Oracle TimesTen
In-Memory Database
SQL Reference Guide

Release 7.0

B31682-03

ORACLE’
TIMESTEN

Copyright ©1996, 2007, Oracle. All rights reserved.

ALL SOFTWARE AND DOCUMENTATION (WHETHER IN
HARD COPY OR ELECTRONIC FORM) ENCLOSED AND ON
THE COMPACT DISC(S) ARE SUBJECT TO THE LICENSE
AGREEMENT.

The documentation stored on the compact disc(s) may be printed by
licensee for licensee’s internal use only. Except for the foregoing,
no part of this documentation (whether in hard copy or electronic
form) may be reproduced or transmitted in any form by any means,
electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without the prior
written permission of TimesTen Inc.

Oracle, JD Edwards, PeopleSoft, Retek, TimesTen, the TimesTen
icon, MicroLogging and Direct Data Access are trademarks or reg-
istered trademarks of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

The Programs (which include both the software and documenta-
tion) contain proprietary information; they are provided under a li-
cense agreement containing restrictions on use and disclosure and
are also protected by copyright, patent, and other intellectual and
industrial property laws. Reverse engineering, disassembly, or de-
compilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as
specified by law, is prohibited.

The information contained in this document is subject to change
without notice. If you find any problems in the documentation,
please report them to us in writing. This document is not warranted
to be error-free. Except as may be expressly permitted in your li-
cense agreement for these Programs, no part of these Programs may
be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, for any purpose.

September 2007
Printed in the United States of America

Contents

About this Guide

TimesTen documentation
Background reading .
Conventions used in this guide .
Technical Support .

1 Data Types

Type specifications .
ANSI SQL data types .

Types supported for backward compatlblllty in Oracle type mode

TimesTen type mapping .
Character data types

CHAR type

NCHAR type.

VARCHAR2? type .

NVARCHAR?2 type .

Numeric data types .

Exact and approximate types
TT_TINYINT type
TT_SMALLINT type
TT_INTEGER type .
TT_BIGINT type .
NUMBER type .
Floating-Point numbers.
BINARY_FLOAT. .
BINARY_DOUBLE . .
FLOAT and FLOAT (n)

Binary and Varbinary types.
Numeric precedence
Datetime data types.

TIME type.

TT_DATE type .

DATE type. .

TT TIMESTAMPtype

TIMESTAMP type

TimesTen interval .

Using INTERVAL types

Using DATE and TIME types .

Handling TIMEZONE conversions .

g w N -

.15
.18
.21
.24
.24
.25
.26
.27
.29
. .29
. 29
. 30
. 30
.31
. 32
.. 35
. 35
. 35
. 36
. .37
.38
.39
.39
.39
.39
.39
.39
.40
.40
. .40
41

Date-time and interval types in arithmetic operations. . . . P X §

Restrictions on date-time and interval arlthmetlcoperatlons. .. . 43
Storage requirements. 4
Data type comparisonrules46
Data conversion. . . . e e e e e oo .48

ImpI|C|tDataConverS|on P
NULLwvalues.48
INFandNAN50
Overflow and truncation53
Underflow53
Replication limits53
TimesTen Type Mode (BackwardCompatlblllty) C e55
Data types supported in TimesTentypemode56
Oracle data types supported in TimesTentypemode61

2 Names
Basicnames865
Ownernames.65
Compound identifiers66
Dynamic parameters66

3 Expressions
ROWID specification68
ROWNUM specification869
Expression specification70
Subqueries. L. T4
Aggregate functions16
Constants T9
FormatModels84
Number formatmodels8

Number formatelements. 84
Datetime formatmodels88

Datetime format elements 088
FormatModelforROUNDandTRUNCDateFunctlons. I I
Format Model for TO_CHAR of TimesTentypes92
ABS Y
ADD MONTHS9%
ASCIISTR. e e
CASE.o, .08
CAST.o 00
CHR1,
CEIL 102

iv Oracle TimesTen In-Memory Database SQL Reference Guide

COALESCE
CONCAT.
DECODE
EXTRACT .
FLOOR .
GREATEST.
LEAST C
LOWER and UPPER . .
LPAD .
LTRIM.
MOD .
NCHR.
NLSSORT . oo
NUMTODSINTERVAL .
NUMTOYMINTERVAL
NVL . .
POWER .
ROUND (date)
ROUND (expression) . .
RPAD .
RTRIM
SIGN .
SQRT .
String functions . .
SUBSTR
INSTR .
LENGTH .

SYSDATE and GETDATE .

TO_CHAR .
TO_DATE .
TO_NUMBER

TRIM . ..

TRUNC (date). . .

TRUNC (expression) .

TT_HASH . .

UNISTR .

USER functions .
CURRENT_USER
USER. .
SESSION_USER .
SYSTEM_USER .

. 103
. 104
. 106
. 108
. 109
. 110
. 113
. 116
. 117
. 119
. 121
. 122
. 123
. 125
. 126
. 127
. 128
. 129
. . 130
. 132
. 134
. 136
. 138
. 139
. 139
. 140
. 140
. 142
. 144
. 146
. 147
. 148
. 152
. 153
. 154
. 155
. 156
. 156
. 156
. 156
. 157

4 Search Conditions

Search condition general syntax 1589
ALL/NOT IN predicate (subquery) 162
ALL/NOT IN predicate (valuelist) 164
ANY/ IN predicate (subquery) 167
ANY/ IN predicate (valuelist)y 170
BETWEEN predicate. 173
Comparison predicate 175
EXISTS predicate 117
IS INFINITE predicate 179
ISNANpredicate 180
ISNULL predicate 11
LIKE predicate e -4

NCHARandNVARCHARZ O =

5 SQL Statements

Access Control and SQL statements. 186
ALTER ACTIVESTANDBYPAIR. 187
ALTERCACHEGROUP. 191
ALTERREPLICATION 19
ALTERSESSION. 206
ALTERTABLE. 20
ALTERUSER 22
COMMIT e e e e e, 228
CREATEACTIVESTANDBYPAIR e e e e 229
CREATECACHEGROUP 23
User and system managed cache groups e e e e oo 236

CREATE READONLY CACHE GROUP 237

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP238
CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP. 238

CREATE USERMANAGED CACHEGROUP. 239
AUTOREFRESH in Cache Groups. 243
CREATE INDEX e e e e oo o..250
CREATE MATERIALIZEDVIEW e 254
Restrictions on the materialized wewand detalltables254
Restrictions on the MATERIALIZED VIEW query 255
CREATEREPLICATION. 258
CHECKCONFLICTS. 266
CREATE SEQUENCE 275
Incrementing SEQUENCE values W|th CURRVAL and NEXTVAL 276
CREATETABLE 219
Column Definition 286

vi Oracle TimesTen In-Memory Database SQL Reference Guide

CREATEUSER 0029
CREATEVIEW < (0

RestrlctlonsontheVIEunery s (01

Restrictionsonthe VIEW301
DELETE. P (0 ¢
DROPACTIVESTANDBYPAIR R 05
DROPCACHEGROUP.2306
DROPINDEX.30
DROPSEQUENCE30
DROP REPLICATION310
DROPTABLE31
DROPUSER312
DROPVIEW2313
FLUSHCACHEGROUP34
GRANT36
INSERT2318
SingleRowValues319
INSERT SELECT31
LOADCACHEGROUP32
MERGE N V45
REFRESHCACHEGROUP...................329
REVOKE33
ROLLBACK 3
SELECT33%
SelectListo L 347
TableSpec3%
DerivedTable.31
JoinedTable31
TRUNCATETABLE34
UNLOAD CACHEGROUP 356
UPDATE.38
JoinUpdate360

6 Access Control Privileges
Privilege descriptions 363

Operations requiring mstanceAdmlnlstrator pr|V|Iege. . 7
SQLoperations.364
Utilities C e e e 304

OperatlonsrequlrmgADMIN pr|V|Iege I 151
Attributes365
Built-in Procedures365
SQLoperations.366

Vil

Utilities. 366
Utility CAPI 366
XLA Functions. . . . e e e 366
Operations requiring CONNECT pr|V|Iege Coe 366
Operations requiring CREATE DATASTORE pr|V|Iege. 367
Operations requiring DDL privilege 367
Built-in Procedures 367
SQL operations < (0 Y4
Operations requiring WRITE pr|V|Iege < Y4
Built-inProcedures 367
SQLoperations 367
XLA functions. . . . e e e e 368
Operations requiring SELECT pr|V|Iege < 1
Built-in Procedures 368
SQL operations 368
Utilities. 368

7 System and Replication Tables
Systemtablelist. 370
Replication table list - T
Tablesreservedformternalorfutureuse. N 2
SYS.CACHE GROUP. 33
SYSCOLUMNS 35
SYS.COL STATS. 38
SYSDUAL3
SYSINDEXES. 380
SYSMONITOR 38
SYSPLANo 389
SYSSEQUENCES 32
SYSSYNONYMS39%4
SYSTABLES3%
SYSTBL_STATS o . o s 399
SYSTCOL STATS 400
SYS.TINDEXES - 01
SYS.TRANSACTION_ LOGAPI (0K
SYSTTABLES. 404
SYSTTBL_STATS 408
SYSVIEWS (0 [¢
SYSXLASUBSCRIPTIONS.................. 410
TTREPREPELEMENTS4
TTREPREPLICATIONS 415

viii Oracle TimesTen In-Memory Database SQL Reference Guide

TTREP.REPNETWORK.
TTREP.REPPEERS
TTREP.REPSTORES .

TTREP.REPSUBSCRIPTIONS .

TTREP.REPTABLES .
TTREP.TTSTORES

8 Reserved Words

Index

.. 416
. 417
. 420
. 421
. 423
. 428

x Oracle TimesTen In-Memory Database SQL Reference Guide

About this Guide

Oracle TimesTen In-Memory Database is a high-performance, in-memory data
manager that supports the ODBC (Open DataBase Connectivity) and JDBC (Java

DataBase Connectivity) interfaces.

This guide is for application developers who use and administer TimesTen. It
provides a reference for TimesTen SQL statements, expressions, and functions,
including TimesTen SQL extensions.

To work with this guide, you should understand how database systems work. You
should also have knowledge of SQL (Structured Query Language). See
“Background reading” on page 2 if you are not familiar with these interfaces.

TimesTen documentation

TimesTen documentation is available on the product distribution media and on
the Oracle Technology Network:
http://lwww.oracle.com/technology/documentation/timesten_doc.html.

Including this guide, the TimesTen documentation set consists of these

documents:

Book Titles

Description

Oracle TimesTen In-Memory
Database Installation Guide

Contains information needed to install and configure
TimesTen on all supported platforms.

Oracle TimesTen In-Memory
Database Introduction

Describes all the available features in the Oracle
TimesTen In-Memory Database.

Oracle TimesTen In-Memory
Database Operations Guide

Provides information on configuring TimesTen and
using the ttlsql utility to manage a data store. This
guide also provides a basic tutorial for TimesTen.

Oracle TimesTen In-Memory
Database C Developer’s and
Reference Guide

and the

Oracle TimesTen In-Memory
Database Java Developer’s
and Reference Guide

Provide information on how to use the full set of
available features in TimesTen to develop and
implement applications that use TimesTen.

Oracle TimesTen In-Memory
Database API Reference
Guide

Describes all TimesTen utilities, procedures, APIs and
provides a reference to other features of TimesTen.

http://www.oracle.com/technology/documentation/timesten_doc.html

Oracle TimesTen In-Memory
Database SQL Reference
Guide

Contains a complete reference to all TimesTen SQL
statements, expressions and functions, including
TimesTen SQL extensions.

Oracle TimesTen In-Memory
Database Error Messages
and SNMP Traps

Contains a complete reference to the TimesTen error
messages and information on using SNMP Traps with
TimesTen.

Oracle TimesTen In-Memory
Database TTClasses Guide

Describes how to use the TTClasses C++ API to use
the features available in TimesTen to develop and
implement applications.

TimesTen to TimesTen
Replication Guide

Provides information to help you understand how
TimesTen Replication works and step-by-step
instructions and examples that show how to perform
the most commonly needed tasks.

This guide is for application developers who use and
administer TimesTen and for system administrators
who configure and manage TimesTen Replication.

TimesTen Cache Connect to
Oracle Guide

Describes how to use Cache Connect to cache Oracle
data in TimesTen data stores. This guide is for
developers who use and administer TimesTen for
caching Oracle data.

Oracle TimesTen In-Memory
Database Troubleshooting
Procedures Guide

Provides information and solutions for handling
problems that may arise while developing applications
that work with TimesTen, or while configuring or
managing TimesTen.

1
WINDOWS
L

Background reading

For a Java reference, see:

* Horstmann, Cay and Gary Cornell. Core Java(TM) 2, Volume I--
Fundamentals (7th Edition) (Core Java 2). Prentice Hall PTR; 7 edition

(August 17, 2004).

A list of books about ODBC and SQL is in the Microsoft ODBC manual
included in your developer’s kit. Your developer’s kit includes the appropriate
ODBC manual for your platform:

» Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide provides all
relevant information on ODBC for Windows developers.

2 Oracle TimesTen In-Memory Database SQL Reference Guide

A » Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide, included

UNIX online in PDF format, provides information on ODBC for UNIX developers.

For a conceptual overview and programming how-to of ODBC, see:
» Kyle Geiger. Inside ODBC. Redmond, WA: Microsoft Press. 1995.

For a review of SQL, see:

e Melton, Jim and Simon, Alan R. Understanding the New SQL: A Complete
Guide. San Francisco, CA: Morgan Kaufmann Publishers. 1993.

» Groff, James R. / Weinberg, Paul N. SQL: The Complete Reference, Second
Edition. McGraw-Hill Osborne Media. 2002.

For information about Unicode, see:

* The Unicode Consortium, The Unicode Standard, Version 5.0,
Addison-Wesley Professional, 2006.

» The Unicode Consortium Home Page at http://www.unicode.org

Conventions used in this guide

TimesTen supports multiple platforms. Unless otherwise indicated, the
information in this guide applies to all supported platforms. The term Windows
refers to Windows 2000, Windows XP and Windows Server 2003. The term
UNIX refers to Solaris, Linux, HP-UX, Tru64 and AlX.

TimesTen documentation uses these typographical conventions:

If you see... It means...

code font Code examples, filenames, and pathnames.

For example, the _odbc. ini. or ttconnect. ini file.

italic code A variable in a code example that you must replace.
font
For example:
Driver=install_dir/lib/libtten_sl
Replace install_dir with the path of your TimesTen
installation directory.

About this Guide 3

TimesTen documentation uses these conventions in command line examples and

descriptions:

If you see...

It means...

Ffixed width
italics

Variable; must be replaced with an appropriate value. In
some cases, such as for parameter values in built-in
procedures, you may need to single quote (* ') the value.

(N

Square brackets indicate that an item in a command line
is optional.

{1}

Curly braces indicated that you must choose one of the
items separated by a vertical bar (|) in a command line.

A vertical bar (or pipe) separates arguments that you may
use more than one argument on a single command line.

Anellipsis (. . .) after an argument indicates that you may
use more than one argument on a single command line.

%

The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the UNIX root
prompt.

TimesTen documentation uses these variables to identify path, file and user

names:

If you see...

It means...

install_dir

The path that represents the directory where the current
release of TimesTen is installed.

TTinstance

The instance name for your specific installation of
TimesTen. Each installation of TimesTen must be
identified at install time with a unique alphanumeric
instance name. This name appears in the install path. The
instance name “giraffe” is used in examples in this guide.

bits or bb

Two digits, either 32 or 64, that represent either the 32-bit
or 64-bit operating system.

releaseorrr

Two digits that represent the first two digits of the current
TimesTen release number, with or without a dot. For
example, 51 or 7.0 represents TimesTen Release 7.0.

Jdk_version

Two digits that represent the version number of the
major JDK release. Specifically, 14 represent JDK 1.4;
5 represents JDK 5.

4 Oracle TimesTen In-Memory Database SQL Reference Guide

timesten A sample name for the TimesTen instance administrator.
You can use any legal user name as the TimesTen
administrator. On Windows, the TimesTen instance
administrator must be a member of the Administrators
group. Each TimesTen instance can have a unique
instance administrator name.

DSN The data source name.

Technical Support

For information about obtaining technical support for TimesTen products, go to
the following Web address:

http://www.oracle.com/support/contact.html

About this Guide 5

http://www.oracle.com/support/contact.html

6 Oracle TimesTen In-Memory Database SQL Reference Guide

1

Data Types

A data type defines a set of values. A reference to a data type specifies the set of
values that can occur in a given context.

A data type is associated with each value retrieved from a table or computed in
an expression and each constant.

TimesTen follows the ODBC standard for type conversion.

A discussion of this standard is not included in this guide. See Appendix D either
in the Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide or the
Microsoft ODBC 3.0 Developer’s Kit and Programmer’s Reference for more
information.

If you are using the Cache Connect feature of TimesTen, see "Differences
between Oracle and TimesTen tables” in Chapter 8, “Compatibility Between
TimesTen and Oracle” of the TimesTen Cache Connect to Oracle Guide. This
section compares valid data types for creating cache group columns, as well as
type conversions for passthrough queries.

Type specifications

TimesTen supports the following data types in the default Oracle type mode. The
type mode is a data store creation attribute. TypeMode = 0 indicates Oracle type
mode. TypeMode = 1 indicates TimesTen mode.

For more information on types modes, see "TypeMode™ in Oracle TimesTen In-
Memory Database API Reference Guide.

Data type Description

CHAR[ACTER] [(n [BYTE|CHAR])] Fixed-length character string of length n bytes
or characters. Default is 1 byte.

BYTE indicates that the column has byte

length semantics. Legal values for n range
from a minimum of 1 byte to a maximum

8300 bytes.

CHAR indicates that the column has character
length semantics. The minimum CHAR length
is 1 character. The maximum CHAR length
depends on how many characters fit in 8300
bytes. This is determined by the database
character set in use. For character set
AL32UTFS8, up to four bytes per character
may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the
character set.

A zero-length string is interpreted as NULL.

CHAR data is padded to the maximum
column size with trailing blanks. Blank-
padded comparison semantics are used.

Alternatively, specify ORA_CHAR
[(n [BYTE|CHAR])].

8 Oracle TimesTen In-Memory Database SQL Reference Guide

Data type (continued)

Description

NCHAR[(n)]

Fixed-length string of length n two-byte
Unicode characters.

The number of bytes required is 2* n where n
is the specified number of characters. Nchar
character limits are 1/2 the byte limits so the
maximum size is 4150. Default and minimum
bytes of storage is 2n (2).

A zero-length string is interpreted as NULL.

NCHAR data is padded to the maximum
column size with U+0020 SPACE. Blank-
padded comparison semantics are used.

Alternatively, specify ORA_NCHAR[(n)].

VARCHARI[2] (n [BYTE|CHARY])

Variable-length character string having
maximum length n bytes or characters.

BYTE indicates that the column has byte
length semantics.Legal values for n range
from a minimum of 1 byte to a maximum
4194304 (2%2) bytes. You must specify n.

CHAR indicates that the column has character
length semantics.

A zero-length string is interpreted as NULL.
Nonpadded comparison semantics are used.

Do not use the VARCHAR type. Although it is
currently synonymous with VARCHAR?Z, the
VARCHAR type is scheduled to be redefined.

Alternatively, specify
ORA_VARCHAR? (n [BYTE|CHARY)).

Data Types 9

Data type (continued)

Description

NVARCHAR2(n)

Variable-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n
is the specified number of characters.
NVARCHAR?2 character limits are 1/2 the
byte limits so the maximum size is 2,097,152
(221). You must specify n.

A zero-length string is interpreted as NULL.
Nonpadded comparison semantics are used.

Alternatively, specify
ORA_NVARCHAR2(n).

TT_TINYINT

Unsigned integer ranging from 0 to 255 (28-1).

Use TT_TINYINT rather than the NUMBER
data type. TT_TINYINT is more compact and
offers faster performance than the NUMBER
type. If you need to store greater than 19 digit
integers, use NUMBER (p) where p > 19.

Since TT_TINYINT is unsigned, the negation
of a TT_TINYINT is TT_SMALLINT.

TT_SMALLINT

A native signed 16 bit integer in the range —
32,768 —(21°) to 32,767 (21°-1).

Use TT_SMALLINT rather than SMALLINT.
SMALLINT maps to the NUMBER data type.

TT_SMALLINT is more compact and offers
faster performance than the NUMBER type. If
you need to store greater than 19 digit
integers, use NUMBER (p) where p > 19.

TT_INT[EGER]

A signed integer in the range —2,147,483,648 -
-(231) t0 2,147,483,647 (231-1).

TT_INTEGER is a native signed integer data
type. Use TT_INTEGER rather than
INTEGER. INTEGER maps to the NUMBER
datatype. TT_INTEGER is more compact and
offers faster performance than the NUMBER
type. If you need to store greater than 19 digit
integers, use NUMBER (p) where p > 19.

10 Oracle TimesTen In-Memory Database SQL Reference Guide

Data type (continued)

Description

TT_BIGINT

A signed 8-byte integer in

the range
-9,223,372,036,854,775,808

-(2%3) t0 9,223,372,036,854,775,807
(2% - 1).

Use TT_BIGINT rather than the NUMBER
data type. TT_BIGINT is more compact and
offers faster performance than the NUMBER
type. If you need to store greater than 19 digit
integers, use NUMBER (p) where p > 19.

NUMBER [(precision [,scale])]

Number having precision and scale. The
precision ranges from 1 to 38 decimal. The
scale ranges from -84 to 127. Both precision
and scale are optional.

If you do not specify a precision or a scale,
TimesTen assumes the maximum precision of
38 and flexible scale.

NUMBER supports scale > precision and
negative scale.

NUMBER stores zero as well as positive and
negative fixed numbers with absolute values
from 1.0 x 10120 to (but not including)

1.0 x 10126 1f you specify an arithmetic
expression whose value has an absolute value
greater than or equal to 1.0 x 1026, then
TimesTen returns an error.

BINARY_FLOAT

32-hit floating-point number.
BINARY_FLOAT is a single-precision native
floating-point type. Supports +Inf, -Inf and
NaN values. BINARY_FLOAT is an
approximate numeric value consisting of an
exponent and mantissa. You can use
Exponential or E-notation. BINARY _FLOAT
has binary precision 24.

Minimum positive finite value:
1.17549E-38F

Maximum positive finite value:
3.40282E+38F

Data Types 11

Data type (continued)

Description

BINARY_DOUBLE

64-bit floating -point number.
BINARY_DOUBLE is a double-precision
native floating point number. Supports +Inf,
-Inf and Nan values. BINARY_DOUBLE is
an approximate numeric value consisting of an
exponent and mantissa. You can use
Exponential or E-notation.
BINARY_DOUBLE has binary precision 53.

Minimum positive finite value:
2.22507485850720E-308

Maximum positive finite value:
1.79769313486231E+308

BINARY (n)

Fixed-length binary value of n bytes. Legal
values for n range from 1 to 8300.

BINARY data is padded to the maximum
column size with trailing zeroes.

Alternatively, specify TT_BINARY (n).

VARBINARY (n)

Variable-length binary value having maximum
length n bytes. Legal values for n range from 1
to 4194304 (2%2).

Alternatively, specify TT_VARBINARY(n).

TIME

A time of day between 00:00:00 (12 midnight)
and 23:59:59 (11:59:59 pm), inclusive. The
format is: HH:MI:SS. Storage size is 8 bytes.

Alternatively, specify TT_TIME.

TT_DATE

Stores date information: century, year, month,
date. The format is YYYY-MM-DD. MM is
expressed as an integer. For example,

2006-10-28. Storage size is 4 bytes.

Valid dates are between 1753-01-01 (January
1,1753) and 9999-12-31 (December 31, 9999).

12 Oracle TimesTen In-Memory Database SQL Reference Guide

Data type (continued)

Description

DATE

Stores date and time information: century,
year, month, date, hour, minute and second:
Format is:

YYYY-MM-DD HHMMSS.

Valid date range is from January 1, 4712 BC to
December 31, 9999 AD.

The storage size is 7 bytes. There are no
fractional seconds.

Alternatively, specify ORA_DATE.

TT_TIMESTAMP

A data and time between 1753-01-01 00:00:00
(January 1, 1753 midnight) and 9999-12-31
23:59:59 pm (11:59:59 pm on December 31,
9999), inclusive. Any values for the fraction
not specified in full microseconds result in a
“Data Truncated” error. The format is YYYY-
MM-DD HH:MI:SS [.FFFFFF].

Storage size is 8 bytes.

TT_TIMESTAMP has a smaller storage size
than TIMESTAMP and TT_TIMESTAMP is
faster than TIMESTAMP because
TT_TIMESTAMP is an 8 byte integer
containing the number of microseconds since
January 1, 1754. Comparisons are very fast.
TIMESTAMP has a larger range than
TT_TIMESTAMP in that TIMESTAMP can
store datetime data as far back as 4712 BC.
TIMESTAMP also supports up to 9 digits of
fractional second precision whereas
TT_TIMESTAMP supports 6 digits of
fractional second precision.

You can specify TT_TIMESTAMP (6).

Data Types 13

Data type (continued) Description

TIMESTAMP Stores year, month, and day values of the date

[(fractional_seconds_precision)] data type plus hour, minute, and second values
of time. Fractional_seconds_precision is the
number of digits in the fractional part of the
seconds field. Valid date range is from January
1, 4712 BC to December 31, 9999 AD.

TT_TIMESTAMP has a smaller storage size
than TIMESTAMP. TT_TIMESTAMP is
faster than TIMESTAMP because
TT_TIMESTAMP is an 8 byte integer
containing the number of microseconds since
January 1, 1754. Comparisons are very fast.
TIMESTAMP has a larger range than
TT_TIMESTAMP in that TIMESTAMP can
store datetime data as far back as 4712 BC.
TIMESTAMP also supports up to 9 digits of
fractional second precision whereas
TT_TIMESTAMP supports 6 digits of
fractional second precision.

The fractional seconds precision range is 0 to
9. The default is 6. Format is:

YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]
Storage size 12 bytes.

Alternatively, specify ORA_TIMESTAMP
[(fractional_seconds_precision)]

INTERVAL [+/-] IntervalQualifier TimesTen partially supports INTERVAL
types, expressed with the type INTERVAL and
an IntervalQualifier. An IntervalQualifier can
only specify a single field type with no
precision. The default leading precision is 8
digits for all INTERVAL types. The single
field type can be one of: YEAR, MONTH,
DAY, HOUR, MINUTE or SECOND.
Currently, INTERVAL type can be specified
only with a constant.

14 Oracle TimesTen In-Memory Database SQL Reference Guide

ANSI SQL data types

TimesTen supports ANSI SQL data types in Oracle type mode. These data types
are converted to TimesTen data types and the data is stored as TimesTen data

types:

ANSI SQL data type

TimesTen data type

CHARACTER VARYING (n [BYTE|CHAR])
or

CHAR VARYING(n[BYTE|CHAR])

VARCHAR?2 (n [BYTE|CHAR])
Character semantics is supported.

NATIONAL CHARACTER (n) or NCHAR (n)
NATIONAL CHAR (n)
NATIONAL CHARACTER VARYING (n) or NVARCHAR?2 (n)

NATIONAL CHAR VARYING (n) or
NCHAR VARYING (n)

INT[EGER]

NUMBER (38,0)

TT_INTEGER is a native 32 bit integer type.
Use TT_INTEGER as this data type is more
compact and offers faster performance than
the NUMBER type.

SMALLINT

NUMBER (38,0)

TT_SMALLINT is a native signed integer
data type. Use TT_SMALLINT as this data
type is more compact and offers faster
performance than the NUMBER type.

NUMERIC [(p[,s])] or
DEC[IMAL] [(pLsD]

NUMBER (p,s)

Specifies a fixed-point number with precision
p and scale s. Can only be used for fixed-point
numbers. If no scale is specified, s defaults to
0.

Data Types 15

ANSI SQL data type (continued) TimesTen data type

FLOAT [(b)] NUMBER

Floating-point number with binary precision
b. Acceptable values for b are between 1 and
126 binary digits.

FLOAT is an exact numeric type. Use FLOAT
to define a column with a floated scale and a
specified precision. A floated scale is
supported with the NUMBER type, but you
cannot specify the precision. A lower
precision requires less space, so because you
can specify a precision with FLOAT, it may be
more desirable than NUMBER. If you do not
specify b, then the default precision is 126
binary (38 decimal).

BINARY_FLOAT and BINARY_DOUBLE
are inexact numeric types and are therefore
different floating types than FLOAT. In
addition, the semantics are different between
FLOAT and BINARY_FLOAT/
BINARY_DOUBLE because
BINARY_FLOAT and BINARY_DOUBLE
conform to the IEEE standard.

Internally, FLOAT is implemented as type
NUMBER.

Alternatively, specify ORA_FLOAT. For
example:

FLOAT (24) = ORA_FLOAT (24)
FLOAT (53) = ORA_FLOAT (53)

FLOAT (n) = ORA_FLOAT (n)

REAL NUMBER

Floating -point number with a binary precision
of 63.

Alternatively, specify
ORA_FLOAT (63) or FLOAT (63).

16 Oracle TimesTen In-Memory Database SQL Reference Guide

ANSI SQL data type (continued) TimesTen data type

DOUBLE [PRECISION] NUMBER

Floating- point number with a binary precision
of 126.

Alternatively, specify FLOAT (126) or
ORA_FLOAT (126).

Data Types 17

Types supported for backward compatibility in Oracle type
mode

TimesTen supports the following data types for backward compatibility in Oracle
type mode.

For more information on types modes, see "TypeMode" in Oracle TimesTen In-
Memory Database API Reference Guide.

Data type Description

TT_CHAR [(n [BYTE|CHAR])] Fixed-length character string of length n bytes
or characters. Default is 1 byte.

BYTE indicates that the column has byte

length semantics. Legal values for n range
from a minimum of 1 byte to a maximum

8300 bytes.

CHAR indicates that the column has character
length semantics. The minimum CHAR length
is 1 character. The maximum CHAR length
depends on how many characters fit in 8300
bytes. This is determined by the database
character set in use. For character set
AL32UTFS8, up to four bytes per character
may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the
character set.

If you insert a zero-length (empty) string into
a column, the SQL NULL value is inserted.
This is true in Oracle type mode only.

TT_CHAR data is padded to the maximum
column size with trailing blanks. Blank-
padded comparison semantics are used.

18 Oracle TimesTen In-Memory Database SQL Reference Guide

Data type (continued)

Description

TT_NCHAR[(n)]

Fixed-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n
is the specified number of characters. Nchar
character limits are 1/2 the byte limits so the
maximum size is 4150. Default and minimum
bytes of storage is 2n (2).

If you insert a zero-length (empty) string into
a column, the SQL NULL value is inserted.
This is true in Oracle type mode only.

TT_NCHAR data is padded to the maximum
column size with U+0020 SPACE. Blank-
padded comparison semantics are used.

TT_VARCHAR (n [BYTE|CHAR])

Variable-length character string having
maximum length n bytes or characters. You
must specify n.

BYTE indicates that the column has byte

length semantics. Legal values for n range
from a minimum of 1 byte to a maximum

4194304 (2%) bytes.

CHAR indicates that the column has character
length semantics.

If you insert a zero-length (empty) string into
a column, the SQL NULL value is inserted.
This is true in Oracle type mode only.

Blank-padded comparison semantics are used.

TT_NVARCHAR(n)

Variable-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n
is the specified number of characters.
TT_NVARCHAR character limits are 1/2 the
byte limits so the maximum size is 2,097,152
(221). You must specify n.

If you insert a zero-length (empty) string into
a column, the SQL NULL value is inserted.
This is true in Oracle type mode only.

Blank-padded comparison semantics are used.

Data Types 19

Data type (continued) Description

TT_DECIMALI(p[,sD] An exact numeric value with a fixed
maximum precision (total number of digits)
and scale (number of digits to the right of the
decimal point). The precision p must be
between 1 and 40. The scale must be between
0 and p. The default precision is 40 and the
default scale is 0.

Use the NUMBER data type rather than
TT_DECIMAL. NUMBER offers better
performance.

20 Oracle TimesTen In-Memory Database SQL Reference Guide

TimesTen type mapping

The names of the data types listed in the first column are the data types that
existed in previous releases of TimesTen. If your TypeMode is set to O (the
default), indicating Oracle type mode, then the name of the data type may be
changed to a new name in Oracle type mode. (The name of the data type in
Oracle type mode is listed in column 2.) The table illustrates the mapping of the
data type in Column 1 to the corresponding data type in Column 2:

TimesTen data type TimesTen data type in Oracle type mode

CHAR[ACTER][(n)] TT_CHAR [(n [BYTE|CHAR])]

In Oracle type mode, specify TT_CHAR. Character
semantics is supported. For more information on type
TT_CHAR, see “Types supported for backward
compatibility in Oracle type mode” on page 18.

NCHAR [(n)] TT_NCHAR[(n)]

In Oracle type mode, specify TT_CHAR. For more
information on TT_NCHAR, see “Types supported
for backward compatibility in Oracle type mode” on
page 18.

VARCHAR (n) TT_VARCHAR (n [BYTE|CHARY])

In Oracle type mode, specify TT_VARCHAR.
Character semantics is supported. For more
information on TT_VARCHAR, see “Types
supported for backward compatibility in Oracle type
mode” on page 18.

NVARCHAR (n) TT_NVARCHAR(n)

In Oracle type mode, specify TT_NVARCHAR. For
more information on TT_NVARCHAR, see “Types
supported for backward compatibility in Oracle type
mode” on page 18.

TINYINT TT_TINYINT

In Oracle type mode, specify TT_TINYINT. For
more information on TT_TINYINT, see “Type
specifications” on page 8.

SMALLINT TT_SMALLINT

In Oracle type mode, specify TT_SMALLINT. For
more information on TT_SMALLINT, see “Type
specifications” on page 8.

Data Types 21

TimesTen data type (continued)

TimesTen data type in Oracle type mode

INT[EGER] TT_INT[EGER]
In Oracle type mode, specify TT_INTEGER. For
more information on TT_INTEGER, see “Type
specifications” on page 8.

BIGINT TT_BIGINT

In Oracle type mode, specify TT_BIGINT. For more
information on TT_BIGINT, see “Type
specifications” on page 8.

DEC[IMAL][(p[,s]] or
NUMERIC[(p[,s])]

TT_DECIMAL[(p[,s])]
In Oracle type mode, specify TT_DECIMAL.

For more information on TT_DECIMAL, see “Types
supported for backward compatibility in Oracle type
mode” on page 18.

REAL or
FLOAT (24)

BINARY_FLOAT

In Oracle type mode, specify BINARY_FLOAT. For
more information on BINARY _FLOAT, see “Type
specifications” on page 8.

DOUBLE [PRECISION] or
FLOAT [(53)]

BINARY_DOUBLE

In Oracle type mode, specify BINARY_DOUBLE.
For more information on BINARY_DOUBLE, see
“Type specifications” on page 8.

BINARY (n)

BINARY (n)

In Oracle type mode, the data type has the same
name. For more information on BINARY (n), see
“Type specifications” on page 8.

VARBINARY ()

VARBINARY (n)

In Oracle type mode, the data type has the same
name. For more information on VARBINARY (n),
see “Type specifications” on page 8.

TIME

TIME

In Oracle type mode, the data type has the same
name. For more information on TIME, see “Type
specifications” on page 8.

22 Oracle TimesTen In-Memory Database SQL Reference Guide

TimesTen data type (continued)

TimesTen data type in Oracle type mode

DATE TT_DATE
In Oracle type mode, specify TT_DATE. For more
information on TT_DATE, see “Type specifications”
on page 8.

TIMESTAMP TT_TIMESTAMP

In Oracle type mode, specify TT_TIMESTAMP. For
more information on TT_TIMESTAMP, see “Type
specifications” on page 8.

INTERVAL IntervalQualifier

INTERVAL IntervalQualifier

In Oracle type mode, the data type has the same
name. For more information on INTERVAL, see
“Type specifications” on page 8.

Data Types 23

Character data types

Character data types store character (alphanumeric) data either in the database
character set or the UTF-16 format.

Character data is stored in strings with byte values. The byte values correspond to
one of the data store character sets defined when the data store is created.
TimesTen supports both single byte and multibyte character sets.

The character types are:
e CHAR

* NCHAR

¢ VARCHAR2

* NVARCHAR2

CHAR type

The CHAR type specifies a fixed length character string. If you insert a value
into a CHAR column and the value is shorter than the defined column length,
then TimesTen blank pads the value to the column length. If you insert a value
into a CHAR column and the value is longer than the defined length, then
TimesTen returns an error.

By default, the column length is defined in bytes. Use the CHAR qualifier to
define the column length in characters. The size of a character ranges from 1 byte
to 4 bytes depending on the database character set. The BYTE and CHAR
qualifiers override the NLS_LENGTH_SEMANTICS parameter setting. For
more information on NLS_LENGTH_SEMANTICS, see "ALTER SESSION"
and "Setting globalization support attributes".

Note: With the CHAR type, a zero-length string is interpreted as NULL. With
the TT_CHAR type, a zero-length string is a valid non-NULL value. Both
CHAR and TT_CHAR use blank padded comparison semantics. The TT_CHAR
type is supported for backward compatibility.

Example 1.1 The following example creates a table. Columns are defined with type CHAR
and TT_CHAR. Blank padded comparison semantics are used for these types.

Command> create table TypeDemo (Name CHAR (20), Name2 TT_CHAR (20));
Command> INSERT INTO TypeDemo VALUES ("SMITH ",

"SMITH ");

1 row inserted.

Command> DESCRIBE TypeDemo;

Table USER.TYPEDEMO:

Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)

24 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 1.2

Example 1.3

1 table found.

(primary key columns are indicated with *)

Command> sellect * from TypeDemo;

< SMITH , SMITH >

1 row found.

Command> # Expect 1 row found; blank-padded comparison semantics
Command> select * from TypeDemo where Name = "SMITH";

< SMITH , SMITH >

1 row found.

Command> select * from TypeDemo where Name2 = "SMITH";

< SMITH , SMITH >

1 row found.

Command> # Expect O rows; blank padded comparison semantics.
Command> SELECT * FROM TypeDemo where Name > “"SMITH";

0 rows found.

Command> SELECT * FROM TypeDemo where Name2 > "SMITH";

0 rows found.

The following example ALTERs table TypeDemo adding column Name3. The
column Name3 is defined with character semantics.

Command> ALTER TABLE TypeDemo
> ADD COLUMN Name3 CHAR (10 CHAR);
Command> DESCRIBE TypeDemo;

Table USER.TYPEDEMO:

Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)

1 table found.

NCHAR type

The NCHAR data type is a fixed length string of two-byte Unicode characters.
NCHAR data types are padded to the specified length with the Unicode space
character U+0020 SPACE. Blank-padded comparison semantics are used.

Note: With the NCHAR type, a zero-length string is interpreted as NULL. With
the TT_NCHAR type, a zero-length string is a valid non-NULL value. Both
NCHAR and TT_NCHAR use blank padded comparison semantics. The
TT_NCHAR type is supported for backward compatibility.

The following example ALTERs table TypeDemo adding column Name4. Data
type is NCHAR.

Command> ALTER TABLE TypeDemo
> ADD COLUMN Name4 NCHAR (10);

Data Types 25

Command> DESCRIBE TypeDemo;
Table USER.TYPEDEMO:

Collumns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)

1 table found.

VARCHAR?2 type

The VARCHAR?2 data type specifies a variable length character string. When
you define a VARCHAR?2 column, you define the maximum number of bytes or
characters. Each value is stored exactly as you specify it. The value cannot
exceed the maximum length of the column.

You must specify the maximum length. The minimum must be at least 1 byte.
Use the CHAR qualifier to specify the maximum length in characters. For
example, VARCHAR?2 (10 CHAR).

The size of a character ranges from 1 byte to 4 bytes depending on the database
character set. The BYTE and CHAR qualifiers override the
NLS_LENGTH_SEMANTICS parameter setting. For more information on
NLS_LENGTH_SEMANTICS, see "ALTER SESSION" and "Setting
globalization support attributes".

Note: Do not use the VARCHAR data type. Use VARCHARZ2. Even though both
data types are currently synonymous, the VARCHAR data type is scheduled to be
redefined as a different data type with different semantics.

Note: With the VARCHAR?2 type, a zero-length string is interpreted as NULL.
With the TT_VARCHAR type, a zero-length string is a valid non-NULL value.
VARCHARZ2 uses nonpadded comparison semantics. TT_VARCHAR uses
blank-padded comparison semantics. The TT_VARCHAR type is supported for
backward compatibility.

Example 1.4 The following example ALTERSs table TypeDemo adding columns Name5 and
Name6. Name5 is defined with type VARCHAR2. Name6 is defined with
TT_VARCHAR. The example illustrates the use of nonpadded comparison
semantics with column Name5 and blank-padded comparison semantics with
column Table6:

Command> ALTER TABLE TypeDemo ADD COLUMN Name5 VARCHAR2 (20);
Command> ALTER TABLE TypeDemo ADD COLUMN Name6 TT_VARCHAR (20);
Command> DESCRIBE TypeDemo;

26 Oracle TimesTen In-Memory Database SQL Reference Guide

Table USER.TYPEDEMO:

Collumns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)
NAMES VARCHAR2 (20) INLINE
NAME6 TT_VARCHAR (20) INLINE

1 table found.
(primary key columns are indicated with *)

Command> #Insert SMITH followed by 5 spaces into all columns
Command> INSERT INTO TypeDemo VALUES

> ("SMITH ", "SMITH ", "SMITH ", "SMITH ",
"SMITH ", "SMITH");

1 row inserted.

Command> # Expect 0; Nonpadded comparison semantics

Command> SELECT COUNT (*) FROM TypeDemo where Name5 = “SMITH";
<0 >

1 row found.

Command> # Expect 1; Blank-padded comparison semantics
Command> SELECT COUNT (*) FROM TypeDemo where Name6 = “SMITH";
<1>

1 row found.

Command> # Expect 1; Nonpadded comparison semantics

Command> SELECT COUNT (*) FROM TypeDemo where Name5 > "SMITH";
<1>

1 row found.

Command> # Expect 0; Blank-padded comparison semantics
Command> SELECT COUNT (*) FROM TypeDemo where Name6 > "SMITH";
<0 >

1 row found.

NVARCHAR2 type

The NVARCHAR?2 data type is a variable length string of two-byte Unicode
characters. When you define an NVARCHAR?2 column, you define the maximum
number of characters. Each value is stored exactly as you specify it. The value
cannot exceed the maximum length of the column. You must specify a length.

Note: With the NVARCHAR?Z type, a zero-length string is interpreted as NULL.
With the TT_NVARCHAR type, a zero-length string is a valid non-NULL value.
NVARCHAR?2 uses nonpadded comparison semantics. TT_NVARCHAR uses
blank-padded comparison semantics. The TT_NVARCHAR type is supported for
backward compatibility.

Data Types 27

Example 1.5 The following example ALTERs table TypeDemo adding column Name7. Data
type is NVARCHAR?2.

Command> ALTER TABLE TypeDemo ADD COLUMN Name7 NVARCHAR2 (20);
Command> DESCRIBE TypeDemo;

Table USER1.TYPEDEMO:

Collumns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)
NAMES VARCHAR2 (20) INLINE
NAME6 TT_VARCHAR (20) INLINE
NAME7 NVARCHAR2 (20) INLINE

1 table found.

28 Oracle TimesTen In-Memory Database SQL Reference Guide

Numeric data types

Example 1.6

Numeric types store positive and negative fixed and floating-point numbers,
zero, infinity, and values that are the undefined result of an operation (NaN or
“not a number”).

Exact and approximate types

TimesTen supports both exact and approximate numeric types. Arithmetic
operations can be performed on numeric types only. Similarly, SUM and AVG
aggregates require numeric types.

The exact numeric types are:

o TT_TINYINT

e TT_SMALLINT

* TT_INTEGER

* TT_BIGINT

*+ NUMBER

The approximate types are:
* BINARY_FLOAT
 BINARY_DOUBLE

TT_TINYINT type

The TT_TINYINT data type is an unsigned integer that ranges from 0 to

255 (28-1). It requires 1 byte of storage and thus is more compact than the
NUMBER data type. It also has better performance than the NUMBER data type.
The data type of a negative TT_TINYINT is TT_SMALLINT. You cannot
specify TINYINT.

The example first attempts to create a table named Numerics that defines a
column named Col1 with data type TINYINT. TimesTen returns an error. The
column is redefined with data type TT_TINYINT.

Command> CREATE TABLE Numerics (Coll TINYINT);
3300: TINYINT is not a valid type name; use TT_TINYINT instead
The command failed.

Command> CREATE TABLE Numerics (Coll TT_TINYINT);
Command> describe numerics;
Table USER1.NUMERICS:
Collumns:
coL1 TT_TINYINT

1 table found.
(primary key columns are indicated with *)

Data Types 29

TT_SMALLINT type

The TT_SMALLINT data type is a signed integer that ranges from -32,768 (-21°)
to 32,767 (2%° - 1). It requires 2 bytes of storage and thus is more compact than

the NUMBER data type. It also has better performance than the NUMBER data
type. You can specify the data type SMALLINT, but it maps to NUMBER (38).

Example 1.7 The example ALTERSs the table Numerics and adds Col2 with a data type of
SMALLINT. A DESCRIBE of the table shows that the data type is
NUMBER (38). Col2 is dropped. A second ALTER TABLE adds Col2 with a
data type of TT_SMALLINT.

Command> ALTER TABLE Numerics ADD COLUMN Coll2 SMALLINT;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:

Columns:
CoL1 TT_TINYINT
coL2 NUMBER (38)

1 table found.
(primary key columns are indicated with *)

Command> ALTER TABLE Numerics DROP COLUMN Col2;
Command> ALTER TABLE Numerics ADD COLUMN Col2 TT_SMALLINT;
Command> DESCRIBE NUMERICS;

Table USER1.NUMERICS:

Collumns:
CcoL1 TT_TINYINT
CcoL2 TT_SMALLINT

1 table found.
(primary key columns are indicated with *)

TT_INTEGER type

The TT_INTEGER data type is a signed integer that ranges from -2,147,483,648
(-2 31 to 2,147,483,647 (231 -1). It requires 4 bytes of storage and thus is more
compact than the NUMBER data type. It also has better performance than the
NUMBER data type. You can specify TT_INT for TT_INTEGER. If you specify
either INTEGER or INT, these types are mapped to NUMBER (38).

Example 1.8 The example ALTERs the table Numerics and adds Col3 with a data type of INT.
A DESCRIBE of the table shows that the data type is NUMBER (38). Col3 is
dropped. A second ALTER TABLE adds Col2 with a data type of INTEGER. A
DESCRIBE of the table shows that the data type is NUMBER (38). Col3 is
dropped. Col3 and Col4 are then added with a data type of TT_INTEGER and
TT_INT. A DESCRIBE of the table shows the data types are TT_INTEGER.

30 Oracle TimesTen In-Memory Database SQL Reference Guide

Command> ALTER TABLE Numerics ADD Col3 INT;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:

Collumns:
coL1 TT_TINYINT
coL2 TT_SMALLINT
coL3 NUMBER (38)

1 table found.
(primary key columns are indicated with *)

Command> ALTER TABLE Numerics DROP Col3;
Command> ALTER TABLE Numerics ADD Col3 INTEGER;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:

Columns:
coL1 TT_TINYINT
CcoL2 TT_SMALLINT
CcoL3 NUMBER (38)

1 table found.
(primary key columns are indicated with *)

Command> ALTER TABLE Numerics DROP Col3;
Command> ALTER TABLE Numerics ADD COLUMN Col3 TT_INTEGER;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:

Collumns:
coL1 TT_TINYINT
coL2 TT_SMALLINT
CoL3 TT _INTEGER

1 table found.
(primary key columns are indicated with *)

Command> ALTER TABLE Numerics ADD Col4 TT_INT;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:

Columns:
CcoL1 TT_TINYINT
CcoL2 TT_SMALLINT
CcoL3 TT_INTEGER
CcoL4 TT_INTEGER

1 table found.
(primary key columns are indicated with *)

TT_BIGINT type

The TT_BIGINT data type is a signed integer that ranges from
-9,223,372,036,854,775,808 (-2 %) t0 9,223,372,036,854,775,807 (25 -1). It

Data Types 31

requires 8 bytes of storage and thus is more compact than the NUMBER data
type. It also has better performance than the NUMBER data type. You cannot
specify BIGINT.

Example 1.9 The example ALTERs table Numerics and attempts to add Col5 with a data type
of BIGINT. TimesTen generates an error. A second ALTER TABLE successfully
adds Col5 with a data type of TT_BIGINT.

Command> ALTER TABLE Numerics ADD COLUMN Col5 BIGINT;
3300: BIGINT is not a valid type name; use TT_BIGINT instead
The command failed.

Command> ALTER TABLE Numerics ADD COLUMN Col5 TT_BIGINT;
Command> DESCRIBE Numerics;
Table USER1.NUMERICS:

Collumns:
CoL1 TT_TINYINT
CcoL2 TT_SMALLINT
CoL3 TT_INTEGER
coL4 TT_INTEGER
COL5 TT_BIGINT

1 table found.
(primary key columns are indicated with *)

NUMBER type

The NUMBER data type stores zero as well as positive and negative fixed
numbers with absolute values from 1.0 X 10 1 to but not including
1.0 X 10 1?6, Each NUMBER value requires from 5 to 22 bytes.

Specify a fixed- point number as:
NUMBER (p)

where:

» pis the precision or the total number of significant decimal digits, where the
most significant digit is the left-most non-zero digit and the least significant
digit is the right-most known digit.

* sis the scale, or the number of digits from the decimal point to the least
significant digit. The scale ranges from -84 to 127.

— Positive scale is the number of significant digits to the right of the decimal
point to and including the least significant digit.

— Negative scale is the number of significant digits to the left of the decimal
point to but not including the least significant digit. For negative scale, the
least significant digit is on the left side of the decimal point, because the
number is rounded to the specified number of places to the left of the
decimal point.

32 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 1.10

Example 1.11

 Scale can be greater than precision. For example, in the case of e notation.
When scale is greater than precision, the precision specifies the maximum
number of significant digits to the right of the decimal point. For example, if
you define your column as type NUMBER (4,5), and you insert.000127 into
the column, the value is stored as.00013. A zero is required for the first digit
after the decimal point. TimesTen rounds values after the fifth digit to the right
of the decimal point.

* If a value exceeds the precision, then TimesTen returns an error. If a value
exceeds the scale, then TimesTen rounds the value.

NUMBER (p)

This represents a fixed-point number with precision p and scale 0 and is
equivalent to NUMBER (p,0).

Specify a floating-point number as:
NUMBER

If you do not specify precision and scale, TimesTen uses the maximum precision
and scale.

The example ALTERs table Numerics adding columns Col6, Col7, Col8, and
Col9 defined with the NUMBER data type and specified with different precisians
and scales.

Command> ALTER TABLE NUMERICS ADD COL6 NUMBER;
Command> ALTER TABLE Numerics ADD Col7 NUMBER (4,2);
Command> ALTER TABLE Numerics ADD Col8 NUMBER (4,-2);
Command> ALTER TABLE Numerics ADD Col8 NUMBER (2,4);
Command> ALTER TABLE Numerics ADD Col9 NUMBER (2,4);
Command> DESCRIBE NUMERICS;

Table USER1.NUMERICS:

Collumns:
coL1 TT_TINYINT
CcoL2 TT_SMALLINT
CcoL3 TT_INTEGER
coL4 TT_INTEGER
COL5 TT BIGINT
COL6 NUMBER
coL7 NUMBER (4,2)
CcoL8 NUMBER (4,-2)
CcoL9 NUMBER (2,4)

1 table found.
(primary key columns are indicated with *)

The example CREATES table NumberCombo and defines columns with the
NUMBER data type using different precisions and scales. The value 123.89 is
inserted into the columns.

Data Types 33

Command> CREATE TABLE NumberCombo (Coll NUMBER, Col2 NUMBER (3),

Col3 NUMBER (6,2), Col4 NUMBER (6,1), Col5 NUMBER (6,-2));
Command> DESCRIBE NumberCombo;

Table USER1.NUMBERCOMBO:

Collumns:
coL1 NUMBER
CcoL2 NUMBER (3)
CcoL3 NUMBER (6,2)
coL4 NUMBER (6,1)
COL5 NUMBER (6,-2)

1 table found.
(primary key columns are indicated with *)

Command> INSERT INTO NumberCombo VALUES
(123.89,123.89,123.89,123.89,123.89);
1 row inserted.

Command> VERTICAL ON;
Command> SELECT * FROM NumberCombo;

COL1: 123.89

coL2: 124
COL3: 123.89
COoL4: 123.9
COL5: 100

1 row found.

Example 1.12 The example CREATES a table and defines a column with data type
NUMBER (4,2). An attempt to INSERT a value of 123.89 results in an overflow
error.

Command> CREATE TABLE InvNumberValue (Col6 NUMBER (4,2));
Command> INSERT INTO InvNumberValue VALUES (123.89);
2923: Number type value overflow

The command failed.

Example 1.13 ~ The example CREATEs a table and defines columns with the NUMBER data
type using a scale that is greater than the precision. Values are inserted into the
columns.

Command> CREATE TABLE NumberCombo2 (Coll NUMBER (4,5),
Col2 NUMBER (4,5), Col3 NUMBER (4,5), Col4 NUMBER (2,7),
Col5 NUMBER (2,7), Col6 NUMBER (2,5), Col7 NUMBER (2,5));

Command> INSERT INTO NumberCombo2 VALUES (.01234, .00012, .000127,
.0000012, .00000123, 1.2e-4, 1.2e-5);
1 row inserted.

Command> DESCRIBE NumberCombo?2;

34 Oracle TimesTen In-Memory Database SQL Reference Guide

Table USER1.NUMBERCOMBOZ2:

Collumns:
coL1 NUMBER (4,5)
CcoL2 NUMBER (4,5)
CcoL3 NUMBER (4,5)
coL4 NUMBER (2,7)
COL5 NUMBER (2,7)
COL6 NUMBER (2,5)
CoL7 NUMBER (2,5)

1 table found.

(primary key columns are indicated with *)

Command> SELECT * FROM NumberCombo?2;

COL1: .01234
COoL2: .00012
COL3: .00013
COoL4: .0000012
COL5: .0000012
COL6: .00012
COL7: .00001

1 row found.

Floating-Point numbers

Floating -point numbers can have a decimal point or can have no decimal point.
An exponent may be used to increase the range (for example, 1.2 29).

Floating- point numbers do not have a scale because the number of digits that can
appear after the decimal point is not restricted.

Binary floating -point numbers are stored using binary precision (the digits 0 and
1). For the NUMBER data type, values are stored using decimal precision (the
digits 0 through 9).

Literal values that are within the range and precision supported by NUMBER are
stored as NUMBER because literals are expressed using decimal precision.
BINARY_FLOAT

BINARY_FLOAT is a 32-hit single- precision floating -point number.

BINARY_DOUBLE
BINARY_DOUBLE is a 64-bit double- precision floating- point number.

Both BINARY_FLOAT and BINARY_DOUBLE support the special values Inf,
-Inf and NaN (not a number) and conform to the IEEE standard.

Floating-point number limits:
* BINARY_FLOAT

Data Types 35

— Minimum positive finite value: 1.17549E-38F
— Maximum positive finite value: 3.40282E+38F
* BINARY_DOUBLE
— Minimum positive finite value: 2.22507485850720E-308
— Maximum positive finite value: 1.79769313486231E+308

Example 1.14 The example CREATES a table and defines two columns with the
BINARY_FLOAT and BINARY_DOUBLE data types.

Command> CREATE TABLE BfBd (Coll BINARY_FLOAT, Col2 BINARY_DOUBLE);
Command> DESCRIBE BfBd;

Table UISER1.BFBD:

Collumns:
coL1 BINARY_FLOAT
CcoL2 BINARY_DOUBLE

1 table found.
(primary key columns are indicated with *)

FLOAT and FLOAT (n)

TimesTen also supports the ANSI type FLOAT. FLOAT is an exact numeric type
and is implemented as the NUMBER type. The number n indicates the number of
bits of precision the value can store. The value ranges from 1 to 126. To convert
from binary precision to decimal precision, multiply n by 0.30103. To convert
from decimal precision to binary precision, multiple the decimal precision by
3.32193. The maximum 126 digits of binary precision is equivalent to
approximately 38 digits of decimal precision.

36 Oracle TimesTen In-Memory Database SQL Reference Guide

Binary and Varbinary types

Example 1.15

The BINARY data type is a fixed-length binary value with a length of n bytes.
The value of n ranges from 1 to 8300 bytes. The BINARY data type requires n
bytes of storage. Data is padded to the maximum column size with trailing zeros.
Zero padded comparison semantics are used.

The VARBINARY data type is a variable-length binary value having a maximum
length of n bytes. The value of n ranges from 1 to 4,194,304 (22) bytes.

The example CREATES a table and defines 2 columns. Coll is defined with data
type BINARY and Col2 is defined with data type VARBINARY.

Command> CREATE TABLE BVar (Coll BINARY (10), Col2 VARBINARY (10));
Command> DESCRIBE BVar;

Table USER1.BVAR:

Collumns:
coL1 BINARY (10)
CcoL2 VARBINARY (10) INLINE

1 table found.
(primary key columns are indicated with *)

Data Types 37

Numeric precedence

The result type of an expression is determined by the operand with the highest
type precedence. For example, the SUM of TT_INTEGER and
BINARY_FLOAT types results in type BINARY _FLOAT because
BINARY_FLOAT has higher numeric precedence than TT_INTEGER.
Similarly, the product of NUMBER and BINARY_DOUBLE types result in type
BINARY_DOUBLE because BINARY_DOUBLE has higher precedence than
NUMBER.

The numeric precedence order is as follows (highest to lowest):

* BINARY_DOUBLE

* BINARY_FLOAT

* NUMBER

* TT_BIGINT

* TT_INTEGER

e TT_SMALLINT

 TT_TINYINT

38 Oracle TimesTen In-Memory Database SQL Reference Guide

Datetime data types
The datetime data types are:
e TIME (atime only data type)
 TT_DATE
+ DATE
* TT_TIMESTAMP
* TIMESTAMP

TIME type

The format of a TIME value is HH:MI:SS and ranges from 00:00:00 (12:00:00
AM to 23:59:59 (11:59:59 PM). The TIME data type requires 8 bytes of storage.

TT_DATE type

The format of a TT_DATE value is YYYY-MM-DD and ranges from
1753-01-01 (January 1, 1753) to 9999-12-31 (December 31, 9999 AD). The
TT_DATE data type requires 4 bytes of storage.

DATE type

The format of a DATE value is YYYY-MM-DD HH:MI:SS and ranges from
-4712-01-01 (January 1, 4712 BC) to 9999-12-31 (December 31, 9999 AD).
There are no fractional seconds. The DATE type requires 7 bytes of storage.

TT_TIMESTAMP type

The format of a TT_TIMESTAMP value is

YYYY-MM-DD HH:MI:SS [.FFFFFF]. The fractional seconds precision is 6.
The range is from 1753-01-01 00:00:00 (January 1, 1753 midnight) to
9999-12-31 23:59:59 (December 31, 9999 11:59:59 PM). The TT_TIMESTAMP
type requires 8 bytes of storage. TT_TIMESTAMP is faster than the
TIMESTAMP data type and has a smaller storage size than the TIMESTAMP

type.

TIMESTAMP type

The format of a TIMESTAMP value is

YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]. The fractional seconds precision
range is 0 to 9. The default is 6. The date range is from -4712-01-01 (January 1,
4712 BC) to 9999-12-31 (December 31, 9999 AD). The TIMESTAMP type
requires 12 bytes of storage. The TIMESTAMP type has a larger date range than
the TT_TIMESTAMP and supports more precision than the TT_TIMESTAMP.

Data Types 39

TimesTen interval

Example 1.16

Example 1.17

Example 1.18

Example 1.19

Using INTERVAL types

If you are using TimesTen type mode, for information on INTERVAL, refer to
documentation from previous releases of TimesTen.

TimesTen supports interval type only in a constant specification and intermediate
expression result. Interval type can not be the final result. Columns cannot be
defined with an INTERVAL type. See “Type specifications” on page 8.

You can specify a single-field interval literal in an expression, but you cannot
specify a complete expression that returns an interval data type.

TimesTen supports interval literals of the form:
INTERVAL [+\-] CharString IntervalQualifier

Using DATE and TIME types
This section shows some DATE, TIME and TIMESTAMP data type examples:

To create a table named SAMPLE that contains both a column named DCOL
with the type DATE and a column named TCOL with the type TIME, use:

CREATE TABLE SAMPLE (TCOL TIME, DCOL DATE);

To insert DATE and TIME values into the table SAMPLE, use:

INSERT INTO SAMPLE VALUES
(TIME "12:00:00", DATE *1998-10-287);

To select all rows in the table SAMPLE that are between noon and 4:00 p.m. on
October 29, 1998, use:

SELECT * FROM SAMPLE WHERE DCOL = DATE "1998-10-29" AND
TCOL BETWEEN TIME "12:00:00" AND TIME "16:00:00";

To create a table named SAMPLE that contains a column named TSCOL with
the type TIMESTAMP and then select all rows in the table that are between noon
and 4:00 p.m. on October 29, 1998, use the statements:

CREATE TABLE SAMPLE2 (TSCOL TIMESTAMP);
INSERT INTO SAMPLE2 VALUES (TIMESTAMP "1998-10-28 12:00:007);

SELECT * FROM SAMPLE2

WHERE TSCOL

BETWEEN TIMESTAMP "1998-10-29 12:00:00"
AND "1998-10-29 16:00:00";

40 Oracle TimesTen In-Memory Database SQL Reference Guide

Note: TimesTen allows both literal and string formats of the TIME, DATE and
TIMESTAMP types. For example, TimeString ('12:00:00') and TimeL.iteral
(Time '16:00:00") are both valid ways to specify a TIME value. TimesTen reads
the first value as CHAR type and then later converts it to TIME type as needed.
TimesTen reads the second value as TIME. The examples above use the literal
format. Any values for the fraction not specified in full microseconds result in a
“Data truncated” error.

Handling TIMEZONE conversions

TimesTen currently does not support TIMEZONE. TIME/TIMESTAMP data
type values are stored without making any adjustment for time difference.
Applications must assume one time zone and convert TIME/TIMESTAMP to
that time zone before sending values to the database. For example, an application
can assume its TIMEZONE to be Pacific Standard Time. If the application is
using TIME/TIMESTAMP values from the Pacific Daylight Time or Eastern
Daylight/Standard Time, the application must convert TIME/TIMESTAMP to
Pacific Standard Time.

Date-time and interval types in arithmetic operations

If you are using TimesTen type mode, for information on Date-Time and Interval
types in arithmetic operations, refer to documentation from previous releases of
TimesTen.

Date-time refers to types DATE, TIME, and TIMESTAMP. Date and time
arithmetic is supported with the following syntax:

TimeVall - TimeVal2 or TimestampVall - TimestampVal2 or DateVall -
DateVal2 returns the difference as an interval day to second.

TT_DateVall - TT_DateVal2 returns the number of days difference as an integer.
DateTimeVal {+|-} IntervalVal or

IntervalVal + DateTimeVal or

IntervalVall {+|-} IntervalVal2 or

IntervalVal {*|/} NumericVal or

NumericVal * IntervalVal

INTERVAL type cannot be the final result of a complete expression. Extract
function must be used to extract the desired component of this interval result.

Data Types 41

The following table lists the type that results from each operation:

Operand 1 Operator Operand 2 Result type
TIME | - TIME| INTERVAL
DATE | DATE | DAY TO
TIMETAMP TIMESTAMP SECOND
TT_DATE - TT_DATE TT_BIGINT
(Number of
Days)
Date-time +or- INTERVAL Date-time
INTERVAL + Date-time Date-time
INTERVAL + 0or - INTERVAL INTERVAL
INTERVAL *or/ Numeric INTERVAL
Numeric * INTERVAL INTERVAL
Example 1.20 SELECT TT_DATE1l - TT_DATE2 FROM t1;

SELECT EXTRACT(DAY FROM TIMESTAMP1-TIMESTAMP2) FROM t1;

SELECT * FROM t1 WHERE TIMESTAMP1 -TIMESTAMP2 =

NUMTODSINTERVAL(10, "DAY®);

SELECT SYSDATE + NUMTODSINTERVAL(20, "SECOND®") FROM dual;

SELECT EXTRACT (SECOND FROM TIMESTAMP1-TIMESTAMP2) FROM dual;

/* select the microsecond difference between two timestamp values d1

and d2 */

SELECT 1000000* (EXTRACT(DAY FROM d1-d2)*24*3600+

EXTRACT(HOUR FROM d1-d2)*3600+

EXTRACT(MINUTE FROM d1-d2)*60+EXTRACT(SECOND FROM d1-d2)) FROM di;

Example 1.21 The example inserts timestamp values into 2 columns and then subtracts the two

values using the EXTRACT function:

Command> CREATE TABLE ts (id TIMESTAMP, id2 TIMESTAMP);

Command> INSERT INTO ts VALUES (timestamp "2007-01-20 12:45:23",
timestamp "2006-12-25 17:34:22%);

1 row inserted.

Command> SELECT EXTRACT (DAY FROM id - id2) from ts;

<25 >

1 row found.

42 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 1.22

The following queries return errors:
You cannot select an INTERVAL result:
SELECT TIMESTAMP1 -TIMESTAMP2 FROM t1
SELECT DATE1l - DATE2 FROM t1;;

You cannot compare an interval year to month with an interval day to second:

SELECT * FROM t1 WHERE TIMESTAMP1 -TIMESTAMP2 =
NUMTOYMINTERVAL(10, "YEAR®);

You cannot compare and INTERVAL DAY TO SECOND with and INTERVAL
DAY:

SELECT * FROM t1 WHERE TIMESTAMP1 -TIMESTAMPZ = INTERVAL "10*
DAY;

You cannot extract YEAR from an INTERVAL day to second:
SELECT EXTRACT (YEAR FROM TIMESTAMP1-TIMESTAMP2) FROM dual;

Restrictions on date-time and interval arithmetic operations

The following restrictions must be considered when performing date-time and
interval arithmetic:

» The results for addition and subtraction with DATE and TIMESTAMP types
for INTERVAL YEAR, INTERVAL MONTH are not closed. For example,
adding 1 year to the DATE or TIMESTAMP of '2004-02-29' results in a Date
arithmetic error (TimesTen error message 2787) because February 29, 2005
does not exist (2005 is not a leap year). Adding INTERVAL '1' month to
DATE '2005-01-30" also results in the same error because February never has
30 days.

» The results are closed for INTERVAL DAY.

Data Types 43

Storage requirements

Variable-length columns whose declared column length is > 128 bytes are stored
out of line. Variable-length columns whose declared column length is <= 128
bytes are stored inline. For character semantics, the number of bytes stored out of
line is dependent on the character set. For example, for a character set with 4
bytes per character, variable-length columns whose declared column length is >
32 (128/4) are stored out of line.

The storage requirements of the various data types are:

Type Storage required

CHAR (n n bytes or if character semantics, n characters. If

[BYTE|CHAR]) character semantics, the length of the column (n) is
based on length semantics and character set.

VARCHARZ2 (n For NOT INLINE columns:

[BYTE|CHAR])

On 32-bit platforms, length of value + 20 bytes
(minimum of 28 bytes).

On 64-bit platforms, length of value + 24 bytes
(minimum of 40 bytes).

For INLINE columns:
On 32-bit platforms, n + 4 bytes.
On 64-bit platforms, n + 8 bytes.

If character semantics, the length of the column (n) is
based on length semantics and character set.

NCHAR(n) Bytes required is 2* n where n is the number of
characters.

NVARCHAR?2 (n) For NOT INLINE columns:

On 32-bit platforms, 2*(length of value) + 20 bytes
(minimum of 28 bytes).

On 64-bit platforms, 2*(length of value) + 24 bytes
(minimum of 40bytes).

For INLINE columns:
On 32-bit platforms, 2*(length of column) + 4 bytes.
On 64-bit platforms, 2*(length of column) + 8 bytes.

TT_TINYINT 1 byte.

TT_SMALLINT 2 bytes.

44 Oracle TimesTen In-Memory Database SQL Reference Guide

Type Storage required
TT_INT[EGER] 4 bytes.
TT_BIGINT 8 bytes.

NUMBER 5 to 22 bytes.
BINARY_FLOAT 4 bytes.
BINARY_DOUBLE 8 bytes.
TT_DECIMAL(p,s) Approximately p/2 bytes.
TT_TIME 8 bytes.

TT_DATE 4 bytes.

DATE 7 bytes.
TT_TIMESTAMP 8 bytes.
TIMESTAMP 12 bytes.

BINARY (n) n bytes.

VARBINARY ()

For NOT INLINE columns:

On 32-bit platforms, length of value + 20 bytes
(minimum of 28 bytes).

On 64-bit platforms, length of value + 24 bytes
(minimum of 40 bytes).

For INLINE columns:
On 32-bit platforms, length of column + 4 bytes.
On 64-bit platforms, length of column + 8 bytes.

INTERVAL

An INTERVAL cannot be stored in TimesTen.

Data Types

45

Data type comparison rules

The following section describes how values of each data type are compared in
TimesTen.

Numeric values

A larger value is greater than a smaller value. -1 is less than 10 and -10 is less
than -1.

The floating-point value NaN is greater than any other numeric value and is
equal to itself.

Date values

A later date is considered greater than an earlier one. For example, the date
equivalent of “10-AUG-2005’ is less than that of ‘30-AUG-2006" and ‘30-AUG-
2006 1:15pm’ is greater than *30-AUG-2006 10:10am’.

Character values

Character values are compared by:

* Binary or linguistic sorting

» Blank-padded or nonpadded comparison semantics
Binary and linguistic sorting

In binary sorting, TimesTen compares character strings according to the
concatenated value of the numeric codes of the characters in the database
character set. One character is greater than the other if it has a greater numeric
values than the other in the character set. Blanks are less than any character.

Linguistic sorting is useful if the binary sequence of numeric codes does not
match the linguistic sequence of the characters you are comparing. In linguistic
sorting, SQL sorting and comparison are based on the linguistic rule set by
NLS_SORT. For more information on linguistic sorts, see Linguistic sorts in the
Operations Guide.

The default is binary sorting.
Blank-Padded and nonpadded comparison semantics

With blank-padded semantics, if two values have different lengths, TimesTen
adds blanks to the shorter value until both lengths are equal. Values are then
compared character by character up to the first character that differs. The value
with the greater character in the first differing position is considered greater. If
two values have no differing characters, then they are considered equal. Thus,
two values are considered equal if they differ only in the number of trailing
blanks.

Blank-padded semantics are used when both values in the comparison are
expressions of type CHAR or NCHAR or text literals.

46 Oracle TimesTen In-Memory Database SQL Reference Guide

With nonpadded semantics, two values are compared character by character up to
the first character that differs. The value with the greater character in that
position is considered greater. If two values that have differing lengths are
identical up to the end of the shorter one, then the longer one is considered
greater. If two values of equal length have no differing characters, they are
considered equal.

Nonpadded semantics are used when both values in the comparison have the type
VARCHAR2 or NVARCHAR?2.

As an example, with blank-padded semantics:

. a lzlal

With nonpadded semantics:

e ‘3 >y’

Data Types 47

Data conversion

Generally an expression cannot contain values of different data types. However,
TimesTen supports both implicit and explicit conversion from one data type to
another. We recommend explicit conversion.

Implicit Data Conversion

The following rules apply:

» Conversions between exact numeric values (TT_TINYINT, TT_SMALLINT,
TT_INTEGER, TT_BIGINT, NUMBER) and floating-point values
(BINARY_FLOAT, BINARY_DOUBLE) can be inexact because the exact
numeric values use decimal precision whereas the floating-point numbers use
binary precision.

» When comparing a character value with any date, time, or datetime value,
TimesTen converts the character data to the date, time, or datetime value.

 Implicit and explicit CHAR/VARCHAR2 <-> NCHAR/NVARCHAR?2
conversions are supported except when the character set is TIMESTENS. An
example of explicit conversion:

Command> CREATE TABLE ConvDemo (cl CHAR (10), x1 TT_INTEGER);

Command> CREATE TABLE ConvDemo2 (cl NCHAR (10), x2 TT_INTEGER);

Command> INSERT INTO ConvDemo VALUES ("ABC®, 10);

1 row inserted.

Command> INSERT INTO ConvDemo VALUES ("def", 100);

1 row inserted.

Command> INSERT INTO ConvDemo2 SELECT * FROM ConvDemo;

2 rows inserted.

Command> SELECT x1,x2,convdemo.cl, convdemo2.cl FROM ConvDemo,
ConvDemo2 where ConvDemo.cl = ConvDemo2.cl;

X1, X2, C1, C1

< 10, 10, ABC , ABC >

< 100, 100, def , def >

2 rows found.

NULL values

A NULL value indicates the absence of a value. It is a placeholder for a value
that is missing. Any column in a table or parameter in an expression, regardless
of its data type, can contain NULL values unless you specify NOT NULL for the
column when you create the table.

The following properties of NULL values affect operations on rows, parameters,
or local variables:

» NULL values always sort highest in a sequence of values.

48 Oracle TimesTen In-Memory Database SQL Reference Guide

» Two NULL values are not equal to each other except in a GROUP BY or
SELECT DISTINCT operation.

» An expression containing a NULL value evaluates to NULL. Tor example,
(5 - Col), where Col is NULL, evaluates to NULL.

Because of these properties, TimesTen ignores columns, rows, or parameters
containing NULL values:

» When joining tables if the join is on a column containing NULL values.

» When executing aggregate functions.

In several SQL predicates, described in Chapter 4, “Search Conditions, you can
explicitly test for NULL values. In an application, you can use the ODBC
functions SQLBindCol, SQLBindParameter, SQLGetData, and
SQLParamData, or you can use the JDBC functions

PreparedStatement.setNull and ResultSet.getXXXX with ResultSet.wasNull
to handle input and output of NULL values.

Data Types 49

INF and NAN

TimesTen supports the IEEE floating-point values Inf (positive infinity), -Inf
(negative infinity) and NaN (hot a number).

Constant Values:

You can use constant values in places where a floating-point constant is allowed:
The supported constant values are:

* BINARY_FLOAT_INFINITY

* -BINARY_FLOAT_INFINITY

* BINARY_DOUBLE_INFINITY
* -BINARY_DOUBLE_INFINITY
* BINARY_FLOAT_NAN

* BINARY_DOUBLE_NAN

In the following example, a table is created with a column of type
BINARY_FLOAT and a column of type TT_INTEGER.

BINARY_FLOAT _INFINITY and BINARY_FLOAT_NAN are inserted into the
column of type BINARY _FLOAT.

Command> CREATE TABLE BfDemo (Id BINARY_FLOAT, 1d2 TT_INTEGER);
Command> INSERT INTO BfDemo VALUES (BINARY_FLOAT_INFINITY, 50);
1 row inserted.

Command> INSERT INTO BfDemo VALUES (BINARY_FLOAT_NAN, 100);

1 row inserted.

Command> SELECT * FROM BfDemo;

< INF, 50 >

< NAN, 100 >

2 rows found.

Primary Key Values

Inf, -Inf, and NaN are acceptable values in columns defined with a primary key.
This is a deviation in behavior from NULL. NULL values are not allowed on
columns defined with a primary key.

You can only insert Inf, -Inf, and NaN values into BINARY_FLOAT and
BINARY_DOUBLE columns.

Selecting Inf and NaN (Floating-Point Conditions):

Floating-point conditions determine whether an expression is infinite or is the
undefined result of an operation (NaN or “not a number”).

The syntax:

Expression IS [NOT] {NAN| INFINITE};

Expression must either resolve to a numeric data type or to a data type that can be
implicitly converted to a numeric data type.

50 Oracle TimesTen In-Memory Database SQL Reference Guide

The following table describes the floating-point conditions:

Condition Operation Example
IS [NOT] Returns TRUE if Expression is SELECT * FROM
NAN the value NaN when NOT isnot BfDemo WHERE Id
specified. Returns TRUE if IS NOT NAN;
Expression is not the value NaN
when NOT is specified. ID, ID2
< INF, 50 >
1 row found.
IS [NOT] Returns TRUE if Expression is SELECT * FROM
INFINITE the value +INF or -INF when BfDemo WHERE Id

NOT is not specified. Returns
TRUE if Expression is neither
+INF nor -INF when NOT is
specified.

IS NOT INFINITE;

ID, ID2
< NAN, 100 >

1 row found.

Note: The constant keywords represent specific BINARY _FLOAT and
BINARY_DOUBLE values. The comparison keywords correspond to properties
of a value and are not specific to any type (although they can only evaluate to
true for BINARY_FLOAT or BINARY_DOUBLE types or types that can be
converted to BINARY_FLOAT or BINARY_DOUBLE).

Comparisons with Inf and NaN

The following rules apply:

» Comparison between Inf (or -Inf) and a finite value are as expected. For
example, 5> -Inf.

e (Inf=Inf) and (Inf > -Inf) both evaluate to True.
* (NaN = NaN) evaluates to True.

In reference to collating sequences:

» -Inf sorts lower than any other value.
 Inf sorts higher than any other value, but lower than Nan and NULL.
* NaN sorts higher than Inf.

* NULL sorts higher than NaN. NULL is always the largest value in any
collating sequence.

Expressions involving Inf and NaN

Data Types 51

» Expressions containing floating-point values may generate Inf, -Inf, or NaN.
This can occur either because the expression generated overflow or
exceptional conditions or because one or more of the values in the expression
was Inf, -Inf, or NaN. Inf and NaN are generated in overflow or division by 0
conditions.

» Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values
are. If you wish to exclude Inf and NaN from aggregates (or from any
selection), use both the IS NOT NAN and IS NOT INFINITE predicates.

52 Oracle TimesTen In-Memory Database SQL Reference Guide

Overflow and truncation

Some operations can result in data overflow or truncation. Overflow results in an
error and can generate Inf. Truncation results in loss of least significant data.

Exact values are truncated only when they are stored in the data store by an
INSERT or UPDATE statement, and if the target column has smaller scale than
the value. TimesTen returns a warning when such truncation occurs. If the value
does not fit because of overflow, TimesTen returns the special value Inf and does
not insert the specified value.

TimesTen may truncate approximate values during computation and when the
values are inserted into the data store or when data store values are updated.
TimesTen returns an error only upon insertion or update. When overflow with
approximate values occurs, TimesTen returns the special value Inf.

There are several circumstances that can cause overflow:

» During arithmetic operations. Overflow can occur when multiplication
results in a number larger than the maximum value allowable in its type.
Arithmetic operations are defined in Chapter 3.

» When using aggregate functions. Overflow can occur when the sum of
several numbers exceeds the maximum allowable value of the result type.
Aggregate functions are defined in Chapter 3.

» During type conversion. Overflow can also occur when, for example, a
TT_INTEGER value is converted to a TT_SMALLINT value.

Truncation can cause an error or warning for alphanumeric or numeric data

types:

» Character data. An error occurs if a string is truncated because it is too long
for its target type. For NCHAR and NVARCHAR?2 types, truncation always

occurs on Unicode character boundaries. In the NCHAR data types, a single-
byte value (half a Unicode character) has no meaning and is not possible.

* Numeric data. A warning occurs when any trailing non-zero digit is dropped
from the fractional part of a numeric value.

Underflow

When an approximate numeric value is too close to zero to be represented by the
hardware, TimesTen underflows to zero and returns a truncation warning.

Replication limits
TimesTen places the following limits on the size of data types in a data store that
is being replicated:
* VARCHAR?2 and VARBINARY columns cannot exceed 256,000 bytes. For
character length semantics, the limit is 256,000 bytes. How many characters

Data Types 53

that translates into depends on the database character set. Worst case is
256,000 bytes / 4 = 64,000 characters.

* NVARCHAR2 columns cannot exceed 128,000 characters (256,000 bytes).

54 Oracle TimesTen In-Memory Database SQL Reference Guide

TimesTen Type Mode (Backward Compatibility)

TimesTen supports a data type backward compatibility mode (called TimesTen
type mode). The type mode is a data store creation attribute. TypeMode = 1
indicates TimesTen mode.

For more information on types modes, see "TypeMode™ in Oracle TimesTen In-
Memory Database API Reference Guide.

For information on data type usage in TimesTen type mode, refer to
documentation from previous releases of TimesTen.

Data Types 55

Data types supported in TimesTen type mode

Data type Description

CHAR[ACTER] [(n [BYTE|CHAR])] Fixed-length character string of length n bytes or
characters. Default is 1 byte.

BYTE indicates that the column has byte length
semantics. Legal values for n range from a
minimum of 1 byte to a maximum 8300 bytes.

CHAR indicates that the column has character
length semantics. The minimum CHAR length is 1
character. The maximum CHAR length depends on
how many characters fit in 8300 bytes. This is
determined by the database character set in use. For
character set AL32UTF8, up to four bytes per
character may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the
character set.

A zero-length string is a valid non-NULL value.
CHAR data is padded to the maximum column size
with trailing blanks. Blank-padded comparison
semantics are used. For information on blank-
padded and nonpadded semantics, see “Blank-
Padded and nonpadded comparison semantics” on
page 46.

Alternatively, specify
TT_CHAR [(n [BYTE|CHAR])].

56 Oracle TimesTen In-Memory Database SQL Reference Guide

Data type Description

NCHARI[(n)] Fixed-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n is the
specified number of characters. Nchar character
limits are 1/2 the byte limits so the maximum size is
4150. Default and minimum bytes of storage is 2n
).

A zero-length string is a valid non-NULL value.
NCHAR data is padded to the maximum column
size with U+0020 SPACE. Blank-padded
comparison semantics are used. For information on
blank-padded and nonpadded semantics, see
“Blank-Padded and nonpadded comparison
semantics” on page 46.

Alternatively, specify TT_NCHAR[(n)].

NATIONAL CHARACTER and NATIONAL
CHAR are synonyms for NCHAR.

VARCHAR (n [BYTE|CHARY]) Variable-length character string having maximum
length n bytes or characters. You must specify n.

BYTE indicates that the column has byte length
semantics. Legal values for n range from a
minimum of 1 byte to a maximum 4194304 (2%?)
bytes.

CHAR indicates that the column has character
length semantics.

A zero-length string is a valid non-NULL value.

Blank-padded comparison semantics are used. For
information on blank-padded and nonpadded
semantics, see “Blank-Padded and nonpadded
comparison semantics” on page 46.

Alternatively, specify
TT_VARCHAR (n [BYTE|CHARY]).

Data Types 57

Data type

Description

NVARCHAR(n)

Variable-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n is the
specified number of characters. NVARCHAR
character limits are 1/2 the byte limits so the
maximum size is 2,097,152 (221). You must specify
n.

A zero-length string is a valid non-NULL value.

Blank-padded comparison semantics are used. For
information on blank-padded and nonpadded
semantics, see “Blank-Padded and nonpadded
comparison semantics” on page 46.

Alternatively, specify TT_NVARCHAR(n).

NATIONAL CHARACTER VARYING,
NATIONAL CHAR VARYING, and NCHAR
VARYING are synonyms for NVARCHAR.

TINYINT

Unsigned integer ranging from 0 to 255 (28-1).

Since TINYINT is unsigned, the negation of a
TINYINT is SMALLINT.

Alternatively, specify TT_TINYINT.

SMALLINT

A native signed 16 bit integer in the range —32,768 —
(219) to 32,767 (21°-1).

Alternatively, specify TT_SMALLINT.

INT[EGER]

A signed integer in the range —2,147,483,648 —(2°1)
to 2,147,483,647 (231-1).

Alternatively, specify TT_INTEGER.

BIGINT

A signed 8-byte integer in the range
-9,223,372,036,854,775,808
-(25%) t0 9,223,372,036,854,775,807 (252 - 1).

Alternatively, specify TT_BIGINT.

58 Oracle TimesTen In-Memory Database SQL Reference Guide

Data type

Description

BINARY_FLOAT

32-bit floating-point number. BINARY_FLOAT isa
single-precision native floating-point type. Supports
+Inf, -Inf and NaN values. BINARY_FLOAT is an
approximate numeric value consisting of an
exponent and mantissa. You can use Exponential or
E-notation. BINARY_FLOAT has binary precision
24.

Minimum positive finite value:

1.17549E-38F

Maximum positive finite value: 3.40282E+38F
Alternatively, specify REAL or FLOAT (24).

BINARY_DOUBLE

64-bit floating -point number. BINARY_DOUBLE
is a double-precision native floating point number.
Supports +Inf,

-Inf and Nan values. BINARY_DOUBLE is an
approximate numeric value consisting of an
exponent and mantissa. You can use Exponential or
E-notation. BINARY_DOUBLE has bhinary
precision 53.

Minimum positive finite value:
2.22507485850720E-308

Maximum positive finite value:
1.79769313486231E+308

Alternatively, specify DOUBLE [PRECISION] or
FLOAT [(53)].

DEC[IMAL][(p[,s])] or
NUMERIC[(p[,sD)]

An exact numeric value with a fixed maximum
precision (total number of digits) and scale (number
of digits to the right of the decimal point). The
precision p must be between 1 and 40. The scale
must be between 0 and p. The default precision is 40
and the default scale is 0.

BINARY (n)

Fixed-length binary value of n bytes. Legal values
for n range from 1 to 8300.

BINARY data is padded to the maximum column
size with trailing zeroes.

Data Types 59

Data type

Description

VARBINARY (n)

Variable-length binary value having maximum
length n bytes. Legal values for n range from 1 to
4194304 (222).

TIME

A time of day between 00:00:00 (12 midnight) and
23:59:59 (11:59:59 pm), inclusive. The format is:
HH:MI:SS. Storage size is 8 bytes.

DATE

Stores date information: century, year, month, date.
The format is YYYY-MM-DD. MM is expressed as
an integer. For example,

2006-10-28. Storage size is 4 bytes.

Valid dates are between 1753-01-01 (January
1,1753) and 9999-12-31 (December 31, 9999).

Alternatively, specify TT_DATE.

TIMESTAMP

A data and