task to be routed to the next approver only if the current user
accepted the task.

2. A continue routing expression can also be specified. If this expression evaluates to
true, the task is routed further after a specific user acts on it. This expression can
be used to dynamically control how many approvals are required. Examples of
this expression are as follows:

a. The task is routed only if the loan amount is greater than 1000; otherwise it is
approved only once.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-45

bpws:getVariableData('loan',
'/auto:loan/auto:loanApplication/auto:loanAmount') > number(10000)

b. The task is routed until it is approved by a manager.

ora:getPreviousApproversTitle(‘/task:task/task:taskId’) = string(‘Manager’)

c. The task is approved at most three times.

ora:getNumberOfTimesApproved(‘/task:task/task:taskId’) < 3

d. The task is approved at most three times when the loan amount is greater than
10000; otherwise it should be approved only once.

ora:getNumberOfTimesApproved(‘/task:task/task:taskId’) < 3 and
bpws:getVariableData('loan',
'/auto:loan/auto:loanApplication/auto:loanAmount') > number(10000)

The extension function ora:getPreviousApproversTitle() gets the title of the
previous task approver. The function getNumberOfTimesApproved() gets the
number of times a task was approved. See "Workflow-Related XPath Extension
Functions" on page 16-89 for a list of the extension functions.

Figure 16–31 shows the routing parameters.

Figure 16–31 Routing Parameters

Customizations for Sequential Workflow
■ Changing the initial assignee in the management chain after creating the user task

The assign named setUserDefinedAttributes in the generated scope
captures the assignment of the task assignee. Depending on whether the task was
assigned to a user or a group, the task attribute assigneeUsers or
assigneeGroups is set. This assignment can be changed to modify the task
assignee.

■ Changing the management chain parameters after creating the user task

The assign named setRoutingPolicy in the generated scope sets the
approver function in the task attribute approvers. The approver function
contains the management chain parameters. The parameters can be changed in
this function. See "Approver Functions" on page 16-95 for more information.

Workflow Patterns

16-46 Oracle BPEL Process Manager Developer’s Guide

■ Changing the assignees in the list after creating the user task

The assign named setUserDefinedAttributes in the generated scope
captures the assignment of the task assignee. The assignment to the
oraBPMRouteAssignees variable attributes
/taskmngr:assigneeEntities/taskmngr:assignee captures the list of
users or groups.

■ Changing the outcomes after creation of the user task

Task outcomes are captured in the XML task configuration file, where outcomes
can be changed manually. See "Task Outcomes" on page 16-13 for more
information.

■ Changing routing policy

The assign named setRoutingPolicy captures the routing policy. The future
assignees of a task in a sequential workflow are captured in the approvers
attribute of the task object. This assign sets the approvers attribute to an approver
function depending on the assignment policy chosen—management chain or list
of users. See "Approver Functions" on page 16-95 for more information.

■ Changing continue routing expression

In the generated scope, the continue routing expression is evaluated in the
assign named evaluateRoutingCriteria. The condition that is set in the
wizard is negated with a not() in this expression. This expression can be changed
as needed.

■ Adding continue routing expression

The response from the each user is received in the receive activity
receiveUpdatedTask. The receive activity follows a switch activity in
which one of the case statements is "Task is COMPLETED and the task outcome is
one of the outcomes specified in the routing policy". The expression on this case
statement can be changed to add any continue routing expression.

■ Adding approvers

In the management chain routing policy, approvers can be added by changing the
management chain parameters as described previously. Similarly, by changing the
assignees in the list of users as described previously, approvers can be added.

■ Changing the user or group to whom the task is routed based on output of an
external system.

In the generated BPEL, there is a scope named routeTaskToNextApprover.
This scope is responsible for routing the task to the next user or group. By default,
this routing is based on the approver function. In a scenario where the next task
assignee is determined by an external system, the activities in the
routeTaskToNextApprover scope can be modified to achieve that. The
TaskRoutingService exposes an operation called routeTask that routes the task
to a specified user or group. The input message for this operation includes the
task, an id that identifies either a user or a group, and a Boolean flag that identifies
the entity as a group or a user. After a message is created, change the
routeTaskToNextApprover invoke and its input variable accordingly to use
the routeTask operation instead of the routeTaskToNextApprover operation.

Sequential Workflow with Escalation
The sequential workflow with escalation is used when a task must be approved by
multiple users and the task must be escalated when it expires. This pattern is an

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-47

extension of the sequential workflow and all that applies to the sequential workflow
also applies to this pattern.

Figure 16–32 shows how sequential workflow is implemented in Oracle BPEL Process
Manager.

Figure 16–32 Sequential Workflow with Escalation

Use Case
An employee (for example, jcooper) requests a new laptop urgently. The sequential
workflow first routes the task to their manager for approval (for example, jstein)
and then to a person in the procurement department (for example, jlondon) to
acquire the laptop. If the workflow is set up with automatic escalation after two days,
then the request first goes to the manager for approval and if it is not approved in two

while (task != completed || errored || expired || withdrawn)

setUserDefinedAttributes (assign)
Captures the user-defined attributes of the task, such as
assignees, payload, expiration date

setRoutingPolicy (assign)
Captures the routing policy

setSystemDefinedAttributes (assign)
Captures the system attributes of the task, such as process id,
process version

initiateTaskActionHandler (invoke)
Initiates the TaskActionHandler business process. This process receives
the actions from the Worklist application via the TaskManagerService.

routeTaskToNextApprover
(invoke)
If the task is completed and the
outcome requires routing and
the continue routing expression
evaluates to true, route the task
to the next approver

escalateTask (invoke)
If the task is expired and the
escalation rules are met,
escalate the task

initiateTask (invoke)
Initiates the task by invoking the TaskManagerService

receiveUpdatedTask (receive)
Receives the updated task from the TaskActionHandler business process

Workflow Patterns

16-48 Oracle BPEL Process Manager Developer’s Guide

days, then the task can be automatically routed to the next person in the management
hierarchy (jstein’s manager, wfaulk). Similar escalation can also be done for the
procurement representative. This enables the workflow to complete without long
delays in the approval process.

Pattern-Specific Parameters
All the parameters that apply to the sequential workflow apply to this pattern as well.
In addition to those parameters, the following parameters are specific to this pattern.

■ The maximum number of times the task can be escalated

This required parameter specifies how many times the task is escalated for each
assignment. For example, if this parameter to set to 2, the task is assigned to user
jcooper. If jcooper does not act on the task in time, then the task is escalated to
user jstein (jcooper's manager). If jstein does not act on the task, then the
task is escalated to user wfaulk (jstein's manager).

■ The title of a user up to whom the task can be escalated

This optional parameter specifies the title of the last user to whom the task can be
escalated. For example, if this parameter is set to Manager, then the task is
assigned to a user jcooper. If none of the users act on the task in time, then the
task is assigned to jcooper (initial assignee) and user jstein (jcooper's
manager), whose title is Manager.

The title can be typed in or selected from a list of prespecified titles. The list of
titles is configured in defaultUserTitles.xml at

Oracle_Home\integration\jdev\jdev\system10.1.2.0.0.1811\

When both these parameters are specified, the task is escalated until one of the
conditions causes the escalation to stop. For example, if the maximum number of times
is 4, and the title is Manager, then the task is assigned to user jcooper. If none of the
users act on the task in time, then the task is assigned to jcooper (initial assignee),
user jstein (jcooper's manager), whose title is Manager.

Customizations for Sequential Workflow with Escalation
All the customizations that apply to the sequential workflow apply to this pattern also.

■ Changing the escalation policy

The assign named setRoutingPolicy in the generated scope sets the
escalation policy. The title of the last user to escalate up to is set to the attribute
/identityservice:managementChain/identityservice:uptoTitle of
the variable oraBPMManagementChain. The level of escalation is set to the
attribute
/identityservice:managementChain/identityservice:levels of the
variable oraBPMManagementChain. These assignments can be changed as
required.

■ Changing the expiration duration of the task when escalated

By default, the expiration duration of the task when escalated is the initial
expiration duration of the task. Changing the assignment to the variable
oraBPMExpDuration in the assign setRoutingPolicy changes the
expiration duration when the task is escalated.

■ Changing the user to whom the task is escalated on task expiration

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-49

By default, on task expiration, the task is escalated to the user’s manager. This can
be changed by changing the generated BPEL scope. In the generated BPEL scope,
another BPEL scope named escalateTask performs the escalation. In the scope,
change the escalateTask invoke to invoke the updateTask operation on the
TaskManagerService instead of the escalateTask operation. The
TaskManagerService.wsdl defines the updateTask operation. The task
assignees (users or groups) to whom the task is escalated must be set before the
operation is invoked. In addition, the state of the task (task:task/task:state)
should be set to ASSIGNED before the operation is invoked.

Parallel Workflow
Parallel workflow is used when a task must be approved by multiple users or groups
simultaneously. Each user views a subtask, which is a clone of the task at the time of
creation. Each user can add attachments and comments independent of the other
users. The users reviewing the task in parallel are not able to see the tasks of the other
users. This includes the comments, attachments, and outcomes of the other tasks. The
owner of the task can see all the subtasks. When the creator withdraws the parent task,
all the subtasks are withdrawn as well.

The users and groups that review the task can be specified in one of the following
ways. In each of the preceding cases, a subtask is created for each of the users or
groups in the list.

■ List of users or groups from OID set during the process design time

■ List of users or groups from another business process variable

The outcome of the final task is selected based on the outcomes of each of the subtasks.
The outcome of the task is selected based on the following criteria:

■ Percentage an outcome requires for it to be selected as the final outcome of the
task. For example, assume there are two possible outcomes, ACCEPT and REJECT,
and there are five subtasks. If two of the subtasks are accepted and three are
rejected, and the acceptance percentage required for an outcome is 50%, then the
outcome of the task is rejected.

■ If none of the outcomes have the required percentage, a default outcome can be
specified as the outcome of the task.

Parallel workflow can be configured for early completion. When early completion is
specified, that is, when the outcome of the task can be computed with the outcomes of
the completed subtasks, then the pending subtasks are withdrawn. If no early
completion is specified, the workflow waits for all the responses.

Figure 16–33 shows how parallel workflow is implemented in Oracle BPEL Process
Manager.

Workflow Patterns

16-50 Oracle BPEL Process Manager Developer’s Guide

Figure 16–33 Parallel Workflow

Figure 16–34 shows the subtask execution process.

Figure 16–34 The Parallel Workflow Subtask Process

setUserDefinedAttributes (assign)
Captures the user-defined attributes of the task, such as
assignees, payload, expiration date

For each assignee, create and execute subtask

completeMainTask (invoke)
Complete the main task based on the outcome determination policy

setOutcomeDeterminationPolicy (assign)
Captures the outcome determination policy

setSystemDefinedAttributes (assign)
Captures the system attributes of the task, such as process id,
process version

initiateTask (invoke)
Initiates the task by invoking the TaskManagerService

initiateSubTask (invoke)
Initiates the subtask by invoking the TaskManagerService

initiateTaskActionHandler (invoke)
Initiates the TaskActionHandler business process. This process receives
the actions from the Worklist application via the TaskManagerService.

receiveUpdatedTask (receive)
Receives the updated task from the TaskActionHandler business process

Compute number of outcomes based on the outcome of the subtask
(switch-case and assign)

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-51

Figure 16–35 shows the user task scope modeled using parallel workflow.

Figure 16–35 Parallel Workflow in JDeveloper BPEL Designer

Use Case
A hiring process is used to hire new employees. Each interviewer votes to hire or not
hire a candidate. If 75% of the votes are to hire, then the candidate is hired; otherwise,
the candidate is rejected. The process is modeled using the parallel workflow, where
each interviewer can vote independently from the other interviewers.

Pattern-Specific Parameters
Parallel workflow has the following pattern-specific parameters.

■ The percentage required for an outcome to be chosen as the final outcome

■ The default outcome

■ Configuration if early completion is enforced

Figure 16–36 shows where these parameters are configured.

Workflow Patterns

16-52 Oracle BPEL Process Manager Developer’s Guide

Figure 16–36 Outcome Determination

Customizations for Parallel Workflow
■ Changing the outcomes after creation of the user task

The outcomes are captured in the XML task configuration file, where they can be
changed manually. See "Task Outcomes" on page 16-13 for more information.

■ Changing the parameters of the outcome determination policy

The assign named setUserDefinedAttributes in the generated scope
captures the outcome determination policy. The percentage required for the final
outcome is assigned to the BPEL variable oraBPMConclusionPercentage and
the default outcome is set in the BPEL variable oraBPMDefaultConclusion.

Parallel Workflow with Final Reviewer
Parallel workflow with a final reviewer is an extension of the parallel workflow in
which, after users review the task in parallel, the task is assigned to a final reviewer.
The final reviewer can be users or groups. When there is more than one final reviewer
or if the task is assigned to a group, one of the users must acquire the task before
reviewing it. All that applies to the parallel workflow applies to the parallel workflow
with final reviewer as well. The final reviewer can see all the subtasks, where each
subtask is a task that was acted on by a user in the parallel workflow.

The final reviewer (users or groups) of the task can be specified in one of the following
ways:

1. List of users or groups from OID set during the process design time

2. List of users or groups from another business process variable

The outcome of the final task is selected based on the outcomes of each of the subtasks,
as in the parallel workflow. The final reviewer can check the outcome that is selected
based on the outcome determination policy from the history of the task from the
Worklist Application.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-53

Parallel workflow with final reviewer is implemented using the task continuation
concept. See "Task Continuations" on page 16-56 for more information. Parallel
workflow with final reviewer is a parallel workflow continued by a simple task.

Use Case
A DocumentReview process is used to review a document. The document creator
creates the document and initiates a process by specifying the document and the
reviewers of the document. Each reviewer can review the document simultaneously
and independently of the other reviewers. After all the reviewers are done reviewing,
the creator of the document gets to review the comments of the reviewers. See the
DocumentReview example in the samples directory for an implementation of this use
case.

Pattern-Specific Parameters
Parallel workflow with final reviewer has the same pattern-specific parameters as
parallel workflow. In addition to choosing the parallel participants, the final reviewer
must also be set. Figure 16–37 shows where the final reviewer is selected.

Figure 16–37 Setting Reviewers

Customizations for Parallel Workflow with Final Reviewer
All the customizations for the parallel workflow apply to this pattern, in addition to
the following:

■ Changing the final reviewer of the task

The assign named setUserDefinedAttributes in the generated scope
captures the reviewers. The reviewers are set in the
/taskmngr:assigneeEntities/taskmngr:assignee attribute of the

Workflow Patterns

16-54 Oracle BPEL Process Manager Developer’s Guide

oraBPMReviewers variable. This assignment can be changed to change the final
reviewer.

Adhoc Workflow
Adhoc workflow is used when each user selects users or groups as the next assignee
when approving the task. As part of configuring the workflow, only the initial
assignee is set. A user can chose either to complete the task by selecting an outcome or
to set an outcome and send the task to other users or groups.

Figure 16–38 shows how sequential workflow is implemented in Oracle BPEL Process
Manager.

Figure 16–38 Adhoc Workflow

while (task != completed || errored || expired || withdrawn)

setUserDefinedAttributes (assign)
Captures the user-defined attributes of the task, such
as assignees, payload, expiration date

setRoutingPolicy (assign)
Captures the routing policy

setSystemDefinedAttributes (assign)
Captures the system attributes of the task, such as process id,
process version

initiateTaskActionHandler (invoke)
Initiates the TaskActionHandler business process. This process receives
the actions from the Worklist application via the TaskManagerService.

receiveUpdatedTask (receive)
Receives the updated task from the TaskActionHandler
business process

routeTaskToNextApprover (invoke)
If the task is completed and the outcome requires routing and the continue
routing expression evaluates to true, route the task to the next approver

initiateTask (invoke)
Initiates the task by invoking the TaskManagerService

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-55

Use Case
This pattern is typically used when a sequence of users or roles that need to act on the
task is not determined automatically by the workflow process, but instead by the user
who is currently assigned the task. Each user decides whether the task must be routed
further or if it is complete. For example, an HR representative writes a new policy
document and has it reviewed by their manager. The manager may decide that
another person should also review it before it is accepted. This person may in turn
forward the task to others before approving it. Hence, the task may be routed to
multiple users before coming back to the original reviewer, who then finally approves
it based on comments from others.

Customizations for Adhoc Workflow
■ Changing the initial assignee of the task

The assign named setUserDefinedAttributes in the generated scope
captures the assignment of the task assignee. Depending on whether the task is
assigned to a user or a group, the task attribute assigneeUsers or
assigneeGroups is set. This assignment can be changed to modify the initial
assignee.

FYI Tasks
The FYI task is a nonblocking task that is listed as an assigned task for the assignee in
the Worklist Application. The process that created the task does not wait for a
response from the user. The process continues after creating the task. From the
Worklist Application, the user can perform the available custom action so that the task
no longer appears in the assigned list.

The FYI task cannot be extended. Any other workflow can be extended with an FYI
task, but the FYI task itself cannot be extended.

Figure 16–39 shows how the FYI task is implemented in Oracle BPEL Process
Manager.

Figure 16–39 The FYI Task

Use Case
A purchase order approval system processes purchase orders. When the system
processes approvals over $100,000, a supervisor must be notified, but without

setUserDefinedAttributes (assign)
Captures the user-defined attributes of the task, such as
assignees, payload, expiration date

setSystemDefinedAttributes (assign)
Captures the system attributes of the task, such as process id,
process version

initiateTask (invoke)
Initiates the task by invoking the TaskManagerService

Workflow Patterns

16-56 Oracle BPEL Process Manager Developer’s Guide

stopping the processing. This information is used by the supervisor to monitor the
system.

Customization for FYI Tasks
■ Changing the assignee after creating the FYI task

The assign named setUserDefinedAttributes in the generated scope
captures the assignment of the task assignee. Depending on whether the task was
assigned to a user or a group, the task attribute assigneeUsers or
assigneeGroups is set. This assignment can be changed to modify the task
assignee.

The User Task 2.0 Macro
The User Task 2.0 Macro supports the user task from earlier releases. This user task
requires the business process modeler to assign task properties explicitly and also
requires a custom application to view and act on tasks. The User Task 2.0 Macro is
available for backward compatibility and is replaced with the workflow services and
patterns in this release.

Tasks created using the User Task 2.0 Macro cannot be viewed in the Worklist
Application. These tasks cannot be continued with the continue task concept.

Task Continuations
Complex workflow patterns can be built using the task continuation (extension)
concept. Task continuation allows one workflow to be continued with another
workflow. When a workflow is continued with another workflow, the following
information is carried over to the new workflow:

■ Task payload and the changes made to the payload in the previous workflow

■ Task history

■ Comments added to the task in the previous workflow

■ Attachments added to the task in the previous workflow

■ Task configuration such as outcomes and notification messages

When a workflow is being created, the first window in the wizard (see Figure 16–40)
enables you to determine if a new workflow should be created or a previous workflow
should be extended. When Extend Existing Workflow is selected, all the existing
workflows are listed. Selecting a particular workflow permits the user to extend
(continue) the selected workflow.

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-57

Figure 16–40 Task Continuation

Any workflow pattern can be extended with any other workflow pattern, with the
following restrictions:

■ The FYI task cannot be extended. Any other workflow can be extended with an
FYI task, but the FYI task itself cannot be extended.

■ The User Task 2.0 Macro cannot be extended.

■ No workflow can be extended with the User Task 2.0 Macro.

When a task is extended, the previous task’s expiration date is also carried over. This
has the following impact:

■ If no expiration duration was set in the old task, and

■ if there is no expiration duration set in the extended workflow, then the task
does not expire.

■ if a new expiration duration is set in the extended workflow, then this
expiration duration is based on the time the extended task is initiated.

■ If an expiration duration was set in the old task, and

■ if there is no expiration duration set in the extended workflow, then the
expiration date of the old task is the expiration date of the current task.

■ if a new expiration duration is set in the extended workflow, then this
expiration duration is based on the previous expiration date
(task:task/task:expirationDate).

If the expiration date carry over is not required for the scenario being modeled, then
the expirationDate element must be cleared. You can add a copy in the
setUserDefinedAttributes of the generated scope to set the
/task:task/task:expirationDate element to the expression string(‘’).
Figure 16–41 shows the copy wizard with such an assignment.

Workflow Patterns

16-58 Oracle BPEL Process Manager Developer’s Guide

Figure 16–41 Create Copy Rule

Use Case
A hiring process is used to hire new employees. Each interviewer votes to hire or not
hire a candidate. If 75% of the votes are to hire, then the candidate is hired; otherwise,
the candidate is rejected. If the candidate is to be hired, then the human resources
contact completes the hiring process. The HR contact also needs to see the interviewers
and the comments they made about the candidate. This process can be modeled using
a parallel workflow for the hiring, and, if the candidate is hired, then a simple
workflow can extend the parallel workflow so that the hiring request, history, and the
interviewer comments are carried over. This simple workflow is assigned to the HR
contact.

Pattern-Specific Parameters
There are no parameters specific to the extended workflow. The parameters are driven
by the pattern chosen for the extended workflow.

Customization for Task Continuations
The follow customization applies:

■ Customization applicable to the workflow pattern also applies to the extended
workflow.

■ Changing a new workflow to an extended workflow

Workflow Patterns

Oracle BPEL Process Manager Workflow Services 16-59

Any new workflow can be changed to an extended workflow. For example, if
Workflow1 uses the BPEL variable Workflow1Var and Workflow2 uses
Workflow2Var, and Workflow2 must be changed to extend Workflow1, then do
the following:

1. Delete the BPEL variable Workflow2Var.

2. Replace all occurrences of Workflow2Var in the BPEL to Workflow1Var.

3. In the generated scope, after the BPEL assign activities, there is a scope
named initiateTask. In this scope, there is an invoke, initiateTask,
that calls the TaskManagerService in the operation initiateTask. Change
this operation to reinitiateTask.

This customization is useful when two workflows that have different payloads
must carry the same history information. When modeled as new workflows, the
modeler can take advantage of the autogenerated JSP for display purposes and
then change the new workflow to an extended workflow.

Outcome-Based Modeling
In many cases, the outcome of a task determines the flow of the business process. To
facilitate modeling of the business logic, when a user task is generated, a BPEL switch
activity is also generated with prebuilt BPEL case activities. By default, one case
activity is created for each outcome selected during creation of the task. An
otherwise activity is also generated in the switch to represent cases when the task is
withdrawn, expired, or errored.

Payload Updates
The task carries a payload in it. If the payload is set from a business process variable,
then an assign with the name copyPayloadFromTask is created in each of the
case and otherwise activities to copy the payload from the task back to its source. If
the payload is expressed as other XPath expressions (such as
ora:mergeChildNodes(...), ora:getNodes(...)), then this assign is not
created because of the lack of a process variable to copy the payload back. If the
payload need not be modified, then this assign can be removed.

Case Statements for Other Task Conclusions
By default, the switch activity contains case statements for the outcomes only. The
other task conclusions are captured in the otherwise activity. These conclusions are
as follows:

■ The task is withdrawn

■ The task is errored

■ The task is expired

If business logic must be added for each of these other conclusions, then case
statements can be added for each of the preceding conditions. The case statements
can be created as shown in the following BPEL segment. The XPath conditions for the
other conclusions in the case activities for each of the preceding cases are shown in
bold.

<switch name="taskSwitch">
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'COMPLETED' and
bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:conclusion') =
'ACCEPT'">

Task Notifications

16-60 Oracle BPEL Process Manager Developer’s Guide

 <bpelx:annotation>
 <bpelx:pattern>Task outcome is ACCEPT
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'WITHDRAWN'">
 <bpelx:annotation>
 <bpelx:pattern>Task is withdrawn
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'EXPIRED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is expired
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'ERRORED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is errored
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <otherwise>
 <bpelx:annotation>
 <bpelx:pattern>Task is EXPIRED, WITHDRAWN or ERRORED
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </otherwise>
</switch>

Task Notifications
Notifications are sent to alert users of changes to the state of a task. Notifications can
be sent through any of the following channels: e-mail, telephone voice message, or
SMS.

The notifications for a task can be configured during the creation of a task.
Notifications can be sent to different types of participants for different actions. The
actions for which a task notification can be sent are as follows:

■ Assigned—when the task is assigned to users or a group. This action captures the
following actions:

– Task is assigned to a user

– Task is assigned to a new user in a sequential workflow

– Task is renewed

– Task is delegated

– Task is reassigned

Task Notifications

Oracle BPEL Process Manager Workflow Services 16-61

– Task is escalated

– Task is resumed (from a suspension)

– Information for a task is submitted

■ Information is requested for a task

■ Task is suspended

■ Task is errored

■ Task is expired

■ Task is completed

■ Task is withdrawn

■ Reminder

Notifications can be sent to users involved in the task in various capacities. This
includes:

■ Assignees—the users or groups to whom the task is currently assigned

■ Creator—the user who created the task

■ Approvers—the users who have approved the task so far

– This applies in a sequential workflow where multiple users have approved the
task and a notification must be sent to all of them.

When the task is assigned to a group, each user in the group is sent a notification if
there is no notification endpoint available for the group.

Channels Used for Notification
The channel through which a user is notified is determined by the notification
preference attribute of the user as specified in JAZN. The notification preference is
identified by the attribute orclWorkflowNotificationPreference. In a JAZN
file-based system, the value for this attribute can be changed in
users-properties.xml at

Oracle_Home\integration\orabpel\system\services\config

In an OID-based system, the user properties can be changed using Oracle Delegated
Administration Service. If this attribute is not set, the e-mail channel is used as the
default.

Notification Messages
Notification messages can include static strings and XPath expressions as follows:

<html>
<body>
<%bpws:getVariableData('TaskNotification',
'/taskNotification:taskNotification/taskNotification:recipientDisplayName')%>

<%bpws:getVariableData('taskObject', '/task:task/task:title')%> is assigned to
you. Please act on the task from the <A
href="<%bpws:getVariableData('TaskNotification',
'/taskNotification:taskNotification/taskNotification:worklistApplicationLink')%>”>

See Also: Chapter 15, "Oracle BPEL Process Manager Notification
Service"

Task Notifications

16-62 Oracle BPEL Process Manager Developer’s Guide

Worklist Application
</body>
</html>

In creating the messages, only two BPEL variables are available to the user—the task
variable and a task notification variable. This restriction is because the messages are
evaluated outside the context of the BPEL process. The payload in the task variable is
also strongly typed to contain the type of the payload for the XPath tree browsing. The
task notification variable is a transient variable available to get information about the
recipient and assignees.

Table 16–1 lists the elements that are available when using the task notification
variable.

Any XPath extension function that can only be evaluated within the context of a
business process such as ora:getProcessURL() or ora:getInstanceId()
cannot be evaluated in the task notifications. Task attributes such as processName,
processVersion, instanceId, and domainId can be used for these purposes.

E-mail Approval
Task actions can be performed through e-mail, if the task is set up to enable e-mail
actions. (The same actions can also be performed from the Worklist Application.) An
actionable e-mail account is the account in which task action-related e-mails are
received and processed. This e-mail account name is identified by the element
actionableEmailAccount in the XML file Oracle_
Home\integration\orabpel\system\services\config\wf_config.xml.

Table 16–1 Elements for the Task Notification Variable

Element Name Description

recipient The recipient id

recipientLocale The locale of the recipient to use in getting messages from
resource bundles for internationalization. Messages from
bundles can be retrieved using the
orcl:get-localized-string(…) extension function.

recipientDisplayName The display name of the recipient as in the user store (OID,
Active directory, and so on). If no display name is specified,
the convention {lastname}, {firstname} is used.

assignees A comma-separated string of all the assignee ids.

assigneeDisplayNames A comma-separated string of all the assignee display names.

worklistApplicationLink The link to the Worklist Application. This link takes the user
to the particular task for which the e-mail is sent.

actionLinks If actionable notifications are enabled, the actions link has
text to create HTML links of the format <html
link>custom action<html link><space><html
link>custom action<html link><space>….

processURL The process URL is useful to look up a resource bundle that
is deployed with the BPEL suitcase. Messages from resource
bundles can be retrieved using the
orcl:get-localized-string(…) extension function.
The first argument in this function is the base URL. If the
message bundle is deployed with the suitcase, the base URL
can be retrieved using the processURL element of the task
notification BPEL variable.

Task Notifications

Oracle BPEL Process Manager Workflow Services 16-63

For example:

<workflowConfigurations
 xmlns="http://xmlns.oracle.com/pcbpel/humanworkflow/configurations">

 <actionableEmailAccount>AccountReceiving</actionableEmailAccount>
 ...
</workflowConfigurations>

Figure 16–42 shows where you specify if the e-mail message is an actionable message.

Figure 16–42 Notification Service Wizard - Step 1 of 1: Specify Email Parameters

Reminders
Tasks can be configured to send reminders, which can be based on the time the task
was assigned to a user or the expiration time of a task. The number of reminders and
the interval between the reminders can also be configured. The message marked for
reminders (REMINDER) is used, and if there is no such message, the message meant for
the assignees when the task is assigned is used to send reminders.

Reminders can be added in the task configuration file. In the task configuration file,
the reminder element is added inside the notifications element as follows:

<taskType >

 <task actionableNotifications="YES">

 </task>

 <notifications>
 <reminder recurrence="1" relativeDate="ASSIGNED">PT3H</reminder>

Payload Display

16-64 Oracle BPEL Process Manager Developer’s Guide

 <action name="REMINDER">
 <messages recipient="ASSIGNEES"

xmlns:ns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">

 </messages>
 </action>
 <action name="ASSIGNED">
 <messages recipient="ASSIGNEES"

xmlns:ns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">

 </messages>
 </action>
 </notifications>
</taskType>

The recurrence specifies the number of times reminders are sent. The possible
values for recurrence are EVERY, NEVER, 0, 1, 2 …, 10.

The relativeDate specifies if the reminder duration is computed relative to the
assigned date or to the expiration date of the task. The possible values for the
relativeDate are ASSIGNED and EXPIRATION.

The value for the reminder element itself is the duration from the relativeDate and
the first reminder and each reminder since then. The data type of duration is
xsd:duration, whose format is defined by ISO 8601 under the form
PnYnMnDTnHnMnS. The capital letters are delimiters and can be omitted when the
corresponding member is not used. Examples include PT1004199059S, PT130S,
PT2M10S, P1DT2S, -P1Y, or P1Y2M3DT5H20M30.123S.

The following examples illustrate when reminders are sent.

■ The relativeDate is ASSIGNED, the recurrence is EVERY, and the reminder
duration is PT1D. If the task is assigned at 3/24/2005 10:00 AM, then reminders
are sent at 3/25/2005 10:00 AM, 3/26/2005 10:00 AM, 3/27/2005 10:00 AM, and
so on until the user acts on the task.

■ If the relativeDate is EXPIRED, the recurrence is 2, the reminder duration is
PT1D, and the task expires at 3/26/2005 10:00 AM, then reminders are sent at
3/24/2005 10:00 AM and 3/25/2005 10:00 AM if the task was assigned before
3/24/2005 10:00 AM.

■ If the relativeDate is EXPIRED, the recurrence is 2, the reminder duration is
PT1D, the task expires at 3/26/2005 10:00 AM, and the task was assigned at
3/24/2005 3:00 PM, then only one reminder is sent at 3/25/2005 10:00 AM.

Payload Display
The task payload is an XML structure that must be displayed in a usable form in the
Worklist Application. You have three options for displaying the payload in the
Worklist Application:

■ Autogenerated JSP

■ XSL

Payload Display

Oracle BPEL Process Manager Workflow Services 16-65

■ The Custom JSP URL

As Figure 16–43 shows, any of these options can be selected as the payload display
mechanism in the Workflow wizard. The Payload field is expecting a
bpws:getVariableData function that gets the payload root from a BPEL process's
variable data.

Figure 16–43 Workflow Wizard - Step 3 of 6: Task Details

Autogenerated JSP
When the Auto generate JSP form option is selected, two files, a default JSP file and a
mapping file, are automatically generated to display the payload at the end of the
Workflow wizard.

The name of the default JSP file, task_name_WF_Form.jsp, is generated based on
your task name. The file is added to the HTML root directory of your project, which is
by default the public_html directory.

Along with the default JSP file, a mapping XML file is also generated. It is named
task_name_WF_Fields.xml, and is added to the root directory of your project.

Behind the scenes, the JSP run-time library and the OraBPEL library are automatically
added to your BPEL project for compilation of the JSP file.

The default JSP shows all the simple types in the payload XSD. It does not show
attributes. If multiple simple types belong to the same XSD choice block, all these
simple types are shown in the default JSP. Although simple types are preserved in the
JSP, XSD restrictions are not relevant. Only payloads that are copied from variables
that are not simple types are supported. This is to say, in the payload field in the
preceding picture, if the query is bpws:getVariableData(var) or
bpws:getVariableData(var, part) and the variable is a simple type, then JSP
generation fails. Note that bpws:getVariableData(var, part, query) and

Payload Display

16-66 Oracle BPEL Process Manager Developer’s Guide

bpws:getVariableData(var, query) work even if the queried data is a simple
type. You only need to make sure the variable itself is not a simple type.

Default JSP groups the whole payload structure. It groups simple types that belong to
the same parents.

For example, assume the user provides the following payload XSD:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.mycompany.com/mycompany"
 xmlns:mp="http://www.mycompany.com/mycompany">

 <element name="myCompany" type="mp:myCompanyType"/>

 <complexType name="myCompanyType" >
 <sequence>
 <element name="board" type="mp:boardType" />
 <element name="CEO" type="string"/>
 <element name="department" type="mp:departmentType" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="boardType">
 <sequence>
 <element name="size" type="int" />
 <element name="head" type="string" />
 </sequence>
 </complexType>

 <complexType name="departmentType">
 <sequence>
 <element name="size" type="int" />
 <element name="head" type="string" />
 <element name="function" type="string" />
 </sequence>
 </complexType>

</schema>

This XSD has the structure shown in Figure 16–44.

Payload Display

Oracle BPEL Process Manager Workflow Services 16-67

Figure 16–44 Structure of the XSD for myCompanyType

In the default JSP, based on the structure of the leaf nodes, there are three sections:
{size, head}, {CEO}, and {size, head, function}. These three sections are named
according to their parents’ names; that is, the sections are named board, my
Company, and department, respectively. Because the section department can have
multiple occurrences, all the fields in this section, that is, size, head, and function, are
horizontally presented in a table, with each row representing one department.

Customizing the Autogenerated JSP
The autogenerated default JSP is generic, and so may require changes to improve its
look and feel. The JSP works in conjunction with the mapping file to determine which
elements in the payload are displayed in the form.

Customizing the Mapping File
The mapping file gives you control of the presentation. The mapping file is an XML
file that contains a list of showable fields. The root element in the mapping file
contains its targetNameSpace, other namespaces, showXmlView, and
xmlEditable as its attributes.

The payload, by default, shows only the HTML form view. It also has an XML source
view that can be used to set payload XML directly. ShowXmlView identifies if the
XML source view is enabled, while xmlEditable identifies if the XML source view in
the payload presentation is editable or not. ShowXmlView is set to false by default,
while xmlEditable is set to true.

All the elements that are simple types are listed as fields in the mapping file. Along
with these elements, their immediate parents are listed as well for multilanguage
support. Each field has three properties defined in the mapping file. They are xpath,
editable, and resource_key.

Payload Display

16-68 Oracle BPEL Process Manager Developer’s Guide

The xpath property defines the XPath of this field. It is always prefixed by
/ns0:task/ns0:payload. This is the XPath to the root of the payload object. When
maxOccurs is greater than 1, it is denoted by [*]. For example,
/ns0:task/ns0:payload/company[*]/ceo shows that maxOccurs is greater
than 1 for the company field.

The editable property defines if this field is editable. It defaults to true. If the value
of this field is changed to false, the default JSP shows a disabled text field that
disallows value changes.

The resource_key property is for multilanguage support. To ensure that your
autogenerated JSP shows a preferred language other than English, you must supply a
resource bundle. To do that, you modify your taskConfigtaskName.xml file. Add
two attributes—resourceBundleName and resourceBundleLocation—to the
top element, task. The resourceBundleLocation attribute points to a JAR file,
and resourceBundleName specifies the resource bundle’s file name in the JAR file.
The resourceBundleLocation attribute is optional for globalization purposes.

The following code shows an example of taskConfig<taskName>.xml:

<taskType name="taskConfigSimpleWorkflow2.xml"
 resourceBundleName="MyBundle"
 targetNamespace="http://taskTypes/taskConfigSimpleWorkflow2.xml"
 features="xpathNotification"
 xmlns:tns="http://taskTypes/taskConfigSimpleWorkflow2.xml"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:xp20="http:
//www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.Xpath20"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:Notification="http:
//xmlns.oracle.com/pcbpel/taskservice/taskNotification"
 xmlns:client="http://xmlns.oracle.com/i18nProcess"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns="http://xmlns.oracle.com/pcbpel/taskservice/tasktype"
 xmlns:ns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"
 xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 xmlns:task="http://xmlns.oracle.com/pcbpel/taskservice/task"
 xmlns:orcl="http:
//www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.functions.ExtFunc">
 <task actionableNotifications="YES"
 xmlns="http://xmlns.oracle.com/pcbpel/taskservice/tasktype">
 <conclusions>
 <conclusion name="ACCEPT">
 <displayValue>getMessage(ACCEPT_MSG)</displayValue>
 </conclusion>
...
</taskType>

MyBundle points to a properties file that resides at the root of the project. The
following code shows an example of MyBundle_en-US.properties:

ACCEPT_MSG = Accept0
REJECT_MSG = Reject0
FLEX_STRING1_MSG = Flex String1
FLEX_LONG1_MSG = Flex Long1

Note: Do not modify this XPath field because it is also a unique key
that determines the identity of the field.

Payload Display

Oracle BPEL Process Manager Workflow Services 16-69

FLEX_DATE1_MSG = Flex Date1
TASK_TITLE = i18n Task

In this case, if a field is defined in your mapping file as follows

 <field>
 <xpath>/ns0:task/ns0:payload/taskTitle</xpath>
 <editable>true</editable>
 <resourceKey>TASK_TITLE</resourceKey>
 </field>

then calling

PayloadUtil.getElementDisplayName("/ns0:task/ns0:payload/taskTitle", ,form,
context.getLocale(), task)

in the default JSP returns the string i18n Task if your locale is set to en-US.
Similarly, if your locale is set to French, the proper properties file (MyBundle_
fr.properties) is picked up.

Customizing the Default JSP
If the mapping file does not provide enough control, you can modify the default JSP
file. Only modify the section after the label /* Modify the code below when
necessary */. Most JSP modifications can be made in the JSP design view of
JDeveloper BPEL Designer.

By default, all the fields are set to text field. If you want to change text field to text
area, you can do the following. In the Component Palette, select Text Area, as shown
in Figure 16–45. Drop it into the position of the text field you want to replace. Note
that the name of the text field is set by calling the function
PayloadFormGenerator.constructName(String xpath), and the value of the
field is set by PayloadFormGenerator.selectNodeValue(Element payload,
String xpath, Map namespace). These functions must be used to construct form
field names and to retrieve form field values. Set the text area’s name and value to the
same name and value as text field. Delete the text field.

Payload Display

16-70 Oracle BPEL Process Manager Developer’s Guide

Figure 16–45 JDeveloper BPEL Designer JSP Design View

In the place you want to insert text or other HTML elements that are not in a table, add
text by typing it or add an HTML element by dragging and dropping the HTML
component from the Component Pallet.

If the place you want to insert HTML elements that are in an HTML table, to insert text
or a horizontal rule, first add a table row by clicking a row, right-clicking, and
selecting Insert Row. After a row is inserted, you may need to merge all the cells in the
row by selecting all the cells in the row and right-clicking to select Merge Cells. Then
you can either type your text or drag and drop your HTML component.

If you want to change the layout of the table or form, highlight the section you want to
modify, right-click, and select table or form. If you want to format the text, use the
toolbar’s color and style buttons.

It is recommended that you modify the default JSP’s look and feel only. You should
preserve the functions being used in the JSP. You must not alter the hidden parameters
being submitted in the HTML form, because the Update button invokes form
submission to the UpdateServlet that expects certain values. If your change is
complicated and has programming logic in it, you must switch to the source view and
modify the JSP code directly. See "The Custom JSP URL" on page 16-72 for a
lightweight code analysis of the JSP.

By putting the statement <%@ page pageEncoding="UTF-8" %> in the default
JSP, UTF-8 is set as the default encoding. If you want to modify this statement to set
the JSP to other encoding, for example ISO, then you must also change
UpdateServlet. To do this, add one encoding element in the taskConfigtask_
name.xml file. The modified file looks as follows:

See Also: The HelpDeskServiceRequest demo in Oracle_
Home\integration\orabpel\samples\demos for an example of
an autogenerated JSP and how to change the payload presentation

Payload Display

Oracle BPEL Process Manager Workflow Services 16-71

<taskType>
 <task>
 ...
 <payloadDisplay>
 <jsp>defaultWFPayloadJSP</jsp>
 <xpathFile>taskConfigSimpleWorkflowWithAutomaticEscalation1_WF_
Fields.xml</xpathFile>
 <encoding>ISO</encoding>
 </payloadDisplay>
 </task>
</taskType>

Multibyte Payload in the Task Detail JSP
To ensure that a multibyte payload is correctly displayed on the Task Detail page,
modify the TaskType.xml file that is generated during design time by adding the
following element as a child element of PayloadDisplay:

<encoding>UTF-8</encoding>

Deploying the Autogenerated JSP
Using JDeveloper BPEL Designer, you can deploy your BPEL project directly to OC4J.
When you deploy your project, the default JSP file is deployed at

Oracle_Home\orabpel\system\appserver\oc4j\j2ee\home\applications\hw_services\
worklistxpress\payload\bpel_process_name_bpel_process_version\

Because every autogenerated JSP is named based on its task name only, by deploying
the JSPs under their corresponding bpel_process_name_bpel_process_
version directories, there are no collisions.

On other platforms, the same directory structure is used.

If you choose to deploy your project on OC4J by using obant, ensure that you copy
the autogenerated JSP file to the preceding directory by inserting a copy statement
like the following to your project’s build.xml file.

 <copy todir="${home}/system/appserver/oc4j/j2ee/home/applications/hw_
services/worklistxpress/payload/bpel_HelpDeskServiceRequest_1.0">
 <fileset dir="public_html">
 <include name="*.jsp" />
 </fileset>
 </copy>

If you make changes to your JSP or mapping file, you must deploy your BPEL project
after the modifications.

XSL
Another payload display option is to provide an XSL file that transforms the payload
XML instance to HTML. The root of the XML instance that is to be transformed is the
{http://xmlns.oracle.com/pcbpel/taskservice/task}payload element.
The payload itself cannot be updated using this option.

See Also: The HelpDeskServiceRequest demo in Oracle_
Home\integration\orabpel\samples\demos for more
information on the build.xml file

Payload Display

16-72 Oracle BPEL Process Manager Developer’s Guide

The Custom JSP URL
A custom JSP can display the payload in the Worklist Application. This section
describes how to write a JSP for payload presentation. Before deciding on writing a
custom JSP, evaluate if the default payload JSP can be modified to suit your needs,
since modifying the default JSP is the easiest way to construct your JSP. See
"Customizing the Autogenerated JSP" on page 16-67 for how to generate and modify
the default payload JSP.

Code analyzing an autogenerated payload JSP helps you formalize how to write your
JSP. The autogenerated JSP imports oracle.tip.pc.api.worklist.payload.*.
This package contains classes used to access payload values.

The first section of the default JSP gets the payload object from the task object. No null
checking is done for these variables in the JSP file because these checks are done before
calling the JSP.

A form object is created from the task object. This form object represents the mapping
file. The optional login page, next page, and error page are received from the
parameter list in case they are needed in the JSP.

The call to PayloadFormGenerator.getRequiredFormParameters() returns a
map of required parameters that must be sent to the JSP and the update payload
servlet. This map contains parameter names (keys) and parameter values (values).
Ensure that, in the payload JSP, you call this method and send these parameters so
that the update payload servlet functions properly.

The next section contains code that presents the payload. The first div block gives the
XML view of the payload, while the second div block provides the HTML form view.
Notice that the name of every form parameter is the result of calling
PayloadFormGenerator.constructName(xpath). This is because there are
illegal characters in XPath while used as HTTP parameters. Ensure that the JSP calls
this function to construct parameter names for the particular XPath.

Form.getField(xpath) gets the field from the mapping file. Since the custom JSP
does not use a mapping file, this function need not be called.

PayloadFormGenerator.selectNodeValue() is the function that gets the value
of the given XPath from the payload. The namespace map must be passed to this
function.

Your JSP can use the update servlet provided in the application.

PayloadConstant.UPDATE_SERVLET_URL stores the URL of the payload update
servlet.

The update servlet expects the following required parameters to be set:

PayloadConstant.WORKLIST_CONTEXT_PARAMETER_NAME
PayloadConstant.WORKLIST_TASKID_PARAMETER_NAME

And these optional parameters:

PayloadConstant.WORKLIST_TASK_VERSION_PARAMETER_NAME (optional)
PayloadConstant.WORKLIST_ERROR_PAGE_PARAMETER_NAME (optional)
PayloadConstant.WORKLIST_LOGIN_PAGE_PARAMETER_NAME (optional)
PayloadConstant.WORKLIST_NEXT_PAGE_PARAMETER_NAME (optional)

See Also: Oracle_
Home\integration\orabpel\samples\demos\OrderApproval
for an example in which an XSL file is used to display the payload

Configuration for Task Service

Oracle BPEL Process Manager Workflow Services 16-73

The preceding parameter names and their corresponding values can be obtained by
calling the PayloadFormGenerator.getRequiredFormParameters() function.

It also expects certain parameters to be defined in the servlet’s session object, but you
need not be concerned about these parameters in your JSP file.

For all payload updates, the custom JSP must send the names and values of the fields
that have to be updated. The names are constructed by calling
PayloadFormGenerator.constructName(String xpath).

The update servlet must know what the prefixes represent in the XPath. Therefore, a
namespace map must be sent to the servlet. Any parameter whose name starts with ns
and is followed by a numeric number is assumed to be a namespace prefix. Its value is
the namespace value. You should always send parameter ns0 with its value
PayloadConstant.NS_ROOT_URL.

APIs
As with the autogenerated JSP, the JSP run-time library and the OraBPEL library are
automatically added to your BPEL project for compilation of the custom JSP file.

Customizing the Complete Task JSP
The previous sections described how you can customize the look and feel of the
payload portion of the task using a custom JSP, XSL, or by modifying the
autogenerated JSP. You can also override the complete JSP, including the header (task
attributes and actions section) and the footer (attachment, comments section) by
specifying a custom JSP to display the entire task details. The payload JSP URL is
captured in the task configuration XML file in the element payloadDisplay, as
follows:

<taskType ...>
 <task ...>
 ...
 <payloadDisplay>
 <jsp>http://localhost:9700/payloads/vacationrequest/payload.jsp</jsp>
 </payloadDisplay>
 ...
 </notifications>
</taskType>

Configuration for Task Service
The following sections discuss how to configure task services.

Autorelease Duration
If a task is assigned to groups or multiple users, one of the users in the group or the list
of users must acquire the task before acting on it. After the task is acquired, none of
the initial assignees can see the task if the task was assigned to them. If the user does
not act within a given time, the task is automatically released so that all the other users
in the group or list of users can see it. A particular business process can disable the
autorelease by making autorelease a restricted action. See "Restricted Actions" on
page 16-16 for more information.

See: Oracle_
Home\integration\orabpel\docs\workflow\oracle\tip\pc
\api\worklist\payload for Javadoc API documentation

Configuration for Task Service

16-74 Oracle BPEL Process Manager Developer’s Guide

The release duration is configurable in the file wf_config.xml at

Oracle_Home\integration\orabpel\system\services\config

The configurations for the autorelease durations are in the element
taskAutoReleaseConfiguration. The release durations can be configured for
tasks of each priority. For each priority, the autorelease duration can be specified as a
percentage of the expiration (the percentageOfExpiration attribute) duration or a
default value (the default attribute). The default values are used when the task does
not have an expiration duration. The datatype of default is xsd:duration, whose
format is defined by ISO 8601 under the form PnYnMnDTnHnMnS. The capital letters
are delimiters and can be omitted when the corresponding member is not used.
Examples include PT1004199059S, PT130S, PT2M10S, P1DT2S, -P1Y, or
P1Y2M3DT5H20M30.123S.

For example, if the task of priority 3 is acquired at 3/24/2005 10:00 AM and the task
expires at 3/31/2005 10:00 AM, then the time left for expiration is 7 days. If the
percentageOfExpiration for priority 3 tasks were 50, then the task is released at
3/37/2005 10:00 PM (3 ½ days from when it was acquired).

The taskAutoReleaseConfiguration element in the configuration file is shown
as follows:

<workflowConfigurations
 xmlns="http://xmlns.oracle.com/pcbpel/humanworkflow/configurations">

 <taskAutoReleaseConfigurations>
 <taskAutoRelease priority="1" default="P1D" percentageOfExpiration="30"/>
 <taskAutoRelease priority="2" default="P2D" percentageOfExpiration="40"/>
 <taskAutoRelease priority="3" default="P3D" percentageOfExpiration="50"/>
 <taskAutoRelease priority="4" default="P4D" percentageOfExpiration="60"/>
 <taskAutoRelease priority="5" default="P5D" percentageOfExpiration="70"/>
 </taskAutoReleaseConfigurations>

</workflowConfigurations>

Actionable E-mail Accounts
Task actions can be performed through e-mail. The actionable e-mail account is the
account in which task action-related e-mails are received and processed. This e-mail
account name is identified by the property
oracle.tip.pc.services.hw.taskservice.actionableEmailAccount at

Oracle_Home\integration\orabpel\system\services\config\pc.properties

Worklist Application URL
In the e-mails that are sent for tasks, the link to the Worklist Application is read from
the XML file wf_config.xml at

Oracle_Home\integration\orabpel\system\services\config\

The element worklistApplicationURL identifies the URL. Configuring this is
useful if the custom Worklist Application is built. The tag PC_HW_TASK_ID_TAG in
this URL is replaced with the task id when constructing the URL for the e-mail.

<workflowConfigurations
 xmlns="http://xmlns.oracle.com/pcbpel/humanworkflow/configurations">

 <worklistApplicationURL >
http://localhost:9700/integration/worklistapp/TaskDetails?taskId=PC_HW_TASK_ID_TAG

Identity Service

Oracle BPEL Process Manager Workflow Services 16-75

</worklistApplicationURL >
...
</workflowConfigurations>

Identity Service
This section describes the identity service component of Oracle BPEL Process
Manager. Identity service is a thin Web service layer on top of the Oracle Application
Server 10g security infrastructure, namely OracleAS JAAS Provider (JAZN), or any
custom user repository. It enables authentication and authorization of users and the
lookup of user properties, roles, group memberships, and privileges.

Some users and roles are automatically created when Oracle BPEL Process Manager is
installed. Seeded users include:

■ guest

■ default

■ bpeladmin

Identity service predefines the following roles, which can be granted to users to
perform workflow-related operations:

■ PUBLIC—This role is an implicit JAZN role; it need not be granted explicitly to
any of the users. If any user can authenticate with the worklist, then they can see
tasks assigned to them or groups they belong to and act on these tasks.

■ BPMWorkflowReassign—This role enables a user to reassign tasks to any other
user in the organization. A manager can always delegate tasks to any users under
him in the organization hierarchy without any Reassign privileges. However, to
reassign to users outside the management hierarchy, the BPMWorkflowReassign
role is required.

■ BPMWorkflowSuspend—This role enables users to suspend a process. If a process
is suspended, then the expiration time does not apply. When the process is
resumed, then the expiration date is recomputed. Users cannot suspend the
workflow if the process designer has designated Suspend as a restricted action,
even if the user has the BPMWorkflowSuspend role.

■ BPMWorkflowViewHistory—In general, a user can see only the task assignment
sequence as part of their worklist. This role enables a user to drill down further
into the BPEL business process audit trail from the task approval sequence.

■ BPMWorkflowAdmin—This role enables a user to perform system actions on any
workflow in the system. This role does not allow you to change the outcome of the
task (such as approve or reject); it only allows you to perform actions such as
delegate, escalate, and suspend. Only the task assignee or the process owner can
change the outcome of the task.

■ BPMSystemAdmin—Both BPMWorkflowAdmin and BPMSystemAdmin have the
same level of workflow privileges.

Note: The BPMPublic role can be used and explicitly granted to each
user if a third-party provider does not support an implicit PUBLIC
role.

Identity Service

16-76 Oracle BPEL Process Manager Developer’s Guide

Some of these roles are nested. The BPMWorkflowReassign, BPMWorkflowSuspend,
and BPMWorkflowViewHistory roles are granted to the BPMWorkflowAdmin role.
The BPMSystemAdmin role is granted to the seeded bpeladmin user.

The following table represents the relationship between the grantees and roles:

Identity Service Providers
Oracle BPEL Process Manager identity service supports three types of providers:
JAZN, third-party LDAP, or custom plug-in, as shown in Figure 16–46.

Figure 16–46 Identity Service Providers

The identity service providers are used to perform the following operations:

■ Authentication—authenticates users given their username and password

■ Authorization—determines roles and group memberships for a specific user.
These roles are then used to control access to various work items and operations
on the worklist.

■ Retrieve user properties—includes contact information such as first name, last
name, phone, e-mail, preferred notification channel, language preference, time
zone, and organization details such as manager name and reportees.

The JAZN Provider
The JAZN provider mode, which is preconfigured, delegates all authentication and
authorization inquires to the JAZN layer. Two JAAS providers are supplied as part of
the OC4J security infrastructure: the XML-based file and LDAP-based OID.

Role\Grantee bpeladmin default guest BPMWorkflowAdmin BPMSystemAdmin

BPMSystemAdmin Directly -- -- -- --

BPMWorkflowAdmin Indirectly through
BPMSystemAdmin

-- -- -- Directly

BPMWorkflowReassign Indirectly through
BPMSystemAdmin

-- -- Directly Indirectly through
BPMWorkflowAdmin

BPMWorkflowSuspend Indirectly through
BPMSystemAdmin

-- -- Directly Indirectly through
BPMWorkflowAdmin

BPMWorkflowViewHistory Indirectly through
BPMSystemAdmin

-- -- Directly Indirectly through
BPMWorkflowAdmin

See Also: Oracle Application Server Containers for J2EE User’s Guide

Oracle BPEL Process Manager

Identity Service

Third-party
LDAP

Directories

JAZN Provider CUSTOM
Repository

Plug-insLDAP-Based
Provider (OID)

XML-Based
Provider

Provider Plug-ins

Identity Service

Oracle BPEL Process Manager Workflow Services 16-77

XML-Based JAZN Provider Type The XML-based provider type is used for lightweight
storage of information in the XML files. All the user names, roles, and permissions are
stored in XML files. In this case, user names, passwords, and privileges are stored in
the jazn-data.xml file. In addition, Oracle BPEL Process Manager uses a
user-properties.xml file that works in conjunction with this file to store detailed
user properties such as name, e-mail, phone, and manager.

LDAP-Based JAZN Provider Type (Oracle Internet Directory) The LDAP-based provider type
is based on the Lightweight Directory Access Protocol (LDAP) for centralized storage
of information in a directory. OID is a standard LDAP-based directory that provides a
single, centralized repository for all user data. It allows sites to manage user identities,
roles, authorization, and authentication credentials, as well as application-specific
preferences and profiles in a single repository.

Third-Party LDAP Server
The third-party LDAP provider mode enables identity service to work with
third-party LDAP servers such as Sun Directory Server (iPlanet), Microsoft Active
Directory, or openLDAP. In this mode, identity service assumes that the directory is
the central repository of all user data, including authentication credentials, roles, and
profiles. The standard organizationalPerson, inetOrgPerson objects from the
LDAP schema are used to retrieve these details.

Custom User Repository Plug-ins
This mode enables UPI to define a new custom identity service provider to plug in a
specific non-LDAP-based user repository. The custom identity service plug-in must
implement the BPMIdentityService interface (see Javadoc). This
identityservice class name must be registered in is_config.xml. See "User and
Role Properties" on page 16-78 for more information.

Creating Users and Groups
You use directory-specific tools to create realms, users, or groups. For example:

■ To create users and groups when using OID, you use the Oracle Delegated
Administration Services tools. See Oracle Identity Management Guide to Delegated
Administration for more information.

■ To create users and groups credentials when using the XML-based JAZN
provider, you use the JAZN Admintool to modify the jazn-data.xml file. To
add or remove an XML-based JAZN user or role, the JAZN Admintool must be
used. You can manually edit the users-properties.xml file to specify detailed
user properties that JAZN does not support.

For example, to add a user to a specified realm, issue the following command:

java -jar jazn.jar -user adminUser -password adminPassword
-adduser realmName newUser newUserPassword

The JAZN Admintool provides different command options. You can list all the
options and their syntax with the -help option, as in:

java -jar jazn.jar -help

See Also: See Oracle_
Home\integration\orabpel\docs\workflow\oracle\tip\pc
\services\identity for Javadoc on the BPMIdentityService
interface

Identity Service

16-78 Oracle BPEL Process Manager Developer’s Guide

If you are using the XML-based provider, then you must supply a username and
password to the Admintool; for details see Authentication and the JAZN
Admintool (XML-based provider only)". If you are using the LDAP-based
provider, you need not specify the -user and -password arguments.

■ If you are using a third-party LDAP server or a custom user repository, you must
use the specific tools available for that directory.

User and Role Properties
Identity service supports the following user properties:

■ Display name

■ Given name, middle name, and last name

■ Description

■ Title

■ E-mail address

■ Telephone number

■ Home phone number

■ Mobile phone number

■ Fax number

■ Pager number

■ Manager id

■ Time zone

■ Preferred language

■ Preferred notification channel

The preceding properties are optional for Oracle BPEL Process Manager users.
However, some features, such as task notification, are not available if the contact
information is not present in the directory. Also, automatic escalation and manager
views are not available if the manager field is not available to identity service.

The following OID objectClasses are used to specify user and role properties such
as mail, manager, and telephoneNumber.

■ top

■ person

– cn

– sn

– description

– telephoneNumber

■ organizationalPerson

– title

– telephoneNumber

– facsimileTelephoneNumber

■ inetOrgPerson

Identity Service

Oracle BPEL Process Manager Workflow Services 16-79

– displayName

– givenName

– manager

– mail

– homePhone

– mobile

– pager

– preferredLanguage

■ orclUserV2

– middleName

– orclTimeZone

– orclWorkflowNotificationPref

■ orclGroup

Identity service maintains a connection pool to retrieve these properties from the
LDAP directory.

If you are using the XML-based JAZN provider, the same entries are represented as
XML elements in the users-properties.xml file in

Oracle_Home\integration\orabpel\system\services\config

Configuring Identity Service
The following sections describe how to configure identity services.

Structure of the Identity Service Configuration File
Identity service configuration is defined in the is_config.xml file. The file must be
located in a directory that is included in the CLASSPATH of Oracle BPEL Process
Manager. By default, it is stored in

Oracle_Home\integration\orabpel\system\services\config

The XML schema for the is_config.xml file is stored in

Oracle_Home\integration\orabpel\system\xmllib\workflow\xsd

Figure 16–47 shows the structure of the BPMIdentityService configuration.

Identity Service

16-80 Oracle BPEL Process Manager Developer’s Guide

Figure 16–47 BPMIdentityService Configuration

The identity service configuration file (as defined by is_config.xsd) consists of a
root element BPMIdentityServiceConfig, which can have only one provider. As
discussed previously, identity service supports the following main plug-in types:
JAZN provider, third-party LDAP directories, or custom repository plug-ins.

The provider element specifies the providerType, which can be JAZN, LDAP, or
CUSTOM, provider name (optional), and any provider-specific properties.

For example, in the case of the JAXN XML provider, you must set the providerType
attribute to JAZN and specify the value of the userPropertiesFile attribute. See
"Configuration for the XML-Based JAZN Provider" on page 16-83 for more
information about userPropertiesFile.

Similarly, if you use a custom plug-in to the identity service, you must set the
providerType attribute to CUSTOM. You then specify the class name for custom
identity service plug-in implementation, as follows:

<BPMIdentityServiceConfig
mlns="http://www.oracle.com/pcbpel/identityservice/isconfig" >
 <provider providerType="CUSTOM"
 name="CustomPlugIn"
 class="package.name.CustomIdentityService"
 </provider>
</BPMIdentityServiceConfig>

In addition, the provider can define the following optional parameters in the
configuration file. Most of these parameters apply to JAZN-based or LDAP-based
providers, but can be used by custom providers also.

connection Element The connection element is used to specify the URL, admin
username (binddn- bind as this Distinguished name), the credential (password) for the
LDAP or RDBMS connection used by the identity service, and a Boolean flag
(encrypted) to specify that the password is either in plain text or is encrypted.

Identity Service

Oracle BPEL Process Manager Workflow Services 16-81

Identity service overwrites the is_config.xml file after reading the configuration
and encrypts the user password if it finds the password in plain text. Figure 16–48
shows the structure of the connection configuration.

Figure 16–48 connection Configuration

The connection can specify connection pool properties by setting the following
attributes on the pool element:

■ initsize—initial size of the connection pool

■ maxsize—maximum size of the connection pool

■ prefsize— preferred size of the pool

■ timeout—time after which the connection is released if there is no activity (in
seconds)

The LDAP plug-in for identity service uses the following default values:

■ initsize="2"

■ maxsize="25"

■ prefsize="10"

■ timeout="60"

If you are using a custom identity service plug-in, you can also specify any additional
connection-specific properties as name-value pairs.

userControls and roleControls Elements The userControls element is used to define
user controls and to restrict the LDAP user search. Figure 16–49 shows the structure of
the userControls element.

Identity Service

16-82 Oracle BPEL Process Manager Developer’s Guide

Figure 16–49 userControls Element

The roleControls element is used to define role controls and restrict the LDAP role
search. Figure 16–50 shows the structure of the roleControls element.

Figure 16–50 roleControls Element

Both userControls and roleControls can have a search element that has the
following optional attributes:

■ searchbase—a list of LDAP entries, the distinguished names (DNs) of user or
group containers.

■ maxSizeLimit—the maximum number of elements that are fetched from LDAP
during a search operation

■ maxTimeLimit—the maximum time to wait to retrieve elements from an LDAP
search

■ scope—determines the search level. The value can be onelevel, in which the
search descends one level from the supplied DN or subtree, in which the search
descends the hierarchy from the DN to the lowest level in the tree.

By default, the LDAP provider for identity service uses the following values:
maxSizeLimit ="1000", maxTimeLimit ="120" (sec), and scope="subtree".

Identity Service

Oracle BPEL Process Manager Workflow Services 16-83

provider Element The provider element enables specifying additional property
elements, which can be used by custom plug-ins. An example follows:

<BPMIdentityServiceConfig
xmlns="http://www.oracle.com/pcbpel/identityservice/isconfig" >
 <provider providerType="CUSTOM" name="db2"
 class="package.name.CustomIdentityService"
 <property name="customProperty" value="customValue" />
 </provider>
</BPMIdentityServiceConfig>

In addition, the property element can be defined as part of any of the other elements
(userControls, searchControls, search, and so on) in the configuration file.

Configuration for the XML-Based JAZN Provider
The JAZN element jazn provider="XML" location="./jazn-data.xml"/ is
in

Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\application-deployments\h
w-services\orion-application.xml

and

Oracle_Home\integration\orabpel\system\appserver\oc4j\j2ee\home\config\jazn.xml

The identity service configuration file must specify the userPropertiesFile
property and provide the value of the file name where all user properties are stored:

<IdentityServiceConfig
 xmlns="http://www.oracle.com/pcbpel/identityservice/isconfig"
 xmlns:isc="http://www.oracle.com/pcbpel/identityservice/isconfig"
 providerType="jazn">
 <provider name="xml"
 <property name="userPropertiesFile" value="users-properties.xml"/>
 </provider>
</IdentityServiceConfig>

Note that the users-properties.xml file from that example stores all extended
user's properties. This is not required for JAZN authorization or authentication.
However, the BPEL identity service requires this file to get contact details and the
organizational hierarchy for users. If this file is not created, then certain workflow
functionality such as notifications, manager views, or task escalation may not work. By
default the identity service looks for users-properties.xml in the Oracle BPEL
Process Manager classpath. The Oracle Universal Installer stores the default
users-properties.xml in

Oracle_Home\integration\orabpel\system\services\config

Configuration for the LDAP-Based JAZN Provider (OID)
You configure the LDAP-based JAZN provider (OID) in two steps:

■ OID Configuration

■ Middle-Tier Configuration

See Also: JAZN documentation for how to configure the middle
tier to use the XML-based JAZN provider

Identity Service

16-84 Oracle BPEL Process Manager Developer’s Guide

OID Configuration Use the OID Migration Tool to load Oracle BPEL Process Manager
users and roles into OID. The OID Migration Tool can produce LDIF files for system
and demo users, which are suitable for loading into a directory server by using
standard command-line tools. The input to this tool is a pseudo-LDIF file containing
substitution variables. The tool is called ldifmigrator and is found in Oracle_
Home/bin. (See Oracle Identity Management Integration Guide for more information.)

The following predefined substitution variables are used in the file:

You can use the command-line variable s_UserCommonNamingAttribute with the
migration tool, which substitutes all occurrences of it with the value provided in the
command-line.

For example:

$ldifmigrator "input_file=system-oid.sbs" "output_file=system-oid.ldif" -lookup
"host=ldap.acme.com" "port=389" "subscriber=acme" "s_UserCommonNamingAttribute=cn"
dn="cn=admin" password=welcome

$ldifmigrator "input_file=demo-oid.sbs" "output_file=demo-oid.ldif"
-lookup dn="cn=admin" password=welcome "host=ldap.acme.com" "subscriber=acme"
"s_UserCommonNamingAttribute=cn"

where the subscriber is the JAZN realm and its name is acme, and cn is used to
construct the user's DN.

The system-oid.ldif file can be loaded to OID with the ldapadd utility.
Optionally, you can load demo-oid.ldif with the ldapmodify command.

For example:

$ldapadd -c -h ldap.acme.com -p 389 -D "cn=admin" -w welcome -f system-oid.ldif
$ldapmodify -c -h ldap.acme.com -p 389 -D "cn=admin" -w welcome -f demo-oid.ldif

Substitution Variable Value Description

%s_UserContainerDN% Distinguished name of the
entry under which all users
are added.

This is assigned the value of
the attribute:
orclCommonUserSearchBa
se from the entry
cn=Common,cn=Products
under the realm-specific
Oracle context.

%s_GroupContainerDN% Distinguished name of the
entry under which all public
groups are supposed to be
added.

This is assigned the value of
the attribute:
orclCommonGroupSearchB
ase from the entry
cn=Common,cn=Products
under the realm-specific
Oracle context.

See Also: Oracle Identity Management Application Developer’s Guide for
information about the ldapadd and ldapmodify commands

Identity Service

Oracle BPEL Process Manager Workflow Services 16-85

Middle-Tier Configuration Middle-tier configuration consists of the following steps:

■ Configuring the middle tier to use the LDAP-based JAZN provider

In general, a JAZN XML-based definition should be commented and a new
LDAP-based provider definition is specified in both files:

– Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\c
onfig\jazn.xml

<!-- jazn provider="XML" location="./jazn-data.xml"/ -->
<jazn provider="LDAP" location="ldap://host:port" default-realm="us" >
 <property name="ldap.user" value="cn=orcladmin" />
 <property name="ldap.password" value="!welcome1" />
</jazn>

where us is a default realm name for this example.

– Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\a
pplication-deployments\hw-services\orion-application.xml

<!-- jazn provider="XML" location="./jazn-data.xml"/ -->
<jazn provider="LDAP" location="ldap://host:port" default-realm="us" />

where us is a default realm name for this example.

Do not place user and password information in orion-application.xml.

Also add the following directive to Oracle_
Home\integration\orabpel\system\appserver\oc4j\j2ee\home\c
onfig\application.xml to allow password indirection management:

<password-manager>
 <jazn provider="XML" location="./jazn-data.xml" />
</password-manager>

■ Configuring identity service configuration file

Open is_config.xml in

Oracle_Home\integration\orabpel\system\services\config

and define OID provider properties:

Note: By default, when a user enters a search request, OID searches
based on the cn, firstname, lastname, and email attributes. You
can customize the attributes that can be searchable. The user manager
attribute from inetOrgPerson objectClass should be searchable
to allow workflow escalation. Use Oracle Delegated Administration
tools to set it up. The recommended searchable attribute list is cn, sn,
givenName, uid, manager, title, mail, and telephoneNumber.

See Oracle Identity Management Guide to Delegated Administration for
more information.

See Also:

■ Oracle JAAS Provider (JAZN) configuration documentation

■ Oracle Application Server Security Guide

Identity Service

16-86 Oracle BPEL Process Manager Developer’s Guide

<BPMIdentityServiceConfig
xmlns="http://www.oracle.com/pcbpel/identityservice/isconfig">
 <provider providerType="JAZN" name="oid" >
 <connection url="ldap://host:port"
 binddn="cn=orcladmin"
 password="welcome1" encrypted="false" />
 </provider>
</BPMIdentityServiceConfig>

The providerType must point to the JAZN mode. The provider must contain
connection specifications to define OID location, admin user, password and
encrypted flag.

Configuration for a Third-Party LDAP Server
Note the following considerations when using a third-party LDAP server:

■ The third-party LDAP servers must be configured to use standard
objectClasses: top, person, organizationalPerson, inetOrgPerson,
groupOfUniqueNames. If Microsoft Active directory is the third-party LDAP
directory provider, then the following objectClasses are used: top, person,
organizationalPerson, user, group.

Usually LDAP servers predefine the list of searchable attributes based on the cn,
firstname, lastname, and email attributes. You can customize the attributes
that can be searchable. The user manager attribute from inetOrgPerson
objectClass should be searchable to allow workflow escalation. See the
documentation for the third-party LDAP server you are using for how to set up
the searchable attribute.

The recommended searchable attribute list is cn, sn, givenName, uid, manager,
title, mail, and telephoneNumber.

■ When you seed Oracle BPEL Process Manager users and roles into the LDAP
server, the process assumes that the users’ and groups’ container is created in
LDAP.

To create system and optionally demo ldif files, open the given template files,
system-ldap.sbs and demo-ldap.sbs in

Oracle_Home\integration\orabpel\system\services\config\ldap

Replace the substitution variables with the appropriate values, as shown in the
following example:

Note: Setting the credentials element as follows enables you to
use clear (readable) passwords in the jazn-data.xml file the first
time:

■ <credentials>!welcome</credentials>

■ <credentials>!welcome</credentials>

This enables the administrator to edit jazn-data.xml directly with
a text editor. When the file is read and persistence occurs, the
password in jazn-data.xml is obfuscated and becomes unreadable.

Substitution Variable Replace With Value

%s_UserCommonNamingAttribute% cn

Identity Service

Oracle BPEL Process Manager Workflow Services 16-87

where

■ %s_UserContainerDN% with DN value of the entry under which all users
are supposed to be added. The users container with dn:
ou=People,dc=ldap,dc=acme,dc=com is used in this example.

■ %s_GroupContainerDN% with DN value of the entry under which all public
groups are supposed to be added. The groups container with dn:
ou=Groups,dc=ldap,dc=acme,dc=com is used in this example.

■ %s_UserCommonNamingAttribute% with the value used to construct the
user's DN. In this example the cn value is used.

Store changes in the system-ldap.ldif and demo-ldap.ldif files. Then load
the system-ldap.ldif file to the LDAP server by using the ldapadd utility.
Optionally, load demo-ldap.ldif with the ldapmodify utility.

For example:

$ldapadd -c -h ldap.acme.com -p 389 -D "cn=admin" -w welcome -f system-oid.ldif
$ldapmodify -c -h ldap.acme.com -p 389 -D "cn=admin" -w welcome -f
demo-oid.ldif

See the documentation for the third-party LDAP server you are using for
information about the ldapadd and ldapmodify commands.

■ The identity service third-party LDAP provider must specify connection,
userControls, and roleControls elements in the identity service
configuration file.

Identity service third-party LDAP provider implementation defines a set of user
search properties that must be configured:

■ nameattribute—the name of the LDAP attribute that uniquely identifies
the name of the user. In Sun Directory Server, it is uid; in Active Directory, it
is user.

■ objectClass—the LDAP schema object class used to represent a user. In
Sun Directory Server, it is inetOrgPerson.

And set of role search properties:

■ nameattribute—the name of the LDAP attribute that uniquely identifies
the name of the role. In Sun Directory Server, it is uniqueMember; in Active
Directory, it is member.

■ objectclass—the LDAP schema object class that is used to represent a
group. In Sun Directory Server, it is groupOfUniqueNames. In Active
Directory, it is group.

■ membershipsearchscope—specifies how deep in the LDAP directory tree
to search for role membership. Supported values: onelevel or subtree.

■ memberattribute—The attribute of a static LDAP group object specifying
the distinguished names (DNs) of the members of the group. In Sun Directory
Server, it is uniqueMember; in Active Directory, it is member.

%s_UserContainerDN% ou=People,dc=ldap,dc=acme,dc=com

%s_GroupContainerDN% ou=Groups,dc=ldap,dc=acme,dc=com

Substitution Variable Replace With Value

Identity Service

16-88 Oracle BPEL Process Manager Developer’s Guide

Both userControls and roleControl must define a search element with the
searchbase attribute.

The searchbase attribute of the userControls search element is a space-separated
list of DNs in the LDAP directory that contains users; for example,
cn=users,dc=us,dc=abc,dc=com.

The searchbase attribute of the roleControls search element is a space-separated
list of DNs in the LDAP directory that contains roles; for example,
cn=Groups,dc=us,dc=abc,dc=com

An example of the LDAP server Sun Directory Server configuration follows:

<BPMIdentityServiceConfig
xmlns="http://www.oracle.com/pcbpel/identityservice/isconfig">
 <provider providerType="LDAP" name="iplanet"
 <property name="realmName" value="iPlanetRealm"/>
 <connection url="ldap://host:port"
 binddn="uid=admin,ou=administrators,ou=topologymanagement,o=netscaperoot"
 password="welcome" encrypted="false" >
 <pool initsize="2" maxsize="25" prefsize="10" timeout="60"/>
 </connection>
 <userControls >
 <property name="nameattribute" value="uid"/>
 <property name="objectclass" value="inetOrgPerson"/>
 <search searchbase="ou=People,dc=us,dc=oracle,dc=com"
maxSizeLimit="1000" maxTimeLimit="120" scope="onelevel" />
 </userControls>

 <roleControls >
 <property name="nameattribute" value="cn"/>
 <property name="objectclass" value="groupOfUniqueNames"/>
 <property name="membershipsearchscope" value="onelevel"/>
 <property name="memberattribute" value="uniquemember"/>
 <search searchbase="ou=Groups,dc=us,dc=oracle,dc=com"
 maxSizeLimit="1000" maxTimeLimit="120" scope="onelevel" />
 </roleControls>
 </provider>
</BPMIdentityServiceConfig>

An example for Microsoft Active Directory follows:

<BPMIdentityServiceConfig
xmlns="http://www.oracle.com/pcbpel/identityservice/isconfig">
 <provider providerType="CUSTOM" name="Active Directory"
 <property name="realmName" value="ActiveDirectoryRealm"/>
 <connection url="ldap://host:port"
 binddn="cn=administrator,cn=Users,dc=us,dc=oracle,dc=com"
 password="welcome" encrypted="false" />
 <userControls >
 <property name="nameattribute" value="cn"/>
 <property name="objectclass" value="user"/>
 <search searchbase="cn=Users,dc=us,dc=oracle, dc=com",
 maxSizeLimit="1000" maxTimeLimit="120 " scope="onelevel" />
 </userControls>

 <roleControls >
 <property name="nameattribute" value="cn"/>
 <property name="objectclass" value="group"/>
 <property name="membershipsearchscope" value="onelevel"/>
 <property name="memberattribute" value="member"/>
 <search searchbase="cn=Users,dc=us,dc=oracle,dc=com"

Workflow-Related XPath Extension Functions

Oracle BPEL Process Manager Workflow Services 16-89

 maxSizeLimit="1000" maxTimeLimit="120" scope="onelevel" />
 </roleControls>
 </provider>
</BPMIdentityServiceConfig>

Configuration for CUSTOM User Repository Plug-ins
The following example shows how to use configuration properties to configure
custom plug-ins. In this example, CustomIdentityService class is used to
demonstrate custom repository plug-ins. This class implements the
BPMIdentityService interface.

<BPMIdentityServiceConfig
mlns="http://www.oracle.com/pcbpel/identityservice/isconfig">
 <provider providerType="CUSTOM" name="CustomProvider"
 class="custompakage.CustomIdentityService">
 <property name="realmName" value="CustomRealm"/>
 <property name="CustomProviderProperty1" value="CustomProviderValue1"/>
 <property name="CustomProviderProperty2" value="CustomProviderValue2"/>
 <connection url="ldap://host:port"
 binddn="uid=admin password="welcome" encrypted="false" >
 <property name="CustomConnProperty1" value="CustomConnValue1"/>
 <property name="CustomConnProperty2" value="CustomConnValue2"/>
 </connection>

 <userControls>
 <property name="CustomControlsProperty1" value="CustomControlsValue1"/>
 <property name="CustomControlsProperty2" value="CustomControlsValue2"/>
 <search searchbase="ou=UserContainer,dc=us,dc=oracle,dc=com">
 <property name="CustomSearchProperty1" value="CustomSearchValue1"/>
 <property name="CustomSearchProperty2" value="CustomSearchValue2"/>
 </search>
 </userControls>

 <roleControls >
 <property name="CustomControlsProperty1" value="CustomControlsValue1"/>
 <property name="CustomControlsProperty2" value="CustomControlsValue2"/>
 <search searchbase="ou=GroupContainer,dc=us,dc=oracle,dc=com">
 <property name="CustomSearchProperty1" value="CustomSearchValue1"/>
 <property name="CustomSearchProperty2" value="CustomSearchValue2"/>
 </search>
 </roleControls>
 </provider>
</BPMIdentityServiceConfig>

In addition to existing provider properties, you can define custom property elements
that can be added to provider, connection, userControls, roleControls, and
search elements in the configuration file to extend provider definitions.

Workflow-Related XPath Extension Functions
XPath extension functions mimic XPath 2.0 standards. The following extension
functions are available.

ora:lookupUser(userId)
This extension function is used to look up a user. The function returns an XML
element of complex type as defined by the schema in LocalIdentityService.xsd
at

Workflow-Related XPath Extension Functions

16-90 Oracle BPEL Process Manager Developer’s Guide

http://hostname:port/orabpel/xmllib/workflow/

The following code example demonstrates how to use the extension function.

<process...
 xmlns:idservice= http://xmlns.oracle.com/pcbpel/identityservice/local
...
<variables>
...
 <variable name="user" element="idservice:user"/>
</variables>
 <sequence>
...
 <assign name="lookupUser">
 <!-- get the user-->
 <copy>
 <from expression="ora:lookupUser(bpws:getVariableData('input', 'payload',
'/tns:input/tns:userId'))"/>
 <to variable="user"/>
 </copy>
 </assign>
...
 </sequence>
</process>

If userId is not a valid user, the function returns null.

ora:lookupGroup(groupId)
This extension function is used to look up a group. The function returns an XML
element of complex type as defined by the schema in LocalIdentityService.xsd
at

http://hostname:port/orabpel/xmllib/workflow/

The following code example demonstrates how to use the extension function.

<process …
 xmlns:idservice= http://xmlns.oracle.com/pcbpel/identityservice/local
...
<variables>
...
 <variable name="group" element="idservice:group"/>
</variables>
 <sequence>
...
 <assign name="lookupGroup">
 <!-- get the group-->
 <copy>
 <from expression="ora:lookupGroup(bpws:getVariableData('input', 'payload',
'/tns:input/tns:groupId'))"/>
 <to variable="group"/>
 </copy>
 </assign>
...
 </sequence>
</process>

If groupId is not a valid user, the function returns null.

Workflow-Related XPath Extension Functions

Oracle BPEL Process Manager Workflow Services 16-91

ora:getUserProperty(userId, attributeName)
This function can be used to get any property of the user. The arguments to the
function are as follows:

■ userId—String or element containing the user whose attribute is to be retrieved

■ attributeName—String or element containing the name of the user attribute.
The attribute name is one of the following values:

– givenName

– middleName

– sn

– displayName

– mail

– telephoneNumber

– homephone

– mobile

– facsimileTelephoneNumber

– pager

– preferredLanguage

– preferredLanguage

– manager

If the user with the given userId does not exist, the function returns null. If the user
does not have the given property, or the value for the property is empty, then the
function returns the string undefined.

ora:getGroupProperty(groupId, attributeName)
This function can be used to get any property of the group. The arguments to the
function are as follows:

■ groupId—String or element containing the group whose attribute is to be
retrieved

■ attributeName—String or element containing the name of the group attribute.
The attribute name should be one of the following values:

– displayName

– mail

If the group with the given groupId does not exist, the function returns null. If the
group does not have the given property, or the value for the property is empty, then
the function returns the string undefined.

ora:getManager(userId)
This extension function is used to get the manager of a user identified by the userId.
This function returns a string identifying the manager of the user. If the user is not
valid, or if the user does not have a manager, then the function returns null.

Workflow-Related XPath Extension Functions

16-92 Oracle BPEL Process Manager Developer’s Guide

ora:getReportees(userId)
This function gets the direct reportees of a user identified by the userId. The function
returns a list of nodes. Each node in the list is called user. The namespace URI of the
node is

http://oracle.tip.pc.services.identity/RemoteIdentityService.xsd

If the user does not exist, then the function returns null.

ora:getUsersInGroup(groupId)
This function gets the users in a group. The function returns a list of nodes. Each node
in the list is called user. The namespace URI of the node is

http://oracle.tip.pc.services.identity/RemoteIdentityService.xsd

If the group does not exist, then the function returns null.

ora:getUserRoles(userId, roleType, direct)
This function gets the user roles. The function returns a list of objects, either role
objects or group objects, depending on the roleType. The arguments to the function
are as follows:

■ userId—String or element containing the user whose roles are to be retrieved.

■ roleType—The role type, which has one of three values: ApplicationRole,
EnterpriseRole, or AnyRole.

■ direct—String or element indicating if direct or indirect roles are to be fetched.
This is optional and, if not specified, only direct roles are fetched. It is either
xsd:boolean or string true/false.

The function returns a list of nodes. Each node in the list is called group or role,
depending on the roleType. The namespace URI of the node is

http://oracle.tip.pc.services.identity/RemoteIdentityService.xsd

ora:isUserInRole(userId, roleName)
This function verifies if a user identified by the userId has a given role identified by
roleName. The function returns a Boolean true or false.

ora:getNumberOfTaskApprovals(taskId)
This extension function returns the number of times (an integer) that a task identified
by the given taskId is approved (approved in a generic sense, not the outcome
approve) by users. The function returns null if there is no task with the given
taskId.

ora:getPreviousTaskApprover(taskId)
This extension function returns the previous user who approved (approved in a
generic sense, not the outcome approve) a task identified by the given taskId. The
function returns a string userId that identifies the previous approver. The function
returns null if there is no task with the given taskId. The return of this function can
be used to get the title of the previous approver, for example, as follows:

ora:getUserProperty(ora:getPreviousTaskApprover(tasked), ‘title’)

Workflow-Related XPath Extension Functions

Oracle BPEL Process Manager Workflow Services 16-93

ora:getTaskAttachmentsCount(taskId)
This function returns the number of attachments (an integer) in a task that is identified
by the given taskId. The function returns null if there is no task with the given
taskId.

ora:getTaskAttachmentByIndex(taskId, attachmentIndex)
This function returns the attachment for the task identified by the given taskId at the
given attachmentIndex. The function returns an element of the type
{http://xmlns.oracle.com/pcbpel/taskservice/task}attachment. This
type is defined in WorkflowTask.xsd. Each attachment has either content or a URI.
The content, if any, in the element returned by the function is a Base64-encoded string.

The following BPEL code example demonstrates how to use the
getTaskAttachmentsCount and getTaskAttachmentByIndex functions. The
BPEL shown gets all the attachments in the task and writes to a file using the file
adapter.

<process
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:task="http://xmlns.oracle.com/pcbpel/taskservice/task">

...

<variables>
...
 <variable name="SimpleWorkflowVar1" element="task:task"/>
 <variable name="TaskAttachment" element="task:attachment"/>
</variables>

<sequence name="main">
...

 <assign name="Assign_1">
 <copy>
 <from expression="number(0)"/>
 <to variable="AttachmentIndex"/>
 </copy>
 </assign>
 <while name="While_1"
condition="bpws:getVariableData
('AttachmentIndex') < ora:getTaskAttachmentsCount
(bpws:getVariableData('SimpleWorkflowVar1','/task:task/task:taskId'))">
 <sequence name="Sequence_1">
 <assign name="Assign_2">
 <copy>
 <from expression="ora:getTaskAttachmentByIndex(bpws:getVariableData
('SimpleWorkflowVar1','/task:task/task:taskId'),(bpws:getVariableData
('AttachmentIndex') + number(1)))"/>
 <to variable="TaskAttachment" query="/task:attachment"/>
 </copy>
 <copy>
 <from expression="bpws:getVariableData('AttachmentIndex') +
number(1)"/>
 <to variable="AttachmentIndex"/>
 </copy>
 <copy>
 <from variable="TaskAttachment"
 query="/task:attachment/task:content"/>
 <to variable="Invoke_1_Write_InputVariable" part="opaque"

Workflow-Related XPath Extension Functions

16-94 Oracle BPEL Process Manager Developer’s Guide

query="/ns2:opaqueElement"/>
 </copy>
 </assign>
 <invoke name="Invoke_1" partnerLink="File" portType="ns1:Write_ptt"
operation="Write" inputVariable="Invoke_1_Write_InputVariable"/>
 </sequence>
 </while>
...
 </sequence>
</process>

ora:getTaskAttachmentByName(taskId, attachmentName)
This function returns the attachment for the task identified by the given taskId at the
given attachmentName. The function returns an element of the type
{http://xmlns.oracle.com/pcbpel/taskservice/task}attachment. This
type is defined in WorkflowTask.xsd. Each attachment has either content or a URI.
The content, if any, in the element returned by the function is a Base64-encoded string.

The following BPEL code example demonstrates how to use the
getTaskAttachmentByName function. The BPEL shown gets the attachment with
the name utplan.doc and writes to a file using the file adapter.

<process
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:task="http://xmlns.oracle.com/pcbpel/taskservice/task">

...

 <variables>
 ...
 <variable name="SimpleWorkflowVar1" element="task:task"/>
 <variable name="TaskAttachment" element="task:attachment"/>
 </variables>

<sequence name="main">
...

 <assign name="Assign_3">
 <copy>
 <from expression="ora:getTaskAttachmentByName(bpws:getVariableData
('SimpleWorkflowVar1','/task:task/task:taskId'), string('utplan.doc'))"/>
 <to variable="TaskAttachment" query="/task:attachment"/>
 </copy>
 <copy>
 <from variable="TaskAttachment" query="/task:attachment/task:content"/>
 <to variable="Invoke_2_Write_InputVariable" part="opaque"
query="/ns2:opaqueElement"/>
 </copy>
 </assign>
 ...
 </sequence>
</process>

ora:getTaskAttachmentContents(taskId, attachmentName)
This function returns the attachment for the task identified by the given taskId at the
given attachmentName. The function returns a Base64-encoded string of either the
attachment content or the URL (each attachment has either a content or a URI). The
difference between this function and the getTaskAttachmentByName function is

Approver Functions

Oracle BPEL Process Manager Workflow Services 16-95

that the getTaskAttachmentByName function returns a complex element, whereas
this function returns the contents only. The following BPEL code example
demonstrates how to use the getTaskAttachmentContents functions. The BPEL
shown gets the attachment with the name utplan.doc and writes to a file using the
file adapter.

<process
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:task="http://xmlns.oracle.com/pcbpel/taskservice/task">

...

 <variables>
 ...
 <variable name="SimpleWorkflowVar1" element="task:task"/>
 </variables>

 <sequence name="main">
 ...

 <assign name="Assign_4">
 <copy>
 <from expression="ora:getTaskAttachmentContents(bpws:getVariableData
('SimpleWorkflowVar1','/task:task/task:taskId'), string('utplan.doc'))"/>
 <to variable="Invoke_2_Write_InputVariable" part="opaque"
query="/ns2:opaqueElement"/>
 </copy>
 </assign>
 <invoke name="Invoke_3" partnerLink="File" portType="ns1:Write_ptt"
operation="Write" inputVariable="Invoke_2_Write_InputVariable"/>
 ...
 </sequence>
</process>

orcl:get-localized-string(resourceURL,resourceLocation,resourceBundleName,la
nguage,country,variant,messageKey)
This extension function can be used to get localized messages for notifications for
internationalization.

orcl:format-string(string,string,string,string, …..)
The format-string extension function can be used to format strings during
construction of messages for notifications. This can be useful if the localized message
must be formatted with data from the payload.

Approver Functions
In a sequential workflow scenario, the users or groups to whom the task is routed are
captured using functions. The function is stored in the approver element of the task
object. These functions are evaluated at run time to determine the next approvers.

Approver Function Syntax
The approver functions are governed by the following grammar.

approverFunction := (managementChainFunction | listFunction | adhocFunction
| usersFunction | groupsFunction)*
A comma-separated list of approver functions.

Approver Functions

16-96 Oracle BPEL Process Manager Developer’s Guide

managementChainFunction := managementChain(level, title)
Represents a management chain. The management chain includes users within a
number of levels and up to a user whose title is specified. level is a required
argument and title is an optional argument.

listFunction := list(usersFunction*, groupsFunction*, acquiredByFunction)
Represents a single assignment to multiple users or groups. This function can be used
to assign the task to a mix of users and groups. Optionally, the function can also
specify the acquirer of the task when the task is assigned to a group or multiple users.
The acquiredBy in this function overwrites the acquiredBy in usersFunction
and groupsFunction.

adhocFunction := adhoc()
Allows the current approver to specify who the next approver is. When the user
completes the task without specifying the next approvers, the function is no longer
evaluated.

usersFunction := users(userId*, acquiredByFunction)
Represents a single task assignment to one or more users. Optionally the function can
also specify the acquirer of the task when the task is assigned to multiple users. Each
argument in this function must be a valid user id from the user store (OID, LDAP, and
so on).

groupsFunction := groups(groupId*, acquiredByFunction)
Represents a single task assignment to one or more groups. Optionally, the function
can also specify the acquirer of the task when the task is assigned to groups. Each
argument in this function must be a valid group id from the user store (OID, LDAP,
and so on).

acquiredByFunction := acquiredBy(userId)
Captures the acquirer when the task is assigned to a set of users or groups. The
argument in this function must be a valid user id from the user store (OID, LDAP, and
so on).

Where

■ # userId is a string argument representing the id of the user.

■ groupId is a string argument representing the id of the group.

■ level is a number argument that represents the levels in the management chain.

■ title is a string argument that represents the title of the last user in the
management chain.

■ All arguments should be wrapped in quotes (" ").

■ The arguments are separated by commas.

■ The management chain function is always evaluated with respect to the previous
approver of the task.

Approver Function Examples
The following examples show how to use the approver functions.

■ managementChain("2", "Manager")

Approver Functions

Oracle BPEL Process Manager Workflow Services 16-97

Routes the task to users in the management chain. The management chain
includes users within 2 levels and up to a user whose title is Manager.

■ list(users("jcooper", "jstein"), groups("LoanAgentRole"),
acquiredBy("jcooper"))

Routes the task once to users jcooper and jstein and group LoanAgentRole
and also sets acquiredBy to jcooper.

■ list(users("jcooper", "jstein")),
list(groups("LoanAgentRole"))

Routes the task to users jcooper and jstein. When one of those users acquires
and acts on the task, routes the task to the group LoanAgentRole.

■ adhoc()

The task supports adhoc routing and the next users or groups are specified by the
current approver of the task.

■ users("jcooper", "jstein")

Routes the task once to users jcooper and jstein.

■ users("jcooper", "jstein", acquiredBy("jcooper"))

Routes the task once to users jcooper and jstein. Also sets acquiredBy to
jcooper.

■ users("jcooper"), users("jstein")

Routes the task first to user jcooper, and after jcooper acts on the task, routes
the task to jstein.

■ groups("LoanAgentRole", "Supervisor")

Routes the task once to the groups LoanAgentRole and Supervisor.

■ groups("LoanAgentRole"), groups("Supervisor")

Routes the task first to the group LoanAgentRole and after a user from the
LoanAgentRole acts on the task, routes the task to the group Supervisor.

■ groups("LoanAgentRole", "Supervisor", acquiredBy("jcooper"))

Routes the task once to groups LoanAgentRole and Supervisor. Sets
acquiredBy to jcooper.

■ managementChain("2", "Manager"), groups("LoanAgentRole")

Routes the task to users in the management chain. The management chain
includes users within two levels and up to a user whose title is Manager. After the
users in the management chain are exhausted, routes the task to the group
LoanAgentRole.

■ managementChain(“2”, “Manager”), groups(“LoanAgentRole”),
adhoc()

Routes the task to users in the management chain. The management chain
includes users within two levels and up to a user whose title is Manager. After the
users in the management chain are exhausted, routes the task to the group
LoanAgentRole. When a user in the LoanAgentRole acquires the task and acts
on it, the task can still be routed to other users as specified by the approver of the
task.

Vacation Request Example

16-98 Oracle BPEL Process Manager Developer’s Guide

Vacation Request Example
This example describes how to create a vacation request business process. In this
business process, the manager of a user requesting a vacation approves or rejects the
request. The approval or rejection is a one-step process.

This example highlights the use of the following:

■ Modeling a simple workflow using JDeveloper BPEL Designer

■ Using the Worklist Application to view and respond to tasks

Prerequisites
This example assumes the following:

■ You should be familiar with basic BPEL constructs, including BPEL activities and
partner links, and basic XPath functions. Familiarity with JDeveloper BPEL
Designer—the Oracle JDeveloper environment for creating and deploying BPEL
processes—is also assumed.

■ You must change the e-mail address for the user jstein. If the XML-based JAZN
provider is used, these properties can be changed in

Oracle_Home\integration\orabpel\system\services\config\users-properties.xml

The following XML segment from the users-properties.xml file shows
where the e-mail is configured:

<bpm:BPMUser userName="jstein" >
<bpm:properties>
<bpm:givenName>John</bpm:givenName>
<bpm:sn>Steinbeck</bpm:sn>
<bpm:title>Manager2</bpm:title>
<bpm:manager>wfaulk</bpm:manager>
<bpm:mail>user2@dlsun4254.us.oracle.com</bpm:mail>
<bpm:timeZone>GMT-8</bpm:timeZone>
<bpm:preferredLanguage>en-US</bpm:preferredLanguage>
<bpm:orclWorkflowNotificationPref>Mail</bpm:orclWorkflowNotificationPref>
</bpm:properties>
</bpm:BPMUser>

■ You must configure the e-mail server settings for the account Default, if it is
different from the default values. The Default account is used to send e-mails.
The e-mail server configuration is in

Oracle_Home\integration\orabpel\system\services\config\ns_emails.xml

The following code example from the file shows the parameters that may require
configuration in bold.

<EmailAccount>
<Name>Default</Name>
<GeneralSettings>
<FromName>Oracle BPM</FromName>
<FromAddress>bpm1@dlsun4254.us.oracle.com</FromAddress>
</GeneralSettings>
<OutgoingServerSettings>
<SMTPHost>dlsun4254.us.oracle.com</SMTPHost>
<SMTPPort>225</SMTPPort>
</OutgoingServerSettings>
<IncomingServerSettings>

Vacation Request Example

Oracle BPEL Process Manager Workflow Services 16-99

<Server>dlsun4254.us.oracle.com</Server>
<Port>2110</Port>
<Protocol>pop3</Protocol>
<UserName>bpm1</UserName>
<Password ns0:encrypted="false"
xmlns:ns0="http://xmlns.oracle.com/ias/pcbpel/NotificationService">welcome</Pas
sword>
<UseSSL>false</UseSSL>
<Folder>Inbox</Folder>
<PollingFrequency>1</PollingFrequency>
<PostReadOperation>
<MarkAsRead/>
</PostReadOperation>
</IncomingServerSettings>
</EmailAccount>

■ You must restart Oracle BPEL Process Manager after making any of the preceding
changes.

■ Verify that the task payload is displayed in the Worklist Application using the
XSL file vacationRequest.xsl. This file is needed to complete the tutorial and
is available in the VacationRequest sample business process.

Getting Started: Modeling the Vacation Request Process
1. Create a business process called VacationRequest.

2. When prompted for a template, select Asynchronous BPEL Process.

3. After creating the new process, change the message structure of the vacation
request in the VacationRequest.wsdl to be more relevant to a vacation request
process. The message structure by default is

<element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="input" type="string"/>
 </sequence>
 </complexType>
</element>

Vacation Request Example

16-100 Oracle BPEL Process Manager Developer’s Guide

Replace the element called input with the four elements shown in bold in the
following:

<element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="creator" type="string" />
 <element name="fromDate" type="date" />
 <element name="toDate" type="date" />
 <element name="reason" type="string" />
 </sequence>
 </complexType>
</element>

4. Copy vacationRequest.xsl to the project location and add the file to the
project.

5. Drop a User Task activity between the Receive activity and the callbackClient
activity.

6. In the Workflow wizard, leave the default selected for Create New Workflow and
click Next.

7. From Workflow Pattern, select Simple Workflow and click Next.

8. Use the autocomplete feature to assign a value to the title. For example, use
Vacation Request for

<%bpws:getVariableData('inputVariable','payload','/
client:VacationRequestProcessRequest/client:creator')%>

9. Use the autocomplete feature to assign the payload as

bpws:getVariableData('inputVariable','payload','/
client:VacationRequestProcessRequest')

10. Leave Auto generate JSP form as the payload display option.

With this option, a JSP is autogenerated based on the XML type of the payload
chosen in the previous step.

11. Leave the Task Creator field blank.

12. Set Expiration Duration Days to 1.

Vacation Request Example

Oracle BPEL Process Manager Workflow Services 16-101

13. Click Next.

14. By default, there are two outcomes: accept and reject. Delete ACCEPT and add
APPROVE. Click Next.

15. On the Notification page, select Assigned for Task Status, Assignees for
Recipient, and Email for Notification.

You can also use the e-mail wizard to change default e-mail content.

16. Click New to start the wizard.

Vacation Request Example

16-102 Oracle BPEL Process Manager Developer’s Guide

17. Click Next.

18. In the Assignees page, select Dynamic user assignment using XPath expression.
Use autocomplete to set the assignee to

ora:getManager(bpws:getVariableData('inputVariable','payload','/
client:VacationRequestProcessRequest/client:creator'))

19. Click Next.

20. Click Finish.

You should see a Scope and a Switch activity. The Switch activity has three cases
associated with it. Each of the case statements represents the possible outcome
specified (approve and reject in this tutorial), plus an otherwise section to
represent any other conclusion of the task (errored, expired, and so on). Inside
each of the case activities, you can add activities to complete modeling the
business process. By default, there is an Assign activity named
copyPayloadFromTask in each of the branches. This Assign copies the payload
back to its source.

21. Add an Assign activity to the case for Task outcome is APPROVE.

Vacation Request Example

Oracle BPEL Process Manager Workflow Services 16-103

22. In the Assign window (double-click Assign to invoke this window), click the
Copy Rules tab and click Create.

23. In the Create Copy Rule window, do the following:

a. In the From section, click Expression and enter string('APPROVED').

b. In the To section, for Variable, select outputVariable.

c. Click OK.

24. For both branches in the switch—the case for reject and the case for
otherwise—add an Assign activity with a copy rule, as you did for the approve
case, but set the expression to string('REJECTED') instead of
string('APPROVED').

Vacation Request Example

16-104 Oracle BPEL Process Manager Developer’s Guide

The business process modeling is completed. You can now deployed and test the
BPEL process, which looks as follows:

Running the Example
1. Log in to Oracle BPEL Console, select the VacationRequest process, and go to the

Initiate tab.

2. Enter appropriate values in each of the fields.

■ Set the creator to jcooper.

■ The approval task is assigned to jstein, who is the manager of jcooper.

3. Click Post XML Message.

Summary

Oracle BPEL Process Manager Workflow Services 16-105

4. Examine the flow of the generated instance. It is still waiting for a response from
the workflow service.

5. Log in to the Worklist Application as user jstein and with the password
welcome, at

http://localhost:portnumber/integration/worklistapp/Login

You can also select

 Start > Programs > Oracle - Oracle_Home > Oracle BPEL Process Manager 10.1.2 >
Sample Worklist Application

6. Perform any action on the task.

You can view the task details and payload information before performing any
action on the task. If the task is approved, then the business process is notified that
the task has been approved. The business process determines that no additional
approval is needed and marks the vacation request as approved. If the task is
rejected, then the business process is notified that the task has been rejected. The
business process in turn marks the vacation request as rejected. The business
process is now completed.

7. Go to Oracle BPEL Console and confirm that the VacationRequest process has
completed.

Summary
This chapter describes how you can integrate systems and services with human
workflow into a single end-to-end process flow using Oracle BPEL Process Manager.
The predefined workflow patterns are described, as are the components of workflow
services—the task action handler, task management service, task routing service,
identity service, worklist service, and notification service.

Summary

16-106 Oracle BPEL Process Manager Developer’s Guide

Worklist Application 17-1

17
Worklist Application

Chapter 16, "Oracle BPEL Process Manager Workflow Services" discussed how BPEL
workflow services enable you to interleave human interactions along with
connectivity to systems and services into an end-to-end process flow. The BPEL
worklist service provides a programmatic interface to view and manage tasks from the
BPEL process. The sample Oracle BPEL Worklist Application described in this chapter
is the Web interface that enables users to access and act on tasks assigned to them. The
tasks displayed depend on the user’s profile, and the actions allowed depend on the
user’s privileges. The Worklist Application is layered on top of the BPEL worklist
service.

This chapter contains the following topics:

■ Use Cases for the Worklist Application

■ Overview of Worklist Application Concepts

■ Accessing the Worklist Application in Local Languages

■ Customizing the Worklist Application

■ Building a Worklist Application Using the Worklist Service APIs

■ Building a Worklist Application Using the Worklist Service Remote APIs

■ Summary

Use Cases for the Worklist Application
Consider the scenario where a manager needs to approve a vacation request for an
employee, or a loan agent needs to review a loan application that has been submitted
as part of the BPEL process. These users typically log in to a Worklist Application to
view tasks assigned to them and perform actions on these tasks. Common actions
performed on tasks include updating the payload, attaching documents or comments,
routing the task to other users, and completing the task by providing a conclusion
such as approve or reject.

The Worklist Application is demonstrated in two samples: VacationRequest and
LoanDemoPlusWithWorkflow. In the VacationRequest use case, an employee files a
vacation request that is routed to his manager for approval. The manager sees the task
in the worklist in the My tasks view. In the LoanDemoPlusWithWorkflow use case, a
loan application is assigned to a LoanAgent role and then sent to two levels of
approval through the management chain if the loan amount is greater than $100,000.

See Also: Appendix F, "Demo User Community" for the
organizational hierarchy of the demonstration user community used
in examples throughout this chapter

Overview of Worklist Application Concepts

17-2 Oracle BPEL Process Manager Developer’s Guide

When any of the loan agents log in to their worklists, they see the task in their My &
Group tasks view. One of the loan agents acquires the task and reviews it. If the loan
agent approves it, the task is routed further, to two levels of management approval, if
the loan amount is greater than $100,000. When the loan agent’s managers log in to
their worklists, they see tasks that were routed to them and the actions performed by
the previous approvers (for example, suggested APR, comments, or attachments).

The OrderBooking tutorial also demonstrates how to use the Worklist Application to
approve a purchase order manually.

Overview of Worklist Application Concepts
The Worklist Application enables users to participate in a BPEL process by performing
tasks that require manual intervention. The worklist user interface displays tasks
specific to the logged-in user based on the user’s permissions and assigned groups and
roles. In general, when a user logs in, the following types of tasks that require action
are displayed:

■ Tasks assigned to the user—In this case, the user has to act on the task before it is
routed further.

■ Tasks assigned to the groups or roles that the user belongs to—In this case, one of
the users belonging to the group has to acquire the task before acting on it. If one
user in a group acquires the task, it is not available to other users until it is
released back to the group.

Users can review tasks for their reportees, tasks that were created by them, tasks
owned by them, or any previous task that the user participated in.

A work item or task that is assigned to a user has the following components:

■ Task attributes—includes task title, number, status, priority, expiration,
identification key, assignees, and other flex fields.

■ Task form—consists of detailed information (the payload) about the task; for
example, a loan application in the LoanDemoPlusWithWorkflow sample or
support ticket details in the HelpDeskRequest sample.

■ Task comments—comments entered by various users who have participated in the
workflow.

■ Task Attachments—other documents or reference URLs that are associated with a
task. These are typically associated with the workflow by the BPEL process or
attached and modified by any of the participants in the workflow.

■ Task history—consists of the approval sequence as well as the update history for
the task. The history maintains an audit trail of the actions performed by the
participants in the workflow and a snapshot of the task payload and attachments
at various points in the workflow.

The types of actions that users can perform on a task include:

■ Update task details—The task form can include content that needs to be added or
modified by the task reviewer. Additionally, a user can modify flex fields, task
priority, or include comments or attachments to the task.

See: Oracle_Home\integration\orabpel\samples\demos
for the VacationRequest and LoanDemoPlusWithWorkflow
directories

See: Oracle BPEL Process Manager Order Booking Tutorial

Overview of Worklist Application Concepts

Worklist Application 17-3

■ Change outcome for the task—As part of the process model, the workflow
designer can include various custom outcomes for the task (for example, approve
or reject, acknowledge, defer). If a user modifies a task outcome, it is removed
from his worklist and routed to the next approver or back to the business process
based on the workflow pattern.

■ Perform system actions—In addition to the custom actions specified as part of
workflow modeling, the user can perform other system actions such as escalate or
delegate. These actions are available on all tasks based on the user’s privileges.
The process owner or workflow administrator can always perform any of these
operations on processes that they own. The various system actions allowed on a
task are as follows:

– Escalate—This operation enables a user to escalate a task to his manager for
further action.

– Reassign—A manager can delegate a task to reportees. Similarly, the process
owner or a user with BPMWorkflowReassign privileges can delegate a
specific task to any other person in the organization.

– Request More Information—Any participant in the workflow can request
more information from the task creator or any of the prior assignees of the
task. The user requesting more information can either have the additional
information sent to him, or the user can require that the task be resubmitted
through the intermediate approvers.

– Submit More Information—This operation enables a user to respond to a
request for additional information. This action is performed after the user has
made the necessary updates to the task or has added comments or
attachments containing additional information.

– Route—This operation enables a user to enter an outcome and then route the
task in an ad hoc fashion to the next user who must review the task.

– Suspend—This operation enables process owners (or users with the
BPMWorkflowSuspend privilege) to put a workflow on hold temporarily. In
this case, task expiration and escalation do not apply until the workflow is
resumed. No actions are permitted on a task that has been suspended (except
resume and withdraw).

– Resume—This operation enables process owners (or users with the
BPMWorkflowSuspend privilege) to remove the hold on a workflow. After a
workflow is resumed, actions can be performed on the task.

– Acquire—This operation enables a user to obtain an exclusive right to work on
a task that is assigned to a group or multiple users. No action can be
performed on a task assigned to a group or multiple users until it is acquired.
Only one user can acquire a task at any given time.

– Release—This operation enables a user to abandon the exclusive right to work
on a task that is assigned to a group or multiple users. After a task is released,
any other user who is assigned to the task can acquire it.

– Renew—If a task is about to expire, a task assignee can renew the task and
request more time to perform the task. This operation is not allowed if the
process modeler has restricted task renewal on the workflow.

– Withdraw—The creator of the task can withdraw a pending task. A process
owner can also withdraw a task on behalf of the creator.

Overview of Worklist Application Concepts

17-4 Oracle BPEL Process Manager Developer’s Guide

Logging In to the Worklist Application
Follow these instructions to access the Worklist Application.

1. Open a Web browser.

For a list of supported browsers, see Oracle Application Server Integration Installation
Guide.

2. Go to the following URL:

http://hostname:9700/integration/worklistapp/Login

where

■ hostname is the name of the host on which Oracle BPEL Process Manager is
installed

3. Type the username and password, and click Login.

The username and password must exist in the user community provided to JAZN.
See "Configuring Identity Service" on page 16-79 for information on JAZN.

Features of the Sample Worklist Application
After you log in (see "Logging In to the Worklist Application" on page 17-4), the home
page of the Worklist Application is displayed, as shown in Figure 17–1.

Note: With some browsers, when you log in to the sample Worklist
Application, the username and password fields remain blank without
producing an error message. Refresh the browser so that the login
information is successfully processed.

Overview of Worklist Application Concepts

Worklist Application 17-5

Figure 17–1 Worklist Application Home

From this page, you can retrieve worklist tasks by using the Search field to do a
keyword search or by using the Task Filter, Priority, and Status fields to specify
search criteria. Table 17–1 describes the salient features of the Worklist Application
home page shown in Figure 17–1.

Overview of Worklist Application Concepts

17-6 Oracle BPEL Process Manager Developer’s Guide

Table 17–1 Contents of the Worklist Application Home

Page Element
Location in
Page Description

User link top right of
Figure 17–1

Click the user name link to see the logged-in user’s full name, contact
information, title, manager’s name, reportees’ names, and assigned groups
and roles. The manager and reportee names are also links to the same
information on those individuals.

Search Keyword
field

top center of
Figure 17–1

Enter a keyword to search task titles, comments, identification keys, and
the flex string fields of tasks that qualify for the specified filter criterion.

Task Filter list top right of
Figure 17–1

Select from the following:

■ My—retrieves tasks directly assigned to the logged-in user

■ Group—tasks assigned to the groups to which the logged-in user
belongs

■ My & Group—tasks assigned to the user and the groups to which the
logged-in user belongs

■ Reportees—tasks assigned to the users who report to the logged-in
user

■ Owner—tasks that are owned by the logged-in user by way of process
ownership

■ Creator—tasks that were created or initiated by the logged-in user

■ Previous—tasks that the logged-in user has updated

■ Admin—appears only if the logged-in user has been granted the
BPMWorkflowAdmin role

■ All—tasks from all of the above

Priority list top right of
Figure 17–1

Select from Any or 1 through 5, where 1 is the highest priority.

Status list top right of
Figure 17–1

Select from the following:

■ Any

■ Assigned

■ Completed

■ Suspended (can be resumed later)

■ Withdrawn

■ Expired

■ Errored (errored while processing; a user with the
BPMWorkflowAdmin role can troubleshoot the problem.)

■ Information Requested

Go button top right of
Figure 17–1

Click Go after selecting from the search fields.

Advanced Search
link

Click to go to the Advanced Search page, which provides additional search
filters.

Show (Hide)
Chart button

right side of
Figure 17–1

Shows a bar chart of the listed tasks in the selected task filter, broken down
by status. See Figure 17–2 for an example.

Number column right side of
Figure 17–1

Displays the task number for the task.

Title column middle of
Figure 17–1

Tasks associated with a purged or archived process instance do not appear.
Click the column name for ascending or descending sorts.

Priority column middle of
Figure 17–1

Click the column name for ascending or descending sorts.

Overview of Worklist Application Concepts

Worklist Application 17-7

If you click Show Chart, a bar chart of the tasks is displayed, as shown in Figure 17–2.

Status column middle of
Figure 17–1

Status states are as follows: Assigned, Completed, Errored, Expired, Info
Requested, Stale, Suspended, and Withdrawn. Click the column name for
ascending or descending sorts.

Assignees column middle of
Figure 17–1

Person or group to whom the task is assigned.

Expiration Date
column

middle of
Figure 17–1

Date and time the tasks expires. Click the column name for ascending or
descending sorts.

Modified Date
column

middle of
Figure 17–1

Date and time the task was modified. Click the column name for ascending
or descending sorts.

Actions column middle of
Figure 17–1

The possible actions that apply to the task. See"Task Actions" on page 17-10
for more information.

Next or Previous
links

bottom left of
Figure 17–1

Click Previous or Next to go the previous or next page in the list. The
absolute row numbers of the tasks are shown in square brackets. The size
of the page (number of rows per page) is controlled by an optional
parameter, oracle.tip.worklist.sampes.tasklist.maxrows, in
the file pc.properties, which appears in Oracle_
Home\integration\orabpel\system\services\config. The
default value is 20.

Table 17–1 (Cont.) Contents of the Worklist Application Home

Page Element
Location in
Page Description

Overview of Worklist Application Concepts

17-8 Oracle BPEL Process Manager Developer’s Guide

Figure 17–2 Worklist Application Home with Chart Displayed

If you click a task in the Title column, the Task Details page is displayed, as shown in
Figure 17–3.

Overview of Worklist Application Concepts

Worklist Application 17-9

Figure 17–3 Task Details Page

Table 17–2 describes the Task Details page shown in Figure 17–3, and also references
other figures in this chapter. (The table does not include page elements, such as the
User link or the search fields, already described in Table 17–1.)

Table 17–2 Contents of the Task Details Page

Page Element Location in Page Description

Task Action
list

top left of
Figure 17–3

Shows the actions you can perform on a task, such as approving a vacation
request or escalating a purchasing decision, depending on how the process
flow was defined in JDeveloper BPEL Designer. See "Task Actions" on
page 17-10 for more information.

Route... button top right of
Figure 17–4

Routes the task to another user. The button appears only if the task was
designed to support dynamic routing (that is, no predetermined set of
approvers, for example). See "Routing" on page 17-12 for more information.

Request More
Info... button

top right of
Figure 17–3

Requests more information from the task creator or a previous approver in a
simple or sequential approval process. See "Requesting More Information"
on page 17-13 for more information.

View
SubTasks
button

top right of
Figure 17–16

Click to go to the Subtasks page. This button is available only for a parent
task of a parallel flow. See "Parallel Tasks" on page 17-23 for more
information.

View History
button

top right of
Figure 17–16

Click to see the complete trail of changes made to a task. See "Task History
and Sequence (Version) Numbers" on page 17-14 for more information.

Overview of Worklist Application Concepts

17-10 Oracle BPEL Process Manager Developer’s Guide

The following sections describe activities provided by the Worklist Application.

Task Actions
Figure 17–4 shows the Task Action list. The tasks in the list depend on the task design,
the state of the task (for example, if the task has been completed, then no actions are
listed), and the roles assigned to the logged-in user. Custom actions, such as Accept or
Reject, are listed first. Custom actions are defined in JDeveloper BPEL Designer when
you define the business process. System actions, such as Escalate or Suspend, are
listed below a separator line.

Header section top of Figure 17–3 The header includes the process name, state, and priority, and information
about who created, modified, acquired, or is assigned to the task. It also
displays dates related to task creation, last modification, and expiration. The
task flow pattern is also displayed.

Payload section middle of
Figure 17–3

Click HTML Form View (default) or XML Source View for the display
options. See "The Payload" on page 17-17 for more information.

Comments and
Attachments
section

bottom of
Figure 17–3

Click the Add button in the Comments section to add comments. Click the
Change... button in the Attachments area to add or change an attachment.
See "Comments" on page 17-19 and "Attachments" on page 17-20 for more
information.

Reassign
button

lower left of
Figure 17–15

Click this button if you want to change the assignment of a task to other
users. You must have permission to reassign a task, which is granted
through the BPMWorkflowReassign role. See "Reassignment" on
page 17-22 for more information.

Update Fields
button

middle right of
Figure 17–16

Click to go to the edit page for updating task header fields such as priority,
identification key, and flex fields.

Table 17–2 (Cont.) Contents of the Task Details Page

Page Element Location in Page Description

Overview of Worklist Application Concepts

Worklist Application 17-11

Figure 17–4 Task Actions

After you select one of the actions, the task is routed to the next step, depending on
how the business process was designed. When a task is completed, all actions and
form elements are disabled.

System actions are described in Table 17–3.

Table 17–3 System Task Actions

Action Description

Acquire If a task is assigned to a group or multiple users, then the task must be acquired first.
Acquire is the only action available in the Task Action list. After a task is acquired,
all applicable actions are listed.

Escalate If you are not able to complete a task, you can escalate it and add an optional
comment in the Comments area. The task is reassigned to your manager.

Release If a task is assigned to a group or multiple users, it can be released if the user who
acquired the task cannot complete the task. Any of the other assignees can acquire
and complete the task.

Overview of Worklist Application Concepts

17-12 Oracle BPEL Process Manager Developer’s Guide

Routing
If there is no predetermined sequence of approvers and the actual set of approvers is
determined dynamically, then the task can be routed in an ad hoc fashion. Note that
the process must have been designed for supporting ad hoc routing. For such tasks, a
Route button appears on the Task Details page, as shown in Figure 17–5.

Renew If a task is about to expire, you can renew it and add an optional comment in the
Comments area. The task expiration date is extended one week. A renewal appears in
the task history. The renewal duration for a task can be controlled by an optional
parameter, oracle.tip.worklist.samples.taskactin.renew.duration, in
the file pc.properties, which appears in Oracle_
Home\integration\orabpel\system\services\config. The default value is
P7D (seven days).

Submit More Info Use this action if another user requests that you supply more information. If
reapproval is not required, then the task is assigned to the next approver or the next
step in the business process.

Suspend and Resume If a task is not relevant at present, you can suspend it. These options are available
only to users who have been granted the BPMWorkflowSuspend role. Other users
can access the task by selecting Previous in the task filter or by looking up tasks in the
Suspended status. Buttons that update a task are disabled after suspension.

Withdraw If you are the creator of a task and do not want to continue with it, for example, you
want to cancel a vacation request, you can withdraw it and add an optional comment
in the Comments area. The business process determines what happens next. You can
use the Withdraw action on the home page by using the Creator task filter.

Table 17–3 (Cont.) System Task Actions

Action Description

Overview of Worklist Application Concepts

Worklist Application 17-13

Figure 17–5 Routing a Task

Clicking Route displays the ad hoc Routing page. Like the Reassign page, the user can
look up the next approver by selecting My & Group and providing a complete or
wildcard search string name. The difference between reassign and route is that in the
case of route, the user’s conclusion is added to the task and the task is sent to the new
user as the next approver in the ad hoc sequence. Note that the new user or users are
selected for the next phase of approval only. A chain or sequence of approvals is not
denoted. The user must select a conclusion and can optionally add comments before
routing the task.

Requesting More Information
Figure 17–6 shows where you request more information. The Reapproval Needed
field appears if previous approvers must reapprove given the additional information,
assuming that the process was designed to support reapproval. You can also add
comments. After you have requested additional information, the task is assigned to
the user from whom the additional information is needed. The user from whom
additional information is requested uses Submit More Info to fulfill the request, as
described in Table 17–3.

Overview of Worklist Application Concepts

17-14 Oracle BPEL Process Manager Developer’s Guide

Figure 17–6 Requesting More Information

Task History and Sequence (Version) Numbers
Figure 17–7 and Figure 17–8 show task history and sequence numbers (versions). Each
time a task is updated or an action is performed, and sequencing (versioning) has been
requested, a new sequence number is created. Task sequence numbers are
automatically created for important actions and changes, such as adding and deleting
attachments and payloads.

Overview of Worklist Application Concepts

Worklist Application 17-15

Figure 17–7 Task HIstory

Overview of Worklist Application Concepts

17-16 Oracle BPEL Process Manager Developer’s Guide

Figure 17–8 Task Sequence (Version) Numbers

If a task requires sequential approval, the list of approvers is displayed.

You can also view the flow of the corresponding business process by clicking the
Business Process History link at the bottom of the page. Oracle BPEL Console
containing the process flow is displayed, as shown in Figure 17–9.

Overview of Worklist Application Concepts

Worklist Application 17-17

Figure 17–9 Process Flow

The Payload
Figure 17–10 shows a payload in the HTML form view using a customized XSL
template to render the original XML payload in an HTML format. The HTML form
view can also be displayed using a custom payload JSP page. See Chapter 16, "Oracle
BPEL Process Manager Workflow Services" for information on using an XSL template
or using the autogenerated JSP.

Overview of Worklist Application Concepts

17-18 Oracle BPEL Process Manager Developer’s Guide

Figure 17–10 Task Payload (XSL Transformed Payload)

By default the payload display form is automatically generated. As shown in
Figure 17–10, it consists of a form containing inputs for each of the elements of the
payload and the values corresponding to the original values of the elements when the
task was initiated. Using the Update Fields... button changes the values.

Figure 17–11 shows a payload in the XML source view. Users can edit the payload in
this window, or, for complex payloads, they can copy the XML data into an external
XML editor and paste the edited XML back into the XML payload window.

Overview of Worklist Application Concepts

Worklist Application 17-19

Figure 17–11 Task Payload—XML Source View

Comments
Figure 17–12 shows where users add comments. To add a comment, users must have
permission to update the task.

Overview of Worklist Application Concepts

17-20 Oracle BPEL Process Manager Developer’s Guide

Figure 17–12 Adding a Comment

A newly added comment and the comment writer’s username are appended to the
existing comments, as shown in Figure 17–3 on page 17-9. A trail of comments is
maintained throughout the life cycle of the task.

Attachments
Figure 17–13 shows where users add attachments. Users can add a file by using an
absolute path name, as shown in the figure, or by using the Browse button. Users can
associate a URL with a task by providing a name and a well-formed address (for
example, http://www.oracle.com).

Overview of Worklist Application Concepts

Worklist Application 17-21

Figure 17–13 Adding Attachments

Users can select one or more of the attachments and delete them, as shown in
Figure 17–14.

Overview of Worklist Application Concepts

17-22 Oracle BPEL Process Manager Developer’s Guide

Figure 17–14 Deleting an Attachment

Reassignment
Figure 17–15 shows where users reassign a task.

Overview of Worklist Application Concepts

Worklist Application 17-23

Figure 17–15 Reassigning a Task

The page lists the current assignees and new assignees. Users can use Lookup to find
additional names from the JAZN user community. Names that match the search string
(wildcard search is supported) are added to the list of new assignees. Deselecting an
assignee name drops the user from the list. After a task has been reassigned, it is
available in the worklists of the new assignees.

Parallel Tasks
Parallel tasks are created when a parallel flow pattern is specified for scenarios such as
voting. In this pattern, the parallel tasks have a common parent. The parent task is
visible to a user only if the user is an assignee or an owner or creator of the task. The
parallel tasks themselves (referred to as subtasks) are visible to whomever the task is
assigned, just like any other task. It is possible to view the subtasks from a parent task.
In such a scenario, the Task Details page of the parent task contains a View SubTasks
button, as shown in Figure 17–16. Clicking this button displays the SubTasks page,
which lists the corresponding parallel tasks. In a voting scenario, if any of the
assignees updates the payload or comments or attachments, the changes are visible
only to the assignee of that task. A user who can view the parent task (such as the final
reviewer of a parallel flow pattern), can drill down to the subtasks and view the
updates made to the subtasks by the participants in the parallel flow.

Overview of Worklist Application Concepts

17-24 Oracle BPEL Process Manager Developer’s Guide

Figure 17–16 The View SubTasks Button

Flex Fields and Task Fields Updates
A task can be associated with a set of flex fields of different types. Each flex field can
have a custom name. The flex fields are displayed in the Task Details page, as shown
in Figure 17–17.

Overview of Worklist Application Concepts

Worklist Application 17-25

Figure 17–17 Viewing Flex Fields

Clicking Update Fields… displays the Header Fields page. This page allows the user
to update the flex fields and other task header fields, such as priority and
identification key, as shown in Figure 17–18.

See Chapter 16, "Oracle BPEL Process Manager Workflow Services" for information on
how flex fields are defined in the advanced option of the workflow wizard.

Overview of Worklist Application Concepts

17-26 Oracle BPEL Process Manager Developer’s Guide

Figure 17–18 Updating Flex Fields

Request Status
For every update request (custom or system action) the user submits, the status of the
request is displayed in the left portion of the header. If a request is successful, then the
user sees a confirming message, as shown in Figure 17–19.

Overview of Worklist Application Concepts

Worklist Application 17-27

Figure 17–19 A Successful Update Request

If a request is not successful, then the user sees a failure message, as shown in
Figure 17–20. Clicking the error message displays the Error Information page. See
"Error Information" on page 17-28 for more information.

Overview of Worklist Application Concepts

17-28 Oracle BPEL Process Manager Developer’s Guide

Figure 17–20 An Unsuccessful Update Request

Error Information
If an error is encountered while processing a request, an error message is displayed, as
shown in Figure 17–21.

Overview of Worklist Application Concepts

Worklist Application 17-29

Figure 17–21 Error Message Display

The main message of the error is displayed by default. Click Show/Hide Details for
details (mostly useful for application developers or administrators). Clicking Back
displays the previous page where the request was made.

The user error shown in Figure 17–21 occurs when a user has attempted an action that
is not permitted. This is possible in the following scenarios:

■ The task expired between the time the user loaded the page and actually
performed the action.

■ The task was acquired and updated concurrently by another user (such as a
manager, owner, or administrator) between the time the user loaded the page and
actually performed the action.

The Error Message page also displays system errors, which should be reported to the
administrator.

User and Group Information
If a user clicks the link in the header that identifies the logged-in user, the User Info
page appears. This page displays information such as the user’s full name, telephone
number, e-mail address, manager, reportees, groups to which the user belongs, and
roles that have been granted, as shown in Figure 17–22.

Overview of Worklist Application Concepts

17-30 Oracle BPEL Process Manager Developer’s Guide

Figure 17–22 User Information

The roles that have been granted control the actions that the user can perform in the
application. The user can click the manager and reportee links to get user information
by traveling up and down the management chain. Clicking a group displays the
Group Info page for that group, as shown in Figure 17–23. The Group Info page
displays the list of direct and indirect users (users contained in child groups of the
current group).

Overview of Worklist Application Concepts

Worklist Application 17-31

Figure 17–23 Group Information

Advanced Search
The Advanced Search page, shown in Figure 17–24, provides additional filters for
performing a fine-grained search, based on business process, expiration date, and
creation date. The standard search box that appears in the top-right corner is not
displayed in the advanced search option.

Overview of Worklist Application Concepts

17-32 Oracle BPEL Process Manager Developer’s Guide

Figure 17–24 Advanced Search Page

Determining Action Permissions
A user can view a task when associated with the task as one of the following: current
assignee (directly or by group membership), current assignee’s manager, creator,
owner, or a previous actor.

A user’s profile determines his group memberships and roles. The roles determine a
user’s privileges. Apart from the privileges, the exact set of actions a user can perform
is also determined by the state of the task, the custom actions, and restricted actions
defined for the task flow at design time.

The following algorithm is used to determine the actions a user can perform on a task:

1. Get the list of actions a user can perform based on the privileges granted to him.

2. Get the list of actions that can be performed in the current state of the task.

3. Create a combined list of actions that appear on the preceding lists.

4. Remove any action on the combined list that is specified as a restricted action on
the task.

The resulting list of actions is displayed in the listing page and the Task Details page
for the user. When a user requests a specific action, such as acquire, suspend, or
reassign, the worklist service ensures that the requested action is contained in the list
determined by the preceding algorithm.

Accessing the Worklist Application in Local Languages

Worklist Application 17-33

Step 2 in the preceding algorithm deals with many cases. If a task is in a final,
completed state (after all approvals in a sequential flow), an expired state, a
withdrawn state, or an errored state, then no further update actions are permitted. In
any of the these states, the task, task history, and subtasks (parent task in parallel flow)
can be viewed. If a task is suspended, then it can only be resumed or withdrawn. A
task that is assigned to a group has to be acquired first before any actions can be
performed on it.

See "Identity Service" on page 16-75 for information about the identity service and how
privileges can be assigned to users.

How Changes to a Workflow Appear in the Worklist Application
When a BPEL process is aborted, associated tasks are marked as Stale in the Status
column of the Worklist Application home page. When a BPEL process instance is
deleted, all associated tasks are deleted. When a BPEL process is undeployed,
associated tasks are marked as Stale in the Status column of the Worklist Application
home page.

Accessing the Worklist Application in Local Languages
The identity service determines a user’s preferred locale (language) and time zone.
This information is extracted from either the JAZN file-based community or from an
external directory service such as Oracle Internet Directory. If no preference
information is available, then the locale and itemizing for the user is set to the system
default.

For example, if you are using the sample worklist configured with the user community
in the JAZN XML file, then you can set the user's preferred language in
users-properties.xml (in Oracle_
Home\integration\orabpel\system\services\config) as follows:

<bpm:timeZone>America/Los_Angeles</bpm:timeZone>
<bpm:preferredLanguage>en_US</bpm:preferredLanguage>

If an LDAP-based provider such as OID is used, then language settings changed in the
OID community.

When a user opens a browser and logs in to the Worklist Application, the worklist
screens are rendered in the browser’s locale and time zone. For custom actions, flex
fields, and task titles, the display names come from the message bundle, if specified in
the configuration. If no message bundle is specified, then the values specified in the
wizard at design time are used. See Chapter 16, "Oracle BPEL Process Manager
Workflow Services" for more information on how to specify message bundles so that
custom actions, flex fields, and task titles are displayed in a preferred local language.

The Worklist Application supports the locales shown in Table 17–4.

Table 17–4 Languages and Java Locales Supported by the Worklist Application

Language Java Locale

English (en)

English [United States] (en_US)

German (de)

Spanish [International] (es)

Spanish [Spain] (es_ES)

Customizing the Worklist Application

17-34 Oracle BPEL Process Manager Developer’s Guide

Customizing the Worklist Application
The sample Worklist Application described in this chapter is fully functional. Use it as
a starting point to create a customized Worklist Application to suit your specific
needs. This section discusses the architecture of the Worklist Application and provides
specific details for customizing it.

Worklist Application Architecture
The Worklist Application follows the standard model-view-controller approach, as
shown in Figure 17–25. A request coming from the browser is handled by a servlet.
The servlet validates the request and calls the appropriate worklist service API to
either fetch the required data from the back end or to update a task. After the API call,
the servlet stores the data required for rendering the next page in the session. The JSP
page picks up the data from the session, renders the data, and removes it from the
session. Hence the servlets and the JSP pages have different functions. The servlets are
responsible for making the back-end API calls and the JSP pages are responsible for
formatting the data.

Figure 17–25 Worklist Application Architecture

A typical page flow sequence is shown in Figure 17–26. This sequence encompasses
logging in to the application to view the details of a task. The first time a user enters
the login URL, the login servlet performs a page redirect to the login JSP page that is
sent to the browser. The user enters the username and password and the login servlet
calls the authenticateUser() API. If successful, it sends a redirect to the TaskList
URL. The browser's request then goes to the TaskList servlet that calls the
getWorklistTasks() API for getting the tasks that the user should see. Then it

French (fr)

French [Canada] (fr_CA)

Italian (it)

Japanese (ja)

Korean (ko)

Portuguese (pt)

Portuguese [Brazil] (pt_BR)

Chinese [Simplified] (zh_CN)

Chinese [Traditional] (zh_TW)

See Also: The WorklistServlets directory in Oracle_
Home\integration\orabpel\samples\hw\worklistxpress\src

Table 17–4 (Cont.) Languages and Java Locales Supported by the Worklist Application

Language Java Locale

Worklist
Service

Servlet
(src/WorklistServlets/*.java)Browser

JSP
(public_html/*.jsp)

Customizing the Worklist Application

Worklist Application 17-35

performs a page redirect to the TaskList JSP page that is sent to the browser. When a
user clicks a task link, the request is handled by the TaskDetails servlet. This calls the
getWorklistTaskDetails() API and performs a page redirect to the TaskDetails
JSP page that is sent to the browser. Page flows for other functionality, such as
updating payload, changing priority, adding an attachment, reassigning a task,
viewing history, and requesting more information, are similar.

Figure 17–26 A Typical Page Flow Sequence

The separation of responsibility facilitates customizing the application. The page flow
requirements for many customer requirements are probably similar to the page flow
for the sample Worklist Application. Therefore, it may be sufficient to modify the JSP
pages (and the Java class HTMLFormatter.java used for formatting HTML data).

The following sections discuss how to customize some of the commonly used pages
for a different look and feel to suit various application requirements.

Login Page
A common requirement for customizing the login page is to add corporate branding,
as shown in Figure 17–27. Replace the image tag in
the Login.jsp page with your image tag, such as <img
src="img/acmeLogin.jpg">. Everything else remains the same.

Worklist
Service

getWorklistTasks()

Servlet
(Login.java)

Servlet
(Login.java)

Worklist
Service

Browser

User enters
username /
password

JSP
(Login.jsp)

Servlet
(TaskList.java)Browser

User clicks
on a task
link

JSP
(TaskList.jsp)

Worklist
Service

getWorklistTaskDetails()
Servlet

(TaskDetails.java)Browser

JSP
(TaskDetails.jsp)

authenticateUser()
Browser

Customizing the Worklist Application

17-36 Oracle BPEL Process Manager Developer’s Guide

Figure 17–27 Login Page

Header Info
The header section appears on every page above the bread crumb navigation. This
section can be customized by modifying the Header.jsp file, as shown in
Figure 17–28. The logo and the name of the application in the left corner are contained
in the Branding.jsp file that is included in the header.

Customizing the Worklist Application

Worklist Application 17-37

Figure 17–28 Header Information

The upper-right area contains HTML controls for filters and search criteria for
retrieving tasks. The filters can be customized to include only those choices that are
relevant to the application.

Task Home (Listing) Page
The home (or listing) page lists all the tasks that match the search criteria specified by
the user. It also contains a chart that summarizes the task counts for the category (task)
filter. As shown in Figure 17–28, both the listing and the chart content can be
customized to suit application requirements. You can customize the list by modifying
the displayFilteredTasks() method in the
src/WorklistServlets/HTMLFormatter.java class. Some of the formatting
code is included in this class for modularity and reuse. You can customize the list to
display only those columns that are relevant to the application. The contents of the
columns can be customized as well. You can customize the list of task actions by
modifying the displayTaskActionsDropdown() method in the same class. You
can customize the chart, for example, to show only counts for statuses that are relevant
to the application by modifying the ListChart.jsp file. Customize the overall
layout by modifying the TaskList.jsp file.

Task Details Page
The Task Details page is typically used to examine the contents of the task and view or
update the payload. The layout of the details page consists of the actions and buttons
at the top, a header section, the payload section, and the footer section consisting of
optional contents such as comments and attachments. All of these can be customized
by modifying the TaskDetails.jsp file.

Customizing the Worklist Application

17-38 Oracle BPEL Process Manager Developer’s Guide

In the example shown in Figure 17–29, the header section can be customized to display
only the task fields that are relevant to the application. The payload section contains
the autogenerated JSP file based on the payload XSD. See Chapter 16, "Oracle BPEL
Process Manager Workflow Services" for information on how to customize this file.
The footer section can be customized, moved to the top section, or eliminated,
depending on the application requirements.

Figure 17–29 Task Details Page

Additional Pages
The guidelines provided in "Worklist Application Architecture" on page 17-34 can be
used to modify other pages to suit the application requirements.

Configuration Parameters
In addition to customizing pages, you can modify parameters in Oracle_
home\integration\orabpel\system\services\config\pc.properties to
change the behavior of the application as follows:

■ To change the page size on the listing page, change:

oracle.tip.worklist.samples.tasklist.maxrows=5

■ To change the renewal duration for tasks, change:

oracle.tip.worklist.samples.taskaction.renew.duration=P7D

Customizing the Worklist Application

Worklist Application 17-39

Controlling Access to Information and Actions for Different Users
The worklist service uses the identity service that supports the JAZN file-based
community or LDAP communities such as Oracle Internet Directory. A static set of
role-actions (privileges) have been defined and assigned to roles. Users then get those
privileges by way of roles assigned to them. The most important of the role-actions
currently defined include:

■ ACQUIRE

■ WITHDRAW

■ ESCALATE

■ RENEW

■ RELEASE

■ REQUEST_INFO

■ SUBMIT_INFO

■ CUSTOM

■ ADMIN

■ REASSIGN

■ SUSPEND

■ RESUME

■ VIEW_TASK_HISTORY

The role-actions apply globally; that is, at the application level and not at the process
level or instance level.

The Worklist Application can be customized so that the information viewed and the
actions performed on a given page can be altered for different sets of users. The first
part consists of creating new roles and assigning them to the required users. Then, in
the JSP page, the identity service can be used to check if the user has the granted role
and determine which code path to take.

For example, you can create a new role called BPMProcessingManager in the file
jazn-data.xml (in Oracle_Home
\integration\orabpel\system\appserver\oc4j\j2ee\home\config). The
required users must be assigned this role, as shown in the following code example:

...
 <role>
 <name>BPMProcessingManager</name>
 <members>
 <member>
 <type>user</type>
 <name>jstein</name>
 </member>
 </members>
 </role>
...

If an LDAP-based service such as OID is used, then these roles must be created and
granted to users in that service.

The JSP code can be customized using the identity service as follows.

import="oracle.tip.pc.services.common.ServiceFactory"

Building a Worklist Application Using the Worklist Service APIs

17-40 Oracle BPEL Process Manager Developer’s Guide

import="oracle.tip.pc.services.identity.*"

boolean canEditTaskHeaderPriority = false;
// get info from identity service
try
{
 BPMIdentityService mIdentityService =
 ServiceFactory.getIdentityServiceInstance();
 // lookup user based on worklist context user
 BPMUser bpmUser = mIdentityService.lookupUser(ctx.getUser());
 // check for BPMProcessManager role
 if (bpmUser.isInRole("BPMProcessingManager "))
 canEditTaskHeaderPriority = true;
 }
 catch (Exception e)
 {
 out.println("Could not get information from identity service");

 }
 // use the canEditTaskHeaderPriority flag to control HTML behavior
 if (canEditTaskHeaderPriority)
 // display the priority information & edit controls
 else
 // just display the priority information

Building a Worklist Application Using the Worklist Service APIs
The Worklist Application that is included with Oracle BPEL Process Manager provides
a good starting point for building applications from scratch or for building composite
applications.

The typical sequence of calls to the worklist service is as follows:

1. Get the handle to the worklist service.

2. Authenticate the user with the username and password and get a handle to the
worklist context.

3. Set the required filters for retrieving tasks and get the list of tasks that qualify.

4. Loop through the task list and display tasks.

5. Perform actions on specific tasks.

A code example for calling the regular (local) worklist service APIs for performing this
sequence of actions is as follows:

// required imports
import oracle.tip.pc.api.worklist.*;
import oracle.tip.pc.services.hw.worklist.WorklistService;
// 1. get a handle to the worklist service
WorklistService wlSvc = WorklistService.getWorklistService();

// 2. get worklist context for current user after authentication
String user = "jstein";
String password = “welcome”;
IWorklistContext ctx = wlSvc.authenticateUser(user, password);

// 3. set filters for retrieving “My” tasks with “Assigned” status
// sorted by task title is ascending order
Map filterMap = new HashMap();
filterMap.put(IWorklistService.FILTER_TYPE_TASK_FILTER,

Building a Worklist Application Using the Worklist Service APIs

Worklist Application 17-41

 IWorklistService.TASK_FILTER_MY);
filterMap.put(IWorklistService.FILTER_TYPE_STATUS_FILTER,
 IWorklistService.STATUS_FILTER_ASSIGNED);
String keywords = “”;

List tasks = wlSvc.getWorklistTasks(ctx,
 keywords,
 filterMap,
 IWorklistService.SORT_FIELD_TASK_TITLE,
 IWorklistService.SORT_ORDER_ASCENDING);

// 4. APPROVE all Vacation Request tasks that are assigned to user
if (tasks != null)
{
 for (int i=0; i<tasks.size(); i++)
 {
 Task task = (Task) tasks.get(i);
 String taskId = task.getTaskId();
 // check if the task is a vacation request
 if (task.getTitle().startsWith("Vacation request"))
 {
 wlSvc.appendTaskComments(ctx, taskId, "foo");
 // now approve the task
 String action = "APPROVE";
 wlSvc.customTaskOperation(ctx, taskId, action);
 }
 }
}

Worklist Service APIs

The following worklist service APIs are needed for various actions.

/*
 * Perform user authentication
 */
public IWorklistContext authenticateUser(String user,
 String password)
throws PCException;

/*
 * Get information for the specified group
 */
public IWorklistGroup getGroupInfo(IWorklistContext ctx,
 String group)
throws PCException;

/*
 * Get information for the specified user
 */
public IWorklistUser getUserInfo(IWorklistContext ctx,
 String user)
throws PCException;

See Also: Oracle_
Home\integration\orabpel\docs\workflow\index.html for
Javadoc that describes the worklist service APIs

Building a Worklist Application Using the Worklist Service APIs

17-42 Oracle BPEL Process Manager Developer’s Guide

/*
 * getWorklistTasks retrieves qualifying tasks from the start
 * row to the last row for the given filter/sort criterion
 * and user using the paging
 *
 */

public List getWorklistTasks(IWorklistContext ctx,
 String keywords,
 Map filterMap,
 String sortField,
 String sortOrder,
 int startRow,
 int lastRow)
throws PCException;

/*
 * getWorklistTaskDetails retrieves the details for the
 * specified task
 */
public IWorklistTask getWorklistTaskDetails(IWorklistContext ctx,
 String taskId)
throws PCException;

/*
 * getWorklistTaskVersionDetails retrieves the details for the
 * specified version of the task
 */
public IWorklistTask getWorklistTaskVersionDetails(
 IWorklistContext ctx,
 String taskId,
 int version)
throws PCException;

/*
 * getWorklistTaskHistory retrieves the history for the
 * specified task
 */
public List getWorklistTaskHistory(IWorklistContext ctx,
 String taskId)
throws PCException;

/*
 * Return a list of deployed business process names
 */
public List getWorklistTaskBusinessProcesses(IWorklistContext ctx)
throws PCException;

/*
 * acquireTask lets the user acquire the task
 */
public IWorklistTask acquireTask(IWorklistContext ctx, String taskId)
throws PCException;

/*
 * releaseTask lets the user release the task
 */
public IWorklistTask releaseTask(IWorklistContext ctx, String taskId)
throws PCException;

Building a Worklist Application Using the Worklist Service APIs

Worklist Application 17-43

/*
 * escalateTask lets the user escalate the task
 */
public IWorklistTask escalateTask(IWorklistContext ctx,
 String taskId)
throws PCException;

/*
 * renewTask lets the user renew the task
 */
public IWorklistTask renewTask(IWorklistContext ctx,
 String taskId,
 String durationDays)
throws PCException;

/*
 * withdrawTask lets the user withdraw the task
 */
public IWorklistTask withdrawTask(IWorklistContext ctx,
 String taskId)
throws PCException;

/*
 * suspendTask lets the user suspend the task
 */
public IWorklistTask suspendTask(IWorklistContext ctx, String taskId)
throws PCException;

/*
 * resumeTask lets the user resume the task
 */
public IWorklistTask resumeTask(IWorklistContext ctx, String taskId)
throws PCException;

/*
 * requestInfoForTask lets the user request additional info for the task
 */
public IWorklistTask requestInfoForTask(IWorklistContext ctx,
 String taskId,
 String user,
 boolean reapprovalNeeded,
 String comments)
throws PCException;

/*
 * submitInfoForTask lets the user submit additional info for the task
 */
public IWorklistTask submitInfoForTask(IWorklistContext ctx,
 String taskId)
throws PCException;

/*
 * delegateTask lets the user delegate (reassign) the task
 */
public IWorklistTask delegateTask(IWorklistContext ctx,
 String taskId,
 List worklistAssignees)
throws PCException;

Building a Worklist Application Using the Worklist Service APIs

17-44 Oracle BPEL Process Manager Developer’s Guide

/*
 * customTaskOperation lets the user perform custom operation on the task
 */
public IWorklistTask customTaskOperation(IWorklistContext ctx,
 String taskId,
 String operation,
 String comments)
throws PCException;

/*
 * completeAndRouteTask lets the user route the task to another user
after adding a conclusion
 */
public IWorklistTask completeAndRouteTask(IWorklistContext ctx,
 String taskId,
 String conclusion,
 String comments,
 List worklistAssignees)
throws PCException;

/*
 * updateTask lets the user update the task
 */
public void updateTask(IWorklistContext ctx, IWorklistTask task)
throws PCException;

/*
 * appendTaskComments lets the user appends comments to the task
 */
public IWorklistTask appendTaskComments(IWorklistContext ctx,
 String taskId,
 String comments)
throws PCException;

/*
 * addTaskAttachment lets the user add an attachment to the task
 */
public void addTaskAttachment(IWorklistContext ctx,
 String taskId,
 String name,
 String value,
 String type,
 InputStream dataStream)
throws PCException;

/*
 * removeTaskAttachment lets the user delete attachments from the task
 */
public void removeTaskAttachment(IWorklistContext ctx,
 String taskId,
 String[] names)
throws PCException;

/*
 * lookupAssignees gets a list of assignee of the specified assignee type
 * (users/groups/reportees) who match the userLookupList
 */
public List lookupAssignees(IWorklistContext ctx,
 String assigneeType,
 String userLookupList)

Building a Worklist Application Using the Worklist Service Remote APIs

Worklist Application 17-45

throws PCException;

}

Example: Reassigning a Task in a Worklist Application
"Worklist Service APIs" on page 17-41 lists the API
worklistService.lookupAssignees(), which you use to look up a user. In the
following example, the lookup call searches for users that match the string j* and
then those users are assigned to the task.

 List worklistAssignees = worklistService.lookupAssignees(ctx,
IWorklistService.ASSIGNEE_TYPE_USER, "j*");
 worklistService.delegateTask(ctx, taskId, worklistAssignees);

In this example, the lookupAssignees call returns jcooper, jaustin, and jstein
(users in the demo user community that match j*). If you want to assign the task to
jcooper, then use jcooper as the lookup string. Alternatively, you can loop through
the worklistAssignees list that is returned and filter out entries that you do not
want. The element of the list contains ITaskAssignee objects.

Building a Worklist Application Using the Worklist Service Remote APIs
It is possible to build an application that works in a remote container that references
the BPEL container. The worklist service supports session bean-based remote APIs. To
use this approach, the JNDI and classpath configuration must be set up correctly. In
the client Java program, the first step is to create a
RemoteWorklistServiceClient instance and call its init() method. The
init() method loads the JNDI properties based on the classpath and creates a local
object that enables the client to talk to the remote server (the container where Oracle
BPEL Process Manager is running). After a handle to
RemoteWorklistServiceClient is obtained, most other operations are simple.

The following example shows a code fragment for using the remote service.

 // 1. get a handle to the remove worklist service client
 client = new RemoteWorklistServiceClient();
 client.init();

 // 2. set approver's user and password
 String user = "jstein";
 String password = globalPassword;
 System.out.println("vacationRequestTest: connecting as " + user);

 // 3. get worklist context for user
 IWorklistContext ctx = client.authenticateUser(user, password);
 System.out.println("vacationRequestTest: got Worklist Context");

 // 4. set filters for retrieving My tasks with Assigned status
 Map filterMap = new HashMap();

filterMap.put(IWorklistService.FILTER_TYPE_TASK_FILTER,

See Also:

■ The worklistxpress sample in Oracle_
Home\integration\orabpel\samples\hw

■ The worklist API available in Oracle_
Home\integration\orabpel\docs\workflow\index.html

Summary

17-46 Oracle BPEL Process Manager Developer’s Guide

 IWorklistService.TASK_FILTER_MY);
 filterMap.put(IWorklistService.FILTER_TYPE_STATUS_FILTER,
 IWorklistService.STATUS_FILTER_ASSIGNED);

 List tasks = client.getWorklistTasks(ctx,
 filterMap,
 IWorklistService.SORT_FIELD_TASK_TITLE,
 IWorklistService.SORT_ORDER_ASCENDING);

 // 5. APPROVE all vacationRequest tasks that are assigned to user
 if (tasks != null)
 {
 for (int i=0; i<tasks.size(); i++)
 {
 Task task = (Task) tasks.get(i);
 String taskId = task.getTaskId();
 // check if the task is a vacation request
 if (task.getTitle().startsWith("Vacation request"))
 {
 // get custom actions that can be performed
 List customActions = client.getCustomActions(ctx, taskId);
 for (int j=0; j<customActions.size(); j++)
 {
 String customAction = (String) customActions.get(j);
 }
 // get system actions that can be performed
 List systemActions = client.getSystemActions(ctx, taskId);
 for (int j=0; j<systemActions.size(); j++)
 {
 String systemAction = (String) systemActions.get(j);
 }
 // add some comments to the task
 client.appendTaskComments(ctx, taskId, "foo");
 // now approve the task
 String action = "APPROVE";
 client.customTaskOperation(ctx, taskId, action);
 }
 }
 }

Summary
This chapter describes how to access a user's tasks, view task details, and perform
actions on the tasks in the sample Oracle BPEL Worklist Application. This application
is available in many languages. Instructions are provided for customizing the Worklist
Application and for building your own Worklist Application using the worklist
service APIs.

See Also: Oracle_
Home\integration\orabpel\docs\workflow\index.html for
Javadoc that describes the worklist service remote APIs

Sensors 18-1

18
Sensors

Using sensors, you can specify BPEL activities, variables, and faults that you want to
monitor during run time. This chapter describes how to use and set up sensors for a
BPEL process.

This chapter contains the following topics:

■ Use Cases for Sensors

■ Overview of Sensor Concepts

■ Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

■ Sensors and Oracle BPEL Console

■ Summary

Use Cases for Sensors
Using sensors is demonstrated in the sample 125.ReportsSchema. The sample uses
sensors to identify key data during an employee update process and a sensor action to
publish information about the update to the database.

Inserting sensors on activities is also demonstrated in the OrderBooking tutorial.

Overview of Sensor Concepts
You can define the following types of sensors, either through JDeveloper BPEL
Designer or manually by providing sensor configuration files.

■ Activity sensors

Activity sensors are used to monitor the execution of activities within a BPEL
process. For example, they can be used to monitor the execution time of an invoke
activity or how long it takes to complete a scope. Along with the activity sensor,
you can monitor variables of the activity also.

■ Variable sensors

See: Oracle_
Home\integration\orabpel\samples\tutorials\125.
ReportsSchema

See: Oracle BPEL Process Manager Order Booking Tutorial

Overview of Sensor Concepts

18-2 Oracle BPEL Process Manager Developer’s Guide

Variable sensors are used to monitor variables (or parts of a variable) of a BPEL
process. For example, variable sensors can be used to monitor the input and
output data of a BPEL process.

■ Fault sensors

Fault sensors are used to monitor BPEL faults.

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables.

When you model sensors in JDeveloper BPEL Designer, two new files are created as
part of the BPEL process suitcase:

■ sensor.xml—contains the sensor definitions of a BPEL process

■ sensorAction.xml—contains the sensor action definitions of a BPEL process

See "Configuring Sensors" on page 18-10 and "Configuring Sensor Actions" on
page 18-12 for how these files are created.

After you define sensors for a BPEL process, you must configure sensor actions to
publish the data of the sensors to an endpoint. You can publish sensor data to the
BPEL reports schema, which is located in the BPEL dehydration store, to a JMS queue
or topic, or to a custom Java class.

The following information is required for a sensor action:

■ Name

■ Publish type

The publish type specifies the destination where the sensor data must be
presented. You can configure the following publish types:

– Database—used to publish the sensor data to the reports schema in the
database. The sensor data can then be queried using SQL.

– JMSQueue—used to publish the sensor data to a JMS queue

– JMSTopic—used to publish the sensor data to a JMS topic

– Custom—used to publish the data to a custom Java class

■ List of sensors—the sensors for a sensor action

Sensor Public Views
The sensor framework of Oracle BPEL Process Manager provides the functionality to
persist sensor values created by processing BPEL instances in a relational schema
stored in the dehydration store of Oracle BPEL Process Manager. The data is used to
display the sensor values of a process instance in Oracle BPEL Console.

Use the following public views for SQL access to sensor values from any application
interested in the data. These views are populated when a sensor action is used to
publish to a database.

BPEL Reporting Schema
The database publisher persists the sensor data in a predefined relational schema in
the database. You can use SQL to query the sensor values in the following public
views from clients such as Oracle Warehouse Builder or OracleAS Portal.

Overview of Sensor Concepts

Sensors 18-3

BPEL_ALL_PROCESSES
This view contains all the deployed BPEL processes across the Oracle BPEL Process
Manager domains.

BPEL_PROCESS_ANALYSIS_REPORT
This view contains all the process instances of Oracle BPEL Process Manager.

Note: In Table 18–1 through Table 18–7, the Indexed or Unique?
column provides unique index names and the order of the attributes.
For example, U1,2 means that the attribute is the second one in a
unique index named U1. PK means primary key.

Table 18–1 BPEL_ALL PROCESSES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

NAME NVARCHAR2 100 U1,1 N Name of the BPEL process

REVISION VARCHAR2 50 U1,2 N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 U1,3 N Oracle BPEL Process Manager domain
name

BASE_URL NVARCHAR2 256 -- N The base URL of the BPEL suite

SENSOR_URL NVARCHAR2 256 -- N The URL of the sensor file

SENSOR_
ACTION_URL

NVARCHAR2 256 -- N The URL of the sensor action file

Table 18–2 BPEL_PROCESS_ANALYSIS_REPORT View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique instance ID

BPEL_PROCESS_
NAME

NVARCHAR2 100 -- N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 -- N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 -- N Oracle BPEL Process Manager domain
name

TITLE VARCHAR2 50 -- Y User-defined title of the BPEL process

STATE NUMBER -- -- Y State of the BPEL process instance

STATE_TEXT VARCHAR2 -- -- Y Text presentation of the state attribute

PRIORITY NUMBER -- -- Y User-defined priority of the BPEL
process instance

STATUS VARCHAR2 100 -- Y User-defined status of the BPEL
process

STAGE VARCHAR2 100 -- Y User-defined stage property of a BPEL
process

CONVERSATION_
ID

VARCHAR2 100 -- Y User-defined conversation id of a
BPEL process

Overview of Sensor Concepts

18-4 Oracle BPEL Process Manager Developer’s Guide

BPEL_SENSOR_PROCESS_INSTANCES
This view is a subset of BPEL_PROCESS_ANALYSIS_REPORT and contains those
process instances for which sensors are defined for the corresponding BPEL process
and for which a sensor has fired at least once.

CREATION_DATE TIMESTAMP -- -- N The creation time stamp of the process
instance

MODIFY_DATE TIMESTAMP -- -- Y Time stamp when the process instance
was modified

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

EVAL_TIME NUMBER -- -- Y Time in milliseconds that a process
takes to complete

SLA_
COMPLETION_
TIME

NUMBER -- -- Y SLA completion time in milliseconds.
This is populated with the value of an
optional property you can set in
bpel.xml. For example,

<configurations>
...
<property
name="SLACompletionTime">POYT1.5S
</property>

SLA_SATISFIED VARCHAR2 1 -- Y Y means SLA satisfied: SLA_
COMPLETION_TIME < EVAL_TIME.

N means SLA not satisfied; SLA_
COMPLETION_TIME > EVAL_TIME.

NULL means that no SLACompletion
property was set.

Table 18–3 BPEL_SENSOR_PROCESS_INSTANCES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique instance ID

BPEL_PROCESS_
NAME

NVARCHAR2 100 U1,1 N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 U1,2 N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 U1,3 N Oracle BPEL Process Manager domain
name

TITLE VARCHAR2 50 -- Y User-defined title of the BPEL process

STATE NUMBER -- -- Y State of the BPEL process instance

STATE_TEXT VARCHAR2 -- -- Y Text presentation of the state attribute

PRIORITY NUMBER -- -- Y User-defined priority of the BPEL
process instance

STATUS VARCHAR2 100 -- Y User-defined status of the BPEL
process

Table 18–2 (Cont.) BPEL_PROCESS_ANALYSIS_REPORT View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Overview of Sensor Concepts

Sensors 18-5

BPEL_ACTIVITY_SENSOR_VALUES
This view contains all the activity sensor values of the monitored BPEL processes.

STAGE VARCHAR2 100 -- Y User-defined stage property of a BPEL
process

CONVERSATION_
ID

VARCHAR2 100 -- Y User-defined conversation id of a
BPEL process

CREATION_DATE TIMESTAMP -- -- N Creation time stamp of the instance

MODIFY_DATE TIMESTAMP -- -- Y Time stamp when the process instance
was modified

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

EVAL_TIME NUMBER -- -- Y Time in milliseconds that a process
takes to complete

SLA_
COMPLETION_
TIME

NUMBER -- -- Y SLA completion time in milliseconds.
This is populated with the value of an
optional property you can set in
bpel.xml. For example,

<configurations>
...
<property
name="SLACompletionTime">POYT1.5S
</property>

SLA_SATISFIED VARCHAR2 1 -- Y Y means SLA satisfied: SLA_
COMPLETION_TIME < EVAL_TIME.

N means SLA not satisfied; SLA_
COMPLETION_TIME > EVAL_TIME.

NULL means that no SLACompletion
property was set.

INSTANCE_KEY NUMBER -- U1 N Corresponds to the instance key used
in the Oracle BPEL Process Manager
client APIs

Table 18–4 BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

PROCESS_
INSTANCE

NUMBER -- -- N ID of process instance

BPEL_PROCESS_
NAME

NVARCHAR2 100 U1,1 N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 U1,2 N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 U1,3 N Oracle BPEL Process Manager domain
name

SENSOR_NAME NVARCHAR2 100 -- N The name of the sensor that fired

Table 18–3 (Cont.) BPEL_SENSOR_PROCESS_INSTANCES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Overview of Sensor Concepts

18-6 Oracle BPEL Process Manager Developer’s Guide

BPEL_FAULT_SENSOR_VALUES
This view contains all the fault sensor values.

SENSOR_TARGET NVARCHAR2 256 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 100 -- N The name of the sensor action

ACTION_FILTER NVARCHAR2 256 -- Y The filter of the action

CREATION_DATE TIMESTAMP -- -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP -- -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL, Y, or N

ACTIVITY_NAME NVARCHAR2 100 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

ACTIVITY_
STATE

VARCHAR2 30 -- Y The state of the activity

EVAL_POINT VARCHAR2 20 -- N The evaluation point of the activity
sensor

ERROR_MESSAGE NVARCHAR2 2000 -- Y An error message

RETRY_COUNT NUMBER -- -- Y The number of retries of the activity

EVAL_TIME NUMBER -- -- Y Time in milliseconds that an activity
takes to complete

INSTANCE_KEY NUMBER -- NU1 N Corresponds to the instance key used
in the Oracle BPEL Process Manager
client APIs

Table 18–5 BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

PROCESS_
INSTANCE

NUMBER -- -- N ID of process instance

BPEL_PROCESS_
NAME

NVARCHAR2 100 U1,1 N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 U1,2 N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 U1,3 N Oracle BPEL Process Manager domain
name

SENSOR_NAME NVARCHAR2 100 -- N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 256 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 100 -- N The name of the sensor action

Table 18–4 (Cont.) BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Overview of Sensor Concepts

Sensors 18-7

BPEL_VARIABLE_SENSOR_VALUES
This view contains all the variable sensor values.

ACTION_FILTER NVARCHAR2 256 -- Y The filter of the action

CREATION_DATE TIMESTAMP -- -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP -- -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL if no action filter specified, Y if
action filter specified and evaluates to
true, N otherwise

ACTIVITY_NAME NVARCHAR2 100 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

MESSAGE CLOB -- -- Y The fault message

INSTANCE_KEY NUMBER -- NU1 N Corresponds to the instance key used
in the Oracle BPEL Process Manager
client APIs

Table 18–6 BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

PROCESS_
INSTANCE

NUMBER -- -- N ID of process instance

BPEL_PROCESS_
NAME

NVARCHAR2 100 U1,1 N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 U1,2 N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 U1,3 N Oracle BPEL Process Manager domain
name

SENSOR_NAME NVARCHAR2 100 -- N Name of the sensor that fired

SENSOR_TARGET NVARCHAR2 256 -- N Target of the sensor

ACTION_NAME NVARCHAR2 100 -- N Name of the action

ACTION_FILTER NVARCHAR2 256 -- Y Filter of the action

ACTIVITY_
SENSOR

NUMBER -- -- Y ID of corresponding activity sensor
value

CREATION_DATE TIMESTAMP -- -- N Creation date

TS_DATE DATE -- -- N Date portion of creation_date

TS_HOUR NUMBER -- -- N Hour portion of creation_date

VARIABLE_NAME NVARCHAR2 256 -- N The name of the BPEL variable

Table 18–5 (Cont.) BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Overview of Sensor Concepts

18-8 Oracle BPEL Process Manager Developer’s Guide

BPEL_ERRORS
This view gives an overview of all the errors from BPEL services.

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL, Y, or N

TARGET NVARCHAR2 256 -- -- --

UPDATER_NAME NVARCHAR2 100 -- N The name of the activity or event that
updated the variable

UPDATER_TYPE NVARCHAR2 100 -- N The type of the BPEL activity or event

VALUE_TYPE SMALLINT -- -- N The value type of the variable
(corresponds to java.sql.Types
values)

VARCHAR2_
VALUE

NVARCHAR2 2000 -- Y The value of string-like variables

NUMBER_VALUE NUMBER -- -- Y The value of number-like variables
(such as float, double, and int)

DATE_VALUE TIMESTAMP -- -- Y The value of date-like variables

BLOB_VALUE BLOB -- -- Y The value of binary data variables

CLOB_VALUE CLOB -- -- Y The value of CLOB-like variables
(XML)

INSTANCE_KEY NUMBER -- NU1 N Corresponds to the instance key used
in the Oracle BPEL Process Manager
client APIs

Table 18–7 BPEL_ERRORS View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

BPEL_PROCESS_
NAME

NVARCHAR2 100 U1,1 N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 U1,2 N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 U1,3 N Oracle BPEL Process Manager domain
name

CREATION_DATE TIMESTAMP -- -- N The creation date of the activity sensor
value

TS_DATE DATE -- -- N Date portion of creation_date

TS_HOUR NUMBER -- -- N Hour portion of creation_date

ERROR_CODE NUMBER -- -- N Error code

EXCEPTION_
TYPE

NUMBER -- -- N Type of the error

EXCEPTION_
SEVERITY

NUMBER -- -- N Severity of the error

Table 18–6 (Cont.) BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

Sensors 18-9

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer
In JDeveloper BPEL Designer, sensors and sensor actions are displayed as part of the
process tree structure, as shown in Figure 18–1.

Figure 18–1 Sensors and Sensor Actions Displayed in JDeveloper BPEL Designer

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables. You can add sensor actions by right-clicking the Sensor Actions folders and
selecting Create Sensor Action. To add activity sensors, variable sensors, or fault
sensors, expand the Sensors folder, right-click the appropriate Activity, Variable, or
Fault subfolder, and click Create.

Using LoanDemoPlus as an example, the following sections describe how to
configure sensors and sensor actions.

EXCEPTION_
NAME

NVARCHAR2 200 -- N Name of the error

EXCEPTION_
DESCRIPTION

NVARCHAR2 2000 -- Y A short description of the error

EXCEPTION_FIX NVARCHAR2 2000 -- Y A description on how to fix the error

EXCEPTION_
CONTEXT

VARCHAR2 4000 -- Y The context of the error

COMPONENT NUMBER -- -- N The BPEL component that caused the
error

THREAD_ID VARCHAR2 200 -- N The Java thread name where the error
occurred

STACKTRACE CLOB -- -- N The Java stack trace

Table 18–7 (Cont.) BPEL_ERRORS View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

18-10 Oracle BPEL Process Manager Developer’s Guide

Configuring Sensors
If you are monitoring the LoanFlow application, you may want to know when the
getCreditRating scope is initiated, when it is completed, and, at completion, what
the credit rating for the customer is. The solution is to create an activity sensor for the
getCreditRating scope in JDeveloper BPEL Designer, as shown in Figure 18–2.
Activities that have sensors associated with them are indicated with a magnifying
glass.

Figure 18–2 Creating an Activity Sensor

The Evaluation Time attribute shown in Figure 18–2 controls the point at which the
sensor fires. You can select from the following:

■ Activation—The sensor fires just before the activity is executed.

■ Completion—The sensor fires just after the activity is executed.

■ Fault—The sensor fires if a fault occurs during the execution of the activity. Select
this value only for sensors that monitor simple activities.

■ Compensation—The sensor fires when the associated scope activity is
compensated. Select this value only for sensors that monitor scopes.

■ Retry—The sensor fires when the associated invoke activity is retried.

See Also: The LoanDemoPlus tutorial, at Oracle_
Home\integration\orabpel\samples\demos

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

Sensors 18-11

■ All—Monitoring occurs during all of the preceding phases.

A new entry is created in the sensor.xml file, as follows:

<sensor sensorName="CreditRatingSensor"

classname="oracle.tip.pc.services.reports.dca.agents.BpelActivitySensorAgent"
 kind="activity"
 target="getCreditRating">

 <activityConfig evalTime="all">
 <variable outputNamespace="http://www.w3.org/2001/XMLSchema"
 outputDataType="int"
 target="$crOutput/payload//services:rating"/>
 </activityConfig>
</sensor>

If you want to record all the incoming loan requests, create a variable sensor for the
variable input, as shown in Figure 18–3.

Figure 18–3 Creating a Variable Sensor

A new entry is created in the sensor.xml file, as follows:

<sensor sensorName="LoanApplicationSensor"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelVariableSensorAgent"
 kind="variable"
 target="$input/payload">
 <variableConfig outputNamespace="http://www.autoloan.com/ns/autoloan"
 outputDataType="loanApplication"/>
</sensor>

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

18-12 Oracle BPEL Process Manager Developer’s Guide

If you want to monitor faults from the identity service, create a fault sensor, as shown
in Figure 18–4.

Figure 18–4 Creating a Fault Sensor

A new entry is created in the sensor.xml file, as follows:

<sensor sensorName="IdentityServiceFault"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelFaultSensorAgent"
 kind="fault"
 target="is:identityServiceFault">
 <faultConfig/>
</sensor>

Configuring Sensor Actions
When you create sensors, you identify the activities, variables, and faults you want to
monitor during run time. If you want to publish the values of the sensors to an
endpoint, for example, you want to publish the data of LoanApplicationSensor to
a JMS queue, then you create a sensor action, as shown in Figure 18–5, and associate it
with the LoanApplicationSensor.

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

Sensors 18-13

Figure 18–5 Creating a Sensor Action

A new entry is created in the sensorAction.xml file, as follows:

<action name="BAMFeed"
 enabled="true"
 publishType="JMSQueue"
 publishTarget="jms/bamTopic">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 jms/QueueConnectionFactory
 </property>
</action>

If you want to publish the values of LoanApplicationSensor and
CreditRatingSensor to the reports schema in the database, create an additional
sensor action, as shown in Figure 18–6, and associate it with both
CreditRatingSensor and LoanApplicationSensor.

Figure 18–6 Creating an Additional Sensor Action

A new entry is created in the sensorAction.xml file, as follows:

<action name="PersistingAction"
 enabled="true"
 publishType="BPELReportsSchema">
 <sensorName>LoanApplicationSensor</sensorName>

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

18-14 Oracle BPEL Process Manager Developer’s Guide

 <sensorName>CreditRatingSensor</sensorName>
</action

The data of one sensor can be published to multiple endpoints. In the two preceding
code samples, the data of LoanApplicationSensor is published to a JMS queue as
well as to the reports schema in the database.

If you want to monitor loan requests for which the loan amount is greater than
$100,000, you can create a sensor action with a filter, as shown in Figure 18–7.

Figure 18–7 Creating a Sensor Action with a Filter

A new entry is created in the sensorAction.xml file, as follows:

<action name="BigMoneyBAMAction"
 enabled='true'
 filter="boolean(/s:actionData/s:payload
 /s:variableData/s:data
 /autoloan:loanAmount > 100000)"
 publishType="JMSQueue"
 publishTarget="jms/bigMoneyQueue">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 jms/QueueConnectionFactory
 </property>
</action>

If you have special requirements for a sensor action that cannot be accomplished by
using the built-in publish types, database, JMS queue, and JMS topic, then you can
create a sensor action with the custom publish type, as shown in Figure 18–8. The
name in the Publish Target field denotes a fully qualified Java class name that must be
implemented.

Note:

■ You must specify all the namespaces that are required to
configure an action filter in the sensor action configuration file.

■ You must specify the filter as a Boolean XPath expression.

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

Sensors 18-15

Figure 18–8 Using the Custom Publish Type

Creating a Custom Data Publisher
To create a custom data publisher, double-click your BPEL project in JDeveloper BPEL
Designer and do the following:

1. Open Project Properties, from Libraries, select OraBPEL, and add it to the
Selected Libraries list.

This adds the required BPEL libraries to your BPEL project.

2. Create a new Java class.

The package and class name must match the publish target name of the sensor
action.

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

18-16 Oracle BPEL Process Manager Developer’s Guide

3. From JDeveloper Tools > Implement Interface > Available Interfaces, click
DataPublisher.

This updates the source file and fills in the methods and import statements of the
DataPublisher interface.

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

Sensors 18-17

4. Using the JDeveloper BPEL Designer editor, implement the publish method of the
DataPublisher interface, as shown in the following sample custom data
publisher class.

Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer

18-18 Oracle BPEL Process Manager Developer’s Guide

5. Ensure that the class compiles successfully.

The next time that you deploy the BPEL process, the Java class is added to the
BPEL suitcase and deployed to Oracle BPEL Process Manager.

Sensors and Oracle BPEL Console

Sensors 18-19

Registering the Sensors and Sensor Actions in bpel.xml
JDeveloper BPEL Designer automatically updates the process deployment file
bpel.xml to include appropriate properties for sensors and sensor actions, as follows:

<configurations>
 …
 <property name="sensorLocation">sensor.xml</property>
 <property name="sensorActionLocation">sensorAction.xml</property>
 …
 <property name="SLACompletionTime">P0YT1.5S</property>
</configurations>

You can specify additional properties with <property name= ...>, as shown in
the preceding code sample.

Sensors and Oracle BPEL Console
The console provides support to view the metadata of sensors and sensor actions as
well as the sensor data created as part of the process execution. Access Oracle BPEL
Console using Internet Explorer at

http://localhost:portnumber/BPELConsole

Viewing Sensor and Sensor Action Definitions
After the BPEL process is deployed to Oracle BPEL Process Manager, you can view the
definitions of sensors and sensor actions without going back to JDeveloper BPEL
Designer. In Oracle BPEL Console, click the BPEL Processes tab and choose the
process for which you want to see sensor definitions. Click the Sensors link. A page
similar to Figure 18–9 is displayed.

Note: Ensure that additional Java libraries needed to implement the
data publisher are in the CLASSPATH of the Oracle BPEL Server.

Oracle BPEL Process Manager can execute multiple process instances
simultaneously, so ensure that the code in your data publisher is
thread safe, or add appropriate synchronization blocks. To guarantee
high throughput, do not use shared data objects that require
synchronization.

Sensors and Oracle BPEL Console

18-20 Oracle BPEL Process Manager Developer’s Guide

Figure 18–9 Sensor Data on the BPEL Processes Tab of Oracle BPEL Console

Viewing Sensor Data
The console provides support to monitor sensors for which a BpelReportsSchema
sensor action is defined. In Oracle BPEL Console, click the Instances tab and choose
the process instance for which you want to see the sensor data created as the result of
process execution. A page similar to Figure 18–10 is displayed.

Summary

Sensors 18-21

Figure 18–10 Sensor Data on the Instances Tab of Oracle BPEL Console

Summary
This chapter describes how to set up and use sensors to monitor BPEL activities,
variables, and faults during run time.

Note: Only sensors associated with a database sensor action are
displayed in the console. Sensors associated with a JMS queue, JMS
topic, or custom sensor action are not displayed.

Summary

18-22 Oracle BPEL Process Manager Developer’s Guide

Part IV
 Development Life Cycle

This part describes how to run BPEL processes from Oracle BPEL Console.

This part contains the following chapters:

■ Chapter 19, "BPEL Process Deployment and Domain Management"

BPEL Process Deployment and Domain Management 19-1

19
BPEL Process Deployment and Domain

Management

This chapter provides an overview of key BPEL process deployment and domain
management concepts. An overview of Oracle BPEL Console from which you can
manage processes and domains is also provided. In addition, an overview of several
build and command line tools is also provided.

This chapter contains the following topics:

■ Compiling and Deploying a BPEL Process

■ Creating and Managing a BPEL Domain

■ Viewing BPEL Processes in Oracle BPEL Console

■ Build and Command Line Tools

■ Summary

See Also: The following documentation for tutorials in which you
deploy BPEL processes:

■ "Compiling and Deploying the BPEL Process" on page 3-16

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

Compiling and Deploying a BPEL Process

19-2 Oracle BPEL Process Manager Developer’s Guide

Compiling and Deploying a BPEL Process
After you complete the design of your BPEL process, you compile and deploy the
process to Oracle BPEL Server. If compilation and deployment are successful, you can
run and manage the BPEL process from Oracle BPEL Console.

Deployment sends the Oracle BPEL Process Manager archive (a set of files in a JAR file
with a directory structure similar to the project directory structure) to Oracle BPEL
Server. The deployment operation automatically validates and compiles the project
directory into the BPEL archive. Therefore, you do not need to explicitly validate,
compile, and recompile a project before deployment. Use Oracle BPEL Console to view
any currently running BPEL processes before compiling and deploying additional
processes.

BPEL processes can be compiled and deployed in two types of BPEL designer
environments:

■ Compiling and Deploying on JDeveloper BPEL Designer

■ Compiling and Deploying on Eclipse BPEL Designer

Compiling and Deploying on JDeveloper BPEL Designer
To compile and deploy a BPEL process on JDeveloper BPEL Designer, right-click the
BPEL project (for this example, named OrderBooking) and select Deploy in the
Applications Navigator section:

You have two deployment methods from which to choose:

■ You can deploy directly to the default domain or any other domain you have
created by using Oracle BPEL Server connection automatically created during
Oracle BPEL Process Manager installation (named LocalBPELServer). You can
create additional server connections by performing the following steps:

1. Select Connection Navigator from the View main menu in JDeveloper BPEL
Designer.

2. Right-click BPEL Process Manager Server.

3. Select New BPEL Process Manager Connection.

Note: You must wait for deployment of one BPEL process to
complete before attempting to deploy another process. Attempting to
deploy a second process while the first process is still deploying can
cause problems.

Compiling and Deploying a BPEL Process

BPEL Process Deployment and Domain Management 19-3

This starts the BPEL Process Manager Connection wizard. After completion, this
new connection appears when you right-click the process and select Deploy.

Domains enable you to partition and manage instances of your processes. A
discussion on the importance of domains is provided later in this chapter.

If this is the first time you have deployed this BPEL process to Oracle BPEL Server,
a default version label of 1.0 is automatically created. A version identifies a
specific deployed instance of a BPEL process. The version label is appended to the
end of the JAR file name created when you deploy the BPEL process.

If this label version is already deployed and the server mode is production, you
are prompted to either overwrite the existing version or enter a different version
label. If you overwrite the version, the old process definition on the server is
replaced by the new definition. You cannot revert to the old definition. In addition,
any process instances that ran under the old definition are marked as stale. The
stale instances cannot be examined, and all flow and audit information is lost. If
you enter a different version label for the new process definition (for example,
2.0), it is deployed to Oracle BPEL Server, while the older, deployed process
definition (1.0) also continues to run simultaneously on Oracle BPEL Server. The
instances that ran under the old definition are retained, and not marked as stale.
You can still examine the flow and audit information for these instances.

If the server mode is development, you are not prompted and the version is
automatically overwritten.

This is a key benefit of versioning. For example, you may have an older instance of
a BPEL process running with one customer that is still valid. You then begin a
partnership with a different customer that requires a slight modification to the
design of this BPEL process. At some point you plan to migrate the old customer
to the newer version of the BPEL process, but for now that is not necessary.
Versioning enables you to run both processes.

If you want to use a more descriptive version name for a process, right-click the
process again in the Applications Navigator and select Deploy > connection_
name > Deploy to default domain. Provide a more descriptive name when
prompted in the Your Version field of the Deploy Properties window (for
example, sales_div_1.0). You can then retire the other process version on Oracle
BPEL Console.

■ If you select Invoke Deployment Tool, the Deploy Properties window opens. This
window enables you to customize your settings by selecting a different or creating
a new Oracle BPEL Console connection and deploying to domains other than
default. If this process version is already deployed, you can also select to overwrite
the existing version or enter a different version label to enable both to run
simultaneously.

After you select a deployment method, the Log Window at the bottom of JDeveloper
BPEL Designer displays messages about the status of the deployment. For example,
the following message indicates that deployment was successful.

Compiling and Deploying a BPEL Process

19-4 Oracle BPEL Process Manager Developer’s Guide

If deployment is unsuccessful, errors display in the Log Window. Click the error to
display the line of code that caused deployment to fail.

Make corrections and redeploy.

Compiling Without Deploying on JDeveloper BPEL Designer
You can also compile without immediately deploying an Oracle BPEL Process
Manager archive to Oracle BPEL Server. Perform this action by right-clicking the BPEL
process and selecting Make or Rebuild. This places the Oracle BPEL Process Manager
archive in the following directory:

Oracle_Home\integration\jdev\jdev\default\mywork\workspace_name\project_
name\output

From this directory you can deploy the process in either of two ways:

1. Copy the archive to the appropriate domain directory (for this example, default)

Oracle_Home\integration\orabpel\domains\default\deploy

or

Caution: Use caution when reusing version labels in a production
environment, due to the potential loss of data. In a development
environment, it can be useful to reuse version numbers to avoid
creating unnecessary revisions of the process on Oracle BPEL Server.

See Also:

■ "Creating a BPEL Domain" on page 19-9

■ "Changing Oracle BPEL Server Mode" on page 19-9

Compiling and Deploying a BPEL Process

BPEL Process Deployment and Domain Management 19-5

1. Log into Oracle BPEL Console using Internet Explorer 6.0 by selecting Start > All
Programs > Oracle - Oracle_Home > Oracle BPEL Process Manager 10.1.2 > BPEL
Console.

2. Click BPEL Processes.

3. Click Deploy New Process in the Related Tasks section.

4. Click Browse to select the process.

5. Click Deploy.

6. Click the Dashboard tab to view the newly deployed process.

Compiling and Deploying on Eclipse BPEL Designer
To compile and deploy a BPEL process on Eclipse BPEL Designer, you click the Build
BPEL Project icon in the tool bar:

If you want to change the domain to which to deploy the process or the version label
of the process, you must edit properties in the project’s build.xml file. In this
example, the domain is named default and the label version is 1.0.

 Name of the domain the generated BPEL suitcase will be deployed to
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<property name="deploy" value="default"/>
<!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
     What version number should be used to tag the generated BPEL archive?
     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
 <property name="rev" value="1.0"/>

As with JDeveloper BPEL Designer, if you overwrite the version, the old version is
made stale, and the new version is made active. You cannot revert to the stale
definition. In addition, the stale version cannot be examined, and all flow and audit
information is lost. If you enter a different version label in the build.xml file (for
example, 2.0), it is deployed to Oracle BPEL Server, while the older, deployed version
(1.0) continues to run simultaneously on Oracle BPEL Server.

After you deploy the BPEL process, the Log Window at the bottom of Eclipse BPEL
Designer displays messages about the status of the deployment. For example, the
following message indicates that deployment was successful.

If deployment is unsuccessful, errors display at the bottom of the window. Click the
error next to the BUILD FAILED message to display the line of code that caused
deployment to fail.

Compiling and Deploying a BPEL Process

19-6 Oracle BPEL Process Manager Developer’s Guide

Make corrections and redeploy.

BPEL Suitcase JAR File
You may have noticed the words BPEL suitcase that appeared in the successful
deployment Log Window messages shown for both JDeveloper BPEL Designer and
Eclipse BPEL Designer.

During compilation and deployment, the BPEL process archive and its components are
compiled and packaged into a JAR file known as a BPEL suitcase. This JAR file
includes the following files:

■ project_name.bpel file implementation of the process

■ project_name.wsdl file

■ bpel.xml deployment descriptor file

■ Any other local resources that are required, such as XML schemas, Java classes or
libraries, and so on

The suitcase JAR file is deployed to the following directory. Note that the directory
named default in these directory paths refers to the domain in which you deployed
the suitcase JAR file. If you deploy your BPEL process to a domain named qa, that
name displays instead of default. The concepts of domains are described in later
sections of this chapter.

■ On JDeveloper BPEL Designer

Oracle_Home\integration\orabpel\domains\default\deploy

■ On Eclipse BPEL Designer

Orabpel\domains\default\deploy

The suitcase JAR file name follows the convention of bpel_projectname_
versionnumber.jar. For example:

bpel_LoanProcess_1.0.jar

Figure 19–1 shows an example of deployed suitcase JAR files in JDeveloper BPEL
Designer. Note that different version labels of OrderBooking are deployed
simultaneously.

See Also: "Creating and Managing a BPEL Domain" on page 19-8

Compiling and Deploying a BPEL Process

BPEL Process Deployment and Domain Management 19-7

Figure 19–1 Deployed BPEL Suitcase JAR Files

See Also:

■ "Creating and Managing a BPEL Domain" on page 19-8

■ "Deploying a BPEL Suitcase to a Specific Domain" on page 19-10

Creating and Managing a BPEL Domain

19-8 Oracle BPEL Process Manager Developer’s Guide

Creating and Managing a BPEL Domain
BPEL processes (specifically, the suitcase JAR file) are deployed to domains. A BPEL
domain allows a developer or administrator to partition a single instance of Oracle
BPEL Process Manager into multiple virtual BPEL sections. A BPEL domain is
identified by an ID and protected by a password. When Oracle BPEL Process Manager
is installed, an initial domain named default is created. The initial password of the
default domain is set to bpel.

 Here are some examples of how to use BPEL domains:

■ Partition a single Oracle BPEL Process Manager instance into a multideveloper
environment. In this case, the domain ID typically identifies the developer owning
that domain.

■ Partition a single Oracle BPEL Process Manager instance into both a development
and QA environment. In this case, the domain IDs can be test and qa.

■ Partition a single Oracle BPEL Process Manager instance into an environment used
by multiple departments or partners. In these cases, the domain IDs are the names
of the departments or partners.

The following sections describe key BPEL domain issues:

■ Changing the Default Domain Password

■ Changing Oracle BPEL Admin Console Password

■ Creating a BPEL Domain

■ Changing Oracle BPEL Server Mode

■ Deploying a BPEL Suitcase to a Specific Domain

■ Location of BPEL JAR Suitcase Files in a Specific Domain

■ Undeploying a BPEL Process from a Specific Domain

Changing the Default Domain Password
A domain named default is automatically installed with Oracle BPEL Process
Manager. The initial password for this domain is bpel. You can change this password.

1. Log in to Oracle BPEL Console using Internet Explorer 6.0 by selecting Start > All
Programs > Oracle - Oracle_Home > Oracle BPEL Process Manager 10.1.2 > BPEL
Console.

2. Click Manage BPEL Domain at the top of the page.

3. Click Password.

4. Enter a new domain password and click Apply.

Changing Oracle BPEL Admin Console Password
You create BPEL domains and configure Oracle BPEL Server properties from Oracle
BPEL Admin Console. The initial password for Oracle BPEL Admin Console is listed
in the Oracle Application Server Integration Installation Guide. You must change this
password immediately after installation.

Follow these instructions to change Oracle BPEL Admin Console password.

1. Use Internet Explorer 6.0 to access Oracle BPEL Admin Console:

http://locahost:9700/BPELAdmin

Creating and Managing a BPEL Domain

BPEL Process Deployment and Domain Management 19-9

You can also access Oracle BPEL Admin Console by clicking Go to BPEL Admin
at the bottom of the login page for Oracle BPEL Console.

2. Enter the default password.

3. Click the Password link in the upper left corner of the window.

4. Enter and re-enter the new administrator password.

5. Enter the existing administrator password.

6. Click Apply.

A message appears indicating that the password has been changed.

Creating a BPEL Domain
You can create additional domains by performing the following procedures.

1. Use Internet Explorer 6.0 to access Oracle BPEL Admin Console:

http://locahost:9700/BPELAdmin

You can also access Oracle BPEL Admin Console by clicking Go to BPEL Admin
at the bottom of the login page for Oracle BPEL Console.

2. Enter the password.

3. Click the BPEL Domains tab.

4. Click Create New BPEL Domain.

The Create New BPEL Domain window appears.

5. Follow the on-screen instructions to create a new domain with an ID and a
password. When you log in to Oracle BPEL Console, you can select this domain.

6. Stop and restart Oracle BPEL Server before deploying a BPEL process.

7. Return to the Applications Navigator.

8. Right-click a process.

9. Select Deploy > connection_name (for example, LocalBPELServer) > Refresh.

10. Right-click the process again.

11. Select Deploy > connection_name (for example, LocalBPELServer).

The new domain is now available for selection.

Changing Oracle BPEL Server Mode
Oracle BPEL Server is automatically installed in production mode. If you attempt to
deploy a process in production mode and a label version of that process is already
deployed, you are prompted to either overwrite the existing version or enter a
different version label.

Follow these instructions to see the current mode of your server in JDeveloper BPEL
Designer.

1. Right-click the BPEL process in the Applications Navigator.

2. Select Deploy > Invoke Deployment Tool.

The Server Mode field of the Deploy Properties window displays the mode.

Creating and Managing a BPEL Domain

19-10 Oracle BPEL Process Manager Developer’s Guide

You can change this mode to development. When you attempt to deploy a process in
development mode and a label version of that process is already deployed, it is
automatically overwritten and you are not prompted to make a decision.

Follow these instructions to see the current mode of your server in JDeveloper BPEL
Designer.

1. Use Internet Explorer 6.0 to access Oracle BPEL Admin Console:

http://locahost:9700/BPELAdmin

You can also access Oracle BPEL Admin Console by clicking Go to BPEL Admin
at the bottom of the login page for Oracle BPEL Console.

2. Enter the password.

3. Change the productionServer property value to false.

4. Click Apply.

5. Return to the Deploy Properties window. The Server Mode field now displays as
Development.

Deploying a BPEL Suitcase to a Specific Domain
In addition to the domain deployment methods described in "Compiling and
Deploying a BPEL Process" on page 19-2, there are others methods for deploying a
BPEL suitcase into a domain:

1. If the domain is local, configure the deploy option of the bpelc Ant task to
perform local deployment to a specific domain. The following example shows an
Ant build script deploying the BPEL suitcase to a domain named qa:

<?xml version="1.0"?>
<project name="LoanFlow" default="main" basedir=".">
<property name="deploy" value="qa"/>
<property name="rev" value="1.0"/>
<target name="main">
<bpelc orabpelhome="${orabpelHome}" rev="${rev}" deploy="${deploy}"/>
</target>
</project>

2. If the domain is not local to the environment in which to compile the BPEL
suitcase, use the Deploy New Process link under the Dashboard tab in Oracle

Creating and Managing a BPEL Domain

BPEL Process Deployment and Domain Management 19-11

BPEL Console to remotely upload and deploy a BPEL JAR. Links to this task are
located in the bottom-left portion of the Dashboard tab and bottom-left portion of
the BPEL Processes tab. You can simply run the bpelc task without the deploy
option to create the BPEL suitcase JAR in the current directory. If you have already
deployed the BPEL suitcase locally, you can upload it from your local deployment
directory. See "Location of BPEL JAR Suitcase Files in a Specific Domain" on
page 19-11 for more information on where deployed BPEL suitcases can be found.

3. Deploying a BPEL process is equivalent to copying the BPEL suitcase JAR file into
the deploy directory of the appropriate BPEL domain. Even if you are accessing
the domain remotely, all you need is disk sharing, FTP, secure copy (SCP), or some
other access to the server hosting the domain. You can add this to your Ant
build.xml script to remove the deploy option as described above and then add
your own task to perform the remote copy of the generated JAR file into the
appropriate location.

Location of BPEL JAR Suitcase Files in a Specific Domain
For a domain named qa and a default Oracle BPEL Process Manager installation into
the C:\ directory on Windows, BPEL JAR files for the qa domain reside in the
following directories:

■ On JDeveloper BPEL Designer

Oracle_Home\integration\orabpel\domains\qa\deploy

■ On Eclipse BPEL Designer

Orabpel\domains\qa\deploy

If you use the bpelc task with a deploy property value of qa, the BPEL suitcase JAR
file is automatically copied to this directory. If you want to manually or remotely
deploy a BPEL JAR suitcase file to a BPEL domain, you can also copy the JAR file into
that directory. The file is automatically detected and loaded into that domain by the
Oracle BPEL Process Manager.

Undeploying a BPEL Process from a Specific Domain
Oracle BPEL Console enables you to manage the life cycle and state of a deployed
BPEL process. Select the name of the BPEL process on the Dashboard tab and then
select the Manage tab on the left. On this page you can first retire and then undeploy
the selected BPEL process. Retiring a process prevents any new instances of that
process from being created. If a specific version of a BPEL process is undeployed
before all pending in-flight instances are completed, those instances are marked as
stale and their execution is cancelled. Note that every task that can be performed in
Oracle BPEL Console can also be performed programmatically.

See Also: "Build and Command Line Tools" on page 19-23 for
additional details about Ant and bpelc

See Also: "BPEL Suitcase JAR File" on page 19-6

Viewing BPEL Processes in Oracle BPEL Console

19-12 Oracle BPEL Process Manager Developer’s Guide

Viewing BPEL Processes in Oracle BPEL Console
If compilation and deployment are successful, you can run and manage the BPEL
process from Oracle BPEL Console. This section provides an overview of the main
pages of Oracle BPEL Console.

1. Log into Oracle BPEL Console using Internet Explorer 6.0 by selecting Start > All
Programs > Oracle - Oracle_Home > Oracle BPEL Process Manager 10.1.2 > BPEL
Console.

2. Select the domain and enter the password. If this is the default domain, the
password is initially set to bpel.

3. See the following sections for an overview of Oracle BPEL Console:

■ Dashboard Tab: Viewing Processes

■ BPEL Processes Tab: Managing the Process Life Cycle

■ Instances Tab: Viewing Process Instances

■ Activities Tab: Viewing Process Activities

Dashboard Tab: Viewing Processes
The Dashboard tab displays by default. This page displays the currently deployed
BPEL processes and instances of BPEL processes that are currently running (in-flight)
and that have recently completed. Click a deployed BPEL process in the Name column
to access a page for creating an instance and testing your process. Use Oracle BPEL
Console to view any currently running BPEL processes before compiling and
deploying additional processes. The asterisk indicates that OrderBooking version 1.0
is the default process. Default processes are described later in this chapter.

Note that each Oracle BPEL Console page includes links at the top for managing BPEL
domains and accessing the BPEL site on the Oracle Technology Network, and a
drop-down list for switching to another domain.

Viewing BPEL Processes in Oracle BPEL Console

BPEL Process Deployment and Domain Management 19-13

BPEL Processes Tab: Managing the Process Life Cycle
1. Click the BPEL Processes tab to view BPEL process life cycles and states. Note that

different version labels of OrderBooking are currently active. A process identified
with an asterisk (for this example, OrderBooking version 1.0) is the default
process).

For each BPEL process, Oracle BPEL Console shows the following status
indicators:

■ Life cycle

A process life cycle can be active or retired. If the process life cycle is retired,
you cannot create a new instance.

■ State

A process state can be on or off. If the process state is off, you cannot access
instances or create new ones.

■ Open Instances

The number of open instances. An open instance is an instance that is
currently being processed.

■ Completed Instances

The number of completed instances. A completed instance is an instance that
has completed processing, either successfully or due to an error.

2. Click a specific process in the BPEL Process list (for this example, OrderBooking
(v. 1.0))

This window enables you to manage the life cycle and state of the BPEL process.

Viewing BPEL Processes in Oracle BPEL Console

19-14 Oracle BPEL Process Manager Developer’s Guide

3. Perform the following process management tasks from this window:

■ Manage the process life cycle (either Active or Retired)

■ Manage the process state (either On or Off)

■ Explicitly change the default process

■ Undeploy the process

4. Ensure that you understand the following process life cycle and state concepts:

Process Description

Process Life Cycles

■ Active All processes when deployed are automatically active (that is, existing versions are not
automatically retired). You must explicitly retire processes.

■ Retired A process that is no longer used. When a process is retired, all currently executing instances
complete normally. You can view previously completed instances.

Process State

■ On Process instances can be instantiated and accessed.

■ Off Process instances cannot be instantiated and accessed. Access to existing instances and
activities of the process is not allowed.

Viewing BPEL Processes in Oracle BPEL Console

BPEL Process Deployment and Domain Management 19-15

Process Life Cycle Recommendations for a Development Environment
In a development environment, Oracle recommends that you always deploy processes
to the same version on Oracle BPEL Server. This way, you do not need to be concerned
about marking processes explicitly as default. The life cycle to follow for this
environment is as follows:

■ Design your process.

■ Deploy the process to Oracle BPEL Server (version is 1.0). This becomes the
default process for any new instances.

■ Redesign the process as needed.

■ Redeploy the process as version 1.0 (this is a newer version that overwrites the
older version, but version 1.0 remains the default process).

Process Life Cycle Recommendations for a Production Environment
In a production environment, Oracle recommends that you increment version
numbers as you deploy newer versions. For example, if OrderBooking version 1.0 is
running in a production environment, then deploy the newer version of OrderBooking
to version 2.0. It is your decision as to when to mark a process as default; new
instances are started using this definition. When you are certain that you have
adequately tested and verified your process, select Mark as Default on the Manage
window shown in Step 2 on page 19-13. All version 1.0 instances switch seamlessly to
version 2.0. This enables you to decide when a process is ready for production mode.
The life cycle to follow for this scenario is as follows:

■ Design your process.

■ Deploy the process to Oracle BPEL Server with a different version number (for
example, use version 2.0 if the older default version is 1.0).

■ Test version 2.0 of the process.

■ Activate version 2.0 by marking it as the default process.

Default Revision A designated process and revision that is instantiated when a new request comes in. The
default process is identified by an asterisk next to its name in Oracle BPEL Console. When
deployed, a process is marked as default only if it is the first version of a deployed process.
There can be only one default process. Subsequent deployments of an already-deployed
process do not become defaults by virtue of deployment. If you retire a default process, the
default does not change to another process. The retired process remains the default. You must
explicitly select a new default process.

Undeployed A process with all traces removed from the system. You cannot view previously completed
processes. Instances belonging to this process are usually purged before undeploying a
process. Undeploying the only version of a process (which is also the default) results in the
complete removal of this process.

WARNING: Do not overwrite existing versions of a process with
newer versions in a production environment. This marks all
existing instances of the overwritten process as stale. Stale instances
cannot be examined, and all flow and audit information is lost.
Instead, create a separate version as described in this section and
mark the newer version as the default.

Process Description

Viewing BPEL Processes in Oracle BPEL Console

19-16 Oracle BPEL Process Manager Developer’s Guide

Example: Life Cycle of Processes
This section provides a brief example of the various life cycle states of two process
versions. In the first stage, two versions of the same processes are created, as shown in
shown in Table 19–1. OrderBooking version 1.0 receives two messages, which results
in the creation of two instances.

The life cycle and state of the two OrderBooking versions displays in the BPEL
Processes tab shown in Figure 19–2. Because OrderBooking version 1.0 was the first
deployed version of this process, it automatically became the default process
(indicated by the asterisk). The two messages that resulted in the creation of two
OrderBooking version 1.0 instances have both completed.

Figure 19–2 Stage 1 BPEL Processes

The two completed instances of OrderBooking version 1.0 display in the Instances tab
shown in Figure 19–3.

Figure 19–3 Stage 1 BPEL Instances

In stage 2, you change OrderBooking version 2.0 to be the default and retire
OrderBooking version 1.0, as shown in Table 19–2.

Table 19–1 Stage 1: Two Process Versions Created

Stage Action Life Cycle State Default Process
On Arrival of New
Message Request

1 Deploy
OrderBooking
version 1.0

Active=1.0 On=1.0 Version 1.0
(automatically set)

Create an instance for
OrderBooking version
1.0

1 Deploy
OrderBooking
version 2.0

Active=2.0 On=2.0 Version 1.0 Create another instance
for OrderBooking
version 1.0

Viewing BPEL Processes in Oracle BPEL Console

BPEL Process Deployment and Domain Management 19-17

Figure 19–4 shows Mark as Default being selected for OrderBooking version 2.0.

Figure 19–4 Stage 2 Default Revision

The modified life cycle and state of the two OrderBooking versions displays in the
BPEL Processes tab shown in Figure 19–5. Because OrderBooking version 2.0 was
explicitly selected as the default process, it now displays the asterisk. The message that
resulted in the creation of an OrderBooking version 1.0 instance has completed.
OrderBooking version 1.0 displays as Retired.

Table 19–2 Stage 2 Change the Default Process and Retire a Process

Stage Action Life Cycle State
Default
Process

On Arrival of New
Message Request

1 Deploy
OrderBooking
version 1.0

Active=1.0 On=1.0 Version 1.0
(automatically
set)

Create an instance for
OrderBooking
version 1.0

1 Deploy
OrderBooking
version 2.0

Active=2.0 On=2.0 Version 1.0 Create another
instance for
OrderBooking
version 1.0

2 Change default
process to
OrderBooking
version 2.0

Active=1.0 On=1.0 Version 2.0 Create an instance for
OrderBooking
version 2.0

2 Retire
OrderBooking
version 1.0

Retired=2.0 On=2.0 Version 2.0 No action

Viewing BPEL Processes in Oracle BPEL Console

19-18 Oracle BPEL Process Manager Developer’s Guide

Figure 19–5 Stage 2 BPEL Processes

The completed instance of OrderBooking version 2.0 displays in the Instances tab
shown in Figure 19–6.

Figure 19–6 Stage 2 BPEL Instances

If you click the Dashboard tab, the retired OrderBooking version 1.0 no longer
appears. This means you can no longer create an instance for this version.

In stage 3, you make OrderBooking version 1.0 inactive and then undeploy it, as
shown in Table 19–3.

Table 19–3 Stage 3 Deactivate and Undeploy a Process

Stage Action Life Cycle State
Default
Process

On Arrival of New
Message Request

1 Deploy
OrderBooking
version 1.0

Active=1.0 On=1.0 Version 1.0
(automatically
set)

Create an instance for
OrderBooking
version 1.0

1 Deploy
OrderBooking
version 2.0

Active=2.0 On=2.0 Version 1.0 Create another
instance for
OrderBooking
version 1.0

2 Change default
process to
OrderBooking
version 2.0

Active=1.0 On=1.0 Version 2.0 Create an instance for
OrderBooking
version 2.0

2 Retire
OrderBooking
version 1.0

Retired=2.0 On=2.0 Version 2.0 No action

3 Make
OrderBooking
version 1.0 inactive

Retired=2.0 Off=2.0 Version 2.0 No action

Viewing BPEL Processes in Oracle BPEL Console

BPEL Process Deployment and Domain Management 19-19

The state of OrderBooking version 1.0 is changed to Off.

Figure 19–7 Stage 3 Process State

The state of OrderBooking version 1.0 displays as Off in the BPEL Processes tab
shown in Figure 19–8. Because you initially retired this process, any live instances had
already completed normally. If you had instead made this version inactive before
retiring it, any live instances would have faulted and been aborted.

Figure 19–8 Stage 3 BPEL Processes

OrderBooking version 1.0 is then undeployed, as shown in Figure 19–9.

3 Undeploy
OrderBooking
version 1.0

Retired=2.0 Off=2.0 Version 2.0 No action

Table 19–3 (Cont.) Stage 3 Deactivate and Undeploy a Process

Stage Action Life Cycle State
Default
Process

On Arrival of New
Message Request

Viewing BPEL Processes in Oracle BPEL Console

19-20 Oracle BPEL Process Manager Developer’s Guide

Figure 19–9 Stage 3 Undeploy

The BPEL Processes tab in Figure 19–10 no longer displays OrderBooking version 1.0.
Note also that the asterisk no longer displays for OrderBooking version 2.0. However,
this version is still the default. If you click this instance in the BPEL Process list, you
see that no Mark as Default button displays in the Manage window. This indicates
that this is the default process. If you deploy an OrderBooking version 3.0, the asterisk
again appears next to OrderBooking version 2.0.

Figure 19–10 Stage 3 BPEL Processes

The two completed instances of the undeployed OrderBooking version 1.0 display as
disabled in the Instances tab shown in Figure 19–11.

Figure 19–11 Stage 3 Instance of Undeployed Process

Clicking one of the completed instances displays the status as Stale in Figure 19–12.

Figure 19–12 Stage 3 Status Message of Undeployed Process

Viewing BPEL Processes in Oracle BPEL Console

BPEL Process Deployment and Domain Management 19-21

Instances Tab: Viewing Process Instances
1. Click the Instances tab to view BPEL process instances.

2. Click an instance in the Instance column (for example, Instance #3 of
OrderBooking). From this page, you can perform the following tasks:

■ View the state of the instance (for example, COMPLETED or ACTIVE)

■ Click Flow to view a visual representation of the history of the activities in this
instance.

■ Click Audit to view an audit trail of this instance.

■ Click Debug to view the code of the BPEL file.

■ Click Interactions to view details about the activities in this instance.

■ Click Sensor Values to view the results of any activity, fault, or variable
sensors you created in this instance.

Activities Tab: Viewing Process Activities
1. Click the Activities tab to view the status of activities in the deployed BPEL

process instance.

See Also: The following documentation for additional details about
sensors:

■ Chapter 18, "Sensors"

■ Oracle BPEL Process Manager Order Booking Tutorial

Viewing BPEL Processes in Oracle BPEL Console

19-22 Oracle BPEL Process Manager Developer’s Guide

See Also: The following documentation for tutorials in which you
run processes from Oracle BPEL Console and view their results from
the Audit and Flow links:

■ "Testing the BPEL Process" on page 3-17

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

Build and Command Line Tools

BPEL Process Deployment and Domain Management 19-23

Build and Command Line Tools
When you deploy a BPEL process, several build and compiler command line tools are
automatically invoked. This section provides an overview of these tools, plus an
additional command line tool for generating XML facades:

■ Apache Ant

■ bpelc

■ schemac

Apache Ant
Apache Ant is a Java-based build tool used by Oracle BPEL Process Manager for
compiling and deploying the BPEL process. Ant is similar to a make file. However,
instead of being extended with operating system-dependent, shell-based commands,
Ant is extended using Java classes. The configuration files are XML-based and call out
a target tree where various tasks are executed.

bpelc
bpelc (or bpelc.sh for UNIX operating systems) is the Oracle BPEL Process
Manager tool that compiles and deploys BPEL processes. For example, when you
compile and deploy a BPEL process, you see bpelc being invoked as a task inside the
Apache Ant build.xml file in the Log Window of Eclipse BPEL Designer.

Table 19–4 shows the supported bpelc options:

See Also: http://ant.apache.org/

Table 19–4 Parameters

Attribute Description Required

home The orabpel home directory (or whatever you named your
Oracle_Home directory), which is typically available as Ant
property $home

No

input The deployment descriptor location path, By default, it looks
for bpel.xml under the current directory.

No

rev The revision (version) tag for the deployed process. No

deploy Deploys the BPEL process archive to the specified domain in
the local Oracle home. The domain must be accessible through
the file system for this option to work.

No

keepGenerated Includes the BPEL process Java classes in the generated BPEL
archive. The value defaults to false.

No

verbose Generates additional debugging messages about compiler
actions. The value defaults to false.

No

force Always compiles the process; the compiler does not check the
time stamp of .bpel, .wsdl and .xml files. The value
defaults to false.

No

classpath Specifies where to find user class files. This attribute is similar
to a PATH structure and can also be set through a nested class
path element.

No

lib Oracle BPEL Process Manager system lib directory. No

help Displays the help message. This value defaults to false. No

Build and Command Line Tools

19-24 Oracle BPEL Process Manager Developer’s Guide

Examples
The following Ant task compiles and generates a BPEL archive file in the current
directory using the default bpel.xml deployment descriptor.

Use the following bpelc task sample to deploy a BPEL archive into the default
domain deploy directory:

<bpelc home="${home}" rev="${rev}" deploy=”default”/>

To deploy the BPEL archive into the c:\myproject directory:

<bpelc home="${home}" rev="${rev}" out="C:\myproject"/>

Specify a deployment descriptor file name:

<bpelc home="${home}" rev="${rev}" deploy=”default” input=”orderdd.xml”/>

Specify a user classpath for bpelc:

<bpelc home="${home}" rev="${rev}" deploy=”default”/>
<classpath>
<pathelement location="dist/test.jar"/>
<pathelement path="${java.class.path}"/>
</classpath>
</bpelc>

schemac
schemac (or schemac.sh for UNIX operating systems) is a schema compiler utility
provided with Oracle BPEL Process Manager. You use this utility to generate XML
facades. XML facades are a set of Java interfaces and classes through which you can
access and modify BPEL (and other XML) variables and map individual XML values
to Java variables with get and set methods. Classes are generated only for the
complexTypes schema types and element with an anonymous complexType. This
is similar to the jaxb compiler.

You invoke schemac from the operating system command prompt to perform specific
tasks. schemac command line syntax uses the following format.

schemac options filename | classname(s)

where filename is the name of a file ending with .xsd and containing a valid XML
schema definition and classname is the name of a valid Java class (without the
.java suffix). Only use this argument when the -R option is supplied.

Table 19–5 describes the supported options:

out Specifies the location in which to deploy the BPEL archive.
This option is used when the deploy attribute is not used. For
example:

out=”c:\myproject\bpel\deploy”

No

Table 19–5 Parameters

Attribute Description Required

input The XML schema is the name of a file (ending with .xsd or
.wsdl) containing a valid XML schema definition.

Yes

Table 19–4 (Cont.) Parameters

Attribute Description Required

Build and Command Line Tools

BPEL Process Deployment and Domain Management 19-25

Examples
Generate the facade classes from an XSD and place them under the current directory:

<schemac input="${basedir}/Order.xsd "/>

Generate the facade classes from a WSDL schema file:

<schemac input="${basedir}/PurchaseOrder.wsdl "/>

Generate the Javadoc into the c:\myjavadoc directory:

<schemac input="${basedir}/Order.xsd" doc="c:\myjavadoc"/>

Archive the generated facade classes into a .jar file:

<schemac input="${basedir}/XPath.wsdl" jar="myorderfacade.jar"/>

Redirect the generated facade classes into a specific directory:

<schemac input="${basedir}/Order.xsd " out="${basedir}/BPEL-INF/classes"/>

Specify the namespace Java package mapping file to override the default behavior:

<schemac input="${basedir}/Order.xsd " out="${basedir}/BPEL-INF/classes"
nsMap="mynsmap.txt"/>

out Specify where to place generated facade class files. This value
defaults to the current directory.

No

doc Generates Javadoc for the generated classes and redirects it to
the specified location.

No

jar Archives the generated classes into the specified JAR file name. No

verbose Generates more debugging messages about the compiler actions.
Defaults to false.

No

noCompile Generates only the Java source files and does not compile the
generated sources when set to true. This value defaults to
false.

No

help Displays the help message. This value defaults to false. No

sourceOut Specifies the location in which to redirect the generated Java
files. For example:

sourceOut=”c:\myproject\bpel\facade\source”

No

nsMap To override the default Java package name, specify the
namespace to the Java package mapping file. For example:

nsMap="mynsmap.txt"

The content of mynsmap.txt looks as follows:

http://samples.otn.com/xpath/autoloan=boo.foo.g
oo

Note: If it is a name-value property file, you must escape the
colon (:) using a backslash (\). If there is no nsMap attribute, by
default schemac generates the package name from the
namespace. For example, the default Java package name for
http://samples.otn.com/xpath/autoloan is
com.otn.samples.xpath.autoloan.

No

Table 19–5 (Cont.) Parameters

Attribute Description Required

Summary

19-26 Oracle BPEL Process Manager Developer’s Guide

Summary
This chapter describes how to compile and deploy BPEL processes. It describes key
features of BPEL suitcase JAR files. It also describes how to create and manage BPEL
domains, including changing domain and BPEL Admin Console passwords, creating
domains, changing Oracle BPEL Server modes (production or development),
managing BPEL suitcase JAR files, and undeploying processes. An overview of Oracle
BPEL Console is also provided, including a detailed description of managing different
versions of BPEL processes. Finally, a discussion on how to use the Apache Ant, bpelc,
and schemac build tools is provided.

See Also:

■ "XML Facade" on page 10-3

■ Oracle_
Home\integration\orabpel\samples\tutorials\702.Bi
ndings for XML facade samples

Part V
Reference Information

This part provides reference details about troubleshooting issues, activities,
deployment descriptor properties, demo user communities, and XPath extension
functions.

This part contains the following appendices:

■ Appendix A, "Troubleshooting and Workarounds"

■ Appendix B, "Workflow and Notification Reference"

■ Appendix C, "JDeveloper BPEL Designer Activities"

■ Appendix D, "User Task 2.0 Macro"

■ Appendix E, "Deployment Descriptor Properties"

■ Appendix F, "Demo User Community"

■ Appendix G, "XPath Extension Functions"

Troubleshooting and Workarounds A-1

A
Troubleshooting and Workarounds

This appendix describes Oracle BPEL Process Manager troubleshooting methods.

This appendix contains the following topics:

■ Troubleshooting Sensors—The Custom Data Publisher

■ Troubleshooting Oracle BPEL Worklist Application

■ Summary

Troubleshooting Sensors—The Custom Data Publisher
The following sections describe possible issues and solutions.

Poor JMS Performance When Creating or Destroying Connections

Problem
Due to a bug, you can experience poor JMS performance when creating or destroying
connections. This can cause a slowdown in the execution of BPEL processes that have
JMS data publishers associated with them.

Solution
Use the rollup patch included on the software CD. See the readme file.

Data Publisher Is Not Working

Problem
The custom data publisher is not working.

Solution
■ Make sure that the class file has been generated and that it is in the system

classpath. See the obsetenv.bat file for this definition, or the BPEL suitcase.

■ Ensure that you have implemented the data publisher interface.

■ If you compile your data publisher into the system classpath, then you must
restart Oracle BPEL Process Manager. You may have made changes to the data
publisher without restarting Oracle BPEL Process Manager.

■ It is possible that an exception is being thrown in your data publisher. Check the
log file for any exceptions, or temporarily add a try/catch block around all your

Troubleshooting Sensors—The Custom Data Publisher

A-2 Oracle BPEL Process Manager Developer’s Guide

code. In the catch, print the stack trace. These messages display on the text
window that opens when you start Oracle BPEL Process Manager.

Data Publisher Works, But Business Process Runs Slowly

Problem
The data publisher works fine, but the business process runs very slowly.

Solution
There are a couple of options.

First, you can attempt to profile your code. The do-user-sensor-callback statistic in
Oracle BPEL Console records how much time is spent publishing sensor data.

Second, you can switch from a custom data publisher to a JMS Publisher. Then, you
can deploy a message-driven bean to the application server to publish data whenever
data is sent to that particular JMS destination. This decouples data publishing from
process execution.

Caching Data in the Data Publisher Is Not Supported

Problem
To improve performance, I want to cache data in my data publisher. Is this supported?

Solution
This is not supported. Data publishers must be stateless.

Unexpected Errors in the Data Publisher

Problem
My data publisher works fine most of the time, but sometimes I get a weird error.

It is possible that your data publisher is experiencing concurrency issues.

Solution
Data publishers must be coded in a thread-safe manner. This means that the Java code
must be thread safe as well as the utilization of resources, such as databases or files.

Data Extracted to XML Is Difficult to Work With

Problem
The data I extract is complex XML. It is difficult to work with. Can I do anything to
make it simpler?

Solution
While the W3C DOM model is somewhat cumbersome, there are third-party models
(such as DOM4J) that make things easier. It is easy to create a DOM4J object from its
corresponding W3C DOM object. Another option is to generate JAX-B objects or
schema objects for the data you extract. Then you can use the generated Java classes to
manipulate data more easily.

Troubleshooting Oracle BPEL Worklist Application

Troubleshooting and Workarounds A-3

Troubleshooting Oracle BPEL Worklist Application
The following sections describe possible issues and solutions.

Not Able to Log In to the Worklist Application
You cannot log in to the Worklist Application if your information is not available in
the identity service. Check with an administrator to verify that your user information
is present in the identity system (a file based on LDAP, such as Oracle Internet
Directory).

Information Is Displayed in a Different Language
The Worklist Application gets a user’s language (locale) preferences from the identity
service and displays the information in that locale. If information is displayed in the
wrong language, make sure that the user’s preference is set to a supported locale. See
"Accessing the Worklist Application in Local Languages" on page 17-33 for more
information.

Dates and Times Are Displayed Incorrectly
The Worklist Application gets a user’s timezone preference from the identity service
and displays the information in this timezone. Also, the date and time is formatted to
suit the language (locale) preference. Make sure that these preferences are correctly
specified in the identity service. See "Identity Service" on page 16-75 for more
information.

The User Is Not Permitted to Perform an Action
You may see an error message that says something like:

"User jcooper is not permitted to perform the action Update on task Loan
application for John with id...."

Check if the user has permission to perform the action or if the action can be
performed on the task in its current state. You can also check for the following:

■ The task expired between the time the user loaded the page and actually
performed the action.

■ The task was updated by another user (such as a manager, owner, or admin)
between the time the user loaded the page and actually performed the action.

Expected Task Is Not Listed Under Task Titles
On the Worklist Application home page, under the Title column, if you do not see a
task listed that you expected to see, then it may have been modified by another user or
by the system.

Another user, such as a manager or group member, may have modified the task by
performing any of the following actions:

■ Complete

■ Suspend

■ Request More Information

Also, the filer of the task may have withdrawn (cancelled) the task.

The system can modify a task in the following situations:

Summary

A-4 Oracle BPEL Process Manager Developer’s Guide

■ If the process instance associated with a task was purged or archived, the task is
also purged or archived and may not be accessible.

■ If a task expires

■ If a task encounters a system error such as an incorrect assignee

In most of the preceding cases, you can view the task by changing the filters to a
broader category (such as Any or All).

Summary
This appendix describes Oracle BPEL Process Manager troubleshooting methods.

Workflow and Notification Refer
B

Workflow and Notification Reference

This appendix describes operations that can be invoked from a BPEL business process.

This appendix contains the following topics:

■ Task Manager Service WSDL Operations

■ Task Routing Service WSDL Operations

■ Notification WSDL Operations

■ Identify Service Operations

■ Task Action Handler Business Process

■ Summary

Task Manager Service WSDL Operations
The task manager service exposes operations that can be invoked from the BPEL
business process to orchestrate the workflow. The task manager service also provides
state management and persistency for the tasks. The task manager service exposes the
following operations. All the operations are exposed on the WSDL port type
TaskManager.

■ initiateTask—initiates a task by persisting the task in the database

■ reinitiateTask—reinitiates a task to continue an existing task

■ updateTask—updates the task

■ renewTask—renews the task with a specified duration

■ notifyTaskExpiration—notifies the task manager service that the task is
expired. This operation is invoked from the task action handler business process,
which manages the expiration of the task.

■ initiateSubTask—initiates a subtask in a parallel workflow pattern

■ completeTask—completes the task with a specified conclusion

■ sendTaskReminder—notifies the task manager service to send a reminder for
the task. This operation is invoked from the task action handler business process,
which manages task reminders.

■ releaseTask—releases a previously acquired task

■ errorTask—notifies the task manager service that the task is in an errored state
and that the task should be marked as errored

The WSDL for TaskManagerService is available at
ence B-1

Task Routing Service WSDL Operations
 http://hostname:port/orabpel/xmllib/workflow/TaskManagerService.wsdl

The XSD used by TaskManagerService is available at

http://hostname:port/orabpel/xmllib/workflow/WorkflowTask.xsd

Task Routing Service WSDL Operations
The task routing service exposes operations that can be invoked from the BPEL
business process to perform task routing operations. The task manager service exposes
the following operations. All the operations are exposed on the WSDL port type
TaskRoutingService.

■ routeTask—routes the task to a specified participant

■ routeTaskToNextApprover—routes the task to the next approver as
determined by evaluating the approver function

■ escalateTask—escalates the task to the manager

■ escalateTaskOnExpiration—escalates the task when the task is expired. The
operation also renews the task by a specified duration.

The WSDL for TaskRoutingService is available at

http://hostname:port/orabpel/default/TaskActionHandler/TaskRoutingService.wsdl

The XSD for the service is available at

http://hostname:port/orabpel/xmllib/workflow/TaskRoutingService.xsd

Notification WSDL Operations
The notification service exposes operations that can be invoked from the BPEL
business process to send notifications through e-mail, voice, or short message service
(SMS) channels. The notification service exposes the following operations on the
WSDL port type NotificationService.

■ sendVoiceNotification—sends an instance messenger notification

■ sendSMSNotification—sends an instance messenger notification

■ sendEmailNotification—sends an e-mail notification

■ sendNotificationToUser—sends a notification to a user. The notification
channel used is determined by the orclWorkflowNotificationPref attribute
in Oracle Internet Directory (OID) or JAZN-XML. If no preference is specified,
then e-mail is used. The input message to this operation contains two parts—the
group ID and the generic notification payload. The generic payload contains a
common payload that applies to all the channels and a payload for each of the
channels. The message that is actually sent is evaluated from the generic payload.

■ sendNotificationToGroup—sends a notification to a group using the e-mail
channel. If the group does not have an e-mail address associated with it, then the
notification is sent to each member of the group using their preferred notification
channel. The input message to this operation contains two parts—the group ID
and the generic notification payload. The generic payload contains a common
payload that applies to all the channels and a payload for each of the channels.
The message that is actually sent is evaluated from the generic payload.
B-2 Oracle BPEL Process Manager Developer’s Guide

Summary
Identify Service Operations
The identity service exposes the following operations that can be invoked from the
BPEL business process. All the operations are exposed on the WSDL port type
IdentityService.

■ getManager—gets the manager of a user, which can also be obtained using the
ora:getManager() XPath extension function.

■ getManagementChain—gets the management chain based on the input message

The WSDL for the IdentityService is available at

http://hostname:port/orabpel/xmllib/workflow/LocalIdentityService.wsdl

The XSD for the service is available at

http://hostname:port/orabpel/xmllib/workflow/LocalIdentityService.xsd

Task Action Handler Business Process
The task action handler business process receives updates from Oracle BPEL Worklist
Application through the task manager service or the task routing service. The main
task of the process is to keep the task synchronized in the BPEL process with its
database state. Based on the state of the task, the process determines if the parent
BPEL process should be called back with the task. An instance of the task action
handler process is created for each participant for a given task. Participants who
participate in the task when the current participant performs operations like reassign,
escalate, and so on reuse the same process.

In addition, the task action handler process manages the following timer events:

■ Task expiration

■ Reminder durations for the task

■ Task release durations when the task is acquired

Summary
This appendix describes workflow and notification service WSDL operations.
Workflow and Notification Reference B-3

Summary
B-4 Oracle BPEL Process Manager Developer’s Guide

JDeveloper BPEL Designer Activities C-1

C
JDeveloper BPEL Designer Activities

This appendix describes the activities available for use when designing a BPEL process
in JDeveloper BPEL Designer.

This appendix contains the following topics:

■ Validating when Loading a Process Diagram

■ Activities Overview

■ Summary

Validating when Loading a Process Diagram

C-2 Oracle BPEL Process Manager Developer’s Guide

Validating when Loading a Process Diagram
As you create and open activities such as scope, assign, and others for the first time in
JDeveloper BPEL Designer, the message Invalid Settings appears at the top of
the activity window. This is because you have not yet entered details. If the Validate
process when loading diagram option is selected, the message always appears. You
can ignore this message. As you enter and correctly apply your details, the message
disappears. If you want to turn this option off for the current project, perform the
following steps:

1. Right-click in the JDeveloper BPEL Designer Diagram View and select Diagram
Properties.

2. Deselect the Validate process when loading diagram option on the Diagram
Properties window.

3. Click OK.

4. Select Save All from the File main menu.

Activities Overview
JDeveloper BPEL Designer includes a series of activities that are available for dragging
and dropping into a BPEL process. These activities enable you to perform specific
tasks within a process. This section provides a brief overview of these activities and
provides references to other documentation that describes how to use these activities:

This section contains the following topics:

■ Assign Activity

■ Catch Activity

■ Compensate Activity

■ Empty Activity

■ Flow Activity

■ FlowN Activity

■ Invoke Activity

■ Java Embedding Activity

■ Notification Activity

■ PartnerLink Activity

■ Pick Activity

■ Receive Activity

■ Reply Activity

■ Sequence Activity

■ Scope Activity

■ Switch Activity

■ Terminate Activity

■ Throw Activity

■ Transform Activity

■ User Task

Activities Overview

JDeveloper BPEL Designer Activities C-3

■ Wait Activity

■ While Activity

Tabs Common to Many Activities
While each activity performs specific tasks, many activities include tabs that enable
you to perform similar tasks. This section describes these common tabs.

■ The Sensors tab displays on all activities and enables you to create sensors for
capturing details about an activity.

■ The Correlation Sets tab displays in invoke, receive, and reply activities, the
onMessage branch of pick activities, and the OnMessage variant of event
handlers. Correlation sets address complex interactions between a process and its
partners by providing a method for explicitly specifying correlated groups of
operations within a service instance. A set of correlation tokens is defined as a set
of properties shared by all messages in the correlated group.

■ The Adapters tab displays in invoke, receive, and reply activities, and the
onMessage branch of pick activities. You create header variables for use with the
Advanced Queuing (AQ), File, FTP, and Java Message Service (JMS) adapters.

Assign Activity
This activity provides a method for data manipulation, such as copying the contents of
one variable to another. This activity can contain any number of elementary
assignments.

When you double-click the assign icon, the Assign window appears. You can perform
the following tasks:

■ Click the General tab to provide the assign activity with a meaningful name.

■ Click the Copy Rules tab and the Create icon shown in Figure C–1 to access the
Create Copy Rule window. This enables you to copy the contents of the source
element (variable, expression, XML fragment, or partner link) in the From field to
the contents of the destination element in the To field. You can also select a part
(typically the payload) and an XPath query (a language for addressing parts of an
XML document).

See Also: The following documentation for additional details about
activities:

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Business Process Execution Language for Web Services Specification

■ The contents of the c:\Oracle_
Home\integration\orabpel\samples\references
directory

See Also:

■ The Online help for these tabs for additional details about their
use

■ Chapter 18, "Sensors"

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
User’s Guide

Activities Overview

C-4 Oracle BPEL Process Manager Developer’s Guide

Figure C–1 Copy Rules Tab of Assign Activity WIndow

Catch Activity
This activity enables you to create optional fault handling logic to catch and manage
exceptions. Fault handling is associated with a scope activity. Fault handling’s goal is
to undo the incomplete and unsuccessful work of a scope activity in which a fault has
occurred.

Fault handlers in a scope activity enable you to create a set of custom fault-handling
activities, which are defined as catch activities. Each catch activity is defined to
intercept a specific type of fault.

Figure C–2 shows the Add Catch Branch icon inside a scope activity that you click to
create a catch activity. Figure C–3 shows an example of a catch activity on the right
side of the scope activity. Within the area defined as Drop Activity Here, you drag and
drop additional activities to create fault handling logic to catch and manage
exceptions.

For example, a client provides a social security number to a Credit Rating service
when applying for a loan. This number is used to perform a credit check. If a bad
credit history is identified or the social security number is identified as invalid, an
assign Activity inside the catch activity notifies the client of the loan offer rejection.
The entire loan application process is terminated with a terminate activity.

See Also: The following documentation for many examples of using
the Assign activity:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle_
Home\integration\orabpel\samples\references\Assig
n

Activities Overview

JDeveloper BPEL Designer Activities C-5

Figure C–2 Creating an Add Catch Activity

Figure C–3 Catch Activity Icon

Compensate Activity
This activity invokes compensation on an inner scope activity that has already
successfully completed. This activity can be invoked only from within a fault handler
or another compensation handler. Compensation occurs when a process cannot
complete several operations after already completing others. The process must return
and undo the previously completed operations. For example, assume a process is
designed to book a rental car, a hotel, and a flight. The process books the car and the
hotel, but is unable to book a flight for the correct day. In this case, the process
performs compensation by unbooking the car and the hotel.

The compensation handler is invoked with the compensate activity, which names the
scope on which the compensation handler is to be invoked.

When you double-click the compensate icon, the Compensate window shown in
Figure C–4 appears. You can perform the following tasks:

■ Click the General tab to provide the compensate activity with a meaningful name
and select the scope activity on which the compensation handler is to be invoked.

See Also: The following documentation for many examples of using
the catch activity:

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle_
Home\integration\orabpel\samples\references\Catch

Activities Overview

C-6 Oracle BPEL Process Manager Developer’s Guide

Figure C–4 Compensate Activity

Empty Activity
This activity enables you to insert a no-operation instruction into a process. This
activity is useful when you need to use an activity that does nothing (for example
when a fault needs to be caught and suppressed). Figure C–5 shows the empty activity.

Figure C–5 Empty Activity

Flow Activity
A flow activity enables you to specify one or more activities to be performed
concurrently. A flow activity completes when all activities in the flow have finished
processing. Completion of a flow activity includes the possibility that it can be
skipped if its enabling condition is false.

For example, assume you use a flow activity to enable two loan offer providers
(United Loan service and Star Loan service) to start in parallel. In this case, the flow

Activities Overview

JDeveloper BPEL Designer Activities C-7

activity contains two parallel activities – the sequence to invoke the United Loan
service and the sequence to invoke the Star Loan service. Each service can take an
arbitrary amount of time to complete their loan processes.

Figure C–6 shows an initial flow activity with its two panels for parallel processing.
You drag and drop activities into both panels to create parallel processing. When
complete, a flow activity looks like that shown in Figure C–7.

Figure C–6 Flow Activity (At Time of Creation)

Figure C–7 Flow Activity (After Design Completion)

FlowN Activity
This activity enables you to create activities within a flow. You specify the number of
branches of these activities to create.

Figure C–8 shows a flowN activity.

See Also: The following documentation for examples of using the
flow activity:

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle_
Home\integration\orabpel\samples\references\Flow

Activities Overview

C-8 Oracle BPEL Process Manager Developer’s Guide

Figure C–8 FlowN Activity

Invoke Activity
This activity enables you to specify an operation you want to invoke for the service
(identified by its partner link). The operation can be one-way or request-response on a
port provided by the service. You can also automatically create variables in an invoke
activity. An invoke activity invokes a synchronous service or initiates an asynchronous
Web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and the receive functions.

When you double-click the invoke icon, the Invoke window shown in Figure C–9
appears. You can perform the following tasks:

■ Provide the invoke activity with a meaningful name.

■ Select the partner link for which to specify an operation

■ Select the operation to be performed

■ Automatically create a variable or select an existing variable in which to transport
the data (payload)

See Also: Oracle_
Home\integration\orabpel\samples\references\FlowN

Activities Overview

JDeveloper BPEL Designer Activities C-9

Figure C–9 Invoke Activity

Java Embedding Activity
This activity enables you to add custom Java code to a BPEL process using the Java
BPEL exec extension <bpelx:exec>. This is useful when you already have Java
code that can perform a function, and want to use this existing code instead of starting
over.

When you double-click this activity, the Edit Java Embedding window shown in
Figure C–10 appears.

Figure C–10 Java Embedding Activity

See Also: The following documentation for many examples of using
the invoke activity:

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle_
Home\integration\orabpel\samples\references\Invok
e

Activities Overview

C-10 Oracle BPEL Process Manager Developer’s Guide

Notification Activity
This activity enables you to send notification about an event to a user, group, or
destination address. You can send a notification by e-mail, voice mail, or short
message service (SMS).

For example, an Online Shopping business process of an online bookstore sends a
courtesy notification message to you after the items are shipped. The business process
calls the notification service with your user ID and notification message. The
notification service gets the notification address (e-mail address in this case) from
Oracle Internet Directory and sends the message to your e-mail address.

When you drag and drop a notification activity into JDeveloper BPEL Designer, a
Notification wizard starts and prompts you for the above information.

Figure C–11 shows the Notification wizard.

Figure C–11 Notification Activity

PartnerLink Activity
This activity enables you to define the external services with which your process
interacts. A partner link type characterizes the conversational relationship between
two services by defining the roles played by each service in the conversation and
specifying the port type provided by each service to receive messages within the
context of the conversation. For example, if you are creating a process to interact with

Note: If you use this activity, ensure that you add the JAR files to the
Oracle JDeveloper classpath or put them in the Oracle_
Home\integration\jdev\jdev\lib\ext directory to ensure that
your project compiles properly.

See Also:

■ Oracle BPEL Process Manager Order Booking Tutorial for an example
of using the notification activity

■ Chapter 15, "Oracle BPEL Process Manager Notification Service"

Activities Overview

JDeveloper BPEL Designer Activities C-11

a Credit Rating Service and two loan provider services (United Loan and Star Loan),
you create partner links for all three services.

When you double-click the partnerlink icon, the Partner Link window shown in
Figure C–12 appears. You can provide the following details:

■ A meaningful name for the service

■ The Web services description language (WSDL) file of the external service

■ The actual service type (defined as Partner Link Type)

■ The role of the process requesting the service (defined as My Role)

■ The role of the service (defined as Partner Role)

Figure C–12 PartnerLink Activity

Pick Activity
This activity waits for the occurrence of one event in a set of events and performs the
activity associated with that event. The occurrence of the events is often mutually
exclusive (the process either receives an acceptance or rejection message, but not both).
If more than one of the events occurs, then the selection of the activity to perform
depends on which event occurred first. If the events occur nearly simultaneously, there
is a race and the choice of activity to be performed is dependent on both timing and
implementation.

The pick activity provides two branches, each one with a condition. When you
double-click the pick icon, the pick activity shown in Figure C–13 appears and
displays these two branches: onMessage (on the left) and onAlarm (on the right). The
onMessage branch contains the code for receiving a reply, for example, from a loan
service. The onAlarm branch contains the code for a timeout, for example, after one
minute. Whichever branch completes first is executed; the other branch is not. The
branch that has its condition satisfied first is executed.

See Also: The following documentation for many examples of using
the PartnerLink activity:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

Activities Overview

C-12 Oracle BPEL Process Manager Developer’s Guide

Figure C–13 Pick Activity

Receive Activity
This activity specifies the partner link from which to receive information and the port
type and operation for the partner link to invoke. This activity waits for an
asynchronous callback response message from a service, such as a loan application
approver service. While the BPEL process is waiting, it is dehydrated (compressed and
stored) until the callback message arrives. The contents of this response are stored in a
response variable in the process.

When you double-click the receive icon, the Receive window shown in Figure C–14
appears. You can perform the following tasks:

■ Provide the receive activity with a meaningful name.

■ Select the partner link service for which to specify an operation

■ Select the operation to be performed

■ Automatically create a variable or select an existing variable in which to transport
the callback response

See Also: Oracle_
Home\integration\orabpel\samples\references\Pick for
an example of using the pick activity

Activities Overview

JDeveloper BPEL Designer Activities C-13

Figure C–14 Receive Activity

Reply Activity
This activity allows the process to send a message in reply to a message that was
received through a receive activity. The combination of a receive activity and a reply
activity forms a request-response operation on the WSDL port type for the process.

Figure C–15 shows the reply activity.

See Also: The following documentation for many examples of using
the receive activity:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle_
Home\integration\orabpel\samples\references\Recei
ve

Activities Overview

C-14 Oracle BPEL Process Manager Developer’s Guide

Figure C–15 Reply Activity

Sequence Activity
This activity enables you to define a collection of activities to be performed in
sequential order. For example, you may want the following activities performed in a
specific order:

■ A customer request is received in a receive activity.

■ The request is processed inside a flow activity that enables concurrent behavior.

■ A reply message with the final approval status of the request is sent back to the
customer in a reply activity.

A sequence activity makes the assumption that the request can be processed in a
reasonable amount of time, justifying the requirement that the invoker wait for a
synchronous response (because this service is offered as a request-response operation).

When this assumption cannot be made, it is better to define the customer interaction as
a pair of asynchronous message exchanges.

When you double-click the sequence icon, the sequence activity shown in Figure C–16
appears. Define appropriate activities inside the sequence activity.

Figure C–16 Sequence Activity

See Also: Oracle_
Home\integration\orabpel\samples\references\Reply for
an example of using the reply activity

Activities Overview

JDeveloper BPEL Designer Activities C-15

Scope Activity
This activity consists of a collection of nested activities that can have their own local
variables, fault handlers, compensation handlers, and so on. A scope activity is
analogous to a { } block in a programming language.

Each scope has a primary activity that defines its behavior. The primary activity can be
a complex structured activity, with many nested activities within it to arbitrary depth.
The scope is shared by all the nested activities.

When you double-click the scope icon, the Scope window shown in Figure C–17
appears. Define appropriate activities inside the scope activity.

Figure C–17 Scope Activity

Switch Activity
This activity consists of an ordered list of one or more conditional branches defined in
a case branch, followed optionally by an otherwise branch. The branches are
considered in the order in which they appear. The first branch whose condition is true
is taken and provides the activity performed for the switch. If no branch with a
condition is taken, then the otherwise branch is taken. If the otherwise branch is not
explicitly specified, then an otherwise branch with an empty activity is assumed to be
available. The switch activity is complete when the activity of the selected branch
completes.

A switch activity differs in functionality from a flow activity. For example, a flow
activity enables a process to gather two loan offers at the same time, but does not
compare their values. To compare and make decisions on the values of the two offers,
a switch activity is used. The first branch is executed if a defined condition (inside the
case branch) is met. If it is not met, the otherwise branch is executed.

Figure C–18 shows a switch activity with two defined branches.

See Also: The following documentation for many examples of using
the scope activity:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

Activities Overview

C-16 Oracle BPEL Process Manager Developer’s Guide

Figure C–18 Switch Activity

Terminate Activity
A terminate activity enables you to end the tasks of an activity (for example, the fault
handling tasks in a catch branch). For example, if a client’s bad credit history is
identified or a social security number is identified as invalid, a loan application
process is terminated, and the client’s loan application document is never submitted to
the service loan providers.

Figure C–19 shows a terminate activity at the end of a catch branch of a scope activity.

Figure C–19 Terminate Activity

See Also: The following documentation for examples of using the
switch activity:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle_
Home\integration\orabpel\samples\references\Switc
h

Activities Overview

JDeveloper BPEL Designer Activities C-17

Throw Activity
This activity generates a fault from inside the business process.

When you double-click the throw icon, the Throw window shown in Figure C–20
appears.

Figure C–20 Throw Activity

Transform Activity
This activity enables you to create a transformation that maps source elements to
target elements (for example, incoming purchase order data into outgoing purchase
order acknowledgment data).

When you double-click the transform icon, the Transform window shown in
Figure C–21 appears. This window enables you to perform the following tasks:

■ Define the source and target variables and parts to map

■ Specify the transformation mapper file

■ Click the second icon (the Create Mapping icon) to the right of the Mapper File
field to access a window for graphically mapping source and target elements. This
window enables you to drag and drop (map) a source element to a target element.

See Also: The following documentation for examples of using the
terminate activity:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle_
Home\integration\orabpel\samples\references\Termi
nate

See Also: Oracle_
Home\integration\orabpel\samples\references\Throw for
an example of using the throw activity

Activities Overview

C-18 Oracle BPEL Process Manager Developer’s Guide

Figure C–21 Transform Activity

User Task
This activity enables you to start the Workflow wizard. A workflow describes the
tasks, input or output information, and procedural steps that must be performed by
users or groups as part of the end-to-end business process. For example, an insurance
company can design a workflow application to ensure that a claim is handled
consistently from initial call to final settlement. The workflow application ensures that
each person handling the claim uses the correct online form and successfully
completes their step before enabling the process to proceed to the next person and
procedural step.

This wizard enables you to create a workflow model to manage and enforce the
consistent handling of work. After wizard creation, you can also further customize a
workflow pattern by directly modifying the configuration files. At run time, the
workflow results in the creation of tasks that can be accessed through the Oracle BPEL
Worklist Application.

When you drag and drop a user task, the Welcome window shown in Figure C–22
appears.

See Also: The following documentation for examples of using the
transform activity:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle_
Home\integration\orabpel\samples\demos\XSLMapper

Activities Overview

JDeveloper BPEL Designer Activities C-19

Figure C–22 User Task Activity

Wait Activity
This activity allows a process to specify a delay for a certain period of time or until a
certain deadline is reached. A typical use of this activity is to invoke an operation at a
certain time. This activity allows you to wait for a given time period or until a certain
time has passed. Exactly one of the expiration criteria must be specified.

When you double-click the wait icon, the Wait window shown in Figure C–23 appears.

See Also: The following documentation for examples of using the
user task activity and workflows:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle_
Home\integration\orabpel\samples\demos\HelpDeskSe
rviceRequest

■ Oracle_
Home\integration\orabpel\samples\demos\TimeOffReq
uestDemo

■ Oracle_
Home\integration\orabpel\samples\demos\VacationRe
quest

■ Chapter 16, "Oracle BPEL Process Manager Workflow Services"

■ Chapter 17, "Worklist Application"

Activities Overview

C-20 Oracle BPEL Process Manager Developer’s Guide

Figure C–23 Wait Activity

While Activity
This activity supports repeated performance of a specified iterative activity. The
iterative activity is repeated until the given while condition is no longer true.

When you double-click the while icon, the While window shown in Figure C–24
appears. You can enter expressions in this window.

Figure C–24 While Activity

See Also: The following documentation for examples of using the
wait activity:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle_
Home\integration\orabpel\samples\references\Wait

Summary

JDeveloper BPEL Designer Activities C-21

Summary
This appendix describes the activities you can drag and drop into a BPEL process with
JDeveloper BPEL Designer.

See Also: The following documentation for examples of using the
while activity:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle_
Home\integration\orabpel\samples\references\While

Summary

C-22 Oracle BPEL Process Manager Developer’s Guide

User Task 2.0 Macro D-1

D
User Task 2.0 Macro

This appendix describes the user task 2.0 macro.

This appendix contains the following topics:

■ Introduction to User Task 2.0 Macro

■ BPEL User Task Use Case

■ The TaskManager Service

■ Additional Capabilities of the TaskManager Service

■ Summary

Introduction to User Task 2.0 Macro

D-2 Oracle BPEL Process Manager Developer’s Guide

Introduction to User Task 2.0 Macro
The user task 2.0 macro supports user tasks from release 2.0. The user task 2.0 macro is
available for backward compatibility and is replaced in this release. See Chapter 16,
"Oracle BPEL Process Manager Workflow Services" to learn about the new system for
handling user tasks.

BPEL processes compose multiple services into one process flow. There are frequently
tasks in that flow that require user input. For example:

■ A customer fills out a form

■ A loan offer approves an application

■ An error appears that requires a human decision to resolve

This appendix discusses the tools available for adding user tasks to a BPEL process, as
well as designing interfaces to collect data from users.

BPEL User Task Use Case
This appendix uses an example of a loan officer reviewing a loan application and then
approving or denying it.

The TaskManager Service
Oracle BPEL Process Manager provides a TaskManager service to help model user
interactions with the BPEL process. The asynchronous TaskManager service has a
WSDL interface so that a BPEL process can initiate a user task by calling the
TaskManager, and receive a response, just as with any other Web service. The
TaskManager has a Java Worklist API that you can use to build graphical user interface
applications that show users which information is needed and return user input to the
TaskManager (and then on to the BPEL process). The WSDL interface also allows the
BPEL process to update a task in process, for example, to assign it to a different user if
the first user is unavailable. Figure D–1 provides an overview.

See Also: The following samples:

■ Oracle_
Home\integration\orabpel\samples\tutorials\110.Us
erTasks (for JDeveloper BPEL Designer)

■ C:\orabpel\samples\tutorials\110.UserTasks (for
Eclipse BPEL Designer)

User Task 2.0 Macro D-3

Figure D–1 TaskManager Service

A task document includes all information about a task. The task document in wrapped
in a taskMessage, and all inbound and outbound operations use the same taskMessage
to exchange information about the task. Figure D–2 provides an overview.

Custom
Web

Application

TaskManager
(Service)

WSDL
Interface

BPEL Process

Worklist
Page

<JSP>listTasksByAssignee
(assignee)

Worklist Java API

Display
Task

<JSP>lookupTask
(taskId)

Complete
Task

<JSP>completeTask
(taskId)

initiateTask
(task)

onTaskResult
(task)

<invoke>

<receive>

Minutes, hours
or days

<receive>

<invoke>

The TaskManager Service

D-4 Oracle BPEL Process Manager Developer’s Guide

Figure D–2 taskMessage

Task.xsd at
http://localhost:9700/orabpel/default/TaskManager/Task.xsd
is a sample task document.

 <xs:element name="task">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="taskId" type="xs:string" minOccurs="0"/>
 <xs:element name="title" type="xs:string" minOccurs="0"/>
 <xs:element name="creationDate" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="creator" type="xs:string" minOccurs="0"/>
 <xs:element name="modifyDate" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="modifier" type="xs:string" minOccurs="0"/>
 <xs:element name="assignee" type="xs:string" minOccurs="0"/>
 <xs:element name="status" minOccurs="0">
 <xs:simpleType>
 <xs:restriction base="xs:string">

User Task 2.0 Macro D-5

 <xs:enumeration value="active"/>
 <xs:enumeration value="completed"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="expired" type="xs:boolean" minOccurs="0"/>
 <xs:element name="expirationDate" type="xs:dateTime" minOccurs="0"/>
 <xs:element name="duration" type="xs:duration" minOccurs="0"/>
 <xs:element name="priority" type="xs:int" minOccurs="0"/>
 <xs:element name="template" type="xs:string" minOccurs="0"/>
 <xs:element name="customKey" type="xs:string" minOccurs="0"/>
 <xs:element name="conclusion" type="xs:string" minOccurs="0"/>
 <xs:element name="attachment" type="xs:anyType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

Table D–1 describes the fields in the task document.

Table D–1 Task Document Fields

Field Description

taskId(string) ID used to identify a task; automatically set by the TaskManager
service when the task is created.

See Also: customKey (string)

title(string) Typically used when you are presented with a list of the tasks
you need to complete, for example, Approval for order
#223.

creationDate
(dateTime)

Automatically set by the TaskManager service when the task is
created.

creator (string) ID of the application, system, or (sometimes) user initiating the
task; typically used by the graphical user interface to partition
the complete worklist into categories. When the BPEL designer
(Eclipse BPEL Designer or JDeveloper BPEL Designer) is used to
integrate the TaskManager service into a process, it sets this
value to the name of the process initiating the task.

modifyDate (dateTime) Managed by the TaskManager service; defines when the task
was last modified.

modifier (string) ID of the user or role performing the task update or completion
operation. The semantics of the ID are owned by the application.

assignee (string) ID of the user, role, or group responsible for completing the task.
The semantics of the ID are opaque to both Oracle BPEL Process
Manager and the TaskManager service: the BPEL process sets
the assignee ID, and the graphical user interface queries the list
of tasks, passing in the ID.

status (active |
completed)

Managed by the TaskManager service; equal to active or
completed.

expired (boolean) Managed by the TaskManager service; indicates whether or not
the task has expired.

expirationDate
(dateTime)

Optional; defines when the task expires.

See Also: duration (duration)

duration (duration) Optional; the duration after which the task expires. When both
an expirationDate and a duration are provided, the
expirationDate prevails.

The TaskManager Service

D-6 Oracle BPEL Process Manager Developer’s Guide

Integrating the TaskManager Service into a BPEL Process
The general steps for integrating the TaskManager service into a BPEL process are:

1. Define a partner link for the TaskManager service.

2. Declare and initialize the task document.

3. Invoke the initiateTask operation of the TaskManager service just like any
other standard Web service, using an invoke activity.

4. Wait for the onTaskResult callback from the TaskManager service, using a
receive activity.

5. Read the updated task document from the callback message.

Defining a Partner Link for the TaskManager Service
You need a partner link in your process to indicate that you are calling the
TaskManager service from your BPEL process (just as for any other Web service). The
WSDL file for the TaskManager service can be found on your local Oracle BPEL
Process Manager installation at this location:

http://localhost:9700/orabpel/default/TaskManager/TaskManager.wsdl

The outcome of adding the partner link is as illustrated in the TaskSample process
referenced in the See Also note on page D-2. The deployment descriptor bpel.xml
file references the TaskManager service WSDL file, as shown below.

<properties id="reviewManager">
 <property name="wsdlLocation">
 http://localhost:9700/orabpel/default/TaskManager/TaskManager?wsdl
 </property>
</properties>

The BPEL process definition in the TaskSample.bpel file uses this property to
define a partner link for the TaskManager.

priority (int) Optional; an integer marking the priority of the task. The
semantics are left to the BPEL process and graphical user
interface application.

customKey (string) Optional; an application-specific key. The BPEL process and
graphical user interface application can use either taskId or
customKey when looking up a specific task.

conclusion (string) Optional; an application-specific field used to tell the BPEL
process how the task was completed; for example, Approved,
Refused, or Canceled. A common pattern in the BPEL process
is that the step after the completion of the task is a switch
activity that keys off the conclusion field. Note that this kind of
information can also be passed through the attachment field.

attachment (anyType) Optional; application-specific data of any type, for any purpose
of the application.

Note: Correlation and callback address information is not in the
taskMessage, but instead is in a WS-Addressing header.

Table D–1 (Cont.) Task Document Fields

Field Description

User Task 2.0 Macro D-7

xmlns:task="http://services.oracle.com/bpel/task"
.
<partnerLink name="reviewManager"
 partnerLinkType="task:TaskManager"
 partnerRole="TaskManager"
 myRole="TaskManagerRequester"/>

Declare and Initialize the Task Document
Before the TaskManager service can be invoked, a taskMessage must be constructed.
The following BPEL code from TaskSample.bpel shows how to construct this
message using the BPEL assign activity.

<scope name="review" variableAccessSerializable="no">
 <variables>
 <variable name="reviewTask"
 element="task:task"/>
...
</variables>
<sequence>
...
<assign name="configureTask">
 <!-- Assign 'title' in task document -->
 <copy>
 <from variable="input" part="payload"
 query="/stockReviewSheet/symbol"/>
 <to variable="reviewTask" query="/task/title"/>
 </copy>
 <!-- Assign 'assignee' in task document -->
 <copy>
 <from expression="string('jsmith@finance.com')"/>
 <to variable="reviewTask" query="/task/assignee"/>
 </copy>
 <!-- ... See the full source for the other field settings -->
 <!-- Assign 'attachment' in task document -->
 <copy>
 <from variable="input" part="payload"/>
 <to variable="reviewTask" query="/task/attachment"/>
 </copy>
</assign>

Initiate the Task
The next step in your BPEL process is to initiate the TaskManager by invoking its
initiateTask operation, passing the data defined above. Specifically, you pass a
taskMessage that you set up as a wrapper around the task document.

<scope name="reviewUserInteraction" variableAccessSerializable="no">
 <variables>
 <variable name="taskRequest" messageType="task:taskMessage"/>
 ...
 </variables>
 <sequence>
 <!-- Assign task document to taskMessage -->
 <assign name="setPayload">
 <copy>
 <from variable="reviewTask"/>
 <to variable="taskRequest" part="payload"/>
 </copy>
 </assign>
 <!-- Initiate task -->

The TaskManager Service

D-8 Oracle BPEL Process Manager Developer’s Guide

 <invoke name="initiateTask"
 partnerLink="review"
 portType="task:TaskManager"
 operation="initiateTask"
 inputVariable="taskRequest"/>
 ...
 </sequence>
</scope>

This creates the task and assigns it to the assignee specified in the task document. The
task is available to you through the Worklist Java API.

Task Completion
At this point, the task is created and assigned to the assignee specified in the task
document and is available through the Worklist Java API.

The BPEL process waits for the TaskManager service to call it back. The callback passes
back an updated taskMessage, indicating that the task has been completed or has
expired.

<variable name=" taskResponse"
 messageType="task:taskMessage"/>
 ...
<!-- Receive the outcome of the task -->
<receive name="receiveTaskResult"
 partnerLink="review"
 portType="task:TaskManagerCallback"
 operation="onTaskResult"
 variable="taskResponse"/>
<!-- Read task document from taskMessage -->
<assign name="readPayload">
 <copy>
 <from variable="taskResponse" part="payload"/>
 <to variable="reviewTask"/>
 </copy>
</assign>

The receive activity shown above does not complete until a callback is received from
the TaskManager service. As with all asynchronous activities, the BPEL process is
dehydrated reliably during this time, and rehydrated and executed when the task
completion (or expiration) event occurs.

The type for the TaskManager service response data is the same taskMessage message
type that was used for the initiate message. However, because the type for the
attachment field is an XML schema anyType and is application-defined, the
attachment data returned can be any type and specifically does not need to be the
same type as the initiate message attachment.

Typically, the conclusion field contains information that tells the BPEL process how the
task was completed (for example, Approved, Rejected, or Canceled). This kind of
information can also be passed through the attachment; it is up to the programmer to
pass task data in the preferred manner.

Using Eclipse BPEL Designer to Integrate the TaskManager Service
This section reviews how to integrate the TaskManager service into a BPEL process
using Eclipse BPEL Designer (based on version 0.6). It assumes you are already
familiar with the basics for creating an asynchronous process, as discussed in Tutorial

User Task 2.0 Macro D-9

2, Developing a Credit Flow BPEL Process at
http://www.oracle.com/technology/bpel.

Eclipse BPEL Designer simplifies matters considerably for you by generating much of
the code described earlier in this chapter. This enables you to drag a user task from the
BPEL Palette into your process. The following steps describe how to add a user task
named review to a new asynchronous BPEL process (called TestTask) created in
Eclipse BPEL Designer; in actual practice, of course, your starting point is a process
that you are developing.

1. In the Process Map view of the BPEL file, drag a user task from the BPEL Palette
(specifically, the last item in the More Activities list) to the transition arrow
between the initiate (client) receive activity and the onResult (client) invoke
callback activity.

2. In the User Task window that appears, enter review as the task name and click
Done.

A scope activity named review appears in Eclipse BPEL Designer. This scope is
the currently selected element, so the BPEL Inspector displays information about
it. For example, it defines an XML variable named reviewTask (which is the task
document).

3. Expand the newly created scope by clicking the + icon to the left of it in the
Process Map view. Within the expanded scope, you see an assign activity (named
configureTask) and a task that can be expanded further.

The configureTask assignment initializes the task document; however, before
going to that level, you do one more expansion, to get an overview of the process.

4. Expand the task (reviewUserInteraction) by clicking its + icon and notice that it
expands into a scope containing the invoke and receive activities for the task,
along with two assign activities. Click the label along the left edge of this scope.
This selects the scope and enables you to see its contents in the BPEL Inspector.

Note: All names beginning with review in this example generally
begin with the task name you specify in the User Task window.

The TaskManager Service

D-10 Oracle BPEL Process Manager Developer’s Guide

5. Scroll back in the Process Map if necessary to the outer scope (named review) and
click the configureTask assignment within it. Listed under Copy Rules in the
BPEL Inspector are the fields of the reviewTask task document.

You can view the Copy Rule window for each field either by selecting Edit Rule in
its drop-down list or by clicking the field name (which is a link). For every field
except the last one, attachment, the Copy Rule window shows an assignment
being made to that field. In actual practice, you change the values being assigned
to the fields title through priority as appropriate, and optionally pass custom data
to the task through the attachment field (as in the next step).

6. To pass data to the task, click Edit Rule in the drop-down list for the attachment
field in the BPEL Inspector (or click attachment) and complete the From part of
the Copy Rule window (for example, to pass the payload part of the input variable
as described in "Declare and Initialize the Task Document" on page D-7). If you do
not want to pass anything in the attachment field, you must click Delete Element
in the field's drop-down list (or the process does not compile because of the
incomplete assignment).

User Task 2.0 Macro D-11

7. Click Done to complete the configuration of the attachment copy rule.

8. Click the next assign activity in the Process Map: setPayload, inside the
reviewUserInteraction scope. You see that only payload is listed under Copy
Rules. If you look at the Copy Rule window, reviewTask (the task document from
the outer scope) is assigned to the payload part of the taskRequest variable as the
final step before initiating the task.

9. Click the final assign activity (readPayload).

10. Explore this activity in the BPEL Inspector to see that this is where the task data
returned in a taskMessage (that is, in the payload part of the taskResponse
variable) is read and stored in the variable reviewTask.

Note that while the above may seem complex at first, it is due to the fact that the
TaskManager service is a complex service. The Designer User Task Palette entry is
merely a preconfigured template that encapsulates the normal patterns for use of the
TaskManager service in a BPEL flow. However, Eclipse BPEL Designer continues to

The TaskManager Service

D-12 Oracle BPEL Process Manager Developer’s Guide

improve as a means of integrating the TaskManager service into a BPEL process. You
also have the option of working directly in the BPEL source code.

Creating a User Interface for the Task
On the other side of a TaskManager service is typically a user interface in which the
assigned users can view, update, and complete tasks. Figure D–3 provides an
overview.

Figure D–3 TaskManager and a Custom Web Application

The typical steps for accessing task information from the user side are:

1. A graphical user interface uses the Java Worklist API to list the tasks assigned to a
user or role.

2. The user selects a task and reviews its detail information.

3. The user updates any editable data associated with the task and saves or
completes the task.

List the Assigned Tasks
Using the Java Worklist API to the TaskManager service from the client perspective
involves the following high-level steps. The code shown in this section is taken from
C:\orabpel\samples\tutorials\110.UserTasks\TaskSampleUI\listTask
s.jsp.

1. Use the com.oracle.bpel.client.Locator class to return a worklist service
handle (an IWorklistService).

<%@page import="com.oracle.bpel.client.Locator" %>
<%@page import="com.oracle.bpel.services.task.IWorklistService" %>
 ...
 // Obtain a reference to BPEL domain ‘default’ using password ‘bpel’

Custom Web Application

TaskManager
(Service)

WSDL
Interface

Worklist
Page

<JSP>listTask
(assignee)

Worklist Java API

Display
Task

<JSP>lookupTask
(taskId)

Complete
Task

<JSP>completeTask
(taskId)

initiateTask
(task)

onTaskResult
(task)

User Task 2.0 Macro D-13

 Locator locator=new Locator("default", "bpel");
 IWorklistService worklist =
 (IWorklistService)
 locator.lookupService(IWorklistService.SERVICE_NAME);

2. Use the com.oracle.bpel.services.task.IWorklistService interface to
fetch com.oracle.bpel.services.task.ITask objects, manipulate them,
complete them, and so on.

<%@page import="com.oracle.bpel.services.task.ITask" %>
 ...
 ITask[] tasks=
 worklist.listTasksByAssignee("jsmith@finance.com");
 ...

You can fetch tasks by other criteria as well. For example, you can look up a task by its
unique taskId assigned by the TaskManager service or based on a specified creator
attribute (which is programmer-defined). You can also build an arbitrary search
criterion using the com.oracle.bpel.client.util.WhereCondition utility
class (for example, to fetch all the expired tasks assigned to a particular user). For more
information, including full documentation on the interfaces for the classes used in the
code in this section, see Oracle BPEL Process Manager API Javadocs (located at
C:\orabpel\docs\apidocs\index.html).

The code below shows how to iterate through the list of tasks in the JSP page and, for
each task, display some basic descriptive information and a link that displays a details
page (displayTask.jsp) for the task.

<h1>My Custom Task List Page</h1>
<table border="1">
<tr>
 <th>Title</th>
 <th>Due Date</th>
 <th>Priority</th>
</tr>
<%
 // Iterate through the list of tasks
 for (int i=0; i < tasks.length; i ++)
 {
 ITask thisTask=tasks[i];
 // We are interested in tasks assigned to "jsmith@finance.com"
 // and generated by the TaskSample BPEL process. Often the BPEL
 // process initiating a task will assign its name to the
 // creator field of the task document. This is at least the
 // case with the TaskSample BPEL process.
 if (! "TaskSample".equals(thisTask.getCreator()))
 {
 // This task has been generated by another BPEL process
 // and should therefore not be in the list.
 continue;
 }
 // Read the title assigned to the task. The title is to
 // a task what a subject would be to an email.
 String title=thisTask.getTitle();

 // Get the unique ID/key associated with this task.
 // This is passed from page to page to identify the
 // task the user is reviewing and completing.
 String taskId=thisTask.getTaskId();

The TaskManager Service

D-14 Oracle BPEL Process Manager Developer’s Guide

 // Read the expiration date assigned to the task.
 Date expiration=null;
 if (thisTask.getExpirationDate() != null)
 expiration=thisTask.getExpirationDate().getTime();
 // Read priority associated with the task
 int priority=thisTask.getPriority();
%>
 <tr>
 <td>
 <a href="displayTask.jsp?taskId=<%= taskId %>">
 <%= title %>
 </td>
 <td>
 <%= expiration %>
 </td>
 <td>
 <%= priority %>
 </td>
 </tr>
<%
 }
%>
</table>

Display the Payload Data for a Task
The displayTask.jsp page invoked from the hyperlink in the code above gets
passed a taskId (again, a unique string identifier generated by the TaskManager
service) and uses the same Locator and IWorklistService objects as above to
fetch the task associated with that taskId. Then, to manipulate the payload data
associated with a task, it uses the facade capability, which provides a thin Java
interface on top of arbitrary XML data. Note that facades are not at all like JAXB-style
bindings because they do not attempt to fully map XML to Java. They merely provide
a Java envelope for XML data that is then accessed through JavaBeans-style getter and
setter functions. This enables facades to avoid all of the problems associated with
JAXB bindings as schemas get complex.

The facade construct is described in more detail in "XML Facade" on page 10-3;
however, at a very high level, the basic steps for working with the XML facade are as
follows:

1. Use the schemac Ant task (or command-line tool) in your build.xml script to
generate facade classes for XML schema types. For example:

<schemac input="${basedir}/TaskSample.wsdl"
 out="${basedir}/TaskSampleUI/WEB-INF/classes"/>

This command generates the facade classes for the XML schema types described in
TaskSample.wsdl, namely:

<element name="stockReviewSheet" type="finance:StockReviewSheetType" />
<complexType name="StockReviewSheetType">
 <sequence>
 <element name="symbol" type="string" />
 <element name="targetPrice" type="float" />
 <element name="currentPrice" type="float" />
 <element name="action" type="string" />
 <element name="quantity" type="int" />
 </sequence>
</complexType>

User Task 2.0 Macro D-15

The facade classes generated include a factory for creating new instances of the
StockReviewSheet element and then getter and setter methods for
manipulating the data fields within the instances. If you want to review the exact
interfaces exposed by the generated classes, you can either view the generated
Java classes or create Javadocs for them by using the -j option to the schemac
command.

2. Within your code, you can use the generated classes to manipulate instances of
XML data types through a simple Java interface. The code below from
C:\orabpel\samples\tutorials\110.UserTasks\
TaskSampleUI\displayTask.jsp uses the Locator and
IWorklistService objects to fetch a particular task by taskId. It then gets the
payload of the task, which is a W3C DOM element type, and uses that and the
facade StockReviewSheetFactory class to instantiate a StockReviewSheet
facade instance. Finally, the facade class getter and setter methods are used to
fetch appropriate data fields from the payload and display them in the JSP page.

<%@ page import="com.otn.samples.finance.StockReviewSheet" %>
<%@ page import="com.otn.samples.finance.StockReviewSheetFactory" %>...

Locator locator=new Locator("default", "bpel");

IWorklistService worklist=(IWorklistService)
 locator.lookupService(IWorklistService.SERVICE_NAME);

ITask task=worklist.lookupTask(taskId);

// Get a reference to the XML StockReviewSheet document attached to the
// task. If you look at the implementation of the TaskSample BPEL
// process, you will notice that a StockReviewSheet element is assigned
// to the task as an attachment.
Element rsElement=(Element) task.getAttachment();

StockReviewSheet srs =
 StockReviewSheetFactory.createFacade(rsElement);
// Use the friendly bean interface of the XML facade to access the data
// contained in the XML attachment.
String symbol=srs.getSymbol();
float targetPrice=srs.getTargetPrice();
float currentPrice=srs.getCurrentPrice();
...
<tr>
 <td>Symbol</td>
 <td><input type="text" name="Symbol"
 value="<%= symbol %>"/></td>
 <td>(String)</td>
</tr>
...

The displayTask JSP page provides an HTML form that enables the user to fill
in the action and quantity fields for the stock review sheet, as well as to edit any of
its other fields. When the form is submitted, it passes these values, along with the
taskId, to completeTask.jsp.

Update the Payload Data and Complete the Task
The final step is to use the generated facade classes to create the appropriate
attachment data element (the task document) to be returned to the task and then pass

Additional Capabilities of the TaskManager Service

D-16 Oracle BPEL Process Manager Developer’s Guide

it to the TaskManager service along with an indication that the task has been
completed.

In this example, this is done in completeTask.jsp, which creates a new instance of
the StockReviewSheet element and fills it in with the form data passed to it. It then
looks up the task by taskId, as before. What is new about this code from
completeTask.jsp is shown below. It sets some fields of the task object (including
the updated attachment) and then informs the worklist service that the task has been
completed.

StockReviewSheet srs=StockReviewSheetFactory.createFacade();

// Populate symbol from data submitted as part of the post
srs.setSymbol(request.getParameter("symbol"));
..
ITask task=worklist.lookupTask(taskId);

task.setAttachment(srs.getRootElement());

// Conclusion is user-defined – here it is “buy” or “sell”
task.setConclusion(strAction);

worklist.completeTask(task);

out.println("This task has been successfully completed.");

At this point, the TaskManager service calls back asynchronously to the process that is
waiting for this task, passing it the updated task attributes and attachment data.

Additional Capabilities of the TaskManager Service
This final section looks at some additional capabilities related to working with the
TaskManager service: expirations and timeouts, notification to the assignee, task
reassignment, and task assignment to groups (and role resolution).

Enabling Expiration/Timeouts for Tasks
The TaskManager service has a built-in expiration and timeout capability. You can
specify the timeout period for a task as a period of time (duration field) or a specific
point in time (expirationDate field). In either case, when the specified time is
reached and the task has not yet been completed, an expiration event is sent as a BPEL
event to the process that is waiting for completion of that TaskManager service. The
waiting BPEL process then uses a BPEL event handler. At that point, the process can
take any desired action (including sending a reminder e-mail, reassigning the task to
someone else, canceling the task, and so on).

The duration and expirationDate fields are specified as having the XML schema
types duration and dateTime, respectively. For example, a duration of one hour is
specified as PT1H (meaning a period of time of 1 hour). In addition to H for hours, you
can also use M for minutes, S for seconds, and so on. For more information on the
format of the duration and dateTime data types, see the XML schema specification:

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration

and

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#dateTime

First, in the BPEL source you specify a duration or expiration date, as follows:

User Task 2.0 Macro D-17

<!-- Assign 'duration' in task document -->
<copy>
 <from expression="string('PT5M')"/>
 <to variable="reviewTask" query="/task/duration"/>
</copy>

After initiating the task, do the following:

1. Wrap the TaskManager service receive activity in a scope.

2. Add an event handler to the scope to handle onTaskExpired events.

3. Within that event handler, do whatever you like in response to the expiration
event. The code below reassigns the task to someone else and sets a new
expiration time of one more hour.

<invoke name="initiateTask" partnerLink="review" portType="task:TaskManager"
operation="initiateTask" inputVariable="taskRequest"/>

<!-- Receive the outcome of the task -->
<scope name="reviewTask">
 <eventHandlers>
 <onMessage partnerLink="review" portType="task:TaskManagerCallback"
 operation="onTaskExpired" variable="taskRequest">
 <sequence>
 <assign name="reassignTask">
 <!-- Assign NEW 'assignee' in task document -->
 <copy>
 <from expression= "string('director@oracle.com')"/>
 <to variable="taskRequest" part="payload"
 query="/task/assignee"/>
 </copy>
 <!-- Assign NEW 'duration' in task document -->
 <copy>
 <from expression="string('PT1H')"/>
 <to variable="taskRequest" part="payload"
 query="/task/duration"/>
 </copy>
 <copy>
 <from expression="string('Escalated')"/>
 <to variable="taskRequest" part="payload"
 query="/task/status"/>
 </copy>
 </assign>
 <invoke name="reassign" partnerLink="review" portType="task:TaskManager"
 operation="updateTask" inputVariable="taskRequest"/>
 </sequence>
 </onMessage>
 </eventHandlers>
 <receive name="receiveTaskResult" partnerLink="review"
 portType="task:TaskManagerCallback" operation="onTaskResult"
 variable="taskResponse"/>
</scope>

If you want to run the entire example, see the from the TimeOffRequestFlow
sample available in c:\orabpel\samples\demos\TimeOffRequestDemo.

Sending Notifications
It is common to send a notification message to a user when a task is assigned to that
user (or when the timeout duration is reached, when the task is reassigned, or in other

Summary

D-18 Oracle BPEL Process Manager Developer’s Guide

situations). This notification can be done in BPEL at the same time that the
TaskManager service is initiated; therefore, anything that can be done in BPEL
(invoking a Web service, sending an e-mail message or a JMS message, executing some
Java code, and so on) can be done to notify a user of a task-related event.

The TimeOffRequestFlow sample includes a code example of using the Oracle BPEL
Process Manager Mail Service to send an e-mail notification to a user when a time-off
request approval task has been assigned to that user. In this case, the e-mail includes
an XML document attachment describing the time-off request and contains a link to a
JSP page where the request can be approved or rejected.

Reassigning Tasks
Reassigning a task is as simple as changing the assignee field in the task document and
then invoking the updateTask operation on the TaskManager service. A code
example of this is shown in the "Enabling Expiration/Timeouts for Tasks" on
page D-16. If the application requires that once a task is reassigned it cannot be
completed by the original assignee, then the user interface that completes a task must
first fetch the task document and check that the assignee has not changed before
completing a task.

Assigning Tasks to Groups and Resolving Roles
The TaskManager service has a very simple construct for the assignee attribute of a
task: it is a string identifier that is not interpreted by the TaskManager service to have
any special meaning. Although simple, this construct is powerful and flexible. In
particular, it allows for role resolution and the concept of group worklists to be
implemented in a straightforward manner.

When a task is assigned to a group, this typically means that several users can see the
task in their worklists. When one of them selects the task on which to work, it
disappears from the worklists of the other users in the group. Additionally, it is
common to set up a timeout period such that if the individual working on the task
does not complete it within a specified time, it may revert back to group assignment
and then reappear on the group worklists.

The most common way to implement this use case with the TaskManager service is as
follows:

1. The task is assigned to the group identifier.

2. The worklist user interfaces for members of the group show all tasks assigned to
the group.

3. When a user selects a task on which to work, it is checked to ensure it has not
already been reassigned. If not, it is reassigned to the individual’s user ID.

4. Optionally, notifications and timeouts can be used effectively here.

Role resolution works in much the same way. Because special interpretation is not
given to the assignee for a task, the assignee can actually be a role, and resolution can
happen on the user interface side. Alternatively, it is fairly simple to integrate a BPEL
process with directory services such as LDAP and perform dynamic role resolution at
the time the task is created.

Summary
BPEL includes a TaskManager service that acts as an intermediary between BPEL and
a user interface for performing user tasks. This appendix discusses how to create a

User Task 2.0 Macro D-19

partner link to the TaskManager service, and how to build a JSP user interface to view
task information and complete the task.

Summary

D-20 Oracle BPEL Process Manager Developer’s Guide

Deployment Descriptor Properties E-1

E
Deployment Descriptor Properties

This appendix discusses deployment descriptor preference properties and deployment
descriptor configuration properties.

This appendix contains the following topics:

■ Deployment Descriptor Preference Properties

■ Deployment Descriptor Configuration Properties

■ Summary

Deployment Descriptor Preference Properties
Preferences are simple name-value pair properties that are defined in the deployment
descriptor of a BPEL process, and which are accessed at run time by the BPEL process.
You can change the value of a preference from Oracle BPEL Console at run time,
without having to redeploy the BPEL process.

Preferences enable BPEL process designers to externalize literal values from a process,
enabling them to be altered without having to redeploy the entire BPEL process.

For example, if you design a process that automatically rejects expense requests that
exceed 1000 dollars, and business requirements later change so that the maximum
amount is increased to 1500 dollars, then you normally need to edit the process
definition and redeploy. By defining a preference for the maximum amount in the
deployment descriptor, the change can be performed at run time, without redeploying
the process.

Defining a Preference Property
You can define preference values at run time from JDeveloper BPEL Designer. Click
the Deployment Descriptor Properties icon shown in Figure E–1. This icon is located
just above and to the left of the Diagram View.

Figure E–1 Deployment Descriptor Properties Icon

Deployment Descriptor Preference Properties

E-2 Oracle BPEL Process Manager Developer’s Guide

In the Deployment Descriptor Properties window, click the Preferences tab, as shown
in Figure E–2.

Figure E–2 Deployment Descriptor Preference Properties in Oracle BPEL Console

Click Create and enter a preference name. Edit the value in the Property Value field
and click OK. The change takes effect immediately. Preferences you create in this way
are reflected in bpel.xml, inside the preferences tag, as follows:

...
<preferences>
 <property name="MAX_AMOUNT">1000</property>
 <property name="DEFAULT_COSTCENTER">US23</property>
</preferences>
...

Updating a Preference at Run Time
You can update preference values at run time in Oracle BPEL Console, as shown in
Figure E–3. Select the process, then select the Descriptor tab to display the deployment
descriptor for the process, including any preferences. Update the preference value, and
click Update descriptor. The change takes effect immediately.

Deployment Descriptor Preference Properties

Deployment Descriptor Properties E-3

Figure E–3 Updating BPEL Process Preferences at Run Time

Getting the Value of a Preference within a BPEL Process
The value of a preference can be read by a BPEL process using the XPath extension
function ora:getPreference(String preferenceName). This function can be
used as part of a simple assign statement, used in condition expressions, or used as
part of a more complex XPath expression.

Encrypting a Preference Value
You can encrypt the contents of a preference property. Encryption uses DES with the
sunJCE security provider. The contents do not appear encrypted in JDeveloper BPEL
Designer. The contents are encrypted at deployment only. The Encryption field (see
Figure E–2 on page E-2) provides the following options:

■ No Need to Specify—Do not encrypt the contents.

■ Plain Text—The contents remain in plain text.

■ Encrypt—The contents are encrypted.

The property is also shown as a password field in the Configuration tab of the
deployment descriptor.

The following example shows the XML code without encryption set and then with
encryption set.

Without encryption set:

...
<preferences>
 <property name="secret">mySecretValue</property>
</preferences>
...

Or the XML without encryption can look as follows, although properties are stored as
plaintext by default, so plaintext need not be specified explicitly.

Deployment Descriptor Configuration Properties

E-4 Oracle BPEL Process Manager Developer’s Guide

...
<preferences>
 <property name="secret" encryption="plaintext">mySecretValue</property>
</preferences>
...

To tell the compiler and Oracle BPEL Server to encrypt a property, the XML looks like
this:

...
<preferences>
 <property name="secret" encryption="encrypt">mySecretValue</property>
</preferences>
...

After the BPEL project is compiled, the compiler updates the copy of the bpel.xml
file in the compiled JAR file (not the copy in the JDev project), so that the XML looks like
this:

...
<preferences>
 <property name="secret" encryption="encrypted">ZAv9lfntAgy=</property>
</preferences>
...

Encryption works for any property tag in the descriptor, not just those in the
preferences section, in case you want to encrypt properties in other sections.

Use Case for Preference Properties
The Payment Processor demo (or PayDemo) demonstrates the use of a preference
property.

Deployment Descriptor Configuration Properties
Configuration properties are specific properties used by the server, Oracle BPEL
Console, or both. In Oracle BPEL Console, for example, the configuration properties
are used to display a description of the process and default data in the test process
window.

Defining a Configuration Property
You can define configuration properties at run time from JDeveloper BPEL Designer.
Click the Deployment Descriptor Properties icon, located just above and to the left of
the diagram view. (See Figure E–1 on page E-1.) In the Deployment Descriptor
Properties window, click the Configurations tab, as shown in Figure E–4.

Note: Values of preferences can still be inferred by inspecting the
audit trails of instances that contain values derived from the
preference.

See Also: The Payment Processor (PayDemo) demo at Oracle_
Home\integration\orabpel\samples\demos\PaymentProcessor

Deployment Descriptor Configuration Properties

Deployment Descriptor Properties E-5

Figure E–4 Deployment Descriptor Configuration Properties in the Oracle BPEL Console

Click Create and enter a configuration name. Edit the value in the Property Value
field and click OK. The change takes effect immediately. Preferences you create in this
way are reflected in bpel.xml.

See "Encrypting a Preference Value" on page E-3 for information about encrypting the
contents of configuration properties.

Table E–1 lists the property names of the configurations deployment descriptor.
For each configuration property, a description is provided, as well as the expected
behavior of the server when it is changed.

Deployment Descriptor Configuration Properties

E-6 Oracle BPEL Process Manager Developer’s Guide

Table E–1 Configuration Properties for the configurations Deployment Descriptor

Property Name Description On Change

completionPersistLevel Sets the portion of the instance information that you want
to save after the instance is completed. The default value is
all, meaning the instance is saved in both cube_
instance and cube_scope tables. The other value is
instanceHeader, meaning only the metadata of the
instances are saved in the cube_instance table. Note that
this property can only be set if the
inMemoryOptimization property is set to True.

NA

completionPersistPolicy Configures how the instance data is saved. The default
value is on, meaning the completed instance is saved
normally. If this value is set to deferred, then the
completed instance is saved, but with a different thread and
in another transaction. If this value is set to be faulted, then
only the faulted instances are saved. If this value is set to
off, then no instances of this process are saved.

NA

defaultInput The XML document that you want to use as input to test the
process from Oracle BPEL Console.

Takes effect
immediately

initializeVariables Default value is True. If set to False, Oracle BPEL Console
does not initialize the variables based on to-spec queries.

NA

inMemoryOptimization Default value is False. This property can only be set to
True if it does not have dehydration points. Activities like
wait, receive, onMessage, and onAlarm create dehydration
points in the process. If this property is set to True, Oracle
BPEL Server tries to do inMemory optimization on the
instances of this process on to-spec queries.

NA

loadSchema Default value is True. If set to False, XML schemas are
not loaded and Oracle BPEL Console becomes typeless.

NA

noAlterWSDL Default value is False. If set to True, the compiler does
not try to modify the process WSDL to add binding and
service information.

NA

optimizeVariableCopy Default value is True. If set to False, Oracle BPEL Server
does not enable copy-on-write for an assign copy.

NA

relaxTypeChecking Default value is False. If set to True, the compiler does
not check type compatibility with an assign activity.

NA

relaxXPathQName Default value is False. If set to True, the compiler throws
exceptions for unqualified steps in the query. For example,
where the correct form must be:
query="/ns1:payload/ns1:name", the following form
passes compilation, if this flag is turned on:
query="/payload/name".

NA

sensorActionLocation Location of the sensor action XML file that is used by Oracle
BPEL Process Manager. The sensor action XML file
configures the action rule for the events.

NA

sensorLocation Location of the sensor XML file. The sensor XML file
defines the list of sensors into which Oracle BPEL Process
Manager logs events.

NA

testIntroduction Introduction text that appears in the test console. Takes effect
immediately

Deployment Descriptor Configuration Properties

Deployment Descriptor Properties E-7

Table E–2 lists the configuration properties of sections of the partnerLinkBinding
deployment descriptor. For each configuration property, a description is given as well
as the expected behavior of Oracle BPEL Server when it is changed.

transaction When set to participate, the process produces a fault
that is not handled by fault handlers, which calls the
transaction to be rolled back.

Takes effect
immediately

serviceLevelAgreement Service Level Agreement (Process Completion Time) -
Threshold for a commitment within which a process is
completed for a specified time period. Value is an XML
duration.

NA

xpathValidation Default value is True. If set to False, the compiler does
not validate the XPath queries.

NA

Table E–2 Configuration Properties for the partnerLinkBinding Deployment Descriptor

Property Name Description On Change

callbackBindings List of bindings that the compiler generates for the
callback portType. The default value is soap. You set
multiple bindings separated by commas, for example: jms,
soap. The first item is used as the preferred binding when
calling back.

Recompile (not
implemented)

correlation Default value is wsAddressing. If this is set to
correlationSet, this partner link is using the BPEL
correlationSet.

If this is the
process
partnerLink,
recompile (not
implemented)

contentType Sets special HTTP contentType. Example: text/xml Takes effect
immediately

httpPassword For HTTP username/password authentication Takes effect
immediately

httpUsername For HTTP username/password authentication Takes effect
immediately

keepAlive If the server permits keepAlive connections, then this
Boolean property can be turned on to take advantage of it.
Thus, connections to the same server are shared between
invocations.

Takes effect
immediately

location URL that overrides the location defined in the WSDL. For
SOAP over HTTP binding, this value overrides the
SOAPAddress.

Takes effect
immediately

nonBlockingInvoke Default value is False. When this is set to True, Oracle
BPEL Server spawns a separate thread to do the invocation
so that the invoke activity does not block the instance.

Takes effect
immediately

retryInterval Number of seconds that Oracle BPEL Server waits between
retries.

Takes effect
immediately

retryMaxCount Number of retries that Oracle BPEL Server attempts, if an
invoke fails because of network problems.

Takes effect
immediately

sendXSIType Some legacy RPC-style Web services require the xsi:type
to be set with every element in the input message. If this
value is set to True, Oracle BPEL Process Manager
populates the xsi:type of all the elements.

Takes effect
immediately

Table E–1 (Cont.) Configuration Properties for the configurations Deployment Descriptor

Property Name Description On Change

Summary

E-8 Oracle BPEL Process Manager Developer’s Guide

Summary
This appendix discusses deployment descriptor preference properties and deployment
descriptor configuration properties, and how to set them in JDeveloper BPEL
Designer.

serviceProperties -- Takes effect
immediately

timeout Number of seconds in which a SOAP call times out. A
remote fault is thrown if this happens.

Takes effect
immediately

wsdlLocation URL of the WSDL file that defines this partner link. This
property must be present. The BPEL compiler needs this to
validate the BEPL source. This can be an abstract WSDL in
that only the portTypes and their dependencies need to be
defined in the WSDL.

Recompile (not
implemented)

wsdlRuntimeLocation URL to the partner link WSDL. It is used on Oracle BPEL
Server, which means that the concrete WSDL with all the
service, port, and binding definitions is needed. This
property is optional and defaults to the wsdlLocation
property. This property also enables multiple URLs
separated by blanks (spaces, new lines, and tabs). Therefore,
Oracle BPEL Server tries sequentially if any URLs are not
available.

Clear WSDL cache
(not implemented)

Table E–2 (Cont.) Configuration Properties for the partnerLinkBinding Deployment Descriptor

Property Name Description On Change

Demo User Community F-1

F
Demo User Community

This appendix describes the demo user community for task assignments in Oracle
BPEL Process Manager.

This appendix contains the following topics:

■ Setting Up JAZN Demo Users

■ Summary

Setting Up JAZN Demo Users
Demo users are included with Oracle BPEL Process Manager. See "Demo Users and
Roles" on page F-1 for a list of users and roles seeded with the product.

Demo Users and Roles
An Oracle BPEL Process Manager demo community is defined under the default
realm jazn.com. It includes Oracle BPEL Process Manager system users default,
bpeladmin, guest and seventeen other Oracle BPEL Process Manager users, which
are shown in Table F–1. The default password is welcome.

See Also: "How-To: Configure Oracle’s JAAS Provider with OC4J" at
http://www.oracle.com/technology/tech/java/oc4j/htdocs
/how-to-security-JAAS.html

■ Chapter 16, "Oracle BPEL Process Manager Workflow Services"

■ Chapter 17, "Worklist Application"

Table F–1 Demo User Community

User
Common
Name (cn) Given Name

Middle
Name

Surname
(sn) Title Manager E-mail

1 achrist Agatha -- Christie Loan
Consultant

sfitzger user3@dlsun1313.u
s.oracle.com

2 cdickens Charles -- Dickens CEO -- user1@dlsun1313.u
s.oracle.com

3 cdoyle Conan -- Doyle Loan Agent 2 rsteven user4@dlsun1313.u
s.oracle.com

4 fkafka Frants -- Kafka Manager 1 ltolsoy user2@dlsun1313.u
s.oracle.com

5 istone Irving -- Stone Loan Agent 2 sfitzger user3@dlsun1313.u
s.oracle.com

Setting Up JAZN Demo Users

F-2 Oracle BPEL Process Manager Developer’s Guide

All users have the preferredLanguage property defined as en-US (U.S. English)
and the orclWorkflowNotificationPref property set to Mail.

Table F–2 and Table F–3 list the Oracle BPEL Process Manager roles and groups for the
users shown in Table F–1.

6 jausten Jane -- Austen Loan
Consultant

fkafka user3@dlsun1313.u
s.oracle.com

7 jcooper James -- Cooper Loan Agent 1 jstein user3@dlsun1313.u
s.oracle.com

8 jlondon Jack -- London Loan Agent 1 sfitzger user3@dlsun1313.u
s.oracle.com

9 jstein John -- Steinbeck Manager 2 wfaulk user2@dlsun1313.u
s.oracle.com

10 ltolsoy Leo -- Tolstoy Director wfaulk user1@dlsun1313.u
s.oracle.com

11 mmitch Margaret Munner
lyn

Mitchell Loan Analyst fkafka user3@dlsun1313.u
s.oracle.com

12 mtwain Mark -- Twain Loan Agent 2 jstein user3@dlsun1313.u
s.oracle.com

13 rsteven Robert Louis Stevenson Manager 3 jstein user4@dlsun1313.u
s.oracle.com

14 sfitzger Scott -- Fitzgerald Manager 1 wfaulk user2@dlsun1313.u
s.oracle.com

15 szweig Stefan -- Zweig Loan Analyst fkafka user3@dlsun1313.u
s.oracle.com

16 wfaulk William -- Faulkner Vice
President

cdickens user1@dlsun1313.u
s.oracle.com

17 wshake William -- Shakespeare Loan
Consultant

rsteven user4@dlsun1313.u
s.oracle.com

Table F–2 Oracle BPEL Process Manager Roles

Roles Direct Grantee Role Users in Role

BPMSystemAdmin -- bpeladmin

BPMWorkflowReassign BPMWorkflowAdmin wfaulk, sfitzger, jstein,
bpeladmin

BPMWorkflowSuspend BPMWorkflowAdmin wfaulk, sfitzger, jstein,
bpeladmin

BPMWorkflowViewHistory BPMWorkflowAdmin wfaulk, bpeladmin

BPMWorkflowAdmin BPMSystemAdmin bpeladmin

BPMAnalyst BPMWorkflowAdmin sfitzger, jstein, guest,
default, bpeladmin

DefaultBPMDomainAdmin BPMSystemAdmin default, bpeladmin

Table F–1 (Cont.) Demo User Community

User
Common
Name (cn) Given Name

Middle
Name

Surname
(sn) Title Manager E-mail

Setting Up JAZN Demo Users

Demo User Community F-3

As shown in Table F–3, the following users are not in any group or role: the CEO,
cdickens, and the director, ltolstoy.

The Oracle BPEL Process Manager demo declares the security PUBLIC role. This
role is implicitly granted to all registered Oracle BPEL Process Manager users.

Figure F–1 shows the organizational hierarchy of the demo users.

Figure F–1 Demo Users Organizational Hierarchy

Using the Demo User Community in the Order Booking Tutorial
The OrderBooking tutorial provides an example in which you use the demo user
community. In this tutorial, you assign a group of users to a task with the Workflow
wizard. When running this wizard, you perform the following tasks:

Table F–3 Oracle BPEL Process Manager Groups

Groups Direct Grantee Groups Users in Group

LoanAgentRole Loan Analysis Group Directly: jlondon, istone,
jcooper, mtwain, cdoyle, wshake

Indirectly: fkafka, szweig,
mmitch

Loan Analysis Group -- Directly: fkafka, szweig, mmitch

Vice President
William Faulkner
Wfaulk

CEO
Charles Dickens
Cdickens

Manager1
Scott Fitzgerald
sfitzger

Manager2
John Steinbeck
jstein

Loan Agent1
Jack London
jlondon

Loan Agent2
Irving Stone
istone

Loan
Consultant
Agatha Christie
achrist

Manager1
Frants Kafka
fkafka

Director
Leo Tolstoy
ltolstoy

Loan Analyst
Stefan Zweig
szweig

Loan Analyst
Margaret
Munnerlyn
Mitchell
mmitch

Loan Consultant
Jane Austin
jausten

Manager3
Robert Louis Stevenson
rsteven

Loan Agent1 Loan Agent2

James Cooper
jcooper

Mark Twain
mtwain

Loan Agent2 Loan Consultant

Conan Doyle
cdoyle

William Shakespeare
wshake

Summary

F-4 Oracle BPEL Process Manager Developer’s Guide

■ Select Sequential Workflow as the workflow pattern.

■ Select Management Chain, which enables a chain of management to sequentially
review the task.

■ Assign a task to a group named Supervisor.

■ Select 1 for the number of levels in the management chain to sequentially review
this task.

When the BPEL process is deployed, you log in to the Worklist Application with the
user jcooper, acquire the task, and approve it. As shown in Table F–1, the supervisor of
jcooper is jstein. Because you specified 1 as the number of levels in the management
chain to sequentially review this task, jstein (the supervisor of jcooper), must also
review this task. You then log in as jstein and approve the task.

Summary
This appendix describes the demo user community for task assignments in Oracle
BPEL Process Manager.

See: Oracle BPEL Process Manager Order Booking Tutorial for
instructions on using the Workflow wizard to perform these tasks

XPath Extension Functions G-1

G
XPath Extension Functions

Oracle provides additional XPath functions that use built-in BPEL capabilities and
XPath standards.

This appendix contains the following topics:

■ XPath Extension Functions Available to BPEL Processes

■ Summary

XPath Extension Functions Available to BPEL Processes
The following is an alphabetical list of additional XPath functions, along with the
function descriptions, arguments, and other information.

abs
This function returns the absolute value of inputNumber.

If inputNumber is not negative, the inputNumber is returned. If the inputNumber
is negative, the negation of inputNumber is returned.

Example: abs(-1) returns 1.

Signature:

xp20:abs(inputNumber as number)

Arguments:

■ inputNumber as number - The number for which the function returns an
absolute value.

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

add-dayTimeDuration-to-dateTime
This function returns a new datetime value adding dateTime to the given duration.

If duration value is negative then the resulting value precedes dateTime.

Signature:

XPath Extension Functions Available to BPEL Processes

G-2 Oracle BPEL Process Manager Developer’s Guide

xp20:add-dayTimeDuration-from-dateTime(dateTime as string,
duration as string)

Arguments:

■ dateTime as string - The dateTime to which the function adds the duration,
in string format.

■ duration as string - The duration to add to the dateTime, or subtract if the
duration is negative, in string format.

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

addChildNode
This function adds the World Wide Web consortium (W3C) document object model
(DOM) child node to the incoming DOM element and returns the modified element.

Signature:

ora:addChildNode(DOMElement element, Node node)

Arguments:

■ DOMElement - The DOM element to be modified

■ Node - The DOM child note to add to the DOM Element

Property IDs
■ deprecated

Use the bpelx:append or bpelx:insertBefore extension activity to add or
append a child node. This extension activity is demonstrated in the sample
Oracle_
Home\integration\orabpel\samples\tutorials\126.DataAggregator
.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

addQuotes
This function returns the content of a string with single quotes added.

Signature:

ora:addQuotes(string)

Arguments:

■ string - The string to which this function adds quotes

Property IDs
■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-3

appendToList
This function appends to a node list. The node list to be appended with should not be
null or empty.

Signature:

ora:appendToList('variableName', 'partName'?, 'locationPath'?,
Object)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (optional)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

■ Object - The object can be either a list or a single item. If the object is a list, this
function appends each item in the list. Each appended item is either an element, or
an element with the string value of the node is created.

Property IDs
■ deprecated

Use the bpelx:copyList extension activity to append to a list. This extension
activity is demonstrated in sample Oracle_
Home\integration\orabpel\samples\tutorials\126.DataAggregator
.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

authenticate
This function authenticates a lightweight directory access protocol (LDAP) user and
returns true or false.

Signature:

ldap:authenticate('properties','userId','password')

Arguments:

■ properties - The name of the directory specified in the directories.xml file

■ userId - The LDAP user’s ID

■ password - The LDAP user’s password

Property IDs
■ namespace-uri:http://schemas.oracle.com/xpath/extension/ldap

■ namespace-prefix: ldap

batchProcessActive
This function returns the number of active processes in the batch.

Signature:

XPath Extension Functions Available to BPEL Processes

G-4 Oracle BPEL Process Manager Developer’s Guide

ora:batchProcessActive(String batchId, String processId)

Arguments:

■ batchId - The ID of the batch

■ processId - The ID of the process

Property IDs
■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

batchProcessCompleted
This function returns the number of completed processes in the batch.

Signature:

ora:batchProcessCompleted(String batchId, String processId)

Arguments:

■ batchId - The ID of the batch

■ processId - The ID of the process

Property IDs
■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

clearTaskAssignees
This function clears the current task assignees.

Signature:

ora:clearTaskAssignees(task)

Arguments:

■ task - The task

Property IDs
■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

compare
This function returns the lexicographical difference between inputString and
compareString comparing the unicode value of each character of both the strings.

This function returns -1 if inputString lexicographically precedes the
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the
compareString.

Example: xp20:compare('Audi', 'BMW') returns -1

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-5

Signature:

xp20:compare(inputString as string, compareString as string)

Arguments:

■ variableName - The source variable for the data

■ propertyName - The qualified name (QName) of the property

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

compare-ignore-case
This function returns the lexicographical difference between inputString and
compareString while ignoring case and comparing the unicode value of each
character of both the strings.

This function returns -1 if inputString lexicographically precedes the
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the
compareString.

Example: xp20:compare-ignore-case('Audi','bmw') returns -1

Signature:

orcl:compare-ignore-case(inputString as string, compareString as
string)

Arguments:

■ inputString as string - The input string

■ CompareString as string - The string to compare against the input string

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

copyList
This function copies a node list or a node. The node list to be copied to should not be
null or empty.

Signature:

ora:copyList('variableName', 'partName'?, 'locationPath'?,
Object)

Arguments:

■ variableName - The source variable for the data

XPath Extension Functions Available to BPEL Processes

G-6 Oracle BPEL Process Manager Developer’s Guide

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional)

■ partName - The part to select from the variable (optional)

■ Object - The object can be either a list or a single item. If the object is a list, each
item in the list is copied. Each item to be copied is either an element, or an element
with the string value of the node is created.

Property IDs
■ deprecated

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

countNodes
This function returns the number of the elements as an integer.

Signature:

ora:countNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (optional)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

create-delimited-string
This function returns a delimited string created from nodeSet delimited by delimiter.

Signature:

orcl:create-delimited-string(nodeSet as node-set, delimiter as
string)

Arguments:

■ nodeSet - The node set to be converted into a deliminated string

■ delimiter - The character that separates the items in the output string; for
example, a comma or a semicolon.

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-7

create-nodeset-from-deliminated-string
The function takes a deliminated string and returns a nodeSet.

Signature:

orcl:create-nodeset-from-deliminated-string(qname,
deliminated-string, delimiter)

Arguments:

■ qname - The qualified name in which each node in the node set must be created.
The QName can be represented in two forms:

– task:assignee

– {http://mytask/task}assignee

■ delimited-string - The sting of elements separated by the delimiter.

■ delimiter - The character that separates the items in the input string; for
example, a comma or a semicolon.

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

createDeliminatedString
This function creates a delimited string from the arguments.

Signature:

ora:createDelimitedString('delimiter', Object)

Arguments:

■ delimiter - the character that separates the items in the input string; for
example, a comma or a semicolon.

■ Object - The node set this function converts to a deliminated string.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

current-date
This function returns the current date in ISO format YYYY-MM-DD.

Signature:

xp20:current-date(object)

Arguments:

■ Object - The time in standard format

XPath Extension Functions Available to BPEL Processes

G-8 Oracle BPEL Process Manager Developer’s Guide

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

current-dateTime
This function returns the current datetime-value in ISO format
CCYY-MM-DDThh:mm:ssTZD.

Signature:

xp20:current-dateTime(object)

Arguments:

■ object - The time in standard format

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

current-time
This function returns the current time in ISO format. The format is hh:mm:ssTZD.

Signature:

xp20:current-time(object)

Arguments:

■ object - The time in standard format

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

day-from-dateTime
This function returns the day from dateTime. The default day is 1.

Signature:

xp20:day-from-dateTime(object)

Arguments:

■ object - The time in standard format

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-9

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

doc
This function returns content of an XML file.

Signature:

ora:doc('fileName','xpath'?)

Arguments:

■ fileName - The name of the XML file

■ xpath -

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

ends-with
This function returns true if inputString ends with searchString.

Example: xp20:ends-with('XSL Map','Map') returns true

Signature:

xp20:ends-with(inputString as string, searchString as string)

Arguments:

■ inputString - The string of data to be searched

■ searchString - The string for which the function searches

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

format
This function formats a message using Java's Message Format.

Signature:

ora:format(formatStrings, args+)

Arguments:

■ formatStrings - The string of data to be formatted

■ args+ -

XPath Extension Functions Available to BPEL Processes

G-10 Oracle BPEL Process Manager Developer’s Guide

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

format-dateTime
This function returns the formatted string of dateTime using the format provided.

Signature:

xp20:format-dateTime(dateTime as string, format as string)

Arguments:

■ dateTime - The dateTime to be formatted

■ format - The format for the output

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

format-string
This function returns the message formatted with the arguments passed. At least one
argument is required and supports up to a maximum of 10 arguments.

Example: orcl:format-string('{0} + {1} = {2}','2','2','4') returns '2
+ 2 = 4'

Signature:

orcl:format-string(string,string,string...)

Arguments:

■ string - One of the strings to be used in the formatted output

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

formatDate
This function converts standard XSD date formats to characters suitable for output.

Signature:

ora:formatDate('dateTime', 'format')

Arguments:

■ dateTime - Contains a date-related value in XSD format. For nonstring
arguments, this function behaves as if a string() function were applied. If the
argument is not a date, the output is an empty string. If it is a valid XSD date and

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-11

some fields are empty, this function attempts to fill unspecified fields. For
example, 2003-06-10T15:56:00.

■ format - Contains a string formatted according to
java.text.SimpleDateFormat format

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

genEmptyElem
This function generates a list of empty elements for the given QName.

Signature:

ora:genEmptyElem('ElemQName',size?, 'TypeQName'?, xsiNil?)

Arguments:

■ ElemQName - The first argument is the QName of the empty elements

■ size - The second optional integer argument for number of empty elements. If
missing, the default size is 1.

■ TypeQName - The third optional argument is the QName, which is the xsi:type
of the generated empty name. This xsi:type pattern matches SOAPENC:Array. ;
If missing or an empty string, the xsi:type attribute is not generated.

■ xsiNil - The fourth optional Boolean argument is to specify whether the
generated empty elements are XSI - nil, provided the element is XSD nillable. The
default is false. If missing or false, xsi:nil is not generated.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

generate-guid
Generates a unique GUID.

Signature:

orcl:generate-guid(object)

Arguments:

■ object -

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

generateGUID
Generates a unique GUID.

XPath Extension Functions Available to BPEL Processes

G-12 Oracle BPEL Process Manager Developer’s Guide

Signature:

ora:generateGUID()

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

get-content-as-string
This function returns the XML representation of the input element.

Signature:

orcl:get-content-as-string(element as node-set)

Arguments:

■ element as node-set - The input element that the function returns as an XML
representation

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

get-localized-string
This function returns the locale-specific string for key.

Uses language, country, variant, and resource bundle to identify the correct resource
bundle.

The resource bundle in obtained by resolving resourceLocation against the
resourceBaseURL. The URL is assumed to be a directory only if it ends with /.

Usage: orcl:get-localized-string(resourceBaseURL as string,
resourceLocation as string, resource bundle as string, language
as string, country as string, variant as string, key as string)

Example:
orcl:get-localized-string('file:/c:/','','MyResourceBundle','en'
,'US','','MSG_KEY') returns a locale-specific string from a resource bundle
'MyResourceBundle' in the C:\ directory

Signature:

orcl:get-localized-string(resourceURL,resourceLocation,resourceB
undleName,language,country,variant,messageKey)

Arguments:

■ resourceURL - The URL of the resource

■ resourceLocation - The subdirectory location of the resource

■ resourceBundleName - The name of the zip file containing the resource bundle

■ language - The language of the localized output

■ country - The country of the localized output

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-13

■ variant - The language variant of the localized output

■ messageKey - The message key in the resource bundle

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

getChildElement
This function gets a child element for the given element

Signature:

ora:getChildElement(element, index)

Arguments:

■ element - The source for the data

■ index - Integer value of the child element index

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getContentAsString
This function returns the content of an element as an XML string.

Signature:

ora:getContentAsString(element)

Arguments:

■ element - The source for the data

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getConversationId
This function returns the conversation ID

Signature:

ora:getConversationId()

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

XPath Extension Functions Available to BPEL Processes

G-14 Oracle BPEL Process Manager Developer’s Guide

getCreator
This function returns the instance creator.

Signature:

ora:getCreator()

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getCurrentDate
This function returns the current date as a string.

Signature:

ora:getCurrentDate('format'?)

Argument:

■ format - Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getCurrentDateTime
This function returns the current date time as a string.

Signature:

ora:getCurrentDateTime('format'?)

Argument:

■ format - Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getCurrentTime
This function returns the current time as a string.

Signature:

ora:getCurrentTime('format'?)

Argument:

■ format - Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-15

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getDomainId
This function returns the current domain ID.

Signature:

ora:getDomainId()

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getElement
This function returns an element using index from the array of elements.

Signature:

ora:getElement('variableName', 'partName', 'locationPath',
index)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (required)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (required).

■ index - Dynamic index value. The index of the first node is 1.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getGroupIdsFromGroupAlias
This function returns a List of user Ids for a group alias specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getGroupIdsFromGroupAlias(String aliasName)

Arguments:

■ aliasName - The alias for a list of users or groups as defined in the bpel.xml file

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

XPath Extension Functions Available to BPEL Processes

G-16 Oracle BPEL Process Manager Developer’s Guide

getGroupProperty
This function retrieves the number of task attachments.

Signature:

ora:getGroupProperty(groupId, attributeName)

Arguments:

■ groupId - String or element containing the group whose attribute should be
retrieved

■ attributeName - String or element containing the name of the group attribute.
The attribute name should be one of the following values:

1. displayName

2. mail

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getInstanceId
This function returns the instance ID.

Signature:

ora:getInstanceId()

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getLinkStatus
This function returns a Boolean indicating the status of the link. If the status of the link
is positive the value is true, otherwise the value is false. This function can only be used
in a join condition.

The linkName argument refers to the name of an incoming link for the activity
associated with the join condition.

Signature:

bpws:getLinkStatus ('linkName')

Arguments:

■ variableName - The source variable for the data

■ propertyName - The QName of the property

Property IDs
■ namespace-uri:

http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-17

getManager
This function gets the manager of a given user. If the user does not exist or if there is
no manager for this user, it returns null.

Signature:

ora:getManager(userID)

Arguments:

■ userID - The ID of the user for whom this function returns their manager

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getMessage
This function gets a message based on the arguments.

Signature:

ora:getMessage(locale, relativeLocation, resourceName,
resourceKey, resourceLocation?)

Arguments:

■ locale - The locale of the message

■ relativeLocation - The subdirectory or message

■ resourceName - The name of the message resource

■ resourceKey - The key of the resource

■ resourceLocation - The location of the resource

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getNodeValue
This function returns the value of a DOM node as a string.

Signature:

ora:getNodeValue(node)

Arguments:

■ node - The DOM node

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

XPath Extension Functions Available to BPEL Processes

G-18 Oracle BPEL Process Manager Developer’s Guide

getNodes
This function get a node list. This is implemented as an alternate to
bpws:getVariableData, which does not return a node list.

Signature:

ora:getNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (optional)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getNumberOfTaskApprovals
This function computes the number of times the task was approved.

Signature:

ora:getNumberOfTaskApprovals(taskId)

Arguments:

■ taskId - The ID of the task

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getPreference
This function returns the value of a property specified in the preferences section of the
BPEL suitcase descriptor.

Signature:

ora:getPreference(String preferenceName)

Arguments:

■ preferenceName - The name of the preference as specified in the BPEL suitcase
descriptor

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getPreviousTaskApprover
This function retrieves the previous task approver.

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-19

Signature:

ora:getPreviousTaskApprover(taskId)

Arguments:

■ taskId - The ID of the task

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getProcessId
This function returns the ID of the current BPEL process.

Signature:

ora:getProcessId()

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getProcessOwnerId
This function returns the ID of the user who owns the process, if specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getProcessOwnerId()

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getProcessURL
This function returns the root URL of the current BPEL process.

Signature:

ora:getProcessURL()

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getProcessVersion
This function returns the current process version.

Signature:

ora:getProcessVersion()

XPath Extension Functions Available to BPEL Processes

G-20 Oracle BPEL Process Manager Developer’s Guide

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getReportees
This function gets the direct reportees of the user. If the user does not exist, it returns
null. The function returns a list of nodes. Each node in the list is called user and the
namespace URI of the node is
http://oracle.tip.pc.services.identity/RemoteIdentityService.xsd
.

Signature:

ora:getReportees(userId)

Arguments:

■ userId - The ID of the user

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getTaskAttachmentByIndex
This function retrieves the task attachment at the specified index.

Signature:

ora:getTaskAttachmentByIndex(taskId, attachmentIndex)

Arguments:

■ taskId - The task ID of the task

■ attachmentIndex - The index of the attachment. The index begins from 1.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getTaskAttachmentByName
This function retrieves the task attachment by the attachment name.

Signature:

ora:getTaskAttachmentByName(taskId, attachmentName)

Arguments:

■ taskId - The task ID of the task.

■ attachmentName - The name of the attachment.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-21

getTaskAttachmentContents
This function retrieves the task attachment contents by the attachment name.

Signature:

ora:getTaskAttachmentContents(taskId, attachmentName)

Arguments:

■ taskId - The task ID of the task.

■ attachmentName - The name of the attachment.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getTaskAttachmentsCount
This function retrieves the number of task attachments.

Signature:

ora:getTaskAttachmentsCount(taskId)

Arguments:

■ taskId - The task ID

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getTaskAutoReleaseDuration
This function computes the release duration for the task when it is acquired.

Signature:

ora:getTaskAutoReleaseDuration(taskId)

Arguments:

■ taskId - The ID of the task

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getTaskReminderDuration
This function computes the next reminder to be sent for the task.

Signature:

ora:getTaskReminderDuration(taskId)

Arguments:

■ taskId - The ID of the task

XPath Extension Functions Available to BPEL Processes

G-22 Oracle BPEL Process Manager Developer’s Guide

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getUserAliasId
This function returns the user ID for an alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.

Signature:

ora:getUserAliasId(String aliasName)

Arguments:

■ aliasName - The alias for a list of users or groups as defined in the bpel.xml
file.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getUserIdsFromGroupAlias
This function returns a List of user Ids for a group alias specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getUserIdsFromGroupAlias(String aliasName)

Arguments:

■ aliasName - The alias for a list of users or groups as defined in the bpel.xml
file.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getUserProperty
This function retrieves the number of task attachments.

Signature:

ora:getUserProperty(userId, attributeName)

Arguments:

■ userId - String or element containing the user whose attribute should be
retrieved

■ attributeName - String or element containing the name of the user attribute.
The attribute name should be one of the following values:

1. givenName

2. middleName

3. sn

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-23

4. displayName

5. mail

6. telephoneNumber

7. homephone

8. mobile

9. facsimileTelephoneNumber

10. pager

11. preferredLanguage

12. manager

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getUserRoles
This function gets the user roles. This function returns a list of objects, either role object
or group objects depending on the roleType.

The function returns a list of nodes. Each node in the list is called group or role
depending on the roleType and the namespace URI of the node is
http://oracle.tip.pc.services.identity/RemoteIdentityService.xsd
.

Signature:

ora:getUserRoles(userId, roleType, direct)

Arguments:

■ userId - String or element containing the user whose roles are to be retrieved

■ roleType - The role type - should be one of the three values: ApplicationRole,
EnterpriseRole, or AnyRole

■ direct - String or element indicating if direct or indirect roles should be fetched.
This is optional and if not specified only direct roles are fetched. This should be
xsd:boolean or string true/false.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getUsersInGroup
This function gets the users in a group. If the group does not exist, it returns null. The
function returns a list of nodes. Each node in the list is called user and the namespace
URI of the node is
http://oracle.tip.pc.services.identity/RemoteIdentityService.xsd
.

Signature:

ora:getUsersInGroup(groupId)

XPath Extension Functions Available to BPEL Processes

G-24 Oracle BPEL Process Manager Developer’s Guide

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getVariableData
This function extracts arbitrary values from BPEL variables.

When only the first argument is present, the function extracts the value of the variable,
which in this case must be defined using an XML Schema simple type or element.
Otherwise, the return value of this function is a node set containing the single node
representing either an entire part of a message type (if the second argument is present
and the third argument is absent) or the result of the selection based on the
locationPath (if both optional arguments are present). If the given locationPath
selects a node set of a size other than one during execution, the standard fault
bpws:selectionFailure is thrown.

Signature:

bpws:getVariableData ('variableName', 'partName'?,
'locationPath'?)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (optional)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs
■ namespace-uri:

http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

getVariableProperty
This function extracts arbitrary values from BPEL variables.

If the given property selects a node set of a size other than one during execution, the
standard fault bpws:selectionFailure is thrown.

Signature:

bpws:getVariableProperty ('variableName', 'propertyname')

Arguments:

■ variableName - The source variable for the data

■ propertyName - The QName of the property

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-25

Property IDs
■ namespace-uri:

http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

hours-from-dateTime
This function returns the hour from dateTime. The default hour is 0.

Signature:

xp20:hours-from-dateTime(dateTime as string)

Arguments:

■ dateTime as string - The dateTime

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

implicit-timezone
This function returns the current time zone in ISO format +/- hh:mm, indicating a
deviation from UTC (Coordinated Universal Timezone).

Signature:

xp20:implicit-timezone(object)

Arguments:

■ object - The time in standard format

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

index-within-string
This function returns the zero-based index of the first occurrence of searchString
within the inputString.

This function returns -1 if searchString is not found.

Example: orcl:index-within-string('ABCABC, 'B') returns 1

Signature:

orcl:index-within-string(inputString as string, searchString as
string)

Arguments:

■ inputString - The string to be searched

XPath Extension Functions Available to BPEL Processes

G-26 Oracle BPEL Process Manager Developer’s Guide

■ searchString - The string for which the function searches in the inputString

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

integer
This function returns content of node as integer.

Signature:

ora:integer(node)

Arguments:

■ node - The input node

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

isUserInRole
This function verifies if a user has a given role, returning a Boolean true or false.

Signature:

ora:isUserInRole(userId, roleName)

Arguments:

■ userId - String or element containing the user whose participation in the role
should be verified

■ roleName - The role name

■ direct - String or element indicating if direct or indirect roles should be fetched.
This is optional and if not specified only direct roles are fetched. This should be
xsd:boolean or string true/false.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

last-index-within-string
This function returns the zero-based index of the last occurrence of searchString
within inputString.

This function returns -1 if searchString is not found.

Example: orcl:last-index-within-string('ABCABC', 'B') returns 4

Signature:

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-27

orcl:last-index-within-string(inputString as string,
searchString as string)

Arguments:

■ inputString - The string to be searched

■ searchString - The string for which the function searches in the inputString

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

lookupUser
This function returns LDAP user information.

Signature:

ldap:lookupUser('properties','userId')

Arguments:

■ properties - The properties name as defined in the directories.xml file

■ userId - The ID of the user for which this function returns LDAP information

Property IDs
■ namespace-uri

– Value: http://schemas.oracle.com/xpath/extension/ldap

■ namespace-prefix

– Value: ldap

left-trim
This function returns the value of inputString after removing all the leading white
spaces.

Example: orcl:left-trim(' account ') returns 'account '

Signature:

orcl:left-trim(inputString)

Arguments:

■ inputString - The string to be left-trimmed

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

XPath Extension Functions Available to BPEL Processes

G-28 Oracle BPEL Process Manager Developer’s Guide

listUsers
This function returns a list of LDAP users.

Signature:

ldap:listUsers('properties','filter')

Arguments:

■ properties - The properties name as defined in the directories.xml file

■ filter - The LDAP filter

Property IDs
■ namespace-uri

– Value: http://schemas.oracle.com/xpath/extension/ldap

■ namespace-prefix

– Value: ldap

lookup-table
This function returns a string based on the SQL query generated from the parameters.

The string is obtained by executing:

SELECT outputColumn FROM table WHERE inputColumn = key

against the datasource that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a datasource
JNDI identifier. Only Oracle Thin Driver is supported if the JDBC connect string is
used.

Example: orcl:lookup-table('employee','id','1234','last_
name','jdbc:oracle:thin:scott/tiger@localhost:1521:ORCL')

Signature:

orcl:lookup-table(table, inputColumn, key, outputColumn,
datasource)

Arguments:

■ table - The table from which to draw the data

■ inputColumn - The column within the table

■ key - The key

■ outputColumn - The column to output the data

■ datasource - The source of the data

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-29

lookup-xml
This function returns the string value of an element defined by lookupXPath in an
XML file (docURL) given its parent XPath (parentXPath), the key XPath (keyXPath)
and the value of the key (key).

Example: orcl:lookup-xml('file:/d:/country_data.xml',
'/Countries/Country', 'Abbreviation', 'FullName', 'UK') returns the
value of the element FullName child of /Countries/Country where
Abbreviation = 'UK' is in the file D:\country_data.xml.

Signature:

orcl:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath, key)

Arguments:

■ docURL - The XML file

■ parentXPath - The parent XPath

■ keyXPath - The key XPath

■ lookupXPath - The lookup XPath

■ key - The key value

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

lookupUser
This function returns LDAP user information.

Signature:

ora:lookupUser(UserID)

Arguments:

■ object - The string or node with the user name or ID

Property IDs
■ namespace-uri

– Value:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.ser
vices.functions.ExtFunc

■ namespace-prefix

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

lookupGroup
This function looks up a group based on the arguments.

Signature:

XPath Extension Functions Available to BPEL Processes

G-30 Oracle BPEL Process Manager Developer’s Guide

ora:lookupGroup(object)

Arguments:

■ object - The string containing the group name or ID

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

lower-case
This function returns the value of inputString after translating every character to its
lower-case correspondent.

Example: xp20:lower-case('ABc!D') returns 'abc!d'

Signature:

xp20:lower-case(inputString)

Arguments:

■ inputString - The input string

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

matches
This function returns true if intputString matches the regular expression pattern
regexPattern.

Example: xp20:matches('abracadabra', '^a.*a$') returns true

Signature:

xp20:matches(intputString, regexPattern)

Arguments:

■ inputString - The input string

■ regexPattern - the regular expression pattern

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

max-value-among-nodeset
This function returns the maximum value from a list of input numbers, the node-set
inputNumber.

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-31

The node-set inputNumber can be a collection of text nodes or elements containing
text nodes.

In the case of elements, the first text node's value is considered.

Signature:

orcl:max-value-among-nodeset(inputNumber as node-set)

Arguments:

■ inputNumber - The node-set of input numbers

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

mergeChildNodes
Merges the child nodes of the incoming elements and returns the merged element.

Signature:

ora:mergeChildNodes(DOMElement element1,DOMElement element2)

Arguments:

■ variableName - The source variable for the data

■ propertyName - The QName of the property

Property IDs
■ deprecated

Use the bpelx extension activities to merge nodes. The extension activities are
demonstrated in the sample.

Oracle_
Home\integration\orabpel\samples\tutorials\126.DataAggregator
.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

min-value-among-nodeset
This function returns the minimum value from a list of input numbers, the node-set
inputNumbers.

The node-set can be a collection of text nodes or elements containing text nodes.

In the case of elements, the first text node's value is considered.

Signature:

orcl:min-value-among-nodeset(inputNumbers as node-set)

Arguments:

■ inputNumber - The node-set of input numbers

XPath Extension Functions Available to BPEL Processes

G-32 Oracle BPEL Process Manager Developer’s Guide

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

minutes-from-dateTime
This function returns the minute from dateTime. The default minute is 0.

Signature:

xp20:minutes-from-dateTime(dateTime)

Arguments:

■ dateTime - The dateTime

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

month-from-dateTime
This function returns the month from dateTime. The default month is 1 (January).

Signature:

xp20:month-from-dateTime(dateTime)

Arguments:

■ dateTime - The dateTime to be formatted

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

parseEscapedXML
This function parses string to DOM.

Signature:

ora:parseEscapedXML(contentString)

Arguments:

■ contentString - The string that this function parses to a DOM.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-33

processXSLT
This function returns the result of XSLT transformation.

Signature:

ora:processXSLT('template','input','properties'?)

Arguments:

■ template - XSLT template

■ input - The input data to be transformed

■ properties - The properties as defined in the bpel.xml file

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

processXSLT
This function returns results of the XSLT transformation by using the Oracle XDK
XSLT processor.

Signature:

xdk:processXSLT('template','input','properties'?)

Arguments:

■ template - XSLT template

■ input - The input data to be transformed

■ properties - The properties as defined in the bpel.xml file

Property IDs
■ namespace-uri

– Value:
http://schemas.oracle.com/bpel/extension/xpath/function/xd
k

■ namespace-prefix

– Value: xdk

processXSQL
This function returns the result of the XSQL request.

Signature:

ora:processXSQL('template','input','properties'?)

Arguments:

■ template - XSLT template

■ input - The input data to be transformed

■ properties - The properties as defined in the bpel.xml file

XPath Extension Functions Available to BPEL Processes

G-34 Oracle BPEL Process Manager Developer’s Guide

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

query-database
This function returns a node-set by executing the SQL query against the specified
database.

Signature:

orcl:query-database(sqlquery as string, rowset as boolean, row
as boolean, datasource as string)

Arguments:

■ sqlquery - The SQL query to perform

■ rowset - Indicates if the rows should be enclosed in a <rowset> element

■ row - Indicates if each row should be enclosed in a <row> element

■ datasource - Either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a JNDI
name for the database

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

readFile
This function returns the content of the file.

Signature:

ora:readFile('fileName','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

■ fileName - The name of the file

■ nxsdTemplate - The NXSD template for the output

■ nxsdRoot -The NXSD root

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

right-trim
This function returns the value inputString after removing all the trailing white spaces.

Example: orcl:right-trim(' account ') returns ' account'

Signature:

orcl:right-trim(inputString as string)

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-35

Arguments:

■ inputString - The input string to be right-trimmed

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

search
This function returns a list of LDAP entries.

Signature:

ldap:search('properties','filter','scope'?)

Arguments:

■ properties - The properties name as defined in the bpel.xml file

■ filter - The filter for the entries

■ scope -The scope of the search

Property IDs
■ namespace-uri

– Value: http://schemas.oracle.com/xpath/extension/ldap

■ namespace-prefix

– Value: ldap

seconds-from-dateTime
This function returns the second from dateTime. The default second is 0.

Signature:

xp20:seconds-from-dateTime(dateTime as string)

Arguments:

■ dateTime - The dateTime as a string

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

sequence-next-val
Return the next value of an Oracle sequence.

The next value is obtained by executing

SELECT sequence.nextval FROM dual

XPath Extension Functions Available to BPEL Processes

G-36 Oracle BPEL Process Manager Developer’s Guide

against datasource that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a datasource
JNDI identifier. Only Oracle Thin Driver is supported if a JDBC connect string is used.

Example: orcl:sequence-next-val('employee_id_
sequence','jdbc:oracle:thin:scott/tiger@localhost:1521:ORCL')

Signature:

orcl:sequence-next-val(sequence as string, datasource as string)

Arguments:

■ sequence -

■ datasource -

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

setNodeValue
This function sets the variable’s node value.

Signature:

ora:setNodeValue('variableName', 'part', 'query',
'newNodeValue')

Arguments:

■ variableName - The source variable for the data

■ part - The name of the part or message type

■ query - The XPath expression used to search out the correct node

■ newNodeValue - The new value of the node

Property IDs
■ deprecated

Use the BPELX extension activities to manipulate an XML document, this
extension activities are demonstrated in sample

Oracle_
Home\integration\orabpel\samples\tutorials\126.DataAggregator
.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

square-root
This function returns the square root of inputNumber.

Example: orcl:square-root(25) returns 5

Signature:

XPath Extension Functions Available to BPEL Processes

XPath Extension Functions G-37

orcl:square-root(inputNumber as number)

Arguments:

■ inputNumber - The input number for which the function calculates the square
root

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

subtract-dayTimeDuration-from-dateTime
This function returns a new dateTime value after subtracting duration from
dateTime.

If duration value is negative then the resultant dateTime value follows
input-dateTime value.

Signature:

xp20:subtract-dayTimeDuration-from-dateTime(dateTime as string,
duration as string)

Arguments:

■ dateTime as string - The dateTime from which the function subtracts the
duration, in string format.

■ duration as string - The duration to subtract to the dateTime, or add if the
duration is negative, in string format.

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

timezone-from-dateTime
This function returns timezone from dateTime. The default timezone is GMT+00:00.

Signature:

xp20:timezone-from-dateTime(dateTime as string)

Arguments:

■ dateTime as string - The dateTime for which this function returns a time
zone

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

XPath Extension Functions Available to BPEL Processes

G-38 Oracle BPEL Process Manager Developer’s Guide

translateFromNative
Translates the input stream to an XML file.

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

■ string - Data to be converted into an XML file.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot - Root element defined in the XSD file.

Property IDs
■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

translateToNative
Translates the XML to the native data.

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

■ string - XML file to be converted into a string.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot -Root element defined in the XSD file.

Property IDs
■ namespace-uri

– Value: http://schemas.oracle.com/xpath/extension

■ namespace-prefix

– Value: ora

upper-case
This function returns the value of inputString after translating every character to its
upper-case correspondent.

Example: xp20:upper-case('abCd0') returns 'ABCD0'

Signature:

xp20:upper-case(inputString as string)

Arguments:

■ inputString - The input string

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

Summary

XPath Extension Functions G-39

■ namespace-prefix: xp20

year-from-dateTime
This function returns the year from dateTime.

Signature:

xp20:year-from-dateTime(dateTime as string)

Arguments:

■ dateTime - The dateTime

Property IDs
■ namespace-uri:

http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

Summary
This appendix lists the XPath extension functions; along with their descriptions,
signature, argument descriptions, and property ID information.

Summary

G-40 Oracle BPEL Process Manager Developer’s Guide

Index-1

Index

Numerics
101.HelloWorld

tutorials, 1-10
102.InvokingProcesses

tutorials, 1-10
103.XMLDocuments

tutorials, 1-10
104.SyncQuoteConsumer

tutorials, 1-10
105.AsyncCompositeLoanBroker

tutorials, 1-10
106.ParallelFlows

tutorials, 1-10
107.Exceptions

tutorials, 1-10
108.Timeouts

tutorials, 1-10
109.CorrelationSets

tutorials, 1-11
110.UserTasks

tutorials, 1-11
111.CallingSessionBeans

tutorials, 1-11
112.Arrays

tutorials, 1-11
113.ABCARouting

tutorials, 1-11
114.XSLTTransformations

tutorials, 1-11
116.SendEmails

tutorials, 1-11
117.ReceiveEmails

tutorials, 1-11
118.JMSService

tutorials, 1-11
119.JMSTopics

tutorials, 1-11
120.XSQLExecution

tutorials, 1-11
121.FileAdapter

tutorials, 1-11
122.DBAdapter

tutorials, 1-11
123.AQAdapter

tutorials, 1-11

124.JMSAdapter
tutorials, 1-11

125.ReportsSchema
tutorials, 1-11

126.DataAggregator
tutorials, 1-11

127.OrderBookingTutorial
tutorials, 1-11

128.GoogleFlow
tutorials, 1-11

129.FTPAdapter
tutorials, 1-11

130.SendEmailWithAttachments
tutorials, 1-11

701.LargeProcesses
tutorials, 1-12

702.Bindings
tutorials, 1-12

A
abs XPath extension function

description, G-1
accountName

XML file, 15-14
acquire

task action, 16-30
acquired

tasks, 16-21
acquiredByFunction

approver function, 16-96
action permissions

in worklists, 17-32
actionable notification

definition, 15-1
actionableEmailAccount element

configuring for e-mail approvals, 16-62
actions

performed on a task, 16-29
activation agent

e-mail, 15-14
activationAgent attributes

setting for notifications in the bpel.xml file, 15-14
active

process life cycle, 19-14
activities

Index-2

adapters tab, C-3
correlation sets tab, C-3
definition, 1-3, 2-19
overview, 2-19, C-2
sensors tab, C-3
tasks common to many activities, C-3

Activities tab
Oracle BPEL Console, 19-21

activity interactions
viewing, 19-21

activity sensors
definition, 18-1

Adapter Configuration wizard
starting, 2-23

adapters
configuring, 2-23
definition, 2-23
documentation, 2-25
in JDeveloper BPEL Designer, 2-23
service names, 2-24

adapters tab
in activities, C-3

addChildNode XPath extension function
description, G-2

add-dayTimeDuration-to-dateTime XPath extension
function

description, G-1
adding attachments

in worklists, 17-20
adding comments

in worklists, 17-19
addQuotes XPath extension function

description, G-2
adhoc workflow

changing the initial assignee of the task, 16-55
customizing, 16-55
definition, 16-9
implementation, 16-54
use case, 16-55
workflow pattern, 16-9

adhocFunction
approver function, 16-96

advanced searches
in worklists, 17-31

AmazonFlow
demos, 1-7

Ant
definition, 19-23

APIs
building a worklist application, 17-40
building a worklist application with the remote

APIs, 17-45
appendToList XPath extension function

description, G-3
Applications Navigator

contents of, 2-5
definition, 2-5
location of in JDeveloper BPEL Designer, 2-4

approver functions, 16-95, 16-96
acquiredByFunction, 16-96

adhocFunction, 16-96
approverFunction, 16-95
groupsFunction, 16-96
listFunction, 16-96
managementChainFunction, 16-96
usersFunction, 16-96

approverFunction
approver function, 16-95

AQ adapter
tutorials, 1-11

arrays
appending new items to, 4-15
determining the size of, 4-12
in transformations, 14-13
manipulating, 4-10
maxOccurs attribute, 4-10
merging with the mergeChildNodes

function, 4-15
statically indexing into, 4-11
tutorials, 1-11

assign activity
adding to an asynchronous service, 6-13
capabilities, C-3
copying data, 4-5
description, 3-11, 4-2
for data manipulation, 4-2
in asynchronous services, 6-13
in BPEL files, 3-11
inserting, 3-11
manually editing the workflow design, 16-11
references, 1-9
workflow task attributes defined within, 16-11

asynchronous callbacks, 6-3
asynchronous interaction with a notification time

BPEL process as the client, 13-6
BPEL process as the service, 13-6

asynchronous interaction with notification timer
definition, 13-5

asynchronous interaction with timeout
BPEL process as the client, 13-5
BPEL process as the service, 13-5
definition, 13-4

asynchronous interactions
BPEL process as the client, 13-4
BPEL process as the service, 13-4
definition, 13-3
returning faults, 9-8

asynchronous processes
retrieving status and results from, 12-5
using dehydration, 6-9

asynchronous services
assign activities, 6-13
callback responses with receive activities, 6-2
calling, 6-5, 6-9
correlating messages, 6-6
correlation IDs, 6-6
demos, 1-8
invoke activities, 6-5, 6-10
parallel flows, 7-2
partner links, 6-4, 6-5, 6-9

Index-3

partnerLinkTypes, 6-4
receive activities, 6-5, 6-12
reply activities, 6-8
tutorials, 1-11
use case, 6-3
WS-Addressing, 6-6

attachments
sending, 15-6
tutorials, 1-11

attributes
manipulating, 4-9

audit trail
viewing, 3-19, 19-21

authenticate XPath extension function
description, G-3

authentication
through identity service, 16-75

authorization
through identity service, 16-75

auto mapping
in transformations, 14-14

auto mapping with confirmation
in transformations, 14-16

B
BankTransferDemo

demos, 1-7
batching

tutorials, 1-11
batchProcessActive XPath extension function

description, G-3
batchProcessCompleted XPath extension function

description, G-4
Boolean values

assigning, 4-8
BPEL

definition, 1-2
everything in XML format, 4-1

BPEL designers
definition, 2-2
overview of environments, 2-3
supported types of designers, 1-3

BPEL domains
creating and managing, 19-8

BPEL exec extension
references, 1-9
tutorials, 1-11

BPEL files
assign activities, 3-11
definition, 2-5
global variables, 3-10
in Hello World tutorial, 3-4
partner links, 3-9
partner links definition, 5-3
process element, 3-9
receive activities, 3-10
reply activities, 3-10
reviewing the contents of, 3-9
sequence activities, 3-11

sequences, 3-10
BPEL Inspector

contents of, 2-17
definition, 2-17
location of in Eclipse BPEL Designer, 2-15

BPEL Palette
contents of, 2-18
definition, 2-18
location of in Eclipse BPEL Designer, 2-15

BPEL processes
common interaction patterns, 13-2
compiling and deploying, 19-2
default revision, 19-15
invoking with a Web Service/SOAP

interface, 12-6
life cycles, 19-14
sending messages to a process from a Java/JSP

application, 12-2
undeployed, 19-15
viewing, 19-12
viewing and managing on the Oracle BPEL

Console, 19-12
BPEL Processes tab

Oracle BPEL Console, 19-13
BPEL Source

location of in Eclipse BPEL Designer, 2-15
BPEL source

reviewing BPEL code, 3-9
BPEL Source window

contents of, 2-17
definition, 2-17

BPEL XPath functions
examples, 4-3

BPEL_ACTIVITY_SENSOR_VALUES
sensor public view, 18-5

BPEL_ALL_PROCESSES
sensor public view, 18-3

BPEL_ERRORS
sensor public view, 18-8

BPEL_FAULT_SENSOR_VALUES
sensor public view, 18-6

BPEL_PROCESS_ANALYSIS_REPORT
sensor public view, 18-3

BPEL_SENSOR_PROCESS_INSTANCES
sensor public view, 18-4

BPEL_VARIABLE_SENSOR_VALUES
sensor public view, 18-7

bpeladmin
user account, 16-75

bpelc
definition, 19-23
examples, 19-24
using, 19-23

bpelx exec built-in methods, 10-4
bpelx exec extension

built-in methods, 10-4
for embedding Java code in a BPEL process, 10-3

bpel.xml file
definition, 2-5
deployment descriptor file, E-2

Index-4

in Hello World tutorial, 3-4
registering sensors and sensor actions, 18-19
setting activationAgent attributes, 15-14

BPMSystemAdmin
identity service role, 16-75

BPMWorkflowAdmin
identity service role, 16-75

BPMWorkflowReassign
identity service role, 16-75

BPMWorkflowSuspend
identity service role, 16-75

BPMWorkflowViewHistory
identity service role, 16-75

build.xml file
definition, 2-15
deploys the suitcase JAR file to the Oracle BPEL

Server, 3-17
in Hello World tutorial, 3-4

business faults
definition, 9-4

business process execution language
See BPEL, 1-2

C
catch activity

adding, 9-12
capabilities, C-4
fault handling, 9-8
references, 1-9

channels
e-mail, 15-4
for task notification, 16-61
SMS, 15-12
voice mail, 15-10

CheckoutDemo
demos, 1-7

clearTaskAssignees extension function
description, G-4

compare extension function
description, G-4

compare-ignore-case extension function
description, G-5

compensate activity
capabilities, C-5
definition, 9-9
fault handling, 9-9

compilation
of BPEL processes, 19-2
without deployment on JDeveloper BPEL

Designer, 19-4
compiling

in Hello World tutorial, 3-16
complex data transformations

recommendations on, 3-15
complex type

variables, 4-6
Component Palette

definition, 2-9
location of in JDeveloper BPEL Designer, 2-4

transformation functions, 2-9
concat

XPath function, 4-8
conditional branching logic

definition, 8-2
tutorials, 1-11
use case, 8-2
use of XPath expressions, 8-2
using switch activities, 8-2
using while activities, 8-4

conditional processing
with xsl choose, 14-12
with xsl if, 14-11

configuration properties
deployment descriptor, E-4

constant values
in transformations, 14-6

copyList extension function
description, G-5

core XPath functions
examples, 4-3

correlation ID
in asynchronous services, 6-2
WS-Addressing, 6-6

correlation sets
definition, 6-7, 6-8
demos, 1-8
tutorials, 1-11

correlation sets tab
in activities, C-3

correlations, 6-6
countNodes

XPath function, 4-12
countNodes extension function

description, G-6
create instance

definition, 6-13
in receive activities, 6-13

createDeliminatedString extension function
description, G-7

create-delimited-string extension function
description, G-6

create-nodeset-from-deliminated-string extension
function

description, G-7
current-date extension function

description, G-7
current-dateTime extension function

description, G-8
current-time extension function

description, G-8
custom

sensor publish type, 18-2
custom plug-ins

configuration with identity service, 16-89
use with identity service, 16-76, 16-77

D
Dashboard tab

Index-5

Oracle BPEL Console, 19-12
data manipulation

accessing fields with complex type variables, 4-6
appending new items to an array, 4-15
assigning Boolean values, 4-8
assigning date or time, 4-9
assigning literal strings, 4-7
assigning numeric values, 4-6
concatenating strings, 4-8
converting from a string to a structured XML

object type, 4-16
copying data between variables, 4-5
determining array sizes, 4-12
dynamically indexing into a data sequence, 4-12
dynamically indexing with the getElement

function, 4-14
initializing variables, 4-4
manipulating arrays, 4-10
manipulating attributes, 4-9
mathematical calculations with XPath

functions, 4-7
merging arrays, 4-15
statically indexing into a data sequence, 4-11
with assign activities, 4-2
with the assign activity, 4-5
with XQuery and XSLT, 4-4

data sequences
dynamically indexing into, 4-12

database
sensor publish type, 18-2

database adapter
tutorials, 1-11

dates
assigning, 4-9

day-from-dateTime extension function
description, G-8

debatching
tutorials, 1-11

default
user account, 16-75
versions of processes, 19-15

default revision
of BPEL processes, 19-15

defining a fault handler, 9-11
dehydration

definition, 1-2, 6-9
delegations

of tasks, 16-7
deleting attachments

in worklists, 17-21
demo community

definition, F-1
for Oracle BPEL Process Manager, F-1

demonstrations
location of, 1-7

demos
AmazonFlow, 1-7
asynchronous services, 1-8
BankTransferDemo, 1-7
CheckoutDemo, 1-7

correlation sets, 1-8
DocumentReview, 1-8
FlowN activity, 1-8
GoogleFlow, 1-8
HelpDeskServiceRequest, 1-8
HotwireDemo, 1-8
IBMSamples, 1-8
Java embedding, 1-8
LoanDemo, 1-8
LoanDemoPlus, 1-8
LoanDemoPlusWithWorkflow, 1-8
OrderApproval, 1-8
parallel synchronous invocations, 1-8
ParallelSearch, 1-8
PaymentProcessor, 1-8
pick activity, 1-8
PriorityDemo, 1-8
ResilientDemo, 1-8
run time exceptions, 1-8
SalesforceFlow, 1-8
sensor actions, 18-9
sensors, 18-9
SleepBroker, 1-8
synchronous services, 1-8
TimeOffRequestDemo, 1-8
transformations, 1-9
VacationRequest, 1-9
while loop, 1-8
workflows, 1-8, 1-9
worklists, 1-8
XSLMapper, 1-9
XSLT Mapper, 1-9

deployment
deploy one process at a time, 19-2
in Hello World tutorial, 3-16
of a suitcase JAR file to a specific domain, 19-10
of BPEL processes, 19-2
of multiple versions of the same process, 19-3
overwriting versions, 19-3
status displays in Log Window, 19-3
to default domain, 19-2
undeploying a process from a specific

domain, 19-11
with Eclipse BPEL Designer, 19-5
with JDeveloper BPEL Designer, 19-2
with the Invoke Deployment Tool, 19-3

deployment descriptor
bpel.xml file, E-2
configuration properties, E-4, E-5
defining a configuration property, E-4
defining a preference property, E-1
encrypting a preference value, E-3
getting a preference value within a BPEL

process, E-3
preference properties, E-1
updating a preference at run time, E-2
use case, E-4

developer prompt
starting, 2-3

development mode

Index-6

changing, 19-9
Diagram View window

definition, 2-6
location of in JDeveloper BPEL Designer, 2-4

dictionaries
in transformations, 14-18

display of changes
in worklists, 17-33

doc extension function
description, G-9

DocumentReview
demos, 1-8

domain passwords
changing, 12-3, 19-8

domains
best practices, 19-8
creating, 19-9
creating and managing, 19-8
definition, 19-3
deploying to specific domains, 19-10
location of a suitcase JAR file in a specific

domain, 19-11
undeploying a process, 19-11

domain.xml file
increasing the syncMaxWaitTime property, 11-7
location of for Eclipse BPEL Designer, 11-7
location of for JDeveloper BPEL Designer, 11-7

dynamic assignments, 16-20
tutorial, 16-21

dynamic delimited strings
setting task assignees, 16-22

dynamic partner links
references, 1-9

dynamic workflow
See adhoc workflow

E
Eclipse BPEL Designer

BPEL Inspector, 2-17
BPEL Palette, 2-18
BPEL Source window, 2-17
compiling and deploying a process, 19-5
creating a project, 2-13
creating a workspaces, 2-13
defining a fault handler, 9-11
definition, 1-4
designing processes, 2-2
installation directory convention, 1-5
location of BPEL Inspector, 2-15
location of BPEL Palette, 2-15
location of BPEL Source, 2-15
location of domain.xml file, 11-7
location of Log Window, 2-15
location of Navigator, 2-15
location of Process Map, 2-15
Log window, 2-17
Navigator, 2-15
overview of design environment, 2-13
Overview window, 2-15

Process Map, 2-15
running the Hello World tutorial, 3-1
software download location, 1-5, 2-3, 2-15, 3-1
starting, 2-3

EJB
invoked by a BPEL process through use of WSIF

binding, 10-2
tutorials, 1-12

e-mail
dynamically setting address, 15-13
notifications support, 15-2, 15-4
task action configuration, 16-74
tutorials, 1-11

e-mail activation agent
starting processes, 15-14

e-mail approval
for task notifications, 16-62
setting up the wf_config.xml file, 16-62

e-mail attachments
notifications support, 15-6
tutorial, 1-11

e-mail server
configuring for notifications, 15-8
configuring for notifications support, 15-8

e-mails
tutorials, 1-11

empty activity
capabilities, C-6
definition, 9-9
fault handling, 9-9

ends-with extension function
description, G-9

errors
in worklists, 17-28
invalid settings, C-2

escalate
task action, 16-30

escalations
of tasks, 16-7

evaluation time
definition, 18-10

event handlers
references, 1-9

exceptions, 9-4
tutorials, 1-11

expirations
of tasks, 16-7

expression constants
variable initialization, 4-4

F
facades

See XML facades, 10-3
fault handling, 9-11

adding a catch activity, 9-12
defining, 9-2, 9-11
defining a handler with Eclipse BPEL

Designer, 9-11
definition, 9-2

Index-7

importing RuntimeFault.wsdl, 9-11
modifying the WSDL files, 9-11
returning external faults, 9-7, 9-8
throwing internal faults, 9-7
tutorials, 1-10, 1-11
use case, 9-2
using catch activities, 9-8
using compensate activities, 9-9
using empty activities, 9-9
using scope activities, 9-4, 9-8
using terminate activities, 9-10
using throw activities, 9-7

fault sensors
definition, 18-2

faults
categories of faults in BPEL, 9-4
Qname fault name, 9-4
returning external faults, 9-7, 9-8
throwing internal faults, 9-7

file adapter
tutorials, 1-11

filters
sensor actions, 18-14

fire and forget
one-way message, 13-2

flex field updates
in worklists, 17-24

flex fields
code example, 16-15
in tasks, 16-15

flow activity
capabilities, C-6
defining, 7-3
references, 1-9
tutorials, 1-10

flowN activity
capabilities, C-7
definition, 7-4
demos, 1-8
references, 1-9

format extension function
description, G-9

formatDate extension function
description, G-10

format-dateTime extension function
description, G-10

format-string extension function
description, G-10

FTP adapter
tutorials, 1-11

function
descriptions, 14-7

functions
approver function examples for workflows, 16-96
approver functions for workflows, 16-95
chaining in transformations, 14-9
editing in transformations, 14-8
editing XPath expressions in

transformations, 14-9
in transformations, 14-7

location of XPath extension function
descriptions, 4-3

user-defined in transformations, 14-9
XPath extension functions prefixed with xp20 or

orcl, 14-7
FYI task

cannot be extended, 16-57
changing the assigning after creating the

task, 16-56
customizing, 16-56
definition, 16-9
implementation, 16-55
use case, 16-55
workflow pattern, 16-9

G
genEmptyElem extension function

description, G-11
generateGUID extension function

description, G-11
generate-guid extension function

description, G-11
getChildElement extension function

description, G-13
getContentAsString extension function

description, G-13
get-content-as-string extension function

description, G-12
getConversationId extension function

description, G-13
getCreator extension function

description, G-14
getCurrentDate, 4-9
getCurrentDate extension function

description, G-14
getCurrentDateTime, 4-9
getCurrentDateTime extension function

description, G-14
getCurrentTime, 4-9
getCurrentTime extension function

description, G-14
getDomainId extension function

description, G-15
getElement

XPath function, 4-14
getElement extension function

description, G-15
getGroupIdsFromGroupAlias extension function

description, G-15
getGroupProperty extension function

description, G-16
getInstanceId extension function

description, G-16
getLinkStatus extension function

description, G-16
get-localized-string extension function

description, G-12
getManager extension function

description, G-17

Index-8

getMessage extension function
description, G-17

getNodes extension function
description, G-18

getNodeValue extension function
description, G-17

getNumberOfTaskApprovals extension function
description, G-18

getPreference extension function
description, G-18

getPreviousTaskApprover extension function
description, G-18

getProcessId extension function
description, G-19

getProcessOwnerId extension function
description, G-19

getProcessURL extension function
description, G-19

getProcessVersion extension function
description, G-19

getReportees extension function
description, G-20

getTaskAttachmentByIndex extension function
description, G-20

getTaskAttachmentByName extension function
description, G-20

getTaskAttachmentContents extension function
description, G-21

getTaskAttachmentsCount extension function
description, G-21

getTaskAutoReleaseDuration extension function
description, G-21

getTaskReminderDuration extension function
description, G-21

getUserAliasId extension function
description, G-22

getUserIdsFromGroupAlias extension function
description, G-22

getUserProperty extension function
description, G-22

getUserRoles extension function
description, G-23

getUsersInGroup extension function
description, G-23

getVariableData, 4-8
assigning tasks dynamically with, 16-20

getVariableData extension function
description, G-24

getVariableData function
using in mathematical calculations, 4-7

getVariableProperty extension function
description, G-24

global variables
in BPEL files, 3-10

GoogleFlow
demos, 1-8

grantees
relationship with roles, 16-76

group information
in worklists, 17-29

groups
creating, 16-77

groupsFunction
approver function, 16-96

guest
user account, 16-75

H
Hello World tutorial

adding an assign activity, 3-12
browsing the new project, 3-4
compiling and deploying the BPEL process, 3-16
creating a new project, 3-2
editing the WSDL file, 3-5
overview, 3-1
reviewing the BPEL source code, 3-9
running, 3-1
suitcase JAR file, 3-17
testing, 3-17
viewing the project files, 3-4

HelpDeskServiceRequest
demos, 1-8

HotwireDemo
demos, 1-8

hours-from-dateTime extension function
description, G-25

HTTP get method
tutorials, 1-12

I
iaswconfig.xml file

location of, 15-11
IBMSamples

demos, 1-8
IDeliveryService.post() method

invoking a one-way Web service operation, 12-5
IDeliveryService.request() method

invoking a two-way Web service operation, 12-4
identity service, 16-2

configuring the is_config.xml file, 16-79
connection element, 16-80
connection pool properties, 16-81
creating users and groups, 16-77
custom plug-ins configuration, 16-89
definition, 16-2, 16-75
determining a user’s local language and time

zone, 17-33
LDAP-based (Oracle Internet Directory) JAZN

provider configuration, 16-83
middle-tier configuration, 16-85
providers, 16-77
roles, 16-75
structure of identity service configuration

file, 16-79
support for in workflow, 16-2
third-party LDAP server configuration, 16-86
use with custom plug-ins, 16-76, 16-77
use with JAZN, 16-2, 16-75, 16-76

Index-9

use with LDAP, 16-76
use with third-party LDAP servers, 16-77
user and role properties, 16-78
userControls and roleControl elements, 16-81
users, 16-75
XML-based JAZN provider configuration, 16-83

Identity service component
definition, 16-5, B-3
WSDL operations, B-3

identity services
providers, 16-76

implicit-timezone extension function
description, G-25

indexing methods
using XPath, 4-11

index-within-string extension function
description, G-25

Instances tab
Oracle BPEL Console, 19-21

integer extension function
description, G-26

interaction patterns
a valid partner link is required, 13-2
asynchronous interaction with notification

timer, 13-5
asynchronous interaction with timeout, 13-4
asynchronous interactions, 13-3
common patterns between a BPEL process and

another application, 13-2
one request, a mandatory response, and an

optional response, 13-8
one request, multiple responses, 13-6
one request, one of two possible responses, 13-7
one-way message, 13-2
partial processing, 13-9
synchronous interactions, 13-2
third-interactions, 13-10

interop
location of, 1-7

invalid settings error, C-2
invoke, 6-5
invoke activity

adding to an asynchronous service, 6-10
capabilities, C-8
definition, 5-2
in asynchronous services, 6-2, 6-5, 6-10
in synchronous services, 5-2, 5-5
manually editing the workflow design, 16-11
references, 1-9
tutorials, 1-10

Invoke Deployment Tool
deploying, 19-3

is_config.xml file
location of, 16-79

isUserInRole extension function
description, G-26

J
Java API

invoking a BPEL process with the generic Java
API, 12-3

invoking a one-way operation, 12-5
invoking a two-way operation, 12-4
NormalizedMessage class for dynamically

activating messages, 12-3
parsing XML messages, 12-3
using from a remote client, 12-6
using the Locator class to connect to Oracle BPEL

Process Manager, 12-3
Java applications

wrapped as SOAP services, 10-2
Java embedding

bpelx exec extension, 10-4
demos, 1-8
embedding code in a BPEL process, 10-3
example using JDeveloper BPEL Designer, 10-5
in a BPEL process, 10-2
invoking an EJB, 10-2
Java application requires a BPEL compatible

interface, 10-2
tutorials, 10-2
use case, 10-2
using bpelx exec, 10-3
using WSIF binding, 10-2

Java embedding activity
capabilities, C-9

Java method
tutorials, 1-12

Javadocs
for JSP forms, 16-73
location of, 12-4, 16-73, 16-77

JavaExec
references, 1-9

Java/JSP applications
calling a BPEL process, 12-2

JAZN, 16-2
configuration of LDAP-based (Oracle Internet

Directory) provider, 16-83
configuration of XML-based provider, 16-83
definition, 16-76
demo users, F-1
demo users and roles, F-1
LDAP-based (Oracle Internet Directory) provider

type, 16-77
middle-tier configuration of LDAP-based JAZN

provider, 16-85
setting up users, F-1
storing a user’s local language and time

zone, 17-33
used with identity service, 16-75, 16-76
used with third-party LDAP servers, 16-77
user notification preferences, 16-61
XML-based provider type, 16-77

jazn-data.xml file
creating users and groups with XML-based JAZN

provider, 16-77
jazn.xml file

configuring, 16-85
JBoss

Index-10

JMS, 1-11
JDeveloper BPEL Designer

adapters, 2-23
Applications Navigator, 2-5
compiling and deploying a process, 19-2
compiling without deploying, 19-4
Component Palette, 2-9
configuring notifications, 15-2
creating a project, 2-3
creating a workspaces, 2-3
creating sensors, 18-9
definition, 1-3
designing a simple workflow, 16-31
designing processes, 2-2
designing timeouts, 11-4
designing workflows, 16-10
Diagram View window, 2-6
location of Applications Navigator, 2-4
location of Component Palette, 2-4
location of Diagram View window, 2-4
location of domain.xml file, 11-7
location of Log window, 2-5
location of Process Activities, 2-4
location of Property Inspector, 2-4
location of Structure window, 2-5
Log window, 2-12
notifications, 2-23
overview of design environment, 2-3
overview of services, 2-22
Process Activities, 2-9
Property Inspector, 2-10
sensors, 2-23
Source window, 2-8
starting, 2-2
Structure window, 2-11
transformations, 2-23, 14-2
using Java embedding, 10-5
workflows, 2-23
worklists, 2-23

JMS
tutorials, 1-11
with JBoss, 1-11
with OC4J, 1-11
with WebLogic, 1-11

JMS adapter
tutorials, 1-11

JMSQueue
sensor publish type, 18-2

JMSTopic
sensor publish type, 18-2

JSP
tutorials, 1-10

JSP form
custom JSP display, 16-72, 16-73
custom Oracle BPEL Worklist Application

display, 16-72, 16-73
customizing the default JSP display, 16-67
customizing the default JSP file, 16-69
customizing the default XML mapping file, 16-67
default file name and location, 16-65, 16-71

default mapping XML file name and
location, 16-65

default Oracle BPEL Worklist Application
display, 16-12, 16-65

deploying the default JSP to OC4J, 16-71
multibyte payload in the task detail JSP, 16-71

L
languages

accessing the Oracle BPEL Worklist Application in
local languages, 17-33

setting in JAZN, 17-33
setting in LDAP, 17-33

last-index-within-string extension function
description, G-26

LDAP
configuration of third-party LDAP servers, 16-86
storing a user’s local language and time

zone, 17-33
used with identity service, 16-2, 16-76

left-trim extension function
description, G-27

life cycles
default revision, 19-15
of processes, 19-13, 19-14
process recommendations for a development

environment, 19-15
process recommendations for a production

environment, 19-15
undeployed, 19-15
use case, 19-16

links
references, 1-9

listFunction
approver function, 16-96

listUsers extension function
description, G-28

literal strings
assigning, 4-7

literal XML
variable initialization, 4-4

LoanDemo
demos, 1-8

LoanDemoPlus
demos, 1-8

LoanDemoPlusWithWorkflow
demos, 1-8

LocalBPELServer
default Oracle BPEL Server connection, 19-2

Log window
contents of, 2-17
definition, 2-12, 2-17
location of in Eclipse BPEL Designer, 2-15
location of in JDeveloper BPEL Designer, 2-5

lookupGroup extension function
description, G-29

lookup-table extension function
description, G-28

lookupUser extension function

Index-11

description, G-27, G-29
lookup-xml extension function

description, G-29
lower-case extension function

description, G-30

M
managementChainFunction

approver function, 16-96
matches extension function

description, G-30
maxOccurs attribute, 4-10, 4-11
max-value-among-nodeset extension function

description, G-30
mergeChildNodes

XPath function, 4-15
mergeChildNodes extension function

description, G-31
message flow

tutorials, 1-11
minutes-from-dateTime extension function

description, G-32
min-value-among-nodeset extension function

description, G-31
modes

changing for the Oracle BPEL Server, 19-9
month-from-dateTime extension function

description, G-32
multibyte payload

in the task detail JSP, 16-71

N
Navigator

contents of, 2-15
definition, 2-15
location of in Eclipse BPEL Designer, 2-15

New Project wizard, 3-2
NormalizedMessage class

for dynamically activating messages, 12-3
specifying the address of a Web service for the

callback, 12-6
NormalizedMessages class

viewing the specific field name for the
conversation ID, 12-6

notification activity
capabilities, C-10
using, 15-2

notification message variables
for task notification, 16-62

notification messages
for task notification, 16-61

Notification service component
definition, 16-5, B-2
WSDL operations, B-2

notification services
definition, 16-3

notifications
configuring in JDeveloper BPEL Designer, 15-2

configuring wireless service provider support for
SMS, 15-13

configuring wireless service provider support for
voice, 15-11

definition, 2-23, 15-1, 16-2
dynamically setting e-mail addresses and

telephone numbers, 15-13
e-mail attachment support, 15-6
e-mail attachment tutorials, 1-11
e-mail server configuration, 15-8
e-mail support, 15-2, 15-4
in JDeveloper BPEL Designer, 2-23
selecting recipients by browsing the user

directory, 15-13
SMS support, 15-12
tutorials, 1-11
use case, 15-1
using Oracle Application Server Wireless, 15-2
voice mail support, 15-10

notifications and reminders
in tasks, 16-19, 16-60

ns_emails.xml file
example, 15-9
location of, 15-8

ns_iaswconfig.xml file
example, 15-11
location of, 15-13

numeric values
assigning, 4-6

O
obant

running, 3-17
OC4J

deploying the default JSP to, 16-71
JMS, 1-11

off
process state, 19-14

OID
See Oracle Internet Directory, 16-83

on
process state, 19-14

onAlarm branch
of pick activity, 11-3

one request, a mandatory response, and an optional
response

BPEL process as the client, 13-9
BPEL process as the service, 13-9
definition, 13-8

one request, multiple responses
BPEL process as the client, 13-7
BPEL process as the service, 13-7
definition, 13-6

one request, one of two possible responses
BPEL process as the client, 13-8
BPEL process as the service, 13-8
definition, 13-7

one-way message
BPEL process as the client, 13-2

Index-12

BPEL process as the service, 13-2
definition, 13-2

onMessage branch
of pick activity, 11-3

ora
getGroupProperty

XPath extension function, 16-91
getManager

XPath extension function, 16-91
getNumberOfTaskApprovals

XPath extension function, 16-92
getPreviousTaskApprover

XPath extension function, 16-92
getReportees

XPath extension function, 16-92
getTaskAttachmentByIndex

XPath extension function, 16-93
getTaskAttachmentByName

XPath extension function, 16-94
getTaskAttachmentContents

XPath extension function, 16-94
getTaskAttachmentsCount

XPath extension function, 16-93
getUserInRole

XPath extension function, 16-92
getUserProperty

XPath extension function, 16-91
getUserRoles

XPath extension function, 16-92
getUsersInGroup

XPath extension function, 16-92
lookupGroup

XPath extension function, 16-90
lookupUser

XPath extension function, 16-89
Oracle Application Server Wireless

wireless and voice component, 15-2
Oracle BPEL Admin Console

accessing, 19-8
changing passwords, 19-8

Oracle BPEL Console
accessing, 19-8
Activities tab, 19-21
BPEL Processes tab, 19-13
Dashboard tab, 19-12
Instances tab, 19-21
location of XPath extension function

descriptions, 4-3
overview, 2-21
running and managing processes from, 2-2
starting, 2-3
testing the Hello World tutorial, 3-17
viewing a history of process activities, 19-21
viewing activity interactions, 19-21
viewing and managing processes, 19-12
viewing sensor and sensor action metadata, 18-19
viewing sensor values, 19-21
viewing the audit trail, 3-19
viewing the audit trail of a process, 19-21
viewing the visual flow, 3-19

Oracle BPEL Process Manager
adds value and ease of use to BPEL

functionality, 1-3
components of, 2-2
definition, 1-2
provides support for, 1-2
services in JDeveloper BPEL Designer, 2-22
starting, 2-2
supported designer types, 1-3

Oracle BPEL Server
changing modes, 19-9
deploying process to, 2-2
LocalBPELServer default connection, 19-2
overview, 2-21
starting, 2-2

Oracle BPEL Worklist Application
accessing in local languages, 17-33
accessing tasks assigned to users, 16-8
adding attachments, 17-20
adding comments, 17-19
advanced searches, 17-31
architecture, 17-34
cannot view User Task 2.0 Macro tasks, 16-56
concepts, 17-2
custom JSP display form, 16-72, 16-73
customizing, 17-34
default JSP display form, 16-12, 16-65
definition, 16-3
deleting attachments, 17-21
determining action permissions, 17-32
errors, 17-28
features, 17-4
flex and task field updates, 17-24
home page contents, 17-6
logging into, 17-4
parallel tasks, 17-23
payload viewing, 17-17
payload viewing of source XML, 17-18
request status, 17-26
requesting more information, 17-13
responding to tasks from, 16-1
routing, 17-12
starting, 2-3
Task Actions list, 17-10
Task Details page contents, 17-9
task history, 17-14
task reassignment, 17-22
use cases, 17-1
user and group information, 17-29
visual display of changes, 17-33
XSLT payload display, 16-71

Oracle Delegated Administration Services
creating users and groups, 16-77
setting user properties for notification, 16-61

Oracle Internet Directory
configuration with identity service, 16-83
creating users and groups, 16-77
LDAP-based provider type, 16-77
object classes for specifying user and role

properties, 16-78

Index-13

storing a user’s local language and time
zone, 17-33

orcl
create-nodeset-from-delimited-string, 16-22
format-string

XPath extension function, 16-95
get-localized-string

XPath extension function, 16-95
get-localized-string()

XPath function, 16-19
OrderApproval

demos, 1-8
outcome-based modeling, 16-59

case statements for other task conclusions, 16-59
payload updates, 16-59

overview, 18-1
Overview window

contents of, 2-15
definition, 2-15

P
parallel flows

defining, 7-3
definition, 7-2
tutorials, 1-10, 1-11
use case, 7-2

parallel synchronous invocations
demos, 1-8

parallel tasks, 16-21
in worklists, 17-23

parallel workflow
changing the outcomes after creation of the use

task, 16-52
changing the parameters of the outcome

determination policy, 16-52
customizing, 16-52
definition, 16-9
implementation, 16-49
pattern-specific parameters, 16-51
use case, 16-51
workflow pattern, 16-9

parallel workflow with final reviewer
changing the final reviewer of the task, 16-53
customizing, 16-53
definition, 16-9
implementation, 16-52
pattern-specific parameters, 16-53
use case, 16-53
workflow pattern, 16-9

ParallelSearch
demos, 1-8

parseEscapedXML extension function
description, G-32

parseEscapeXML
XPath function, 4-16

partial processing
BPEL process as the client, 13-10
BPEL process as the service, 13-10
definition, 13-9

partner links
adding to an asynchronous service, 6-9
BPEL file code example, 5-3
definition, 1-3, 2-20, 5-3
displaying in Diagram View window, 2-8
dynamic, 1-9
in asynchronous services, 6-4, 6-5, 6-9
in BPEL files, 3-9
in synchronous services, 5-2
overview, 2-20
specifying a WSDL file, 2-21
UDDI and WSIL directories, 5-5

partnerLink activity
capabilities, C-10

partnerLinkTypes
definition, 5-4, 6-4
in asynchronous services, 6-4
in synchronous services, 5-4

passwords
changing domain passwords, 19-8
changing for the Oracle BPEL Admin

Console, 19-8
patterns

of interaction between a BPEL process and another
application, 13-2

payload
workflow task, 16-11

payload display
workflow task, 16-12, 16-64, 16-71

payload viewing
in worklists, 17-17

payload viewing of source XML
in worklists, 17-18

PaymentProcessor
demos, 1-8

pc.properties file
location of, 16-74

pick activity
capabilities, C-11
code example, 11-3
demos, 1-8
for continuing with a flow after a certain amount

of time, 11-2
for timeouts, 11-2
onAlarm branch, 11-3
onMessage branch, 11-3
references, 1-9
tutorials, 1-10
two condition branches, 11-2

port types
definition, 5-4
in asynchronous services, 6-4
in synchronous services, 5-4

ports
in synchronous services, 5-2

position
XPath function, 4-11

post() method
support for client specifying a conversation

ID, 12-6

Index-14

preference properties
deployment descriptor, E-1

PriorityDemo
demos, 1-8

Process Activities
definition, 2-9
location of in JDeveloper BPEL Designer, 2-4

process element
in BPEL files, 3-9

process history
viewing, 19-21

Process Map
contents of, 2-15
definition, 2-15
location of in Eclipse BPEL Designer, 2-15

processXSLT extension function
description, G-33

processXSQL extension function
description, G-33

procurement process
workflow functionality example, 16-3

production mode
changing, 19-9

.project file
definition, 3-4

project files
BPEL file, 2-5
bpel.xml, 2-5
in Applications Navigator, 2-5
in Hello World tutorial, 3-4
in Navigator, 2-15
WSDL file, 2-5

projects
creating for the Hello World tutorial, 3-2
creating in Eclipse BPEL Designer, 2-13
creating in JDeveloper BPEL Designer, 2-3
definition, 2-3
naming limitations, 2-3, 2-13

Property Inspector
definition, 2-10
location of in JDeveloper BPEL Designer, 2-4

PUBLIC
identity service role, 16-75

public views
BPEL_ACTIVITY_SENSOR_VALUES, 18-5
BPEL_ALL_PROCESSES, 18-3
BPEL_ERRORS, 18-8
BPEL_FAULT_SENSOR_VALUES, 18-6
BPEL_PROCESS_ANALYSIS_REPORT, 18-3
BPEL_SENSOR_PROCESS_INSTANCES, 18-4
BPEL_VARIABLE_SENSOR_VALUES, 18-7
sensors, 18-2

publish types
creating a custom publisher, 18-15
custom, 18-2
database, 18-2
definition, 18-2
JMSQueue, 18-2
JMSTopic, 18-2

Q
Qname

fault name, 9-4
query-database extension function

description, G-34

R
readFile extension function

description, G-34
reassign

task action, 16-30
receive activity

adding to an asynchronous service, 6-12
capabilities, C-12
create instance, 6-13
in asynchronous services, 6-2, 6-5, 6-12
in BPEL files, 3-10
references, 1-9
tutorials, 1-10

references
assign activity, 1-9
BPEL exec extension, 1-9
catch activity, 1-9
dynamic partner links, 1-9
event handlers, 1-9
flow activity, 1-9
flowN activity, 1-9
invoke activity, 1-9
JavaExec, 1-9
links, 1-9
location of, 1-7
pick activity, 1-9
receive activity, 1-9
replay activity, 1-9
reply activity, 1-9
switch activity, 1-9
terminate activity, 1-10
throw activity, 1-10
wait activity, 1-10
while activity, 1-10
XPath function, 1-9
XPath functions, 1-10
XPath queries, 1-10

release
task action, 16-30

reminders
for task notifications, 16-63

renew
task action, 16-30

repeating elements
in transformations, 14-13

replay activity
references, 1-9

reply activity
capabilities, C-13
definition, 6-8
in asynchronous services, 6-8
in BPEL files, 3-10
references, 1-9

Index-15

reporting schema
for database publish type of sensors, 18-2

reports
generating for transformations, 14-20
tutorials, 1-11

request more information
task action, 16-30

request more information with reapproval
task action, 16-30

request status
in worklists, 17-26

requesting more information
in worklists, 17-13

ResilientDemo
demos, 1-8

resource bundles
in tasks, 16-19

restricted actions
code example, 16-16
in tasks, 16-16

resume
task action, 16-30

retired
process life cycle, 19-14

right-trim extension function
description, G-34

RMI
tutorials, 1-10
using Java API through, 12-6

roleControls Element, 16-81
roles

BPMSystemAdmin, 16-75
BPMWorkflowAdmin, 16-75
BPMWorkflowReassign, 16-75
BPMWorkflowSuspend, 16-75
BPMWorkflowViewHistory, 16-75
for partner links in asynchronous services, 6-4
predefined, 16-75
predefined by identity service, 16-75
properties, 16-78
PUBLIC, 16-75
relationship with grantees, 16-76

route
task action, 16-30

routing
in worklists, 17-12

RPC styles
differences with document-literal styles in WSDL

files, 4-1, 4-16
run-time exceptions, 9-4

demos, 1-8
run-time faults

definition, 9-4
RuntimeFault.wsdl file

importing into a process, 9-11

S
samples

location of, 1-7

schemac
definition, 19-24
examples, 19-25
generating facades from WSDL or XSD files, 10-3
generating XML facades from WSDL or XSD

files, 19-24
using, 19-24, D-14

scope activity
capabilities, C-15
definition, 9-4
fault handling, 9-4, 9-8

search extension function
description, G-35

seconds-from-dateTime extension function
description, G-35

sensor actions
configuring, 18-12
creating with a filter, 18-14
demos, 18-9
registering in the bpel.xml file, 18-19
viewing definitions, 18-19
viewing metadata from the Oracle BPEL

Console, 18-19
sensor data

persisting in a reporting schema, 18-2
sensor values

viewing, 19-21
sensorAction.xml file, 18-13, 18-14
sensors, 18-1

activity sensors, 18-1
BPEL reporting schema, 18-2
BPEL_ACTIVITY_SENSOR_VALUES public

views, 18-5
BPEL_ALL_PROCESSES public views, 18-3
BPEL_ERRORS public views, 18-8
BPEL_FAULT_SENSOR_VALUES public

views, 18-6
BPEL_PROCESS_ANALYSIS_REPORT public

views, 18-3
BPEL_SENSOR_PROCESS_INSTANCES public

views, 18-4
BPEL_VARIABLE_SENSOR_VALUES public

views, 18-7
configuring, 18-10
creating a custom publish type, 18-15
creating in JDeveloper BPEL Designer, 18-9
definition, 2-23, 18-1
demos, 18-9
evaluation time, 18-10
fault sensors, 18-2
in JDeveloper BPEL Designer, 2-23
public views, 18-2
publish types, 18-2
registering in the bpel.xml file, 18-19
sensorAction.xml file, 18-2
sensor.xml file, 18-2
tutorials, 1-11
use cases, 18-1
variable sensors, 18-1
viewing definitions, 18-19

Index-16

viewing metadata from the Oracle BPEL
Console, 18-19

sensors tab
in activities, C-3

sensor.xml file, 18-11
sequence activity

capabilities, C-14
description, 3-11
in BPEL files, 3-11

sequence-next-val extension function
description, G-35

sequences
in BPEL files, 3-10

sequential tasks, 16-20
sequential workflow

adding approvers, 16-46
adding the continue routing expression, 16-46
approver function examples, 16-96
approver functions, 16-95
approvers assignment policy, 16-43
changing routing policy, 16-46
changing the assignees in the list after creating the

task, 16-46
changing the continue routing expression, 16-46
changing the initial assignee after creating the

task, 16-45
changing the management chain parameters after

task creation, 16-45
changing the outcome after task creation, 16-46
changing the user or group to whom the task is

routed based on output of an external
system, 16-46

continue routing expression, 16-43
customizing, 16-45
definition, 16-9
implementation, 16-40
outcome that results in the task being

routed, 16-43
pattern-specific parameters, 16-43
use cases, 16-43
workflow pattern, 16-9

sequential workflow with escalation
changing the escalation policy, 16-48
changing the expiration duration of the task when

escalated, 16-48
changing the user to whom the task is escalated on

expiration, 16-48
customizing, 16-48
definition, 16-9
implementation, 16-46
maximum number of times the task can be

escalated, 16-48
pattern-specific parameters, 16-48
title of a user to whom to escalate the task, 16-48
use case, 16-47
workflow pattern, 16-9

service names
in adapters, 2-24

services
notifications, 2-23

overview, 2-22
sensors, 2-23
transformations, 2-23
workflows, 2-23
worklists, 2-23

setNodeValue extension function
description, G-36

short message service
See SMS, 2-23

simple workflow
changing the assignee after creating the user

task, 16-32
changing the outcomes after creating the user

task, 16-33
changing the user task to support multiple

approvals, 16-33
customizing, 16-32
definition, 16-9
designed in JDeveloper BPEL Designer, 16-31
implementation, 16-31
use case, 16-32
workflow pattern, 16-9

simple workflow with automatic escalation
change the duration for the task

assignment, 16-36
change the number of levels of escalation, 16-36
changing the title of the last user to whom the task

is escalated, 16-36
changing the user to whom the task is escalated

upon expiration, 16-37
customizing, 16-36
implementation, 16-33
maximum number of time the task can be

escalated, 16-35
pattern-specific parameters, 16-35
title of user to whom to escalate the task, 16-35
use case, 16-35

simple workflow with automatic renewal
adding logic depending on number of times

renewed, 16-40
changing the duration for the task

assignment, 16-39
changing the number of levels of renewal, 16-40
customizing, 16-39
implementation, 16-37
maximum number of time the task can be

renewed, 16-39
pattern-specific parameters, 16-39
use case, 16-39

simple workflow with escalation
definition, 16-9
workflow pattern, 16-9

simple workflow with renewal
definition, 16-9
workflow pattern, 16-9

single assignments, 16-20
SleepBroker

demos, 1-8
SMS

configuring wireless service provider

Index-17

support, 15-13
notifications support, 15-12

SOAP interface
invoking a BPEL process, 12-6

SOAP services
invoking a BPEL process through, 12-2
performance issues when using Java code

wrapped as a SOAP service, 10-2
using Java code wrapped as a SOAP service, 10-2

source code
reviewing in Eclipse BPEL Designer, 3-9

Source window
definition, 2-8

square-root extension function
description, G-36

starting
developer prompt, 2-3
Eclipse BPEL Designer, 2-3
JDeveloper BPEL Designer, 2-2
Oracle BPEL Console, 2-3
Oracle BPEL Process Manager components, 2-2
Oracle BPEL Server, 2-2
Oracle BPEL Worklist Application, 2-3

static assignments, 16-20
strings

concatenating, 4-8
converting to an XML element, 4-16

Structure window
definition, 2-11
location of in JDeveloper BPEL Designer, 2-5

submit more information
task action, 16-30

subtract-dayTimeDuration-from-dateTime extension
function

description, G-37
suitcase JAR file, 3-17

definition, 19-6
location in a specific domain, 19-11
location of, 3-17

suspend
task actions, 16-30

switch activity
adding, 8-3
capabilities, C-15
in conditional branching logic, 8-2
references, 1-9

synchronous callbacks, 5-1
operational concepts, 5-6
required ports, 5-2
syncWaitTime attribute, 5-2

synchronous interactions
BPEL process as the client, 13-3
BPEL process as the service, 13-3
definition, 13-2
returning faults, 9-7

synchronous processes
reviewing the source code, 3-9
timeouts, 11-7

synchronous services
callbacks with the partner link and invoke

activity, 5-2
calling, 5-6
demos, 1-8
example of invoking, 5-2
invoke activities, 5-5
invoking, 5-1
partnerLinkTypes, 5-4
port types, 5-4
ports, 5-2
tutorials, 1-11

syncMaxWaitTime property
increasing to prevent timeouts, 11-7

syncWaitTime attribute
in synchronous callbacks, 5-2

T
task actions

acquire, 16-30
change outcome for the task, 16-29
escalate, 16-30
in worklists, 17-2, 17-10
reassign, 16-30
release, 16-30
renew, 16-30
request more information, 16-30
request more information with reapproval, 16-30
resume, 16-30
route, 16-30
submit more information, 16-30
suspend, 16-30
update task details, 16-29
withdraw, 16-31

task continuation, 16-9, 16-56
changing a new workflow to an extended

workflow, 16-58
customizing, 16-58
customizing applicable to the workflow pattern

applies to the extended workflow also, 16-58
no pattern-specific parameters, 16-58
restrictions, 16-57
use case, 16-58

task field updates
in worklists, 17-24

task history
in worklists, 17-14

task notification variables
message variables, 16-62

task notifications
channels, 16-61
e-mail approval, 16-62
messages, 16-61
reminders, 16-63

task reassignment
in worklists, 17-22

TaskActionHandler component
definition, 16-4, B-3
WSDL operations, B-3

TaskManagementService component
definition, 16-4

Index-18

TaskManager component
definition, B-1, D-2
integrating with a BPEL process, D-6
integrating with Eclipse BPEL Designer, D-8
WSDL operations, B-1

TaskRoutingService component
definition, 16-5, B-2
WSDL operations, B-2

tasks, 16-21
acquired, 16-21
actional e-mail account configuration, 16-74
actions performed on, 16-29
adding a task attachment from a business

process, 16-26
assigning a task to a user or role, 16-6, 16-19
assigning dynamically with XPath

expressions, 16-19
assigning statically, 16-19
assignment evaluations, 16-20
assignments based on external services, 16-21
attributes, 16-11
autorelease duration configuration, 16-73
creator, 16-12
custom Worklist Application configuration, 16-74
definition, 16-2
delegations, 16-7
dynamic assignments, 16-20
escalations, 16-7
expiration duration, 16-12
expirations, 16-7
flex fields, 16-15
identification key, 16-12
in worklist, 17-2
notifications and reminders, 16-19, 16-60
outcomes, 16-13
payload, 16-11
payload display, 16-12, 16-64, 16-71
perform system actions, 16-30
priority, 16-12
resource bundles, 16-19
restricted actions, 16-16
routing, 16-7
selecting users or group by browsing the user

directory, 16-23
sequential tasks, 16-20
service configuration, 16-73
setting task assignees from a dynamic delimited

string, 16-22
single assignments, 16-20
static assignments, 16-20
title, 16-11
version-tracking attributes, 16-17
workflow task attributes assigned using assign

activities, 16-11
TCP tunneling

definition, 6-8
terminate activity

capabilities, C-16
definition, 9-10
fault handling, 9-10

references, 1-10
third-party interactions

definition, 13-10
throw activity

capabilities, C-17
references, 1-10
throwing internal faults, 9-7

time
assigning, 4-9

time duration format, 11-3
TimeOffRequestDemo

demos, 1-8
timeouts

designing with JDeveloper BPEL Designer, 11-4
increasing the syncMaxWaitTime property, 11-7
of BPEL processes, 11-2
use case, 11-2
using pick activities, 11-2
using the wait activity, 11-4
with synchronous processes, 11-7

timezone-from-dateTime extension function
description, G-37

transform activity
capabilities, C-17
creating, 14-2

transformation functions
Component Palette, 2-9

transformations
adding XSLT constructs, 14-11
auto mapping, 14-14
auto mapping with confirmation, 14-16
chaining functions, 14-9
creating, 14-2
creating an XSL map, 14-5
definition, 2-23
demos, 1-9
dictionaries, 14-18
editing functions, 14-8
editing XPath expressions, 14-9
functions, 14-7
generating reports, 14-20
in JDeveloper BPEL Designer, 2-23
linking source target nodes, 14-6
repeating elements, 14-13
rules, 14-5
setting constant values, 14-6
testing the map file, 14-18
tutorials, 1-11
use case, 14-2
user-defined functions, 14-9
using arrays, 14-13
using the XSLT Mapper, 14-5
using XQuery and XSLT, 4-4
XPath extension functions prefixed with xp20 or

orcl, 14-7
xsl choose conditional processing, 14-12
xsl if conditional processing, 14-11

translateFromNative extension function
description, G-38

translateToNative extension function

Index-19

description, G-38
troubleshooting and workarounds

Oracle BPEL Worklist Application, A-3
sensors, A-1

tutorials
101.HelloWorld, 1-10
102.InvokingProcesses, 1-10
103.XMLDocuments, 1-10
104.SyncQuoteConsumer, 1-10
105.AsyncCompositeLoanBroker, 1-10
106.ParallelFlows, 1-10
107.Exceptions, 1-10
108.Timeouts, 1-10
109.CorrelationSets, 1-11
110.UserTasks, 1-11
111.CallingSessionBeans, 1-11
112.Arrays, 1-11
113.ABCARouting, 1-11
114.XSLTTransformations, 1-11
116.SendEmails, 1-11
117.ReceiveEmails, 1-11
118.JMSService, 1-11
119.JMSTopics, 1-11
120.XSQLExecution, 1-11
125.ReportsSchema, 1-11
126.DataAggregator, 1-11
127.OrderBookingTutorial, 1-11
128.GoogleFlow, 1-11
130.SendEmailWithAttachments, 1-11
701.LargeProcesses, 1-12
702.Bindings, 1-12
AQ adapter, 1-11
arrays, 1-11
asynchronous services, 1-11
batching, 1-11
BPEL exec extension, 1-11
conditional branching logic, 1-11
correlation sets, 1-11
database adapter, 1-11
debatching, 1-11
dynamic assignments in workflows, 16-21
EJB, 1-12
e-mails, 1-11
exceptions, 1-11
fault handling, 1-10, 1-11
file adapter, 1-11
file handler, 1-11
flow activity, 1-10
FTP adapter, 1-11
Hello World tutorial, 3-1
HTTP get method, 1-12
invoke activity, 1-10
Java method, 1-12
JMS, 1-11
JMS adapter, 1-11
JSP, 1-10
location of, 1-7
message service, 1-11
notifications, 1-11
parallel flows, 1-10, 1-11

pick activity, 1-10
receive activity, 1-10
reports, 1-11
RMI, 1-10
sensors, 1-11
synchronous services, 1-11
transformations, 1-11
user task activity, 1-11
workflow vacation request example, 16-98
workflows, 1-11
XML facades, 10-3
XML variables, 1-10
XSLT Mapper, 1-11
XSQL, 1-11

U
UDDI directories

browsing for services, 5-5
undeployment

of BPEL processes, 19-15
upper-case extension function

description, G-38
use with identity services, 16-2
use with LDAP, 16-2
user directory

selecting notification recipients by browsing the
directory, 15-13

selecting users or groups in workflows, 16-23
user information

in worklists, 17-29
user properties

setting for notifications, 16-61
User Task 2.0 Macro

available for backwards compatibility only, 16-9,
D-2

cannot be extended, 16-57
definition, 16-9, D-2
implementation, 16-56
task document fields, D-5
tasks cannot be viewed in the Oracle BPEL

Worklist Application, 16-56
use case, D-2
workflow pattern, 16-9

user task activity
capabilities, C-18
creating, 16-31, 16-34, 16-38, 16-42, 16-51
tutorials, 1-11

userControls element, 16-81
user-properties.xml file

location of, 16-61
users

automatically created, 16-75
bpeladmin, 16-75
controlling access to in worklists, 17-39
creating, 16-77
default, 16-75
guest, 16-75
properties, 16-78

usersFunction

Index-20

approver function, 16-96
using this guide, 1-5
utils

location of, 1-7

V
vacation request example

workflow tutorial, 16-98
VacationRequest

demos, 1-9
validation

when loading a process diagram, C-2
variable sensors

definition, 18-1
variables

complex type, 4-6
copying data between, 4-5
for task notification, 16-62
global, 3-10
initializing with expression constants, 4-4
initializing with literal XML, 4-4

versions
default, 19-15
definition, 19-3, 19-5
deployment of multiple versions of the same

process, 19-3
do not overwrite existing versions of a process

with newer versions in a production
environment, 19-15

in production and development
environments, 19-4

life cycles, 19-13
of BPEL processes, 19-3, 19-5
overwriting, 19-3

version-tracking attributes
code example, 16-17
in tasks, 16-17

visual flow
viewing the visual audit trail, 3-19

voice mail
configuring wireless service provider support for

voice, 15-11
dynamically setting telephone numbers, 15-13
notifications support, 15-10

W
wait activity

capabilities, C-19
code example, 11-4
definition, 11-4
references, 1-10

Web interfaces
interacting with BPEL processes, 12-2

Web Service/SOAP interface
invoking a BPEL process, 12-6

WebLogic
JMS, 1-11

wf_config.xml file

location of, 16-62, 16-74
while activity

capabilities, C-20
in conditional branching logic, 8-4
references, 1-10

while loop
demos, 1-8

wireless service provider for SMS, 15-13
wireless service provider for voice, 15-11
withdraw

task action, 16-31
workflow patterns

adhoc workflow, 16-9, 16-54
extending, 16-9, 16-56
FYI task, 16-9, 16-55
parallel workflow, 16-9, 16-49
parallel workflow with final reviewer, 16-9, 16-52
restrictions on extending, 16-57
sequential workflow, 16-9, 16-40
sequential workflow with escalation, 16-9, 16-46
simple workflow, 16-9, 16-31
simple workflow with automatic

escalation, 16-33
simple workflow with automatic renewal, 16-37
simple workflow with escalation, 16-9
simple workflow with renewal, 16-9
User Task 2.0 Macro, 16-9, 16-56

Workflow wizard
designing workflows, 16-10

workflows
actions performed on a task, 16-29
adding a task attachment from a business

process, 16-26
approver function examples, 16-96
approver functions, 16-95
assigning a task to a user or role, 16-6
creating a user task activity, 16-34, 16-38, 16-42,

16-51
default JSP customizing, 16-67
definition, 2-23, 16-1
deleting, 16-11
demos, 1-8, 1-9
deploying the default JSP to OC4J, 16-71
design process, 16-10
designing in JDeveloper BPEL Designer, 16-10
editing, 16-11
extending patterns, 16-9, 16-56
features, 16-2
Identity service component, 16-5
in JDeveloper BPEL Designer, 2-23
JSP custom display, 16-72, 16-73
JSP default file customizing, 16-69
JSP default XML mapping file customizing, 16-67
JSP form, 16-65
multibyte payload in the task detail JSP, 16-71
notification, 16-60

definition, 16-2
notification service, 16-3
Notification service component, 16-5
notifications and reminders, 16-19

Index-21

Oracle BPEL Worklist Application, 16-3
outcome-based modeling, 16-59
patterns, 16-8
patterns of flow, 16-7
procurement process example, 16-3
resource bundles, 16-19
restrictions on extending patterns, 16-57
selecting users or group by browsing the user

directory, 16-23
storage of task history for auditing, 16-2
support for identity service, 16-2
support for JSP-based forms, 16-2
support for multiple workflow patterns, 16-2
support for task delegation, escalation, and

reapproval, 16-2
support for task expiration and automatic

renewal, 16-2
task

definition, 16-2
task assignment, 16-19
task assignment and routing

definition, 16-2
task assignment evaluations, 16-20
task assignments based on external

services, 16-21
task continuation, 16-9, 16-56
task continuation restrictions, 16-57
task creator, 16-12
task expiration duration, 16-12
task flex fields, 16-15
task identification key, 16-12
task notifications, 16-60
task outcomes, 16-13
task payload, 16-11
task payload display, 16-12, 16-64
task priority, 16-12
task restricted actions, 16-16
task service configuration, 16-73
task title, 16-11
TaskActionHandler component, 16-4
TaskManagementService component, 16-4
TaskRoutingService component, 16-5
tasks acquired, 16-21
tutorials, 1-11
use cases, 16-6
vacation request example, 16-98
version-tracking attributes, 16-17
worklist

definition, 16-2
Worklist Application component, 16-5
XPath extension functions, 16-89

workflows using XSLT
task payload display, 16-71

Worklist Application component
definition, 16-5

worklists
accessing in local languages, 17-33
adding attachments, 17-20
adding comments, 17-19
advanced searches, 17-31

building a worklist application using the
APIs, 17-40

building a worklist application using the remote
APIs, 17-45

controlling access to information and actions for
users, 17-39

customizing the Oracle BPEL Worklist
Application, 17-34

definition, 2-23, 16-2
deleting attachments, 17-21
demos, 1-8
determining action permissions, 17-32
errors, 17-28
flex and task field updates, 17-24
in JDeveloper BPEL Designer, 2-23
logging into the Oracle BPEL Worklist

Application, 17-4
Oracle BPEL Worklist Application, 17-4
Oracle BPEL Worklist Application action

permission determination, 17-32
Oracle BPEL Worklist Application attachment

adding, 17-20
Oracle BPEL Worklist Application attachment

deleting, 17-21
Oracle BPEL Worklist Application attachment

parallel tasks, 17-23
Oracle BPEL Worklist Application

comments, 17-19
Oracle BPEL Worklist Application

customizing, 17-34
Oracle BPEL Worklist Application errors, 17-28
Oracle BPEL Worklist Application flex and task

field updates, 17-24
Oracle BPEL Worklist Application home page

contents, 17-6
Oracle BPEL Worklist Application local language

access, 17-33
Oracle BPEL Worklist Application payload

viewing, 17-17
Oracle BPEL Worklist Application payload

viewing of source XML, 17-18
Oracle BPEL Worklist Application request

status, 17-26
Oracle BPEL Worklist Application requests for

more information, 17-13
Oracle BPEL Worklist Application routing, 17-12
Oracle BPEL Worklist Application Task Actions

list, 17-10
Oracle BPEL Worklist Application Task Details

page contents, 17-9
Oracle BPEL Worklist Application task

history, 17-14
Oracle BPEL Worklist Application task

reassignment, 17-22
Oracle BPEL Worklist Application user and group

information, 17-29
Oracle BPEL Worklist Application visual display

of changes, 17-33
parallel tasks, 17-23
payload viewing, 17-17

Index-22

payload viewing for source XML, 17-18
request status, 17-26
requesting more information, 17-13
routing, 17-12
setting task assignees from a dynamic delimited

string, 16-22
task actions, 17-2, 17-10
task history, 17-14
task reassignment, 17-22
tasks, 17-2
use cases, 17-1
user and group information, 17-29
visual display of changes, 17-33

workspaces
creating in Eclipse BPEL Designer, 2-13
creating in JDeveloper BPEL Designer, 2-3
definition, 2-3

WS-Addressing, 6-6
definition, 6-6, 6-7
header includes correlation and callback address

information, D-6
sending correlation IDs, 6-6

WSDL files
definition, 2-5
differences between document-literal styles and

RPC styles, 4-1, 4-16
editing, 3-5
in Hello World tutorial, 3-4
modifying to generate a fault, 9-11
specifying when creating a partner link, 2-21

WSDL operations
Identity service component, B-3
Notification service component, B-2
TaskActionHandler component, B-3
TaskManager component, B-1
TaskRoutingService component, B-2

WSIF binding
definition, 10-2
for using Java code in a BPEL process, 10-2

WSIL directories
browsing for services, 5-5

X
XML data in BPEL, 4-2
XML documents

manipulating, 4-2, 4-4
overview, 4-2, 4-4

XML facades, D-14
definition, 10-3
generating with schemac, 10-3, 19-24
Java embedding, 10-3
tutorials, 10-3

XML schema
message types and variable types, 4-1

XML variables
tutorials, 1-10

XPath, 4-2
XPath expression functions

mimic XPath 2.0 standards, 16-89

XPath expressions
assigning numeric values, 4-6
assigning workflow tasks with, 16-19
dynamically creating another XPath

expression, 4-12
dynamically setting e-mail addresses and

telephone numbers, 15-13
editing in transformations, 14-9
entering Boolean expressions is switch

activities, 8-4
examples, 4-3
fetching a data sequence element, 4-12
for notification messages, 16-61
getVariableData, 16-20
in conditional branching logic, 8-2

XPath extension functions, G-1
abs, G-1
addChildNode, G-2
add-dayTimeDuration-to-dateTime, G-1
addQuotes, G-2
appendToList, G-3
authenticate, G-3
batchProcessActive, G-3
batchProcessCompleted, G-4
clearTaskAssignees, G-4
compare, G-4
compare-ignore-case, G-5
copyList, G-5
countNodes, G-6
createDeliminatedString, G-7
create-delimited-string, G-6
create-nodeset-from-deliminated-string, G-7
current-date, G-7
current-dateTime, G-8
current-time, G-8
day-from-dateTime, G-8
doc, G-9
ends-with, G-9
format, G-9
formatDate, G-10
format-dateTime, G-10
format-string, G-10
genEmptyElem, G-11
generateGUID, G-11
generate-guid, G-11
getChildElement, G-13
getContentAsString, G-13
get-content-as-string, G-12
getConversationId, G-13
getCreator, G-14
getCurrentDate, G-14
getCurrentDateTime, G-14
getCurrentTime, G-14
getDomainId, G-15
getElement, G-15
getGroupIdsFromGroupAlias, G-15
getGroupProperty, G-16
getInstanceId, G-16
getLinkStatus, G-16
get-localized-string, G-12

Index-23

getManager, G-17
getMessage, G-17
getNodes, G-18
getNodeValue, G-17
getNumberOfTaskApprovals, G-18
getPreference, G-18
getPreviousTaskApprover, G-18
getProcessId, G-19
getProcessOwnerId, G-19
getProcessURL, G-19
getProcessVersion, G-19
getReportees, G-20
getTaskAttachmentByIndex, G-20
getTaskAttachmentByName, G-20
getTaskAttachmentContents, G-21
getTaskAttachmentsCount, G-21
getTaskAutoReleaseDuration, G-21
getTaskReminderDuration, G-21
getUserAliasId, G-22
getUserIdsFromGroupAlias, G-22
getUserProperty, G-22
getUserRoles, G-23
getUsersInGroup, G-23
getVariableData, G-24
getVariableProperty, G-24
hours-from-dateTime, G-25
implicit-timezone, G-25
index-within-string, G-25
integer, G-26
isUserInRole, G-26
last-index-within-string, G-26
left-trim, G-27
listUsers, G-28
location of descriptions, 4-3
lookupGroup, G-29
lookup-table, G-28
lookupUser, G-27, G-29
lookup-xml, G-29
lower-case, G-30
matches, G-30
max-value-among-nodeset, G-30
mergeChildNodes, G-31
minutes-from-dateTime, G-32
min-value-among-nodeset, G-31
month-from-dateTime, G-32
ora

getGroupProperty, 16-91
getManager, 16-91
getNumberOfTaskApprovals, 16-92
getPreviousTaskApprover, 16-92
getReportees, 16-92
getTaskAttachmentByIndex, 16-93
getTaskAttachmentByName, 16-94
getTaskAttachmentContents, 16-94
getTaskAttachmentsCount, 16-93
getUserInRole, 16-92
getUserProperty, 16-91
getUserRoles, 16-92
getUsersInGroup, 16-92
lookupGroup, 16-90

lookupUser, 16-89
orcl

format-string, 16-95
get-localized-string, 16-95

parseEscapedXML, G-32
prefixed with xp20 or orcl, 14-7
processXSLT, G-33
processXSQL, G-33
query-database, G-34
readFile, G-34
right-trim, G-34
search, G-35
seconds-from-dateTime, G-35
sequence-next-val, G-35
setNodeValue, G-36
square-root, G-36
subtract-dayTimeDuration-from-dateTime, G-37
timezone-from-dateTime, G-37
translateFromNative, G-38
translateToNative, G-38
upper-case, G-38
workflow related, 16-89
year-from-dateTime, G-39

XPath functions
concat, 4-8
countNodes, 4-12
custom, 4-4
dynamically setting e-mail addresses and

telephone numbers, 15-13
examples, 4-3
getCurrentDate, 4-9
getCurrentDateTIme, 4-9
getCurrentTime, 4-9
getElement, 4-14
in transformations, 14-7
indexing methods, 4-11
mathematical calculations, 4-7
mergeChildNodes, 4-15
orcl

get-localized-string(), 16-19
parseEscapedXML, 4-16
position, 4-11
references, 1-9, 1-10
selecting an data sequence element, 4-11

XPath queries
copying data, 4-6
examples, 4-3
references, 1-10

XQuery, 3-15, 4-2, 4-4
xsl choose

conditional processing, 14-12
xsl if

conditional processing, 14-11
XSL map

creating, 14-5
XSLMapper

demos, 1-9
XSLT, 3-15, 4-2, 4-4

Oracle BPEL Worklist Application payload
display, 16-71

Index-24

XSLT constructs
adding in transformations, 14-11

XSLT Mapper
adding XSLT constructs, 14-11
auto mapping, 14-14
auto mapping with confirmation, 14-16
chaining functions, 14-9
creating a map file, 14-3
creating a transform activity, 14-2
creating an XSL map, 14-5
demos, 1-9
dictionaries, 14-18
editing functions, 14-8
editing XPath expressions, 14-9
functions, 14-7
generating reports, 14-20
layout in JDeveloper BPEL Designer, 14-3
linking source and target nodes, 14-6
repeating elements, 14-13
rules, 14-5
setting constant values, 14-6
testing the map file, 14-18
tutorials, 1-11
use case, 14-2
user-defined functions, 14-9
using, 14-5
using arrays, 14-13
XPath extension functions prefixed with xp20 or

orcl, 14-7
xsl choose conditional processing, 14-12
xsl if conditional processing, 14-11

XSQL
tutorials, 1-11

Y
year-from-dateTime extension function

description, G-39

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Related Documents
	Conventions

	Part I Introduction and Concepts
	1 Introduction to Oracle BPEL Process Manager
	What Is BPEL?
	What Is Oracle BPEL Process Manager?
	What Is the BPEL Designer?
	JDeveloper BPEL Designer
	Eclipse BPEL Designer

	How to Use This Guide
	Tutorials and Demonstrations
	Summary

	2 Getting Started with Oracle BPEL Process Manager
	Overview of Oracle BPEL Process Manager Components
	Starting Oracle BPEL Process Manager Components
	Overview of BPEL Designer Environments
	Overview of JDeveloper BPEL Designer
	Applications Navigator
	Diagram View Window
	Source Window
	Component Palette
	Property Inspector
	Structure Window
	Log Window

	Overview of Eclipse BPEL Designer
	Navigator
	Process Map and Overview Windows
	BPEL Source Window
	BPEL Inspector
	Log Window
	BPEL Palette

	Overview of Activities
	Overview of Partner Links
	Overview of Oracle BPEL Server
	Overview of Oracle BPEL Console
	Overview of Oracle BPEL Process Manager Services
	Overview of Oracle BPEL Process Manager Technology Adapters
	Summary

	3 Building a Simple BPEL Process
	Overview of Building a Simple BPEL Process
	Creating a New BPEL Project Using Eclipse BPEL Designer
	Browsing a New Project
	Viewing the WSDL Interface of a BPEL Process
	Switching Between the Overview, Process Map, and Source Code
	Viewing an Overview of a BPEL Process
	Viewing a Detailed Process Map
	Viewing BPEL Source Code

	Reviewing the BPEL Source Code
	Understanding the Sequence Activity
	Understanding the Assign Activity

	Adding an Assign Activity to the Process Map
	Step 1: Viewing the Process Map
	Step 2: Inserting an Assign Activity
	Step 3: Adding a Copy Rule
	Step 4: Defining the From Part (Source) of the Copy Rule
	Step 5: Defining the To Part (Destination) of the Copy Rule

	Compiling and Deploying the BPEL Process
	Testing the BPEL Process
	Summary

	Part II Reviewing Key BPEL Development Concepts and Code Samples
	4 Manipulating XML Data in BPEL
	How XML Data Works in BPEL
	About Data Manipulation and XPath Standards
	Initializing a Variable with Expression Constants or Literal XML
	Copying Between Variables
	Accessing Fields within Complex Type Variables
	Assigning Numeric Values
	Mathematical Calculations with XPath Standards
	Assigning String Literals
	Concatenating Strings
	Assigning Boolean Values
	Assigning Date or Time
	Manipulating Attributes
	Manipulating XML Data Sequences/Arrays
	Statically Indexing into an XML Data Sequence
	Determining Sequence Size
	Dynamically Indexing by Applying a Trailing XPath to an Expression
	Dynamic Indexing Example
	Appending New Items to a Sequence
	Merging Data Sequences
	Dynamically Indexing with the BPEL getElement Function
	Merging Data Sequences/Arrays
	Appending New Items to a Sequence/Array

	Converting from a String to an XML Element
	Differences Between Document-Style and RPC-Style WSDL Files
	Summary

	5 Invoking a Synchronous Web Service
	Use Case
	Synchronous Service Concepts
	Examples
	The Partner Link
	Port Types
	partnerLinkTypes for Synchronous Services
	UDDI and WSIL Directories
	The Invoke Activity

	Calling a Synchronous Service
	Summary

	6 Calling an Asynchronous Web Service
	Introduction
	Use Case
	Understanding Asynchronous Callback Concepts
	partnerLinkTypes for Asynchronous Services
	Calling the Service from BPEL
	Invoke and Receive Activities
	Correlations
	WS-Addressing
	Correlation Sets

	The Reply Activity
	Dehydration

	Calling an Asynchronous Service
	Adding a Partner Link for an Asynchronous Service
	Adding an Invoke Activity
	Adding a Receive Activity
	Performing Additional Activities

	Questions and Answers
	Summary

	7 Parallel Flow
	Introduction
	Use Case
	Understanding Parallel Flow Concepts
	Defining a Parallel Flow
	The flowN Activity
	BPEL Code Example of the FlowN Activity

	Summary

	8 Conditional Branching
	Introduction
	Use Case
	Understanding Conditional Branching Concepts
	Conditional Branching
	Adding a Switch Activity

	The While Activity
	Summary

	9 Fault Handling
	Introduction
	Use Case
	Defining a Fault Handler
	Taxonomy of BPEL Faults
	Using the Scope Activity
	Throwing Internal Faults
	Returning External Faults
	Returning a Fault in a Synchronous Interaction
	Returning a Fault in an Asynchronous Interaction

	Fault Handler Within a Scope
	The Empty Activity at runtime

	Compensation
	The Terminate Activity
	Catching Run-Time Faults Example
	Eclipse BPEL Designer Example
	Summary

	10 Incorporating Java/J2EE Code in BPEL Processes
	Introduction
	Use Case
	Using Java Code with WSIF Binding
	Using Java Code Wrapped as a SOAP Service
	Embedding Java Code in BPEL
	The bpelx:exec Tag
	XML Facade
	bpelx:exec Built-in Methods

	JDeveloper BPEL Designer Example
	Summary

	11 Events and Timeouts
	Introduction
	Use Case
	The pick Activity
	The Wait Activity
	JDeveloper BPEL Designer Example
	Synchronous Processes
	Summary

	12 Invoking a BPEL Process
	Introduction
	Use Case
	Sending Messages to a BPEL Process from a Java/JSP Application
	Invoking a BPEL Process with the Generic Java API
	Connecting to Oracle BPEL Process Manager with the Locator Class
	Passing XML Messages through Java
	Invoking a Two-Way Operation through the Java API
	Invoking a One-Way Operation through Java API

	Retrieving Status/Results from Asynchronous BPEL Processes
	Using the Java API from a Remote Client

	Invoking a BPEL Process with the Web Service/SOAP Interface

	Summary

	13 Interaction Patterns
	Introduction
	One-Way Message
	BPEL Process as the Client
	BPEL Process as the Service

	Synchronous Interaction
	BPEL Process as the Client
	BPEL Process as the Service

	Asynchronous Interaction
	BPEL Process as the Client
	BPEL Process as the Service

	Asynchronous Interaction with Timeout
	BPEL Process as the Client
	BPEL Process as the Service

	Asynchronous Interaction with a Notification Timer
	BPEL Process as the Client
	BPEL Process as the Service

	One Request, Multiple Responses
	BPEL Process as the Client
	BPEL Process as the Service

	One Request, One of Two Possible Responses
	BPEL Process as the Client
	BPEL Process as the Service

	One Request, a Mandatory Response, and an Optional Response
	BPEL Process as the Client
	BPEL Process as the Service

	Partial Processing
	BPEL Process as the Client
	BPEL Process as the Service

	Third-Party Interactions
	Summary

	Part III Oracle BPEL Process Manager Services
	14 XSLT Mapper and Transformations
	Use Case for Transformation
	Creating a Transform Activity
	The XSLT Mapper
	Notes on the Mapper

	Step 1: Creating an XSL Map
	Step 2: Using the Mapper
	Simple Copy by Linking Nodes
	Setting Constant Values
	Functions
	Editing Function Parameters
	Chaining Functions
	Named Templates and User-Defined Functions

	Editing XPath Expressions
	Adding XSLT Constructs
	Conditional Processing with xsl:if
	Conditional Processing with xsl:choose
	Handling Repetition or Arrays

	Auto Mapping
	Auto Map with Confirmation

	Generating Dictionaries

	Step 3: Testing the Map
	Test Window
	Generating Reports

	Summary

	15 Oracle BPEL Process Manager Notification Service
	Use Cases for Notification Service
	Overview of Notification Service Concepts
	Configuring Notification Service in JDeveloper BPEL Designer
	The E-mail Notification Channel
	Setting E-mail Attachments
	Configuring the E-mail Server
	Example ns_emails.xml File

	The Voice Notification Channel
	Configuring the Wireless Service Provider for Voice
	Example ns_iaswconfig.xml File

	The SMS Notification Channel
	Configuring the Wireless Service Provider for SMS

	Setting E-mail Addresses and Telephone Numbers Dynamically
	Selecting Notification Recipients by Browsing the User Directory
	Starting Business Processes with the E-mail Activation Agent

	Summary

	16 Oracle BPEL Process Manager Workflow Services
	Overview of Workflow Services
	Workflow Functionality: A Procurement Process Example
	Workflow Services Components

	Use Cases for Workflow Services
	Assigning a Task to a User or Role
	Using the Various Flow Patterns
	Escalation, Expiration, and Delegation
	The Worklist Application

	Workflow Patterns
	The Modeling Process
	Editing or Deleting a Workflow
	Task Details and Configurations
	Task Attributes
	Task Outcomes
	Advanced Task Configurations
	Flex Fields
	Restricted Actions
	Version-Tracking Attributes
	Task Notifications and Reminders
	Resource Bundles

	Task Assignment
	Task Assignment Evaluation
	Task Assignment Based on External Services
	Assigning a Task to a Specific User of a Role and Marking It As Acquired
	Setting Task Assignees from a Dynamic Delimited String
	Selecting Users or Groups by Browsing the User Directory

	Adding a Task Attachment from a Business Process
	Actions Performed on a Task
	Simple Workflow
	Use Case
	Customizations for Simple Workflow

	Simple Workflow with Automatic Escalation
	Use Case
	Pattern-Specific Parameters
	Customizations for Simple Workflow with Automatic Escalation

	Simple Workflow with Automatic Renewal
	Use Case
	Pattern-Specific Parameters
	Customizations for Simple Workflow with Automatic Renewal

	Sequential Workflow
	Use Cases
	Pattern-Specific Parameters
	Customizations for Sequential Workflow

	Sequential Workflow with Escalation
	Use Case
	Pattern-Specific Parameters
	Customizations for Sequential Workflow with Escalation

	Parallel Workflow
	Use Case
	Pattern-Specific Parameters
	Customizations for Parallel Workflow

	Parallel Workflow with Final Reviewer
	Use Case
	Pattern-Specific Parameters
	Customizations for Parallel Workflow with Final Reviewer

	Adhoc Workflow
	Use Case
	Customizations for Adhoc Workflow

	FYI Tasks
	Use Case
	Customization for FYI Tasks

	The User Task 2.0 Macro
	Task Continuations
	Use Case
	Pattern-Specific Parameters
	Customization for Task Continuations

	Outcome-Based Modeling
	Payload Updates
	Case Statements for Other Task Conclusions

	Task Notifications
	Channels Used for Notification
	Notification Messages
	E-mail Approval
	Reminders

	Payload Display
	Autogenerated JSP
	Customizing the Autogenerated JSP
	Customizing the Mapping File
	Customizing the Default JSP
	Multibyte Payload in the Task Detail JSP

	Deploying the Autogenerated JSP
	XSL
	The Custom JSP URL
	APIs
	Customizing the Complete Task JSP

	Configuration for Task Service
	Autorelease Duration
	Actionable E-mail Accounts
	Worklist Application URL

	Identity Service
	Identity Service Providers
	The JAZN Provider
	XML-Based JAZN Provider Type
	LDAP-Based JAZN Provider Type (Oracle Internet Directory)

	Third-Party LDAP Server
	Custom User Repository Plug-ins

	Creating Users and Groups
	User and Role Properties
	Configuring Identity Service
	Structure of the Identity Service Configuration File
	connection Element
	userControls and roleControls Elements
	provider Element

	Configuration for the XML-Based JAZN Provider
	Configuration for the LDAP-Based JAZN Provider (OID)
	OID Configuration
	Middle-Tier Configuration

	Configuration for a Third-Party LDAP Server
	Configuration for CUSTOM User Repository Plug-ins

	Workflow-Related XPath Extension Functions
	Approver Functions
	Approver Function Syntax
	Approver Function Examples

	Vacation Request Example
	Prerequisites
	Getting Started: Modeling the Vacation Request Process
	Running the Example

	Summary

	17 Worklist Application
	Use Cases for the Worklist Application
	Overview of Worklist Application Concepts
	Logging In to the Worklist Application
	Features of the Sample Worklist Application
	Task Actions
	Routing
	Requesting More Information
	Task History and Sequence (Version) Numbers
	The Payload
	Comments
	Attachments
	Reassignment
	Parallel Tasks
	Flex Fields and Task Fields Updates
	Request Status
	Error Information
	User and Group Information
	Advanced Search
	Determining Action Permissions

	How Changes to a Workflow Appear in the Worklist Application

	Accessing the Worklist Application in Local Languages
	Customizing the Worklist Application
	Worklist Application Architecture
	Login Page
	Header Info
	Task Home (Listing) Page
	Task Details Page
	Additional Pages
	Configuration Parameters

	Controlling Access to Information and Actions for Different Users

	Building a Worklist Application Using the Worklist Service APIs
	Worklist Service APIs
	Example: Reassigning a Task in a Worklist Application

	Building a Worklist Application Using the Worklist Service Remote APIs
	Summary

	18 Sensors
	Use Cases for Sensors
	Overview of Sensor Concepts
	Sensor Public Views
	BPEL Reporting Schema

	Implementing Sensors and Sensor Actions in JDeveloper BPEL Designer
	Configuring Sensors
	Configuring Sensor Actions
	Creating a Custom Data Publisher
	Registering the Sensors and Sensor Actions in bpel.xml

	Sensors and Oracle BPEL Console
	Viewing Sensor and Sensor Action Definitions
	Viewing Sensor Data

	Summary

	Part IV Part IV Development Life Cycle
	19 BPEL Process Deployment and Domain Management
	Compiling and Deploying a BPEL Process
	Compiling and Deploying on JDeveloper BPEL Designer
	Compiling Without Deploying on JDeveloper BPEL Designer

	Compiling and Deploying on Eclipse BPEL Designer
	BPEL Suitcase JAR File

	Creating and Managing a BPEL Domain
	Changing the Default Domain Password
	Changing Oracle BPEL Admin Console Password
	Creating a BPEL Domain
	Changing Oracle BPEL Server Mode
	Deploying a BPEL Suitcase to a Specific Domain
	Location of BPEL JAR Suitcase Files in a Specific Domain
	Undeploying a BPEL Process from a Specific Domain

	Viewing BPEL Processes in Oracle BPEL Console
	Dashboard Tab: Viewing Processes
	BPEL Processes Tab: Managing the Process Life Cycle
	Process Life Cycle Recommendations for a Development Environment
	Process Life Cycle Recommendations for a Production Environment
	Example: Life Cycle of Processes

	Instances Tab: Viewing Process Instances
	Activities Tab: Viewing Process Activities

	Build and Command Line Tools
	Apache Ant
	bpelc
	Examples

	schemac
	Examples

	Summary

	Part V Reference Information
	A Troubleshooting and Workarounds
	Troubleshooting Sensors-The Custom Data Publisher
	Poor JMS Performance When Creating or Destroying Connections
	Data Publisher Is Not Working
	Data Publisher Works, But Business Process Runs Slowly
	Caching Data in the Data Publisher Is Not Supported
	Unexpected Errors in the Data Publisher
	Data Extracted to XML Is Difficult to Work With

	Troubleshooting Oracle BPEL Worklist Application
	Not Able to Log In to the Worklist Application
	Information Is Displayed in a Different Language
	Dates and Times Are Displayed Incorrectly
	The User Is Not Permitted to Perform an Action
	Expected Task Is Not Listed Under Task Titles

	Summary

	B Workflow and Notification Reference
	Task Manager Service WSDL Operations
	Task Routing Service WSDL Operations
	Notification WSDL Operations
	Identify Service Operations
	Task Action Handler Business Process
	Summary

	C JDeveloper BPEL Designer Activities
	Validating when Loading a Process Diagram
	Activities Overview
	Tabs Common to Many Activities
	Assign Activity
	Catch Activity
	Compensate Activity
	Empty Activity
	Flow Activity
	FlowN Activity
	Invoke Activity
	Java Embedding Activity
	Notification Activity
	PartnerLink Activity
	Pick Activity
	Receive Activity
	Reply Activity
	Sequence Activity
	Scope Activity
	Switch Activity
	Terminate Activity
	Throw Activity
	Transform Activity
	User Task
	Wait Activity
	While Activity

	Summary

	D User Task 2.0 Macro
	Introduction to User Task 2.0 Macro
	BPEL User Task Use Case
	The TaskManager Service
	Integrating the TaskManager Service into a BPEL Process
	Defining a Partner Link for the TaskManager Service
	Declare and Initialize the Task Document
	Initiate the Task
	Task Completion

	Using Eclipse BPEL Designer to Integrate the TaskManager Service
	Creating a User Interface for the Task
	List the Assigned Tasks
	Display the Payload Data for a Task
	Update the Payload Data and Complete the Task

	Additional Capabilities of the TaskManager Service
	Enabling Expiration/Timeouts for Tasks
	Sending Notifications
	Reassigning Tasks
	Assigning Tasks to Groups and Resolving Roles

	Summary

	E Deployment Descriptor Properties
	Deployment Descriptor Preference Properties
	Defining a Preference Property
	Updating a Preference at Run Time
	Getting the Value of a Preference within a BPEL Process
	Encrypting a Preference Value
	Use Case for Preference Properties

	Deployment Descriptor Configuration Properties
	Defining a Configuration Property

	Summary

	F Demo User Community
	Setting Up JAZN Demo Users
	Demo Users and Roles
	Using the Demo User Community in the Order Booking Tutorial

	Summary

	G XPath Extension Functions
	XPath Extension Functions Available to BPEL Processes
	abs
	Property IDs

	add-dayTimeDuration-to-dateTime
	Property IDs

	addChildNode
	Property IDs

	addQuotes
	Property IDs

	appendToList
	Property IDs

	authenticate
	Property IDs

	batchProcessActive
	Property IDs

	batchProcessCompleted
	Property IDs

	clearTaskAssignees
	Property IDs

	compare
	Property IDs

	compare-ignore-case
	Property IDs

	copyList
	Property IDs

	countNodes
	Property IDs

	create-delimited-string
	Property IDs

	create-nodeset-from-deliminated-string
	Property IDs

	createDeliminatedString
	Property IDs

	current-date
	Property IDs

	current-dateTime
	Property IDs

	current-time
	Property IDs

	day-from-dateTime
	Property IDs

	doc
	Property IDs

	ends-with
	Property IDs

	format
	Property IDs

	format-dateTime
	Property IDs

	format-string
	Property IDs

	formatDate
	Property IDs

	genEmptyElem
	Property IDs

	generate-guid
	Property IDs

	generateGUID
	Property IDs

	get-content-as-string
	Property IDs

	get-localized-string
	Property IDs

	getChildElement
	Property IDs

	getContentAsString
	Property IDs

	getConversationId
	Property IDs

	getCreator
	Property IDs

	getCurrentDate
	Property IDs

	getCurrentDateTime
	Property IDs

	getCurrentTime
	Property IDs

	getDomainId
	Property IDs

	getElement
	Property IDs

	getGroupIdsFromGroupAlias
	Property IDs

	getGroupProperty
	Property IDs

	getInstanceId
	Property IDs

	getLinkStatus
	Property IDs

	getManager
	Property IDs

	getMessage
	Property IDs

	getNodeValue
	Property IDs

	getNodes
	Property IDs

	getNumberOfTaskApprovals
	Property IDs

	getPreference
	Property IDs

	getPreviousTaskApprover
	Property IDs

	getProcessId
	Property IDs

	getProcessOwnerId
	Property IDs

	getProcessURL
	Property IDs

	getProcessVersion
	Property IDs

	getReportees
	Property IDs

	getTaskAttachmentByIndex
	Property IDs

	getTaskAttachmentByName
	Property IDs

	getTaskAttachmentContents
	Property IDs

	getTaskAttachmentsCount
	Property IDs

	getTaskAutoReleaseDuration
	Property IDs

	getTaskReminderDuration
	Property IDs

	getUserAliasId
	Property IDs

	getUserIdsFromGroupAlias
	Property IDs

	getUserProperty
	Property IDs

	getUserRoles
	Property IDs

	getUsersInGroup
	Property IDs

	getVariableData
	Property IDs

	getVariableProperty
	Property IDs

	hours-from-dateTime
	Property IDs

	implicit-timezone
	Property IDs

	index-within-string
	Property IDs

	integer
	Property IDs

	isUserInRole
	Property IDs

	last-index-within-string
	Property IDs

	lookupUser
	Property IDs

	left-trim
	Property IDs

	listUsers
	Property IDs

	lookup-table
	Property IDs

	lookup-xml
	Property IDs

	lookupUser
	Property IDs

	lookupGroup
	Property IDs

	lower-case
	Property IDs

	matches
	Property IDs

	max-value-among-nodeset
	Property IDs

	mergeChildNodes
	Property IDs

	min-value-among-nodeset
	Property IDs

	minutes-from-dateTime
	Property IDs

	month-from-dateTime
	Property IDs

	parseEscapedXML
	Property IDs

	processXSLT
	Property IDs

	processXSLT
	Property IDs

	processXSQL
	Property IDs

	query-database
	Property IDs

	readFile
	Property IDs

	right-trim
	Property IDs

	search
	Property IDs

	seconds-from-dateTime
	Property IDs

	sequence-next-val
	Property IDs

	setNodeValue
	Property IDs

	square-root
	Property IDs

	subtract-dayTimeDuration-from-dateTime
	Property IDs

	timezone-from-dateTime
	Property IDs

	translateFromNative
	Property IDs

	translateToNative
	Property IDs

	upper-case
	Property IDs

	year-from-dateTime
	Property IDs

	Summary

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

