
Oracle TimesTen
In-Memory Database
SQL Reference Guide

Release 7.0

 B31682-03

Copyright ©1996, 2007, Oracle. All rights reserved.
ALL SOFTWARE AND DOCUMENTATION (WHETHER IN
HARD COPY OR ELECTRONIC FORM) ENCLOSED AND ON
THE COMPACT DISC(S) ARE SUBJECT TO THE LICENSE
AGREEMENT.
The documentation stored on the compact disc(s) may be printed by
licensee for licensee’s internal use only. Except for the foregoing,
no part of this documentation (whether in hard copy or electronic
form) may be reproduced or transmitted in any form by any means,
electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without the prior
written permission of TimesTen Inc.
Oracle, JD Edwards, PeopleSoft, Retek, TimesTen, the TimesTen
icon, MicroLogging and Direct Data Access are trademarks or reg-
istered trademarks of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.
The Programs (which include both the software and documenta-
tion) contain proprietary information; they are provided under a li-
cense agreement containing restrictions on use and disclosure and
are also protected by copyright, patent, and other intellectual and
industrial property laws. Reverse engineering, disassembly, or de-
compilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as
specified by law, is prohibited.
The information contained in this document is subject to change
without notice. If you find any problems in the documentation,
please report them to us in writing. This document is not warranted
to be error-free. Except as may be expressly permitted in your li-
cense agreement for these Programs, no part of these Programs may
be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, for any purpose.
September 2007
Printed in the United States of America

Contents
About this Guide

TimesTen documentation . 1
Background reading . 2
Conventions used in this guide 3
Technical Support . 5

1 Data Types
Type specifications . 8
ANSI SQL data types . . 15
Types supported for backward compatibility in Oracle type mode 18
TimesTen type mapping . 21
Character data types . 24

CHAR type . 24
NCHAR type . . 25
VARCHAR2 type . . 26
NVARCHAR2 type . 27

Numeric data types . . 29
Exact and approximate types. 29

TT_TINYINT type . 29
TT_SMALLINT type 30
TT_INTEGER type . 30
TT_BIGINT type . 31
NUMBER type . 32
Floating-Point numbers 35
BINARY_FLOAT. . 35
BINARY_DOUBLE . 35
FLOAT and FLOAT (n) 36

Binary and Varbinary types. . 37
Numeric precedence . 38
Datetime data types. . 39

TIME type . . 39
TT_DATE type . . 39
DATE type. . 39
TT_TIMESTAMP type . . 39
TIMESTAMP type . 39

TimesTen interval . 40
Using INTERVAL types . 40
Using DATE and TIME types 40
Handling TIMEZONE conversions 41
iii

Date-time and interval types in arithmetic operations 41
Restrictions on date-time and interval arithmetic operations 43

Storage requirements . . 44
Data type comparison rules . 46
Data conversion . . 48

Implicit Data Conversion 48
NULL values . . 48
INF and NAN . 50
Overflow and truncation . 53
Underflow . . 53
Replication limits . 53
TimesTen Type Mode (Backward Compatibility) 55
Data types supported in TimesTen type mode 56
Oracle data types supported in TimesTen type mode 61

2 Names
Basic names . 65
Owner names . . 65
Compound identifiers . 66
Dynamic parameters . 66

3 Expressions
ROWID specification . 68
ROWNUM specification . 69
Expression specification . 70
Subqueries . . 74
Aggregate functions . 76
Constants . 79
Format Models . 84

Number format models . 84
Number format elements 84

Datetime format models . 88
Datetime format elements 88

Format Model for ROUND and TRUNC Date Functions 91
Format Model for TO_CHAR of TimesTen types 92

ABS . 94
ADD_MONTHS . 95
ASCIISTR . . 97
CASE . . 98
CAST . 100
CHR . 101
CEIL . 102
iv Oracle TimesTen In-Memory Database SQL Reference Guide

COALESCE . 103
CONCAT. . 104
DECODE . 106
EXTRACT . 108
FLOOR . 109
GREATEST. . 110
LEAST . 113
LOWER and UPPER . 116
LPAD . 117
LTRIM. . 119
MOD . 121
NCHR . 122
NLSSORT . 123
NUMTODSINTERVAL . 125
NUMTOYMINTERVAL . 126
NVL . 127
POWER . 128
ROUND (date) . 129
ROUND (expression) . 130
RPAD . 132
RTRIM . 134
SIGN . 136
SQRT . 138
String functions . 139

SUBSTR . 139
INSTR . 140
LENGTH . 140

SYSDATE and GETDATE . 142
TO_CHAR . 144
TO_DATE . 146
TO_NUMBER . 147
TRIM . 148
TRUNC (date). . 152
TRUNC (expression) . 153
TT_HASH . 154
UNISTR . 155
USER functions . 156

CURRENT_USER . 156
USER. . 156
SESSION_USER . 156
SYSTEM_USER . 157
v

4 Search Conditions
Search condition general syntax 159
ALL/ NOT IN predicate (subquery) 162
ALL/NOT IN predicate (value list) 164
ANY/ IN predicate (subquery) 167
ANY/ IN predicate (value list) 170
BETWEEN predicate. 173
Comparison predicate . 175
EXISTS predicate . 177
IS INFINITE predicate . 179
IS NAN predicate . 180
IS NULL predicate . 181
LIKE predicate . 182

NCHAR and NVARCHAR2 184

5 SQL Statements
Access Control and SQL statements 186
ALTER ACTIVE STANDBY PAIR 187
ALTER CACHE GROUP . 191
ALTER REPLICATION . 194
ALTER SESSION . 206
ALTER TABLE . 210
ALTER USER . 226
COMMIT . 228
CREATE ACTIVE STANDBY PAIR 229
CREATE CACHE GROUP 236

User and system managed cache groups 236
CREATE READONLY CACHE GROUP 237
CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP238
CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP. 238
CREATE USERMANAGED CACHE GROUP 239

AUTOREFRESH in Cache Groups 243
CREATE INDEX . 250
CREATE MATERIALIZED VIEW 254

Restrictions on the materialized view and detail tables 254
Restrictions on the MATERIALIZED VIEW query 255

CREATE REPLICATION . 258
CHECK CONFLICTS . 266

CREATE SEQUENCE . 275
Incrementing SEQUENCE values with CURRVAL and NEXTVAL 276

CREATE TABLE . 279
Column Definition . 286
vi Oracle TimesTen In-Memory Database SQL Reference Guide

CREATE USER . 299
CREATE VIEW . 301

Restrictions on the VIEW query 301
Restrictions on the VIEW 301

DELETE . 303
DROP ACTIVE STANDBY PAIR. 305
DROP CACHE GROUP. . 306
DROP INDEX. . 307
DROP SEQUENCE . 309
DROP REPLICATION . 310
DROP TABLE . 311
DROP USER . 312
DROP VIEW . 313
FLUSH CACHE GROUP . 314
GRANT . 316
INSERT . 318

SingleRowValues . 319
INSERT SELECT . 321
LOAD CACHE GROUP . 322
MERGE . 325
REFRESH CACHE GROUP 329
REVOKE . 332
ROLLBACK . 334
SELECT . 335

SelectList . 347
TableSpec . 350
DerivedTable . 351
JoinedTable . 351

TRUNCATE TABLE . 354
UNLOAD CACHE GROUP 356
UPDATE . 358

Join Update . 360

6 Access Control Privileges
Privilege descriptions . 363
Operations requiring instance Administrator privilege 364

SQL operations . 364
Utilities . 364

Operations requiring ADMIN privilege 365
Attributes . 365
Built-in Procedures . 365
SQL operations . 366
vii

Utilities. 366
Utility C API . 366
XLA Functions. 366

Operations requiring CONNECT privilege 366
Operations requiring CREATE DATASTORE privilege 367
Operations requiring DDL privilege 367

Built-in Procedures . 367
SQL operations . 367

Operations requiring WRITE privilege 367
Built-in Procedures . 367
SQL operations . 367
XLA functions . 368

Operations requiring SELECT privilege 368
Built-in Procedures . 368
SQL operations . 368
Utilities. 368

7 System and Replication Tables
System table list. 370
Replication table list . 371
Tables reserved for internal or future use 372
SYS.CACHE_GROUP . 373
SYS.COLUMNS . 375
SYS.COL_STATS . 378
SYS.DUAL . 379
SYS.INDEXES . 380
SYS.MONITOR . 382
SYS.PLAN . 389
SYS.SEQUENCES . 392
SYS.SYNONYMS . 394
SYS.TABLES . 395
SYS.TBL_STATS . 399
SYS.TCOL_STATS . 400
SYS.TINDEXES . 401
SYS.TRANSACTION_LOG_API 403
SYS.TTABLES . 404
SYS.TTBL_STATS . 408
SYS.VIEWS . 409
SYS.XLASUBSCRIPTIONS 410
TTREP.REPELEMENTS . .411
TTREP.REPLICATIONS . 415
viii Oracle TimesTen In-Memory Database SQL Reference Guide

TTREP.REPNETWORK. . 416
TTREP.REPPEERS . 417
TTREP.REPSTORES . 420
TTREP.REPSUBSCRIPTIONS 421
TTREP.REPTABLES . 423
TTREP.TTSTORES . 428

8 Reserved Words

Index
ix

x Oracle TimesTen In-Memory Database SQL Reference Guide

About this Guide
Oracle TimesTen In-Memory Database is a high-performance, in-memory data
manager that supports the ODBC (Open DataBase Connectivity) and JDBC (Java
DataBase Connectivity) interfaces.

This guide is for application developers who use and administer TimesTen. It
provides a reference for TimesTen SQL statements, expressions, and functions,
including TimesTen SQL extensions.

To work with this guide, you should understand how database systems work. You
should also have knowledge of SQL (Structured Query Language). See
“Background reading” on page 2 if you are not familiar with these interfaces.

TimesTen documentation
TimesTen documentation is available on the product distribution media and on
the Oracle Technology Network:
http://www.oracle.com/technology/documentation/timesten_doc.html.

Including this guide, the TimesTen documentation set consists of these
documents:

Book Titles Description

Oracle TimesTen In-Memory
Database Installation Guide

Contains information needed to install and configure
TimesTen on all supported platforms.

Oracle TimesTen In-Memory
Database Introduction

Describes all the available features in the Oracle
TimesTen In-Memory Database.

Oracle TimesTen In-Memory
Database Operations Guide

Provides information on configuring TimesTen and
using the ttIsql utility to manage a data store. This
guide also provides a basic tutorial for TimesTen.

Oracle TimesTen In-Memory
Database C Developer’s and
Reference Guide
and the
Oracle TimesTen In-Memory
Database Java Developer’s
and Reference Guide

Provide information on how to use the full set of
available features in TimesTen to develop and
implement applications that use TimesTen.

Oracle TimesTen In-Memory
Database API Reference
Guide

Describes all TimesTen utilities, procedures, APIs and
provides a reference to other features of TimesTen.
 1

http://www.oracle.com/technology/documentation/timesten_doc.html

Background reading
For a Java reference, see:
• Horstmann, Cay and Gary Cornell. Core Java(TM) 2, Volume I--

Fundamentals (7th Edition) (Core Java 2). Prentice Hall PTR; 7 edition
(August 17, 2004).

A list of books about ODBC and SQL is in the Microsoft ODBC manual
included in your developer’s kit. Your developer’s kit includes the appropriate
ODBC manual for your platform:
• Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide provides all

relevant information on ODBC for Windows developers.

Oracle TimesTen In-Memory
Database SQL Reference
Guide

Contains a complete reference to all TimesTen SQL
statements, expressions and functions, including
TimesTen SQL extensions.

Oracle TimesTen In-Memory
Database Error Messages
and SNMP Traps

Contains a complete reference to the TimesTen error
messages and information on using SNMP Traps with
TimesTen.

Oracle TimesTen In-Memory
Database TTClasses Guide

Describes how to use the TTClasses C++ API to use
the features available in TimesTen to develop and
implement applications.

TimesTen to TimesTen
Replication Guide

Provides information to help you understand how
TimesTen Replication works and step-by-step
instructions and examples that show how to perform
the most commonly needed tasks.
This guide is for application developers who use and
administer TimesTen and for system administrators
who configure and manage TimesTen Replication.

TimesTen Cache Connect to
Oracle Guide

Describes how to use Cache Connect to cache Oracle
data in TimesTen data stores. This guide is for
developers who use and administer TimesTen for
caching Oracle data.

Oracle TimesTen In-Memory
Database Troubleshooting
Procedures Guide

Provides information and solutions for handling
problems that may arise while developing applications
that work with TimesTen, or while configuring or
managing TimesTen.
2 Oracle TimesTen In-Memory Database SQL Reference Guide

• Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide, included
online in PDF format, provides information on ODBC for UNIX developers.

For a conceptual overview and programming how-to of ODBC, see:
• Kyle Geiger. Inside ODBC. Redmond, WA: Microsoft Press. 1995.

For a review of SQL, see:
• Melton, Jim and Simon, Alan R. Understanding the New SQL: A Complete

Guide. San Francisco, CA: Morgan Kaufmann Publishers. 1993.
• Groff, James R. / Weinberg, Paul N. SQL: The Complete Reference, Second

Edition. McGraw-Hill Osborne Media. 2002.

For information about Unicode, see:
• The Unicode Consortium, The Unicode Standard, Version 5.0,

Addison-Wesley Professional, 2006.
• The Unicode Consortium Home Page at http://www.unicode.org

Conventions used in this guide
TimesTen supports multiple platforms. Unless otherwise indicated, the
information in this guide applies to all supported platforms. The term Windows
refers to Windows 2000, Windows XP and Windows Server 2003. The term
UNIX refers to Solaris, Linux, HP-UX, Tru64 and AIX.

TimesTen documentation uses these typographical conventions:
If you see... It means...

code font Code examples, filenames, and pathnames.

For example, the .odbc.ini. or ttconnect.ini file.

italic code
font

A variable in a code example that you must replace.

For example:
Driver=install_dir/lib/libtten.sl
Replace install_dir with the path of your TimesTen
installation directory.
About this Guide 3

TimesTen documentation uses these conventions in command line examples and
descriptions:

TimesTen documentation uses these variables to identify path, file and user
names:

If you see... It means...

fixed width
italics

Variable; must be replaced with an appropriate value. In
some cases, such as for parameter values in built-in
procedures, you may need to single quote (' ') the value.

[] Square brackets indicate that an item in a command line
is optional.

{ } Curly braces indicated that you must choose one of the
items separated by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates arguments that you may
use more than one argument on a single command line.

... An ellipsis (. . .) after an argument indicates that you may
use more than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the UNIX root
prompt.

If you see... It means...

install_dir The path that represents the directory where the current
release of TimesTen is installed.

TTinstance The instance name for your specific installation of
TimesTen. Each installation of TimesTen must be
identified at install time with a unique alphanumeric
instance name. This name appears in the install path. The
instance name “giraffe” is used in examples in this guide.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit
or 64-bit operating system.

release or rr Two digits that represent the first two digits of the current
TimesTen release number, with or without a dot. For
example, 51 or 7.0 represents TimesTen Release 7.0.

jdk_version Two digits that represent the version number of the
major JDK release. Specifically, 14 represent JDK 1.4;
5 represents JDK 5.
4 Oracle TimesTen In-Memory Database SQL Reference Guide

Technical Support
For information about obtaining technical support for TimesTen products, go to
the following Web address:

http://www.oracle.com/support/contact.html

timesten A sample name for the TimesTen instance administrator.
You can use any legal user name as the TimesTen
administrator. On Windows, the TimesTen instance
administrator must be a member of the Administrators
group. Each TimesTen instance can have a unique
instance administrator name.

DSN The data source name.
About this Guide 5

http://www.oracle.com/support/contact.html

6 Oracle TimesTen In-Memory Database SQL Reference Guide

1
Data Types

A data type defines a set of values. A reference to a data type specifies the set of
values that can occur in a given context.

A data type is associated with each value retrieved from a table or computed in
an expression and each constant.

TimesTen follows the ODBC standard for type conversion.

A discussion of this standard is not included in this guide. See Appendix D either
in the Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide or the
Microsoft ODBC 3.0 Developer’s Kit and Programmer’s Reference for more
information.

If you are using the Cache Connect feature of TimesTen, see "Differences
between Oracle and TimesTen tables" in Chapter 8, “Compatibility Between
TimesTen and Oracle” of the TimesTen Cache Connect to Oracle Guide. This
section compares valid data types for creating cache group columns, as well as
type conversions for passthrough queries.
 7

Type specifications
TimesTen supports the following data types in the default Oracle type mode. The
type mode is a data store creation attribute. TypeMode = 0 indicates Oracle type
mode. TypeMode = 1 indicates TimesTen mode.

For more information on types modes, see "TypeMode" in Oracle TimesTen In-
Memory Database API Reference Guide.

Data type Description

CHAR[ACTER] [(n [BYTE|CHAR])] Fixed-length character string of length n bytes
or characters. Default is 1 byte.

BYTE indicates that the column has byte
length semantics. Legal values for n range
from a minimum of 1 byte to a maximum
8300 bytes.

CHAR indicates that the column has character
length semantics. The minimum CHAR length
is 1 character. The maximum CHAR length
depends on how many characters fit in 8300
bytes. This is determined by the database
character set in use. For character set
AL32UTF8, up to four bytes per character
may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the
character set.

A zero-length string is interpreted as NULL.

CHAR data is padded to the maximum
column size with trailing blanks. Blank-
padded comparison semantics are used.

Alternatively, specify ORA_CHAR
[(n [BYTE|CHAR])].
8 Oracle TimesTen In-Memory Database SQL Reference Guide

NCHAR[(n)] Fixed-length string of length n two-byte
Unicode characters.

The number of bytes required is 2* n where n
is the specified number of characters. Nchar
character limits are 1/2 the byte limits so the
maximum size is 4150. Default and minimum
bytes of storage is 2n (2).

A zero-length string is interpreted as NULL.

NCHAR data is padded to the maximum
column size with U+0020 SPACE. Blank-
padded comparison semantics are used.

Alternatively, specify ORA_NCHAR[(n)].

VARCHAR[2] (n [BYTE|CHAR]) Variable-length character string having
maximum length n bytes or characters.

BYTE indicates that the column has byte
length semantics.Legal values for n range
from a minimum of 1 byte to a maximum
4194304 (222) bytes. You must specify n.

CHAR indicates that the column has character
length semantics.

A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used.

Do not use the VARCHAR type. Although it is
currently synonymous with VARCHAR2, the
VARCHAR type is scheduled to be redefined.

Alternatively, specify
ORA_VARCHAR2 (n [BYTE|CHAR]).

Data type (continued) Description
Data Types 9

NVARCHAR2(n) Variable-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n
is the specified number of characters.
NVARCHAR2 character limits are 1/2 the
byte limits so the maximum size is 2,097,152
(221). You must specify n.

A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used.

Alternatively, specify
ORA_NVARCHAR2(n).

TT_TINYINT Unsigned integer ranging from 0 to 255 (28-1).

Use TT_TINYINT rather than the NUMBER
data type. TT_TINYINT is more compact and
offers faster performance than the NUMBER
type. If you need to store greater than 19 digit
integers, use NUMBER (p) where p > 19.

Since TT_TINYINT is unsigned, the negation
of a TT_TINYINT is TT_SMALLINT.

TT_SMALLINT A native signed 16 bit integer in the range –
32,768 –(215) to 32,767 (215–1).

Use TT_SMALLINT rather than SMALLINT.
SMALLINT maps to the NUMBER data type.

TT_SMALLINT is more compact and offers
faster performance than the NUMBER type. If
you need to store greater than 19 digit
integers, use NUMBER (p) where p > 19.

TT_INT[EGER] A signed integer in the range –2,147,483,648 -
-(231) to 2,147,483,647 (231–1).

TT_INTEGER is a native signed integer data
type. Use TT_INTEGER rather than
INTEGER. INTEGER maps to the NUMBER
data type. TT_INTEGER is more compact and
offers faster performance than the NUMBER
type. If you need to store greater than 19 digit
integers, use NUMBER (p) where p > 19.

Data type (continued) Description
10 Oracle TimesTen In-Memory Database SQL Reference Guide

TT_BIGINT A signed 8-byte integer in
the range
-9,223,372,036,854,775,808
-(263) to 9,223,372,036,854,775,807
(263 - 1).

Use TT_BIGINT rather than the NUMBER
data type. TT_BIGINT is more compact and
offers faster performance than the NUMBER
type. If you need to store greater than 19 digit
integers, use NUMBER (p) where p > 19.

NUMBER [(precision [,scale])] Number having precision and scale. The
precision ranges from 1 to 38 decimal. The
scale ranges from -84 to 127. Both precision
and scale are optional.

If you do not specify a precision or a scale,
TimesTen assumes the maximum precision of
38 and flexible scale.

NUMBER supports scale > precision and
negative scale.

NUMBER stores zero as well as positive and
negative fixed numbers with absolute values
from 1.0 x 10-130 to (but not including)
1.0 x 10126. If you specify an arithmetic
expression whose value has an absolute value
greater than or equal to 1.0 x 10126, then
TimesTen returns an error.

BINARY_FLOAT 32-bit floating-point number.
BINARY_FLOAT is a single-precision native
floating-point type. Supports +Inf, -Inf and
NaN values. BINARY_FLOAT is an
approximate numeric value consisting of an
exponent and mantissa. You can use
Exponential or E-notation. BINARY_FLOAT
has binary precision 24.

Minimum positive finite value:

1.17549E-38F

Maximum positive finite value:
3.40282E+38F

Data type (continued) Description
Data Types 11

BINARY_DOUBLE 64-bit floating -point number.
BINARY_DOUBLE is a double-precision
native floating point number. Supports +Inf,
 -Inf and Nan values. BINARY_DOUBLE is
an approximate numeric value consisting of an
exponent and mantissa. You can use
Exponential or E-notation.
BINARY_DOUBLE has binary precision 53.

Minimum positive finite value:
2.22507485850720E-308

Maximum positive finite value:
1.79769313486231E+308

BINARY (n) Fixed-length binary value of n bytes. Legal
values for n range from 1 to 8300.

BINARY data is padded to the maximum
column size with trailing zeroes.

Alternatively, specify TT_BINARY (n).

VARBINARY (n) Variable-length binary value having maximum
length n bytes. Legal values for n range from 1
to 4194304 (222).

Alternatively, specify TT_VARBINARY(n).

TIME A time of day between 00:00:00 (12 midnight)
and 23:59:59 (11:59:59 pm), inclusive. The
format is: HH:MI:SS. Storage size is 8 bytes.

Alternatively, specify TT_TIME.

TT_DATE Stores date information: century, year, month,
date. The format is YYYY-MM-DD. MM is
expressed as an integer. For example,

2006-10-28. Storage size is 4 bytes.

Valid dates are between 1753-01-01 (January
1,1753) and 9999-12-31 (December 31, 9999).

Data type (continued) Description
12 Oracle TimesTen In-Memory Database SQL Reference Guide

DATE Stores date and time information: century,
year, month, date, hour, minute and second:
Format is:

YYYY-MM-DD HHMMSS.

Valid date range is from January 1, 4712 BC to
December 31, 9999 AD.

The storage size is 7 bytes. There are no
fractional seconds.

Alternatively, specify ORA_DATE.

TT_TIMESTAMP A data and time between 1753-01-01 00:00:00
(January 1, 1753 midnight) and 9999-12-31
23:59:59 pm (11:59:59 pm on December 31,
9999), inclusive. Any values for the fraction
not specified in full microseconds result in a
“Data Truncated” error. The format is YYYY-
MM-DD HH:MI:SS [.FFFFFF].

Storage size is 8 bytes.

TT_TIMESTAMP has a smaller storage size
than TIMESTAMP and TT_TIMESTAMP is
faster than TIMESTAMP because
TT_TIMESTAMP is an 8 byte integer
containing the number of microseconds since
January 1, 1754. Comparisons are very fast.
TIMESTAMP has a larger range than
TT_TIMESTAMP in that TIMESTAMP can
store datetime data as far back as 4712 BC.
TIMESTAMP also supports up to 9 digits of
fractional second precision whereas
TT_TIMESTAMP supports 6 digits of
fractional second precision.

You can specify TT_TIMESTAMP (6).

Data type (continued) Description
Data Types 13

TIMESTAMP
 [(fractional_seconds_precision)]

Stores year, month, and day values of the date
data type plus hour, minute, and second values
of time. Fractional_seconds_precision is the
number of digits in the fractional part of the
seconds field. Valid date range is from January
1, 4712 BC to December 31, 9999 AD.

TT_TIMESTAMP has a smaller storage size
than TIMESTAMP. TT_TIMESTAMP is
faster than TIMESTAMP because
TT_TIMESTAMP is an 8 byte integer
containing the number of microseconds since
January 1, 1754. Comparisons are very fast.
TIMESTAMP has a larger range than
TT_TIMESTAMP in that TIMESTAMP can
store datetime data as far back as 4712 BC.
TIMESTAMP also supports up to 9 digits of
fractional second precision whereas
TT_TIMESTAMP supports 6 digits of
fractional second precision.

The fractional seconds precision range is 0 to
9. The default is 6. Format is:

YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]

Storage size 12 bytes.

Alternatively, specify ORA_TIMESTAMP
 [(fractional_seconds_precision)]

INTERVAL [+/-] IntervalQualifier TimesTen partially supports INTERVAL
types, expressed with the type INTERVAL and
an IntervalQualifier. An IntervalQualifier can
only specify a single field type with no
precision. The default leading precision is 8
digits for all INTERVAL types. The single
field type can be one of: YEAR, MONTH,
DAY, HOUR, MINUTE or SECOND.
Currently, INTERVAL type can be specified
only with a constant.

Data type (continued) Description
14 Oracle TimesTen In-Memory Database SQL Reference Guide

ANSI SQL data types
TimesTen supports ANSI SQL data types in Oracle type mode. These data types
are converted to TimesTen data types and the data is stored as TimesTen data
types:

ANSI SQL data type TimesTen data type

CHARACTER VARYING (n [BYTE|CHAR])
or

CHAR VARYING(n[BYTE|CHAR])

VARCHAR2 (n [BYTE|CHAR])
Character semantics is supported.

NATIONAL CHARACTER (n) or
NATIONAL CHAR (n)

NCHAR (n)

NATIONAL CHARACTER VARYING (n) or
NATIONAL CHAR VARYING (n) or
NCHAR VARYING (n)

NVARCHAR2 (n)

INT[EGER] NUMBER (38,0)

TT_INTEGER is a native 32 bit integer type.
Use TT_INTEGER as this data type is more
compact and offers faster performance than
the NUMBER type.

SMALLINT NUMBER (38,0)

TT_SMALLINT is a native signed integer
data type. Use TT_SMALLINT as this data
type is more compact and offers faster
performance than the NUMBER type.

NUMERIC [(p[,s])] or

DEC[IMAL] [(p[,s])]

NUMBER (p,s)

Specifies a fixed-point number with precision
p and scale s. Can only be used for fixed-point
numbers. If no scale is specified, s defaults to
0.
Data Types 15

FLOAT [(b)] NUMBER

Floating-point number with binary precision
b. Acceptable values for b are between 1 and
126 binary digits.

FLOAT is an exact numeric type. Use FLOAT
to define a column with a floated scale and a
specified precision. A floated scale is
supported with the NUMBER type, but you
cannot specify the precision. A lower
precision requires less space, so because you
can specify a precision with FLOAT, it may be
more desirable than NUMBER. If you do not
specify b, then the default precision is 126
binary (38 decimal).

BINARY_FLOAT and BINARY_DOUBLE
are inexact numeric types and are therefore
different floating types than FLOAT. In
addition, the semantics are different between
FLOAT and BINARY_FLOAT/
BINARY_DOUBLE because
BINARY_FLOAT and BINARY_DOUBLE
conform to the IEEE standard.

Internally, FLOAT is implemented as type
NUMBER.

Alternatively, specify ORA_FLOAT. For
example:
FLOAT (24) = ORA_FLOAT (24)
FLOAT (53) = ORA_FLOAT (53)

FLOAT (n) = ORA_FLOAT (n)

REAL NUMBER

Floating -point number with a binary precision
of 63.

Alternatively, specify
 ORA_FLOAT (63) or FLOAT (63).

ANSI SQL data type (continued) TimesTen data type
16 Oracle TimesTen In-Memory Database SQL Reference Guide

DOUBLE [PRECISION] NUMBER

Floating- point number with a binary precision
of 126.

Alternatively, specify FLOAT (126) or
ORA_FLOAT (126).

ANSI SQL data type (continued) TimesTen data type
Data Types 17

Types supported for backward compatibility in Oracle type
mode

TimesTen supports the following data types for backward compatibility in Oracle
type mode.

For more information on types modes, see "TypeMode" in Oracle TimesTen In-
Memory Database API Reference Guide.

Data type Description

TT_CHAR [(n [BYTE|CHAR])] Fixed-length character string of length n bytes
or characters. Default is 1 byte.

BYTE indicates that the column has byte
length semantics. Legal values for n range
from a minimum of 1 byte to a maximum
8300 bytes.

CHAR indicates that the column has character
length semantics. The minimum CHAR length
is 1 character. The maximum CHAR length
depends on how many characters fit in 8300
bytes. This is determined by the database
character set in use. For character set
AL32UTF8, up to four bytes per character
may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the
character set.

If you insert a zero-length (empty) string into
a column, the SQL NULL value is inserted.
This is true in Oracle type mode only.

TT_CHAR data is padded to the maximum
column size with trailing blanks. Blank-
padded comparison semantics are used.
18 Oracle TimesTen In-Memory Database SQL Reference Guide

TT_NCHAR[(n)] Fixed-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n
is the specified number of characters. Nchar
character limits are 1/2 the byte limits so the
maximum size is 4150. Default and minimum
bytes of storage is 2n (2).

If you insert a zero-length (empty) string into
a column, the SQL NULL value is inserted.
This is true in Oracle type mode only.

TT_NCHAR data is padded to the maximum
column size with U+0020 SPACE. Blank-
padded comparison semantics are used.

TT_VARCHAR (n [BYTE|CHAR]) Variable-length character string having
maximum length n bytes or characters. You
must specify n.

BYTE indicates that the column has byte
length semantics. Legal values for n range
from a minimum of 1 byte to a maximum
4194304 (222) bytes.

CHAR indicates that the column has character
length semantics.

If you insert a zero-length (empty) string into
a column, the SQL NULL value is inserted.
This is true in Oracle type mode only.

Blank-padded comparison semantics are used.

TT_NVARCHAR(n) Variable-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n
is the specified number of characters.
TT_NVARCHAR character limits are 1/2 the
byte limits so the maximum size is 2,097,152
(221). You must specify n.

If you insert a zero-length (empty) string into
a column, the SQL NULL value is inserted.
This is true in Oracle type mode only.

Blank-padded comparison semantics are used.

Data type (continued) Description
Data Types 19

TT_DECIMAL[(p[,s])] An exact numeric value with a fixed
maximum precision (total number of digits)
and scale (number of digits to the right of the
decimal point). The precision p must be
between 1 and 40. The scale must be between
0 and p. The default precision is 40 and the
default scale is 0.

Use the NUMBER data type rather than
TT_DECIMAL. NUMBER offers better
performance.

Data type (continued) Description
20 Oracle TimesTen In-Memory Database SQL Reference Guide

TimesTen type mapping
The names of the data types listed in the first column are the data types that
existed in previous releases of TimesTen. If your TypeMode is set to 0 (the
default), indicating Oracle type mode, then the name of the data type may be
changed to a new name in Oracle type mode. (The name of the data type in
Oracle type mode is listed in column 2.) The table illustrates the mapping of the
data type in Column 1 to the corresponding data type in Column 2:

TimesTen data type TimesTen data type in Oracle type mode

CHAR[ACTER][(n)] TT_CHAR [(n [BYTE|CHAR])]

In Oracle type mode, specify TT_CHAR. Character
semantics is supported. For more information on type
TT_CHAR, see “Types supported for backward
compatibility in Oracle type mode” on page 18.

NCHAR [(n)] TT_NCHAR[(n)]

In Oracle type mode, specify TT_CHAR. For more
information on TT_NCHAR, see “Types supported
for backward compatibility in Oracle type mode” on
page 18.

VARCHAR (n) TT_VARCHAR (n [BYTE|CHAR])

In Oracle type mode, specify TT_VARCHAR.
Character semantics is supported. For more
information on TT_VARCHAR, see “Types
supported for backward compatibility in Oracle type
mode” on page 18.

NVARCHAR (n) TT_NVARCHAR(n)

In Oracle type mode, specify TT_NVARCHAR. For
more information on TT_NVARCHAR, see “Types
supported for backward compatibility in Oracle type
mode” on page 18.

TINYINT TT_TINYINT

In Oracle type mode, specify TT_TINYINT. For
more information on TT_TINYINT, see “Type
specifications” on page 8.

SMALLINT TT_SMALLINT

In Oracle type mode, specify TT_SMALLINT. For
more information on TT_SMALLINT, see “Type
specifications” on page 8.
Data Types 21

INT[EGER] TT_INT[EGER]

In Oracle type mode, specify TT_INTEGER. For
more information on TT_INTEGER, see “Type
specifications” on page 8.

BIGINT TT_BIGINT

In Oracle type mode, specify TT_BIGINT. For more
information on TT_BIGINT, see “Type
specifications” on page 8.

DEC[IMAL][(p[,s])] or

NUMERIC[(p[,s])]

TT_DECIMAL[(p[,s])]

In Oracle type mode, specify TT_DECIMAL.

For more information on TT_DECIMAL, see “Types
supported for backward compatibility in Oracle type
mode” on page 18.

REAL or

FLOAT (24)

BINARY_FLOAT

In Oracle type mode, specify BINARY_FLOAT. For
more information on BINARY_FLOAT, see “Type
specifications” on page 8.

DOUBLE [PRECISION] or

FLOAT [(53)]

BINARY_DOUBLE

In Oracle type mode, specify BINARY_DOUBLE.
For more information on BINARY_DOUBLE, see
“Type specifications” on page 8.

BINARY (n) BINARY (n)

In Oracle type mode, the data type has the same
name. For more information on BINARY (n), see
“Type specifications” on page 8.

VARBINARY (n) VARBINARY (n)

In Oracle type mode, the data type has the same
name. For more information on VARBINARY (n),
see “Type specifications” on page 8.

TIME TIME

In Oracle type mode, the data type has the same
name. For more information on TIME, see “Type
specifications” on page 8.

TimesTen data type (continued) TimesTen data type in Oracle type mode
22 Oracle TimesTen In-Memory Database SQL Reference Guide

DATE TT_DATE

In Oracle type mode, specify TT_DATE. For more
information on TT_DATE, see “Type specifications”
on page 8.

TIMESTAMP TT_TIMESTAMP

In Oracle type mode, specify TT_TIMESTAMP. For
more information on TT_TIMESTAMP, see “Type
specifications” on page 8.

INTERVAL IntervalQualifier INTERVAL IntervalQualifier

In Oracle type mode, the data type has the same
name. For more information on INTERVAL, see
“Type specifications” on page 8.

TimesTen data type (continued) TimesTen data type in Oracle type mode
Data Types 23

Character data types
Character data types store character (alphanumeric) data either in the database
character set or the UTF-16 format.

Character data is stored in strings with byte values. The byte values correspond to
one of the data store character sets defined when the data store is created.
TimesTen supports both single byte and multibyte character sets.

The character types are:
• CHAR
• NCHAR
• VARCHAR2
• NVARCHAR2

CHAR type
The CHAR type specifies a fixed length character string. If you insert a value
into a CHAR column and the value is shorter than the defined column length,
then TimesTen blank pads the value to the column length. If you insert a value
into a CHAR column and the value is longer than the defined length, then
TimesTen returns an error.

By default, the column length is defined in bytes. Use the CHAR qualifier to
define the column length in characters. The size of a character ranges from 1 byte
to 4 bytes depending on the database character set. The BYTE and CHAR
qualifiers override the NLS_LENGTH_SEMANTICS parameter setting. For
more information on NLS_LENGTH_SEMANTICS, see "ALTER SESSION"
and "Setting globalization support attributes".

Note: With the CHAR type, a zero-length string is interpreted as NULL. With
the TT_CHAR type, a zero-length string is a valid non-NULL value. Both
CHAR and TT_CHAR use blank padded comparison semantics. The TT_CHAR
type is supported for backward compatibility.

Example 1.1 The following example creates a table. Columns are defined with type CHAR
and TT_CHAR. Blank padded comparison semantics are used for these types.
Command> create table TypeDemo (Name CHAR (20), Name2 TT_CHAR (20));
Command> INSERT INTO TypeDemo VALUES ('SMITH ',
'SMITH ');
1 row inserted.
Command> DESCRIBE TypeDemo;

Table USER.TYPEDEMO:
Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
24 Oracle TimesTen In-Memory Database SQL Reference Guide

1 table found.
(primary key columns are indicated with *)
Command> select * from TypeDemo;
< SMITH , SMITH >
1 row found.
Command> # Expect 1 row found; blank-padded comparison semantics
Command> select * from TypeDemo where Name = 'SMITH';
< SMITH , SMITH >
1 row found.
Command> select * from TypeDemo where Name2 = 'SMITH';
< SMITH , SMITH >
1 row found.
Command> # Expect 0 rows; blank padded comparison semantics.
Command> SELECT * FROM TypeDemo where Name > 'SMITH';
0 rows found.
Command> SELECT * FROM TypeDemo where Name2 > 'SMITH';
0 rows found.

Example 1.2 The following example ALTERs table TypeDemo adding column Name3. The
column Name3 is defined with character semantics.
Command> ALTER TABLE TypeDemo
> ADD COLUMN Name3 CHAR (10 CHAR);
Command> DESCRIBE TypeDemo;

Table USER.TYPEDEMO:
Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)

1 table found.

NCHAR type
The NCHAR data type is a fixed length string of two-byte Unicode characters.
NCHAR data types are padded to the specified length with the Unicode space
character U+0020 SPACE. Blank-padded comparison semantics are used.

Note: With the NCHAR type, a zero-length string is interpreted as NULL. With
the TT_NCHAR type, a zero-length string is a valid non-NULL value. Both
NCHAR and TT_NCHAR use blank padded comparison semantics. The
TT_NCHAR type is supported for backward compatibility.

Example 1.3 The following example ALTERs table TypeDemo adding column Name4. Data
type is NCHAR.
Command> ALTER TABLE TypeDemo
> ADD COLUMN Name4 NCHAR (10);
Data Types 25

Command> DESCRIBE TypeDemo;

Table USER.TYPEDEMO:
Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)

1 table found.

VARCHAR2 type
The VARCHAR2 data type specifies a variable length character string. When
you define a VARCHAR2 column, you define the maximum number of bytes or
characters. Each value is stored exactly as you specify it. The value cannot
exceed the maximum length of the column.

You must specify the maximum length. The minimum must be at least 1 byte.
Use the CHAR qualifier to specify the maximum length in characters. For
example, VARCHAR2 (10 CHAR).

The size of a character ranges from 1 byte to 4 bytes depending on the database
character set. The BYTE and CHAR qualifiers override the
NLS_LENGTH_SEMANTICS parameter setting. For more information on
NLS_LENGTH_SEMANTICS, see "ALTER SESSION" and "Setting
globalization support attributes".

Note: Do not use the VARCHAR data type. Use VARCHAR2. Even though both
data types are currently synonymous, the VARCHAR data type is scheduled to be
redefined as a different data type with different semantics.

Note: With the VARCHAR2 type, a zero-length string is interpreted as NULL.
With the TT_VARCHAR type, a zero-length string is a valid non-NULL value.
VARCHAR2 uses nonpadded comparison semantics. TT_VARCHAR uses
blank-padded comparison semantics. The TT_VARCHAR type is supported for
backward compatibility.

Example 1.4 The following example ALTERs table TypeDemo adding columns Name5 and
Name6. Name5 is defined with type VARCHAR2. Name6 is defined with
TT_VARCHAR. The example illustrates the use of nonpadded comparison
semantics with column Name5 and blank-padded comparison semantics with
column Table6:
Command> ALTER TABLE TypeDemo ADD COLUMN Name5 VARCHAR2 (20);
Command> ALTER TABLE TypeDemo ADD COLUMN Name6 TT_VARCHAR (20);
Command> DESCRIBE TypeDemo;
26 Oracle TimesTen In-Memory Database SQL Reference Guide

Table USER.TYPEDEMO:
Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)
NAME5 VARCHAR2 (20) INLINE
NAME6 TT_VARCHAR (20) INLINE

1 table found.
(primary key columns are indicated with *)

Command> #Insert SMITH followed by 5 spaces into all columns
Command> INSERT INTO TypeDemo VALUES
> ('SMITH ', 'SMITH ', 'SMITH ', 'SMITH ',
'SMITH ', 'SMITH');
1 row inserted.
Command> # Expect 0; Nonpadded comparison semantics
Command> SELECT COUNT (*) FROM TypeDemo where Name5 = 'SMITH';
< 0 >
1 row found.

Command> # Expect 1; Blank-padded comparison semantics
Command> SELECT COUNT (*) FROM TypeDemo where Name6 = 'SMITH';
< 1 >
1 row found.
Command> # Expect 1; Nonpadded comparison semantics
Command> SELECT COUNT (*) FROM TypeDemo where Name5 > 'SMITH';
< 1 >
1 row found.
Command> # Expect 0; Blank-padded comparison semantics
Command> SELECT COUNT (*) FROM TypeDemo where Name6 > 'SMITH';
< 0 >
1 row found.

NVARCHAR2 type
The NVARCHAR2 data type is a variable length string of two-byte Unicode
characters. When you define an NVARCHAR2 column, you define the maximum
number of characters. Each value is stored exactly as you specify it. The value
cannot exceed the maximum length of the column. You must specify a length.

Note: With the NVARCHAR2 type, a zero-length string is interpreted as NULL.
With the TT_NVARCHAR type, a zero-length string is a valid non-NULL value.
NVARCHAR2 uses nonpadded comparison semantics. TT_NVARCHAR uses
blank-padded comparison semantics. The TT_NVARCHAR type is supported for
backward compatibility.
Data Types 27

Example 1.5 The following example ALTERs table TypeDemo adding column Name7. Data
type is NVARCHAR2.
Command> ALTER TABLE TypeDemo ADD COLUMN Name7 NVARCHAR2 (20);
Command> DESCRIBE TypeDemo;

Table USER1.TYPEDEMO:
Columns:
NAME CHAR (20)
NAME2 TT_CHAR (20)
NAME3 CHAR (10 CHAR)
NAME4 NCHAR (10)
NAME5 VARCHAR2 (20) INLINE
NAME6 TT_VARCHAR (20) INLINE
NAME7 NVARCHAR2 (20) INLINE

1 table found.
28 Oracle TimesTen In-Memory Database SQL Reference Guide

Numeric data types
Numeric types store positive and negative fixed and floating-point numbers,
zero, infinity, and values that are the undefined result of an operation (NaN or
“not a number”).

Exact and approximate types
TimesTen supports both exact and approximate numeric types. Arithmetic
operations can be performed on numeric types only. Similarly, SUM and AVG
aggregates require numeric types.

The exact numeric types are:
• TT_TINYINT
• TT_SMALLINT
• TT_INTEGER
• TT_BIGINT
• NUMBER

The approximate types are:
• BINARY_FLOAT
• BINARY_DOUBLE

TT_TINYINT type
The TT_TINYINT data type is an unsigned integer that ranges from 0 to
255 (28 -1). It requires 1 byte of storage and thus is more compact than the
NUMBER data type. It also has better performance than the NUMBER data type.
The data type of a negative TT_TINYINT is TT_SMALLINT. You cannot
specify TINYINT.

Example 1.6 The example first attempts to create a table named Numerics that defines a
column named Col1 with data type TINYINT. TimesTen returns an error. The
column is redefined with data type TT_TINYINT.
Command> CREATE TABLE Numerics (Col1 TINYINT);
 3300: TINYINT is not a valid type name; use TT_TINYINT instead
The command failed.

Command> CREATE TABLE Numerics (Col1 TT_TINYINT);
Command> describe numerics;

Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT

1 table found.
(primary key columns are indicated with *)
Data Types 29

TT_SMALLINT type
The TT_SMALLINT data type is a signed integer that ranges from -32,768 (-215)
to 32,767 (215 - 1). It requires 2 bytes of storage and thus is more compact than
the NUMBER data type. It also has better performance than the NUMBER data
type. You can specify the data type SMALLINT, but it maps to NUMBER (38).

Example 1.7 The example ALTERs the table Numerics and adds Col2 with a data type of
SMALLINT. A DESCRIBE of the table shows that the data type is
 NUMBER (38). Col2 is dropped. A second ALTER TABLE adds Col2 with a
data type of TT_SMALLINT.
Command> ALTER TABLE Numerics ADD COLUMN Col2 SMALLINT;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 NUMBER (38)

1 table found.
(primary key columns are indicated with *)

Command> ALTER TABLE Numerics DROP COLUMN Col2;
Command> ALTER TABLE Numerics ADD COLUMN Col2 TT_SMALLINT;
Command> DESCRIBE NUMERICS;

Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT

1 table found.
(primary key columns are indicated with *)

TT_INTEGER type
The TT_INTEGER data type is a signed integer that ranges from -2,147,483,648
(-2 31) to 2,147,483,647 (231 -1). It requires 4 bytes of storage and thus is more
compact than the NUMBER data type. It also has better performance than the
NUMBER data type. You can specify TT_INT for TT_INTEGER. If you specify
either INTEGER or INT, these types are mapped to NUMBER (38).

Example 1.8 The example ALTERs the table Numerics and adds Col3 with a data type of INT.
A DESCRIBE of the table shows that the data type is NUMBER (38). Col3 is
dropped. A second ALTER TABLE adds Col2 with a data type of INTEGER. A
DESCRIBE of the table shows that the data type is NUMBER (38). Col3 is
dropped. Col3 and Col4 are then added with a data type of TT_INTEGER and
TT_INT. A DESCRIBE of the table shows the data types are TT_INTEGER.
30 Oracle TimesTen In-Memory Database SQL Reference Guide

Command> ALTER TABLE Numerics ADD Col3 INT;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 NUMBER (38)

1 table found.
(primary key columns are indicated with *)

Command> ALTER TABLE Numerics DROP Col3;
Command> ALTER TABLE Numerics ADD Col3 INTEGER;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:
Columns:

COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 NUMBER (38)

1 table found.
(primary key columns are indicated with *)

Command> ALTER TABLE Numerics DROP Col3;
Command> ALTER TABLE Numerics ADD COLUMN Col3 TT_INTEGER;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:
Columns:

COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER

1 table found.
(primary key columns are indicated with *)

Command> ALTER TABLE Numerics ADD Col4 TT_INT;
Command> DESCRIBE Numerics;

Table USER1.NUMERICS:
Columns:

COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER
COL4 TT_INTEGER

1 table found.
(primary key columns are indicated with *)

TT_BIGINT type
The TT_BIGINT data type is a signed integer that ranges from
-9,223,372,036,854,775,808 (-2 63) to 9,223,372,036,854,775,807 (263 -1). It
Data Types 31

requires 8 bytes of storage and thus is more compact than the NUMBER data
type. It also has better performance than the NUMBER data type. You cannot
specify BIGINT.

Example 1.9 The example ALTERs table Numerics and attempts to add Col5 with a data type
of BIGINT. TimesTen generates an error. A second ALTER TABLE successfully
adds Col5 with a data type of TT_BIGINT.
Command> ALTER TABLE Numerics ADD COLUMN Col5 BIGINT;
 3300: BIGINT is not a valid type name; use TT_BIGINT instead
The command failed.

Command> ALTER TABLE Numerics ADD COLUMN Col5 TT_BIGINT;
Command> DESCRIBE Numerics;
Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER
COL4 TT_INTEGER
COL5 TT_BIGINT

1 table found.
(primary key columns are indicated with *)

NUMBER type
The NUMBER data type stores zero as well as positive and negative fixed
numbers with absolute values from 1.0 X 10 -130 to but not including
 1.0 X 10 126. Each NUMBER value requires from 5 to 22 bytes.

Specify a fixed- point number as:

NUMBER (p)

where:
• p is the precision or the total number of significant decimal digits, where the

most significant digit is the left-most non-zero digit and the least significant
digit is the right-most known digit.

• s is the scale, or the number of digits from the decimal point to the least
significant digit. The scale ranges from -84 to 127.
– Positive scale is the number of significant digits to the right of the decimal

point to and including the least significant digit.
– Negative scale is the number of significant digits to the left of the decimal

point to but not including the least significant digit. For negative scale, the
least significant digit is on the left side of the decimal point, because the
number is rounded to the specified number of places to the left of the
decimal point.
32 Oracle TimesTen In-Memory Database SQL Reference Guide

• Scale can be greater than precision. For example, in the case of e notation.
When scale is greater than precision, the precision specifies the maximum
number of significant digits to the right of the decimal point. For example, if
you define your column as type NUMBER (4,5), and you insert.000127 into
the column, the value is stored as.00013. A zero is required for the first digit
after the decimal point.TimesTen rounds values after the fifth digit to the right
of the decimal point.

• If a value exceeds the precision, then TimesTen returns an error. If a value
exceeds the scale, then TimesTen rounds the value.

NUMBER (p)

This represents a fixed-point number with precision p and scale 0 and is
equivalent to NUMBER (p,0).

Specify a floating-point number as:

NUMBER

If you do not specify precision and scale, TimesTen uses the maximum precision
and scale.

Example 1.10 The example ALTERs table Numerics adding columns Col6, Col7, Col8, and
Col9 defined with the NUMBER data type and specified with different precisians
and scales.
Command> ALTER TABLE NUMERICS ADD COL6 NUMBER;
Command> ALTER TABLE Numerics ADD Col7 NUMBER (4,2);
Command> ALTER TABLE Numerics ADD Col8 NUMBER (4,-2);
Command> ALTER TABLE Numerics ADD Col8 NUMBER (2,4);
Command> ALTER TABLE Numerics ADD Col9 NUMBER (2,4);
Command> DESCRIBE NUMERICS;

Table USER1.NUMERICS:
Columns:
COL1 TT_TINYINT
COL2 TT_SMALLINT
COL3 TT_INTEGER
COL4 TT_INTEGER
COL5 TT_BIGINT
COL6 NUMBER
COL7 NUMBER (4,2)
COL8 NUMBER (4,-2)
COL9 NUMBER (2,4)

1 table found.
(primary key columns are indicated with *)

Example 1.11 The example CREATEs table NumberCombo and defines columns with the
NUMBER data type using different precisions and scales. The value 123.89 is
inserted into the columns.
Data Types 33

Command> CREATE TABLE NumberCombo (Col1 NUMBER, Col2 NUMBER (3),

Col3 NUMBER (6,2), Col4 NUMBER (6,1), Col5 NUMBER (6,-2));
Command> DESCRIBE NumberCombo;

Table USER1.NUMBERCOMBO:
Columns:
COL1 NUMBER
COL2 NUMBER (3)
COL3 NUMBER (6,2)
COL4 NUMBER (6,1)
COL5 NUMBER (6,-2)

1 table found.
(primary key columns are indicated with *)

Command> INSERT INTO NumberCombo VALUES
(123.89,123.89,123.89,123.89,123.89);
1 row inserted.

Command> VERTICAL ON;
Command> SELECT * FROM NumberCombo;

COL1: 123.89
COL2: 124
COL3: 123.89
COL4: 123.9
COL5: 100

1 row found.

Example 1.12 The example CREATEs a table and defines a column with data type
 NUMBER (4,2). An attempt to INSERT a value of 123.89 results in an overflow
error.
Command> CREATE TABLE InvNumberValue (Col6 NUMBER (4,2));
Command> INSERT INTO InvNumberValue VALUES (123.89);
 2923: Number type value overflow
The command failed.

Example 1.13 The example CREATEs a table and defines columns with the NUMBER data
type using a scale that is greater than the precision. Values are inserted into the
columns.
Command> CREATE TABLE NumberCombo2 (Col1 NUMBER (4,5),

Col2 NUMBER (4,5), Col3 NUMBER (4,5), Col4 NUMBER (2,7),

Col5 NUMBER (2,7), Col6 NUMBER (2,5), Col7 NUMBER (2,5));

Command> INSERT INTO NumberCombo2 VALUES (.01234, .00012, .000127,
.0000012, .00000123, 1.2e-4, 1.2e-5);
1 row inserted.

Command> DESCRIBE NumberCombo2;
34 Oracle TimesTen In-Memory Database SQL Reference Guide

Table USER1.NUMBERCOMBO2:
Columns:
COL1 NUMBER (4,5)
COL2 NUMBER (4,5)
COL3 NUMBER (4,5)
COL4 NUMBER (2,7)
COL5 NUMBER (2,7)
COL6 NUMBER (2,5)
COL7 NUMBER (2,5)

1 table found.

(primary key columns are indicated with *)

Command> SELECT * FROM NumberCombo2;

COL1: .01234
COL2: .00012
COL3: .00013
COL4: .0000012
COL5: .0000012
COL6: .00012
COL7: .00001

1 row found.

Floating-Point numbers
Floating -point numbers can have a decimal point or can have no decimal point.
An exponent may be used to increase the range (for example, 1.2 e-20).
Floating- point numbers do not have a scale because the number of digits that can
appear after the decimal point is not restricted.

Binary floating -point numbers are stored using binary precision (the digits 0 and
1). For the NUMBER data type, values are stored using decimal precision (the
digits 0 through 9).

Literal values that are within the range and precision supported by NUMBER are
stored as NUMBER because literals are expressed using decimal precision.

BINARY_FLOAT
BINARY_FLOAT is a 32-bit single- precision floating -point number.

BINARY_DOUBLE
BINARY_DOUBLE is a 64-bit double- precision floating- point number.

Both BINARY_FLOAT and BINARY_DOUBLE support the special values Inf,
-Inf and NaN (not a number) and conform to the IEEE standard.

Floating-point number limits:
• BINARY_FLOAT
Data Types 35

– Minimum positive finite value: 1.17549E-38F
– Maximum positive finite value: 3.40282E+38F

• BINARY_DOUBLE
– Minimum positive finite value: 2.22507485850720E-308
– Maximum positive finite value: 1.79769313486231E+308

Example 1.14 The example CREATEs a table and defines two columns with the
BINARY_FLOAT and BINARY_DOUBLE data types.
Command> CREATE TABLE BfBd (Col1 BINARY_FLOAT, Col2 BINARY_DOUBLE);
Command> DESCRIBE BfBd;

Table UISER1.BFBD:
Columns:
COL1 BINARY_FLOAT
COL2 BINARY_DOUBLE

1 table found.
(primary key columns are indicated with *)

FLOAT and FLOAT (n)
TimesTen also supports the ANSI type FLOAT. FLOAT is an exact numeric type
and is implemented as the NUMBER type. The number n indicates the number of
bits of precision the value can store. The value ranges from 1 to 126. To convert
from binary precision to decimal precision, multiply n by 0.30103. To convert
from decimal precision to binary precision, multiple the decimal precision by
3.32193. The maximum 126 digits of binary precision is equivalent to
approximately 38 digits of decimal precision.
36 Oracle TimesTen In-Memory Database SQL Reference Guide

Binary and Varbinary types
The BINARY data type is a fixed-length binary value with a length of n bytes.
The value of n ranges from 1 to 8300 bytes. The BINARY data type requires n
bytes of storage. Data is padded to the maximum column size with trailing zeros.
Zero padded comparison semantics are used.

The VARBINARY data type is a variable-length binary value having a maximum
length of n bytes. The value of n ranges from 1 to 4,194,304 (222) bytes.

Example 1.15 The example CREATEs a table and defines 2 columns. Col1 is defined with data
type BINARY and Col2 is defined with data type VARBINARY.
Command> CREATE TABLE BVar (Col1 BINARY (10), Col2 VARBINARY (10));
Command> DESCRIBE BVar;

Table USER1.BVAR:
Columns:
COL1 BINARY (10)
COL2 VARBINARY (10) INLINE

1 table found.
(primary key columns are indicated with *)
Data Types 37

Numeric precedence
The result type of an expression is determined by the operand with the highest
type precedence. For example, the SUM of TT_INTEGER and
BINARY_FLOAT types results in type BINARY_FLOAT because
BINARY_FLOAT has higher numeric precedence than TT_INTEGER.
Similarly, the product of NUMBER and BINARY_DOUBLE types result in type
BINARY_DOUBLE because BINARY_DOUBLE has higher precedence than
NUMBER.

The numeric precedence order is as follows (highest to lowest):
• BINARY_DOUBLE
• BINARY_FLOAT
• NUMBER
• TT_BIGINT
• TT_INTEGER
• TT_SMALLINT
• TT_TINYINT
38 Oracle TimesTen In-Memory Database SQL Reference Guide

Datetime data types
The datetime data types are:
• TIME (a time only data type)
• TT_DATE
• DATE
• TT_TIMESTAMP
• TIMESTAMP

TIME type
The format of a TIME value is HH:MI:SS and ranges from 00:00:00 (12:00:00
AM to 23:59:59 (11:59:59 PM). The TIME data type requires 8 bytes of storage.

TT_DATE type
The format of a TT_DATE value is YYYY-MM-DD and ranges from
1753-01-01 (January 1, 1753) to 9999-12-31 (December 31, 9999 AD). The
TT_DATE data type requires 4 bytes of storage.

DATE type
The format of a DATE value is YYYY-MM-DD HH:MI:SS and ranges from
-4712-01-01 (January 1, 4712 BC) to 9999-12-31 (December 31, 9999 AD).
There are no fractional seconds. The DATE type requires 7 bytes of storage.

TT_TIMESTAMP type
The format of a TT_TIMESTAMP value is
YYYY-MM-DD HH:MI:SS [.FFFFFF]. The fractional seconds precision is 6.
The range is from 1753-01-01 00:00:00 (January 1, 1753 midnight) to
9999-12-31 23:59:59 (December 31, 9999 11:59:59 PM). The TT_TIMESTAMP
type requires 8 bytes of storage. TT_TIMESTAMP is faster than the
TIMESTAMP data type and has a smaller storage size than the TIMESTAMP
type.

TIMESTAMP type
The format of a TIMESTAMP value is
YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]. The fractional seconds precision
range is 0 to 9. The default is 6. The date range is from -4712-01-01 (January 1,
4712 BC) to 9999-12-31 (December 31, 9999 AD). The TIMESTAMP type
requires 12 bytes of storage. The TIMESTAMP type has a larger date range than
the TT_TIMESTAMP and supports more precision than the TT_TIMESTAMP.
Data Types 39

TimesTen interval

Using INTERVAL types
If you are using TimesTen type mode, for information on INTERVAL, refer to
documentation from previous releases of TimesTen.

TimesTen supports interval type only in a constant specification and intermediate
expression result. Interval type can not be the final result. Columns cannot be
defined with an INTERVAL type. See “Type specifications” on page 8.

You can specify a single-field interval literal in an expression, but you cannot
specify a complete expression that returns an interval data type.

TimesTen supports interval literals of the form:

INTERVAL [+\-] CharString IntervalQualifier

Using DATE and TIME types
This section shows some DATE, TIME and TIMESTAMP data type examples:

Example 1.16 To create a table named SAMPLE that contains both a column named DCOL
with the type DATE and a column named TCOL with the type TIME, use:
CREATE TABLE SAMPLE (TCOL TIME, DCOL DATE);

Example 1.17 To insert DATE and TIME values into the table SAMPLE, use:
INSERT INTO SAMPLE VALUES
(TIME '12:00:00', DATE '1998-10-28');

Example 1.18 To select all rows in the table SAMPLE that are between noon and 4:00 p.m. on
October 29, 1998, use:
SELECT * FROM SAMPLE WHERE DCOL = DATE '1998-10-29' AND
TCOL BETWEEN TIME '12:00:00' AND TIME '16:00:00';

Example 1.19 To create a table named SAMPLE that contains a column named TSCOL with
the type TIMESTAMP and then select all rows in the table that are between noon
and 4:00 p.m. on October 29, 1998, use the statements:
CREATE TABLE SAMPLE2 (TSCOL TIMESTAMP);

INSERT INTO SAMPLE2 VALUES (TIMESTAMP '1998-10-28 12:00:00');

SELECT * FROM SAMPLE2
WHERE TSCOL
BETWEEN TIMESTAMP '1998-10-29 12:00:00'
AND '1998-10-29 16:00:00';
40 Oracle TimesTen In-Memory Database SQL Reference Guide

Note: TimesTen allows both literal and string formats of the TIME, DATE and
TIMESTAMP types. For example, TimeString ('12:00:00') and TimeLiteral
(Time '16:00:00') are both valid ways to specify a TIME value. TimesTen reads
the first value as CHAR type and then later converts it to TIME type as needed.
TimesTen reads the second value as TIME. The examples above use the literal
format. Any values for the fraction not specified in full microseconds result in a
“Data truncated” error.

Handling TIMEZONE conversions
TimesTen currently does not support TIMEZONE. TIME/TIMESTAMP data
type values are stored without making any adjustment for time difference.
Applications must assume one time zone and convert TIME/TIMESTAMP to
that time zone before sending values to the database. For example, an application
can assume its TIMEZONE to be Pacific Standard Time. If the application is
using TIME/TIMESTAMP values from the Pacific Daylight Time or Eastern
Daylight/Standard Time, the application must convert TIME/TIMESTAMP to
Pacific Standard Time.

Date-time and interval types in arithmetic operations
If you are using TimesTen type mode, for information on Date-Time and Interval
types in arithmetic operations, refer to documentation from previous releases of
TimesTen.

Date-time refers to types DATE, TIME, and TIMESTAMP. Date and time
arithmetic is supported with the following syntax:
TimeVal1 - TimeVal2 or TimestampVal1 - TimestampVal2 or DateVal1 -
DateVal2 returns the difference as an interval day to second.
TT_DateVal1 - TT_DateVal2 returns the number of days difference as an integer.
DateTimeVal {+|-} IntervalVal or
IntervalVal + DateTimeVal or
IntervalVal1 {+|-} IntervalVal2 or
IntervalVal {*|/} NumericVal or
NumericVal * IntervalVal

INTERVAL type cannot be the final result of a complete expression. Extract
function must be used to extract the desired component of this interval result.
Data Types 41

The following table lists the type that results from each operation:

Example 1.20 SELECT TT_DATE1 - TT_DATE2 FROM t1;
SELECT EXTRACT(DAY FROM TIMESTAMP1-TIMESTAMP2) FROM t1;
SELECT * FROM t1 WHERE TIMESTAMP1 -TIMESTAMP2 =
NUMTODSINTERVAL(10, 'DAY');

SELECT SYSDATE + NUMTODSINTERVAL(20,'SECOND') FROM dual;

SELECT EXTRACT (SECOND FROM TIMESTAMP1-TIMESTAMP2) FROM dual;

/* select the microsecond difference between two timestamp values d1
and d2 */

SELECT 1000000*(EXTRACT(DAY FROM d1-d2)*24*3600+
EXTRACT(HOUR FROM d1-d2)*3600+
EXTRACT(MINUTE FROM d1-d2)*60+EXTRACT(SECOND FROM d1-d2)) FROM d1;

Example 1.21 The example inserts timestamp values into 2 columns and then subtracts the two
values using the EXTRACT function:
Command> CREATE TABLE ts (id TIMESTAMP, id2 TIMESTAMP);
Command> INSERT INTO ts VALUES (timestamp '2007-01-20 12:45:23',
timestamp '2006-12-25 17:34:22');
1 row inserted.
Command> SELECT EXTRACT (DAY FROM id - id2) from ts;
< 25 >
1 row found.

Operand 1 Operator Operand 2 Result type

TIME |
DATE |
TIMETAMP

- TIME|
DATE |
TIMESTAMP

INTERVAL
DAY TO
SECOND

TT_DATE - TT_DATE TT_BIGINT
(Number of
Days)

Date-time + or - INTERVAL Date-time

INTERVAL + Date-time Date-time

INTERVAL + or - INTERVAL INTERVAL

INTERVAL * or / Numeric INTERVAL

Numeric * INTERVAL INTERVAL
42 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 1.22 The following queries return errors:
You cannot select an INTERVAL result:

SELECT TIMESTAMP1 -TIMESTAMP2 FROM t1

SELECT DATE1 - DATE2 FROM t1;;

You cannot compare an interval year to month with an interval day to second:
SELECT * FROM t1 WHERE TIMESTAMP1 -TIMESTAMP2 =
NUMTOYMINTERVAL(10, 'YEAR');

You cannot compare and INTERVAL DAY TO SECOND with and INTERVAL
DAY:
SELECT * FROM t1 WHERE TIMESTAMP1 -TIMESTAMP2 = INTERVAL '10'
DAY;

You cannot extract YEAR from an INTERVAL day to second:
SELECT EXTRACT (YEAR FROM TIMESTAMP1-TIMESTAMP2) FROM dual;

Restrictions on date-time and interval arithmetic operations
The following restrictions must be considered when performing date-time and
interval arithmetic:
• The results for addition and subtraction with DATE and TIMESTAMP types

for INTERVAL YEAR, INTERVAL MONTH are not closed. For example,
adding 1 year to the DATE or TIMESTAMP of '2004-02-29' results in a Date
arithmetic error (TimesTen error message 2787) because February 29, 2005
does not exist (2005 is not a leap year). Adding INTERVAL '1' month to
DATE '2005-01-30' also results in the same error because February never has
30 days.

• The results are closed for INTERVAL DAY.
Data Types 43

Storage requirements
Variable-length columns whose declared column length is > 128 bytes are stored
out of line. Variable-length columns whose declared column length is <= 128
bytes are stored inline. For character semantics, the number of bytes stored out of
line is dependent on the character set. For example, for a character set with 4
bytes per character, variable-length columns whose declared column length is >
32 (128/4) are stored out of line.

The storage requirements of the various data types are:

Type Storage required

CHAR (n
[BYTE|CHAR])

n bytes or if character semantics, n characters. If
character semantics, the length of the column (n) is
based on length semantics and character set.

VARCHAR2 (n
[BYTE|CHAR])

For NOT INLINE columns:

On 32-bit platforms, length of value + 20 bytes
(minimum of 28 bytes).

On 64-bit platforms, length of value + 24 bytes
(minimum of 40 bytes).

For INLINE columns:

On 32-bit platforms, n + 4 bytes.

On 64-bit platforms, n + 8 bytes.

If character semantics, the length of the column (n) is
based on length semantics and character set.

NCHAR(n) Bytes required is 2* n where n is the number of
characters.

NVARCHAR2 (n) For NOT INLINE columns:

On 32-bit platforms, 2*(length of value) + 20 bytes
(minimum of 28 bytes).

On 64-bit platforms, 2*(length of value) + 24 bytes
(minimum of 40bytes).

For INLINE columns:

On 32-bit platforms, 2*(length of column) + 4 bytes.

On 64-bit platforms, 2*(length of column) + 8 bytes.

TT_TINYINT 1 byte.

TT_SMALLINT 2 bytes.
44 Oracle TimesTen In-Memory Database SQL Reference Guide

TT_INT[EGER] 4 bytes.

TT_BIGINT 8 bytes.

NUMBER 5 to 22 bytes.

BINARY_FLOAT 4 bytes.

BINARY_DOUBLE 8 bytes.

TT_DECIMAL(p,s) Approximately p/2 bytes.

TT_TIME 8 bytes.

TT_DATE 4 bytes.

DATE 7 bytes.

TT_TIMESTAMP 8 bytes.

TIMESTAMP 12 bytes.

BINARY (n) n bytes.

VARBINARY (n) For NOT INLINE columns:

On 32-bit platforms, length of value + 20 bytes
(minimum of 28 bytes).

On 64-bit platforms, length of value + 24 bytes
(minimum of 40 bytes).

For INLINE columns:

On 32-bit platforms, length of column + 4 bytes.

On 64-bit platforms, length of column + 8 bytes.

INTERVAL An INTERVAL cannot be stored in TimesTen.

Type Storage required
Data Types 45

Data type comparison rules
The following section describes how values of each data type are compared in
TimesTen.

Numeric values
A larger value is greater than a smaller value. -1 is less than 10 and -10 is less
than -1.

The floating-point value NaN is greater than any other numeric value and is
equal to itself.

Date values
A later date is considered greater than an earlier one. For example, the date
equivalent of ‘10-AUG-2005’ is less than that of ‘30-AUG-2006’ and ‘30-AUG-
2006 1:15pm’ is greater than ‘30-AUG-2006 10:10am’.

Character values
Character values are compared by:
• Binary or linguistic sorting
• Blank-padded or nonpadded comparison semantics

Binary and linguistic sorting
In binary sorting, TimesTen compares character strings according to the
concatenated value of the numeric codes of the characters in the database
character set. One character is greater than the other if it has a greater numeric
values than the other in the character set. Blanks are less than any character.

Linguistic sorting is useful if the binary sequence of numeric codes does not
match the linguistic sequence of the characters you are comparing. In linguistic
sorting, SQL sorting and comparison are based on the linguistic rule set by
NLS_SORT. For more information on linguistic sorts, see Linguistic sorts in the
Operations Guide.

The default is binary sorting.

Blank-Padded and nonpadded comparison semantics
With blank-padded semantics, if two values have different lengths, TimesTen
adds blanks to the shorter value until both lengths are equal. Values are then
compared character by character up to the first character that differs. The value
with the greater character in the first differing position is considered greater. If
two values have no differing characters, then they are considered equal. Thus,
two values are considered equal if they differ only in the number of trailing
blanks.

Blank-padded semantics are used when both values in the comparison are
expressions of type CHAR or NCHAR or text literals.
46 Oracle TimesTen In-Memory Database SQL Reference Guide

With nonpadded semantics, two values are compared character by character up to
the first character that differs. The value with the greater character in that
position is considered greater. If two values that have differing lengths are
identical up to the end of the shorter one, then the longer one is considered
greater. If two values of equal length have no differing characters, they are
considered equal.

Nonpadded semantics are used when both values in the comparison have the type
VARCHAR2 or NVARCHAR2.

As an example, with blank-padded semantics:
• ‘a ‘ = ‘a’

With nonpadded semantics:
• ‘a ‘ > ‘a’
Data Types 47

Data conversion
Generally an expression cannot contain values of different data types. However,
TimesTen supports both implicit and explicit conversion from one data type to
another. We recommend explicit conversion.

Implicit Data Conversion
The following rules apply:
• Conversions between exact numeric values (TT_TINYINT, TT_SMALLINT,

TT_INTEGER, TT_BIGINT, NUMBER) and floating-point values
(BINARY_FLOAT, BINARY_DOUBLE) can be inexact because the exact
numeric values use decimal precision whereas the floating-point numbers use
binary precision.

• When comparing a character value with any date, time, or datetime value,
TimesTen converts the character data to the date, time, or datetime value.

• Implicit and explicit CHAR/VARCHAR2 <-> NCHAR/NVARCHAR2
conversions are supported except when the character set is TIMESTEN8. An
example of explicit conversion:
Command> CREATE TABLE ConvDemo (c1 CHAR (10), x1 TT_INTEGER);
Command> CREATE TABLE ConvDemo2 (c1 NCHAR (10), x2 TT_INTEGER);
Command> INSERT INTO ConvDemo VALUES ('ABC', 10);
1 row inserted.
Command> INSERT INTO ConvDemo VALUES ('def', 100);
1 row inserted.
Command> INSERT INTO ConvDemo2 SELECT * FROM ConvDemo;
2 rows inserted.
Command> SELECT x1,x2,convdemo.c1, convdemo2.c1 FROM ConvDemo,

ConvDemo2 where ConvDemo.c1 = ConvDemo2.c1;
X1, X2, C1, C1
< 10, 10, ABC , ABC >
< 100, 100, def , def >
2 rows found.

NULL values
A NULL value indicates the absence of a value. It is a placeholder for a value
that is missing. Any column in a table or parameter in an expression, regardless
of its data type, can contain NULL values unless you specify NOT NULL for the
column when you create the table.

The following properties of NULL values affect operations on rows, parameters,
or local variables:
• NULL values always sort highest in a sequence of values.
48 Oracle TimesTen In-Memory Database SQL Reference Guide

• Two NULL values are not equal to each other except in a GROUP BY or
SELECT DISTINCT operation.

• An expression containing a NULL value evaluates to NULL. Tor example,
(5 - Col), where Col is NULL, evaluates to NULL.

Because of these properties, TimesTen ignores columns, rows, or parameters
containing NULL values:
• When joining tables if the join is on a column containing NULL values.
• When executing aggregate functions.

In several SQL predicates, described in Chapter 4, “Search Conditions, you can
explicitly test for NULL values. In an application, you can use the ODBC
functions SQLBindCol, SQLBindParameter, SQLGetData, and
SQLParamData, or you can use the JDBC functions
PreparedStatement.setNull and ResultSet.getXXXX with ResultSet.wasNull
to handle input and output of NULL values.
Data Types 49

INF and NAN
TimesTen supports the IEEE floating-point values Inf (positive infinity), -Inf
(negative infinity) and NaN (not a number).

Constant Values:
You can use constant values in places where a floating-point constant is allowed:
The supported constant values are:
• BINARY_FLOAT_INFINITY
• -BINARY_FLOAT_INFINITY
• BINARY_DOUBLE_INFINITY
• -BINARY_DOUBLE_INFINITY
• BINARY_FLOAT_NAN
• BINARY_DOUBLE_NAN

In the following example, a table is created with a column of type
BINARY_FLOAT and a column of type TT_INTEGER.
BINARY_FLOAT_INFINITY and BINARY_FLOAT_NAN are inserted into the
column of type BINARY_FLOAT.
Command> CREATE TABLE BfDemo (Id BINARY_FLOAT, Id2 TT_INTEGER);
Command> INSERT INTO BfDemo VALUES (BINARY_FLOAT_INFINITY, 50);
1 row inserted.
Command> INSERT INTO BfDemo VALUES (BINARY_FLOAT_NAN, 100);
1 row inserted.
Command> SELECT * FROM BfDemo;
< INF, 50 >
< NAN, 100 >
2 rows found.

Primary Key Values
Inf, -Inf, and NaN are acceptable values in columns defined with a primary key.
This is a deviation in behavior from NULL. NULL values are not allowed on
columns defined with a primary key.

You can only insert Inf, -Inf, and NaN values into BINARY_FLOAT and
BINARY_DOUBLE columns.

Selecting Inf and NaN (Floating-Point Conditions):
Floating-point conditions determine whether an expression is infinite or is the
undefined result of an operation (NaN or “not a number”).
The syntax:
Expression IS [NOT] {NAN| INFINITE};

Expression must either resolve to a numeric data type or to a data type that can be
implicitly converted to a numeric data type.
50 Oracle TimesTen In-Memory Database SQL Reference Guide

The following table describes the floating-point conditions:

Note: The constant keywords represent specific BINARY_FLOAT and
BINARY_DOUBLE values. The comparison keywords correspond to properties
of a value and are not specific to any type (although they can only evaluate to
true for BINARY_FLOAT or BINARY_DOUBLE types or types that can be
converted to BINARY_FLOAT or BINARY_DOUBLE).

Comparisons with Inf and NaN
The following rules apply:
• Comparison between Inf (or -Inf) and a finite value are as expected. For

example, 5 > -Inf.
• (Inf = Inf) and (Inf > -Inf) both evaluate to True.
• (NaN = NaN) evaluates to True.

In reference to collating sequences:
• -Inf sorts lower than any other value.
• Inf sorts higher than any other value, but lower than Nan and NULL.
• NaN sorts higher than Inf.
• NULL sorts higher than NaN. NULL is always the largest value in any

collating sequence.

Expressions involving Inf and NaN

Condition Operation Example

IS [NOT]
NAN

Returns TRUE if Expression is
the value NaN when NOT is not
specified. Returns TRUE if
Expression is not the value NaN
when NOT is specified.

SELECT * FROM
BfDemo WHERE Id
IS NOT NAN;

ID, ID2

< INF, 50 >

1 row found.

IS [NOT]
INFINITE

Returns TRUE if Expression is
the value +INF or -INF when
NOT is not specified. Returns
TRUE if Expression is neither
+INF nor -INF when NOT is
specified.

SELECT * FROM
BfDemo WHERE Id
 IS NOT INFINITE;

ID, ID2

< NAN, 100 >

1 row found.
Data Types 51

• Expressions containing floating-point values may generate Inf, -Inf, or NaN.
This can occur either because the expression generated overflow or
exceptional conditions or because one or more of the values in the expression
was Inf, -Inf, or NaN. Inf and NaN are generated in overflow or division by 0
conditions.

• Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values
are. If you wish to exclude Inf and NaN from aggregates (or from any
selection), use both the IS NOT NAN and IS NOT INFINITE predicates.
52 Oracle TimesTen In-Memory Database SQL Reference Guide

Overflow and truncation
Some operations can result in data overflow or truncation. Overflow results in an
error and can generate Inf. Truncation results in loss of least significant data.

Exact values are truncated only when they are stored in the data store by an
INSERT or UPDATE statement, and if the target column has smaller scale than
the value. TimesTen returns a warning when such truncation occurs. If the value
does not fit because of overflow, TimesTen returns the special value Inf and does
not insert the specified value.

TimesTen may truncate approximate values during computation and when the
values are inserted into the data store or when data store values are updated.
TimesTen returns an error only upon insertion or update. When overflow with
approximate values occurs, TimesTen returns the special value Inf.

There are several circumstances that can cause overflow:
• During arithmetic operations. Overflow can occur when multiplication

results in a number larger than the maximum value allowable in its type.
Arithmetic operations are defined in Chapter 3.

• When using aggregate functions. Overflow can occur when the sum of
several numbers exceeds the maximum allowable value of the result type.
Aggregate functions are defined in Chapter 3.

• During type conversion. Overflow can also occur when, for example, a
TT_INTEGER value is converted to a TT_SMALLINT value.

Truncation can cause an error or warning for alphanumeric or numeric data
types:
• Character data. An error occurs if a string is truncated because it is too long

for its target type. For NCHAR and NVARCHAR2 types, truncation always
occurs on Unicode character boundaries. In the NCHAR data types, a single-
byte value (half a Unicode character) has no meaning and is not possible.

• Numeric data. A warning occurs when any trailing non-zero digit is dropped
from the fractional part of a numeric value.

Underflow
When an approximate numeric value is too close to zero to be represented by the
hardware, TimesTen underflows to zero and returns a truncation warning.

Replication limits
TimesTen places the following limits on the size of data types in a data store that
is being replicated:
• VARCHAR2 and VARBINARY columns cannot exceed 256,000 bytes. For

character length semantics, the limit is 256,000 bytes. How many characters
Data Types 53

that translates into depends on the database character set. Worst case is
256,000 bytes / 4 = 64,000 characters.

• NVARCHAR2 columns cannot exceed 128,000 characters (256,000 bytes).
54 Oracle TimesTen In-Memory Database SQL Reference Guide

TimesTen Type Mode (Backward Compatibility)
TimesTen supports a data type backward compatibility mode (called TimesTen
type mode). The type mode is a data store creation attribute. TypeMode = 1
indicates TimesTen mode.

For more information on types modes, see "TypeMode" in Oracle TimesTen In-
Memory Database API Reference Guide.

For information on data type usage in TimesTen type mode, refer to
documentation from previous releases of TimesTen.
Data Types 55

Data types supported in TimesTen type mode
Data type Description

CHAR[ACTER] [(n [BYTE|CHAR])] Fixed-length character string of length n bytes or
characters. Default is 1 byte.

BYTE indicates that the column has byte length
semantics. Legal values for n range from a
minimum of 1 byte to a maximum 8300 bytes.

CHAR indicates that the column has character
length semantics. The minimum CHAR length is 1
character. The maximum CHAR length depends on
how many characters fit in 8300 bytes. This is
determined by the database character set in use. For
character set AL32UTF8, up to four bytes per
character may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the
character set.

A zero-length string is a valid non-NULL value.
CHAR data is padded to the maximum column size
with trailing blanks. Blank-padded comparison
semantics are used. For information on blank-
padded and nonpadded semantics, see “Blank-
Padded and nonpadded comparison semantics” on
page 46.

Alternatively, specify
TT_CHAR [(n [BYTE|CHAR])].
56 Oracle TimesTen In-Memory Database SQL Reference Guide

NCHAR[(n)] Fixed-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n is the
specified number of characters. Nchar character
limits are 1/2 the byte limits so the maximum size is
4150. Default and minimum bytes of storage is 2n
(2).

A zero-length string is a valid non-NULL value.
NCHAR data is padded to the maximum column
size with U+0020 SPACE. Blank-padded
comparison semantics are used. For information on
blank-padded and nonpadded semantics, see
“Blank-Padded and nonpadded comparison
semantics” on page 46.

Alternatively, specify TT_NCHAR[(n)].

NATIONAL CHARACTER and NATIONAL
CHAR are synonyms for NCHAR.

VARCHAR (n [BYTE|CHAR]) Variable-length character string having maximum
length n bytes or characters. You must specify n.

BYTE indicates that the column has byte length
semantics. Legal values for n range from a
minimum of 1 byte to a maximum 4194304 (222)
bytes.

CHAR indicates that the column has character
length semantics.

A zero-length string is a valid non-NULL value.

Blank-padded comparison semantics are used. For
information on blank-padded and nonpadded
semantics, see “Blank-Padded and nonpadded
comparison semantics” on page 46.

Alternatively, specify
TT_VARCHAR (n [BYTE|CHAR]).

Data type Description
Data Types 57

NVARCHAR(n) Variable-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n is the
specified number of characters. NVARCHAR
character limits are 1/2 the byte limits so the
maximum size is 2,097,152 (221). You must specify
n.

A zero-length string is a valid non-NULL value.

Blank-padded comparison semantics are used. For
information on blank-padded and nonpadded
semantics, see “Blank-Padded and nonpadded
comparison semantics” on page 46.

Alternatively, specify TT_NVARCHAR(n).

NATIONAL CHARACTER VARYING,
NATIONAL CHAR VARYING, and NCHAR
VARYING are synonyms for NVARCHAR.

TINYINT Unsigned integer ranging from 0 to 255 (28-1).

Since TINYINT is unsigned, the negation of a
TINYINT is SMALLINT.

Alternatively, specify TT_TINYINT.

SMALLINT A native signed 16 bit integer in the range –32,768 –
(215) to 32,767 (215–1).

Alternatively, specify TT_SMALLINT.

INT[EGER] A signed integer in the range –2,147,483,648 –(231)
to 2,147,483,647 (231–1).

Alternatively, specify TT_INTEGER.

BIGINT A signed 8-byte integer in the range
-9,223,372,036,854,775,808
-(263) to 9,223,372,036,854,775,807 (263 - 1).

Alternatively, specify TT_BIGINT.

Data type Description
58 Oracle TimesTen In-Memory Database SQL Reference Guide

BINARY_FLOAT 32-bit floating-point number. BINARY_FLOAT is a
single-precision native floating-point type. Supports
+Inf, -Inf and NaN values. BINARY_FLOAT is an
approximate numeric value consisting of an
exponent and mantissa. You can use Exponential or
E-notation. BINARY_FLOAT has binary precision
24.

Minimum positive finite value:

1.17549E-38F

Maximum positive finite value: 3.40282E+38F

Alternatively, specify REAL or FLOAT (24).

BINARY_DOUBLE 64-bit floating -point number. BINARY_DOUBLE
is a double-precision native floating point number.
Supports +Inf,
 -Inf and Nan values. BINARY_DOUBLE is an
approximate numeric value consisting of an
exponent and mantissa. You can use Exponential or
E-notation. BINARY_DOUBLE has binary
precision 53.

Minimum positive finite value:
2.22507485850720E-308

Maximum positive finite value:
1.79769313486231E+308

Alternatively, specify DOUBLE [PRECISION] or
FLOAT [(53)].

DEC[IMAL][(p[,s])] or

NUMERIC[(p[,s])]

An exact numeric value with a fixed maximum
precision (total number of digits) and scale (number
of digits to the right of the decimal point). The
precision p must be between 1 and 40. The scale
must be between 0 and p. The default precision is 40
and the default scale is 0.

BINARY (n) Fixed-length binary value of n bytes. Legal values
for n range from 1 to 8300.

BINARY data is padded to the maximum column
size with trailing zeroes.

Data type Description
Data Types 59

VARBINARY (n) Variable-length binary value having maximum
length n bytes. Legal values for n range from 1 to
4194304 (222).

TIME A time of day between 00:00:00 (12 midnight) and
23:59:59 (11:59:59 pm), inclusive. The format is:
HH:MI:SS. Storage size is 8 bytes.

DATE Stores date information: century, year, month, date.
The format is YYYY-MM-DD. MM is expressed as
an integer. For example,

2006-10-28. Storage size is 4 bytes.

Valid dates are between 1753-01-01 (January
1,1753) and 9999-12-31 (December 31, 9999).

Alternatively, specify TT_DATE.

TIMESTAMP A data and time between 1753-01-01 00:00:00
(January 1, 1753 midnight) and 9999-12-31
23:59:59 pm (11:59:59 pm on December 31, 9999),
inclusive. Any values for the fraction not specified
in full microseconds result in a “Data Truncated”
error. The format is YYYY-MM-DD HH:MI:SS
[.FFFFFF].

Storage size is 8 bytes.

Alternatively, specify TT_TIMESTAMP or
[TT_]TIMESTAMP (6).

INTERVAL [+/-] IntervalQualifier TimesTen partially supports INTERVAL types,
expressed with the type INTERVAL and an
IntervalQualifier. An IntervalQualifier can only
specify a single field type with no precision. The
default leading precision is 8 digits for all
INTERVAL types. The single field type can be one
of: YEAR, MONTH, DAY, HOUR, MINUTE or
SECOND. Currently, INTERVAL type can be
specified only with a constant.

Data type Description
60 Oracle TimesTen In-Memory Database SQL Reference Guide

Oracle data types supported in TimesTen type mode
Data type Description

ORA_CHAR [(n [BYTE|CHAR])] Fixed-length character string of length n bytes
or characters. Default is 1 byte.

BYTE indicates that the column has byte
length semantics. Legal values for n range
from a minimum of 1 byte to a maximum
8300 bytes.

CHAR indicates that the column has character
length semantics. The minimum CHAR length
is 1 character. The maximum CHAR length
depends on how many characters fit in 8300
bytes. This is determined by the database
character set in use. For character set
AL32UTF8, up to four bytes per character
may be needed, so the CHAR length limit
ranges from 2075 to 8300 depending on the
character set.

A zero-length string is interpreted as NULL.

ORA_CHAR data is padded to the maximum
column size with trailing blanks. Blank-
padded comparison semantics are used. For
information on blank-padded and nonpadded
semantics, see “Blank-Padded and nonpadded
comparison semantics” on page 46.
Data Types 61

ORA_NCHAR[(n)] Fixed-length string of length n two-byte
Unicode characters.

The number of bytes required is 2* n where n
is the specified number of characters. Nchar
character limits are 1/2 the byte limits so the
maximum size is 4150. Default and minimum
bytes of storage is 2n (2).

A zero-length string is interpreted as NULL.

ORA_NCHAR data is padded to the
maximum column size with U+0020 SPACE.
Blank-padded comparison semantics are used.
For information on blank-padded and
nonpadded semantics, see “Blank-Padded and
nonpadded comparison semantics” on page
46.

ORA_VARCHAR2 (n [BYTE|CHAR]) Variable-length character string having
maximum length n bytes or characters.

BYTE indicates that the column has byte
length semantics. Legal values for n range
from a minimum of 1 byte to a maximum
4194304 (222) bytes. You must specify n.

CHAR indicates that the column has character
length semantics.

A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used.
For information on blank-padded and
nonpadded semantics, see “Blank-Padded and
nonpadded comparison semantics” on page
46.

Data type Description
62 Oracle TimesTen In-Memory Database SQL Reference Guide

ORA_NVARCHAR2(n) Variable-length string of n two-byte Unicode
characters.

The number of bytes required is 2* n where n
is the specified number of characters.
ORA_NVARCHAR2 character limits are 1/2
the byte limits so the maximum size is
2,097,152 (221). You must specify n.

A zero-length string is interpreted as NULL.

Nonpadded comparison semantics are used.

For information on blank-padded and
nonpadded semantics, see “Blank-Padded and
nonpadded comparison semantics” on page
46.

NUMBER [(precision [,scale])] Number having precision and scale. The
precision ranges from 1 to 38 decimal. The
scale ranges from -84 to 127. Both precision
and scale are optional.

If you do not specify a precision or a scale,

then maximum precision of 38 and flexible
scale are assumed.

NUMBER supports scale > precision and
negative scale.

NUMBER stores zero as well as positive and
negative fixed numbers with absolute values
from 1.0 x 10-130 to (but not including)
1.0 x 10126. If you specify an arithmetic
expression whose value has an absolute value
greater than or equal to 1.0 x 10126, then
TimesTen returns an error.

In TimesTen type mode, the NUMBER data
type stores 10e-89 as its smallest (closest to
zero) value.

Data type Description
Data Types 63

ORA_DATE Stores date and time information: century,
year, month, date, hour, minute and second:
Format is:

YYYY-MM-DD HHMMSS.

Valid date range is from January 1, 4712 BC to
December 31, 9999 AD.

The storage size is 7 bytes. There are no
fractional seconds.

ORA_TIMESTAMP
 [(fractional_seconds_precision)]

Stores year, month, and day values of the date
data type plus hour, minute, and second values
of time. Fractional_seconds_precision is the
number of digits in the fractional part of the
seconds field. Valid date range is from January
1, 4712 BC to December 31, 9999 AD.

The fractional seconds precision range is 0 to
9. The default is 6. Format is:

YYYY-MM-DD HH:MI:SS [.FFFFFFFFF]

Storage size 12 bytes.

Data type Description
64 Oracle TimesTen In-Memory Database SQL Reference Guide

2
Names

This chapter presents general rules for names used in TimesTen commands.

Basic names
Basic names identify columns, tables, views and indexes. Basic names must
follow these rules:
• The maximum length of a basic name is 30 characters.
• A name can consist of any combination of letters (A to Z a to z), decimal

digits (0 to 9), $, #, @, or underscore (_). For identifiers, the first character
must be a letter (A-Z a-z) and not a digit or special character. However, for
parameter names, the first character can be a letter (A-Z a-z), a decimal digit
(0 to 9), or special characters $, #, @, or underscore (_).

• Lower case letters (a to z) are automatically changed to the corresponding
upper case letters (A to Z).

• If you enclose a name in quotation marks, you can use any combination of
characters (even if they are not in the set of legal characters). In that case, the
first character can also be any character. If a column, table, or index is initially
defined with a name enclosed in quotation marks and the name does not
conform to the rule noted in the second bullet, then that name must always be
enclosed in quotation marks whenever it is subsequently referenced.

• Unicode characters are not allowed in names.

Owner names
The owner name is the user name of the account that created the table. Tables and
indexes defined by TimesTen itself have the owner SYS or TTREP. User objects
cannot be created with owner names SYS or TTREP. TimesTen converts all
owner and table names to upper case.

Owners of tables in TimesTen are determined by the user ID settings or login
names. For cache groups, Oracle table owner names must always match
TimesTen table owner names.

Owner names may be specified by the user during table creation, in addition to
being automatically determined if they are left unspecified. See “CREATE
 65

TABLE” on page 279. When creating owner names, follow the same rules as
those for creating "Basic names".

Compound identifiers
Basic names and user names are simple names. In some cases, simple names are
combined to form a compound identifier, which consists of an owner name
combined with one or more basic names, with periods (.) between them.

In most cases you can abbreviate a compound identifier by omitting one of its
parts. If you do not use a fully qualified name, a default value is automatically
used in place of the missing part. For example, if you omit the owner name (and
the period) when you refer to tables you own, TimesTen generates the owner
name by using your login name.

A complete compound identifier, including all of its parts, is called a fully
qualified name. Different owners can have tables and indexes with the same
name. The fully qualified name of these objects must be unique.

The following are compound identifiers:
• Column identifier: [[Owner.]TableName.]ColumnName
• Index identifier: [Owner.]IndexName
• Table identifier: [Owner.]TableName
• Row identifier: [[Owner.]TableName.]ROWID

Dynamic parameters
Dynamic parameters are used to pass information between an application
program and TimesTen. They are placeholders in SQL commands and are
replaced at runtime with actual values.

A dynamic parameter name must be preceded by a colon (:) when used in a SQL
command and must conform to the TimesTen rules for basic names. However,
unlike identifiers, parameter names can start with any of the following
characters:
• letters: A to Z
• letters: a to z.
• digits: 0 to 9
• special characters: # $ @ or underscore (_)

Note: Instead of using a:DynamicParameter sequence, the application can also
use a ? for each dynamic parameter. See Example 3.1 on page 72.
66 Oracle TimesTen In-Memory Database SQL Reference Guide

3
Expressions

Expressions are used for the following purposes:
• The select list of the SELECT statement
• A condition of the WHERE clause and HAVING clause
• The GROUP BY and ORDER BY clauses
• The VALUES clause of the INSERT and MERGE statements
• The SET clause of the UPDATE and MERGE statements
 67

ROWID specification
TimesTen assigns a unique ID called a ROWID to each row stored in a table.
ROWID has type BINARY(16).

Because ROWID is not a real column, it does not require database space and
cannot be updated, indexed or dropped.

The ROWID value persists throughout the life of the table row, but the system
can reassign the ID to a different row after the original row is deleted. Zero is not
a valid value for ROWID.

ROWID persists through recovery, backup and restore operations. It does not
persist through replication, ttMigrate or ttBulkCp operations.

See “Expression specification” on page 70 for more information on ROWID.
68 Oracle TimesTen In-Memory Database SQL Reference Guide

ROWNUM specification
For each row returned by a query, the ROWNUM pseudocolumn returns a
number indicating the order in which the row was selected. The first row selected
has a ROWNUM of 1, the second a ROWNUM of 2, and so on.

Use ROWNUM to limit the number of rows returned by a query as in this
example:
SELECT * FROM employees WHERE ROWNUM < 10;

The order in which rows are selected depends on the index used and/or the join
order. If you specify an ORDER BY clause, ROWNUM is assigned before
sorting. However, the presence of the ORDER BY clause may change the index
used and/or the join order. If the order of selected rows changes, the ROWNUM
value associated with each selected row could also change.

For example, the following query may return a different set of employees than
the preceding query if a different index is used:
SELECT * FROM employees WHERE ROWNUM < 10 ORDER BY last_name;

Conditions testing for ROWNUM values greater than a positive integer are
always false. For example, the following query returns no rows:
SELECT * FROM employees WHERE ROWNUM > 1;

Use ROWNUM to assign unique values to each row of a table. For example,
UPDATE my_table SET column1 = ROWNUM;

If your query contains either FIRST NumRows or ROWS M TO N, do not use
ROWNUM to restrict the number of rows returned. For example, the following
query results in an error message:
SELECT FIRST 2 * FROM employees WHERE ROWNUM <1 ORDER BY employee_id;
2974: Using rownum to restrict number of rows returned cannot be
combined with first N or rows M to N
Expressions 69

Expression specification
An expression specifies a value to be used in a SQL operation.

An expression can consist of a primary or several primaries connected by
arithmetic operators, comparison operators, string or binary operators, bit
operators or any of the functions described in this chapter. A primary is a signed
or unsigned value derived from one of the items listed in the SQL syntax:

SQL syntax

{ColumnName | ROWID | {? | :DynamicParameter} |
AggregateFunction | Constant | (Expression)}

or
[[+ |-] {ColumnName | SYSDATE | TT_SYSDATE|GETDATE() |
{? | :DynamicParameter} | AggregateFunction |
Constant | {~ | + | -} Expression}]
 [...]

or
Expression1 [& | | | ^ | + | / | * | -] Expression2

or
Expression1 | | Expression2

or
Expression

Component Description

+, – Unary plus and unary minus. Unary minus changes the sign of the
primary. The default is to leave the sign unchanged.

ColumnName Name of a column from which a value is to be taken. Column names
are discussed in Chapter 2, “Names.

ROWID TimesTen assigns a unique ID, called a ROWID to each row stored in a
table. ROWID has type BINARY(16). The ROWID value can be
retrieved through a pseudo column named ROWID.

?
:DynamicParameter

A place holder for a dynamic parameter.
The value of the dynamic parameter is supplied at runtime.

AggregateFunction A computed value. See “Aggregate functions” on page 76.

Constant A specific value. See “Constants” on page 79.

(Expression) Any expression enclosed in parentheses.
70 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • Arithmetic operators can be used between numeric values. See “Numeric data
types” on page 29

• Arithmetic operators can also be used between date-time values and interval
types. The result of a date-time expression is either a date-time type or an
interval type.

• Arithmetic operators cannot be applied to string values.
• Elements in an expression are evaluated in the following order:

– Aggregate functions and expressions in parentheses.
– Unary pluses and minuses.
– The * and / operations.
– The + and – operations.
– Elements of equal precedence are evaluated in left-to-right order.

Expression1
Expression2

Expression1 and Expression2, when used with the bitwise operators,
can be of integer or binary types. The types of both expressions must be
compatible. See Chapter 1, “Data Types.

* Multiplies two primaries.

/ Divides two primaries.

+ Adds two primaries.

 – Subtracts two primaries.

& Bitwise AND of the two operands. Sets a bit to 1 if and only if both of
the corresponding bits in Expression1 and Expression2 are 1, and to 0 if
the bits differ or both are 0.

| Bitwise OR of the two operands. Sets a bit to 1 if one or both of the
corresponding bits in Expression1 and Expression2 are 1, and to 0 if
both of the corresponding bits are 0.

~ Bitwise NOT of the operand. Takes only one Expression and inverts
each bit in the operand, changing all the ones to zeros and zeros to
ones.

^ Exclusive OR of the two operands. Sets the bit to 1 where the
corresponding bits in its Expression1 and Expression2 are different, and
to 0 if they are the same. If one bit is 0 and the other bit is 1, the
corresponding result bit is set to 1. Otherwise, the corresponding result
bit is set to 0.

 | | Concatenates Expression1 and Expression2, where both expressions
are character strings. Forms a new string value that contains the values
of both expressions. See also “CONCAT” on page 104.
Expressions 71

• You can enclose expressions in parentheses to control the order of their
evaluation. For example:

10 * 2 – 1 = 19 but 10 * (2 – 1) = 10
• Type conversion, truncation, underflow, or overflow can occur when some

expressions are evaluated. See Chapter 1, “Data Types.
• If either operand in a numeric expression is NULL, the result is NULL.
• Since NVL takes two parameters, both designated as an “expression”,

TimesTen does not permit NULL in either position. If there is a NULL value
in an expression, comparison operators and other predicates evaluate to
NULL. See Chapter 4, “Search Conditions for more information on evaluation
of comparison operators and predicates containing NULL values. We permit
inserting of NULL, but in general INSERT takes only specific values, and not
general expressions.

• The query optimizer and execution engine permit multiple ROWID lookups
when a predicate specifies a disjunct of ROWID equalities or uses IN. For
example, multiple fast ROWID lookups are executed for:

WHERE ROWID = :v1 OR ROWID = :v2

• or equivalently:
WHERE ROWID IN (:v1, :v2)

• The ? or :DynamicParameter can be used as a dynamic parameter in an
expression, as shown in the following examples.

Example 3.1 In the WHERE clause of any SELECT statement:
SELECT *
FROM Purchasing.Orders
WHERE PartNumber = ?
AND OrderNumber > ?
ORDER BY OrderNumber

Example 3.2 In the WHERE and SET clauses of an UPDATE statement:
UPDATE Purchasing.Parts
SET SalesPrice = :DynamicParameter1
WHERE PartNumber = :DynamicParameter2

Example 3.3 In the WHERE clause of a DELETE statement:
DELETE FROM Purchasing.OrderItems
WHERE ItemNumber BETWEEN ? AND ?

Example 3.4 In the VALUES clause of an INSERT statement. In this example,
both ? and :DynamicParameter are used where :DynamicParameter1
corresponds to both the second and fourth columns of the
Purchasing.OrderItems table. Therefore, only four distinct dynamic
72 Oracle TimesTen In-Memory Database SQL Reference Guide

parameters need to be passed to this expression with the second
parameter used for both the second and fourth columns.

INSERT INTO Purchasing.OrderItems VALUES
(?,:DynamicParameter1,
:DynamicParameter2,
:DynamicParameter1,?)

This example demonstrates that both ? and :DynamicParameter can be used in
the same SQL statement and shows the semantic difference between repeating
both types of dynamic parameters.

Example 3.5 Examples of bitwise operators:
Command> SELECT 0x183D & 0x00FF from dual;
< 003D >
1 row found.

Command> SELECT ~255 FROM dual;
< -256 >
1 row found.

Command> SELECT 0x08 | 0x0F FROM dual;
< 0F >
1 row found.
Expressions 73

Subqueries
TimesTen supports subqueries in SELECT, CREATE VIEW, DELETE or
UPDATE statements or in an update SET clause, in a search condition and as a
derived table. TimesTen supports table subqueries and scalar subqueries. It does
not support row subqueries. A subquery can specify an aggregate with a
HAVING clause or joined table. It can also be correlated.

Description TimesTen supports queries that have the following characteristics.

Table subqueries:
• A subquery can appear in the WHERE clause or HAVING clause of any

statement, except one that creates a MATERIALIZED VIEW. Only one table
subquery can be specified in a predicate. These predicates can be specified in
a WHERE or HAVING clause, an OR’d expression within a WHERE or
HAVING clause, or an ON clause of a joined table. They cannot be specified
in a CASE expression, a materialized view, or a HAVING clause that uses the
+ operator for outer joins.

• A subquery can be specified in an EXISTS or NOT EXISTS predicate, a
quantified predicate with ANY or ALL, or a comparison predicate. The
allowed operators for both comparison and quantified predicates are: =, <, >,
<=, >=, <>. The subquery cannot be connected to the outer query through a
UNIQUE or NOT UNIQUE operator.

• Only one subquery can be specified in a quantified or comparison predicate.
Specify the subquery as either the right operand or the left operand of the
predicate, but not both.

• The subquery should not have an ORDER BY clause.
• FIRST NumRows is not supported in subquery statements.
• A subquery cannot specify a UNION, MINUS or INTERSECT.
• In a query specified in a quantified or comparison predicate, the underlying

SELECT must have a single expression in the select list. In a query specified
in a comparison predicate, if the underlying select returns a single row, the
return value is the select result. If the underlying select returns no row, the
return value is NULL. It is an error if the subquery returns multiple rows.

Scalar subqueries (a scalar subquery returns a single value):
• A non-verifiable scalar subquery is one which has a predicate such that the

optimizer cannot detect at compile time that the subquery returns at most one
row for each row of the outer query. The subquery cannot be specified in an
OR expression.

• Neither outer query nor any scalar subquery should have a DISTINCT
modifier.
74 Oracle TimesTen In-Memory Database SQL Reference Guide

SQL Syntax [NOT] EXISTS | [NOT] IN (Subquery)
Expression {= | <> | > | >= | < | <= } [ANY | ALL] (Subquery)
Expression [NOT] IN (ValueList | Subquery)

Examples Examples of supported subqueries for a list of customers having at least one un-
shipped order:

Example 3.6 SELECT customers.name FROM customers
WHERE EXISTS (SELECT 1 FROM orders
WHERE customers.id = orders.custid
AND orders.status = 'un-shipped');

Example 3.7 SELECT customers.name FROM customers
WHERE customers.id = ANY

(SELECT orders.custid FROM orders
WHERE orders.status = 'un-shipped');

Example 3.8 SELECT customers.name FROM customers
WHERE customers.id IN

(SELECT orders.custid FROM orders
WHERE orders.status = 'un-shipped');

Example 3.9 In this example, list items are shipped on the same date as when they are ordered:
SELECT line_items.id FROM line_items

WHERE line_items.ship_date =
(SELECT orders.order_date FROM orders
WHERE orders.id = line_items.order_id);
Expressions 75

Aggregate functions
Aggregate functions specify a value computed with data from a set of rows
described in an argument. The argument, enclosed in parentheses, is an
expression.

Aggregate functions can be specified in the select list or the HAVING clause. See
“INSERT SELECT” on page 321 for more information. The value of the
expression is computed using each row that satisfies the WHERE clause.

SQL syntax {AVG ({Expression | [ALL | DISTINCT] ColumnName})
 MAX ({Expression | [ALL | DISTINCT] ColumnName | ROWID})
 MIN ({Expression | [ALL | DISTINCT] ColumnName | ROWID})
 SUM ({Expression | [ALL | DISTINCT] ColumnName})
 COUNT ({ * | [ALL | DISTINCT] ColumnName | ROWID})
}

Component Description

Expression Specifies an argument for the aggregate function. The expression itself cannot
be an aggregate function.

AVG Computes the arithmetic mean of the values in the argument. NULL values
are ignored. AVG can be applied only to numeric data types.

MAX Finds the largest of the values in the argument (ASCII comparison for
alphabetic types). NULL values are ignored. MAX can be applied to numeric,
character, and BINARY data types.

MIN Finds the smallest of the values in the argument (ASCII comparison for
alphabetic types). NULL values are ignored. MIN can be applied to numeric,
character, and BINARY data types.

SUM Finds the total of all values in the argument. NULL values are ignored. SUM
can be applied to numeric data types only.

COUNT * Counts all rows that satisfy the WHERE clause, including rows containing
NULL values. The data type of the result is TT_INTEGER. For more
information on the number of rows in a table, see the description for the
NUMTUPS field in SYS.TABLES.

COUNT
ColumnName

Counts all rows in a specific column. Rows containing NULL values are not
counted. The data type of the result is TT_INTEGER. For more information
on the number of rows in a table, see the description for the NUMTUPS field
in SYS.TABLES.
76 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • If an aggregate function is computed over an empty table in which GROUP
BY is not used, the results are as follows:
– COUNT returns 0.
– AVG, SUM, MAX, and MIN return NULL.

• If an aggregate function is computed over an empty group or an empty
grouped table (GROUP BY is used):
– COUNT returns nothing.
– AVG, SUM, MAX, and MIN return nothing.

• See Chapter 1, “Data Types for information on:
– Truncation and type conversion that may occur during the

evaluation of aggregate functions.
– Precision and scale of aggregate functions involving numeric arguments.
– Control of the result type of an aggregate function.

• For SUM:
– If the source is TT_TINYINT, TT_SMALLINT, or TT_INTEGER, the

result data type is TT_INTEGER.
– If the source is NUMBER, then the result data type is NUMBER with

undefined scale and precision.
– If the source is TT_DECIMAL, then the result data type is TT_DECIMAL

with maximum precision.
– For all other data types, the result data type is the same as the source.
– See Example 3.12 on page 78.

• For MAX and MIN:
– The result data type is the same as the source.

• For AVG:
– AVG is evaluated as SUM/COUNT. The result data type is derived using

the rule that is applied for the DIV operator.

Example 3.10 Calculate the average salary for employees in the HR schema. Use CAST to cast
the average as the data type of the column:
Command> SELECT CAST(AVG (salary) AS NUMBER (8,2)) FROM employees;
< 6461.68 >

ALL Includes any duplicate rows in the argument of an aggregate function. If
neither ALL nor DISTINCT is specified, ALL is assumed.

DISTINCT Eliminates duplicate column values from the argument of an aggregate
function. Can be specified for more than one column.
Expressions 77

Example 3.11 Calculate the MAX salary for employees in the HR schema:
Command> SELECT MAX (salary) FROM employees;
< 24000 >
1 row found.

Example 3.12 The example uses DESCRIBE to show the data type that is returned when using
the SUM aggregate. Table AGGREGATES is created and columns with different
data types are defined:
Command> CREATE TABLE Aggregates (Col1 TT_TINYINT, Col2 TT_SMALLINT,
Col3 TT_INTEGER, Col4 TT_BIGINT, Col5 NUMBER (4,2),
Col6 TT_DECIMAL (6,2), Col7 BINARY_FLOAT, Col8 BINARY_DOUBLE);
Command> DESCRIBE SELECT SUM (Col1) FROM Aggregates;

Prepared Statement:
Columns:
EXP TT_INTEGER

Command> DESCRIBE SELECT SUM (Col2) FROM Aggregates;

Prepared Statement:
Columns:

EXP TT_INTEGER
Command> DESCRIBE SELECT SUM (Col3) FROM Aggregates;

Prepared Statement:
Columns:

EXP TT_INTEGER
Command> DESCRIBE SELECT SUM (Col4) FROM Aggregates;

Prepared Statement:
Columns:

EXP TT_BIGINT
Command> DESCRIBE SELECT SUM (Col5) FROM Aggregates;

Prepared Statement:
Columns:

EXP NUMBER
Command> DESCRIBE SELECT SUM (Col6) FROM Aggregates;

Prepared Statement:
Columns:

EXP TT_DECIMAL (40,2)
Command> DESCRIBE SELECT SUM (Col7) FROM Aggregates;

Prepared Statement:
Columns:

EXP BINARY_FLOAT
Command> DESCRIBE SELECT SUM (Col8) FROM Aggregates;

Prepared Statement:
Columns:
EXP BINARY_DOUBLE
78 Oracle TimesTen In-Memory Database SQL Reference Guide

Constants
A constant is a literal value.

SQL syntax {IntegerValue | FloatValue |FloatingPointLiteral|
FixedPointValue | 'CharacterString'|
'NationalCharacterString' | 0xHexadecimalString |
'DateString' | DateLiteral |'TimeString' |
TimeLiteral | 'TimestampString' | TimestampLiteral |
IntervalLiteral | BINARY_FLOAT_INFINITY |
BINARY_DOUBLE_INFINITY | -BINARY_FLOAT_INFINITY |
-BINARY_DOUBLE_INFINITY | BINARY_FLOAT_NAN |
BINARY_DOUBLE_NAN

}

Constant Description

IntegerValue A whole number compatible with TT_INTEGER, TT_BIGINT
or TT_SMALLINT data types or an unsigned whole number
compatible with the TT_TINYINT data type. For example:
155, 5, -17

FloatValue A floating-point number compatible with the BINARY_FLOAT
or BINARY_DOUBLE data types. Examples:
.2E-4, 1.23e -4, 27.03, -13.1

FloatingPointLiteral Floating point literals are compatible with the BINARY_FLOAT
and BINARY_DOUBLE data types. f or F indicates that the
number is a 32-bit floating point number (of type
BINARY_FLOAT). d or D indicates that the number is a 64-bit
floating point number (of type BINARY_DOUBLE).
For example: 123.23F, 0.5d

FixedPointValue A fixed-point number compatible with the BINARY_FLOAT,
BINARY_DOUBLE or NUMBER data types. For example:
27.03

CharacterString A character string compatible with CHAR or VARCHAR2 data
types. String constants are delimited by single quotation marks.
For example:
'DON''T JUMP!'
Two single quotation marks in a row are interpreted as a single
quotation mark, not as string delimiters or the empty string.
Expressions 79

NationalCharacterString A character string compatible with NCHAR or NVARCHAR2
data types. National string constants are preceded by an indicator
consisting of either 'N' or 'n', and delimited by single quotation
marks. For example:
N'Here''s how!'
Two single quotation marks in a row are interpreted as a single
quotation mark.
The contents of a national string constant may consist of
any combination of:
• ASCII characters
• UTF-8 encoded Unicode characters
• Escaped Unicode characters
ASCII characters and UTF-8 encoded characters are converted
internally to their corresponding UTF-16 format Unicode
equivalents.
Escaped Unicode characters are of the form \uxxxx, where
xxxx is the four hex-digit representation of the Unicode
character. For example:
N'This is an \u0061'
is equivalent to:
N'This is an a'
The \u itself can be escaped with another \. The sequence \\u
is always converted to \u. No other escapes are recognized.

HexadecimalString A string of hexadecimal digits 0 - 9 and A - F (or a - f)
compatible with the BINARY, VARBINARY, CHAR and
VARCHAR2 data types. A HexadecimalString constant must be
prefixed with the characters “0x.” For example:
0xFFFAB0880088343330FFAA7 or 0x000A001231

DateString A string of the format YYYY-MM-DD HH:MI:SS enclosed in single
quotation marks ('). For example: '2007-01-27 12:00:00'. The
YYYY field must have a 4-digit value. The MM and DD fields must
have 2-digit values. The only spaces allowed are trailing spaces
(after the day field). The range is from '-4713-01-01' (January 1,
4712 BC) to '9999-12-31', (December 31, 9999). The time
component is not required. For example: ‘2007-01-27’. For
TT_DATE data types, the string is of format YYYY-MM-DD and
ranges from ‘1753-01-01’ to ‘9999-12-31’.

If you are using TimesTen type mode, for information on
DateString, refer to documentation from previous releases of
TimesTen.
80 Oracle TimesTen In-Memory Database SQL Reference Guide

DateLiteral Format: DATE DateString. For example:
DATE '2007-01-27' or DATE '2007-01-27 12:00:00'
For TT_DATE data types, use the literal TT_DATE. For example:
TT_DATE '2007-01-27’. Do not specify a time portion with the
TT_DATE literal.
The DATE keyword is case-insensitive.
TimesTen also supports ODBC-date-literal syntax.
For example:
{d '2007-01-27'}.
Please refer to the Microsoft ODBC Programmer’s Reference
and SDK Guide included with your release of TimesTen.

If you are using TimesTen type mode, for information on
DateLiteral, refer to documentation from previous releases of
TimesTen.

TimeString A string of the format HH:MM:SS enclosed in single quotation
marks ('). For example:
'20:25:30'
The range is '00:00:00' to '23:59:59', inclusive. Every component
must be two digits. The only spaces allowed are trailing spaces
(after the seconds field).

TimeLiteral Format: TIME TimeString. For example:
TIME '20:25:30'
The TIME keyword is case-insensitive.
Usage examples:
INSERT INTO timetable VALUES (TIME '10:00:00');
SELECT * FROM timetable WHERE col1 < TIME '10:00:00';
TimesTen also supports ODBC-time-literal syntax.
For example:
{t '12:00:00'}.
Please refer to the Microsoft ODBC Programmer’s Reference
and SDK Guide included with your release of TimesTen.
Expressions 81

TimestampString A string of the format YYYY-MM-DD HH:MM:SS[.FFFFFFFFF]
enclosed in single quotation marks('). The range is from
'-4713-01-01’ (January 1, 4712 BC) to ‘9999-12-31’
(December 31, 9999). The year field must be a 4-digit value.
All other fields except for the fractional part must be 2-digit
values. The fractional field can consist of 0 to 9 digits.
For TT_TIMESTAMP data types, a string of format
YYYY-MM-DD HH:MM:SS[.FFFFFF] enclosed in single quotation
marks('). The range is from
‘1753-01-01 00:00:00.000000' to '9999-12-31
23:59:59.999999'. The fractional field can consist of 0 to 6
digits.
 If you have a CHAR column called C1, and want to enforce the
TIME comparison, you can do the following:
SELECT * FROM testable WHERE C1 = TIME '12:00:00'
In this example, each CHAR value from C1 is converted into a
TIME value before comparison, provided that values in C1
conform to the proper TIME syntax.

If you are using TimesTen type mode, for information on
TimestampString, refer to documentation from previous releases
of TimesTen.

TimestampLiteral Format: TIMESTAMP TimestampString
For example: TIMESTAMP ‘2007-01-27 11:00:00.000000’
For TIMESTAMP data types, the fraction field supports from 0 to
9 digits of fractional seconds. For TT_TIMESTAMP data types,
the fraction field supports from 0 to 6 digits of fractional seconds.
The TIMESTAMP keyword is case-insensitive.
Literal syntax can be used if you want to enforce DATE/TIME/
TIMESTAMP comparison for CHAR/VARCHAR data type.
TimesTen also supports ODBC-timestamp-literal syntax. For
example: {ts '9999-12-31 12:00:00'}
Please refer to the Microsoft ODBC Programmer’s Reference
and SDK Guide included with your release of TimesTen.

If you are using TimesTen type mode, for information on
TimestampLiteral, refer to documentation from previous releases
of TimesTen.

IntervalLiteral Format: INTERVAL [+\-] CharacterString IntervalQualifier.
For example INTERVAL ‘8’ DAY
82 Oracle TimesTen In-Memory Database SQL Reference Guide

BINARY_
FLOAT_INFINITY|
BINARY_
DOUBLE_INFINITY

INF (positive infinity) is an IEEE floating-point value that is
compatible with the BINARY_FLOAT and BINARY_DOUBLE
data types. Use the constant values
BINARY_FLOAT_INFINITY or
BINARY_DOUBLE_INFINITY to represent positive infinity.

-BINARY_
FLOAT_INFINITY|
-BINARY_DOUBLE_
INFINITY

-INF (negative infinity) is an IEEE floating-point value that is
compatible with the BINARY_FLOAT and BINARY_DOUBLE
data types. Use the constant values
 -BINARY_FLOAT_INFINITY and
-BINARY_DOUBLE_INFINITY to represent negative infinity.

BINARY_FLOAT_NAN|
BINARY_DOUBLE_NAN

NaN (“not a number”) is an IEEE floating-point value that is
compatible with the BINARY_FLOAT and BINARY_DOUBLE
data types. Use the constant values BINARY_FLOAT_NAN or
BINARY_DOUBLE_NAN to represent NaN (“not a number”).
Expressions 83

Format Models
A format model is a character literal that describes the format of datetime and
numeric data stored in a character string. When you convert a character string
into a date or number, a format model determines how TimesTen interprets the
string.

Number format models
Use number format models in the following functions:
• In the TO_CHAR function to translate a value of NUMBER,

BINARY_FLOAT, or BINARY_DOUBLE data type to VARCHAR2 data
type.

• In the TO_NUMBER function to translate a value of CHAR or VARCHAR2
data type to NUMBER data type.

Number format elements
A number format model is composed of one or more number format elements.
The table lists the elements of a number format model. Negative return values
automatically contain a leading negative sign and positive values automatically
contain a leading space unless the format model contains the MI, S, or PR format
element.

The default American_america NLS setting is used.

Number format elements:

Element Example Description

, (comma) 9,999 Returns a comma in the specified
position. You can specify multiple
commas in a number format model.
Restrictions:
• A comma element cannot begin a

number format model.
• A comma cannot appear to the right of

the decimal character or period in a
number format model.

. (period) 99.99 Returns a decimal point, which is a period
(.) in the specified position.
Restriction:
• You can specify only one period in a

format model.

$ $9999 Returns value with leading dollar sign.
84 Oracle TimesTen In-Memory Database SQL Reference Guide

0 0999
9990

Returns leading zeros.
Returns trailing zeros.

9 9999 Returns value with the specified number
of digits with a leading space if positive
or with a leading minus if negative.

Leading zeros are blank, except for a zero
value, which returns a zero for the integer
part of the fixed-point number.

B B9999 Returns blanks for the integer part of a
fixed-point number when the integer part
is zero (regardless of zeros in the format
model).

C C999 Returns in the specified position the ISO
currency symbol (the current value of the
NLS_ISO_CURRENCY parameter).

D 99D99 Returns in the specified position the
decimal character, which is the current
value of the
NLS_NUMERIC_CHARACTER
parameter. The default is a period (.).
Restriction:
• You can specify only one decimal

character in a number format model.

EEEE 9.9EEEE Returns a value in scientific notation.

G 9G999 Returns in the specified position the
group separator (the current value of the
NLS_NUMERIC_CHARACTER
parameter). You can specify multiple
group separators in a number format
model.
Restriction:
• A group separator cannot appear to the

right of a decimal character or period
in a number format model.

Element Example Description
Expressions 85

L L999 Returns in the specified position the local
currency symbol (the current value of the
NLS_CURRENCY parameter).

MI 999MI Returns negative value with a trailing
minus sign (-).
Returns positive value with a trailing
blank.
Restriction:
• The MI format element can appear

only in the last position of a number
format model.

PR 999PR Returns negative value in <angle
brackets>.
Returns positive value with a leading and
trailing blank.
Restriction:
• The PR format element can appear

only in the last position of a number
format model.

RN RN Returns a value as Roman numerals in
uppercase.

rn rn Returns a value as Roman numerals in
lowercase.
Value can be an integer between 1 and
3999.

S S9999 Returns negative value with a leading
minus sign (-).
Returns positive value with a leading plus
sign (+).

S 9999S Returns negative value with a trailing
minus sign (-).
Returns positive value with a trailing plus
sign (+).
Restriction:
• The S format element can appear only

in the first or last position of a number
format model.

Element Example Description
86 Oracle TimesTen In-Memory Database SQL Reference Guide

TM TM The text minimum number format model
returns (in decimal output) the smallest
number of characters possible. This
element is case insensitive.

The default is TM9, which returns the
number in fixed notation unless the output
exceeds 64 characters. If the output
exceeds 64 characters, then TimesTen
automatically returns the number in
scientific notation.
Restrictions:
• You cannot precede this element with

any other element.
• You can follow this element only with

one 9 or one E or (e), but not with any
combination of these. The following
statement returns an error:

• SELECT TO_NUMBER (1234,
‘TM9e’) from DUAL;

U U9999 Returns in the specified position the euro
(or other) dual currency symbol (the
current value of the
NLS_DUAL_CURRENCY parameter).

Element Example Description
Expressions 87

Datetime format models
Use datetime format models in the following functions:
• In the TO_CHAR or TO_DATE functions to translate a character value that is

in a format other than the default format for a datetime value.
• In the TO_CHAR function to translate a datetime value that is in a format

other than the default format into a string.

The total length of a datetime format model cannot exceed 22 characters.

The default American_america NLS setting is used.

Datetime format elements
A datetime format model is composed of one or more datetime format elements.

V 999V99 Returns a value multiplied by 10n (and if
necessary, round it up), where n is the
number of 9’s after the V.

X XXXX Returns the hexadecimal value of the
specified number of digits. If the specified
number is not an integer, then TimesTen
rounds it to an integer.
Restrictions:
• This element accepts only positive

values or 0. Negative values return an
error.

• You can precede this element only with
0 (which returns leading zeros) or FM.
Any other elements return an error. If
you specify neither 0 nor FM with X,
then the return always has a leading
blank.

Element Example Description
88 Oracle TimesTen In-Memory Database SQL Reference Guide

Datetime format elements

Element Description

-
/
,
.
;
:
“text”

Punctuation and quoted text is reproduced in the
result.

AD
A.D.

AD indicator with or without periods.

AM
A.M.

Meridian indicator with or without periods.

BC
B.C.

BC indicator with or without periods.

D Day of week (1-7).

DAY Name of day, padded with blanks to display width of
widest name of day.

DD Day of month (1-31).

DDD Day of year.

DL Returns a value in the long date format. In the default
AMERICAN_AMERICA locale, this is equivalent to
specifying the format ‘fmDay, Month dd, yyyy’.
Restriction: Specify this format only with the TS
element, separated by white space.

DS Returns a value in the short date format. In the default
AMERICAN_AMERICA locale, this is equivalent to
specifying the format ‘MM/DD/RRRR’.
Restriction: Specify this format only with the TS
element, separated by white space.

DY Abbreviated name of day.

FM Returns a value with no leading or trailing blanks.

FX Requires exact matching between the character data
and the format model.
Expressions 89

HH Hour of day (1-12).

HH24 Hour of day (0-23).

J Julian day: The number of days since January 1, 4712
BC. Numbers specified with J must be integers.

MI Minute (0-59).

MM Month (01-12. January = 01).

MON Abbreviated name of month.

MONTH Name of month padded with blanks to display width
of the widest name of month.

RM Roman numeral month (I-XII. January = I).

RR Stores 20th century dates in the 21st century using
only two digits.

RRRR Rounds year. Accepts either 4-digit or 2-digit input. If
2-digit, provides the same return as RR. If you do not
want this functionality, then enter the 4-digit year.

SS Second (0-59).

SSSSS Seconds past midnight (0-86399).

TS Returns a value in the short time format.
Restriction: Specify this format only with the DL or
DS element, separated by white space.

X Local radix character.
Example: ‘HH:MI:SSXFF’.

Y,YYY Year with comma in this position.

YYYY
SYYYY

4-digit year. S prefixes BC dates with a minus sign.

YYY
YY
Y

Last 3, 2, or 1 digit (s) of year.

Element Description
90 Oracle TimesTen In-Memory Database SQL Reference Guide

Format Model for ROUND and TRUNC Date Functions
The table lists the format models you can use with the ROUND and TRUNC date
functions and the units to which they round and truncate dates. The default
model, ‘DD’ returns the date rounded or truncated to the day with a time of
midnight:

Format
Model

Rounding or Truncating Unit

CC
SCC

One greater than the first two digits of a four-digit year

SYYYY
YYYY
YEAR
SYEAR
YYY
YY
Y

Year

IYYY
IY
IY
I

ISO Year

Q Quarter

MONTH
MON
MM
RM

Month

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the ISO year

W Same day of the week as the first day of the month

DDD
DD
J

Day

DAY
DY
D

Starting day of the week
Expressions 91

Format Model for TO_CHAR of TimesTen types
Use this format model when invoking the TO_CHAR function to convert a
datetime value of TT_TIMESTAMP or TT_DATE. In addition, use this format
model when invoking the TO_CHAR function to convert any numeric value
other than NUMBER or ORA_FLOAT.
• If a numeric value doesn’t fit in the specified format, TimesTen truncates the

value.
• The format string cannot exceed 50 characters.
• D always results in a decimal point. Its value cannot be changed with an NLS

parameter.
• If a float with an absolute value less than 1e-126 or greater than 1e126 is

specified as input to the TO_CHAR function, TimesTen returns an error.

HH
HH12
HH24

Hour

MI Minute

Format
Model

Rounding or Truncating Unit

Format Description

DD Day of month (1-31)

MM Month (1-12)

MON Month (three character prefix)

MONTH Month (full name blank-padded to 9 characters)

YYYY Year (four digits)

Y,YYY Year (with comma as shown)

YYY Year (last three digits)

YY Year (last two digits)

Y Year (last digit)

Q Quarter

HH Hour (1-12)
92 Oracle TimesTen In-Memory Database SQL Reference Guide

HH12 Hour (1-12)

HH24 Hour (0-23)

MI Minute (0-59)

SS Second (0-59)

FF Fractions of a second to a precision of 6 digits

FFn Fractions of a second to the precision specified by n

AM Meridian indicator

A.M. Meridian indicator

PM Meridian indicator

P.M. Meridian indicator

- / , . ; : Punctuation to be output

"text" Text to be output

9 Digit

0 Leading/trailing zero

. Decimal point

, Comma

EEEE Scientific notation

S Sign mode

B Blank mode. If there are no digits, the string is filled with
blanks.

FM No-blank mode (Fill mode). If this element is used,
trailing and/or leading spaces are suppressed.

$ Leading dollar sign.

Format Description
Expressions 93

ABS
The ABS function returns the absolute value of Expression.

SQL Syntax ABS(Expression)

Parameters ABS has the parameter:

Description • If Expression is of type TT_DECIMAL or NUMBER, the data type returned
is NUMBER with maximum precision and scale. Otherwise, ABS returns the
same data type as the numeric data type of Expression.

• If the value of Expression is NULL, NULL is returned. If the value of the
Expression is -INF, INF is returned.

Example 3.13 CREATE TABLE AbsTest and define columns with type BINARY_FLOAT and
TT_INTEGER. Insert values -BINARY_FLOAT_INFINITY and -10. Call ABS
to return the absolute value. You see INF and 10 are the returned values:
Command> CREATE TABLE AbsTest (Col1 BINARY_FLOAT, Col2 TT_INTEGER);
Command> INSERT INTO AbsTest VALUES

(-BINARY_FLOAT_INFINITY, -10);
1 row inserted.
Command> SELECT ABS (Col1) from AbsTest;
< INF >
1 row found.
Command> SELECT ABS (Col2) from AbsTest;
< 10 >
1 row found.

Parameter Description

Expression Operand or column can be any numeric data type. Absolute
value of Expression is returned.
94 Oracle TimesTen In-Memory Database SQL Reference Guide

ADD_MONTHS
The ADD_MONTHS function returns the date date plus integer months.

SQL Syntax ADD_MONTHS(date,integer)

Parameters ADD_MONTHS has the parameters:

Description • The return type is always DATE regardless of the data type of date. Supported
data types are DATE and TIMESTAMP.

• If date is the last day of the month or if the resulting month has fewer days
than the day component of date, then the result is the last day of the resulting
month. Otherwise, the result has the same day component as date.

Example 3.14 Call the ADD_MONTHS function to add 1 month to date January 31, 2007. The
last day of February is returned.
Command> SELECT ADD_MONTHS (DATE '2007-01-31', 1) FROM Dual;
< 2007-02-28 00:00:00 >
1 row found.

Example 3.15 ADD_MONTHS returns data type DATE if date is of type TIMESTAMP:
Command> DESCRIBE SELECT ADD_MONTHS (TIMESTAMP '2007-01-31

10:00:00', 1) FROM Dual;
Prepared Statement:
 Columns:
 EXP DATE NOT NULL

Example 3.16 Use the HRSchema to SELECT FIRST 5 Employee_id, Last_name, and
Hire_date. CREATE new table Temp_hire_date using the CREATE TABLE as
SELECT statement. Call ADD_MONTHS to add 23 months to the original
Hire_date.
Command> SELECT FIRST 5 Employee_id, Last_name, Hire_date FROM

Employees;
< 100, King, 1987-06-17 00:00:00 >
< 101, Kochhar, 1989-09-21 00:00:00 >
< 102, De Haan, 1993-01-13 00:00:00 >

Parameter Description

date date can be a datetime value or any value that can be
implicitly converted to DATE.

integer integer can be an integer or any value that can be implicitly
converted to an integer.
Expressions 95

< 103, Hunold, 1990-01-03 00:00:00 >
< 104, Ernst, 1991-05-21 00:00:00 >
5 rows found.

Command> CREATE TABLE Temp_hire_date (Employee_id, Last_name,
Hire_date) AS SELECT FIRST 5 Employee_id, Last_name,
ADD_MONTHS (Hire_date, 23) FROM Employees;

5 rows inserted.
Command> SELECT * FROM Temp_hire_date;
< 100, King, 1989-05-17 00:00:00 >
< 101, Kochhar, 1991-08-21 00:00:00 >
< 102, De Haan, 1994-12-13 00:00:00 >
< 103, Hunold, 1991-12-03 00:00:00 >
< 104, Ernst, 1993-04-21 00:00:00 >
5 rows found.
96 Oracle TimesTen In-Memory Database SQL Reference Guide

ASCIISTR
The ASCIISTR takes as its argument, either a string or an expression that
resolves to a string, in any character set, and returns the ASCII version of the
string in the database character set. Non-ASCII characters are converted to
Unicode escapes.

SQL Syntax ASCIISTR ([N]'String')

Parameters ASCIISTR has the parameter:

Description • The ASCIISTR function allows you to see the representation of a string value
that is not in your database character set.

Example 3.17 The following example invokes the ASCIISTR function passing as an argument
the string ‘Aäa’ in UTF-16 format. The ASCII version is returned in the
WE8ISO8859P1 character set. The non-ASCII character ä is converted to
Unicode encoding value:
Command> connect "dsn=test; ConnectionCharacterSet= WE8ISO8859P1";
Connection successful: DSN=test;UID=user1;DataStore=/datastore/
user1/test;
DatabaseCharacterSet=WE8ISO8859P1;
ConnectionCharacterSet=WE8ISO8859P1;PermSize=32;TypeMode=0;
(Default setting AutoCommit=1)
Command> SELECT ASCIISTR (n'Aäa') FROM DUAL;
< A\00E4a >
1 row found.

Parameter Description

[N]’String’ The string passed to the ASCIISTR function. The string can
be in any character set. The ASCII version of the string in
the database character set is returned. Specify N if you wish
to pass the string in UTF-16 format.
Expressions 97

CASE
Specifies a conditional value. Both simple and searched case expressions are
supported. Case expression can be specified anywhere an expression can be and
can be used as often as needed.

Instead of using a series of if statements, case expression allows you to use a
series of conditions that return the appropriate values when the conditions are
met. With CASE expression, you can simplify queries and write more efficient
code.

SQL Syntax The syntax for a searched CASE expression is:
CASE
{WHEN SearchCondition THEN Expression1}[…]
[ELSE Expression2]

END

The syntax for a simple CASE expression is:
CASE Expression
{WHEN CompExpression THEN Expression1}[…]
[ELSE Expression2]

END

Parameters CASE has the parameters:

Description CASE expression can not be specified in the value clause of an INSERT
statement.

Parameter Description

WHEN SearchCondition Specifies the search criteria. This clause cannot
specify a subquery.

WHEN CompExpression Specifies the operand to be compared.

Expression Specifies the first operand to be compared with
each CompExpression.

THEN Expression1 Specifies the resulting expression.

ELSE Expression2 If condition is not met, specifies the resulting
expression. If no ELSE clause is specified,
TimesTen adds and ELSE NULL clause to the
expression.
98 Oracle TimesTen In-Memory Database SQL Reference Guide

Examples

Example 3.18 To specify a searched CASE statement that specifies the value of a color, use:
SELECT CASE WHEN color=1 THEN 'red' WHEN color=2 THEN 'blue' ELSE
'yellow' END FROM cars.

Example 3.19 To specify a simple CASE statement that specifies the value of a color, use:
SELECT CASE color WHEN 1 THEN 'red' WHEN 2 THEN 'blue' ELSE
'yellow' END FROM cars.
Expressions 99

CAST
Allows you to convert data of one type to another type. CAST can be used
wherever a constant can be used. CAST is useful in specifying the exact data type
for an argument. This is especially true for unary operators like '-' or functions
with one operand like TO_CHAR or TO_DATE.

A value can only be CAST to a compatible data type, with the exception of
NULL. NULL can be cast to any other data type. CAST is not needed to convert
a NULL to the desired target type in an insert select.

The following conversions are supported:
• Numeric value to numeric or BCD (Binary Coded Decimal)
• NCHAR to NCHAR
• CHAR string to BINARY string or DATE, TIME or TIMESTAMP
• BINARY string to BINARY or CHAR string
• DATE, TIME or TIMESTAMP to CHAR

SQL Syntax CAST
({Expression | NULL} AS DataType)

Parameters CAST has the parameters:

Description • CAST to a domain name is not supported.
• Casting a selected value may cause the SELECT statement to take more time

and memory than a SELECT statement without a CAST expression.

Examples INSERT INTO t1 values(TO_CHAR(CAST(? AS REAL)));
SELECT CONCAT(x1, CAST (? AS CHAR(10))) FROM t1;
SELECT * FROM t1 WHERE CAST (? AS INT)=CAST(? AS INT);

Parameter Description

Expression Specifies the value to be converted.

AS DataType Specifies the resulting data type.
100 Oracle TimesTen In-Memory Database SQL Reference Guide

CHR
The CHR function returns the character having the specified binary value in the
database character set.

SQL Syntax CHR (n)

Parameters CHR has the parameter:

Description • For single-byte character sets, if n >256, then TimesTen returns the binary
value of n mod 256.

• For multibyte character sets, n must resolve to one code point. Invalid code
points are not validated. If you specify an invalid code point, the result is
indeterminate.

Note: When you use the CHR function, the code is not portable between
ASCII- and EBCDIC- based machine architectures.

Example 3.20 The following example is run on an ASCII-based machine with the
WE8ISO8859P1 character set.
Command> SELECT CHR(67)||CHR(65)||CHR(84) FROM DUAL;
< CAT >
1 row found.

On an EBCDIC-based machine with the character set WE8EBCDIC1047, the
preceding example would have to be modified to the following:
Command> SELECT CHR(195)||CHR(193)||CHR(227) FROM DUAL;
< CAT >
1 row found.

Parameter Description

n The binary value in the database character set. The character
having this binary value is returned. The result is of type
VARCHAR2.
Expressions 101

CEIL
The CEIL function returns the smallest integer greater than or equal to
Expression.

SQL Syntax CEIL(Expression)

Parameters CEIL has the parameter:

Description • If Expression is of type TT_DECIMAL or NUMBER, the data type returned
is NUMBER with maximum precision and scale. Otherwise, CEIL returns the
same data type as the numeric data type of Expression.

• If the value of Expression is NULL, NULL is returned. If the value of
Expression is -INF, INF, or NaN, the value returned is -INF, INF, or NaN
respectively.

Example 3.21 SUM the Commission_Pct for Employees in the EMPLOYEES table, and then
call CEIL to return the smallest integer greater than or equal to the value returned
by SUM. You see the value returned by the SUM function is 7.8 and the value
returned by the CEIL function is 8.
Command> SELECT SUM (Commission_Pct) FROM Employees;
< 7.8 >
1 row found.
Command> SELECT CEIL (SUM (Commission_Pct)) FROM Employees;
< 8 >
1 row found.

Parameter Description

Expression Operand or column can be any numeric data type.
102 Oracle TimesTen In-Memory Database SQL Reference Guide

COALESCE
The COALESCE function returns the first non-null expression in the expression
list. If all occurrences of expression evaluate to NULL, then the function returns
NULL.

SQL Syntax COALESCE(Expression1, Expression2 [,...])

Parameters COALESCE has the parameters:

Description • This function is a generalization of the NVL function.
• Use COALESCE as a variation of the CASE expression. For example,

COALESCE (Expression1, Expression2)

 is equivalent to:
CASE WHEN Expression1 IS NOT NULL THEN Expression1

ELSE Expression2
END

Example 3.22 The example illustrates the use of the COALESCE expression. The COALESCE
expression is used to return the commission_pct for the first 10 employees with
manager_id = 100. If the commission_pct is NOT NULL, then the original value
for commission_pct is returned. If commission_pct is NULL, then 0 is returned.
Command> SELECT FIRST 10 employee_id, COALESCE (commission_pct, 0)
FROM employees WHERE manager_id = 100;
< 101, 0 >
< 102, 0 >
< 114, 0 >
< 120, 0 >
< 121, 0 >
< 122, 0 >
< 123, 0 >
< 124, 0 >
< 145, .4 >
< 146, .3 >
10 rows found.

Parameter Description

Expression1,
Expression2
[,...]

The expressions in the expression list. The first non-null
expression in the expression list is returned.
Each expression is evaluated in order and there must be at
least 2 expressions.
Expressions 103

CONCAT
The CONCAT function concatenates one character string with another to form a
new character string.

SQL Syntax CONCAT(Expression1, Expression2)

Parameters CONCAT has the parameters:

Description • CONCAT returns Expression1 concatenated with Expression2.
• The type of Expression1 and Expression2 must be compatible.
• If Expression2 is NULL, CONCAT returns Expression1. If Expression1 is

NULL, CONCAT returns Expression2.
• If both Expression1 and Expression2 are NULL, CONCAT returns NULL.
• The return type of CONCAT depends on the types of Expression1 and

Expression2. The following table summarizes how CONCAT’s type is
determined:

• The treatment of NCHAR and NVARCHAR2 is similar. If one of the operands
is of varying length, then the result is of varying length. Otherwise the result is
of a fixed length.

• The concatenation of CHAR, NCHAR, VARCHAR2, and NVARCHAR2
types are supported. The result type of character types concatenated with
ncharacter types is ncharacter types.

Example 3.23 The following example concatenates first names and last names.

Parameter Description

Expression1 A CHAR, VARCHAR2, NCHAR or NVARCHAR2
expression.

Expression2 A CHAR, VARCHAR2, NCHAR or NVARCHAR2
expression.

Expression1 Expression2 CONCAT

CHAR(m) CHAR(n) CHAR(m+n)

CHAR(m) VARCHAR2(n) VARCHAR2(m+n)

VARCHAR2(m) CHAR(n) VARCHAR2(m+n)

VARCHAR2(m) VARCHAR2(n) VARCHAR2(m+n)
104 Oracle TimesTen In-Memory Database SQL Reference Guide

CONCAT(CONCAT(FNAME, ’ ‘), LNAME);

SELECT CONCAT(CONCAT(FNAME, ’ ‘), LNAME), SAL
FROM EMPLOYEE;

Example 3.24 The following example concatenates column id with column id2. In this example,
the result type is nchar (40).
Command> create table cat (id char (20), id2 nchar (20));
Command> insert into cat values ('abc', 'def');
1 row inserted.
Command> select concat (id,id2) from cat;
< abc def >
1 row found.

The description of the | | operator in the section “Expression specification” on
page 70.
Expressions 105

DECODE
The DECODE function compares an expression to each search value one by one.
If the expression is equal to the search value, then the result value is returned. If
no match is found, then the default value (if specified) is returned. Otherwise
NULL is returned.

SQL Syntax DECODE(Expression, {SearchValue, Result [,...])} [,Default])

Parameters DECODE has the parameters:

Description If an expression is NULL, then the NULL expression equals a NULL search
value.

Example 3.25 The following example invokes the DECODE function. In the LOCATIONS
table, if the column, Country_id is equal to ‘IT’, then the function returns ‘Italy.’
if the Country_id is equal to ‘JP’, then the function returns ‘Japan.’ If the
Country_id is equal to ‘US,’ then ‘United States’ is returned. If the Country_id is
not equal to ‘IT’ or ‘JP’ or ‘US,’ then the function returns ‘Other.’
Command> SELECT Location_id,
> DECODE (Country_id, 'IT', 'Italy',
> 'JP', 'Japan',
> 'US', 'United States',
> 'Other')
> FROM LOCATIONS WHERE Location_id < 2000;
LOCATION_ID, EXP
< 1000, Italy >
< 1100, Italy >
< 1200, Japan >
< 1300, Japan >
< 1400, United States >
< 1500, United States >
< 1600, United States >
< 1700, United States >

Parameter Description

Expression The expression that is compared to the search value.

SearchValue An expression is compared to one or more search values.

Result If the expression is equal to a SearchValue, then the
specified Result value is returned.

Default If no match is found, the Default value is returned. Default is
optional. If Default is not specified and no match is found,
then NULL is returned.
106 Oracle TimesTen In-Memory Database SQL Reference Guide

< 1800, Other >
< 1900, Other >
10 rows found.
Expressions 107

EXTRACT
The EXTRACT function extracts and returns the value of a specified DateTime
field from a DateTime or interval value expression as a NUMBER data type. This
function can be useful for manipulating DateTime field values in very large
tables.

If you are using TimesTen type mode, for information on the EXTRACT
function, refer to documentation from previous releases of TimesTen.

SQL Syntax EXTRACT (DateTimeField FROM IntervalExpression | DateTimeExpression)

Parameters EXTRACT has the following parameters:

Description • Some combinations of DateTime field and DateTime or interval value
expression result in ambiguity. In these cases, TimesTen returns UNKNOWN.

• The field you are extracting must be a field of the IntervalExpression or
DateTimeExpression. For example, you can extract only YEAR, MONTH,
and DAY from a DATE value. Likewise, you can extract HOUR, MINUTE or
SECOND only from the TIME, DATE, or TIMESTAMP data type.

• The fields are extracted into a NUMBER value.

Example 3.26 The following example extracts the second field out of the interval result
sysdate-t1.createTime

SELECT EXTRACT(SECOND FROM sysdate-t1.createTime) FROM t1;

Example 3.27 The following example extracts the second field out of sysdate from the system
table DUAL.
Command> select extract (second from sysdate) from dual;
< 20 >
1 row found.

Parameter Description

DateTimeField The field to be extracted from IntervalExpression or
DateTimeExpression. Accepted fields are YEAR,
MONTH, DAY, HOUR, MINUTE or SECOND.

IntervalExpression An interval result.

DateTimeExpression A datetime expression. For example, TIME, DATE,
TIMESTAMP.
108 Oracle TimesTen In-Memory Database SQL Reference Guide

FLOOR
The FLOOR function returns the largest integer equal to or less than Expression.

SQL Syntax FLOOR (Expression)

Parameters FLOOR has the parameter:

Description • If Expression is of type TT_DECIMAL or NUMBER, the data type returned
is NUMBER with maximum precision and scale. Otherwise, FLOOR returns
the same data type as the numeric data type of Expression.

• If the value of Expression is NULL, NULL is returned. If the value of
Expression is -INF, INF, or NaN, the value returned is -INF, INF, or NaN
respectively.

Example 3.28 SUM the Commission_Pct for Employees in the EMPLOYEES table, and then
call FLOOR to return the largest integer equal to or less than the value returned
by SUM. You see the value returned by the SUM function is 7.8 and the value
returned by the FLOOR function is 7:
Command> SELECT SUM (Commission_Pct) FROM Employees;
< 7.8 >
1 row found.
Command> SELECT FLOOR (SUM (Commission_Pct)) FROM Employees;
< 7 >
1 row found.

Parameter Description

Expression Operand or column can be any numeric data type.
Expressions 109

GREATEST
The GREATEST function returns the greatest of the list of one or more
expressions.

SQL Syntax GREATEST (Expression [,...])

Parameters GREATEST has the parameter:

Description • Each expression in the list must be from the same data type family or date sub-
family. Data type families include numeric, character and date. The date
family includes four sub-families: date family, TIME family, TT_DATE
family, and TT_TIMESTAMP family. As an example, do not specify a
numeric expression and a character expression in the list of expressions.
Similarly, do not specify a date expression and a TT_TIMESTAMP
expression in the list of expressions.

• If the first Expression is numeric, then TimesTen determines the argument
with the highest numeric precedence, implicitly converts the remaining
arguments to that data type before the comparison, and returns that data type.

• If the first Expression is in the character family, and the operand or column is
of type CHAR or VARCHAR2, the data type returned is VARCHAR2. If the
operand or column is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2. The returned data type length is equal to the length
of the largest expression. If one operand or column is of type CHAR or
VARCHAR2 and the second operand or column is of type NCHAR or
NVARCHAR2, the data type returned is NVARCHAR2.

• TimesTen uses nonpadded comparison semantics for data types from the
character family.

• If the first expression is in the date family, the data type returned is the same
data type as the first expression.

• If any of the expressions is NULL, the result is NULL.
• If the first Expression is in the character family, and the operand or column is

of type TT_CHAR or TT_VARCHAR, the data type returned is
TT_VARCHAR. If the operand or column is of type TT_NCHAR or
TT_NVARCHAR, the data type returned is TT_NVARCHAR. The returned
data type length is equal to the largest of the expressions.

Parameter Description

Expression
[,...]

List of one or more expressions that is evaluated to
determine the greatest expression value. Operand or column
can be numeric, character, or date. Each expression in the
list must be from the same data type family.
110 Oracle TimesTen In-Memory Database SQL Reference Guide

• You can specify a maximum of 256 expressions.

Example 3.29 Use the GREATEST function to return the string with the greatest value:
Command> SELECT GREATEST ('GREAT', 'GREATER', 'GREATEST') FROM Dual;
< GREATEST >
1 row found.

Example 3.30 Use the GREATEST function to return the numeric expression with the greatest
value. In this example, BINARY_DOUBLE is the data type with the highest
numeric precedence, so arguments are implicitly converted to
BINARY_DOUBLE before the comparison and the data type
BINARY_DOUBLE is returned:
Command> SELECT GREATEST (10, 10.55, 10.1D) FROM Dual;
< 10.5500000000000 >
1 row found.

Use the DESCRIBE command to confirm the data type returned is
BINARY_DOUBLE:
Command> DESCRIBE SELECT GREATEST (10, 10.55, 10.1D) FROM Dual;

Prepared Statement:
 Columns:
 EXP BINARY_DOUBLE NOT NULL

Example 3.31 Use the GREATEST function to return the DATE expression with the greatest
value. DATE and TIMESTAMP are in the same date family.
Command> SELECT GREATEST (DATE '2007-09-30',

TIMESTAMP '2007-09-30:10:00:00') FROM Dual;
< 2007-09-30 10:00:00 >
1 row found.

Example 3.32 Attempt to use the GREATEST function to return the greatest value in the list of
TT_DATE and TT_TIMESTAMP expressions. You see an error because
TT_DATE and TT_TIMESTAMP are in different date sub-families and cannot
be used in the same list of expressions.
Command> SELECT GREATEST (TT_DATE '2007-09-30', TT_TIMESTAMP

'2007-09-30:10:00:00’) FROM Dual;
2817: Invalid data type TT_TIMESTAMP for argument 2 for function
GREATEST
The command failed.

Example 3.33 Use the GREATEST function to return the TT_DATE expression with the
greatest value.
Expressions 111

Command> SELECT GREATEST (TT_DATE '2007-09-30',
TT_DATE '2007-09-29', TT_DATE '2007-09-28') FROM Dual;

< 2007-09-30 >
1 row found.
112 Oracle TimesTen In-Memory Database SQL Reference Guide

LEAST
The LEAST function returns the smallest of the list of one or more expressions.

SQL Syntax LEAST (Expression [,...])

Parameters LEAST has the parameter:

Description • Each expression in the list must be from the same data type family or date sub-
family. Data type families include numeric, character and date. The date
family includes four sub-families: date family, TIME family, TT_DATE
family, and TT_TIMESTAMP family. As an example, do not specify a
numeric expression and a character expression in the list of expressions.
Similarly, do not specify a date expression and a TT_TIMESTAMP
expression in the list of expressions.

• If the first Expression is numeric, then TimesTen determines the argument
with the highest numeric precedence, implicitly converts the remaining
arguments to that data type before the comparison, and returns that data type.

• If the first Expression is in the character family, and the operand or column is
of type CHAR or VARCHAR2, the data type returned is VARCHAR2. If the
operand or column is of type NCHAR or NVARCHAR2, the data type
returned is NVARCHAR2. The returned data type length is equal to the length
of the largest expression. If one operand or column is of type CHAR or
VARCHAR2 and the second operand or column is of type NCHAR or
NVARCHAR2, the data type returned is NVARCHAR2.

• TimesTen uses nonpadded comparison semantics for data types from the
character family.

• If the first expression is in the date family, the data type returned is the same
data type as the first expression.

• If any of the expressions is NULL, the result is NULL.
• If the first Expression is in the character family, and the operand or column is

of type TT_CHAR or TT_VARCHAR, the data type returned is
TT_VARCHAR. If the operand or column is of type TT_NCHAR or
TT_NVARCHAR, the data type returned is TT_NVARCHAR. The returned
data type length is equal to the largest of the expressions.

• You can specify a maximum of 256 expressions.

Parameter Description

Expression
[,...]

List of one or more expressions that is evaluated to
determine the smallest expression value. Operand or column
can be numeric, character, or date. Each expression in the
list must be from the same data type family.
Expressions 113

Example 3.34 Use the LEAST function to return the string with the smallest value:
Command> SELECT LEAST ('SMALL','SMALLER','SMALLEST') FROM Dual;
< SMALL >
1 row found.

Example 3.35 Use the LEAST function to return the numeric expression with the smallest
value. In this example, NUMBER is the data type with the highest numeric
precedence, so arguments are implicitly converted to NUMBER before the
comparison and the data type NUMBER is returned. First DESCRIBE the table
LeastEx to see the data types defined for columns Col1 and Col2. Then SELECT
* from LeastEx to see the data. Then invoke the LEAST function.
Command> DESCRIBE LeastEx;

Table SAMPLEUSER.LEASTEX:
 Columns:
 COL1 NUMBER (2,1)
 COL2 TT_BIGINT

1 table found.
(primary key columns are indicated with *)

Command> SELECT * FROM LeastEx;
< 1.1, 1 >
1 row found.

Command> SELECT LEAST (Col2,Col1) from LeastEx;
< 1 >
1 row found.

Use the DESCRIBE command to confirm the data type returned is NUMBER:
Command> DESCRIBE SELECT LEAST (Col2,Col1) from LeastEx;

Prepared Statement:
 Columns:
 EXP NUMBER

Example 3.36 Use the LEAST function to return the DATE expression with the smallest value.
DATE and TIMESTAMP are in the same date family.
Command> SELECT LEAST (DATE '2007-09-17',

TIMESTAMP '2007-09-17:10:00:00') FROM Dual;
< 2007-09-17 00:00:00 >
1 row found.
114 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 3.37 Attempt to use the LEAST function to return the smallest value in the list of
TT_DATE and TT_TIMESTAMP expressions. You see an error because
TT_DATE and TT_TIMESTAMP are in different date sub-families and cannot
be used in the same list of expressions.
Command> SELECT LEAST (TT_DATE '2007-09-17',

 TT_TIMESTAMP '2007-09-17:01:00:00') FROM Dual;
2817: Invalid data type TT_TIMESTAMP for argument 2 for function
LEAST
The command failed.

Example 3.38 Use the LEAST function to return the TIME expression with the smallest value.
Command> SELECT LEAST (TIME '13:59:59', TIME '13:59:58',

TIME '14:00:00') FROM Dual;
< 13:59:58 >
1 row found.
Expressions 115

LOWER and UPPER
The LOWER function converts expressions of type CHAR, NCHAR,
VARCHAR2 or NVARCHAR2 to lowercase. The UPPER function converts
expressions of type CHAR, NCHAR, VARCHAR2 or NVARCHAR2 to
uppercase. Character semantics is supported for CHAR and VARCHAR2 types.
The data type of the result is the same as the data type of the expression.

SQL Syntax {UPPER | LOWER} (Expression1)

Parameters LOWER and UPPER have the following parameter:

Description LOWER(?) and UPPER(?) are not supported, but you can combine it with the
CAST operator. For example:
LOWER(CAST(? AS CHAR(30))) .

Example 3.39 Command> SELECT LOWER (last_name) FROM EMPLOYEES
WHERE employee_id = 100;
< king >
1 row found.

Parameter Description

Expression1 An expression which is converted to lowercase (using
LOWER) or uppercase (using UPPER).
116 Oracle TimesTen In-Memory Database SQL Reference Guide

LPAD
The LPAD function returns Expression1, left-padded to length n characters with
the sequence of characters in Expression2. This function is useful for formatting
the output of a query.

SQL Syntax LPAD (Expression1, n [,Expression2])

Parameters LPAD has the parameters:

Description • If Expression1 is of type CHAR or VARCHAR2, the data type returned is
VARCHAR2. If Expression1 is of type NCHAR or NVARCHAR2, the data
type returned is NVARCHAR2.

• The returned data type length is equal to n if n is a constant. Otherwise, the
maximum result length of 8300 is returned.

• You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and
TT_NVARCHAR for Expression1 and Expression2. If Expression1 is of type
TT_CHAR or TT_VARCHAR, the data type returned is TT_VARCHAR. If
Expression1 is of type TT_NCHAR or TT_NVARCHAR, the data type
returned is TT_NVARCHAR.

• For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:
– If either Expression1 or Expression2 is NULL, the result is NULL. If n is

less than or equal to 0, then the result is NULL.
• For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

– If either Expression1 or Expression2 is not NULL and if n is less than or
equal to 0, then the result is the empty string.

Example 3.40 Use LPAD function to left-pad the string ‘LPAD Function’ with string ‘DEMO-
ONLY’ plus 2 spaces. Replicate string DEMO-ONLY plus 2 spaces 3 times.

Parameter Description

Expression1 CHAR, VARCHAR2, NCHAR OR NVARCHAR2 operand
or column to be left-padded. If Expression1 is longer than n,
then LPAD returns the portion of Expression1 that fits in n.

n Length of characters returned by LPAD function. Must be a
NUMBER integer or a value that can be implicitly
converted to a NUMBER integer.

Expression2 Sequence of characters left-padded to Expression1. If you
do not specify Expression2, then the default is a single
blank. Operand or column can be of type CHAR,
VARCHAR2, NCHAR, or NVARCHAR2.
Expressions 117

Command> SELECT LPAD ('LPAD Function', 46, 'DEMO-ONLY ') FROM Dual;
< DEMO-ONLY DEMO-ONLY DEMO-ONLY LPAD Function >
1 row found.

Example 3.41 Call LPAD function with length of -1. You see NULL is returned.
Command> SELECT LPAD ('abc', -1, 'a') FROM Dual;
< <NULL> >
1 row found.
118 Oracle TimesTen In-Memory Database SQL Reference Guide

LTRIM
The LTRIM function removes from the left end of Expression1 all of the
characters contained in Expression2. TimesTen begins scanning Expression1
from its first character and removes all characters that appear in Expression2
until reaching a character not in Expression2 and returns the result.

SQL Syntax LTRIM (Expression1 [,Expression2])

Parameters LTRIM has the parameters:

Description • If Expression1 is of type CHAR or VARCHAR2, the data type returned is
VARCHAR2. If Expression1 is of type NCHAR or NVARCHAR2, the data
type returned is NVARCHAR2. The returned data type length is equal to the
data type length of Expression1.

• If Expression1 is a data type defined with CHAR length semantics, the
returned length is expressed in CHAR length semantics.

• If either Expression1 or Expression2 is NULL, the result is NULL.
• You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and

TT_NVARCHAR for Expression1 and Expression2. If Expression1 is of type
TT_CHAR or TT_VARCHAR, the data type returned is TT_VARCHAR. If
Expression1 is of type TT_NCHAR or TT_NVARCHAR, the data type
returned is TT_NVARCHAR.

• If Expression1 is of type CHAR or VARCHAR2 and Expression2 is of type
NCHAR or NVARCHAR2, then Expression2 is demoted to CHAR or
VARCHAR2 before LTRIM is invoked. The conversion of Expression2 could
be lost. If the trim character of Expression2 is not in the database character set,
then the query may produce unexpected results.

• For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:
– If all the characters in Expression1 are removed by the LTRIM function,

then the result is NULL. See Example 3.44 on page 120.
• For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

Parameter Description

Expression1 The CHAR, VARCHAR2, NCHAR or NVARCHAR2
operand or column to be trimmed. If Expression1 is a
character literal, then enclose it in single quotes.

Expression2 Optional expression used for trimming Expression1. If
Expression2 is a character literal, then enclose it in single
quotes. If you do not specify Expression2, it defaults to a
single blank. Operand or column can be of type
CHAR,VARCHAR2, NCHAR, or NVARCHAR2.
Expressions 119

– If all the characters in Expression1 are removed by the LTRIM function,
then the result is the empty string. See Example 3.44 on page 120.

Example 3.42 Call the LTRIM function to remove left-most ‘x’ and ‘y’ from string. LTRIM
removes individual occurrences of ‘x’ and ‘y’ not pattern ‘xy’.
Command> SELECT LTRIM ('xxxyyyxyxyLTRIM Example', 'xy') FROM Dual;
< LTRIM Example >
1 row found.

Example 3.43 Call the LTRIM function to remove YYYY-MM-DD from SYSDATE. Call
TO_CHAR to convert SYSDATE to VARCHAR2.
Command> SELECT LTRIM (TO_CHAR(SYSDATE), '2007-08-21') FROM DUAL;
< 22:54:39 >
1 row found.

Example 3.44 Call LTRIM to remove all characters from Expression1. In the first example, the
data type is CHAR, so NULL is returned. In the second example, the data type is
TT_CHAR, so the empty string is returned.
Command> CREATE TABLE LtrimTest (Col1 CHAR (4), Col2 TT_CHAR (4));
Command> INSERT INTO LtrimTest VALUES ('ABBB','ABBB');
1 row inserted.
Command> SELECT LTRIM (Col1, 'AB') FROM LtrimTest;
< <NULL> >
1 row found.
Command> SELECT LTRIM (Col2, 'AB') FROM LtrimTest;
< >
1 row found.
120 Oracle TimesTen In-Memory Database SQL Reference Guide

MOD
Returns the remainder of an INTEGER expression divided by a second
INTEGER expression.

SQL Syntax MOD(Expression1, Expression2)

Parameters MOD has the following parameters:

Description • MOD returns the remainder of Expression1 divided by Expression2.
• If Expression2 is 0, then MOD returns Expression1.
• If either Expression1 or Expression2 is NULL, MOD returns NULL.
• MOD is treated as a binary arithmetic operation, so the return type is

determined according to the rules specified in Chapter 1, “Data Types.
• The MOD function behaves differently from the classic mathematical

modulus function when one of the operands is negative. The following table
illustrates this difference:

Example 3.45 The following example tests if the value of the expression M is divisible by the
value of expression N.
SELECT M, N
FROM TEST
WHERE MOD(M, N) = 0;

Parameter Description

Expression1 An INTEGER expression.

Expression2 An INTEGER expression.

M N Classic
Modulus

MOD(M,N)

11 3 2 2

11 -3 -1 2

-11 3 1 -2

-11 -3 -2 -2
Expressions 121

NCHR
The NCHR function returns the character having the specified Unicode value.

SQL Syntax NCHR (n)

Parameters NCHR has the parameter:

Example 3.46 The following example returns the nchar character 187:
Command> SELECT NCHR(187) FROM DUAL;
< > >
1 row found.

Parameter Description

n The specified Unicode value. The character having this
Unicode value is returned. The result is of type
NVARCHAR2.
122 Oracle TimesTen In-Memory Database SQL Reference Guide

NLSSORT
Returns the sort key value for the given string.

SQL Syntax NLSSORT (String [,’NLS_SORT = SortName’])

Parameters NLSSORT has the following parameters:

Description • The returned sort key value is of type VARBINARY.
• You can create a linguistic index for linguistic comparisons. See Example 3.48

on page 124.

Example 3.47 The following example illustrates sorting and comparison operations based on a
linguistic sort sequence rather than on the binary value of the string. In addition,
the example shows the same results can be obtained by using the ALTER
SESSION... SET NLS_SORT statement.
Command> CREATE TABLE NsortDemo (Name VARCHAR2 (15));
Command> INSERT INTO NsortDemo VALUES ('Gaardiner');
1 row inserted.
Command> INSERT INTO NsortDemo VALUES ('Gaberd');
1 row inserted.
Command> INSERT INTO NsortDemo VALUES ('Gaasten');
1 row inserted.
Command> # Perform Sort
Command> SELECT * FROM NsortDemo ORDER BY Name;
< Gaardiner >
< Gaasten >
< Gaberd >
3 rows found.

Command> #Use function to perform Sort
Command> SELECT * FROM NsortDemo ORDER BY NLSSORT (Name,
'NLS_SORT = XDanish');

Parameter Description

String Supported data types for String are CHAR, VARCHAR2,
NCHAR and NVARCHAR2. Given the String, NLSSORT
returns the sort key value used to sort the String.

[‘NLS_SORT
= SortName’]

SortName is either the linguistic sort sequence or BINARY.
If you omit this parameter, then the default sort sequence for
your session is used. Append to the SortName the suffix -ai
for accent-insensitive sorting or -ci for case-insensitive
sorting. For more information on acceptable linguistic
SortName values, see "Supported Linguistic Sorts" in the
Operations Guide.
Expressions 123

< Gaberd >
< Gaardiner >
< Gaasten >
3 rows found.

Command># comparison operation
Command> SELECT * FROM NsortDemo where Name > 'Gaberd';
0 rows found.

Command> #Use function in comparison operation
Command> SELECT * FROM NsortDemo WHERE NLSSORT (Name, 'NLS_SORT =
XDanish') >
> NLSSORT ('Gaberd', 'NLS_SORT = XDanish');
< Gaardiner >
< Gaasten >
2 rows found.

Command> #Use ALTER SESSION to obtain the same results
Command> ALTER SESSION SET NLS_SORT = 'XDanish';
Command> SELECT * FROM NsortDemo ORDER BY Name;
< Gaberd >
< Gaardiner >
< Gaasten >
3 rows found.
Command> SELECT * FROM NsortDemo where Name > 'Gaberd';
< Gaardiner >
< Gaasten >
2 rows found.

Example 3.48 The following example creates a linguistic index:
Command> CREATE INDEX DanishIndex ON NsortDemo (NLSSORT (Name,
'NLS_SORT = XDanish'));
Command> indexes N%;

Indexes on table USER1.NSORTDEMO:
DANISHINDEX: non-unique T-tree index on columns:
NLSSORT(NAME,'NLS_SORT = XDanish')

1 index found.
1 table found.
124 Oracle TimesTen In-Memory Database SQL Reference Guide

NUMTODSINTERVAL
Converts a number or expression to an INTERVAL DAY TO SECOND type.

SQL Syntax NUMTODSINTERVAL (Expression1, IntervalUnit)

Parameters NUMTODSINTERVAL has the parameters:

Example 3.49 Example using NUMTODSINTERVAL with SYSDATE:
Command> SELECT SYSDATE + NUMTODSINTERVAL(20,'SECOND') FROM dual;
< 2007-01-28 09:11:06 >

Parameter Description

Expression1 The argument can be any NUMBER value or an expression
that can be implicitly converted to a NUMBER value.

IntervalUnit One of the string constants: 'DAY', 'HOUR', 'MINUTE', or
'SECOND'.
Expressions 125

NUMTOYMINTERVAL
Converts a number or expression to an INTERVAL YEAR TO MONTH type.

SQL Syntax NUMTOYMINTERVAL (Expression1, ‘IntervalUnit’)

Parameters NUMTOYMINTERVAL has the parameters:

Example 3.50 An example using NUMTOYMINTERVAL:
Command> SELECT SYSDATE + NUMTOYMINTERVAL(1,'MONTH') FROM dual;
< 2007-02-28 09:23:28 >
1 row found.

Parameter Description

Expression1 The argument can be any NUMBER value or an expression
that can be implicitly converted to a NUMBER value.

IntervalUnit One of the string constants 'YEAR' or 'MONTH'.
126 Oracle TimesTen In-Memory Database SQL Reference Guide

NVL
The NVL function replaces a null value with a second value.

SQL Syntax NVL(Expression1, Expression2)

Parameters NVL has the parameters:

Description • The type of Expression1 and Expression2 must be compatible.
• If Expression1 is NULL, the NVL function returns Expression2. If

Expression1 is NOT NULL, the NVL function returns Expression1.
• The NVL function can be used in the WHERE or HAVING clause of

SELECT, UPDATE, or DELETE statements and in the SELECT list of a
SELECT statement.

Example 3.51 The following example tests whether values of the expression MIDDLENAME
is NULL. For each expression, the string ‘No Middle Name’ is returned if the
expression value is NULL. Otherwise, the original expression value is returned.

NVL(MIDDLENAME, ’No Middle Name’)

Example 3.52 SELECT FIRSTNAME,
NVL(MIDDLENAME, ’No Middle Name’),
LASTNAME

FROM EMPLOYEES;

Parameter Description

Expression1 The expression whose values are to be tested for NULL.

Expression2 The alternate value to use if the value of Expression1 is
NULL.
Expressions 127

POWER
The POWER function returns base raised to the exponent power. The base and
exponent can be any numbers, but if the base is negative, the exponent must be an
integer.

SQL Syntax POWER (Base, Exponent)

Parameters POWER has the parameters:

Description • If either Base or Exponent is of type BINARY_FLOAT or
BINARY_DOUBLE, the data type returned is BINARY_DOUBLE. If the
Base is of type NUMBER or TT_DECIMAL, and the Exponent is not of type
BINARY_FLOAT or BINARY_DOUBLE, the date type returned is
NUMBER with maximum precision and scale. If Base is one of the
TT* numeric types (TT_BIGINT, TT_INTEGER, TT_SMALLINT,
or TT_TINYINT), the data type returned is BINARY_DOUBLE.

Example 3.53 Use the POWER function to return the Commission_pct squared for Employee
with Employee_Id equal to 145.
Command> SELECT Employee_Id,Commission_Pct FROM Employees WHERE
Employee_Id = 145;
< 145, .4 >
1 row found.

Command> SELECT POWER (Commission_Pct,2) FROM Employees WHERE
Employee_Id = 145;
< .16 >
1 row found.

Parameter Description

Base Operand or column can be any numeric type. Power returns
this value raised to Exponent power.

Exponent Operand or column can be any numeric type. If base is
negative, exponent must be an integer.
128 Oracle TimesTen In-Memory Database SQL Reference Guide

ROUND (date)
Returns date rounded to the unit specified by the format model fmt. The value
returned is of type DATE. If you do not specify fmt, then date is rounded to the
nearest day.

SQL Syntax ROUND(date [,fmt])

Parameters ROUND (date) has the parameters:

Description • Date can be of type DATE or TIMESTAMP. The data type returned is DATE.
• For the supported format models to use in fmt, see “Format Model for

ROUND and TRUNC Date Functions” on page 91.

Example 3.54 Round date to the first day of the following year by specifying ‘YEAR’ as the
format model:
Command> SELECT ROUND (DATE '2007-08-25','YEAR') FROM Dual;
< 2008-01-01 00:00:00 >
1 row found.

Example 3.55 Omit fmt. Specify date as type TIMESTAMP with a time of 13:00:00. Date is
rounded to nearest day:
Command> SELECT ROUND (TIMESTAMP '2007-08-16 13:00:00') FROM DUAL;
< 2007-08-17 00:00:00 >
1 row found.

Parameter Description

date The date that is rounded. Must resolve to a date value.
If you do not specify fmt, then date is rounded to the nearest
day.

 [,fmt] The format model rounding unit. Specify either a constant or
a parameter for fmt.
Expressions 129

ROUND (expression)
The ROUND function returns Expression1 rounded to Expression2 places to the
right of the decimal point.

SQL Syntax ROUND (Expression1 [,Expression2])

Parameters ROUND has the parameters:

Description • If you omit Expression2, and Expression1 is of type TT_DECIMAL, the data
type returned is NUMBER with maximum precision and scale. Otherwise, if
you omit Expression2, the data type returned is the same as the numeric data
type of Expression1.

• If you specify Expression2, the data type returned is NUMBER with
maximum precision and scale.

• If Expression1 is of type BINARY_FLOAT or BINARY_DOUBLE, the value
of Expression1 is rounded to the nearest even value. Otherwise, the value of
Expression1 is rounded away from 0 (for example, to x+1 when x.5 is positive
and to x-1 when x.5 is negative).

Example 3.56 Round a number 2 places to the right of the decimal point.
Command> SELECT ROUND (15.5555,2) FROM Dual;
< 15.56 >
1 row found.

Example 3.57 Round a number to the left of the decimal point by specifying a negative number
for Expression2.
Command> SELECT ROUND (15.5555,-1) FROM Dual;
< 20 >
1 row found.

Example 3.58 Round a floating point number. Floating point numbers are rounded to nearest
even value. Contrast this to rounding an Expression of type NUMBER where the
value is rounded up (for positive values).

Parameter Description

Expression1 Operand or column can be any numeric type.

Expression2 Operand or column that indicates how many places to round.
Can be negative to round off digits left of the decimal point.
If you omit Expression2, then Expression1 is rounded to 0
places. Must be an integer.
130 Oracle TimesTen In-Memory Database SQL Reference Guide

Command> SELECT ROUND (1.5f), ROUND (2.5f) FROM Dual;
< 2.00000000000000, 2.00000000000000 >
1 row found.
Command> SELECT ROUND (1.5), ROUND (2.5) FROM DUAL;
< 2, 3 >
1 row found.
Expressions 131

RPAD
The RPAD function returns Expression1, right-padded to length n characters with
Expression2, replicated as many times as necessary. This function is useful for
formatting the output of a query.

SQL Syntax RPAD (Expression1, n [,Expression2])

Parameters RPAD has the parameters:

Description • If Expression1 is of type CHAR or VARCHAR2, the data type returned is
VARCHAR2. If Expression1 is of type NCHAR or NVARCHAR2, the data
type returned is NVARCHAR2.

• The returned data type length is equal to n if n is a constant. Otherwise, the
maximum result length of 8300 is returned.

• You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and
TT_NVARCHAR for Expression1 and Expression2. If Expression1 is of type
TT_CHAR or TT_VARCHAR, the data type returned is TT_VARCHAR. If
Expression1 is of type TT_NCHAR or TT_NVARCHAR, the data type
returned is TT_NVARCHAR.

• For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:
– If either Expression1 or Expression2 is NULL, the result is NULL. If n is

less than or equal to 0, then the result is NULL.
• For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

– If either Expression1 or Expression2 is not NULL and if n is less than or
equal to 0, then the result is the empty string.

Example 3.59 Concatenate First_name and Last_name from the Employees table of HRschema.
Call the RPAD function to return First_name right-padded to length 12 with

Parameter Description

Expression1 CHAR, VARCHAR2, NCHAR OR NVARCHAR2 operand
or column to be right-padded . If Expression1 is longer than
n, then RPAD returns the portion of Expression1 that fits in
n.

n Length of characters returned by RPAD function. Must be a
NUMBER integer or a value that can be implicitly
converted to a NUMBER integer.

Expression2 CHAR, VARCHAR2, NCHAR OR NVARCHAR2 operand
or column to be right-padded to Expression1. If you do not
specify Expression2, then the default is a single blank.
132 Oracle TimesTen In-Memory Database SQL Reference Guide

spaces and call RPAD a second time to return Last_name right-padded to length
12 with spaces. SELECT FIRST 5 rows.
Command> SELECT FIRST 5 CONCAT (RPAD (First_name,12),

RPAD (Last_name,12)) FROM Employees ORDER BY
ORDER BY First_name, Last_name;

< Adam Fripp >
< Alana Walsh >
< Alberto Errazuriz >
< Alexander Hunold >
< Alexander Khoo >
5 rows found.

Example 3.60 Call the RPAD function to return Last_name right-padded to length 20 characters
with the dot (‘.’) character. Use Employees table of HRschema and SELECT
FIRST 5 rows.
Command> SELECT FIRST 5 RPAD (Last_name,20,'.') FROM Employees

ORDER BY Last_name;
< Abel................ >
< Ande................ >
< Atkinson............ >
< Austin.............. >
< Baer................ >
5 rows found.
Expressions 133

RTRIM
The RTRIM function removes from the right end of Expression1 all of the
characters contained in Expression2. TimesTen scans Expression1 backwards
from its last character and removes all characters that appear in Expression2 until
reaching a character not in Expression2 and then returns the result.

SQL Syntax RTRIM (Expression1 [,Expression2)

Parameters RTRIM has the parameters:

Description • If Expression1 is of type CHAR or VARCHAR2, the data type returned is
VARCHAR2. If Expression1 is of type NCHAR or NVARCHAR2, the data
type returned is NVARCHAR2. The returned data type length is equal to the
data type length of Expression1.

• If Expression1 is a data type defined with CHAR length semantics, the
returned length is expressed in CHAR length semantics.

• If either Expression1 or Expression2 is NULL, the result is NULL.
• You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and

TT_NVARCHAR for Expression1 and Expression2. If Expression1 is of type
TT_CHAR or TT_VARCHAR, the data type returned is TT_VARCHAR. If
Expression1 is of type TT_NCHAR or TT_NVARCHAR, the data type
returned is TT_NVARCHAR.

• If Expression1 is of type CHAR or VARCHAR2 and Expression2 is of type
NCHAR or NVARCHAR2, then Expression2 is demoted to CHAR or
VARCHAR2 before RTRIM is invoked. The conversion of Expression2 could
be lost. If the trim character of Expression2 is not in the database character set,
then the query may produce unexpected results.

• For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:
– If all the characters in Expression1 are removed by the RTRIM function,

then the result is NULL. See Example 3.63 on page 135.
• For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

Parameter Description

Expression1 The CHAR, VARCHAR2, NCHAR or NVARCHAR2
operand or column to be trimmed. If Expression1 is a
character literal, then enclose it in quotes.

Expression2 Optional expression used for trimming Expression1. If
Expression2 is a character literal, then enclose it in single
quotes. If you do not specify Expression2, it defaults to a
single blank. Operand or column can be of type
CHAR,VARCHAR2, NCHAR, or NVARCHAR2.
134 Oracle TimesTen In-Memory Database SQL Reference Guide

– If all the characters in Expression1 are removed by the RTRIM function,
then the result is the empty string. See Example 3.63 on page 135.

Example 3.61 The following example trims the trailing spaces from Col1 in table RtrimTest.
Command> CREATE TABLE RtrimTest (Col1 VARCHAR2 (25));
Command> INSERT INTO RtrimTest VALUES ('abc ');
1 row inserted.
Command> SELECT * FROM Rtrimtest;
< abc >
1 row found.
Command> SELECT RTRIM (Col1) FROM RtrimTest;
< abc >
1 row found.

Example 3.62 Call the RTRIM function to remove right-most ‘x’ and ‘y’ from string. RTRIM
removes individual occurrences of ‘x’ and ‘y’ not pattern ‘xy’.
Command> SELECT RTRIM ('RTRIM Examplexxxyyyxyxy', 'xy') FROM Dual;
< RTRIM Example >
1 row found.

Example 3.63 Call RTRIM to remove all characters from Expression1. In the first example, the
data type is CHAR, so NULL is returned. In the second example, the data type is
TT_CHAR, so the empty string is returned.
Command> CREATE TABLE RtrimTest (Col1 CHAR (4), Col2 TT_CHAR (4));
Command> INSERT INTO RtrimTest VALUES ('BBBA', 'BBBA');
1 row inserted.
Command> SELECT RTRIM (Col1, 'AB') FROM RtrimTest;
< <NULL> >
1 row found.
Command> SELECT RTRIM (Col2, 'AB') FROM RtrimTest;
< >
1 row found.
Expressions 135

SIGN
The SIGN function returns the sign of Expression.

SQL Syntax SIGN (Expression)

Parameters SIGN has the parameter:

Description • If Expression is of type NUMBER or TT_DECIMAL, the data type returned
is NUMBER with maximum precision and scale. Otherwise, the data type
returned is TT_INTEGER.

• For numeric types that are not binary floating-point numbers, the sign is:
– -1 if the value of Expression is <0
– 0 if the value of Expression is = 0
– 1 if the value of Expression is > 0

• For binary floating-point numbers (BINARY_FLOAT and
BINARY_DOUBLE), this function returns the sign bit of the number. The
sign bit is:
– -1 if the value of Expression is <0
– +1 if the value of Expression is >= 0 or the value of Expression is equal to

NaN.

Example 3.64 Illustrates use of the SIGN function with different data types. Table SignEx has
been created and the columns have been defined with different data types. First,
DESCRIBE the table SignEx to see the data types of the columns. Then SELECT
each column to retrieve values for that column. Use the SIGN function to return
the sign for the column.
Command> DESCRIBE SignEx;

Table SAMPLEUSER.SIGNEX:
 Columns:
 COL1 TT_INTEGER
 COL2 TT_BIGINT
 COL3 BINARY_FLOAT
 COL4 NUMBER (3,2)

1 table found.
(primary key columns are indicated with *)

Command> SELECT Col1 FROM SignEx;
< 10 >

Parameter Description

Expression Operand or column can be any numeric data type.
136 Oracle TimesTen In-Memory Database SQL Reference Guide

< -10 >
< 0 >
3 rows found.

Command> SELECT SIGN (Col1) FROM SignEx;
< 1 >
< -1 >
< 0 >
3 rows found.

Command> SELECT Col2 FROM SignEx;
< 0 >
< -3 >
< 0 >
3 rows found.

Command> SELECT SIGN (Col2) from SignEx;
< 0 >
< -1 >
< 0 >
3 rows found.

Command> SELECT Col3 FROM SignEx;
< 3.500000 >
< -3.560000 >
< NAN >
3 rows found.

Command> SELECT SIGN (Col3) from SignEx;
< 1 >
< -1 >
< 1 >
3 rows found.

Command> SELECT Col4 FROM SignEx;
< 2.2 >
< -2.2 >
< 0 >
3 rows found.

Command> SELECT SIGN (Col4) from SignEx;
< 1 >
< -1 >
< 0 >
3 rows found.
Expressions 137

SQRT
The SQRT function returns the square root of Expression.

SQL Syntax SQRT(Expression)

Parameters SQRT has the parameter:

Description • If Expression is of type NUMBER or TT_DECIMAL, the data type returned
is NUMBER with maximum precision and scale. If Expression is of type
BINARY_FLOAT, the data type returned is BINARY_FLOAT. Otherwise, the
data type returned is BINARY_DOUBLE.

• If Expression is of type NUMBER or TT_DECIMAL, the value of Expression
cannot be negative.

• If Expression resolves to a binary floating-point number (BINARY_FLOAT
or BINARY_DOUBLE):
– If the value of the Expression is > = 0, the result is positive.
– If the value of the Expression is = -0, the result is -0.
– If the value of the Expression is < 0, the result is NaN.

Example 3.65 Use SQRT function to return the square root of the absolute value of -10. Then
cast the value as BINARY_FLOAT.
Command> SELECT CAST (SQRT (ABS (-10)) AS BINARY_FLOAT) FROM Dual;
< 3.162278 >
1 row found.

Parameter Description

Expression Operand or column can be any numeric data type.
138 Oracle TimesTen In-Memory Database SQL Reference Guide

String functions
TimesTen supports the string functions in SELECT statements:
• SUBSTR
• INSTR
• LENGTH

A selected value that specifies a string function causes the SELECT result to be
materialized. This causes overhead in both time and space.

SUBSTR
Returns a CHAR, VARCHAR2 or NVARCHAR2 that represents a substring of a
CHAR or NCHAR string. The returned substring is of a specified number of
characters, beginning from a designated starting point, relative to either the
beginning or end of the string.

SQL Syntax {SUBSTR | SUBSTRB | SUBSTR4}=(char, m, n)

Parameters SUBSTR has the parameters:

Description • SUBSTR calculates lengths using characters as defined by character set.
SUBSTRB uses bytes instead of characters. SUBSTR4 uses UCS4 code
points.

Example 3.66 Select the first three characters of name:
SELECT SUBSTR(name,1,3) FROM employees;

Parameter Description

char The string for which this function returns a substring If char
is a CHAR string, the result is a CHAR or VARCHAR2
string. If char is a NCHAR string, the result is a
NVARCHAR2 string.

m The position at which to begin the substring. If m is positive,
the first character of the returned string is m characters from
the beginning of the string specified in char. Otherwise it is
m characters from the end of the string. If ABS(m) is bigger
than the length of the character string, a NULL value is
returned.

n The number of characters to be included in the substring. If
n is omitted, all characters to the end of the string specified
in char are returned. If n is less than 1 or if char, m or n is
NULL, NULL is returned.
Expressions 139

Example 3.67 Select the last five characters of name:
SELECT SUBSTR(name,-1,5) FROM employees;

INSTR
Determines the first position, if any, at which one string occurs within another. If
the substring does not occur in the string, then 0 is returned. The position
returned is always relative to the beginning of CharExpr2. INSTR returns type
NUMBER.

If you are using TimesTen type mode, for information on the INSTR function,
refer to documentation from previous releases of TimesTen.

SQL Syntax {INSTR | INSTRB | INSTR4} (CharExpr2, CharExp1 [,m[,n]])

Parameters INSTR has the parameters:

Description INSTR calculates strings using characters as defined by character set. INSTRB
uses bytes instead of characters. INSTR4 uses UCS4 code points.

Example 3.68 The following example uses instr to determine the position at which the substring
‘ing’ occurs in the string ‘Washington’:
Command> select instr ('Washington', 'ing') from dual;
< 5 >
1 row found.

LENGTH
Returns the length of a given character string in an expression. LENGTH returns
type NUMBER.

Parameter Description

CharExpr1 The substring to be found in string CharExpr2. If
CharExpr1 does not occur in CharExpr2, then zero is
returned. If either string is of length zero, NULL is returned.

CharExpr2 The string to be searched to find the position of CharExpr1.

m The optional position at which to begin the search. If m is
specified as zero, the result is zero. If m is positive, the
search begins at the CharExpr2+m. If m is negative, the
search begins m characters from the end of CharExpr2.

n If n is specified it must be a positive value and the search
returns the position of the nth occurrence of CharExpr1
140 Oracle TimesTen In-Memory Database SQL Reference Guide

If you are using TimesTen type mode, for information on the LENGTH function,
refer to documentation from previous releases of TimesTen.

SQL Syntax {LENGTH|LENGTHB|LENGTH4} (CharExpr)

Parameters LENGTH has the parameter:

Description The LENGTH functions return the length of CharExpr. LENGTH calculates the
length using characters as defined by the character set. LENGTHB uses bytes
rather than characters. LENGTH4 uses UCS4 code points.

Example 3.69 To determine the length of the string ‘William’:
Command> SELECT LENGTH('William') from dual;
< 7 >
1 row found.

Parameter Description

CharExpr The string for which to return the length.
Expressions 141

SYSDATE and GETDATE
Returns the date in the format YYYY-MM-DD HH:MM:SS. The date represents
the local current date and time, which is determined by the system on which the
statement is executed.

If you are using TimesTen type mode, for information on SYSDATE, refer to
documentation from previous releases of TimesTen.

SQL Syntax SYSDATE | GETDATE()

Parameters The SYSDATE and GETDATE functions have no parameters.

Description • SYSDATE and GETDATE perform identically. SYSDATE is compatible with
Oracle syntax, and GETDATE is compatible with Microsoft SQL Server
syntax.

• SYSDATE and GETDATE have no arguments, and return a DATE value.
• The SYSDATE or GETDATE value is only retrieved during execution.
• Any required changes to the date (to incorporate a different time zone or

Daylight Savings Time, for example) must occur at the system level. The date
cannot be altered using SYSDATE or GETDATE.

• The SYSDATE and GETDATE functions return the DATE data type. The
DATE format is 'YYYY-MM-DD HH:MM:SS'.

• SYSDATE and GETDATE are built-in functions and can be used anywhere a
date expression may be used. They can be used in a SELECT projection list, a
WHERE clause or to insert values. They cannot be used with a SUM or AVG
aggregate (operands must be numeric) or with a COUNT aggregate (column
names are expected).

• SYSDATE and GETDATE return the same DATE value in a single SQL
statement context.

• The literals TT_SYSDATE and ORA_SYSDATE are supported.
TT_SYSDATE returns the TT_TIMESTAMP data type. ORA_SYSDATE
returns the DATE data type. See Example 3.74 on page 143.

Example 3.70 In this example, invoking SYSDATE returns the same date and time for all rows
in the table:
Command> SELECT SYSDATE FROM dual;
< 2006-09-03 10:33:43 >

1 row found.
142 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 3.71 This example invokes SYSDATE to insert the current data and time into column
DateCol:
Command> CREATE TABLE t (DateCol DATE);
Command> INSERT INTO t VALUES (SYSDATE);
1 row inserted.
Command> SELECT * FROM t;
< 2006-09-03 10:35:50 >
1 row found.

Example 3.72 In this example, GETDATE inserts the same date value for each new row in the
table, even if the query takes several seconds.
INSERT INTO t1 SELECT GETDATE(), col1

FROM t2 WHERE ...;

Example 3.73 TO_CHAR is used with SYSDATE to return the DATE from table DUAL:
Command> SELECT TO_CHAR (SYSDATE) FROM dual;
< 2006-09-03 10:56:35 >
1 row found.

Example 3.74 The example invokes TT_SYSDATE to return the TT_TIMESTAMP data type
and then invokes ORA_SYSDATE to return the DATE data type:
Command> select tt_sysdate from dual;
< 2006-10-31 20:02:19.440611 >
1 row found.
Command> select ora_sysdate from dual;
< 2006-10-31 20:02:30 >
1 row found.
Expressions 143

TO_CHAR
TimesTen’s TO_CHAR function converts a DATE, TIMESTAMP or numeric
input value to a VARCHAR2.

If you are using TimesTen type mode, for information on the TO_CHAR
function, refer to documentation from previous releases of TimesTen.

SQL Syntax TO_CHAR (Expression1[, Expression2 [, Expression3]])

Parameters TO_CHAR has the parameters:

Description • TO_CHAR supports different datetime format models depending on the data
type specified for the expression. For information on the datetime format
model used for TO_CHAR of data type DATE or TIMESTAMP, see
“Datetime format models” on page 88. For information on the datetime format
model used for TO_CHAR of data type TT_DATE or TT_TIMESTAMP, see
“Format Model for ROUND and TRUNC Date Functions” on page 91.

• TO_CHAR supports different number format models depending on the
numeric data type specified for the expression. For information on the number
format model used for TO_CHAR of data type NUMBER or ORA_FLOAT,
see “Number format models” on page 84. For information on the number
format model used for TO_CHAR of all other numeric data types, see
“Format Model for ROUND and TRUNC Date Functions” on page 91.

Example 3.75 SELECT FIRSTNAME,
TO_CHAR (HireDate, ‘MONTH DD, YYY’)
TO_CHAR (Salary, ‘$999.99’)

FROM EMPLOYEES;

Example 3.76 SELECT TO_CHAR(-0.12,'$B99.9999') FROM t1;

Example 3.77 SELECT TO_CHAR(-12, 'B99999PR') FROM t1;

Example 3.78 SELECT TO_CHAR(-12,'FM99999') FROM t1;

Parameter Description

Expression1 A DATE, TIMESTAMP or numeric expression.

Expression2 The format string. If omitted, TimesTen uses the default date
format (YYYY-MM-DD).

Expression3 A CHAR or VARCHAR2 expression to specify the NLS
parameter which is currently ignored.
144 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 3.79 SELECT TO_CHAR(1234.1,'9,999.999') FROM t1;
Expressions 145

TO_DATE
TimesTen’s TO_DATE function converts a CHAR or VARCHAR2 argument to a
value of DATE data type

If you are using TimesTen type mode, for information on the TO_DATE
function, refer to documentation from previous releases of TimesTen.

SQL Syntax TO_DATE (Expression1[, Expression2 [, Expression3]])

Parameters TO_DATE has the parameters:

Description You can use a datetime format model with the TO_DATE function. For more
information on datetime format models, see “Datetime format models” on page
88.

Example 3.80 Command> SELECT TO_DATE ('1999, JAN 14', 'YYYY, MON DD') FROM dual;
< 1999-01-14 00:00:00 >
1 row found.

Example 3.81 Command> SELECT TO_CHAR(TO_DATE('1999-12:23','YYYY-MM:DD')) FROM
dual;
< 1999-12-23 00:00:00 >
1 row found.

Example 3.82 Command> SELECT TO_CHAR(TO_DATE('12-23-1997 10 AM:56:20',
'MM-DD-YYYY HH AM:MI:SS'),'MONTH,DD YYYY HH:MI-SS') FROM dual;
< DECEMBER ,23 1997 10:56-20 >
1 row found.

Parameter Description

Expression1 A CHAR or VARCHAR2 expression.

Expression2 The format string. This expression is usually required. It is
optional only when Expression1 is in the default date format
YYYY-MM-DD HHMMSS.

Expression3 A CHAR or VARCHAR2 expression to specify the NLS
parameter which is currently ignored.
146 Oracle TimesTen In-Memory Database SQL Reference Guide

TO_NUMBER
Converts an expression whose value is of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, BINARY_FLOAT or BINARY_DOUBLE to a value of
NUMBER type.

SQL Syntax TO_NUMBER (Expression[, format])

Parameters TO_NUMBER has the parameters:

Description You can use a number format model with the TO_NUMBER function. For more
information on number format models, see “Number format models” on page 84.

Example 3.83 Command> SELECT TO_NUMBER ('100.00', '999D99') FROM DUAL
< 100 >
1 row found.

Example 3.84 Command> SELECT TO_NUMBER ('1210.73', '9999.99') FROM DUAL;
< 1210.73 >
1 row found.

Parameter Description

Expression The expression to be converted.

format If specified, the format is used to convert Expression to a
value of NUMBER type. The format consists of a format
string that identifies the number format model. The format
string can be either a constant or a parameter.
Expressions 147

TRIM
The TRIM function trims leading or trailing characters (or both) from a character
string.

SQL Syntax There are four valid syntax options for TRIM:
• You can specify one of the TRIM qualifiers (LEADING or TRAILING or

BOTH) with the Trim_character:
TRIM (LEADING|TRAILING|BOTH Trim_character FROM Expression)

• You can specify one of the TRIM qualifiers (LEADING or TRAILING or
BOTH) without the Trim_character:
TRIM (LEADING|TRAILING|BOTH FROM Expression)

• You can specify the Trim_character without one of the TRIM qualifiers:
TRIM (Trim_character FROM Expression)

• You can specify the Expression without a qualifier or a Trim_character:
TRIM (Expression)

Parameters TRIM has the parameters:

Parameter Description

TRIM (
LEADING |
TRAILING |
BOTH
[Trim_
character]
FROM
Expression)

LEADING | TRAILING| BOTH are qualifiers to TRIM
function. LEADING removes all leading instances of
Trim_character from Expression. TRAILING removes all
trailing instances of Trim_character from Expression.
BOTH removes leading and trailing instances of
Trim_character from Expression.

Trim_character is optional. If specified, it represents the
CHAR, VARCHAR2, NCHAR or NVARCHAR2 operand
or column used for trimming Expression. Must be only one
character. If you do not specify Trim_character, it defaults
to a single blank. If Trim_character is a character literal,
then enclose it in single quotes.

FROM is required.

Expression is the CHAR, VARCHAR2, NCHAR or
NVARCHAR2 operand or column to be trimmed. If
Expression is a character literal, then enclose it in single
quotes.
148 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • If you specify the LEADING qualifier, TRIM removes any leading characters
equal to Trim_character from Expression.

• If you specify the TRAILING qualifier, TRIM removes any trailing characters
equal to Trim_character from Expression.

• If you specify the BOTH qualifier (or no qualifier), TRIM removes leading
and trailing characters equal to Trim_character from Expression.

• If you specify only Expression, then TRIM removes leading and trailing blank
spaces.

• If Expression is of type CHAR or VARCHAR2, the data type returned is
VARCHAR2. If Expression is of type NCHAR or NVARCHAR2, the data
type returned is NVARCHAR2. The returned data type length is equal to the
data type length of Expression.

• If Expression is a data type defined with CHAR length semantics, the returned
length is expressed in CHAR length semantics.

• If either Trim_character or Expression is NULL, the result is NULL.
• You can specify TT_CHAR, TT_VARCHAR, TT_NCHAR, and

TT_NVARCHAR for Trim_character and Expression. If Expression is of type
TT_CHAR or TT_VARCHAR, the data type returned is TT_VARCHAR. If

TRIM (
Trim_
character
FROM
Expression)

Removes both leading and trailing instances of
Trim_character from Expression.

Trim_character is the CHAR, VARCHAR2, NCHAR or
NVARCHAR2 operand or column used for trimming
Expression. Must be only one character. If Trim_character
is a character literal, then enclose it in single quotes.
FROM must follow Trim_character. Assumes LEADING |
TRAILING | BOTH qualifiers have not been specified.

Expression is the CHAR, VARCHAR2, NCHAR or
NVARCHAR2 operand or column to be trimmed. If
Expression is a character literal, then enclose it in single
quotes.

TRIM (
Expression)

If you specify Expression (without a qualifier or
Trim_character), then leading and trailing blank spaces are
removed from Expression.

Expression is the CHAR, VARCHAR2, NCHAR or
NVARCHAR2 operand or column to be trimmed. If
Expression is a character literal, then enclose it in single
quotes.
Expressions 149

Expression is of type TT_NCHAR or TT_NVARCHAR, the data type
returned is TT_NVARCHAR.

• If Trim_character is of type NCHAR or NVARCHAR2 and Expression is of
type CHAR or VARCHAR2, then Trim_character is demoted to CHAR or
VARCHAR2 before TRIM is invoked. The conversion of Trim_character
could be lost. If Trim_character is not in the database character set, then the
query may produce unexpected results.

• For CHAR, VARCHAR2, NCHAR, and NVARCHAR2 types:
– If all the characters in Expression are removed by the TRIM function, then

the result is NULL.
• For TT_CHAR, TT_VARCHAR, TT_NCHAR and TT_NVARCHAR types:

– If all the characters in Expression are removed by the TRIM function, then
the result is the empty string.

Example 3.85 Use TRIM function with qualifier to remove Trim_character ‘0’ from Expression
‘0000TRIM Example0000’:
Command> SELECT TRIM (LEADING '0' FROM '0000TRIM Example0000') FROM

Dual;
< TRIM Example0000 >
1 row found.

Command> SELECT TRIM (TRAILING '0' FROM '0000TRIM Example0000') FROM
Dual;

< 0000TRIM Example >
1 row found.

Command> SELECT TRIM (BOTH '0' FROM '0000TRIM Example0000') FROM Dual;
< TRIM Example >
1 row found.

Example 3.86 Use TRIM function with qualifier to remove blank spaces. Do not specify a
Trim_character. Default value for Trim_character is blank space:
Command> SELECT TRIM (LEADING FROM ' TRIM Example ') FROM Dual;
< TRIM Example >
1 row found.

Command> SELECT TRIM (TRAILING FROM ' TRIM Example ') FROM Dual;
< TRIM Example >
1 row found.

Command> SELECT TRIM (BOTH FROM ' TRIM Example ') FROM Dual;
< TRIM Example >
1 row found.
150 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 3.87 Use TRIM function with Trim_character ‘0’. Do not specify a qualifier. Leading
and trailing ‘0’s are removed from Expression ‘0000TRIM Example0000’:
Command> SELECT TRIM ('0' FROM '0000TRIM Example0000') FROM Dual;
< TRIM Example >
1 row found.

Example 3.88 Use TRIM function without a qualifier or Trim_character. Leading and trailing
spaces are removed.
Command> SELECT TRIM (' TRIM Example ') FROM Dual;
< TRIM Example >

1 row found.
Expressions 151

TRUNC (date)
Returns date with the time portion of the day truncated to the unit specified by
the format model fmt. The value returned is of type DATE. If you do not specify
fmt, then date is truncated to the nearest day.

SQL Syntax TRUNC (date [,fmt])

Parameters TRUNC (date) has the parameters:

Description • For the permitted format models to use in fmt, see “Format Model for
ROUND and TRUNC Date Functions” on page 91.

Example 3.89 Command> SELECT TRUNC (TO_DATE ('27-OCT-92','DD-MON-YY'),'YEAR')
FROM DUAL;
< 2092-01-01 00:00:00 >
1 row found.

Parameter Description

date The date that is truncated. Specify the DATE data type for
date. The function returns data type DATE with the time
portion of the day truncated to the unit specified by the
format model. If you do not specify fmt, the date is truncated
to the nearest day. An error is returned if you do not specify
the DATE data type.

 [,fmt] The format model truncating unit. Specify either a constant
or a parameter for fmt.
152 Oracle TimesTen In-Memory Database SQL Reference Guide

TRUNC (expression)
Returns a number truncated to a certain number of decimal places.

SQL Syntax TRUNC (Expression [,m])

Parameters TRUNC has the parameters:

Example 3.90 SELECT TRUNC (15.79,1) FROM DUAL;
< 15.7 >
1 row found.

Example 3.91 SELECT TRUNC (15.79,-1) FROM DUAL;
< 10 >
1 row found.

Parameter Description

Expression The Expression to truncate. Operands must be of type
NUMBER. An error is returned if operands are not of type
NUMBER. The value returned is of type NUMBER.

 [,m] The number of decimal places to truncate to. If m is omitted,
then the number is truncated to 0 places. The value of m can
be negative to truncate (make zero) m digits left of the
decimal point.
Expressions 153

TT_HASH
The TT_HASH function returns the hash value of an expression or list of
expressions. This value is the value that would be used by a hash index.

SQL Syntax TT_HASH(Expression [,...])

Parameters TT_HASH has the parameter:

Description • Each expression must have a known data type and must be non-nullable. The
hash value of the expression depends on both the value of the expression and
its type. For example, TT_HASH of an TT_INTEGER with value 25 may be
different from TT_HASH of a NUMBER or BINARY_DOUBLE with value
25. If you specify a list of expressions, the TT_HASH result depends on the
order of the expressions in the list.

• Since constants and expressions that are not simple column references are
subject to internal typing rules, over which applications have no control, the
best way to ensure that TT_HASH computes the desired value for expressions
that are not simple column references is to CAST the expression to the desired
type.

• The result type of TT_HASH is TT_INTEGER in 32-bit mode and
TT_BIGINT in 64 bit mode.

• TT_HASH can be used in a SQL statement anywhere an expression can be
used. For example, TT_HASH can be used in a SELECT list, a WHERE or
HAVING clause, an ORDER BY clause, or a GROUP BY clause.

• The output of error messages, trace messages, and ttAXactAdmin display the
hash value as a signed decimal so that the value matches TT_HASH output.

Example 3.92 The following query finds the set of rows whose primary key columns hash to a
given hash value:
SELECT * FROM t1

WHERE TT_HASH(pkey_col1, pkey_col2, pkey_col3) = 12345678;

Parameter Description

Expression
[,...]

One or more expressions to be used to determine the hash
value of the expression or list of expressions.
154 Oracle TimesTen In-Memory Database SQL Reference Guide

UNISTR
The UNISTR takes as its argument, a string that resolves to data of type
NVARCHAR2 and returns the value in UTF-16 format. Unicode escapes are
supported. You can specify the Unicode encoding value of the characters in the
string.

SQL Syntax UNISTR (’String’)

Parameters UNISTR has the parameter:

Example 3.93 The following example invokes the UNISTR function passing as an argument the
string ‘A\00E4a’. The value returned is the value of the string in UTF-16 format:
Command> SELECT UNISTR (‘A\00E4a’) FROM DUAL;
<Aäa>
 1 row found.

Parameter Description

’String’ The string passed to the UNISTR function. The string
resolves to type NVARCHAR2. TimesTen returns the value
in UTF-16 format. You can specify Unicode escapes as part
of the string.
Expressions 155

USER functions
TimesTen supports the USER functions:
• CURRENT_USER
• USER
• SESSION_USER
• SYSTEM_USER

Each of these functions returns the name of the user that is currently connected to
the TimesTen instance.

CURRENT_USER
USER
Returns the value of the user currently connected to the data store.

SQL Syntax CURRENT_USER

or
USER

Parameters USER and CURRENT_USER have no parameters.

Example 3.94 To return the name of the user who is currently connected to the data store:
SELECT CURRENT_USER FROM SYS.DUAL;

SESSION_USER
Returns the value of the user currently connected to the data store.

SQL Syntax SESSION_USER

Parameters SESSION_USER has no parameters.

Example 3.95 To return the name of the session user:
SELECT SESSION_USER FROM SYS.DUAL;
156 Oracle TimesTen In-Memory Database SQL Reference Guide

SYSTEM_USER
Returns the value of the current data store user name as identified by the
operating system, which may or may not match the value of USER.

SQL Syntax SYSTEM_USER

Parameters SYSTEM_USER has no parameters.

Example 3.96 To return the name of the system user:
SELECT SYSTEM_USER FROM SYS.DUAL;
Expressions 157

158 Oracle TimesTen In-Memory Database SQL Reference Guide

4
Search Conditions

A search condition specifies criteria for choosing rows to select, update, or
delete. Search conditions are parameters that can exist in clauses and expressions
of any DML statements, such as SELECT, UPDATE and DELETE and some
DDL statements, such as CREATE VIEW.

Search condition general syntax
A search condition is a single predicate or several predicates connected by the
logical operators AND or OR. A predicate is an operation on expressions that
evaluates to TRUE, FALSE, or UNKNOWN. If a predicate evaluates to TRUE
for a row, the row qualifies for further processing. If the predicate evaluates to
FALSE or NULL for a row, the row is not available for operations.

SQL syntax [NOT]
{BetweenPredicate | ComparisonPredicate | InPredicate | LikePredicate|

NullPredicate | InfinitePredicate | NanPredicate |
QuantifiedPredicate |(SearchCondition)}

[{AND | OR} [NOT]
{BetweenPredicate | ComparisonPredicate |InPredicate | LikePredicate|

 NullPredicate | QuantifiedPredicate |(SearchCondition)}
] [...]
 159

Parameters

Component Description

NOT, AND, OR Logical operators with the following functions:
• NOT negates the value of the predicate that follows it.
• AND evaluates to TRUE if both the predicates it joins evaluate

to TRUE.
• OR evaluates to TRUE if either predicate it joins evaluates to

TRUE, and to FALSE if both predicates evaluates to FALSE.
• See “Description” on page 161 for a description of how these

operators work when predicates evaluate to NULL.

BetweenPredicate Determines whether an expression is within a certain range of
values. For example: A BETWEEN B AND C is equivalent to A >=
B AND A<= C.

ComparisonPredicate Compares two expressions or list of two expressions using one of
the operators <, <=, >, >=, =, <>.

InPredicate Determines whether an expression or list of expressions matches an
element within a specified set.

ExistsPredicate Determines whether a subquery returns any row.

LikePredicate Determines whether an expression contains a particular character
string pattern.

NullPredicate Determines whether a value is NULL.

InfinitePredicate Determines whether an expression is infinite (positive or negative
infinity).

NanPredicate Determines whether an expression is the undefined result of an
operation (“not a number.”)

QuantifiedPredicate Determines whether an expression or list of expressions bears a
particular relationship to a specified set.

(SearchCondition) One of the above predicates, enclosed in parentheses.
160 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • Predicates in a search condition are evaluated as follows:
– Predicates in parentheses are evaluated first.
– NOT is applied to each predicate.
– AND is applied next, left to right.
– OR is applied last, left to right.

Figure 4.1 shows the values that result from logical operations. A question
mark (?) represents the NULL value.

Figure 4.1 Values that result from logical operations

• When the search condition for a row evaluates to NULL, the row does not
satisfy the search condition and the row is not operated on.

• You can compare only compatible data types.
– TT_TINYINT, TT_SMALLINT, TT_INTEGER, TT_BIGINT,

NUMBER, BINARY_FLOAT and BINARY_DOUBLE are compatible.
– CHAR, VARCHAR2, BINARY, and VARBINARY are compatible,

regardless of length.
– CHAR, VARCHAR2, NCHAR, NVARCHAR2, TT_TIME, DATE and

TIMESTAMP are compatible.
• See Chapter 3, “Expressions,” for information on value extensions during

comparison operations.
• See “Numeric data types” on page 29 for information about how TimesTen

compares values of different but compatible types.

AND T F ?
T

?
F

T

?
F

F

F
F

?

?
F

OR T F ?
T

?
F

T

T
T

T

?
F

T

?
?

NOT
T

?
F

F

?
T

Search Conditions 161

ALL/ NOT IN predicate (subquery)
The ALL or NOT IN predicate indicates that the operands on the left side of the
comparison must compare in the same way with all of the values that the
subquery returns. The ALL predicate evaluates to TRUE if the expression or list
of expressions relates to all rows returned by the subquery as specified by the
comparison operator. Similarly, the NOT IN predicate evaluates to TRUE if the
expression or list of expressions does not equal the value returned by the
subquery.

SQL syntax RowValueConstructor {CompOp ALL| NOT IN} (Subquery)

The syntax for RowValueConstructor:
RowValueConstructorElement |
(RowValueConstuctorList) |
Subquery

The syntax for RowValueConstructorList:
RowValueConstructorElement
[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:
Expression | NULL

The syntax for CompOp:
{= | <> | > | >= | < | <= }

Parameters
Component Description

Expression The syntax of expressions is defined under “Expression
specification” on page 70. Both numeric and non-numeric
expressions are allowed for ALL predicates, but both
expression types must be compatible with each other.

= Is equal to.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

<= Is less than or equal to.

Subquery The syntax of subqueries is defined under “Subqueries” on
page 74
162 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • The ALL predicate, which returns zero or more rows, uses a comparison
operator modified with the keyword ALL. See “Numeric data types” on page
29 for information about how TimesTen compares values of different but
compatible types.

• If <RowValueConstructorList> is specified only the operators = and <> are
allowed.

Example 4.1 Examples of NOT IN with subqueries:
SELECT * FROM customers
WHERE cid NOT IN
(SELECT cust_id FROM returns)
AND cid > 5000;

SELECT * FROM customers
WHERE cid NOT IN
(SELECT cust_id FROM returns)
AND cid NOT IN
(SELECT cust_id FROM complaints);

SELECT COUNT(*) From customers
WHERE cid NOT IN
(SELECT cust_id FROM returns)
AND cid NOT IN
(SELECT cust_id FROM complaints);

Example 4.2 Select all books that are not from exclBookList or if the price of the book is
higher than $20.
SELECT * FROM books WHERE id NOT IN (SELECT id FROM exclBookList)
OR books.price>20;

Example 4.3 The following query returns the employee_id and job_id from the job_history
table. It illustrates use of expression list and subquery with the NOT IN
predicate.
Command> SELECT employee_id, job_id FROM job_history WHERE
(employee_id, job_id) NOT IN (SELECT employee_id, job_id FROM
employees);
< 101, AC_ACCOUNT >
< 101, AC_MGR >
< 102, IT_PROG >
< 114, ST_CLERK >
< 122, ST_CLERK >
< 176, SA_MAN >
< 200, AC_ACCOUNT >
< 201, MK_REP >
8 rows found.
Search Conditions 163

ALL/NOT IN predicate (value list)
The ALL/NOT IN quantified predicate compares an expression or list of
expressions with a list of specified values. The ALL predicate evaluates to TRUE
if all the values in the ValueList relate to the expression or list of expressions as
indicated by the comparison operator. Similarly, the NOT IN predicate evaluates
to TRUE if the expression or list of expressions does not equal one of the values
in the list.

SQL syntax RowValueConstructor {CompOp ALL | NOT IN} ValueList

The syntax for RowValueConstructor:
RowValueConstructorElement |
(RowValueConstuctorList) |

The syntax for RowValueConstructorList:
RowValueConstructorElement
[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:
Expression | NULL

The syntax for CompOp:
{= | <> | > | >= | < | <= }

The syntax for more than one element in the ValueList:

({Constant | ? | :DynamicParameter} [,...])

The syntax for one element in the ValueList not enclosed in parentheses:

Constant | ? | :DynamicParameter

The syntax for an empty ValueList:

()

The syntax for the ValueList for a list of expressions:

(({Constant | ? | :DynamicParameter} [,...]))

Parameters

Component Description

Expression Specifies a value to be obtained. The values in ValueList must
be compatible with the expression. For information on the
syntax of expressions, see “Expression specification” on page
70.

= Is equal to.
164 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • If X is the value of Expression, and (a,b, ..., z) represents the elements in
ValueList, and OP is a comparison operator, then the following is true:
– X OP ALL (a,b,...,z) is equivalent to

X OP a AND X OP b AND...AND X OP z.
• If X is the value of Expression and (a,b,..., z) are the elements in a ValueList,

then the following is true:
– X NOT IN (a,b,...,z) is equivalent to

NOT (X IN (a,b,...,z)).
• Character strings are compared according to the ASCII collating sequence for

ASCII data.
• NULL cannot be specified in ValueList.
• See “Numeric data types” on page 29 for information about how TimesTen

compares values of different but compatible types.
• NOT IN or NOT EXISTS with ALL can be specified in an OR expression.
• IN and EXISTS with ALL can be specified in an OR expression.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

<= Is less than or equal to.

ALL The predicate is TRUE if all the values in the ValueList relate
to the expression or list of expressions as indicated by the
comparison operator.

ValueList A list of values that are compared against the expression’s or
list of expression’s value. The ValueList cannot contain a
column reference or a subquery. The ValueList can be nested
if the left operand of the ValueList is a list.

Elements of the ValueList:
• Constant—Indicates a specific value. See “Constants” on

page 79.
• ?,:DynamicParameter—Placeholder for a dynamic

parameter in a prepared SQL statement. The value of the
dynamic parameter is supplied when the statement is
executed.

• Empty list, which are sometimes generated by SQL
generation tools.
Search Conditions 165

• When evaluating an empty ValueList, the result of Expression NOT IN is true.
• If <RowValueConstructorList> is specified only the operators = and <> are

allowed.

Example 4.4 To query an empty select list for a NOT IN condition:
SELECT * FROM t1 WHERE x1 NOT IN ();
166 Oracle TimesTen In-Memory Database SQL Reference Guide

ANY/ IN predicate (subquery)
An ANY predicate compares two expressions using a comparison operator. The
predicate evaluates to TRUE if the first expression relates to any row returned by
the subquery as specified by the comparison operator. Similarly, the IN predicate
compares an expression or list of expressions with a table subquery. The IN
predicate evaluates to TRUE if the expression or list of expressions is equal to a
value returned by a subquery.

SQL syntax RowValueConstructor {CompOp ANY| IN} (Subquery)

The syntax for RowValueConstructor:
RowValueConstructorElement |
(RowValueConstuctorList) |
Subquery

The syntax for RowValueConstructorList:
RowValueConstructorElement
[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:
Expression | NULL

The syntax for CompOp:
{= | <> | > | >= | < | <= }

Parameters
Component Description

Expression The syntax of expressions is defined under “Expression
specification” on page 70. Both numeric and non-numeric
expressions are allowed for ANY predicates, but both
expression types must be compatible with each other.

= Is equal to.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

<= Is less than or equal to.

Subquery The syntax of subqueries is defined under “Subqueries” on
page 74
Search Conditions 167

Description • The ANY predicate, which returns zero or more rows, uses a comparison
operator modified with the keyword ANY. See “Numeric data types” on page
29 for information about how TimesTen compares values of different but
compatible types.

Example 4.5 Retrieve a list of customers having at least one un-shipped order:
SELECT customers.name FROM customers
WHERE customers.id = ANY
(SELECT orders.custid FROM orders
WHERE orders.status = 'un-shipped');

Example 4.6 Example of IN predicate with subquery. SELECTs customers having at least one
un-shipped order:
SELECT customers.name FROM customers
WHERE customers.id IN
(SELECT orders.custid FROM orders
WHERE orders.status = 'un-shipped');

Example 4.7 Uses an aggregate query that specifies a subquery with IN, to find the maximum
price of a book in the exclBookList:
SELECT MAX(price) FROM books WHERE id IN (SELECT id FROM
exclBookList);

Example 4.8 Illustrates the use of a list of expressions with the IN predicate and a subquery.
SELECT * from t1 where (x1,y1) in (SELECT x2,y2 from t2);

Example 4.9 Illustrates the use of a list of expressions with the ANY predicate and a subquery.
SELECT * from t1 where (x1,y1) < ANY (SELECT x2,y2 from t2);

Example 4.10 The following example illustrates the use of a list of expressions with the ANY
predicate.
Command> columnlabels on;
Command> SELECT * FROM t1;
X1, Y1
< 1, 2 >
< 3, 4 >
2 rows found.
Command> SELECT * FROM t2;
X2, Y2
< 3, 4 >
< 1, 2 >
2 rows found.
168 Oracle TimesTen In-Memory Database SQL Reference Guide

Command> SELECT * FROM t1 WHERE (x1,y1) < ANY (SELECT x2,y2 from
t2);
X1, Y1
< 1, 2 >
1 row found.
Search Conditions 169

ANY/ IN predicate (value list)
The ANY/IN quantified predicate compares an expression or list of expressions
with a list of specified values. The ANY predicate evaluates to TRUE if one or
more of the values in the ValueList relate to the expression or list of expressions
as indicated by the comparison operator. Similarly, the IN predicate evaluates to
TRUE if the expression or list of expressions is equal to one of the values in the
list.

SQL syntax RowValueConstructor {CompOp {ANY| SOME} | IN} ValueList

The syntax for RowValueConstructor:
RowValueConstructorElement |
(RowValueConstuctorList) |

The syntax for RowValueConstructorList:
RowValueConstructorElement
[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructorElement:
Expression | NULL

The syntax for CompOp:
{= | <> | > | >= | < | <= }

The syntax for more than one element in the ValueList:

({Constant | ? | :DynamicParameter} [,...])

The syntax for one element in the ValueList not enclosed in parentheses:

Constant | ? | :DynamicParameter

The syntax for an empty ValueList:

()

The syntax for the ValueList for a list of expressions:

(({Constant | ? | :DynamicParameter} [,...]))

Parameters

Component Description

Expression Specifies a value to be obtained. The values in ValueList
must be compatible with the expression. For information on
the syntax of expressions, see “Expression specification” on
page 70.

= Is equal to.
170 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • If X is the value of Expression, and (a,b, ..., z) represents the elements in
ValueList, and OP is a comparison operator, then the following is true:
– X OP ANY (a,b,...,z) is equivalent to

X OP a OR X OP b OR...OR X OP z.
• If X is the value of Expression and (a,b,..., z) are the elements in a ValueList,

then the following is true:
– X IN (a,b,...,z) is equivalent to

X = a OR X = b OR...OR X = z.
• Character strings are compared according to the ASCII collating sequence for

ASCII data.
• NULL cannot be specified in ValueList.
• See “Numeric data types” on page 29 for information about how TimesTen

compares values of different but compatible types.
• When evaluating an empty ValueList, the result of Expression IN is false.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.

< Is less than.

<= Is less than or equal to.

{ANY|
SOME}

The predicate is TRUE if one or more of the values in the
ValueList relate to the expression or list of expressions as
indicated by the comparison operator. SOME is a synonym
for ANY.

ValueList A list of values that are compared against the expression’s or
list of expression’s value. The ValueList cannot contain a
column reference or a subquery. The ValueList can be nested
if the left operand of the ValueList is a list.

Elements of the ValueList:
• Constant—Indicates a specific value. See “Constants” on

page 79.
• ?,:DynamicParameter—Placeholder for a dynamic

parameter in a prepared SQL statement. The value of the
dynamic parameter is supplied when the statement is
executed.

• Empty list, which are sometimes generated by SQL
generation tools.
Search Conditions 171

Example 4.11 Select all item numbers containing orders of 100, 200, or 300 items.
SELECT DISTINCT OrderItems.ItemNumber
FROM OrderItems
WHERE OrderItems.Quantity = ANY (100, 200, 300)

Example 4.12 Get part numbers of parts whose weight is 12, 16, or 17.
SELECT Parts.PartNumber FROM Parts
WHERE Parts.Weight IN (12, 16, 17);

Example 4.13 Get part number of parts whose serial number is '1123-P-01',
'1733-AD-01', :SerialNumber or :SerialInd, where :SerialNumber and
:SerialInd are dynamic parameters whose values are supplied at runtime.
SELECT PartNumber FROM Purchasing.Parts
WHERE SerialNumber
IN ('1123-P-01', '1733-AD-01',:SerialNumber, :SerialInd);

Example 4.14 To query an empty select list for IN condition:
SELECT * FROM t1 WHERE x1 IN ();

Example 4.15 Illustrates the use of a list of expressions with in:
SELECT * FROM t1 WHERE (x1,y1) IN ((1,2), (3,4));

Example 4.16 The following example illustrates the use of a list of expressions for the IN
predicate. The query returns the department_name for departments with
department_id = 240 and location_id = 1700. Note: The expression on the right
side of the IN predicate must be enclosed in double parentheses (()).
Command> select department_name from departments where
(department_id, location_id) in ((240,1700));
< Government Sales >
1 row found.
172 Oracle TimesTen In-Memory Database SQL Reference Guide

BETWEEN predicate
A BETWEEN predicate determines whether a value is:
• Greater than or equal to a second value, and
• Less than or equal to a third value.

The predicate evaluates to TRUE if a value falls within the specified range.

SQL syntax Expression1 [NOT] BETWEEN Expression2 AND Expression3

Parameters

Description • BETWEEN evaluates to FALSE and NOT BETWEEN evaluates to TRUE if
the second value is greater than the third value.

• Consult the following table if either Expression2 or Expression3 is NULL for
BETWEEN or NOT BETWEEN:

• Expression2 and Expression3 constitute a range of possible values for which
Expression2 is the lowest possible value and Expression3 is the highest
possible value within the specified range. In the BETWEEN predicate, the
low value must be specified first.

Comparisons are conducted as described in “Comparison predicate” on page
175.

• The BETWEEN predicate is not supported for NCHAR types.

Example 4.17 Parts sold for under $250.00 and over $1500.00 are discounted 25%.
UPDATE Purchasing.Parts
SET SalesPrice = SalesPrice * 0.75

Parameter Description

Expression1,
Expression2,
Expression3

The syntax for expressions is defined in “Expression
specification” on page 70. Both numeric and non-numeric
expressions are allowed in BETWEEN predicates, but all
expressions must be compatible with each other.

Expression2 Expression3 BETWEEN NOT
BETWEEN

<= Expression1 NULL NULL NULL

> Expression1 NULL FALSE TRUE

NULL >= Expression1 NULL NULL

NULL < Expression1 NULL NULL
Search Conditions 173

WHERE SalesPrice NOT BETWEEN 250.00 AND 1500.00;
174 Oracle TimesTen In-Memory Database SQL Reference Guide

Comparison predicate
A comparison predicate compares two expressions using a comparison operator.
The predicate evaluates to TRUE if the first expression relates to the second
expression as specified by the comparison operator.

SQL syntax RowValueConstructor CompOp RowValueConstructor2

The syntax for RowValueConstructor:
RowValueConstructorElement |
(RowValueConstuctorList) |
Scalar Subquery

The syntax for RowValueConstructorList:
RowValueConstructorElement
[{, RowValueConstructorElement} ...]

The syntax for RowValueConstructor2 (one expression)

Expression

The syntax for RowValueConstructor2 (list of expressions)

 ((Expression[,...]))

The syntax for CompOp:
{= | <> | > | >= | < | <= }

Parameters
Component Description

Expression The syntax for expressions is defined under “Expression
specification” on page 70. Both numeric and non-
numeric expressions are allowed in comparison
predicates, but both expressions must be compatible with
each other.

ScalarSubquery A subquery that returns a single value. Scalar subqueries
and their restrictions are defined under “Subqueries” on
page 74.

= Is equal to.

<> Is not equal to.

> Is greater than.

>= Is greater than or equal to.
Search Conditions 175

Description • Character strings are compared according to the ASCII collating sequence for
ASCII data.

• If there is a NULL value on either or both sides of a comparison predicate, the
predicate evaluates to NULL and the row is not operated on.

• If <RowValueConstructorList> is specified only the operators = and <> are
allowed.

• See “Numeric data types” on page 29 for information about how TimesTen
compares values of different but compatible types.

Example 4.18 Retrieve part numbers of parts requiring fewer than 20 delivery days:
SELECT PartNumber FROM Purchasing.SupplyPrice
WHERE DeliveryDays < 20;

Example 4.19 The query returns the last_name of employees where salary = 9500 and
commission_pct = .25. Note: The expression on the right side of the equal sign
must be enclosed in double parentheses (()).
Command> select last_name from employees
where(salary,commission_pct) = ((9500,.25));
< Bernstein >
1 row found.

Example 4.20 The query returns the last_name of the employee whose manager_id = 205. The
employee’s department_id and manager_id is stored in both the employees and
departments tables. A subquery is used to extract the information from the
departments table.
Command> select last_name from employees where (department_id,
manager_id) = (select department_id, manager_id from departments
where manager_id = 205);
< Gietz >
1 row found.

< Is less than.

<= Is less than or equal to.
176 Oracle TimesTen In-Memory Database SQL Reference Guide

EXISTS predicate
An EXISTS predicate checks for the existence or nonexistence of a table
subquery. The predicate evaluates to TRUE if the subquery returns at least one
row for EXISTS and no rows for NOT EXISTS

SQL syntax [NOT] EXISTS (Subquery)

Parameters The EXISTS predicate has the following parameter:

Description • When a subquery is introduced with EXISTS, the subquery functions as an
existence test. EXISTS tests for the presence or absence of an empty set of
rows. If the subquery returns at least one row, the subquery evaluates to true.

• When a subquery is introduced with NOT EXISTS, the subquery functions as
an absence test. NOT EXISTS tests for the presence or absence of an empty
set of rows. If the subquery returns no rows, the subquery evaluates to true.

• If join order is issued using the ttOptSetOrder built-in procedure that
conflicts with the join ordering requirements of the NOT EXISTS subquery,
the specified join order is ignored, TimesTen issues a warning and the query is
executed.

• The following table describes supported and unsupported usages of EXISTS
and NOT EXISTS in TimesTen;

Example 4.21 Get a list of customers having at least one unshipped order.
SELECT customers.name FROM customers
WHERE EXISTS (SELECT 1 FROM orders
WHERE customers.id = orders.custid
AND orders.status = 'un-shipped');

Parameter Description

Subquery The syntax of subqueries is defined under “Subqueries” on
page 74

Query/subquery description Not Exists Exists

Aggregates in subquery Supported Supported

Aggregates in main query Supported Supported

Subquery in OR clause Supported Supported

Join ordering using the
ttOptSetOrder built-in procedure

Limited support Supported
Search Conditions 177

Example 4.22 Get a list of customers having at no unshipped orders.
SELECT customers.name FROM customers
WHERE NOT EXISTS (SELECT 1 FROM orders
WHERE customers.id = orders.custid
AND orders.status = 'un-shipped');
178 Oracle TimesTen In-Memory Database SQL Reference Guide

IS INFINITE predicate
An IS INFINITE predicate determines whether an expression is infinite (positive
infinity (INF) or negative infinity (-INF).

SQL syntax Expression IS [NOT] INFINITE

Parameters

Description • An IS INFINITE predicate evaluates to TRUE if the expression is positive or
negative infinity.

• An IS NOT INFINITE predicate evaluates to TRUE if expression is neither
positive nor negative infinity.

• The expression must either resolve to a numeric data type or to a data type that
can be implicitly converted to a numeric data type.

• Two positive infinity values are equal to each other. Two negative infinity
values are equal to each other.

• Expressions containing floating-point values may generate Inf, -Inf, or NaN.
This can occur either because the expression generated overflow or
exceptional conditions or because one or more of the values in the expression
was Inf, -Inf, or NaN. Inf and NaN are generated in overflow or division by 0
conditions.

• Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values
are. If you wish to exclude Inf and NaN from aggregates (or from any
selection), use both the IS NOT NAN and IS NOT INFINITE predicates.

• Negative infinity (-INF) sorts lower than all other values. Positive infinity
(INF) sorts higher than all other values, but lower than NaN (“not a number)
and the NULL value.

• For more information on Inf and Nan, see “INF and NAN” on page 50.

Parameter Description

Expression Expression to test.
Search Conditions 179

IS NAN predicate
An IS NAN predicate determines whether an expression is the undefined result of
an operation (that is, is “not a number” or NaN).

SQL syntax Expression IS [NOT] NAN

Parameters

Description • An IS NAN predicate evaluates to TRUE if the expression is “not a number.”
• An IS NOT NAN predicate evaluates to TRUE if expression is not “not a

number.”
• The expression must either resolve to a numeric data type or to a data type that

can be implicitly converted to a numeric data type.
• Two NaN (“not a number”) values are equal to each other.
• Expressions containing floating-point values may generate Inf, -Inf, or NaN.

This can occur either because the expression generated overflow or
exceptional conditions or because one or more of the values in the expression
was Inf, -Inf, or NaN. Inf and NaN are generated in overflow or division by 0
conditions.

• Inf, -Inf, and NaN values are not ignored in aggregate functions. NULL values
are. If you wish to exclude Inf and NaN from aggregates (or from any
selection), use both the IS NOT NAN and IS NOT INFINITE predicates.

• NaN (“not a number”) sorts higher than all other values including positive
infinity, but lower than the NULL value.

• For more information on Inf and Nan, see “INF and NAN” on page 50.

Parameter Description

Expression Expression to test.
180 Oracle TimesTen In-Memory Database SQL Reference Guide

IS NULL predicate
An IS NULL predicate determines whether an expression has the value NULL.
The predicate evaluates to TRUE if the expression is NULL. If the NOT option is
used, the predicate evaluates to TRUE if the expression is NOT NULL.

SQL syntax {ColumnName | Constant | (Expression)} IS [NOT] NULL

Parameters

Example 4.23 Vendors with no personal contact names are identified.
SELECT *
FROM Purchasing.Vendors
WHERE ContactName IS NULL;

Parameter Description

ColumnName The name of a column from which a value is to be
taken. Column names are discussed in Chapter 2,
“Names.”

Constant A specific value. See “Constants” on page 79.

(Expression) Expression to test.
Search Conditions 181

LIKE predicate
A LIKE predicate determines whether a CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 expression contains a given pattern. The predicate evaluates to
TRUE if an expression contains the pattern.

SQL syntax Expression [NOT] LIKE
{'PatternString'| {? | :DynamicParameter}}

[ESCAPE {'EscapeChar' | {? | :DynamicParameter}}]

Parameters

Parameter Description

Expression The syntax of expressions is presented in Chapter 3,
“Expressions.”

PatternString Describes what you are searching for in the
expression. The pattern may consist of characters
only (including digits and special characters). For
example, NAME LIKE 'Annie' evaluates to TRUE only
for a name of Annie with no spaces. Upper case and
lower case are significant.
You can also use the predicate to test for a partial
match by using the following symbols in the pattern:
_ Represents any single character.

For example, BOB and TOM both satisfy the
predicate NAME LIKE '_O_'.

% Represents any string of zero or more characters.

For example, MARIE and RENATE both satisfy the
predicate NAME LIKE '%A%'.

You can use the _ and % symbols multiple times and
in any combination in a pattern. You cannot use these
symbols literally within a pattern unless you use the
ESCAPE clause and precede the symbols with the
escape character, described by the EscapeChar
parameter.
182 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • As long as no escape character is specified, the _ or % in the pattern acts as a
wild card character. If an escape character is specified, then the wild card or
escape character that follows is treated literally. If the character following an
escape character is not a wild card or the escape character, an error results.

• If the value of the expression, the pattern, or the escape character is NULL,
then the LIKE predicate evaluates to NULL and the row is not operated on.

Example 4.24 Vendors located in states beginning with an “A” are identified.
SELECT VendorName FROM Purchasing.Vendors
WHERE VendorState LIKE 'A%';

Vendors whose names begin with ACME_ are identified (note use of the ESCAPE
clause).
SELECT VendorName FROM Purchasing.Vendors
WHERE VendorName LIKE 'ACME!_%' ESCAPE '!';

EscapeChar Describes an optional escape character which can be
used to interpret the symbols _ and % literally in the
pattern.
The escape character must be a single character.
When it appears in the pattern, it must be followed by
the escape character itself, the _ symbol or the %
symbol. Each such pair represents a single literal
occurrence of the second character in the pattern. The
escape character is always case sensitive. The escape
character cannot be _ or %.

?
:DynamicParameter

Indicates a dynamic parameter in a prepared SQL
statement. The parameter value is supplied when the
statement is executed.
Search Conditions 183

NCHAR and NVARCHAR2
The LIKE predicate can be used for pattern matching of NCHAR and
NVARCHAR2 strings. The pattern matching characters are:

Description • The escape character is similarly supported as a single Unicode character or
parameter.

• The types of the LIKE operands can be any combination of character types.
• Case and accent insensitive NLS_SORT is supported with the LIKE predicate.

Examples In these examples, the Unicode character U+0021 EXCLAMATION MARK is
being used to escape the Unicode character U+005F SPACING UNDERSCORE.
Unicode character U+0025 PERCENT SIGN is not escaped, and assumes its
pattern matching meaning.

VendorName is an NCHAR or NVARCHAR2 column.

Example 4.25 SELECT VendorName FROM Purchasing.Vendors
WHERE VendorName LIKE N'ACME!_%' ESCAPE N'!';

is equivalent to:
SELECT VendorName FROM Purchasing.Vendors
WHERE VendorName LIKE N'ACME!\u005F\u0025' ESCAPE N'!';

Character Description

U+005F SPACING UNDERSCORE Represents any single
Unicode character.

U+0025 PERCENT SIGN Represents any string of
zero or more Unicode
characters.
184 Oracle TimesTen In-Memory Database SQL Reference Guide

5
SQL Statements

This chapter discusses the SQL statements available in TimesTen SQL.

For each statement, this chapter specifies the supported syntax, explains the
parameters, and provides any other relevant information.

SQL statements are generally considered to be either Data Manipulation
Language (DML) statements or Data Definition Language (DDL) statements.
This chapter refers to DML and DDL statements

DML statements are those that modify data store objects, such as INSERT,
UPDATE and DELETE.

DDL statements are those that modify the data store schema, such as CREATE
TABLE and DROP TABLE.
 185

Access Control and SQL statements
For each statement in this chapter, this guide gives a brief description of the
privileges required if your TimesTen instance has Access Control enabled. For a
description of Access Control Privileges, see Chapter 6, “Access Control
Privileges.” Some general guidelines to remember are:
• To CREATE any object within a data store, a user must have DDL privileges.
• If a user has no privileges, he or she can SELECT or WRITE on only those

tables that he or she owns. The user can query any data that he or she owns or
perform an INSERT into, DELETE from or UPDATE on any tables that he or
she owns.To limit access to particular objects, an Instance Administrator
can create those objects with a common user name, without privileges. Those
objects are then available to that user name without WRITE or SELECT
privileges.

• If a user has DDL privileges, he or she can CREATE, DROP or ALTER any
object for any user.

• If a user has WRITE privileges, he or she can INSERT into, DELETE from or
UPDATE any user’s tables.

• If a user has SELECT privileges, he or she can query any user data.
186 Oracle TimesTen In-Memory Database SQL Reference Guide

ALTER ACTIVE STANDBY PAIR
You can change an active standby pair by:
• Adding or dropping a subscriber data store
• Altering store attributes—only the PORT and TIMEOUT attributes can be set

for subscribers
• Including tables, sequences or cache groups in replication
• Excluding tables, sequences or cache groups from replication

See "Changing the configuration of an active standby pair" in the TimesTen to
TimesTen Replication Guide.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
ADMIN privileges.

SQL Syntax ALTER ACTIVE STANDBY PAIR {
SubscriberOperation |
StoreOperation | InclusionOperation |
NetworkOperation } [...]

Syntax for SubscriberOperation:
{ADD | DROP } SUBSCRIBER FullStoreName

Syntax for StoreOperation:
ALTER STORE FullStoreName SET StoreAttribute

Syntax for InclusionOperation:
{ INCLUDE | EXCLUDE } {TABLE [Owner.]TableName |

CACHE GROUP [Owner.]CacheGroupName |
SEQUENCE [Owner.]SequenceName} [,...]

Syntax for NetworkOperation:
ADD ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName

{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }
PRIORITY Priority } [...]

DROP ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }

[...]

Parameters ALTER ACTIVE STANDBY PAIR has the parameters:

Parameter Description

ADD SUBSCRIBER FullStoreName Indicates an additional subscriber data store.
FullStoreName is the data store file name
specified in the DataStore attribute of the DSN
description.
SQL Statements 187

DROP SUBSCRIBER FullStoreName Indicates that updates should no longer be sent to
the specified subscriber data store. This operation
fails if the replication scheme has only one
subscriber. FullStoreName is the data store file
name specified in the DataStore attribute of the
DSN description.

ALTER STORE FullStoreName SET
StoreAttribute

Indicates changes to the attributes of a data store.
Only the PORT and TIMEOUT attributes can be
set for subscribers. FullStoreName is the data
store file name specified in the DataStore
attribute of the DSN description.
For information on StoreAttribute clauses, see
ALTER REPLICATION.

FullStoreName The data store, specified as one of the following:
• SELF
• The prefix of the data store file name
For example, if the data store path is directory/
subdirectory/data.ds0, then data is the data
store name that should be used.
This is the data store file name specified in the
DataStore attribute of the DSN description with
optional host ID in the form:

DataStoreName [ON Host]
Host can be either an IP address or a literal host
name assigned to one or more IP addresses, as
described in "Configuring host IP addresses" in
the TimesTen to TimesTen Replication Guide.
Host names containing special characters must be
surrounded by double quotes. For example:
“MyHost-500”.

{ INCLUDE | EXCLUDE }
{TABLE [Owner.]TableName |
CACHE GROUP
[Owner.]CacheGroupName |
SEQUENCE [Owner.]SequenceName }
[,...]

Includes in or excludes from replication the
tables, sequences or cache groups listed.
INCLUDE adds the tables, sequences or cache
groups to replication. Use one INCLUDE clause
for each object type (table, sequence or cache
group).
EXCLUDE removes the tables, sequences or
cache groups from replication. Use one
EXCLUDE clause for each object type (table,
sequence or cache group).
188 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • Your must stop the replication agent before altering the active standby pair.
• You may only alter the active standby pair replication scheme on the active

data store. See "Changing the configuration of an active standby pair" in the
TimesTen to TimesTen Replication Guide for more information.

• Use ADD SUBSCRIBER FullStoreName to add a subscriber to the
replication scheme.

• Use DROP SUBSCRIBER FullStoreName to drop a subscriber from the
replication scheme.

• Use ALTER STORE FullStoreName SET StoreAttribute to change the
attributes for the specified data store. Only the PORT and TIMEOUT
attributes can be set for subscribers.

• Use the INCLUDE or EXCLUDE clause to include the listed tables,
sequences or cache groups in the replication scheme, or to exclude them from

ADD ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Adds NetworkOperation to replication scheme.
Allows you to control the network interface that a
master store uses for every outbound connection
to each of its subscriber stores.

Can be specified more than once.

DROP ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Drops NetworkOperation from replication
scheme.

Can be specified more than once.

MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost

MasterHost and SubscriberHost are the IP
addresses for the network interface on the master
and subscriber stores. Specify in dot notation or
canonical format or in colon notation for IPV6.

Clause can be specified more than once. Valid for
both ADD and DROP ROUTE MASTER.

PRIORITY Priority Variable expressed as an integer from 1 to 99.
Denotes the priority of the IP address. Lower
integral values have higher priority. An error is
returned if multiple addresses with the same
priority are specified. Controls the order in which
multiple IP addresses are used to establish peer
connections.

Required syntax of NetworkOperation clause.
Follows MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost clause
.

SQL Statements 189

the replication scheme. Use one INCLUDE clause for each object type (table,
sequence or cache group). Use one EXCLUDE clause for each object type
(table, sequence or cache group).

Example 5.1 Add a subscriber to the replication scheme.
ALTER ACTIVE STANDBY PAIR

ADD SUBSCRIBER rep4;

Example 5.2 Drop two subscribers from the replication scheme.
ALTER ACTIVE STANDBY PAIR

DROP SUBCRIBER rep3
DROP SUBSCRIBER rep4;

Example 5.3 Alter the store attributes of the rep3 and rep4 data stores.
ALTER ACTIVE STANDBY PAIR

ALTER STORE rep3 SET PORT 23000 TIMEOUT 180
ALTER STORE rep4 SET PORT 23500 TIMEOUT 180;

Example 5.4 Add a table, a sequence and two cache groups to the replication scheme.
ALTER ACTIVE STANDBY PAIR

INCLUDE TABLE my.newtab
INCLUDE SEQUENCE my.newseq
INCLUDE CACHE GROUP my.newcg1, my.newcg2;

Example 5.5 Add NetworkOperation clause to active standby pair:
ALTER ACTIVE STANDBY PAIR
ADD ROUTE MASTER Rep1 SUBSCRIBER Rep2
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2" PRIORITY 1;

See Also “CREATE ACTIVE STANDBY PAIR” on page 229
“DROP ACTIVE STANDBY PAIR” on page 305
190 Oracle TimesTen In-Memory Database SQL Reference Guide

ALTER CACHE GROUP
The ALTER CACHE GROUP statement allows changes to the state, interval and
mode of AUTOREFRESH.

Updates on Oracle can be propagated back to the TimesTen cache group with the
use of AUTOREFRESH. AUTOREFRESH can be enabled when the cache
group is a user managed cache group or is declared both as READONLY and
with an AUTOREFRESH clause.

Any values or states set by ALTER CACHE GROUP are persistent. They are
stored in the data store and survive daemon and Cache Agent restarts.

For a description of cache group types, see “User and system managed cache
groups” on page 236.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL syntax This statement changes the mode of the cache group, which determines which
rows are updated during an AUTOREFRESH:
ALTER CACHE GROUP [Owner.]GroupName

SET AUTOREFRESH MODE
{INCREMENTAL | FULL}

This statement changes the AUTOREFRESH interval on the cache group:
ALTER CACHE GROUP [Owner.]GroupName

SET AUTOREFRESH INTERVAL IntervalValue
{MINUTE[S] | SECOND[S] | MILLISECOND[S] }

This statement alters the state of AUTOREFRESH:
ALTER CACHE GROUP [Owner.]GroupName

SET AUTOREFRESH STATE
{ON | OFF | PAUSED}

Parameters ALTER CACHE GROUP has the parameters:

Parameter Description

[Owner.]GroupName Name assigned to the new cache group.

AUTOREFRESH Indicates that changes on Oracle should be automatically
propagated to TimesTen. For details, see “AUTOREFRESH in
Cache Groups” on page 243.
SQL Statements 191

Description • A refresh does not occur immediately after issuing an ALTER CACHE
GROUP...SET AUTOREFRESH STATE command. This statement only
changes the state of AUTOREFRESH. When the transaction that contains the
ALTER CACHE GROUP statement is committed, the Cache Agent is
notified to schedule an AUTOREFRESH immediately, but the commit goes
through without waiting for the completion of the refresh. The scheduling of
the AUTOREFRESH is part of the transaction, but the refresh itself is not.

• If you issue an ALTER CACHE GROUP... SET AUTOREFRESH STATE
OFF, and there is an autorefresh operation currently running, then:
– If LockWait interval is 0, the ALTER statement fails with a lock timeout

error.

MODE Determines which rows in the cache are updated during an
autorefresh. If the INCREMENTAL clause is specified, TimesTen
refreshes only rows that have been changed on Oracle since the
last propagation. If the FULL clause is specified or if there is
neither FULL nor INCREMENTAL clause specified, TimesTen
updates all rows in the cache with each autorefresh. The default
mode is INCREMENTAL.

INTERVAL
IntervalValue

Indicates the interval at which autorefresh should occur in units of
minutes, seconds or milliseconds. An integer value that specifies
how often AUTOREFRESH should be scheduled, in minutes,
seconds or milliseconds. The default value is 10 minutes. If the
specified interval is not long enough for an AUTOREFRESH to
complete, a runtime warning is generated and the next
AUTOREFRESH waits until the current one finishes. An
informational message is generated in the support log if the wait
queue reaches 10.

STATE Specifies whether AUTOREFRESH should be changed to on, off
or paused. By default, the AUTOREFRESH STATE is on.

ON AUTOREFRESH is scheduled to occur at the specified interval.

OFF A scheduled AUTOREFRESH is cancelled, and TimesTen does
not try to maintain the information necessary for an
INCREMENTAL refresh. Therefore if AUTOREFRESH is turned
on again at a later time, the first refresh is FULL.

PAUSED A scheduled AUTOREFRESH is cancelled, but TimesTen tries to
maintain the information necessary for an INCREMENTAL
refresh. Therefore if AUTOREFRESH is turned on again at a later
time, a full refresh may not be necessary.
192 Oracle TimesTen In-Memory Database SQL Reference Guide

– If LockWait interval is non-zero, then the current autorefresh transaction is
preempted (rolled back), and the ALTER statement continues. This affects
all cache groups with the same autorefresh interval.

• Replication cannot occur between cache groups with AUTOREFRESH and
cache groups without AUTOREFRESH.

Example 5.6 This example demonstrates how to set up AUTOREFRESH on the
AutorefreshCustomers cache group, which implements incremental refreshes,
without supplying an Oracle Admin password to TimesTen.

Before creating a cache group that utilizes AUTOREFRESH, you must:
• Supply the cache administrator user ID and password for the data store, either:

– through the built-in procedure ttCacheUidPwdSet, or
– with the utility ttAdmin -cacheUidPwdSet command

• Start the Cache agent for the data store, either:
– through the built-in procedure ttCacheStart, or
– with the utility ttAdmin -cacheStart command

For example:
ttAdmin -cacheUidPwdSet -cacheUid scott -cachePwd tiger DSN;
ttAdmin -cacheStart DSN;
SQL Statements 193

ALTER REPLICATION
The ALTER REPLICATION statement adds, alters, or drops replication
elements and changes the replication attributes of participating data stores.

Most ALTER REPLICATION operations are supported only when the
replication agent is stopped (ttAdmin -repStop). However, it is possible to
dynamically add a subscriber data store to a replication scheme while the
replication agent is running. See Chapter 6, “Altering Replication” in the
TimesTen to TimesTen Replication Guide for more information.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
ADMIN privileges.

SQL syntax The ALTER REPLICATION statement has the syntax:
ALTER REPLICATION [Owner.]ReplicationSchemeName

ElementOperation [...] | StoreOperation |
NetworkOperation [...]

Specify ElementOperation one or more times:
ADD ELEMENT ElementName
{DATASTORE | {TABLE [Owner.]TableName [CheckConflicts]} |

SEQUENCE [Owner.]SequenceName}
{ MASTER | PROPAGATOR } FullStoreName
{ SUBSCRIBER FullStoreName [, …]

[ReturnServiceAttribute] } […] }
{ INCLUDE | EXCLUDE }{TABLE [Owner.]TableName |

CACHE GROUP [Owner.]CacheGroupName|
SEQUENCE [Owner.]SequenceName}[,...]

ALTER ELEMENT { ElementName | * IN FullStoreName]
ADD SUBSCRIBER FullStoreName [,...[ReturnServiceAttribute] |

ALTER SUBSCRIBER FullStoreName [, …] |
SET [ReturnServiceAttribute] |

DROP SUBSCRIBER FullStoreName [, …]

ALTER ELEMENT * IN FullStoreName
SET { MASTER | PROPAGATOR } FullStoreName

ALTER ELEMENT ElementName
{SET NAME NewElementName | SET CheckConflicts}

ALTER ELEMENT ElementName
{ INCLUDE | EXCLUDE }{TABLE [Owner.]TableName |

CACHE GROUP [Owner.]CacheGroupName |
SEQUENCE [Owner.]SequenceName}[,...]

DROP ELEMENT { ElementName | * IN FullStoreName }

CheckConflicts can only be set when replicating TABLE elements. The syntax is
described in “CHECK CONFLICTS” on page 266.

Syntax for ReturnServiceAttribute is:
194 Oracle TimesTen In-Memory Database SQL Reference Guide

{ RETURN RECEIPT [BY REQUEST] | NO RETURN }

StoreOperation clauses:
ADD STORE FullStoreName [StoreAttribute […]]

ALTER STORE FullStoreName SET StoreAttribute […]

Syntax for the StoreAttribute is:
[DISABLE RETURN {SUBSCRIBER | ALL} NumFailures |
RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED |
DURABLE COMMIT {ON | OFF} |
RESUME RETURN MilliSeconds |
LOCAL COMMIT ACTION {NO ACTION| COMMIT} |
RETURN WAIT TIME Seconds |
COMPRESS TRAFFIC {ON | OFF} |
PORT PortNumber |
TIMEOUT Seconds |
FAILTHRESHOLD Value]

Specify NetworkOperation one or more times:
ADD ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName

{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }
 PRIORITY Priority } [...]

DROP ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }

[...]

Parameters The ALTER REPLICATION statement has the parameters:

Parameter Description

[Owner.]ReplicationSchemeName Name assigned to the replication scheme.

ADD ELEMENT ElementName Adds a new ELEMENT to the existing replication
scheme. ElementName is an identifier of up to 30
characters. With DATASTORE elements, the
ElementName must be unique with respect to
other DATASTORE element names within the
first 20 chars.
If the ELEMENT is a DATASTORE, all tables
and cache groups are included in the data store.
SEQUENCE elements that are part of the data
store do not have their return services modified by
this statement.
SQL Statements 195

ADD ELEMENT ElementName
DATASTORE
{INCLUDE | EXCLUDE}
{TABLE [Owner.]TableName |
CACHE GROUP
[Owner.]CacheGroupName |
SEQUENCE [Owner.]SequenceName}
[,...]

Adds a new DATASTORE ELEMENT to the
existing replication scheme. ElementName is an
identifier of up to 30 characters. With
DATASTORE elements, the ElementName must
be unique with respect to other DATASTORE
element names within the first 20 chars.

INCLUDE includes in the data store only the
tables and cache groups listed. Use one
INCLUDE clause for each object type (table,
cache group or sequence).

EXCLUDE includes in the data store all tables
and cache groups except the tables, cache groups
and sequences listed. Use one EXCLUDE clause
for each object type (table, cache group or
sequence).

If the element is a sequence, RETURN attributes
are not applied, no conflict checking is supported
and sequences that cycle return an error.

ADD SUBSCRIBER FullStoreName Indicates an additional subscriber data store.
FullStoreName is the data store file name
specified in the DataStore attribute of the DSN
description.

ALTER ELEMENT * IN FullStoreName Makes a change to all elements for which
FullStoreName is the MASTER or
PROPAGATOR. FullStoreName is the data store
file name specified in the DataStore attribute of
the DSN description.
This syntax can be used on a set of element names
to:
• Add, alter, or drop subscribers.
• Set the MASTER or PROPAGATOR status of

the element set.

SEQUENCE elements that are part of the data
store being altered do not have their return
services modified by this statement.

ALTER ELEMENT ElementName Name of the element to which a subscriber is to be
added or dropped.
196 Oracle TimesTen In-Memory Database SQL Reference Guide

ALTER ELEMENT ElementName1 SET
NAME ElementName2

Renames ElementName1 with the name
ElementName2. You can only rename elements of
type TABLE.

ALTER ELEMENT ElementName
DATASTORE
{ INCLUDE | EXCLUDE }
{TABLE [Owner.]TableName |
CACHE GROUP
[Owner.]CacheGroupName |
SEQUENCE [Owner.]SequenceName}
[,...]

Adds or removes tables or cache groups in an
existing data store element.

INCLUDE adds to the data store the tables and
cache groups listed. Use one INCLUDE clause for
each object type (table or cache group).

EXCLUDE removes from the data store the tables
and cache groups listed. Use one EXCLUDE
clause for each object type (table, cache group or
sequence).

If the element is a sequence, RETURN attributes
are not applied, no conflict checking is supported
and sequences that cycle return an error.

ALTER SUBSCRIBER FullStoreName
SET RETURN RECEIPT
[BY REQUEST] | NO RETURN

Indicates an alteration to a subscriber data store to
enable, disable, or change the return receipt
service.FullStoreName is the data store file name
specified in the DataStore attribute of the DSN
description.

CheckConflicts Check for replication conflicts when
simultaneously writing to bi-directionally
replicating TABLE elements between data stores.
You cannot check for conflicts when replicating
elements of type DATASTORE. See “CHECK
CONFLICTS” on page 266.

COMPRESS TRAFFIC {ON | OFF} Compress replicated traffic to reduce the amount
of network bandwidth. ON specifies that all
replicated traffic for the data store defined by
STORE be compressed. OFF (the default)
specifies no compression. See "Compressing
replicated traffic" in the TimesTen to TimesTen
Replication Guide for details.
SQL Statements 197

DISABLE RETURN
{SUBSCRIBER | ALL} NumFailures

Set the return service failure policy so that return
service blocking is disabled after the number of
timeouts specified by NumFailures. Selecting
SUBSCRIBER applies this policy only to the
subscriber that fails to acknowledge replicated
updates within the set timeout period. ALL
applies this policy to all subscribers should any of
the subscribers fail to respond. This failure policy
can be specified for either the RETURN
RECEIPT or RETURN TWOSAFE service.

See "Managing return service timeout errors and
replication state changes" in the TimesTen to
TimesTen Replication Guide for details.

DURABLE COMMIT {ON | OFF} Set to override the DurableCommits setting on a
data store and enable durable commit when return
service blocking has been disabled by DISABLE
RETURN.

DROP ELEMENT * IN FullStoreName Deletes the replication description of all elements
for which FullStoreName is the MASTER.
FullStoreName is the data store file name
specified in the DataStore attribute of the DSN
description.

DROP ELEMENT ElementName Deletes the replication description of
ElementName.

DROP SUBSCRIBER FullStoreName Indicates that updates should no longer be sent to
the specified subscriber data store. This operation
fails if your replication scheme has only one
subscriber. FullStoreName is the data store file
name specified in the DataStore attribute of the
DSN description.

FAILTHRESHOLD Value The number of log files that can accumulate for a
subscriber data store. If this value is exceeded, the
subscriber is set to the Failed state.

The value 0 means “No Limit.” This is the default.
See "Managing the log on a replicated data store"
in the TimesTen Replication Guide for more
information.
198 Oracle TimesTen In-Memory Database SQL Reference Guide

FullStoreName The data store, specified as one of the following:
• SELF
• The prefix of the data store file name

For example, if the data store path is directory/
subdirectory/data.ds0, then data is the data
store name.

This is the data store file name specified in the
DataStore attribute of the DSN description with
optional host ID in the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host
name assigned to one or more IP addresses, as
described in "Configuring host IP addresses" in
the TimesTen to TimesTen Replication Guide. Host
names containing special characters must be
surrounded by double quotes. For example:
“MyHost-500”.

LOCAL COMMIT ACTION
{NO ACTION | COMMIT}

Specifies the default action to be taken for a
RETURN TWOSAFE transaction in the event of
a timeout.
NO ACTION. On timeout, the commit function
returns to the application, leaving the transaction
in the same state it was in when it entered the
commit call, with the exception that the
application is not able to update any replicated
tables. The application can only reissue the
commit. The transaction may not be rolled back.
This is the default.
COMMIT. On timeout, the commit function
writes a COMMIT log record and ends the
transaction locally. No more operations are
possible on the same transaction.
This setting can be overridden for specific
transactions by calling the ttRepSyncSet
procedure with the localAction parameter.

MASTER FullStoreName The data store on which applications update the
specified ELEMENT. The MASTER data store
sends updates to its SUBSCRIBER data stores.
FullStoreName is the data store file name
specified in the DataStore attribute of the DSN
description.
SQL Statements 199

NO RETURN Specifies that no return service is to be used. This
is the default.
For details on the use of the return services, see
"Using a return service" in the TimesTen to
TimesTen Replication Guide.

PORT PortNumber The TCP/IP port number on which the replication
agent on this data store listens for connections. If
not specified, the replication agent allocates a port
number automatically.

All TimesTen data stores that replicate to each
other must use the same port number.

PROPAGATOR FullStoreName The data store that receives replicated updates and
passes them on to other data stores.

RESUME RETURN MilliSeconds If return service blocking has been disabled by
DISABLE RETURN, this attribute sets the policy
on when to re-enable return service blocking.
Return service blocking is re-enabled as soon as
the failed subscriber acknowledges the replicated
update in a period of time that is less than the
specified MilliSeconds.

RETURN RECEIPT [BY REQUEST] Enables the return receipt service, so that
applications that commit a transaction to a master
data store are blocked until the transaction is
received by all subscribers.

RETURN RECEIPT applies the service to all
transactions. If you specify RETURN RECEIPT
BY REQUEST, you can use the ttRepSyncSet()
procedure to enable the return receipt service for
selected transactions. For details on the use of the
return services, see "Using a return service" in the
TimesTen to TimesTen Replication Guide.
200 Oracle TimesTen In-Memory Database SQL Reference Guide

RETURN SERVICES {ON | OFF}
WHEN [REPLICATION] STOPPED

Set the return service failure policy so that return
service blocking is either enabled or disabled
when the replication agent is in the “stop” or
“pause” state.

OFF is the default when using the RETURN
RECEIPT service. ON is the default when using
the RETURN TWOSAFE service.

See "Managing return service timeout errors and
replication state changes" in the TimesTen to
TimesTen Replication Guide for details.

RETURN TWOSAFE [BY REQUEST] Enables the return twosafe service, so that
applications that commit a transaction to a master
data store are blocked until the transaction is
committed on all subscribers.

RETURN TWOSAFE applies the service to all
transactions. If you specify RETURN TWOSAFE
BY REQUEST, you can use the ttRepSyncSet
procedure to enable the return receipt service for
selected transactions. For details on the use of the
return services, see "Using a return service" in the
TimesTen to TimesTen Replication Guide.

RETURN WAIT TIME Seconds Specifies the number of seconds to wait for return
service acknowledgement. The default value is 10
seconds. A value of ‘0’ means there is no wait
time. Your application can override this timeout
setting by calling the ttRepSyncSet procedure
with the returnWait parameter

SET { MASTER | PROPAGATOR }
FullStoreName

Sets the given data store to be the MASTER or
PROPAGATOR of the given element(s). The
FullStoreName must the be data store’s file base
name.

SUBSCRIBER FullStoreName A data store that receives updates from the
MASTER data store(s). FullStoreName is the data
store file name specified in the DataStore
attribute of the DSN description.

TIMEOUT Seconds The amount of time a data store waits for a
response from another data store before resending
the message. Default: 120 seconds.
SQL Statements 201

Description • ALTER ELEMENT DROP SUBSCRIBER deletes a subscriber for a
particular replication element.

• ALTER ELEMENT SET NAME may be used to change the name of a
replication element when it conflicts with one already defined at another data
store. SET NAME does not admit the use of * IN FullStoreName. The
FullStoreName must the be data store’s file base name. For example, if the
data store file name is data.ds0, then data is the file base name.

• ALTER ELEMENT SET MASTER may be used to change the master data
store for replication elements. The * IN FullStoreName option must be used
for the MASTER operation. That is, a master data store must transfer
ownership of all of its replication elements, thereby giving up its master role
entirely. Typically, this option is used in ALTER REPLICATION statements

ADD ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Adds NetworkOperation to replication scheme.
Allows you to control the network interface that a
master store uses for every outbound connection
to each of its subscriber stores.

Can be specified more than once.

DROP ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Drops NetworkOperation from replication
scheme.

Can be specified more than once.

MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost

MasterHost and SubscriberHost are the IP
addresses for the network interface on the master
and subscriber stores. Specify in dot notation or
canonical format or in colon notation for IPV6.

Clause can be specified more than once. Valid for
both ADD and DROP ROUTE MASTER.

PRIORITY Priority Variable expressed as an integer from 1 to 99.
Denotes the priority of the IP address. Lower
integral values have higher priority. An error is
returned if multiple addresses with the same
priority are specified. Controls the order in which
multiple IP addresses are used to establish peer
connections.

Required syntax of NetworkOperation clause.
Follows MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost clause
.

202 Oracle TimesTen In-Memory Database SQL Reference Guide

requested at SUBSCRIBER data stores after the failure of a (common)
MASTER.

To transfer ownership of the master elements to the subscriber:
– Manually drop the replicated elements by executing an ALTER

REPLICATION DROP ELEMENT statement for each replicated table.
– Use ALTER REPLICATION ADD ELEMENT to add each table back to

the replication scheme, with the newly designated MASTER /
SUBSCRIBER roles.

• ALTER REPLICATION ALTER ELEMENT SET MASTER does not
automatically retain the old master as a subscriber in the scheme. If this is
desired, execute an ALTER REPLICATION ALTER ELEMENT ADD
SUBSCRIBER statement.

Note: There is no ALTER ELEMENT DROP MASTER. Each replication
element must have exactly one MASTER data store, and the currently designated
MASTER cannot be deleted from the replication scheme.

• Stop the replication agent before you use the NetworkOperation clause.

Example 5.7 This example sets up replication for an additional table WestLeads that is
updated on data store West and replicated to data store East.
ALTER REPLICATION R1

ADD ELEMENT E3 TABLE WestLeads
MASTER West ON "WestCoast"
SUBSCRIBER East ON "EastCoast";

Example 5.8 This example adds an additional subscriber (Backup) to table WestLeads.
ALTER REPLICATION R1

ALTER ELEMENT E3
ADD SUBSCRIBER Backup ON "BackupServer";

Example 5.9 This example changes the element name of table WestLeads from E3 to
NewElementName.
ALTER REPLICATION R1

ALTER ELEMENT E3
SET NAME NewElementName;

Example 5.10 This example makes NewWest the master for all elements for which West
currently is the master.
ALTER REPLICATION R1

ALTER ELEMENT * IN West
SET MASTER NewWest;
SQL Statements 203

Example 5.11 This element changes East's port number.
ALTER REPLICATION R1

ALTER STORE East ON "EastCoast" SET PORT 22251;

Example 5.12 This example adds my.tab1 table to the ds1 data store element in my.rep1
replication scheme.
ALTER REPLICATION my.rep1
ALTER ELEMENT ds1 DATASTORE

INCLUDE TABLE my.tab1;

Example 5.13 This example add my.cg1 cache group to ds1 data store in my.rep1 replication
scheme.
ALTER REPLICATION my.rep1
ALTER ELEMENT ds1 DATASTORE

INCLUDE CACHE GROUP my.cg1;

Example 5.14 This example adds ds1 data store to my.rep1 replication scheme. Include
my.tab2 table, my.cg2 cache group, and my.cg3 cache group in the data store.
ALTER REPLICATION my.rep1
ADD ELEMENT ds1 DATASTORE

MASTER rep2
SUBSCRIBER rep1, rep3
INCLUDE TABLE my.tab2
INCLUDE CACHE GROUP my.cg2, my.cg3;

Example 5.15 This example adds ds2 data store to a replication scheme but exclude my.tab1
table, my.cg0 cache group and my.cg1 cache group.

ALTER REPLICATION my.rep1
ADD ELEMENT ds2 DATASTORE

MASTER rep2
SUBSCRIBER rep1
EXCLUDE TABLE my.tab1
EXCLUDE CACHE GROUP my.cg0, my.cg1;

Example 5.16 Add NetworkOperation clause:
ALTER REPLICATION R
ADD ROUTE MASTER Rep1 SUBSCRIBER Rep2
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2"

PRIORITY 1
MASTERIP "3.3.3.3" PRIORITY 2 SUBSCRIBERIP "4.4.4.4" PRIORITY 2;

Example 5.17 Drop NetworkOperation clause:
204 Oracle TimesTen In-Memory Database SQL Reference Guide

ALTER REPLICATION R
DROP ROUTE MASTER Rep1 SUBSCRIBER Rep2
MASTERIP "1.1.1.1" SUBSCRIBERIP "2.2.2.2"
MASTERIP "3.3.3.3" SUBSCRIBERIP "4.4.4.4";

See Also “ALTER ACTIVE STANDBY PAIR” on page 187
“CREATE ACTIVE STANDBY PAIR” on page 229
“CREATE REPLICATION” on page 258
“DROP ACTIVE STANDBY PAIR” on page 305
“DROP REPLICATION” on page 310

To drop a table from a data store, see "Altering a replicated table" in TimesTen to
TimesTen Replication Guide
SQL Statements 205

ALTER SESSION
The ALTER SESSION statement changes the NLS_SORT,
NLS_LENGTH_SEMANTICS, and NLS_NCHAR_CONV_EXCP session
parameters dynamically.

Access
Control

There are no special privileges required for this operation.

SQL syntax
ALTER SESSION SET
{NLS_SORT = {BINARY| SortName} |
NLS_LENGTH_SEMANTICS = {BYTE| CHAR} |
NLS_NCHAR_CONV_EXCP = {TRUE|FALSE}
}

Parameters The ALTER SESSION statement has the parameters:

Description • The ALTER SESSION statement affects commands that are subsequently
executed by the session. The new session parameters take effect immediately.

• The NLS_SORT setting affects materialized views and cache group mainte-
nance. Use the NLSSORT() function rather than relying on the NLS_SORT
setting.

Parameter Description

NLS_SORT =
{BINARY|
SortName}

Indicates which collation sequence to use for linguistic comparisons.
Append _CI or _AI to either BINARY or the SortName value if you
wish to do case-insensitive or accent-insensitive sorting.
If you do not specify NLS_SORT, the default is BINARY. See Example
5.18.

For a complete list of supported values for SortName, see "Supported
Linguistic Sorts" in the Operations Guide.
For more information on case-insensitive or accent-insensitive sorting,
see "Case-insensitive and accent-insensitive linguistic sorts".

NLS_LENGTH_
SEMANTICS =
{BYTE | CHAR}

Sets the default length semantics configuration. BYTE indicates byte
length semantics. CHAR indicates character length semantics. The
default is BYTE.

For more information on length semantics, see "Length semantics and
data storage".

NLS_NCHAR_
CONV_EXCP =
{TRUE | FALSE}

Determines whether an error should be reported when there is data loss
during an implicit or explicit character type conversion between
NCHAR/NVARCHAR2 data and CHAR/VARCHAR2 data. Specify
TRUE to enable error reporting. Specify FALSE to not report errors.
The default is FALSE.
206 Oracle TimesTen In-Memory Database SQL Reference Guide

• Character length and byte length semantics are supported to resolve potential
ambiguity regarding column length and storage size. Multibyte encoding
character sets are supported (For example, UTF-8 or AL32UTF8). Multibyte
encodings require varying amounts of storage per character depending on the
character. For example, an UTF-8 character may require from 1 to 4 bytes.

If, for example, a column is defined as CHAR (10), you may assume that the
10 characters fit in this column regardless of character set encoding. However,
for UTF-8 character set encoding, up to 40 bytes are required. TimesTen
supports character length and byte length semantics to avoid such ambiguity.

• Operations involving character comparisons support linguistic sensitive
collating sequences. Case-insensitive sorts may affect DISTINCT value
interpretation. Supported collating sequence sensitive operations:
– MIN,MAX
– BETWEEN
– =,!=, >, >=,<,<=
– DISTINCT
– CASE
– GROUP BY
– HAVING
– ORDER BY
– IN
– LIKE

• Primary key indexes are based on the BINARY collating sequence. You
cannot use non-BINARY NLS_SORT with equality searches on the primary
key index.

• Implicit and explicit CHAR <-> NCHAR conversions are supported.
CHAR <-> NCHAR conversions are not allowed when using the
TIMESTEN8 character set.

• You can use the SQL string functions with the supported character sets. For
example, UPPER and LOWER functions support non-ASCII CHAR/
VARCHAR2 characters as well as NCHAR/NVARCHAR2 characters.

• TIMESTEN8 character set restrictions:
– Character set conversions are not allowed.
– BINARY is the only acceptable collating sequence.
– CHAR semantics are ignored. Characters are assumed to be single-byte.
– UPPER and LOWER functions support ASCII characters only. Results for

non-ASCII characters are undefined. TimesTen does not return an error.
• NLS_SORT settings other than BINARY could have a performance impact on

character operations.
SQL Statements 207

• Choice of character set could have an impact on memory consumption for
CHAR/VARCHAR2 column data.

• The character sets of all data stores involved in a replication scheme must
match.

Example 5.18 The following example uses the ALTER SESSION statement to change the
NLS_SORT setting from BINARY to BINARY_CI to BINARY_AI. The
database and connection character sets are WE8ISO8859P1.
Command> connect "dsn=cs;ConnectionCharacterSet=WE8ISO8859P1";
Connection successful: DSN=cs;UID=user;DataStore=/datastore/user/
cs;
DatabaseCharacterSet=WE8ISO8859P1;
ConnectionCharacterSet=WE8ISO8859P1;PermSize=32;TypeMode=0;
(Default setting AutoCommit=1)
Command>#Create the Table
Command> CREATE TABLE CollatingDemo (Letter VARCHAR2 (10));
Command>#Insert values
Command> INSERT INTO CollatingDemo VALUES ('a');
1 row inserted.
Command> INSERT INTO CollatingDemo VALUES ('A');
1 row inserted.
Command> INSERT INTO CollatingDemo VALUES ('Y');
1 row inserted.
Command> INSERT INTO CollatingDemo VALUES ('ä');
1 row inserted.
Command>#SELECT
Command> SELECT * FROM CollatingDemo;
< a >
< A >
< Y >
< ä >
4 rows found.
Command>#SELECT with ORDER BY
Command> SELECT * from CollatingDemo ORDER BY Letter;
< A >
< Y >
< a >
< ä >
4 rows found.
Command>#set NLS_SORT to BINARY_CI and SELECT
Command> ALTER SESSION SET NLS_SORT = BINARY_CI;
Command> SELECT * from CollatingDemo ORDER BY Letter;
< a >
< A >
< Y >
< ä >
4 rows found.
Command>#Set NLS_SORT to BINARY_AI and SELECT
208 Oracle TimesTen In-Memory Database SQL Reference Guide

Command> ALTER SESSION SET NLS_SORT = BINARY_AI;
Command> SELECT * from CollatingDemo ORDER BY Letter;
< ä >
< a >
< A >
< Y >
4 rows found.
SQL Statements 209

ALTER TABLE
The ALTER TABLE statement changes an existing table definition.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL syntax To add columns:
ALTER TABLE [Owner.]TableName
ADD [COLUMN] ColumnName ColumnDataType
[DEFAULT DefaultVal] [[NOT] INLINE] [UNIQUE] [NULL]

or
ALTER TABLE [Owner.]TableName
ADD (ColumnName ColumnDataType
[DEFAULT DefaultVal] [[NOT] INLINE] [UNIQUE] [NULL] [, ...])

To remove columns:
ALTER TABLE [Owner.]TableName
DROP [COLUMN] ColumnName

or
ALTER TABLE [Owner.]TableName DROP
(ColumnName [, ...])

To add a primary key constraint:
ALTER TABLE [Owner.]TableName ADD CONSTRAINT ConstraintName
PRIMARY KEY (ColumnName [,...])
[USE HASH INDEX PAGES = {RowPages | CURRENT}]

To add a foreign key and optionally add ON DELETE CASCADE:
ALTER TABLE [Owner.]TableName
ADD [CONSTRAINT ForeignKeyName] FOREIGN KEY

(ColumnName [,...]) REFERENCES RefTableName
[(ColumnName [,...])] [ON DELETE CASCADE]

To remove a foreign key:
ALTER TABLE [Owner.]TableName
DROP CONSTRAINT ForeignKeyName

To resize a hash index:
ALTER TABLE [Owner.]TableName
SET PAGES = {RowPages | CURRENT}

To change the primary key to use a hash index:
ALTER TABLE [Owner.]TableName
USE HASH INDEX PAGES = {RowPages | CURRENT}

To change the primary key to use a T-tree index:
210 Oracle TimesTen In-Memory Database SQL Reference Guide

ALTER TABLE [Owner.]TableName
USE TREE INDEX

To change the default value of a column:
ALTER TABLE [Owner.]TableName
MODIFY (ColumnName DEFAULT DefaultVal)

To add or drop a UNIQUE constraint on a column:
ALTER TABLE Owner.]TableName
{ADD | DROP} UNIQUE (ColumnName)

To remove the default value of a column that is nullable, by changing it to
NULL:

ALTER TABLE [Owner.]TableName
MODIFY (ColumnName DEFAULT NULL)

To add LRU aging:
ALTER TABLE [Owner.]TableName
ADD AGING LRU [ON | OFF]

To add time-based aging:
ALTER TABLE [Owner.]TableName
ADD AGING USE ColumnName LIFETIME num1

{MINUTE[S] | HOUR[S] | DAY[S]}
[CYCLE num2 {MINUTE[S] | HOUR[S] | DAY[S] }]
[ON | OFF]

To change the aging state:
ALTER TABLE [Owner.]TableName
SET AGING {ON | OFF}

To drop aging:
ALTER TABLE [Owner.]TableName
DROP AGING

To change LIFETIME for time-based aging:
ALTER TABLE [Owner.]TableName
SET AGING LIFETIME num1 {MINUTE[S] | HOUR[S] | DAY[S]}

To change CYCLE for time-based aging:
ALTER TABLE [Owner.]TableName
SET AGING CYCLE num2 {MINUTE[S] | HOUR[S] | DAY[S]}

Parameters The ALTER TABLE statement has the parameters:

Parameter Description

[Owner.] TableName Identifies the table to be altered.
SQL Statements 211

UNIQUE Specifies that in the column ColumnName each row must contain a
unique value.

MODIFY Specifies that an attribute of a given column is to be changed to a new
value.

DEFAULT
[DefaultVal | NULL]

Specifies that the column has a default value, DefaultVal. If NULL,
specifies that the default value of the columns is to be dropped. If a
column with a default value of SYSDATE is added, the value of the
column of the existing rows only is the system date at the time the
column was added. If the default value is one of the USER functions
the column value is the user value of the session that executed the
ALTER TABLE statement.

Altering the default value of a column has no impact on existing rows.

ColumnName Name of the column to for which the UNIQUE CONSTRAINT or
default value is to be changed. A new column cannot have the same
name as an existing column or another new column.

ColumnDataType Type of the column to be added. Some types require additional
parameters. See Chapter 1, “Data Types” for the data types that can be
specified.

INLINE |
NOT INLINE

By default, variable-length columns whose declared column length is >
128 bytes are stored out of line. Variable-length columns whose
declared column length is <= 128 bytes are stored inline. The default
behavior can be overridden during table creation through the use of the
INLINE and NOT INLINE keywords.

ADD CONSTRAINT
ConstraintName
PRIMARY KEY
(ColumnName
[,...]) [USE HASH
INDEX PAGES =
{RowPages |
CURRENT}]

Adds a primary key constraint to the table. Columns of the primary key
must be defined as NOT NULL.

Specify ConstraintName as the name of the index used to enforce the
primary key constraint. Specify ColumnName as the name(s) of the
NOT NULL column(s) used for the primary key.

Specify the USE HASH INDEX clause to use a hash index for the
primary key. Specify either RowPages (as a positive constant) or
CURRENT to calculate the page count value. If you specify
CURRENT, the current number of rows in the table is used to calculate
the page count value.

See “Column Definition” on page 286 for a description of hash indexes
and pages.
212 Oracle TimesTen In-Memory Database SQL Reference Guide

CONSTRAINT Specifies that a foreign key is to be dropped. Optionally specifies that
an added foreign key is named by the user.

ForeignKeyName Name of the foreign key to be added or dropped. All foreign keys are
assigned a default name by the system if the name was not specified by
the user. Either the user-provided name or system name can be
specified in the DROP FOREIGN KEY clause.

FOREIGN KEY Specifies that a foreign key is to be added or dropped. See “FOREIGN
KEY” on page 282.

REFERENCES Specifies that the foreign key references another table.

RefTableName The name of the table that the foreign key references.

[ON DELETE
CASCADE]

Enables the ON DELETE CASCADE referential action. If specified,
when rows containing referenced key values are deleted from a parent
table, rows in child tables with dependent foreign key values are also
deleted.

USE HASH INDEX
PAGES =
{RowPages |
CURRENT}

Specifies that a hash index is to be used for the primary key. If the
primary key already uses a hash index, then this clause is equivalent to
the SET PAGES clause.

USE TREE INDEX Specifies that a T-tree index is to be used for the primary key. If the
primary key already uses a T-tree index, TimesTen ignores this clause.

SET PAGES Resizes the hash index based on the expected number of row pages in
the table. Each row page can contain up to 256 rows of data. This
number determines the number of hash buckets created for the hash
index. The minimum is 1. If your estimate is too small, performance
may be degraded. You can specify a constant (RowPages) or the
CURRENT number of row pages. See “Column Definition” on page
286 for a description of hash indexes and pages.

RowPages The number of row pages expected.

CURRENT Use the number of row pages currently in use.
SQL Statements 213

ADD AGING LRU
[ON | OFF]

Adds least recently used (LRU) aging to an existing table that has no
aging policy defined.

The LRU aging policy defines the type of aging (least recently used
(LRU)), the aging state (ON or OFF) and the LRU aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates that the
aging state is disabled and aging is not done automatically. In both
cases, the aging policy is defined. The default is ON.

LRU attributes are defined by calling the ttAgingLRUConfig
procedure. LRU attributes are not defined at the SQL level.

For more information about LRU aging, see "Implementing aging in
your tables" in Oracle TimesTen In-Memory Database Operations
Guide.

ADD AGING USE
ColumnName...
[ON | OFF]

Adds time-based aging to an existing table that has no aging policy
defined.

The time-based aging policy defines the type of aging (time-based), the
aging state (ON or OFF) and the time-based aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates that the
aging state is disabled and aging is not done automatically. In both
cases, the aging policy is defined. The default is ON.

Time-based aging attributes are defined at the SQL level and are
specified by the LIFETIME and CYCLE clauses.

Specify ColumnName as the name of the column used for time-based
aging. Define the column as NOT NULL and of data type
TIMESTAMP or DATE. The value of this column is subtracted from
SYSDATE, truncated using the specified unit (minute, hour, day) and
then compared to the LIFETIME value. If the result is greater than the
LIFETIME value, then the row is a candidate for aging.

The values of the column used for aging are updated by your
applications. If the value of this column is unknown for some rows, and
you do not want the rows to be aged, define the column with a large
default value (the column cannot be NULL).

You can define your aging column with a data type of
TT_TIMESTAMP or TT_DATE. If you choose data type TT_DATE,
then you must specify the LIFETIME unit as days.

For more information about time-based aging, see "Implementing
aging in your tables" in Oracle TimesTen In-Memory Database
Operations Guide.
214 Oracle TimesTen In-Memory Database SQL Reference Guide

LIFETIME Num1
{MINUTE[S]
|HOUR[S]| DAY[S]}

Specify the LIFETIME clause after the ADD AGING USE
ColumnName clause if you are adding the time-based aging policy to
an existing table. Specify the LIFETIME clause after the SET AGING
clause to change the LIFETIME setting.

The LIFETIME clause specifies the minimum amount of time data is
kept in cache.

Specify Num1 as a positive integer constant to indicate the unit of time
expressed in minutes, hours or days that rows should be kept in cache.
Rows that exceed the LIFETIME value are aged out (deleted from the
table). If you define your aging column with data type TT_DATE, then
you must specify DAYS as the LIFETIME unit.

The concept of time resolution is supported. If DAYS is specified as
the time resolution, then all rows whose timestamp belongs to the same
day are aged out at the same time. If HOURS is specified as the time
resolution, then all rows with timestamp values within that hour are
aged at the same time. A LIFETIME of 3 days is different than a
LIFETIME of 72 hours (3*24) or a LIFETIME of
432 minutes (3*24*60).

CYCLE Num2
{MINUTE[S] |
HOUR[S] |DAY[S] }

Specify the optional CYCLE clause after the LIFETIME clause if you
are adding the time-based aging policy to an existing table.

CYCLE is a time-based aging attribute.

The CYCLE clause indicates how often the system should examine
rows to see if data exceeds the specified LIFETIME value and should
be aged out (deleted).

Specify Num2 as a positive integer constant.

If you do not specify the CYCLE clause, then the default value is 5
minutes. If you specify 0 for Num2, then aging is continuous and the
aging thread never sleeps.

If the aging state is OFF, then aging is not done automatically and the
CYCLE clause is ignored.

Specify the CYCLE clause after the SET AGING clause to change the
CYCLE setting.

SET AGING {ON |
OFF}

Changes the aging state. The aging policy must be previously defined.
ON enables automatic aging. OFF disables automatic aging. If you
wish to control aging with an external scheduler, then disable aging and
invoke the ttAgingScheduleNow procedure.

DROP AGING Drops the aging policy from the table. After you define an aging policy,
you cannot alter it. Drop aging, then redefine.
SQL Statements 215

Description
• The ALTER TABLE statement cannot be used to alter a temporary table.
• The ALTER TABLE ADD [COLUMN] ColumnName statement adds one or

more new columns to an existing table. The new columns are added to the end
of all existing rows of the table in one new partition.

• Columns referenced by materialized views cannot be dropped.
• Only one partition is added to the table per statement regardless of the number

of columns added.
• The new columns cannot be declared NOT NULL.
• NULL is the initial value for all added columns, unless a default value is

specified for the new column.
• The total number of columns in the table cannot exceed 255. In addition, the

total number of partitions in a table cannot exceed 255, one of which is used
by TimesTen.

• Use the ADD CONSTRAINT ... PRIMARY KEY clause to add a primary key
constraint to a regular table or to a detailed or materialized view table. Do not
use this clause on a table that already has a primary key.

• If you use the ADD CONSTRAINT... PRIMARY KEY clause to add a
primary key constraint, and you do not specify the USE HASH INDEX
clause, then a t-tree index is used for the primary key constraint.

• If a table is replicated and the replication agent is active, you cannot use the
ADD CONSTRAINT ... PRIMARY KEY clause. Stop the replication agent
first.

• Do not specify the ADD CONSTRAINT ... PRIMARY KEY clause on a
global temporary table.

• Do not specify the ADD CONSTRAINT ... PRIMARY KEY clause on a
cache group table because cache group tables defined with a primary key must
be defined in the create cache group statement.

• As the result of an ALTER TABLE ADD statement, an additional read occurs
for each new partition during queries. Therefore, altered tables may have

SET AGING
LIFETIME Num1
{MINUTE[S] |
HOUR[S] |
DAY[S] }

Use this clause to change the LIFETIME for time-based aging.

Num1 must be a positive integer constant.

If you defined your aging column with data type TT_DATE, then you
must specify DAYS as the LIFETIME unit.

SET AGING
CYCLE Num2
{MINUTE[S] |
HOUR[S] |DAY[S]}

Use this clause to change the CYCLE for time-based aging.

Num2 must be a positive integer constant.
216 Oracle TimesTen In-Memory Database SQL Reference Guide

slightly degraded performance. The performance can only by restored by
dropping and recreating the table, or by using the ttMigrate create -c
-noRepUpgrade command, and restoring the table using the ttRestore -r
-noRepUpgrade command. Dropping the added column does not recover the
lost performance or decrease the number of partitions.

• The ALTER TABLE DROP statement removes one or more columns from an
existing table. The dropped columns are removed from all current rows of the
table. Subsequent SQL statements must not attempt to make any use of the
dropped columns. They are treated as if they never existed. You cannot drop
columns that are in the table’s primary key. You cannot drop columns that are
in any of the table's foreign keys until you have dropped all foreign keys. You
cannot drop columns that are indexed until all indexes on the column have
been dropped. ALTER TABLE cannot be used to drop all of the columns of a
table. Use DROP TABLE instead.

• When a column is dropped from a table, all commands referencing that table
need to be recompiled. An error may result at recompilation time if a dropped
column was referenced. The application must re-prepare those commands,
and rebuild any parameters and result columns. When a column is added to a
table, the commands that contain a SELECT * statement are invalidated. Only
these commands must be re-prepared. All other commands continue to work
as expected.

• When you drop a column, the column space is not freed.
• When you add a UNIQUE constraint, there is overhead incurred (in terms of

additional space and additional time). This is because an index is created to
maintain the UNIQUE constraint. You cannot use the DROP INDEX
statement to drop an index used to maintain the UNIQUE constraint.

• A UNIQUE constraint and its associated index cannot be dropped if it is being
used as a unique index on a replicated table.

• Use ALTER TABLE...USE TREE INDEX if your application performs range
queries over a table’s primary key.

• Use ALTER TABLE...USE HASH INDEX if your application performs exact
match lookups on a table’s primary key.

• An error is generated if a table has no primary key and either the USE HASH
INDEX clause or the USE TREE INDEX clause is specified.

• To change the ON DELETE CASCADE triggered action, drop then redefine
the foreign key constraint.

• If access control is disabled, no privilege is necessary to execute a DELETE
statement which triggers the ON DELETE CASCADE action. Otherwise,
WRITE privileges are required on all tables affected by the ON DELETE
CASCADE action.

• ON DELETE CASCADE is supported on detail tables of a materialized view.
If you have a materialized view defined over a child table, a deletion from the
SQL Statements 217

parent table causes cascaded deletes in the child table. This, in turn, triggers
changes in the materialized view.

• The total number of rows reported by the DELETE statement does not include
rows deleted from child tables as a result of the ON DELETE CASCADE
action.

• For ON DELETE CASCADE, since different paths may lead from a parent
table to a child table, the following rule is enforced:

• Either all paths from a parent table to a child table are “delete” paths or all
paths from a parent table to a child table are “do not delete” paths.
– Specify ON DELETE CASCADE on all child tables on the “delete” path.
– This rule does not apply to paths from one parent to different children or

from different parents to the same child.
• For ON DELETE CASCADE, a second rule is also enforced:
• If a table is reached by a “delete” path, then all its children are also reached by

a “delete’ path.
• For ON DELETE CASCADE with replication, the following restrictions

apply:
– The foreign keys specified with ON DELETE CASCADE must match

between the Master and subscriber for replicated tables. Checking is done
at runtime. If there is an error, the receiver thread stops working.

– All tables in the delete cascade tree have to be replicated if any table in the
tree is replicated. This restriction is checked when the replication scheme is
created or when a foreign key with ON DELETE CASCADE is added to
one of the replication tables. If an error is found, the operation is aborted.
You may be required to drop the replication scheme first before trying to
change the foreign key constraint.

– You must stop the replication agent before adding or dropping a foreign
key on a replicated table.

• The ALTER TABLE ADD/DROP CONSTRAINT statement has the
following restrictions:
– When a foreign key is dropped, TimesTen also drops the index associated

with the foreign key. Attempting to drop an index associated with a foreign
key using the regular DROP INDEX statement results in an error.

– Foreign keys cannot be added or dropped on tables in a cache group.
– Foreign keys cannot be added or dropped on tables that participate in

TimesTen replication. If the operation is attempted on a table that is either
being replicated or is a replicated table, TimesTen returns an error.

– Foreign keys cannot be added or dropped on views or temporary tables.
218 Oracle TimesTen In-Memory Database SQL Reference Guide

• After you have defined an aging policy for the table, you cannot change the
policy from LRU to time-based or from time-based to LRU. You must first
drop aging and then alter the table to add a new aging policy.

• The aging policy must be defined to change the aging state.
• The following rules determine if a row is accessed or referenced for LRU

aging:
– Any rows used to build the result set of a SELECT statement.
– Any rows used to build the result set of an INSERT SELECT statement.
– Any rows that are about to be updated or deleted.

• Compiled commands are marked invalid and need recompilation when you
either drop LRU aging from or add LRU aging to tables that are referenced in
the commands.

• Call the ttAgingScheduleNow procedure to schedule the aging process right
away regardless if the aging state is ON or OFF.

• For the time-based aging policy, you cannot add or modify the aging column.
This is because you cannot add or modify a NOT NULL column. See
Example 5.37.

• Aging restrictions:
– You cannot drop the column that is used for time-based aging.
– Tables that are related by foreign keys must have the same aging policy.
– For LRU aging, if a child row is not a candidate for aging, neither this child

row nor its parent row are deleted. ON DELETE CASCADE settings are
ignored.

– For time-based aging, if a parent row is a candidate for aging, then all child
rows are deleted. ON DELETE CASCADE (whether specified or not) is
ignored.

Example 5.19 Add ReturnRate column to Parts table.
ALTER TABLE Parts ADD COLUMN ReturnRate DOUBLE;

Example 5.20 Add NumAssign and PrevDept columns to Contractor table.
ALTER TABLE Contractor
ADD (NumAssign INTEGER, PrevDept CHAR(30));

Example 5.21 Remove Addr1 and Addr2 columns from Employee table.
ALTER TABLE Employee DROP (Addr1, Addr2);

Example 5.22 Drop the UNIQUE title column of the Books table.
ALTER TABLE Books DROP UNIQUE (Title);
SQL Statements 219

Example 5.23 Add the x1 column to the T1 table with a default value of 5:
ALTER TABLE T1 ADD (x1 INT DEFAULT 5);

Example 5.24 Change the default value of column x1 to 2:
ALTER TABLE T1 MODIFY (x1 DEFAULT 2);

Example 5.25 ALTER table PrimaryKeyTest to add the primary key constraint C1. Use the
ttIsql INDEXES command to show that the primary key constraint C1 is created
and a t-tree index is used:
Command> CREATE TABLE PrimaryKeyTest (Col1 TT_INTEGER NOT NULL);
Command> ALTER TABLE PrimaryKeyTest ADD CONSTRAINT C1
> PRIMARY KEY (Col1);
Command> INDEXES PrimaryKeyTest;

Indexes on table SAMPLEUSER.PRIMARYKEYTEST:
 C1: unique T-tree index on columns:
 COL1
 1 index found.

1 table found.

Example 5.26 ALTER table PriKeyHash to add the primary key constraint C2 using a hash
index. Use the ttIsql INDEXES command to show that the primary key constraint
C2 is created and a hash index is used:
Command> CREATE TABLE PriKeyHash (Col1 NUMBER (3,2) NOT NULL);
Command> ALTER TABLE PriKeyHash ADD CONSTRAINT C2
> PRIMARY KEY (Col1) USE HASH INDEX PAGES = 20;
Command> INDEXES PriKeyHash;

Indexes on table SAMPLEUSER.PRIKEYHASH:
 C2: unique hash index on columns:
 COL1
 1 index found.

1 table found.

Example 5.27 ALTER table PriKeyHashCurrent to add the primary key constraint C3 using a
hash index. Specify PAGES = CURRENT to indicate that the current number of
rows in PriKeyHashCurrent should be used to calculate the page count value.
Use the ttIsql INDEXES command to show that the primary key constraint C3 is
created and a hash index is used:
Command> CREATE TABLE PriKeyHashCurrent (Col1 CHAR (30) NOT NULL);
Command> ALTER TABLE PriKeyHashCurrent ADD CONSTRAINT C3
220 Oracle TimesTen In-Memory Database SQL Reference Guide

> PRIMARY KEY (Col1) USE HASH INDEX PAGES = CURRENT;
Command> INDEXES PriKeyHashCurrent;

Indexes on table SAMPLEUSER.PRIKEYHASHCURRENT:
 C3: unique hash index on columns:
 COL1
 1 index found.

1 table found.

Example 5.28 Attempt to add a primary key constraint on a table already defined with a primary
key. You see an error:
Command> CREATE TABLE OnePriKey (Col1 VARCHAR2 (30) NOT NULL,
> Col2 TT_BIGINT NOT NULL, Col3 CHAR (15) NOT NULL,
> PRIMARY KEY (Col1,Col2));
Command> ALTER TABLE OnePriKey ADD CONSTRAINT C2
> PRIMARY KEY (Col1,Col2);
 2235: Table can have only one primary key
The command failed.

Example 5.29 Attempt to add a primary key constraint on a column that is not defined as NOT
NULL. You see an error:
Command> CREATE TABLE PriKeyNull (Col1 CHAR (30));
Command> ALTER TABLE PriKeyNull ADD CONSTRAINT C3
> PRIMARY KEY (Col1);
 2236: Nullable column can not be part of a primary key
The command failed.

Example 5.30 The example illustrates the use of T-tree and hash indexes. It creates the Pkey
table with Col1 as the primary key. A T-tree index is created by default. The
table is then altered to change the index on Col1 to a hash index. The table is
altered again to change the index back to a T-tree index.
Command> CREATE TABLE Pkey (Col1 TT_INTEGER PRIMARY KEY,

Col2 VARCHAR2 (20));
Command> INDEXES Pkey;

Indexes on table SAMPLEUSER.PKEY:
PKEY: unique T-tree index on columns:
COL1

1 index found.
1 table found.

Alter the Pkey table to use a hash index:
Command> ALTER TABLE Pkey USE HASH INDEX PAGES = CURRENT;
Command> INDEXES PKEY;
SQL Statements 221

Indexes on table SAMPLEUSER.PKEY:
PKEY: unique hash index on columns:
COL1

1 index found.
1 table found.

Alter the Pkey table to use a T-tree index:
Command> ALTER TABLE PKEY USE TREE INDEX;
Command> INDEXES PKEY;

Indexes on table SAMPLEUSER.PKEY:
PKEY: unique T-tree index on columns:
COL1

1 index found.
1 table found.

Example 5.31 The example generates an error when attempting to alter a table to define either a
T-tree or hash index on a column without a primary key.
Command> CREATE TABLE IllegalIndex (Col1 CHAR (20));
Command> ALTER TABLE IllegalIndex USE TREE INDEX;
 2810: The table has no primary key so cannot change its index
type
The command failed.

Command> ALTER TABLE IllegalIndex USE HASH INDEX PAGES = CURRENT;
 2810: The table has no primary key so cannot change its index
type
The command failed.

Example 5.32 These examples show how time resolution works with aging. In this example,
lifetime is 3 days.
• If (SYSDATE - ColumnValue) <= 3, do not age out the row.
• If (SYSDATE - ColumnValue) > 3, then the row is a candidate for aging.
• If (SYSDATE - ColumnValue) = 3 days, 22 hours, then row is not aged out

because lifetime was specified in days. The row would be aged out if lifetime
had been specified as 72 hours.

Example 5.33 This example alters a table by adding LRU aging. The table has no previous
aging policy. The aging state is ON by default.
ALTER TABLE AgingDemo3

ADD AGING LRU;

Command> DESCRIBE AgingDemo3;
Table USER.AGINGDEMO3:
Columns:
*AGINGID NUMBER NOT NULL
222 Oracle TimesTen In-Memory Database SQL Reference Guide

NAME VARCHAR2 (20) INLINE
Aging lru on

1 table found.
(primary key columns are indicated with *)

Example 5.34 This example alters a table by adding time-based aging. The table has no
previous aging policy. AgingColumn is the column used for aging. LIFETIME is
2 days. CYCLE is 30 minutes.
ALTER TABLE AgingDemo4

ADD AGING USE AgingColumn LIFETIME 2 DAYS CYCLE 30
MINUTES;

Command> DESCRIBE AgingDemo4;
Table USER.AGINGDEMO4:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 2 days cycle 30 minutes on

Example 5.35 This example illustrates that after you create an aging policy, you cannot change
it. You must drop aging and redefine.
CREATE TABLE AgingDemo5

(AgingId NUMBER NOT NULL PRIMARY KEY
,Name VARCHAR2 (20)
,AgingColumn TIMESTAMP NOT NULL
)
AGING USE AgingColumn LIFETIME 3 DAYS OFF;

ALTER TABLE AgingDemo5
ADD AGING LRU;

 2980: Cannot add aging policy to a table with an existing aging policy.
Have to drop the old aging first
The command failed.

DROP aging on the table and redefine with LRU aging.

ALTER TABLE AgingDemo5
DROP AGING;

ALTER TABLE AgingDemo5
ADD AGING LRU;

Command> DESCRIBE AgingDemo5;

Table USER.AGINGDEMO5:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL
SQL Statements 223

Aging lru on

1 table found.
(primary key columns are indicated with *)

Example 5.36 This example alters a table by setting the aging state to OFF. The table has been
defined with a time-based aging policy. If you set the aging state to OFF, aging is
not done automatically. This is useful if you wish to use an external scheduler to
control the aging process. Set aging state to OFF and then call the
ttAgingScheduleNow procedure to start the aging process.
Command> DESCRIBE AgingDemo4;
Table USER.AGINGDEMO4:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 2 days cycle 30 minutes on

ALTER TABLE AgingDemo4
SET AGING OFF;

Note that when you describe AgingDemo4, the aging policy is defined and the
aging state is set to OFF.
Command> DESCRIBE AGINGDEMO4;

Table USER.AGINGDEMO4:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 2 days cycle 30 minutes off

1 table found.
(primary key columns are indicated with *)

Call ttAgingScheduleNow to invoke aging with an external scheduler:
Command> call ttAgingScheduleNow ('AgingDemo4');

Example 5.37 Attempt to alter a table adding the aging column and then use that column for
time-based aging. An error is generated.
Command> describe x;

Table USER1.X:
Columns:
*ID TT_INTEGER NOT NULL

1 table found.
(primary key columns are indicated with *)
Command> ALTER TABLE x ADD COLUMN t TIMESTAMP;
224 Oracle TimesTen In-Memory Database SQL Reference Guide

Command> ALTER TABLE x ADD AGING USE t LIFETIME 2 DAYS;
 2993: Aging column cannot be nullable
The command failed.

Example 5.38 Attempt to alter the LIFETIME clause for a table defined with timebased aging.
The aging column is defined with data type TT_DATE. An error is generated
because the LIFETIME unit is not expressed in DAYS.
Command> CREATE TABLE Aging1 (col1 TT_DATE NOT NULL) AGING USE

col1 LIFETIME 2 DAYS;
Command> ALTER TABLE Aging1 SET AGING LIFETIME 2 HOURS;
 2977: Only DAY lifetime unit is allowed with a TT_DATE column
The command failed.

See Also “CREATE TABLE” on page 279
“DROP TABLE” on page 311
"Implementing aging in your tables" in Oracle TimesTen In-Memory Database
Operations Guide
SQL Statements 225

ALTER USER
The ALTER USER statement allows an internal user or TimesTen administrator
to change the user password.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement allows a
user or the instance administrator to change the user's password. If your
TimesTen instance does not use Access Control, this operation is not available. If
Access Control is not enabled, TimesTen returns an error when this statement is
called.

SQL syntax ALTER USER User IDENTIFIED BY 'Password'

Parameters The ALTER USER statement has the parameters:

Description • Instance users may have internal user names or external user names.
– Internal user names are defined strictly within a TimesTen instance.
– External user names are defined by some external authority, such as the

operating system. External user names cannot be assigned a TimesTen
password.

• An internal user connected as User may execute this command to change their
own TimesTen password. Passwords are case-sensitive.

• TimesTen instance users are user names that have been identified to the
instance. User names are case-insensitive and apply to all data stores in the
instance.

• An internal user name takes precedence over an external user of the same name.
• Changes to user identification and privileges take place at the next connection

time.

Example 5.39 To change the password for internal user TERRY to “12345” from its current
setting, use:
ALTER USER terry IDENTIFIED BY ’12345’;

Parameter Description

User Name of the user whose password is being changed.

IDENTIFIED BY Specifies how the TimesTen instance uniquely identifies the user.

Password Internal users must be identified to TimesTen by a password. To perform
data store operations using an internal user name, the user must supply
this password.
226 Oracle TimesTen In-Memory Database SQL Reference Guide

See Also “CREATE USER” on page 299
“GRANT” on page 316
“REVOKE” on page 332
SQL Statements 227

COMMIT
The COMMIT statement ends the current transaction and makes permanent all
changes performed in the transaction. A transaction is a sequence of SQL
statements treated as a single unit.

Access
Control

This statement does not require privileges.

SQL syntax COMMIT [WORK]

Parameters The COMMIT statement allows the optional keyword:

Description • Until you commit a transaction:
– You can see any changes you have made during the transaction but other

users cannot see the changes. After you commit the transaction, the
changes are visible to other users’ statements that execute after the commit.

– You can rollback (undo) changes made during the transaction with the
ROLLBACK statement.

• This statement releases transaction locks.
• For passthrough, the Oracle transaction will also be committed.

Example 5.40 Insert row into Regions table of HR schema and commit transaction. First set
autocommit to 0:
Command> SET AUTOCOMMIT 0;
Command> INSERT INTO Regions VALUES (5,'Australia');
1 row inserted.
Command> COMMIT;
Command> SELECT * FROM REGIONS;
< 1, Europe >
< 2, Americas >
< 3, Asia >
< 4, Middle East and Africa >
< 5, Australia >
5 rows found.

See Also “ROLLBACK” on page 334

Parameter Description

[WORK] Optional clause supported for compliance with the SQL standard.
COMMIT and COMMIT WORK are equivalent.
228 Oracle TimesTen In-Memory Database SQL Reference Guide

CREATE ACTIVE STANDBY PAIR
This statement creates an active standby pair. It includes an active master data
store, a standby master data store, and may also include one or more read-only
subscribers. The active master data store replicates updates to the standby master
data store, which propagates the updates to the subscribers.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
ADMIN privileges

SQL Syntax CREATE ACTIVE STANDBY PAIR
FullStoreName, FullStoreName [ReturnServiceAttribute]
[SUBSCRIBER FullStoreName [,...]]
[STORE FullStoreName [StoreAttribute [...]]]
[NetworkOperation [...]]
[{ INCLUDE | EXCLUDE }{TABLE [Owner.]TableName |

CACHE GROUP [Owner.]CacheGroupName |
SEQUENCE [Owner.]SequenceName } [,...]]

The syntax for ReturnServiceAttribute is
{ RETURN RECEIPT [BY REQUEST] |

RETURN TWOSAFE [BY REQUEST] |
NO RETURN }

Syntax for StoreAttribute is:
[DISABLE RETURN {SUBSCRIBER | ALL} NumFailures]
[RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED]
[DURABLE COMMIT {ON | OFF}]
[RESUME RETURN MilliSeconds]
[LOCAL COMMIT ACTION {NO ACTION | COMMIT}]
[RETURN WAIT TIME Seconds]
[COMPRESS TRAFFIC {ON | OFF}
[PORT PortNumber]
[TIMEOUT Seconds]
[FAILTHRESHOLD Value]

Syntax for NetworkOperation:
ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }

PRIORITY Priority } [...]
SQL Statements 229

Parameters CREATE ACTIVE STANDBY PAIR has the parameters:

Parameter Description

FullStoreName The data store, specified as one of the
following:
• SELF
• The prefix of the data store file name

For example, if the data store path is
directory/subdirectory/data.ds0, then
data is the data store name that should be
used.

This is the data store file name specified in
the DataStore attribute of the DSN
description with optional host ID in the
form:

DataStoreName [ON Host]

Host can be either an IP address or a literal
host name assigned to one or more IP
addresses, as described in "Configuring host
IP addresses" in the TimesTen to TimesTen
Replication Guide. Host names containing
special characters must be surrounded by
double quotes. For example: “MyHost-500”.

RETURN RECEIPT [BY REQUEST] Enables the return receipt service, so that
applications that commit a transaction to a
master data store are blocked until the
transaction is received by all subscribers.

RETURN RECEIPT applies the service to
all transactions. If you specify RETURN
REQUEST BY REQUEST, you can use the
ttRepSyncSet procedure to enable the
return receipt service for selected
transactions. For details on the use of the
return services, see "Using a return service"
in the TimesTen to TimesTen Replication
Guide.
230 Oracle TimesTen In-Memory Database SQL Reference Guide

RETURN TWOSAFE [BY REQUEST] Enables the return twosafe service, so that
applications that commit a transaction to a
master data store are blocked until the
transaction is committed on all subscribers.

RETURN TWOSAFE applies the service to
all transactions. If you specify RETURN
TWOSAFE BY REQUEST, you can use the
ttRepSyncSet procedure to enable the
return receipt service for selected
transactions. For details on the use of the
return services, see "Using a return service"
in the TimesTen to TimesTen Replication
Guide.

NO RETURN Specifies that no return service is to be used.
This is the default.
For details on the use of the return services,
see "Using a return service" in the TimesTen
to TimesTen Replication Guide.

SUBSCRIBER FullStoreName [,...]] A data store that receives updates from a
master data store. FullStoreName is the data
store file name specified in the DataStore
attribute of the DSN description.

STORE FullStoreName [StoreAttribute [...]] Defines the attributes for the specified data
store. Data store attributes include PORT,
TIMEOUT and FAILTHRESHOLD.
FullStoreName is the data store file name
specified in the DataStore attribute of the
DSN description.

{ INCLUDE | EXCLUDE }
{TABLE [Owner.]TableName |
CACHE GROUP
[Owner.]CacheGroupName|
SEQUENCE [Owner.]SequenceName }
[,...]

Includes in or excludes from replication the
tables, sequences or cache groups listed.
INCLUDE adds the tables, sequences or
cache groups to replication. Use one
INCLUDE clause for each object type
(table, sequence or cache group).
EXCLUDE removes the tables, sequences
or cache groups from replication. Use one
EXCLUDE clause for each object type
(table, sequence or cache group).
SQL Statements 231

DISABLE RETURN {SUBSCRIBER |
ALL} NumFailures

Set the return service failure policy so that
return service blocking is disabled after the
number of timeouts specified by
NumFailures. Selecting SUBSCRIBER
applies this policy only to the subscriber that
fails to acknowledge replicated updates
within the set timeout period. ALL applies
this policy to all subscribers should any of
the subscribers fail to respond. This failure
policy can be specified for either the
RETURN RECEIPT or RETURN
TWOSAFE service.

See "Managing return service timeout errors
and replication state changes" in the
TimesTen to TimesTen Replication Guide for
details.

DURABLE COMMIT {ON | OFF} Set to override the DurableCommits setting
on a data store and enable durable commit
when return service blocking has been
disabled by DISABLE RETURN.

FAILTHRESHOLD Value The number of log files that can accumulate
for a subscriber data store. If this value is
exceeded, the subscriber is set to the Failed
state.The value 0 means “No Limit.” This is
the default.

See "Managing the log on a replicated data
store" in the TimesTen to TimesTen
Replication Guide for more information.
232 Oracle TimesTen In-Memory Database SQL Reference Guide

LOCAL COMMIT ACTION
{NO ACTION | COMMIT}

Specifies the default action to be taken for a
return twosafe transaction in the event of a
timeout.

Note: This attribute is only valid when the
RETURN TWOSAFE or RETURN
TWOSAFE BY REQUEST attribute is set
in the SUBSCRIBER clause.

NO ACTION -- On timeout, the commit
function returns to the application, leaving
the transaction in the same state it was in
when it entered the commit call, with the
exception that the application is not able to
update any replicated tables. The application
can reissue the commit or rollback the call.
COMMIT -- On timeout, the commit
function writes a COMMIT log record and
effectively ends the transaction locally. No
more operations are possible on the same
transaction.
This default setting can be overridden for
specific transactions by calling the
localAction parameter in the
ttRepSyncSet() procedure.

MASTER FullStoreName The data store on which applications update
the specified ELEMENT. The MASTER
data store sends updates to its
SUBSCRIBER data stores. The
FullStoreName must be the data store
specified in the DataStore attribute of the
DSN description.

NO RETURN Specifies that no return service is to be used.
This is the default.

For details on the use of the return services,
see "Using a return service" in the TimesTen
to TimesTen Replication Guide.

PORT PortNumber The TCP/IP port number on which the
replication agent for the data store listens for
connections. If not specified, the replication
agent automatically allocates a port number.
SQL Statements 233

Description • CREATE ACTIVE STANDBY PAIR is immediately followed by the names
of the two master data stores. The master data stores are later designated as
ACTIVE and STANDBY using the ttRepStateSet procedure. See "Setting up
an active standby pair" in the TimesTen to TimesTen Replication Guide.

• The SUBSCRIBER clause lists one or more read-only subscriber data stores.
You can designate up to 62 subscriber data stores.

• Replication between the active master data store and the standby master data
store can be RETURN TWOSAFE, RETURN RECEIPT, or asynchronous.
RETURN TWOSAFE ensures no transaction loss.

PROPAGATOR FullStoreName The data store that receives replicated
updates and passes them on to other data
stores. The FullStoreName must be the data
store specified in the DataStore attribute of
the DSN description.

ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Denotes the NetworkOperation clause. If
specified, allows you to control the network
interface that a master store uses for every
outbound connection to each of its
subscriber stores.
Can be specified more than once.

MASTERIP MasterHost | SUBSCRIBERIP
SubscriberHost

MasterHost and SubscriberHost are the IP
addresses for the network interface on the
master and subscriber stores. Specify in dot
notation or canonical format or in colon
notation for IPV6.
Clause can be specified more than once.

PRIORITY Priority Variable expressed as an integer from 1 to
99. Denotes the priority of the IP address.
Lower integral values have higher priority.
An error is returned if multiple addresses
with the same priority are specified.
Controls the order in which multiple IP
addresses are used to establish peer
connections.

Required syntax of NetworkOperation
clause. Follows MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost clause.
234 Oracle TimesTen In-Memory Database SQL Reference Guide

• Use the INCLUDE and EXCLUDE clauses to exclude the listed tables,
sequences and cache groups from replication, or to include only the listed
tables, sequences and cache groups, excluding all others.

Example 5.41 This example creates an active standby pair whose master data stores are rep1
and rep2. There is one subscriber, rep3. The type of replication is RETURN
RECEIPT. The statement also sets PORT and TIMEOUT attributes for the
master data stores.
CREATE ACTIVE STANDBY PAIR rep1, rep2 RETURN RECEIPT
SUBSCRIBER rep3
STORE rep1 PORT 21000 TIMEOUT 30
STORE rep2 PORT 22000 TIMEOUT 30;

Example 5.42 Specify NetworkOperation clause to control network interface:
CREATE ACTIVE STANDBY PAIR Rep1,Rep2
ROUTE MASTER Rep1 SUBSCRIBER Rep2
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2" PRIORITY 1;

See Also “ALTER ACTIVE STANDBY PAIR” on page 187
“DROP ACTIVE STANDBY PAIR” on page 305
SQL Statements 235

CREATE CACHE GROUP
The CREATE CACHE GROUP statement:
• Creates the table defined by the cache group.
• Inserts all new information associated with the cache group in the appropriate

system tables.
• Prevents illegal definitions (e.g., overlapping cache groups).

A cache group is a set of cached tables related through foreign keys. There is one
root table, which does not reference any of the other tables. All other cache
tables in the cache group reference exactly one other table in the cache group. In
other words, the foreign key relationships form a tree.

A cache table is a set of rows satisfying the conditions:
• The rows constitute a subset of the rows of a vertical partition of an Oracle

table.
• The rows are stored in a TimesTen table with the same name as the Oracle

table.

In other words, if you select some of the columns of an Oracle table, and then
take a subset of those rows, the resulting set of rows constitutes a table.

If a data store has more than one cache group, the cache groups must correspond
to different Oracle (and TimesTen) tables.

 cache group instance refers to a row in the root table and all the child table rows
related directly or indirectly to the root table rows.

User and system managed cache groups
A cache group can be either system managed or user managed.
• A system managed cache group is fully managed by TimesTen and has fixed

properties.

The READONLY, ASYNCHRONOUS WRITETHROUGH, and
SYNCHRONOUS WRITETHROUGH cache groups are system managed
cache groups.
– READONLY cache groups are updated in Oracle, and the updates are

propagated from Oracle to the cache.
– ASYNCHRONOUS cache groups are updated in the cache and the updates

are propagated to Oracle. Transactions continue executing on the cache
without waiting for a commit on Oracle.

– WRITETHROUGH cache groups are updated in the cache and the updates
are propagated to Oracle. Transactions are committed on the cache after
notification that a commit has occurred on Oracle.
236 Oracle TimesTen In-Memory Database SQL Reference Guide

Because TimesTen manages system managed cache groups, including loading
and unloading the cache group, certain statements and clauses cannot be used
with these cache groups, including:
– WHERE clauses (The clause can be used in a READONLY CACHE

GROUP definition.)
– READONLY, PROPAGATE and NOT PROPAGATE in the table

definition

In addition, AUTOREFRESH, REFRESH and FLUSH are not allowed on
WRITETHROUGH cache groups. For READONLY cache groups,
AUTOREFRESH is on by default.

• A user managed cache group must be managed by the application or user.
Certain statements and clauses cannot be used with these cache groups,
including:

The table-level READONLY keyword can only be used for user managed
cache groups.

In addition, both TimesTen and Oracle must be able to parse all WHERE clauses.

ASYNCHRONOUS WRITETHROUGH cache groups cannot be created while
the replication agent is running.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL syntax There are CREATE CACHE GROUP statements to create each type of cache
group:
• CREATE READONLY CACHE GROUP
• CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP
• CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP
• CREATE USERMANAGED CACHE GROUP

The statements used to create each type of cache group are described in separate
sections.

CREATE READONLY CACHE GROUP
For READONLY cache groups, the syntax is:
CREATE READONLY CACHE GROUP [Owner.]GroupName
[AUTOREFRESH
[MODE {INCREMENTAL | FULL}]
[INTERVAL IntervalValue {MINUTE[S] | SECOND[S] |

MILLESECOND[S] }]
[STATE {ON|OFF|PAUSED}]
]
FROM
SQL Statements 237

{[Owner.]TableName (
{ColumnDefinition[,…]}
[,PRIMARY KEY(ColumnName[,…])]
[,FOREIGN KEY(ColumnName [,…])

REFERENCES RefTableName (ColumnName [,…])
[ON DELETE CASCADE]

[UNIQUE HASH ON (HashColumnName[,…]) PAGES=PrimaryPages]
[WHERE ExternalSearchCondition]
[AGING USE ColumnName

LIFETIME Num1 {MINUTE[S] |HOUR[S] | DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

[ON|OFF]
]
} [,...];

CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP
For ASYNCHRONOUS WRITETHROUGH cache groups, the syntax is:
CREATE [ASYNCHRONOUS] WRITETHROUGH CACHE GROUP [Owner.]GroupName
FROM
{[Owner.]TableName (
{ColumnDefinition[,…]}
[,PRIMARY KEY(ColumnName[,…])]
[FOREIGN KEY(ColumnName [,…])

REFERENCES RefTableName (ColumnName [,…])]
[ON DELETE CASCADE]

UNIQUE HASH ON (HashColumnName[,…]) PAGES=PrimaryPages]
[AGING {LRU|

USE ColumnName
LIFETIME Num1 {MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

}[ON|OFF]
]
} [,...];

CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP
For SYNCHRONOUS WRITETHROUGH cache groups, the syntax is:
CREATE SYNCHRONOUS WRITETHROUGH

CACHE GROUP [Owner.]GroupName
FROM
{[Owner.]TableName (
{ColumnDefinition[,…]}
[,PRIMARY KEY(ColumnName[,…])]
[FOREIGN KEY(ColumnName [,…])

REFERENCES RefTableName (ColumnName [,…])}]
[ON DELETE CASCADE]

[UNIQUE HASH ON (HashColumnName[,…]) PAGES=PrimaryPages]
[AGING {LRU|
238 Oracle TimesTen In-Memory Database SQL Reference Guide

USE ColumnName
LIFETIME Num1 {MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

}[ON|OFF]
]
} [,...];

CREATE USERMANAGED CACHE GROUP
For user managed cache groups, the syntax is:
CREATE [USERMANAGED] CACHE GROUP [Owner.]GroupName
[AUTOREFRESH
[MODE {INCREMENTAL | FULL}]
[INTERVAL IntervalValue {MINUTE[S] | SECOND[S] |

MILLESECOND[S] }]
[STATE {ON|OFF|PAUSED}]

]
FROM
{[Owner.]TableName (
{ColumnDefinition[,…]}
[,PRIMARY KEY(ColumnName[,…])]
[FOREIGN KEY(ColumnName[,…])

REFERENCES RefTableName (ColumnName [,…])]
[ON DELETE CASCADE]

[, {READONLY | PROPAGATE | NOT PROPAGATE}]
[UNIQUE HASH ON (HashColumnName[,…]) PAGES=PrimaryPages]
[WHERE ExternalSearchCondition]
[AGING {LRU|

USE ColumnName
LIFETIME Num1 {MINUTE[S] |HOUR[S] |DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

}[ON|OFF]
]
} [,...];

Parameters The parameters for the general cache group description (everything before the
FROM keyword) are:.

Parameter Description

[Owner.]GroupName Owner and name assigned to the new cache group.

AUTOREFRESH The AUTOREFRESH parameter automatically propagates
changes from the Oracle database to the TimesTen cache group.
For details, see “AUTOREFRESH in Cache Groups” on page 243.
SQL Statements 239

Everything after the FROM keyword comprises the definitions of the Oracle
tables cached in the cache group. The syntax for each table definition is similar to
that of a CREATE TABLE statement. However, primary key constraints are
required for the cache group table.

Table definitions have the parameters:

MODE
[INCREMENTAL |
FULL]

Determines which rows in the cache are updated during an
autorefresh. If the INCREMENTAL clause is specified, TimesTen
refreshes only rows that have been changed on Oracle since the
last propagation. If the FULL clause is specified, TimesTen
updates all rows in the cache with each autorefresh. The default
AUTOREFRESH mode is INCREMENTAL.

INTERVAL
IntervalValue

Indicates the interval at which autorefresh should occur in units of
minutes, seconds or milliseconds. IntervalValue is an integer value
that specifies how often autorefresh should be scheduled, in
MINUTES, SECONDS or MILLISECONDS. The default
IntervalValue value is 5 minutes. If the specified interval is not
long enough for an autorefresh to complete, a runtime warning is
generated and the next autorefresh waits until the current one
finishes. An informational message is generated in the support log
if the wait queue reaches 10.

STATE [ON | OFF |
PAUSED]

Specifies whether autorefresh should be ON or OFF when the
cache group is created. You can alter this setting later through the
ALTER CACHE GROUP command. By default, the
AUTOREFRESH STATE is PAUSED.

FROM Designates one or more table definitions for the cache group.

Parameter Description

[Owner.]TableName Owner and name to be assigned to the new table. If you do not
specify the owner name, your login becomes the owner name for
the new table.

ColumnDefinition Name of an individual column in a table, its data type and whether
or not it is nullable. Each table must have at least one column. See
“Column Definition” on page 286.
240 Oracle TimesTen In-Memory Database SQL Reference Guide

PRIMARY KEY
(ColumnName[,…])

Specifies that the table has a primary key. Primary key constraints
are required for a cache group. ColumnName is the name of the
column that forms the primary key for the table to be created. Up
to 16 columns can be specified for the primary key. Cannot be
specified with UNIQUE in one specification.

FOREIGN KEY
(ColumnName[,…])

Specifies that the table has a foreign key. ColumnName is the
name of the column that forms the foreign key for the table to be
created. See “FOREIGN KEY” on page 282.

REFERENCES
RefTableName
(ColumnName[,…])

Specifies the table which the foreign key is associated with.
RefTableName is the name of the referenced table and
ColumnName is the name of the column referenced in the table.

[ON DELETE
 CASCADE]

Enables the ON DELETE CASCADE referential action. If
specified, when rows containing referenced key values are deleted
from a parent table, rows in child tables with dependent foreign
key values are also deleted.

READONLY Specifies that changes cannot be made on the cached table.

PROPAGATE |
NOT PROPAGATE

Specifies whether changes to the cached table are automatically
propagate changes to the cached table to the corresponding Oracle
table at commit time.

UNIQUE HASH ON
(HashColumnName)

Specifies that a hash index is created on this table.
HashColumnName identifies the column that is to participate in
the hash key of this table. The columns specified in the hash index
must be identical to the columns in the primary key.

PAGES=PrimaryPages Specifies the expected number of pages in the table. The
PrimaryPages number determines the number of hash buckets
created for the hash index. The minimum is 1. If your estimate is
too small, performance is degraded. See the CREATE TABLE
section for more information.

WHERE
ExternalSearchCondition

The WHERE clause evaluated by Oracle for the cache group table.
This WHERE clause is added to every LOAD and REFRESH
operation on the cache group. It may not directly reference other
tables. It is parsed by both TimesTen and Oracle. See the section
"Using WHERE clauses" in the TimesTen Cache Connect to
Oracle Guide.
SQL Statements 241

AGING LRU [ON | OFF] If specified, defines the LRU aging policy on the root table. The
LRU aging policy applies to all tables in the cache group. The
LRU aging policy defines the type of aging (least recently used
(LRU)), the aging state (ON or OFF) and the LRU aging attributes.

Set the aging state to either ON or OFF. ON indicates that the
aging state is enabled and aging is done automatically. OFF
indicates that the aging state is disabled and aging is not done
automatically. In both cases, the aging policy is defined. The
default is ON.

LRU attributes are defined by calling the ttAgingLRUConfig
procedure. LRU attributes are not defined at the SQL level.

LRU aging is not supported for cache groups with autorefresh.

For more information about LRU aging, see "Implementing aging
in a cache group" in TimesTen Cache Connect to Oracle Guide.

AGING USE
ColumnName...
[ON | OFF]

If specified, defines the time-based aging policy on the root table.
The time-based aging policy applies to all tables in the cache
group. The time-based aging policy defines the type of aging
(time-based), the aging state (ON or OFF) and the time-based
aging attributes.

Set the aging state to either ON or OFF. ON indicates that the
aging state is enabled and aging is done automatically. OFF
indicates that the aging state is disabled and aging is not done
automatically. In both cases, the aging policy is defined. The
default is ON.

Time-based aging attributes are defined at the SQL level and are
specified by the LIFETIME and CYCLE clauses.

Specify ColumnName as the name of the column used for time-
based aging. Define the column as NOT NULL and of data type
TIMESTAMP or DATE. The value of this column is subtracted
from SYSDATE, truncated using the specified unit (minute, hour,
day) and then compared to the LIFETIME value. If the result is
greater than the LIFETIME value, then the row is a candidate for
aging.

The values of the column used for aging are updated by your
applications. If the value of this column is unknown for some
rows, and you do not want the rows to be aged, define the column
with a large default value (the column cannot be NULL).

For more information about time-based aging, see "Implementing
aging in a cache group" in TimesTen Cache Connect to Oracle
Guide.
242 Oracle TimesTen In-Memory Database SQL Reference Guide

AUTOREFRESH in Cache Groups
The AUTOREFRESH parameter automatically propagates changes from the
Oracle database to the TimesTen cache. By default, system managed cache
groups automatically propagate changes from the Oracle database to the
TimesTen cache. For a description of cache group types, see “User and system
managed cache groups” on page 236.

TimesTen supports FULL or INCREMENTAL AUTOREFRESH. In FULL
mode, the entire cache is periodically unloaded and then reloaded. In
INCREMENTAL mode, TimesTen installs triggers in the Oracle database to
track any changes to it, and periodically updates only the rows that have changed

LIFETIME Num1
{MINUTE[S] |HOUR[S]
DAY[S]}

LIFETIME is a time-based aging attribute and is a required clause.

Specify the LIFETIME clause after the AGING USE
ColumnName clause.

The LIFETIME clause specifies the minimum amount of time data
is kept in cache.

Specify Num1 as a positive integer constant to indicate the unit of
time expressed in minutes, hours or days that rows should be kept
in cache. Rows that exceed the LIFETIME value are aged out
(deleted from the table).

The concept of time resolution is supported. If DAYS is specified
as the time resolution, then all rows whose timestamp belongs to
the same day are aged out at the same time. If HOURS is specified
as the time resolution, then all rows with timestamp values within
that hour are aged at the same time. A LIFETIME of 3 days is
different than a LIFETIME of 72 hours (3*24) or a LIFETIME of
432 minutes (3*24*60).

[CYCLE Num2
{MINUTE[S] |HOUR[S] |
DAY[S]}]

CYCLE is a time-based aging attribute and is optional. Specify the
CYCLE clause after the LIFETIME clause.

The CYCLE clause indicates how often the system should
examine rows to see if data exceeds the specified LIFETIME value
and should be aged out (deleted).

Specify Num2 as a positive integer constant.

If you do not specify the CYCLE clause, then the default value is 5
minutes. If you specify 0 for Num2, then aging is continuous and
the aging thread never sleeps.

If the aging state is OFF, then aging is not done automatically and
the CYCLE clause is ignored.
SQL Statements 243

in Oracle. The first incremental refresh is always a full refresh, unless the
PAUSED state is being used. The default mode is INCREMENTAL.

FULL AUTOREFRESH is more efficient when most of the Oracle table rows are
changed. INCREMENTAL AUTOREFRESH is more efficient when there are
fewer changes.

AUTOREFRESH is scheduled by TimesTen when the transaction that contains
the specified AUTOREFRESH statement is committed. The statement types that
cause AUTOREFRESH to be scheduled are:
• A CREATE CACHE GROUP statement in which AUTOREFRESH is

specified, and the AUTOREFRESH state is specified as ON
• An ALTER CACHE GROUP statement in which the AUTOREFRESH state

has been changed to ON
• A LOAD CACHE GROUP statement on an empty cache group whose

autorefresh state is PAUSED. (The state is ON after the LOAD.)
The specified interval determines how often AUTOREFRESH occurs.

The current STATE of AUTOREFRESH can be ON, OFF or PAUSED. By
default, the AUTOREFRESH STATE is PAUSED.

To use AUTOREFRESH in a cache group, you must first run the TimesTen
ttAdmin utility and supply an Oracle ID and PWD.: a cacheUid and a cachePwd
or run the ttCacheUidPwdSet built-in procedure.

Before you can activate an AUTOREFRESH cache group using incremental
refreshes, certain triggers must be installed in Oracle. For details, see the
TimesTen Cache Connect Guide. TimesTen can automatically install all
necessary triggers and procedures for you in Oracle.

In order to use AUTOREFRESH with a cache group, you must specify
AUTOREFRESH when you create the cache group. You can change the MODE,
STATE and INTERVAL AUTOREFRESH settings after a cache group has been
created by using the ALTER CACHE GROUP command.

Once a cache group has been specified as either AUTOREFRESH or
PROPAGATE, you cannot change these attributes.

The NOT PROPAGATE clause cannot be used with an AUTOREFRESH
statement.

There are specific requirements and restrictions when replication cache groups.
See “Replicating cache groups,” in the TimesTen to TimesTen Replication Guide.

Description • Two cache groups cannot have the same owner name and group name. If you
do not specify the owner name, your login becomes the owner name for the
new cache group.

• Dynamic parameters are not allowed in the WHERE clause.
• Oracle temporary tables cannot be cached.
244 Oracle TimesTen In-Memory Database SQL Reference Guide

• Each table must correspond to a table in Oracle.
• You cannot use lower case delimited identifiers to name your cache tables.

Since, table names in TimesTen are case insensitive and are stored as
uppercase, and the name of the cache table must be the same as the Oracle
table name, uppercase table names on TimesTen will not match mixed case
table names on Oracle. As a workaround, create a synonym for your table in
Oracle and use that synonym as the table name for the cache group. Do not
use autorefresh on synonyms. See Example 5.48 on page 248 and Example
5.49 on page 249.

• Each column in the table must match each column in the Oracle table, both in
name and in type. See "Data type mappings for Cache Connect to Oracle" in
the TimesTen Cache Connect to Oracle Guide. In addition, each column name
must be fully qualified with an owner and table name when referenced in a
WHERE clause.

• The WHERE clause can only directly refer to the cache group table. Outside
tables can only be referenced with a sub-select.

• Generally, you do not have to fully qualify the column names in the WHERE
clause of the CREATE CACHE GROUP, LOAD, UNLOAD, REFRESH or
FLUSH statements. However, since TimesTen automatically generates
queries that join multiple tables in the same cache group, a column needs to be
fully qualified if there is more than one table in the cache group that contains
columns with the same name.

• By default, a T-tree index is created to enforce the primary key for a cache
group table. Use the UNIQUE HASH clause to specify a hash index for the
primary key.
– If your application performs range queries over a cache group table’s

primary key, then choose a T-tree index for that cache group table by
omitting the UNIQUE HASH clause.

– If, however, your application performs only exact match lookups on the
primary key, then a hash index may offer better response time and
throughput. In such a case, specify the UNIQUE HASH clause. See
“CREATE TABLE” on page 279 for more information on the UNIQUE
HASH clause.

• Use ALTER TABLE to change the representation of the primary key index
for a table.

• If access control is disabled, no privilege is necessary to execute a DELETE
statement which triggers the ON DELETE CASCADE action. Otherwise,
WRITE privileges are required on all tables affected by the ON DELETE
CASCADE action.

• The total number of rows reported by the DELETE statement does not include
rows deleted from child tables as a result of the ON DELETE CASCADE
action.
SQL Statements 245

• ON DELETE CASCADE restrictions:
– For cache group tables with the propagate attribute and for tables of SWT

and AWT cache groups, foreign keys specified with ON DELETE
CASCADE must be a proper subset of foreign keys with ON DELETE
CASCADE in Oracle.

Aging in Cache Groups
• You can implement sliding windows with time-based aging. See "Configuring

a sliding window" in the TimesTen Cache Connect to Oracle Guide.
• After you have defined an aging policy for the table, you cannot change the

policy from LRU to time-based or from time-based to LRU. You must first
drop aging and then alter the table to add a new aging policy.

• The aging policy must be defined to change the aging state.
• LRU and time-based aging can be combined in one system. If you use only

LRU aging, the aging thread wakes up based on the cycle specified for the
whole data store. If you use only time-based aging, the aging thread wakes up
based on an optimal frequency. This frequency is determined by the values
specified in the CYCLE clause for all tables. If you use both LRU and time-
based aging, then the thread wakes up based on a combined consideration of
both types.

• Call the ttAgingScheduleNow procedure to schedule the aging process right
away regardless if the aging state is ON or OFF.

• The following rules determine if a row is accessed or referenced for LRU
aging:
– Any rows used to build the result set of a SELECT statement.
– Any rows used to build the result set of an INSERT SELECT statement.
– Any rows that are about to be updated or deleted.

• Compiled commands are marked invalid and need recompilation when you
either drop LRU aging from or add LRU aging to tables that are referenced in
the commands.

• For LRU aging, if a child row is not a candidate for aging, then neither this
child row nor its parent row are deleted. ON DELETE CASCADE settings are
ignored.

• For time-based aging, if a parent row is a candidate for aging, then all child
rows are deleted. ON DELETE CASCADE (whether specified or not) is
ignored.

• Specify either the LRU aging or time-based aging policy on the root table.
The policy applies to all tables in the cache group.

• For the time-based aging policy, you cannot add or modify the aging column.
This is because you cannot add or modify a NOT NULL column.

• Restrictions on defining aging for a cache group:
246 Oracle TimesTen In-Memory Database SQL Reference Guide

– LRU aging is not supported on a cache group defined with the autorefresh
attribute.

– The aging policy cannot be added, altered, or dropped for an autorefresh
cache group while the cache agent is active. Stop the cache agent first.

– You cannot drop the column that is used for time-based aging.

Example 5.43 Create a READONLY cache group:
CREATE READONLY CACHE GROUP CustomerOrders
AUTOREFRESH INTERVAL 10 MINUTES
FROM
CUSTOMER (CUSTID INT NOT NULL,

NAME CHAR(100) NOT NULL,
ADDR CHAR(100),
ZIP INT,
REGION CHAR(10),
PRIMARY KEY(CUSTID)),

ORDERTAB (ORDERID INT NOT NULL,
CUSTID INT NOT NULL,
PRIMARY KEY (ORDERID),
FOREIGN KEY (CUSTID) REFERENCES CUSTOMER(CUSTID));

Example 5.44 Create an ASYNCHROUS WRITETHROUGH cache group:
CREATE ASYNCHRONOUS WRITETHROUGH cache group Customers
FROM
CUSTOMER (CUSTID INT NOT NULL,

NAME CHAR(100) NOT NULL,
ADDR CHAR(100),
ZIP INT,
PRIMARY KEY(CUSTID));

Example 5.45 Create a SYNCHRONOUS WRITETHROUGH cache group:
CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP Customers
FROM
CUSTOMER (CUSTID INT NOT NULL,

NAME CHAR(100) NOT NULL,
ADDR CHAR(100),
ZIP INT,
PRIMARY KEY(CUSTID));

Example 5.46 Create a USERMANAGED cache group:
CREATE USERMANAGED CACHE GROUP UpdateAnywhereCustomers
AUTOREFRESH

MODE INCREMENTAL
INTERVAL 30 SECONDS
SQL Statements 247

STATE ON
FROM
CUSTOMER (CUSTID INT NOT NULL,

NAME CHAR(100) NOT NULL,
ADDR CHAR(100),
ZIP INT,
PRIMARY KEY(CUSTID),
PROPAGATE);

Example 5.47 Create a cache group with time-based aging. Specify AgeTimestamp as the
column for aging. LIFETIME 2 hours, CYCLE 30 minutes. Aging state is not
specified, so the default setting (ON) is used.
CREATE READONLY CACHE GROUP AgingCacheGroup
AUTOREFRESH

MODE INCREMENTAL
INTERVAL 5 MINUTES
STATE PAUSED

FROM
CUSTOMER (CustomerId NUMBER NOT NULL,

AgeTimestamp TIMESTAMP NOT NULL,
PRIMARY KEY (CustomerId))
AGING USE AgeTimestamp LIFETIME 2 HOURS CYCLE 30 MINUTES;

Command> describe customer;
Table USER.CUSTOMER:
Columns:
*CUSTOMERID NUMBER NOT NULL
AGETIMESTAMP TIMESTAMP (6) NOT NULL

AGING USE AgeTimestamp LIFETIME 2 HOURS CYCLE 30 MINUTES ON

1 table found.
(primary key columns are indicated with *)

Example 5.48 Use a synonym for a mixed case delimited identifier table name in Oracle so the
mixed case table name can be cached in TimesTen. First attempt to cache the
mixed case Oracle table name. You see the error “Could not find ‘NameofTable’
in Oracle”:
Command> AUTOCOMMIT 0;
Command> PASSTHROUGH 3;
Command> CREATE TABLE "MixedCase" (Col1 NUMBER PRIMARY KEY NOT

NULL);
Command> INSERT INTO "MixedCase" VALUES (1);
1 row inserted.
Command> COMMIT;
Command> CREATE CACHE GROUP MixedCase1 from "MixedCase"

(Col1 NUMBER PRIMARY KEY NOT NULL);
248 Oracle TimesTen In-Memory Database SQL Reference Guide

 5140: Could not find SAMPLEUSER.MIXEDCASE in Oracle. May not
have privileges.
The command failed.

Now create the synonym "MIXEDCASE" and use that synonym as the table name.
Command> AUTOCOMMIT 0;
Command> PASSTHROUGH 3;
Command> CREATE SYNONYM "MIXEDCASE" FOR "MixedCase";
Command> COMMIT;
Command> CREATE CACHE GROUP MixedCase2 FROM "MIXEDCASE"

(COL1 NUMBER PRIMARY KEY NOT NULL);
Warning 5147: Cache group contains synonyms
Command> COMMIT;

Example 5.49 Attempt to use a synonym name with autorefresh cache group. You see error:
Command> AUTOCOMMIT 0;
Command> PASSTHROUGH 3;
Command> CREATE SYNONYM "MIXEDCASE_AUTO" FOR "MixedCase";
Command> COMMIT;
Command> CREATE READONLY CACHE GROUP MixedCase3 AUTOREFRESH MODE

INCREMENTAL INTERVAL 10 MINUTES FROM "MIXEDCASE_AUTO"
(Col1 NUMBER PRIMARY KEY NOT NULL);

 5142: Autorefresh is not allowed on cache groups with Oracle
synonyms
The command failed.

(See Also “ALTER CACHE GROUP” on page 191
“ALTER TABLE” on page 210
“DROP CACHE GROUP” on page 306
“FLUSH CACHE GROUP” on page 314
“UNLOAD CACHE GROUP” on page 356
SQL Statements 249

CREATE INDEX
The CREATE INDEX statement creates a T-tree index on one or more columns
of a table and assigns a name to the new index. A T-tree index is an index
structure designed for in-memory applications. A T-tree:
• Speeds up range searches (but can also be used for efficient equality

searches).
• Is optimized for in-memory data management.
• Provides efficient sorting by column value.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL syntax CREATE [UNIQUE] INDEX [Owner.]IndexName ON
[Owner.]TableName ({ColumnName [ASC | DESC]}
[, ...])

Parameters The CREATE INDEX statement has the parameters:

Description • The CREATE INDEX statement enters the definition of the index in the
system catalog and initializes the necessary data structures. Any rows in the
table are then added to the index. In TimesTen, performance is the same
regardless of whether the table is created, indexed and populated or created,
then populated and indexed.

• If UNIQUE is specified, all existing rows must have unique values in the
indexed column(s).

Parameter Description

UNIQUE Prohibits duplicates in the index. If UNIQUE is specified, each
possible combination of index key column values can occur in only
one row of the table. If UNIQUE is omitted, duplicate values are
allowed. When you create a unique index, all existing rows must
have unique values in the indexed column(s).

[Owner.] IndexName Name to be assigned to the new index. A table cannot have two
indexes with the same name. If the owner is specified, it must be
the same as the owner of the table.

[Owner.] TableName Designates the table for which an index is to be created.

ColumnName Name of a column to be used as an index key. You can specify up
to 16 columns in order from major index key to minor index key.

ASC | DESC Specifies the order of the index to be either ascending (the default)
or descending. In TimesTen, this parameter is currently ignored.
250 Oracle TimesTen In-Memory Database SQL Reference Guide

• The new index is maintained automatically until the index is deleted by a
DROP INDEX statement or until the table associated with it is dropped.

• Any prepared statements that reference the table with the new index are
automatically prepared again the next time they are executed. Then the
statements can take advantage, if possible, of the new index.

• NULL compares higher than all other values for sorting.
• An index on a temporary table cannot be created by a connection if any other

connection has a non-empty instance of the table.
• If you are using linguistic comparisons, you can create a linguistic index. A

linguistic index uses sort key values and storage is required for these values.
Only one unique value for NLS_SORT is allowed for an index. For more
information on linguistic indexes and linguistic comparisons, see "Using
linguistic indexes" in the Oracle TimesTen In-Memory Database Operations
Guide.

• If you create indexes that are redundant, TimesTen generates warnings or
errors. Call ttRedundantIndexCheck to see the list of redundant indexes for
your tables.

Example 5.50 Attempt to create a redundant index. The REGIONS table in the HR Schema
creates a unique index on Region_Id. You attempt to create a second unique
index on Region_Id. You see a warning message. Call ttRedundantIndexCheck
to see the warning message:

Issue the ttIsql command INDEXES on table Regions. You see the unique T-tree
index Regions.
Command> INDEXES REGIONS;

Indexes on table SAMPLEUSER.REGIONS:
 REGIONS: unique T-tree index on columns:
 REGION_ID
 (referenced by foreign key index COUNTR_REG_FK on table
SAMPLEUSER.COUNTRIES)
 1 index found.

1 table found.

You attempt to create a unique index I on table Regions indexing on column
Region_Id. You see a warning message:
Command> CREATE UNIQUE INDEX I ON Regions (Region_Id);
Warning 2232: New index I is identical to existing index
REGIONS; consider dropping index I

Call ttRedundantIndexCheck to see warning message for this index:
SQL Statements 251

Command> CALL ttRedundantIndexCheck ('REGIONS');
< Index SAMPLEUSER.REGIONS.I is identical to index
SAMPLEUSER.REGIONS.REGIONS; consider dropping index
SAMPLEUSER.REGIONS.I >
1 row found.

Example 5.51 Create table Redundancy and define columns Co11 and Col2. Create two user
indexes on Col1 and Col2. You see an error message when you attempt to create
the second index R2. Index R1 is created. Index R2 is not created.
Command> CREATE TABLE Redundancy (Col1 CHAR (30), Col2 VARCHAR2 (30));
Command> CREATE INDEX R1 ON Redundancy (Col1, Col2);
Command> CREATE INDEX R2 ON Redundancy (Col1, Col2);
 2231: New index R2 would be identical to existing index R1
The command failed.

Issue the ttIsql command INDEXES on table Redundancy to show that only
index R1 is created:
Command> INDEXES Redundancy;

Indexes on table SAMPLEUSER.REDUNDANCY:
 R1: non-unique T-tree index on columns:
 COL1
 COL2
 1 index found.

1 table found.

Example 5.52 This unique index ensures that all part numbers are unique.
CREATE UNIQUE INDEX Purchasing.PartNumIndex
ON Purchasing.Parts (PartNumber);

Example 5.53 Create a linguistic index named german_index on table employees1. If you wish
to have more than one linguistic sort, create a second linguistic index.
Command> CREATE TABLE employees1 (ID CHARACTER (21),
id2 character (21));

Command> CREATE INDEX german_index ON employees1
(NLSSORT(id, 'NLS_SORT=GERMAN'));

Command> CREATE INDEX german_index2 ON employees1
NLSSORT(id2, 'nls_sort=german_ci'));

Command> indexes employees1;
Indexes on table SAMPLEUSER.EMPLOYEES1:
GERMAN_INDEX: non-unique T-tree index on columns:
NLSSORT(ID,'NLS_SORT=GERMAN')
252 Oracle TimesTen In-Memory Database SQL Reference Guide

GERMAN_INDEX2: non-unique T-tree index on columns:
NLSSORT(ID2,'nls_sort=german_ci')

2 indexes found.
1 table found.

See Also “DROP INDEX” on page 307
SQL Statements 253

CREATE MATERIALIZED VIEW
The CREATE MATERIALIZED VIEW statement creates a view of the table
specified in the SelectQuery clause. The original tables used to create a view are
referred to as “detail” tables.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL syntax CREATE MATERIALIZED VIEW ViewName AS SelectQuery
[PRIMARY KEY (ColumnName [,…])]
[UNIQUE HASH ON (HashColumnName [,…])
PAGES = PrimaryPages]

Parameters The CREATE MATERIALIZED VIEW statement has the parameters:

Description Restrictions on the materialized view and detail tables
• A materialized view is read-only and cannot be updated directly. A

materialized view is updated only when changes are made to the associated
detail tables. Therefore a materialized view cannot be the target of a DELETE,
UPDATE or INSERT statement.

Parameter Description

ViewName Name assigned to the new view.

SelectQuery Selects column from the detail table(s) to be used in
the view. Can also create indexes on the view.

ColumnName Name of the column(s) that forms the primary key for
the view to be created. Up to 16 columns can be
specified for the primary key. Each result column
name of a viewed table must be unique. The column
name definition cannot contain the table or owner
component.

HashColumnName Column defined in the view that is to participate in the
hash key of this table. The columns specified in the
hash index must be identical to the columns in the
primary key.

PrimaryPages Specifies the expected number of pages in the table.
This number determines the number of hash buckets
created for the hash index. The minimum is 1. If your
estimate is too small, performance is degraded. See the
CREATE TABLE section for more information.
254 Oracle TimesTen In-Memory Database SQL Reference Guide

• Materialized views defined on replicated tables may result in replication
failures or inconsistencies if the materialized view is specified so that
overflow or underflow conditions occur when the materialized view is
updated.

• Detail tables can be replicated, but views themselves cannot be replicated. If
detail tables are replicated, TimesTen automatically updates the
corresponding view(s).

• Neither a view nor its detail tables can be part of a cache group.
• TimesTen does not automatically create indexes on materialized views or

detail tables. Referential constraints cannot be defined on materialized views.
• By default, a T-tree index is created to enforce the primary key for a

materialized view. Use the UNIQUE HASH clause to specify a hash index for
the primary key.
– If your application performs range queries over a materialized view’s

primary key, then choose a T-tree index for that view by omitting the
UNIQUE HASH clause.

– If, however, your application performs only exact match lookups on the
primary key, then a hash index may offer better response time and
throughput. In such a case, specify the UNIQUE HASH clause. See
“CREATE TABLE” on page 279 for more information on the UNIQUE
HASH clause.

• Use ALTER TABLE to change the representation of the primary key index or
resize a hash index.

• You cannot add or drop columns with the ALTER TABLE statement. To
change the structure of the materialized view, drop then recreate the view.

• A view cannot be dropped with a DROP TABLE statement. Use the DROP
VIEW statement.

Restrictions on the MATERIALIZED VIEW query
There are several restrictions on the query that is used to define the materialized
view.
• A SELECT * query in a materialized view definition is expanded at view

creation time. Any columns added after a materialized view is created do not
affect the materialized view.

• Temporary tables cannot be used in a materialized view definition. Non-
materialized views and derived tables cannot be used to define a materialized
view.

• All columns in the GROUP BY list must be included in the select list.
• Aggregate view must include a COUNT(*) in the SELECT list.
• SUM and COUNT are allowed, but not expressions involving them, including

AVG.
SQL Statements 255

• The following cannot be used in a SELECT statement that is creating a
materialized view:
– DISTINCT
– FIRST
– HAVING
– ORDER BY
– UNION
– UNION ALL
– MINUS
– INTERSECT
– JOIN
– User functions: USER, CURRENT_USER, SESSION_USER
– Subqueries
– NEXTVAL and CURRVAL
– Derived tables and joined tables

• Each expression in the select list must have a unique name. A name of a
simple column expression would be that column’s name unless a column alias
is defined. RowId is considered an expression and needs an alias.

• No SELECT FOR UPDATE or SELECT FOR INSERT statements can be
used on a view.

• OUTER JOINs are allowed, but the SELECT list must project at least one
NOT NULL column from each of the inner tables specified in the OUTER
JOIN. Outer join syntax for a SELECT in a materialized view definition is
identical to that in a top-level SELECT. The restrictions noted in the
description of SELECT statements apply. The (+) symbol must be used to
specify OUTER JOINs of a materialized view.

• Each inner table can only be outer joined with at most one table.
• Self joins are allowed. A self join is a join of a table to itself. This table

appears twice in the FROM clause and is followed by table aliases that qualify
column names in the join condition.

Creates a materialized view of columns from the customer and bookOrder tables.
CREATE MATERIALIZED VIEW CustOrder AS
SELECT custNo, custName, ordNo, book
FROM customer, bookOrder
WHERE customer.custNo=bookOrder.custNo;

Example 5.54 Creates a materialized view of columns x1 and y1 from the t1 table.
CREATE MATERIALIZED VIEW v1 AS SELECT x1, y1 FROM t1
PRIMARY KEY (x1) UNIQUE HASH (x1) PAGES=100;
256 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 5.55 Creates a materialized view from an outer join of columns x1 and y1 from the t1
and t2 tables.
CREATE MATERIALIZED VIEW v2 AS SELECT x1, y1 FROM t1, t2
WHERE x1=x2(+);

See Also “CREATE TABLE” on page 279
“CREATE VIEW” on page 301
“DROP VIEW” on page 313
SQL Statements 257

CREATE REPLICATION
TimesTen SQL configuration for replication provides a programmable way to
configure replication. The configuration can be embedded in C, C++ or Java
code. Replication can be configured locally or from remote systems using client/
server.

In addition, you need to use the ttRepAdmin utility to maintain operations not
covered by the supported SQL statements. Use ttRepAdmin to change
replication state, duplicate data stores, list the replication configuration and view
replication status.

The CREATE REPLICATION statement:
• Defines a replication scheme at a participating data store.
• Installs the specified configuration in the executing data store's replication

system tables.
• Typically consists of one or more replication ELEMENT specifications and

zero or more STORE specifications.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
ADMIN privileges.

Definitions A replication element is an entity that TimesTen synchronizes between data
stores. A replication element can be a whole table or a data store. A data store can
include most types of tables and cache groups. It can include only specified tables
and cache groups, or include all tables except specified tables and cache groups.
It cannot include temporary tables or views, whether materialized and non-
materialized.

A replication scheme is a set of replication elements, as well as the data stores
that maintain copies of these elements.

When replicating cache groups:
• When replicating cache groups between data stores, both cache groups must

be identical, with the exception of the settings for AUTOREFRESH and
PROPAGATE.

• When replicating a cache group with AUTOREFRESH, the cache group on
the subscriber must set the autorefresh STATE to OFF. In a bi-directional
replication scheme, one of the cache groups must set the autorefresh STATE
to OFF.

• If a master cache group specifies PROPAGATE, the subscriber cache group
must set the autorefresh STATE to OFF.

For more detailed information on SQL configuration for replication, see
"Replicating cache groups" in TimesTen to TimesTen Replication Guide.
258 Oracle TimesTen In-Memory Database SQL Reference Guide

SQL syntax CREATE REPLICATION [Owner.]ReplicationSchemeName
{ ELEMENT ElementName
{ DATASTORE | { TABLE [Owner.]TableName [CheckConflicts]} |

SEQUENCE [Owner.]SequenceName}
{ MASTER | PROPAGATOR } FullStoreName
[TRANSMIT { NONDURABLE | DURABLE }]
{ SUBSCRIBER FullStoreName [,...]

[ReturnServiceAttribute] } [, ...] }
[...]
[{INCLUDE | EXCLUDE}{TABLE [Owner.]TableName |

CACHE GROUP [Owner.]CacheGroupName |
SEQUENCE [Owner.]SequenceName} [,...]]

[STORE FullStoreName [StoreAttribute [...]]] [...]
[NetworkOperation[...]]

Syntax for CheckConflicts is described in “CHECK CONFLICTS” on page 266.

Syntax for ReturnServiceAttribute is:
{ RETURN RECEIPT [BY REQUEST] |
RETURN TWOSAFE [BY REQUEST] |
NO RETURN }

Syntax for StoreAttribute:
[DISABLE RETURN {SUBSCRIBER | ALL} NumFailures]
[RETURN SERVICES {ON | OFF} WHEN [REPLICATION] STOPPED]
[DURABLE COMMIT {ON | OFF}]
[RESUME RETURN MilliSeconds]
[LOCAL COMMIT ACTION {NO ACTION | COMMIT}]
[RETURN WAIT TIME Seconds]
[COMPRESS TRAFFIC {ON | OFF}
[PORT PortNumber]
[TIMEOUT Seconds]
[FAILTHRESHOLD Value]
[CONFLICT REPORTING SUSPEND AT Value]
[CONFLICT REPORTING RESUME AT Value]

Syntax for NetworkOperation:
ROUTE MASTER FullStoreName SUBSCRIBER FullStoreName
{ { MASTERIP MasterHost | SUBSCRIBERIP SubscriberHost }

PRIORITY Priority } [...]

Parameters The CREATE REPLICATION statement has the parameters:

Parameter Description

[Owner.]ReplicationSchemeName Name assigned to the new replication scheme.
Replication schemes should have names that are unique
from all other data store objects.
SQL Statements 259

CheckConflicts Check for replication conflicts when simultaneously
writing to bi-directionally replicated data stores. See
“CHECK CONFLICTS” on page 266.

COMPRESS TRAFFIC {ON | OFF} Compress replicated traffic to reduce the amount of
network bandwidth. ON specifies that all replicated
traffic for the data store defined by STORE be
compressed. OFF (the default) specifies no
compression. See "Compressing replicated traffic" in
the TimesTen to TimesTen Replication Guide for details.

DATASTORE Define entire data store as ELEMENT. This type of
ELEMENT can only be defined for a master data store
that is not configured with an ELEMENT of type
TABLE in the same or a different replication scheme.
See "Defining replication elements" in the TimesTen to
TimesTen Replication Guide for details.

{ INCLUDE | EXCLUDE }
{TABLE [Owner.]TableName |
CACHE GROUP
[Owner.]CacheGroupName |
SEQUENCE
[Owner.]SequenceName} [,...]

INCLUDE includes in the DATASTORE element only
the tables, sequences or cache groups listed. Use one
INCLUDE clause for each object type (table, sequence
or cache group).

EXCLUDE includes in the DATASTORE element all
tables, sequences or cache groups except for those
listed. Use one EXCLUDE clause for each object type
(table, sequence or cache group).

DISABLE RETURN
{SUBSCRIBER | ALL}
NumFailures

Set the return service failure policy so that return
service blocking is disabled after the number of
timeouts specified by NumFailures. Selecting
SUBSCRIBER applies this policy only to the
subscriber that fails to acknowledge replicated updates
within the set timeout period. ALL applies this policy
to all subscribers should any of the subscribers fail to
respond. This failure policy can be specified for either
the RETURN RECEIPT or RETURN TWOSAFE
service.

See "Managing return service timeout errors and
replication state changes" in the TimesTen to TimesTen
Replication Guide for details.

DURABLE COMMIT {ON | OFF} Set to override the DurableCommits setting on a data
store and enable durable commit when return service
blocking has been disabled by DISABLE RETURN.
260 Oracle TimesTen In-Memory Database SQL Reference Guide

ELEMENT ElementName The entity that TimesTen synchronizes between data
stores. TimesTen supports the entire data store
(DATASTORE) and whole tables (TABLE) as
replication elements.

ElementName is the name given to the replication
element. The ElementName for a TABLE element can
be up to 30 characters in length. The ElementName for
a DATASTORE element must be unique with respect
to other DATASTORE element names within the first
20 chars. Each ElementName must be unique within a
replication scheme. Also, you cannot define two
ELEMENT descriptions for the same element.

See "Defining replication elements" in the TimesTen to
TimesTen Replication Guide for details.

FAILTHRESHOLD Value The number of log files that can accumulate for a
subscriber data store. If this value is exceeded, the
subscriber is set to the Failed state.The value 0 means
“No Limit.” This is the default.

See "Managing the log on a replicated data store" in the
TimesTen to TimesTen Replication Guide.

FullStoreName The data store, specified as one of the following:
• SELF
• The prefix of the data store file name

For example, if the data store path is directory/
subdirectory/data.ds0, then data is the data store
name that should be used.

This is the data store file name specified in the
DataStore attribute of the DSN description with
optional host ID in the form:

DataStoreName [ON Host]

Host can be either an IP address or a literal host name
assigned to one or more IP addresses, as described in
"Configuring host IP addresses" in the TimesTen to
TimesTen Replication Guide. Host names containing
special characters must be surrounded by double
quotes. For example: “MyHost-500”. Host names can
be up to 30 characters long.
SQL Statements 261

LOCAL COMMIT ACTION
{NO ACTION | COMMIT}

Specifies the default action to be taken for a return
twosafe transaction in the event of a timeout.

Note: This attribute is only valid when the RETURN
TWOSAFE or RETURN TWOSAFE BY REQUEST
attribute is set in the SUBSCRIBER clause.

NO ACTION -- On timeout, the commit function
returns to the application, leaving the transaction in the
same state it was in when it entered the commit call,
with the exception that the application is not able to
update any replicated tables. The application can
reissue the commit or rollback the call.
COMMIT -- On timeout, the commit function writes a
COMMIT log record and effectively ends the
transaction locally. No more operations are possible on
the same transaction.
This default setting can be overridden for specific
transactions by calling the localAction parameter in the
ttRepSyncSet() procedure.

MASTER FullStoreName The data store on which applications update the
specified ELEMENT. The MASTER data store sends
updates to its SUBSCRIBER data stores. The
FullStoreName must be the data store specified in the
DataStore attribute of the DSN description.

NO RETURN Specifies that no return service is to be used. This is the
default.
For details on the use of the return services, see "Using
a return service" in the TimesTen to TimesTen
Replication Guide.

PORT PortNumber The TCP/IP port number on which the replication agent
for the data store listens for connections. If not
specified, the replication agent automatically allocates
a port number.

PROPAGATOR FullStoreName The data store that receives replicated updates and
passes them on to other data stores. The FullStoreName
must be the data store specified in the DataStore
attribute of the DSN description.
262 Oracle TimesTen In-Memory Database SQL Reference Guide

RESUME RETURN MilliSeconds If return service blocking has been disabled by
DISABLE RETURN, this attribute sets the policy on
when to re-enable return service blocking. Return
service blocking is re-enabled as soon as the failed
subscriber acknowledges the replicated update in a
period of time that is less than the specified
MilliSeconds.

RETURN RECEIPT [BY
REQUEST]

Enables the return receipt service, so that applications
that commit a transaction to a master data store are
blocked until the transaction is received by all
subscribers.

RETURN RECEIPT applies the service to all
transactions. If you specify RETURN REQUEST BY
REQUEST, you can use the ttRepSyncSet() procedure
to enable the return receipt service for selected
transactions. For details on the use of the return
services, see "Using a return service" in the TimesTen to
TimesTen Replication Guide.

RETURN SERVICES {ON | OFF}
WHEN [REPLICATION] STOPPED

Set the return service failure policy so that return
service blocking is either unchanged or disabled when
the replication agent is in the Stop or Pause state.

OFF is the default when using the return receipt
service. ON is the default when using the return
twosafe service

See "Managing return service timeout errors and
replication state changes" in the TimesTen to TimesTen
Replication Guide for details.
SQL Statements 263

RETURN TWOSAFE
[BY REQUEST]

Enables the return twosafe service, so that applications
that commit a transaction to a master data store are
blocked until the transaction is committed on all
subscribers.

Note: This service can only be used in a bi-directional
replication scheme where the elements are defined as
DATASTORE.

RETURN TWOSAFE applies the service to all
transactions. If you specify RETURN TWOSAFE BY
REQUEST, you can use the ttRepSyncSet procedure
to enable the return receipt service for selected
transactions. For details on the use of the return
services, see "Using a return service" in the TimesTen to
TimesTen Replication Guide.

RETURN WAIT TIME Seconds Specifies the number of seconds to wait for return
service acknowledgement. The default value is 10
seconds. A value of ‘0’ means that there is no wait
time. Your application can override this timeout setting
by calling the returnWait parameter in the
ttRepSyncSet procedure.

SEQUENCE
[Owner.]SequenceName

Define the sequence specified by
[Owner.]SequenceName as ELEMENT. See "Defining
replication elements" in the TimesTen to TimesTen
Replication Guide for details.

STORE FullStoreName Defines the attributes for a given data store. Data store
attributes include PORT, TIMEOUT, and
FAILTHRESHOLD. The FullStoreName must be the
data store specified in the DataStore attribute of the
DSN description.

SUBSCRIBER FullStoreName A data store that receives updates from the MASTER
data store(s). The FullStoreName must be the data store
specified in the DataStore attribute of the DSN
description.

TABLE [Owner.]TableName Define the table specified by [Owner.]TableName as
ELEMENT. See "Defining replication elements" in the
TimesTen to TimesTen Replication Guide for details.
264 Oracle TimesTen In-Memory Database SQL Reference Guide

TIMEOUT Seconds The amount of time a data store waits for a response
from another data store before resending the message.
Default: 120 seconds.

TRANSMIT {DURABLE |
NONDURABLE}

Specifies whether to flush the master log to disk before
sending a batch of committed transactions to the
subscribers.

TRANSMIT NONDURABLE specifies that records in
the master log are not to be flushed to disk before they
are sent to subscribers. This setting can only be used if
the specified ELEMENT is a DATSTORE. This is the
default for RETURN TWOSAFE transactions.

TRANSMIT DURABLE specifies that records are to
be flushed to disk before they are sent to subscribers.
This is the default for asynchronous and RETURN
RECEIPT transactions.

Note: TRANSMIT DURABLE has no effect on
RETURN TWOSAFE transactions.

Note: TRANSMIT DURABLE cannot be set for
active standby pairs.

See "Setting transmit durability on data store elements"
and "Impact of TRANSMIT DURABLE/
NONDURABLE on master data store recovery" in the
TimesTen to TimesTen Replication Guide for more
information.

CONFLICT REPORTING
SUSPEND AT Value

Suspends conflict resolution reporting.

Value is a non-negative integer. The default is 0 and
means never suspend. Conflict reporting is suspended
when the rate of conflict exceeds Value. If you set
Value to 0, conflict reporting suspension is turned off.

Use this clause for table level replication.

CONFLICT REPORTING RESUME
AT Value

Resumes conflict resolution reporting.

Value is a non-negative integer. Conflict reporting is
resumed when the rate of conflict falls below Value.
The default is 1.

Use this clause for table level replication.
SQL Statements 265

CHECK CONFLICTS

Syntax The syntax for CHECK CONFLICTS is:
{NO CHECK |
CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN ColumnName
[UPDATE BY { SYSTEM | USER }]
[ON EXCEPTION { ROLLBACK [WORK] | NO ACTION }]
[{REPORT TO 'FileName'

[FORMAT { XML | STANDARD }] | NO REPORT
}]

}

Note: A CHECK CONFLICT clause can only be used for ELEMENTS of type
TABLE.

ROUTE MASTER FullStoreName
SUBSCRIBER FullStoreName

Denotes the NetworkOperation clause. If specified,
allows you to control the network interface that a
master store uses for every outbound connection to
each of its subscriber stores.

Can be specified more than once.

MASTERIP MasterHost |
SUBSCRIBERIP SubscriberHost

MasterHost and SubscriberHost are the IP addresses
for the network interface on the master and subscriber
stores. Specify in dot notation or canonical format or in
colon notation for IPV6.

Clause can be specified more than once.

PRIORITY Priority Variable expressed as an integer from 1 to 99. Denotes
the priority of the IP address. Lower integral values
have higher priority. An error is returned if multiple
addresses with the same priority are specified. Controls
the order in which multiple IP addresses are used to
establish peer connections.

Required syntax of NetworkOperation clause. Follows
MASTERIP MasterHost | SUBSCRIBERIP
SubscriberHost clause.
266 Oracle TimesTen In-Memory Database SQL Reference Guide

Parameters The CHECK CONFLICTS portion of the CREATE REPLICATION or ALTER
REPLICATION statement has the parameters:

Parameter Description

CHECK CONFLICTS BY ROW
TIMESTAMP

Indicates that all update and uniqueness conflicts are to
be detected. Conflicts are resolved in the manner
specified by the ON EXCEPTION parameter.

It also detects delete conflicts with UPDATE
operations.

 COLUMN ColumnName Indicates the column in the replicated table to be used
for timestamp comparison. The table is specified in the
ELEMENT description by TableName.

ColumnName is a nullable column of type BINARY(8)
used to store a timestamp that indicates when the row
was last updated. TimesTen rejects attempts to update a
row with a lower timestamp value than the stored
value. The specified ColumnName must exist in the
replicated table on both the master and subscriber data
stores.

NO CHECK Specify to suppress conflict resolution for a given
element.

UPDATE BY {SYSTEM | USER} Specifies whether the timestamp values are maintained
by TimesTen (SYSTEM) or the application (USER).
The replicated table in the master and subscriber data
stores must use the same UPDATE BY specification.
See "System timestamp column maintenance" and
"User timestamp column maintenance"in Chapter 8 of
the TimesTen to TimesTen Replication Guide for more
information. The default is UPDATE BY SYSTEM.

ON EXCEPTION {ROLLBACK
[WORK] | NO ACTION}

Specifies how to resolve a detected conflict. ROW
TIMESTAMP conflict detection has the resolution
options:
• ROLLBACK [WORK] — Abort the transaction that

contains the conflicting action.
• NO ACTION — Complete the transaction without

performing the conflicting action (UPDATE,
INSERT, or DELETE).

Default is ON EXCEPTION ROLLBACK [WORK]
SQL Statements 267

Description • The names of all data stores on the same host must be unique for each
replication scheme for each TimesTen instance.

• Replication elements can only be updated (by normal application transactions)
through the MASTER data store. PROPAGATOR and SUBSCRIBER data
stores are read only.

• If you define a replication scheme that permits multiple data stores to update
the same table, see Chapter 8, “Conflict Resolution and Failure Recovery” in
the TimesTen to TimesTen Replication Guide for recommendations on how to
avoid conflicts when updating rows.

• SELF is intended for replication schemes where all participating data stores
are local. Do not use SELF for a distributed replication scheme in a
production environment, where spelling out the hostname for each data store
in a script allows it to be used at each participating data store.

• Each attribute for a given STORE may be specified only once, or not at all.
• Specifying the PORT of a data store for one replication scheme specifies it for

all replication schemes. All other data store attributes are specific to the
replication scheme specified in the command.

• For replication schemes, DataStoreName is always the prefix of the TimesTen
data store checkpoint file names. These are the files with the .ds0 and .ds1
suffixes that are saved on disk by checkpoint operations.

• If a row with a default NOT INLINE VARCHAR value is replicated, the
receiver creates a copy of this value for each row instead of pointing to the
default value if and only if the default value of the receiving node is different
from the sending node.

• To use timestamp comparison on replicated tables, you must specify a
nullable column of type BINARY(8) to hold the timestamp value. Define the
timestamp column when you create the table. You cannot add the timestamp

REPORT TO ‘FileName’ Specifies the file to log updates that fail the timestamp
comparison. FileName is a SQL character string that
cannot exceed 1,000 characters. (SQL character string
literals are single-quoted strings that may contain any
sequence of characters, including spaces.) The same
file can be used to log failed updates for multiple
tables.

[FORMAT { XML | STANDARD }] Optionally specifies the conflict report format for
an element. The default format is STANDARD.

NO REPORT Specify to suppress logging of failed timestamp
comparisons.
268 Oracle TimesTen In-Memory Database SQL Reference Guide

column with the ALTER TABLE statement. In addition, the timestamp
column cannot be part of a primary key or index.

• If you specify the XML report format, two XML documents are generated:
– FileName.xml: This file contains the DTD for the report and the root node

for the report. It includes the document definition and the include directive.
– FileName.include: This file is included in FileName.xml and contains

all the actual conflicts.
– The FileName.include file can be truncated. Do not truncate the

FileName.xml file.
– For a complete description of the XML format, including examples of each

conflict, see Reporting conflicts to an XML file in the TimesTen to
TimesTen Replication Guide.

• If you specify a report format for an element and then drop the element, the
corresponding report files are not deleted.

• Use the CONFLICT REPORTING SUSPEND AT clause to specify a high
water mark threshold at which the reporting of conflict resolution is
suspended. When the number of conflicts per second exceeds the specified
high water mark threshold, conflict resolution reporting (if configured and
reported by the report file) and SNMP are suspended and an SNMP trap is
emitted to indicate that it has been suspended.

• Use the CONFLICT REPORTING RESUME AT clause to specify a low
water mark threshold where the reporting of conflict resolution is resumed.
When the rate of conflict falls below the low water mark threshold, conflict
resolution reporting is resumed. A SNMP trap is emitted to indicate the
resumption of conflict resolution. This trap provides the number of unreported
conflicts during the time when conflict resolution was suspended.

• CONFLICT REPORTING restrictions:
– The state of whether conflict reporting is suspended or not by a replication

agent does not persist across the local replication agent and the peer agent
stop and restart.

Example 5.56 Replicate the contents of REPL.TAB from MASTERDS to two subscribers,
SUBSCRIBER1DS and SUBSCRIBER2DS.
CREATE REPLICATION REPL.TWOSUBSCRIBERS

ELEMENT E TABLE REPL.TAB
MASTER MASTERDS ON "SERVER1"
SUBSCRIBER SUBSCRIBER1DS ON "SERVER2",

SUBSCRIBER2DS ON "SERVER3";

Example 5.57 Replicate the entire MASTERDS data store to the subscriber,
SUBSCRIBER1DS. The FAILTHRESHOLD specifies that a maximum of 10 of
SQL Statements 269

log files can accumulate on MASTERDS before it assumes SUBSCRIBERIDS
has failed.
CREATE REPLICATION REPL.WHOLESTORE
ELEMENT E DATASTORE

MASTER MASTERDS ON "SERVER1"
SUBSCRIBER SUBSCRIBER1DS ON "SERVER2"

STORE MASTERDS FAILTHRESHOLD 10;

Example 5.58 Bi-directionally replicate the entire WESTDS and EASTDS data stores and
enable the RETURN TWOSAFE service.
CREATE REPLICATION REPL.BIWHOLESTORE
ELEMENT E1 DATASTORE

MASTER WESTDS ON "WESTCOAST"
SUBSCRIBER EASTDS ON "EASTCOAST"

RETURN TWOSAFE
ELEMENT E2 DATASTORE

MASTER EASTDS ON "EASTCOAST"
SUBSCRIBER WESTDS ON "WESTCOAST"

RETURN TWOSAFE;

Example 5.59 Same as Example 5.56, only enable the return receipt service for select
transaction updates to the SUBSCRIBER1DS subscriber.
CREATE REPLICATION REPL.TWOSUBSCRIBERS
ELEMENT E TABLE REPL.TAB

MASTER MASTERDS ON "SERVER1"
SUBSCRIBER SUBSCRIBER1DS ON "SERVER2"

RETURN RECEIPT BY REQUEST
SUBSCRIBER SUBSCRIBER2DS ON "SERVER3";

Example 5.60 Replicate the contents of the CUSTOMERSWEST table from the WEST data
store to the ROUNDUP data store and the CUSTOMERSEAST table from the
EAST data store. Enable the return receipt service for all transactions.
CREATE REPLICATION R

ELEMENT WEST TABLE CUSTOMERSWEST
MASTER WEST ON "SERVERWEST"
SUBSCRIBER ROUNDUP ON "SERVERROUNDUP"

RETURN RECEIPT
ELEMENT EAST TABLE CUSTOMERSEAST
MASTER EAST ON "SERVEREAST"
SUBSCRIBER ROUNDUP ON "SERVERROUNDUP"

RETURN RECEIPT;
270 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 5.61 Replicate the contents of the REPL.TAB table from the CENTRALDS data store
to the PROPDS data store, which propagates the changes to the BACKUP1DS
and BACKUP2DS data stores.
CREATE REPLICATION REPL.PROPAGATOR

ELEMENT A TABLE REPL.TAB
MASTER CENTRALDS ON "FINANCE"
SUBSCRIBER PROPRDS ON "NETHANDLER"

ELEMENT B TABLE REPL.TAB
PROPAGATOR PROPRDS ON "NETHANDLER"
SUBSCRIBER BACKUP1DS ON "BACKUPSYSTEM1"

BACKUP2DS ON "BACKUPSYSTEM2";

Example 5.62 Bi-directionally replicate the contents of the REPL.ACCOUNTS table between
the EASTDS and WESTDS data stores. Each data store is both a master and a
subscriber for the REPL.ACCOUNTS table.

Because the REPL.ACCOUNTS table can be updated on either the EASTDS or
WESTDS data store, it includes a timestamp column (TSTAMP). The CHECK
CONFLICTS clause establishes automatic timestamp comparison to detect any
update conflicts between the two data stores. In the event of a comparison failure,
the entire transaction that includes an update with the older timestamp is rolled
back (discarded).
CREATE REPLICATION REPL.R1
ELEMENT ELEM_ACCOUNTS_1 TABLE REPL.ACCOUNTS

CHECK CONFLICTS BY ROW TIMESTAMP
COLUMN TSTAMP
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK

MASTER WESTDS ON "WESTCOAST"
SUBSCRIBER EASTDS ON "EASTCOAST"

ELEMENT ELEM_ACCOUNTS_2 TABLE REPL.ACCOUNTS
CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN TSTAMP
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK

MASTER EASTDS ON "EASTCOAST"
SUBSCRIBER WESTDS ON "WESTCOAST";

Example 5.63 Replicate the contents of the REPL.ACCOUNTS table from the ACTIVEDS
data store to the BACKUPDS data store, using the return twosafe service, and
using TCP/IP port 40000 on ACTIVEDS and TCP/IP port 40001 on
BACKUPDS. The transactions on ACTIVEDS need to be committed whenever
possible, so configure replication so that the transaction is committed even after a
replication timeout using LOCAL COMMIT ACTION, and so that the return
twosafe service is disabled when replication is stopped. To avoid significant
delays in the application if the connection to the BACKUPDS data store is
SQL Statements 271

interrupted, configure the return service to be disabled after five transactions
have timed out, but also configure the return service to be re-enabled when the
BACKUPDS data store’s replication agent responds in under 100 milliseconds.
Finally, the bandwidth between data stores is limited, so configure replication to
compress the data when it is replicated from the ACTIVEDS data store.
CREATE REPLICATION REPL.R
ELEMENT ELEM_ACCOUNTS_1 TABLE REPL.ACCOUNTS

MASTER ACTIVEDS ON "ACTIVE"
SUBSCRIBER BACKUPDS ON "BACKUP"

RETURN TWOSAFE
ELEMENT ELEM_ACCOUNTS_2 TABLE REPL.ACCOUNTS

MASTER ACTIVEDS ON "ACTIVE"
SUBSCRIBER BACKUPDS ON "BACKUP"

RETURN TWOSAFE
STORE ACTIVEDS ON "ACTIVE"

PORT 40000
LOCAL COMMIT ACTION COMMIT
RETURN SERVICES OFF WHEN REPLICATION STOPPED
DISABLE RETURN SUBSCRIBER 5
RESUME RETURN 100
COMPRESS TRAFFIC ON

STORE BACKUPDS ON "BACKUP"
PORT 40001;

Example 5.64 Illustrates conflict reporting suspend and conflict reporting resume clauses for
table level replication. Use these clauses for table level replication not data store
replication. Issue repschemes command to show that replication scheme is
created.
Command> CREATE TABLE repl.accounts (tstamp BINARY (8) NOT NULL
PRIMARY KEY, tstamp1 BINARY (8));
Command> CREATE REPLICATION repl.r2
> ELEMENT elem_accounts_1 TABLE repl.accounts
> CHECK CONFLICTS BY ROW TIMESTAMP
> COLUMN tstamp1
> UPDATE BY SYSTEM
> ON EXCEPTION ROLLBACK WORK
> MASTER westds ON "west1"
> SUBSCRIBER eastds ON "east1"
> ELEMENT elem_accounts_2 TABLE repl.accounts
> CHECK CONFLICTS BY ROW TIMESTAMP
> COLUMN tstamp1
> UPDATE BY SYSTEM
> ON EXCEPTION ROLLBACK WORK
> MASTER eastds ON "east1"
> SUBSCRIBER westds ON "west1"
> STORE westds
> CONFLICT REPORTING SUSPEND AT 20
272 Oracle TimesTen In-Memory Database SQL Reference Guide

> CONFLICT REPORTING RESUME AT 10;

Command> REPSCHEMES;

Replication Scheme REPL.R2:

 Element: ELEM_ACCOUNTS_1
 Type: Table REPL.ACCOUNTS
 Conflict Check Column: TSTAMP1
 Conflict Exception Action: Rollback Work
 Conflict Timestamp Update: System
 Conflict Report File: (none)
 Master Store: WESTDS on WEST1 Transmit Durable
 Subscriber Store: EASTDS on EAST1

 Element: ELEM_ACCOUNTS_2
 Type: Table REPL.ACCOUNTS
 Conflict Check Column: TSTAMP1
 Conflict Exception Action: Rollback Work
 Conflict Timestamp Update: System
 Conflict Report File: (none)
 Master Store: EASTDS on EAST1 Transmit Durable
 Subscriber Store: WESTDS on WEST1

 Store: EASTDS on EAST1
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled

 Store: WESTDS on WEST1
 Port: (auto)
 Log Fail Threshold: (none)
 Retry Timeout: 120 seconds
 Compress Traffic: Disabled
 Conflict Reporting Suspend: 20
 Conflict Reporting Resume: 10

1 replication scheme found.

Example 5.65 Example of NetworkOperation clause with 2 MASTERIP and SUBSCRIBERIP
clauses:
CREATE REPLICATION R ELEMENT E DATASTORE
MASTER Rep1 SUBSCRIBER Rep2 RETURN RECEIPT
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2"

PRIORITY 1
MASTERIP "3.3.3.3" PRIORITY 2 SUBSCRIBERIP "4.4.4.4"
SQL Statements 273

PRIORITY 2;

Example 5.66 Example of NetworkOperation clause. Use the default sending interface but a
specific receiving network:
CREATE REPLICATION R
ELEMENT E DATASTORE
MASTER Rep1 SUBSCRIBER Rep2
ROUTE MASTER Rep1 SUBSCRIBER Rep2
SUBSCRIBERIP "REP2NIC2" PRIORITY 1;

Example 5.67 Example of using the NetworkOperation clause with multiple subscribers:
CREATE REPLICATION R ELEMENT E DATASTORE
MASTER Rep1 SUBSCRIBER Rep2,Rep3
ROUTE MASTER Rep1 SUBSCRIBER Rep2
MASTERIP "1.1.1.1" PRIORITY 1 SUBSCRIBERIP "2.2.2.2"

PRIORITY 1
ROUTE MASTER Rep1 SUBSCRIBER Rep3
MASTERIP "3.3.3.3" PRIORITY 2 SUBSCRIBERIP "4.4.4.4";

See Also “ALTER ACTIVE STANDBY PAIR” on page 187
“ALTER REPLICATION” on page 194
“CREATE ACTIVE STANDBY PAIR” on page 229
“DROP ACTIVE STANDBY PAIR” on page 305
“DROP REPLICATION” on page 310
274 Oracle TimesTen In-Memory Database SQL Reference Guide

CREATE SEQUENCE
The CREATE SEQUENCE statement creates a new sequence number generator
that can subsequently be used by multiple users to generate unique integers. You
use the CREATE SEQUENCE statement to define the initial value of the
sequence, define the increment value, the maximum or minimum value and
determine if the sequence “cycles.”

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL Syntax CREATE SEQUENCE [Owner.]SequenceName
[INCREMENT BY IncrementValue]
[MINVALUE MinimumValue]
[MAXVALUE MaximumValue]
[CYCLE]
[CACHE CacheValue]
[START WITH StartValue]

Parameters The CREATE SEQUENCE statement has the parameters:

Parameter Description

SEQUENCE
[Owner.]SequenceNam
e

Name of the sequence number generator.

INCREMENT BY
IncrementValue

The incremental value between consecutive numbers. This value can
be either a positive or negative integer. It cannot be 0. If the value is
positive, it is an ascending sequence. If the value is negative, it is
descending. The default value is 1. In a descending sequence, the
range starts from MAXVALUE to MINVALUE, and vice versa for
ascending sequence.

MINVALUE
MinimumValue

Specifies the minumum value for the sequence. The default
minimum value is 1.

MAXVALUE
MaximumValue

The largest possible value for an ascending sequence, or the starting
value for a descending sequence. The default maximum value is
(263) -1, which is the maximum of BIGINT.
SQL Statements 275

Description • All parameters in the CREATE SEQUENCE statement must be integer
values.

• If you do not specify a value in the parameters, TimesTen defaults to an
ascending sequence that starts with 1, increments by 1, has the default
maximum value and does not cycle.

• There is no “ALTER SEQUENCE” statement in TimesTen. To alter a
sequence, use the DROP SEQUENCE statement and then create a new
sequence with the same name. For example, to change the MINVALUE, drop
the sequence and recreate it with the same name and with the desired
MINVALUE.

Incrementing SEQUENCE values with CURRVAL and NEXTVAL
To refer to the SEQUENCE values in a SQL statement, use CURRVAL and
NEXTVAL.
• CURRVAL returns the value of the last call to NEXTVAL if there is one in

the current session, otherwise it returns an error.
• NEXTVAL increments the current sequence value by the specified increment

and returns the value for each row accessed.
• NEXTVAL and CURRVAL can be used in the:

CYCLE Indicates that the sequence number generator continues to generate
numbers after it reaches the maximum or minimum value. By
default, sequences do not cycle. Once the number reaches the
maximum value in the ascending sequence, the sequence wraps
around and generates numbers from its minimum value. For a
descending sequence, when the minimum value is reached, the
sequence number wraps around, beginning from the maximum value.
If CYCLE is not specified, the sequence number generator stops
generating numbers when the maximum/minimum is reached and
TimesTen returns an error.

CACHE CacheValue CACHE indicates the range of numbers that are cached each time.
When a restart occurs, unused cached numbers are lost. If you
specify a CacheValue of 1, then each use of the sequence results in
an update to the database. Larger cache values result in fewer
changes to the database and less overhead. The default is 20.

START WITH
StartValue

Specifies the first sequence number to be generated. Use this clause
to start an ascending sequence at a value that is greater than the
minumum value or to start a descending sequence at a value less than
the maximum. The StartValue must be greater or equal
MinimumValue and StartValue must be less than or equal to
MaximumValue.
276 Oracle TimesTen In-Memory Database SQL Reference Guide

– SelectList of a SELECT statement, but not the SelectList of a subquery
– SelectList of an INSERT SELECT
– SET clause of an UPDATE statement

• In a single SQL statement with multiple NEXTVAL references, Timesten
only increments the sequence once, returning the same value for all
occurrences of NEXTVAL.

• If a SQL statement contains both NEXTVAL and CURRVAL, NEXTVAL is
executed first. CURRVAL and NEXTVAL have the same value in that SQL
statement.

• The current value of a sequence is a connection-specific value. If there are two
concurrent connections to the same data store, each connection has its own
CURRVAL of the same sequence set to its last NEXTVAL reference.

• In the case of recovery, sequences are not rolled back. It is possible that the
range of values of a sequence can have gaps. Each sequence value is still
unique.

• When the maximum value is reached, SEQUENCE either wraps or issues an
error statement, depending on the value of the CYCLE option of the CREATE
SEQUENCE.

Note: Sequences with the CYCLE attribute cannot be replicated.

Example 5.68 CREATE SEQUENCE mysequence INCREMENT BY 1 MINVALUE 2
MAXVALUE 1000;

Example 5.69 This example assumes that tab1 has 1 row in the table and that CYCLE is used:
CREATE SEQUENCE s1 MINVALUE 2 MAXVALUE 4 CYCLE;

SELECT s1.NEXTVAL FROM tab1;
/* Returns the value of 2; */

SELECT s1.NEXTVAL FROM tab1;
/* Returns the value of 3; */

SELECT s1.NEXTVAL FROM tab1;
/* Returns the value of 4; */

After the maximum value is reached, the cycle starts from the minimum value for
an ascending sequence.
SELECT s1.NEXTVAL FROM tab1;
/* Returns the value of 2; */

Example 5.70 To create a sequence and generate a sequence number:
CREATE SEQUENCE seq INCREMENT BY 1;
INSERT INTO student VALUES (seq.NEXTVAL, 'Sally');
SQL Statements 277

Example 5.71 To use a sequence in an UPDATE SET clause:
UPDATE student SET studentno = seq.NEXTVAL WHERE name = 'Sally';

Example 5.72 To use a sequence in a query:
SELECT seq.CURRVAL FROM student;

See Also “DROP SEQUENCE” on page 309
278 Oracle TimesTen In-Memory Database SQL Reference Guide

CREATE TABLE
The CREATE TABLE statement defines a table.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges. If Access Control is enabled for your TimesTen instance and
you use the AS SelectQuery clause, SELECT privileges are also required.

SQL syntax The syntax for a persistent table is:
CREATE TABLE [Owner.]TableName
(

{{ColumnDefinition} [,...]
[PRIMARY KEY (ColumnName [,...]) |
[[CONSTRAINT ForeignKeyName]

FOREIGN KEY ([ColumnName] [,...])
REFERENCES RefTableName

[(ColumnName [,...])] [ON DELETE CASCADE]] [...]
}

)
[UNIQUE HASH ON (HashColumnName [,...])

PAGES = PrimaryPages]
[AGING {LRU|

USE ColumnName
LIFETIME Num1 {MINUTE[S] | HOUR[S] |DAY[S]}
[CYCLE Num2 {MINUTE[S] |HOUR[S] |DAY[S]}]

}[ON|OFF]
]
[AS SelectQuery]

The syntax for a temporary table is:
CREATE GLOBAL TEMPORARY TABLE [Owner.]TableName
(

{{ColumnDefinition} [,...]
[PRIMARY KEY (ColumnName [,...]) |
[[CONSTRAINT ForeignKeyName]

FOREIGN KEY ([ColumnName] [,...])
REFERENCES RefTableName

[(ColumnName [,...])] [ON DELETE CASCADE]] [...]
}

)
[UNIQUE HASH ON (HashColumnName [,...])

PAGES = PrimaryPages]
[ON COMMIT { DELETE | PRESERVE } ROWS]
SQL Statements 279

Parameters The CREATE TABLE statement has the parameters:

Parameter Description

[Owner.]TableName Name to be assigned to the new table. Two tables cannot have the
same owner name and table name.

If you do not specify the owner name, your login name becomes
the owner name for the new table. Owners of tables in TimesTen
are determined by the user ID settings or login names. Oracle table
owner names must always match TimesTen table owner names.
For rules on creating names, see “Basic names” on page 65.

GLOBAL
TEMPORARY

Specifies that the table being created is a temporary table. A
temporary table is similar to a persistent table but it is effectively
materialized only when referenced in a connection.

A global temporary table definition is persistent and is visible to all
connections, but the table instance is local to each connection. It is
created when a command referencing the table is compiled for a
connection and dropped when the connection is disconnected. All
instances of the same temporary table have the same name but they
are identified by an additional connection ID together with the table
name. Global temporary tables are allocated in temp space.

The contents of a temporary table cannot be shared between
connections. Each connection sees only its own content of the table
and compiled commands that reference temporary tables are not
shared among connections.

Temporary tables cannot be used as part of a cache group or a
replication scheme. Temporary tables are automatically excluded
when DATASTORE level replication is defined.

A cache group table cannot be defined as a temporary table.

Changes to temporary tables cannot be tracked with XLA.

Operations on temporary tables do generate log records. The
amount of log they generate is less than for permanent tables.

Truncate table is not supported with global temporary tables.

Local temporary tables are not supported.

Do not specify the AS SelectQuery clause with global temporary
tables.
280 Oracle TimesTen In-Memory Database SQL Reference Guide

ColumnDefinition An individual column in a table. Each table must have at least one
column. See “Column Definition” on page 286.

If you specify the AS SelectQuery clause, ColumnDefinition is
optional.

ColumnName Name of the column(s) that forms the primary key for the table to
be created. Up to 16 columns can be specified for the primary key.
For a foreign key, the ColumnName is optional. If not specified for
a foreign key, the reference is to the parent table's primary key.

If you specify the AS SelectQuery clause, then you do not have to
specify the ColumnName. Do not specify the data type with the
AS SelectQuery clause.

PRIMARY KEY PRIMARY KEY may only be specified once in a table definition.
It provides a way of identifying one or more columns that, together,
form the primary key of the table. The contents of the primary key
have to be unique and NOT NULL. Cannot specify a column as
both UNIQUE and a single column PRIMARY KEY.

CONSTRAINT
ForeignKeyName

Specifies an optional user-defined name for a foreign key. If not
provided by the user, the system provides a default name.
SQL Statements 281

FOREIGN KEY This specifies a foreign key constraint between the new table and
the referenced table identified by RefTableName. There are two
lists of columns specified in the foreign key constraint.

Columns in the first list are columns of the new table and are called
the referencing columns. Columns in the second list are columns of
the referenced table and are called referenced columns. These two
lists must match in data type, including length, precision and scale.
The referenced table must already have a primary key or unique
index on the referenced column.

The column name list of referenced columns is optional. If omitted,
the primary index of RefTableName is used.

The declaration of a foreign key creates a T-tree index on the
referencing columns. The user cannot drop the referenced table or
its referenced index until the referencing table is dropped.

The foreign key constraint asserts that each row in the new table
must match a row in the referenced table such that the contents of
the referencing columns are equal to the contents of the referenced
columns. Any INSERT, DELETE or UPDATE statements that
violate the constraint return TimesTen error 3001.

TimesTen supports SQL-92 “NO ACTION” update and delete
rules and ON DELETE CASCADE. Foreign key constraints are not
deferrable.

A foreign key can be defined on a global temporary table, but it can
only reference a global temporary table. If a parent table is defined
with COMMIT DELETE, the child table must also have the
COMMIT DELETE attribute.

A foreign key cannot reference an active parent table. An active
parent table is one that has some instance materialized for a
connection.

If you specify the AS SelectQuery clause, you cannot define a
foreign key on the table you are creating.

[ON DELETE
 CASCADE]

Enables the ON DELETE CASCADE referential action. If
specified, when rows containing referenced key values are deleted
from a parent table, rows in child tables with dependent foreign key
values are also deleted.

UNIQUE UNIQUE provides a way of identifying a column where each row
must contain a unique value.
282 Oracle TimesTen In-Memory Database SQL Reference Guide

UNIQUE HASH ON Hash index for the table. Only unique hash indexes are created.
This parameter is used for equality predicates. UNIQUE HASH
ON requires that a primary key be defined.

HashColumnName Column defined in the table that is to participate in the hash key of
this table. The columns specified in the hash index must be
identical to the columns in the primary key.

If you specify the AS SelectQuery clause, you must define
HashColumnName on the table you are creating.

PrimaryPages Specifies the expected number of pages in the table. This number
affects the number of buckets that are allocated for the table’s hash
index. The minimum is 1. If your estimate is too small,
performance is degraded.

[ON COMMIT
{ DELETE | PRESERVE
} ROWS]

The optional statement specifies whether to delete or preserve rows
when a transaction that touches a global temporary table is
committed. If not specified, the rows of the temporary table are
deleted.

[AGING LRU [ON |
OFF]]

If specified, defines the LRU aging policy for the table. The LRU
aging policy defines the type of aging (least recently used (LRU)),
the aging state (ON or OFF) and the LRU aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates that
the aging state is disabled and aging is not done automatically. In
both cases, the aging policy is defined. The default is ON.

LRU attributes are defined by calling the ttAgingLRUConfig
procedure. LRU attributes are not defined at the SQL level.

For more information about LRU aging, see "Implementing aging
in your tables" in Oracle TimesTen In-Memory Database
Operations Guide.
SQL Statements 283

[AGING USE
ColumnName...
[ON | OFF]]

If specified, defines the time-based aging policy for the table. The
time-based aging policy defines the type of aging (time-based), the
aging state (ON or OFF) and the time-based aging attributes.

Set the aging state to either ON or OFF. ON indicates that the aging
state is enabled and aging is done automatically. OFF indicates that
the aging state is disabled and aging is not done automatically. In
both cases, the aging policy is defined. The default is ON.

Time-based aging attributes are defined at the SQL level and are
specified by the LIFETIME and CYCLE clauses.

Specify ColumnName as the name of the column used for time-
based aging. Define the column as NOT NULL and of data type
TIMESTAMP or DATE. The value of this column is subtracted
from SYSDATE, truncated using the specified unit (minute, hour,
day) and then compared to the LIFETIME value. If the result is
greater than the LIFETIME value, then the row is a candidate for
aging.

The values of the column that you use for aging are updated by
your applications. If the value of this column is unknown for some
rows, and you do not want the rows to be aged, define the column
with a large default value (the column cannot be NULL).

You can define your aging column with a data type of
TT_TIMESTAMP or TT_DATE. If you choose data type
TT_DATE, then you must specify the LIFETIME unit as days.

If you specify the AS SelectQuery clause, you must define the
ColumnName on the table you are creating.

For more information about time-based aging, see "Implementing
aging in your tables" in Oracle TimesTen In-Memory Database
Operations Guide.
284 Oracle TimesTen In-Memory Database SQL Reference Guide

LIFETIME
Num1 {MINUTE[S]|
HOUR[S] |
 DAY[S]}

LIFETIME is a time-based aging attribute and is a required clause.

Specify the LIFETIME clause after the AGING USE ColumnName
clause.

The LIFETIME clause specifies the minimum amount of time data
is kept in cache.

Specify Num1 as a positive integer constant to indicate the unit of
time expressed in minutes, hours or days that rows should be kept
in cache. Rows that exceed the LIFETIME value are aged out
(deleted from the table). If you define your aging column with data
type TT_DATE, then you must specify DAYS as the LIFETIME
unit.

The concept of time resolution is supported. If DAYS is specified
as the time resolution, then all rows whose timestamp belongs to
the same day are aged out at the same time. If HOURS is specified
as the time resolution, then all rows with timestamp values within
that hour are aged at the same time. A LIFETIME of 3 days is
different than a LIFETIME of 72 hours (3*24) or a LIFETIME of
432 minutes (3*24*60). See Example 5.84.

[CYCLE Num2
{MINUTE[S] |HOUR[S]
|
 DAY[S]}]

CYCLE is a time-based aging attribute and is optional. Specify the
CYCLE clause after the LIFETIME clause.

The CYCLE clause indicates how often the system should examine
rows to see if data exceeds the specified LIFETIME value and
should be aged out (deleted).

Specify Num2 as a positive integer constant.

If you do not specify the CYCLE clause, then the default value is 5
minutes. If you specify 0 for Num2, then aging is continuous and
the aging thread never sleeps.

If the aging state is OFF, then aging is not done automatically and
the CYCLE clause is ignored.

AS SelectQuery If specified, creates a new table from the contents of the result set
of the SelectQuery. The rows returned by SelectQuery are inserted
into the table.

Data types and data type lengths are derived from SelectQuery.

SelectQuery is a valid SELECT statement that may or may not
contain a subquery.
SQL Statements 285

Column Definition

SQL syntax ColumnName ColumnDataType
[DEFAULT DefaultVal]
[[NOT] INLINE]
[PRIMARY KEY | UNIQUE |
NULL [UNIQUE] |
NOT NULL [PRIMARY KEY | UNIQUE]]

[Parameters The column definition has the parameters:

Parameter Description

ColumnName Name to be assigned to one of the columns in the new table. No two
columns in the table can be given the same name. You can define a
maximum of 255 columns in a table.

If you specify the AS SelectQuery clause, ColumnName is optional.
The number of column names must match the the number of columns
in SelectQuery.

DEFAULT
DefaultVal

Indicates that if a value is not specified for the column in an INSERT,
the default value DefaultVal is inserted into the column. The default
value specified must have a compatible type with the column's data
type. A default value can be as long as the data type of the associated
column allows.

Legal data types for DefaultVal can be one of:
NULL
ConstantValue -- See “Constants” on page 79
SYSDATE and GETDATE
USER
CURRENT_USER
SYSTEM_USER
If default value is one of the users, the column's data type must be
either CHAR or VARCHAR2 and the column's width must be at least
30 characters.

If you specify the AS SelectQuery clause, optionally, you can specify
the DEFAULT clause on the table you are creating.
286 Oracle TimesTen In-Memory Database SQL Reference Guide

ColumnDataType Type of data the column can contain. Some data types require that you
indicate a length. See Chapter 1, “Data Types,” for the data types that
can be specified.

If you specify the AS SelectQuery clause, do not specify
ColumnDataType.

INLINE |
NOT INLINE

By default, variable-length columns whose declared column length is >
128 bytes are stored out of line. Variable-length columns whose
declared column length is <= 128 bytes are stored inlined. The default
behavior can be overridden during table creation through the use of the
INLINE and NOT INLINE keywords.

If you specify the AS SelectQuery clause, optionally, you can specify
the INLINE | NOT INLINE clause on the table you are creating.

NULL Indicates that the column can contain NULL values.

If you specify the AS SelectQuery clause, optionally, you can specify
NULL on the table you are creating.

NOT NULL Indicates that the column cannot contain NULL values. If NOT NULL
is specified, any statement that attempts to place a NULL value in the
column is rejected.

If you specify the AS SelectQuery clause, optionally, you can specify
NOT NULL on the table you are creating.

UNIQUE A unique constraint placed on the column. No two rows in the table
may have the same value for this column. TimesTen creates a unique
T-tree index to enforce uniqueness. This means that a column with a
unique constraint can use more memory and time during execution than
a column without the constraint. Cannot be used with PRIMARY KEY.

If you specify the AS SelectQuery clause, optionally, you can specify
UNIQUE on the table you are creating.

PRIMARY KEY A unique NOT NULL constraint placed on the column. No two rows in
the table may have the same value for this column.. Cannot be used
with UNIQUE.

If you specify the AS SelectQuery clause, optionally, you can specify
PRIMARY KEY on the table you are creating.
SQL Statements 287

Description • The TimesTen system currently supports one hash index per table.
Furthermore, hash indexes are only supported over the primary key of tables.

• By default, a T-tree index is created to enforce the primary key. Use the
UNIQUE HASH clause to specify a hash index for the primary key.
– If your application performs range queries over a table’s primary key, then

choose a T-tree index for that table by omitting the UNIQUE HASH
clause.

– If, however, your application performs only exact match lookups on the
primary key, then a hash index may offer better response time and
throughput. In such a case, specify the UNIQUE HASH clause.

• Use ALTER TABLE to change the representation of the primary key index
for a table.

• A hash index is created with a fixed number of buckets that remains constant
for the life of the table or until the hash index is resized using an ALTER
TABLE statement to change hash index size. Fewer buckets in the hash index
results in more hash collisions. More buckets reduce collisions but can waste
memory. Hash key comparison is a fast operation, so a small number of hash
collisions does not cause a performance problem for TimesTen.

The bucket count is derived as the ratio of the maximum table cardinality,
derived from the value of PAGES, to the value 20.

To ensure that the hash index is sized correctly, an application must indicate
the expected size of the table. This is done with the PAGES parameter. The
PAGES parameter should be the expected number of rows in the table,
divided by 256. (Since 256 is the number of rows TimesTen stores on each
page, the value provided is the expected number of pages in the table.) The
application may specify a larger value for PAGES, and therefore fewer rows
per bucket on average, if memory use is not an overriding concern.

• At most 16 columns are allowed in a hash key.
• All columns participating in the primary key are NOT NULL.
• A unique hash index can be specified only for the primary key.
• A PRIMARY KEY that is specified in the ColumnDefinition can only be

specified for one column.
• PRIMARY KEY cannot be specified in both the ColumnDefinition

parameters and CREATE TABLE parameters.
• For both primary key and foreign key constraints, duplicate column names are

not allowed in the constraint column list.
• You cannot create a table that has a foreign key referencing a cached table.
• UNIQUE column constraint and default column values are not supported with

materialized views.
288 Oracle TimesTen In-Memory Database SQL Reference Guide

• To change the ON DELETE CASCADE triggered action, drop then redefine
the foreign key constraint.

• If access control is disabled, no privilege is necessary to execute a DELETE
statement which triggers the ON DELETE CASCADE action. Otherwise,
WRITE privileges are required on all tables affected by the ON DELETE
CASCADE action.

• ON DELETE CASCADE is supported on “detail tables” of a materialized
view. If you have a materialized view defined over a child table, a deletion
from the parent table causes cascaded deletes in the child table. This, in turn,
triggers changes in the materialized view.

• The total number of rows reported by the DELETE statement does not include
rows deleted from child tables as a result of the ON DELETE CASCADE
action.

• For ON DELETE CASCADE: Since different paths may lead from a parent
table to a child table, the following rule is enforced:
– Either all paths from a parent table to a child table are “delete” paths or all

paths from a parent table to a child table are “do not delete” paths. Specify
ON DELETE CASCADE on all child tables on the “delete” path.

– This rule does not apply to paths from one parent to different children or
from different parents to the same child.

• For ON DELETE CASCADE: A second rule is also enforced:
– If a table is reached by a “delete” path, then all its children are also reached

by a “delete” path.
• For ON DELETE CASCADE with replication, the following restrictions

apply:
– The foreign keys specified with ON DELETE CASCADE must match

between the Master and subscriber for replicated tables. Checking is done
at runtime. If there is an error, the receiver thread stops working.

– All tables in the delete cascade tree have to be replicated if any table in the
tree is replicated. This restriction is checked when the replication scheme is
created or when a foreign key with ON DELETE CASCADE is added to
one of the replication tables. If an error is found, the operation is aborted.
You may be required to drop the replication scheme first before trying to
change the foreign key constraint.

– You must stop the replication agent before adding or dropping a foreign
key on a replicated table.

• After you have defined an aging policy for the table, you cannot change the
policy from LRU to time-based or from time-based to LRU. You must first
drop aging and then alter the table to add a new aging policy.

• The aging policy must be defined to change the aging state.
SQL Statements 289

• For the time-based aging policy, you cannot add or modify the aging column.
This is because you cannot add or modify a NOT NULL column.

• LRU and time-based aging can be combined in one system. If you use only
LRU aging, the aging thread wakes up based on the cycle specified for the
whole data store. If you use only time-based aging, the aging thread wakes up
based on an optimal frequency. This frequency is determined by the values
specified in the CYCLE clause for all tables. If you use both LRU and time-
based aging, then the thread wakes up based on a combined consideration of
both types.

• The following rules determine if a row is accessed or referenced for LRU
aging:
– Any rows used to build the result set of a SELECT statement.
– Any rows used to build the result set of an INSERT SELECT statement.
– Any rows that are about to be updated or deleted.

• Compiled commands are marked invalid and need recompilation when you
either drop LRU aging from or add LRU aging to tables that are referenced in
the commands.

• Call the ttAgingScheduleNow procedure to schedule the aging process right
away regardless if the aging state is ON or OFF.

• Aging restrictions:
– LRU aging and time-based aging are not supported on detail tables of

materialized views.
– LRU aging and time-based aging are not supported on global temporary

tables.
– You cannot drop the column that is used for time-based aging.
– The aging policy and aging state must be the same in all sites of replication.
– Tables that are related by foreign keys must have the same aging policy.
– For LRU aging, if a child row is not a candidate for aging, neither this child

row nor its parent row are deleted. ON DELETE CASCADE settings are
ignored.

– For time-based aging, if a parent row is a candidate for aging, then all child
rows are deleted. ON DELETE CASCADE (whether specified or not) is
ignored.

• If you specify the AS SelectQuery clause:
– Data types and data type lengths are derived from the SelectQuery. Do not

specify data types on the columns of the table you are creating.
– TimesTen defines on columns in the new table NOT NULL constraints that

were explicitly created on the corresponding columns of the selected table
if SelectQuery selects the column rather than an expression containing the
column.
290 Oracle TimesTen In-Memory Database SQL Reference Guide

– NOT NULL constraints that were implicitly created by TimesTen on
columns of the selected table (for example, primary keys) are carried over
to the new table. You can override the NOT NULL constraint on the
selected table by defining the new column as NULL. For example,
CREATE TABLE NewTable (NewCol NULL) as SELECT (Col) FROM
Tab;

– NOT INLINE/INLINE attributes are carried over to the new table.
– Unique keys, foreign keys, indexes and column default values are not

carried over to the new table.
– If all expressions in SelectQuery are columns, rather than expressions, then

you can omit the columns from the table you are creating. In this case, the
name of the columns are the same as the columns in SelectQuery. If the
SelectQuery contains an expression rather than a simple column reference,
either specify a column alias or name the column in the CREATE TABLE
statement.

– Do not specify foreign keys on the table you are creating.
– Do not specify the SELECT FOR UPDATE clause in SelectQuery.
– SelectQuery cannot contain set operators UNION, MINUS, INTERSECT.
– Global temporary tables are not supported.

Example 5.73 A T-tree index is created on PartNumber because it is the primary key.
Command> CREATE TABLE Price
> (PartNumber INTEGER NOT NULL PRIMARY KEY,
> VendorNumber INTEGER NOT NULL,
> VendPartNum CHAR(20) NOT NULL,
> UnitPrice DECIMAL(10,2),
> DeliveryDays SMALLINT,
> DiscountQty SMALLINT);
Command> indexes price;

Indexes on table SAMPLEUSER.PRICE:
 PRICE: unique T-tree index on columns:

PARTNUMBER

1 index found.
1 table found.

Example 5.74 A hash index is created on column ClubName, the primary key.
CREATE TABLE Recreation.Clubs
(ClubName CHAR(15) NOT NULL PRIMARY KEY,
ClubPhone SMALLINT,
Activity CHAR(18))
UNIQUE HASH ON (ClubName) PAGES = 30;
SQL Statements 291

Example 5.75 A T-tree index is created on the two columns MemberName and Club because
together they form the primary key.
Command> CREATE TABLE Recreation.Members
> (MemberName CHAR(20) NOT NULL,
> Club CHAR(15) NOT NULL,
> MemberPhone SMALLINT,
> PRIMARY KEY (MemberName, Club));
Command> indexes recreation.members;

Indexes on table RECREATION.MEMBERS:
MEMBERS: unique T-tree index on columns:
MEMBERNAME
CLUB

1 index found.

1 table found.

Example 5.76 No hash index is created on the table Recreation.Events.
CREATE TABLE Recreation.Events
(SponsorClub CHAR(15),
Event CHAR(30),
Coordinator CHAR(20),
Results VARBINARY(10000));

Example 5.77 A hash index is created on the column VendorNumber.
CREATE TABLE Purchasing.Vendors
(VendorNumber INTEGER NOT NULL PRIMARY KEY,
VendorName CHAR(30) NOT NULL,
ContactName CHAR(30),
PhoneNumber CHAR(15),
VendorStreet CHAR(30) NOT NULL,
VendorCity CHAR(20) NOT NULL,
VendorState CHAR(2) NOT NULL,
VendorZipCode CHAR(10) NOT NULL,
VendorRemarks VARCHAR(60))
UNIQUE HASH ON (VendorNumber) PAGES = 101;

Example 5.78 A hash index is created on the columns MemberName and Club because together
they form the primary key.
CREATE TABLE Recreation.Members

(MemberName CHAR(20) NOT NULL,
Club CHAR(15) NOT NULL,
MemberPhone SMALLINT,
PRIMARY KEY (MemberName, Club))

UNIQUE HASH ON (MemberName, Club) PAGES = 100;
292 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 5.79 A hash index is created on the columns FirstName and LastName because
together they form the primary key in the table Authors.

A foreign key is created on the columns AuthorFirstName and AuthorLastName
in the table Books that references the primary key in the table Authors.
CREATE TABLE Authors

(FirstName VARCHAR(255) NOT NULL,
LastName VARCHAR(255) NOT NULL,
Description VARCHAR(2000),
PRIMARY KEY (FirstName, LastName))

UNIQUE HASH ON (FirstName, LastName) PAGES=20;

CREATE TABLE Books
(Title VARCHAR(100),
AuthorFirstName VARCHAR(255),
AuthorLastName VARCHAR(255),
Price DECIMAL(5,2),
FOREIGN KEY (AuthorFirstName, AuthorLastName)
REFERENCES Authors(FirstName, LastName));

Example 5.80 The following statement overrides the default character of VARCHAR columns
and creates a table where one VARCHAR (10) column is NOT INLINE and one
VARCHAR (144) is INLINE:
CREATE TABLE t1

(c1 VARCHAR(10) NOT INLINE NOT NULL,
c2 VARCHAR(144) INLINE NOT NULL);

Example 5.81 The following statement creates a table with a UNIQUE column for book titles:
CREATE TABLE Books

(Title VARCHAR(100) UNIQUE,
AuthorFirstName VARCHAR(255),
AuthorLastName VARCHAR(255),
Price DECIMAL(5,2),
FOREIGN KEY (AuthorFirstName, AuthorLastName)
REFERENCES Authors(FirstName, LastName));

Example 5.82 The following statement creates a table with a default value of 1 on column x1
and a default value of SYSDATE on column d:
CREATE TABLE t1

(x1 INT DEFAULT 1, d TIMESTAMP DEFAULT SYSDATE);

This example creates the TtreeEx table and defines Col1 as the primary key. A T-
tree index is created by default.
Command> create table TtreeEx (Col1 TT_INTEGER PRIMARY KEY);
Command> INDEXES TtreeEx;
SQL Statements 293

Indexes on table SAMPLEUSER.TTREEEX:
TTREEEX: unique T-tree index on columns:
COL1

1 index found.

1 table found.

Example 5.83 The following statement illustrates the use of the ON DELETE CASCADE
clause for parent/child tables of the HR schema. Tables with foreign keys have
been altered to enable ON DELETE CASCADE.
ALTER TABLE countries
ADD CONSTRAINT countr_reg_fk

FOREIGN KEY (region_id)
REFERENCES regions(region_id) ON DELETE CASCADE;

ALTER TABLE locations
ADD CONSTRAINT loc_c_id_fk

FOREIGN KEY (country_id)
REFERENCES countries(country_id) ON DELETE CASCADE;

ALTER TABLE departments
ADD CONSTRAINT dept_loc_fk

FOREIGN KEY (location_id)
REFERENCES locations (location_id) ON DELETE CASCADE;

ALTER TABLE employees
ADD CONSTRAINT emp_dept_fk

FOREIGN KEY (department_id)
REFERENCES departments ON DELETE CASCADE;

ALTER TABLE employees
ADD CONSTRAINT emp_job_fk

FOREIGN KEY (job_id)
REFERENCES jobs (job_id);

ALTER TABLE job_history
ADD CONSTRAINT jhist_job_fk

FOREIGN KEY (job_id)
REFERENCES jobs;

ALTER TABLE job_history
ADD CONSTRAINT jhist_emp_fk

FOREIGN KEY (employee_id)
REFERENCES employees ON DELETE CASCADE;

ALTER TABLE job_history
ADD CONSTRAINT jhist_dept_fk

FOREIGN KEY (department_id)
REFERENCES departments ON DELETE CASCADE;

;

Example 5.84 This example shows how time resolution works with aging.
294 Oracle TimesTen In-Memory Database SQL Reference Guide

If lifetime is 3 days (resolution is in days):
• If (SYSDATE - ColumnValue) <= 3, do not age.
• If (SYSDATE - ColumnValue) > 3, then the row is a candidate for aging.
• If (SYSDATE - ColumnValue) = 3 days, 22 hours. The row is not aged out if

you specified a lifetime of 3 days. The row would be aged out if you had
specified a lifetime of 72 hours.

Example 5.85 This example creates a table with LRU aging. Aging state is ON by default.
CREATE TABLE AgingDemo

(AgingId NUMBER NOT NULL PRIMARY KEY
,Name VARCHAR2 (20)
)
AGING LRU;

Command> DESCRIBE AgingDemo;

Table USER.AGINGDEMO:
Columns:

*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGING LRU ON

1 table found.
(primary key columns are indicated with *)

Example 5.86 This example creates a table with time-based aging. Lifetime is 3 days. Cycle is
not specified, so the default is 5 minutes. Aging state is OFF.
CREATE TABLE AgingDemo2

(AgingId NUMBER NOT NULL PRIMARY KEY
,Name VARCHAR2 (20)
,AgingColumn TIMESTAMP NOT NULL
)
AGING USE AgingColumn LIFETIME 3 DAYS OFF;

Command> DESCRIBE AgingDemo2;

Table USER.AGINGDEMO2:
Columns:

*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging use AGINGCOLUMN lifetime 3 days cycle 5 minutes off

1 table found.
(primary key columns are indicated with *)

Example 5.87 This example generates an error message. It illustrates that after you create an
aging policy, you cannot change it. You must drop aging and redefine aging.
SQL Statements 295

CREATE TABLE AgingDemo2
(AgingId NUMBER NOT NULL PRIMARY KEY
,Name VARCHAR2 (20)
,AgingColumn TIMESTAMP NOT NULL
)
AGING USE AgingColumn LIFETIME 3 DAYS OFF;

ALTER TABLE AgingDemo2
ADD AGING LRU;

 2980: Cannot add aging policy to a table with an existing aging policy.
Have to drop the old aging first
The command failed.

DROP aging on the table and redefine with LRU aging.

ALTER TABLE AgingDemo2
DROP AGING;

ALTER TABLE AgingDemo2
ADD AGING LRU;

Command> DESCRIBE AgingDemo2;

Table USER.AGINGDEMO2:
Columns:
*AGINGID NUMBER NOT NULL
NAME VARCHAR2 (20) INLINE
AGINGCOLUMN TIMESTAMP (6) NOT NULL

Aging lru on

1 table found.
(primary key columns are indicated with *)

Example 5.88 Attempt to create a table with timebased aging. Define aging column with data
type TT_DATE and LIFETIME 3 hours. Error is generated because the
LIFETIME unit must be expressed as DAYS.
Command> CREATE TABLE AGING1 (col1 TT_INTEGER PRIMARY KEY,

col2 TT_DATE NOT NULL) AGING USE col2 LIFETIME 3 HOURS;
 2977: Only DAY lifetime unit is allowed with a TT_DATE column
The command failed.

Example 5.89 Use AS SelectQuery clause to create the table Emp. SELECT Last_Name from
the Employees table where Employee_Id between 100 and 105. You see 6 rows
inserted into Emp. First issue the SELECT statement to see rows that should be
returned.
Command> SELECT Last_Name FROM EMPLOYEES WHERE Employee_Id
>BETWEEN 100 AND 105;
< King >
< Kochhar >
< De Haan >
296 Oracle TimesTen In-Memory Database SQL Reference Guide

< Hunold >
< Ernst >
< Austin >
6 rows found.

Command> CREATE TABLE Emp AS SELECT Employee_Id FROM Employees
>WHERE Employee_Id BETWEEN 100 AND 105;
6 rows inserted.

Command> SELECT * FROM Emp;
< King >
< Kochhar >
< De Haan >
< Hunold >
< Ernst >
< Austin >
6 rows found.

Example 5.90 Use AS SelectQuery to create table TotalSalary. SUM salary and insert result
into TotalSalary. Define alias S for SelectQuery expression.
Command> CREATE TABLE TotalSal AS SELECT SUM (Salary) S FROM
> EMPLOYEES;
1 row inserted.
Command> SELECT * FROM TotalSal;
< 691400 >
1 row found.

Example 5.91 Use AS SelectQuery to create table defined with column Commission_pct. Set
default to .3. First DESCRIBE table Employees to show that column
Commission_Pct is of type NUMBER (2,2). For table C_pct, column
Commission_Pct inherits type NUMBER (2,2) from column Commission_pct of
Employees table.
Command> DESCRIBE Employees;
Table SAMPLEUSER.EMPLOYEES:
 Columns:
 *EMPLOYEE_ID NUMBER (6) NOT NULL
 FIRST_NAME VARCHAR2 (20) INLINE
 LAST_NAME VARCHAR2 (25) INLINE NOT NULL
 EMAIL VARCHAR2 (25) INLINE UNIQUE

NOT NULL
 PHONE_NUMBER VARCHAR2 (20) INLINE
 HIRE_DATE DATE NOT NULL
 JOB_ID VARCHAR2 (10) INLINE NOT NULL
 SALARY NUMBER (8,2)
 COMMISSION_PCT NUMBER (2,2)
 MANAGER_ID NUMBER (6)
 DEPARTMENT_ID NUMBER (4)
SQL Statements 297

1 table found.
(primary key columns are indicated with *)

Command> CREATE TABLE C_pct (Commission_Pct DEFAULT .3) AS SELECT
Commission_Pct FROM Employees;

107 rows inserted.

Command> DESCRIBE C_Pct;

Table SAMPLEUSER.C_PCT:
 Columns:
 COMMISSION_PCT NUMBER (2,2) DEFAULT .3

1 table found.
(primary key columns are indicated with *)

See Also “ALTER TABLE” on page 210
“DROP TABLE” on page 311
“TRUNCATE TABLE” on page 354
“UPDATE” on page 358
298 Oracle TimesTen In-Memory Database SQL Reference Guide

CREATE USER
The CREATE USER statement identifies a user to the TimesTen instance.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
instance administrator privileges. If your TimesTen instance does not use Access
Control, this operation is not available. If Access Control is not enabled,
TimesTen returns an error when this statement is called.

SQL syntax CREATE USER User IDENTIFIED {BY 'Password' | EXTERNALLY}

Parameters The CREATE USER statement has the parameters:

Description • Instance users may have internal user names or external user names.
– Internal user names are defined strictly within a TimesTen instance.
– External user names are defined by some external authority, such as the

operating system. External user names cannot be assigned a TimesTen
password.

• An internal user connected as User may execute this command to change their
own TimesTen password. Passwords are case-sensitive.

• TimesTen instance users are user names that have been identified to the
instance. User names are case-insensitive. They apply to all data stores in the
instance.

• An internal user name takes precedence over an external user of the same
name.

Parameter Description

User Name of the user that is being added to the instance.

IDENTIFIED Specifies how the TimesTen instance uniquely identifies the user.

BY Password Internal users must be given a TimesTen password. To perform data
store operations using an internal user name, the user must supply
this password.

EXTERNALLY Identifies the operating system user name User to the TimesTen
instance. To perform data store operations as an external user, the
accessing process must have had a TimesTen external user name
created that matches the user name authenticated by the operating
system or network. A password is not required by TimesTen since
the user would have been authenticated by the operating system at
login time.
SQL Statements 299

• Changes to user identification and privileges take place at the next connection
time.

Example 5.92 To create the internal user TERRY with the password ‘secret’, use:
CREATE USER terry IDENTIFIED BY ‘secret’;

Example 5.93 To identify the external user PAT to the TimesTen instance, use:
CREATE USER pat IDENTIFIED EXTERNALLY;

See Also “ALTER USER” on page 226
“DROP USER” on page 312
“GRANT” on page 316
“REVOKE” on page 332
300 Oracle TimesTen In-Memory Database SQL Reference Guide

CREATE VIEW
The CREATE VIEW statement creates a view of the tables specified in the
SelectQuery clause. The original tables used to create a view are referred to as
“detail” tables. The resulting table is referred to as a VIEW.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL syntax CREATE VIEW ViewName AS SelectQuery

Parameters The CREATE VIEW statement has the parameters:

Restrictions on the VIEW query
There are several restrictions on the query that is used to define the view.
• A SELECT * query in a view definition is expanded at view creation time.

Any columns added after a view is created do not affect the view.
• The following cannot be used in a SELECT statement that is creating a view:

– DISTINCT
– FIRST
– ORDER BY
– Arguments
– Temporary tables

• Each expression in the select list must have a unique name. A name of a
simple column expression would be that column’s name unless a column alias
is defined. RowId is considered an expression and needs an alias.

• No SELECT FOR UPDATE or SELECT FOR INSERT statements can be
used on a view.

• Certain TimesTen query restrictions are not checked when a non-materialized
view is created. Views that violate those restrictions may be allowed to be
created, but an error is returned when the view is referenced later in an
executed statement.

Restrictions on the VIEW
• When a view is referenced in the FROM clause of a SELECT statement, its

name is replaced by its definition as a derived table at parsing time. If it is not

Parameter Description

ViewName Name assigned to the new view.

SelectQuery Selects column from the detail table(s) to be used in
the view. Can also create indexes on the view.
SQL Statements 301

possible to merge all clauses of a view to the same clause in the original select
to form a legal query without the derived table, the content of this derived
table is materialized. For example, if both the view and the referencing select
specify aggregates, the view is materialized before its result can be joined
with other tables of the select.

• A view cannot be dropped with a DROP TABLE statement. You must use the
DROP VIEW statement.

• A view cannot be altered with an ALTER TABLE statement.
• Referencing a view can fail due to dropped or altered detail tables.

Example 5.94 Creates a (non-materialized) view from the table t1.
CREATE VIEW v1 AS SELECT * FROM t1;

Example 5.95 Creates a (non-materialized) view from an aggregate query on the table t1.
CREATE VIEW v1 (max1) AS SELECT max(x1) FROM t1;

See Also “CREATE MATERIALIZED VIEW” on page 254
“CREATE TABLE” on page 279
“DROP VIEW” on page 313
302 Oracle TimesTen In-Memory Database SQL Reference Guide

DELETE
The DELETE statement deletes rows from a table.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
WRITE privileges or data store object ownership.

SQL syntax DELETE [FIRST NumRows] FROM [Owner.]TableName[CorrelationName]
[WHERE SearchCondition]

Parameters The DELETE statement has the parameters:

Description • If all the rows of a table are deleted, the table is empty but continues to exist
until you issue a DROP TABLE statement.

• If a foreign key references the target table, then logging must be enabled for
constraint enforcement.

• The DELETE operation fails if it violates any foreign key constraint. See
“CREATE TABLE” on page 279 for a description of the foreign key
constraint.

Parameter Description

FIRST NumRows Specifies the number of rows to delete. FIRST NumRows is not
supported in subquery statements. NumRows must be either a positive
INTEGER or a dynamic parameter placeholder. The syntax for a
dynamic parameter placeholder is either ? or :DynamicParameter. The
value of the dynamic parameter is supplied when the statement is
executed.

[Owner.]TableName
[CorrelationName]

Designates a table from which any rows satisfying the search condition
are to be deleted.

Owner.]TableName [CorrelationName]

where,

[Owner.]TableName identifies a table to be deleted.

CorrelationName specifies a synonym for the immediately preceding
table. When accessing columns of that table, use the correlation name
instead of the actual table name within the DELETE statement. The
correlation name must conform to the syntax rules for a basic name
(see “Basic names” on page 65).

SearchCondition Specifies which rows are to be deleted. If no rows satisfy the search
condition, the table is not changed. If the WHERE clause is omitted, all
rows are deleted. The search condition can contain a subquery.
SQL Statements 303

Example 5.96 Rows for orders whose quantity is less than 50 are deleted.
DELETE FROM Purchasing.OrderItems
WHERE Quantity < 50;

Example 5.97 The following query deletes all the duplicate orders assuming that id is not a
primary key:
DELETE FROM orders A
WHERE EXISTS (SELECT 1 FROM orders B
WHERE A.id = B.id and A.rowid < B.rowid);

Example 5.98 The following sequence of statements causes a foreign key violation.
CREATE TABLE Master
(Name CHAR(30), Id CHAR(4) NOT NULL PRIMARY KEY);

CREATE TABLE Details(MasterId CHAR(4),
Description VARCHAR(200), FOREIGN KEY (MasterId) REFERENCES
Master(Id));
INSERT INTO Master('Elephant', '0001');
INSERT INTO Details('0001', 'A VERY BIG ANIMAL');
DELETE FROM Master WHERE Id = '0001';

Example 5.99 If you attempt to delete a “busy” table, an error results. In this example, t1 is a
“busy” table that is a parent table with foreign key constraints based on it.
CREATE TABLE t1 (a INT NOT NULL, b INT NOT NULL,

PRIMARY KEY (a));
CREATE TABLE t2 (c INT NOT NULL,

FOREIGN KEY (c) REFERENCES t1(a));
INSERT INTO t1 VALUES (1,1);
INSERT INTO t2 VALUES (1);
DELETE FROM t1;

An error is returned:
SQL ERROR (3001): Foreign key violation [TTFOREIGN_0] a row in
child table T2 has a parent in the delete range.
304 Oracle TimesTen In-Memory Database SQL Reference Guide

DROP ACTIVE STANDBY PAIR
This statement drops an active standby pair replication scheme.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
ADMIN privileges and WRITE privileges or data store object ownership.

SQL syntax DROP ACTIVE STANDBY PAIR

Parameters DROP ACTIVE STANDBY has no parameters.

Description The active standby pair is dropped, but all objects such as tables, cache groups,
and materialized views still exist on the node on which the statement was issued.

See Also “ALTER ACTIVE STANDBY PAIR” on page 187
“CREATE ACTIVE STANDBY PAIR” on page 229
SQL Statements 305

DROP CACHE GROUP
The DROP CACHE GROUP statement drops the table associated with the cache
group, and removes the cache group definition from the CACHE_GROUP
system table.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges or data store object ownership.

SQL syntax DROP CACHE GROUP [Owner.]GroupName

Parameters The DROP CACHE GROUP statement has the parameter:

Description • If you attempt to delete a cache group table that is in use, TimesTen returns an
error.

• ASYNCHRONOUS WRITETHROUGH cache groups cannot be dropped
while the replication agent is running.

• Automatically installed Oracle objects for AUTOREFRESH cache groups are
uninstalled by the Cache agent. If the Cache agent is not running during the
DROP CACHE GROUP operation, the Oracle objects are uninstalled on the
next startup of the Cache agent.

• If you issue a DROP CACHE GROUP statement, and there is an autorefresh
operation currently running, then:
– If LockWait interval is 0, the DROP CACHE GROUP statement fails with

a lock timeout error.
– If LockWait interval is non-zero, then the current autorefresh transaction is

preempted (rolled back), and the DROP statement continues. This affects
all cache groups with the same autorefresh interval.

Example 5.100 DROP CACHE GROUP WesternCustomers

See Also “ALTER CACHE GROUP” on page 191
“CREATE CACHE GROUP” on page 236

Parameter Description

[Owner.]GroupName Name of the cache group to be deleted.
306 Oracle TimesTen In-Memory Database SQL Reference Guide

DROP INDEX
The DROP INDEX statement deletes the specified index.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges or data store object ownership.

SQL syntax DROP INDEX [Owner.]IndexName [FROM [Owner.]TableName]

Parameters The DROP INDEX statement has the parameters:

Description • If you attempt to drop a “busy” index—an index that is in use or that enforces
a foreign key—an error results. To drop a foreign key, and consequently the
index associated with it, use ALTER TABLE.

• If an index is created through a UNIQUE column constraint (See CREATE
TABLE.), it can only be dropped by dropping the constraint with an ALTER
TABLE DROP UNIQUE statement.

• If a DROP INDEX operation is or was active in an uncommitted transaction,
other transactions doing DML operations that do not access that index are
blocked.

• If an index is dropped, any prepared statement that uses the index is prepared
again automatically the next time the statement is executed.

• If no table name is specified, the index name must be unique for the specified
or implicit owner. The implicit owner, in the absence of a specified table or
owner, is the current user running the program.

• If no index owner is specified and a table is specified, the default owner is the
table owner.

• If a table is specified and no owner is specified for it, the default table owner
is the current user running the program.

• The table and index owners must be the same.
• An index on a temporary table cannot be dropped by a connection if some

other connection has some non-empty instance of the table.

Example 5.101 Drop index PartsOrderedIndex which is defined on table OrderItems using one of
the following:

Parameter Description

[Owner.]IndexName Name of the index to be dropped. It may include the name of the
owner of the table that has the index.

[Owner.]TableName Name of the table upon which the index was created.
SQL Statements 307

DROP INDEX PartsOrderedIndex
FROM Purchasing.OrderItems

or
DROP INDEX Purchasing.PartsOrderedIndex

See Also “CREATE INDEX” on page 250
308 Oracle TimesTen In-Memory Database SQL Reference Guide

DROP SEQUENCE
The DROP SEQUENCE statement removes an existing sequence number
generator.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL Syntax DROP SEQUENCE [Owner.]SequenceName

Parameters The DROP SEQUENCE statement has the parameter:

Description • Sequences can be dropped while they are in use.
• There is no ALTER SEQUENCE statement in TimesTen. To alter a sequence,

use the DROP SEQUENCE statement and then create a new sequence with
the same name. For example, to change the MINVALUE, one has to drop the
sequence and recreate it with the same name and with the desired
MINVALUE.

Example 5.102 The following command drops mysequence:
DROP SEQUENCE mysequence;

See Also “CREATE SEQUENCE” on page 275

Parameter Description

[Owner.]SequenceName Name of the sequence number generator
SQL Statements 309

DROP REPLICATION
The DROP REPLICATION statement destroys a replication scheme and deletes
it from the executing data store.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
ADMIN privileges.

SQL syntax DROP REPLICATION [Owner.]ReplicationSchemeName

Parameters The DROP REPLICATION statement has the parameter:

Description Dropping the last replication scheme at a data store does not delete the replicated
tables. These tables exist and persist at a data store whether or not any replication
schemes are defined.

Example 5.103 The following command erases the executing data store's knowledge of
replication scheme, R:
DROP REPLICATION R;

See Also “ALTER REPLICATION” on page 194
“CREATE REPLICATION” on page 258

Parameter Description

[Owner.]ReplicationSchemeName Name assigned to the replication scheme.
310 Oracle TimesTen In-Memory Database SQL Reference Guide

DROP TABLE
The TABLE statement deletes the specified table, including any hash indexes
and any T-tree indexes associated with it.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL syntax DROP TABLE [Owner.]TableName

Parameters The DROP TABLE statement has the parameter:

Description • If you attempt to drop a “busy” table—a table that is in use—an error results.
See Example 5.41 for more information.

• If a DROP TABLE operation is or was active in an uncommitted transaction,
other transactions doing DML operations that do not access that table are
allowed to proceed.

• If the table is a replicated table, you must use DROP REPLICATION to drop
the replication scheme before the DROP TABLE statement. Otherwise, you
receive a “Cannot drop replicated table or index” error.

• A temporary table cannot be dropped by a connection if some other
connection has some non-empty instance of the table.

Example 5.104 CREATE TABLE VendorPerf
(OrderNumber INTEGER,
DelivDay SMALLINT,
DelivMonth SMALLINT,
DelivYear SMALLINT,
DelivQty SMALLINT,
Remarks VARCHAR(60))

CREATE UNIQUE INDEX VendorPerfIndex
ON VendorPerf (OrderNumber);

The following command drops the table and index.
DROP TABLE VendorPerf ;

Parameter Description

[Owner.]TableName Identifies the table to be dropped.
SQL Statements 311

DROP USER
The DROP USER statement removes a user from the instance.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
instance administration privileges. If your TimesTen instance does not use
Access Control, this operation is not available. If Access Control is not enabled,
TimesTen returns an error when this statement is called.

SQL syntax DROP USER User

Parameters The DROP USER statement has the parameter:

Description • TimesTen instance users are user names that have been identified to the
instance. They apply to all data stores in the instance.

• Instance users may have internal user names or external user names.
– Internal user names are defined strictly within a TimesTen instance.
– External user names are defined by some external authority, such as the

operating system.
• Changes to user identification and privileges take place at the next connection

time.

Example 5.105 To remove user TERRY from the instance, use:
DROP USER terry;

Parameter Description

User Name of the user that is being removed from the instance, whether a
TimesTen internal user or an external user that has been previously
granted privileges to the TimesTen instance. If the user is identified
by the operating system (an external user), the user name must first
have been introduced to the TimesTen instance through a CREATE
USER statement.
312 Oracle TimesTen In-Memory Database SQL Reference Guide

DROP VIEW
The DROP VIEW statement deletes the specified view, including any hash
indexes and any T-tree indexes associated with it.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
DDL privileges.

SQL syntax DROP [MATERIALIZED] VIEW ViewName

Parameters The DROP VIEW statement has the parameters:

Description When you perform a DROP VIEW operation on a materialized view, the detail
tables are updated and locked. An error may result if the detail table was already
locked by another transaction.

Example 5.106 The following command drops the CustOrder view.
DROP VIEW CustOrder

See Also “CREATE MATERIALIZED VIEW” on page 254
“CREATE VIEW” on page 301

Parameter Description

MATERIALIZED Specifies that the view is materialized.

ViewName Identifies the view to be dropped.
SQL Statements 313

FLUSH CACHE GROUP
The FLUSH CACHE GROUP statement flushes data from TimesTen to Oracle.
This statement is only available for user managed cache groups. For a description
of cache group types, see “User and system managed cache groups” on page 236.

There are two variants to this operation: one that accepts a WHERE clause, and
one that accepts a WITH ID clause.

FLUSH CACHE GROUP is meant to be used when commit propagation (from
TimesTen to Oracle) is turned off. So rather than propagating every transaction
upon commit, many transactions can be committed before changes are
propagated to Oracle. For each cache instance ID, if the cache instance exists in
Oracle, the operation in Oracle consists of an update. If the cache instance does
not exist in Oracle, TimesTen inserts it.

This is useful, for example, in a shopping cart application in which many changes
may be made to the cart, which utilizes TimesTen as a high-speed cache, before
the order is committed to the master Oracle table.

Note: Using a WITH ID clause usually results in better system performance than
using a WHERE clause.

Only inserts and updates are flushed. Inserts are propagated as inserts if the
record doesn't exist in Oracle, or as updates (if the record already exists). It is not
possible to flush a delete. That is, if a record is deleted on TimesTen, there is no
way to “flush” that delete to Oracle so the delete is also performed on the Oracle
table. Deletes must be propagated either manually or by turning commit
propagation on. Attempts to flush deleted records are silently ignored. No error
or warning is issued. Records from tables that are specified as READ ONLY or
PROPAGATE cannot be flushed to Oracle.

SQL syntax FLUSH CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression];

FLUSH CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList)

Parameters The FLUSH CACHE GROUP statement has the parameters:

Parameter Description

[Owner.]GroupName Name of the cache group to be flushed.
314 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • WHERE clauses are generally used to apply the operation to a set of
instances, rather than to a single instance or to all instances. The flush
operation uses the WHERE clause to determine which instances to send to
Oracle.

• All table names used in cache group WHERE clauses should be fully qualified
with an owner name to allow other users to execute the same WHERE clauses
against the same cache group. Without an owner name, all tables referenced
by cache group WHERE clauses are assumed to be owned by the current login
name executing the cache group operation.

• When the WHERE clause is omitted, the entire content of the cache group is
flushed to Oracle. When the WHERE clause is included, it is allowed to
include only the root table.

• If propagates to Oracle are turned off (such as when the
ttCachePropagateFlagSet built-in procedure has been called with an
argument of zero in the current transaction) then all tables, with the exception
of read-only tables, can be flushed to Oracle. Otherwise, only tables which are
not marked as READ ONLY or PROPAGATE can be flushed to Oracle.

• SQLRowCount returns the number of cache instances flushed.
• Use the WITH ID clause:

– to specify binding parameters (For example, ?,?,...?)

Restrictions • Do not use the WITH ID clause on AWT or SWT Cache groups, Propagate
User Managed Cache groups , or Autorefreshed and Propagated User
Managed Cache groups.

• Do not use the WITH ID clause with the COMMIT EVERY n ROWS clause.

Example 5.107 FLUSH CACHE GROUP MarketBasket;

Example 5.108 FLUSH CACHE GROUP MarketBasket
WITH ID(10);

ConditionalExpression A search condition to qualify the target rows of the operation.

WITH ID
ColumnValueList

The WITH ID clauses allows you to use primary key values to
flush the cache instance. Specify ColumnValueList as either a list
of literals or binding parameters to represent the primary key
values.
SQL Statements 315

GRANT
The GRANT statement assigns one or more privileges to a user.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
instance administrator privileges. If your TimesTen instance does not use Access
Control, this operation is not available. If Access Control is not enabled,
TimesTen returns an error when this statement is called.

SQL syntax GRANT {Privilege [,...] | ALL [PRIVILEGES]} TO {User |PUBLIC} [,...]

Parameters The GRANT statement has the parameters:

Description • Privileges for a user are granted at the instance level only, except that a user
always has WRITE and SELECT privileges to any table they own, even if the
privileges have not been granted explicitly to the user. They apply to all data
stores and their objects in the instance. This release of TimesTen does not
support a finer granularity of authentication, such as data store or table level
privileges.

• Privileges are cumulative. Granting a lower level privilege to a user does not
degrade higher privileges which have already been granted to the user.
Granting a high level privilege to a user who does not have lower level
privileges does not give the user the lower level privileges. To remove a
privilege from a user, you must use the REVOKE statement.

Parameter Description

Privilege Acceptable values for Privilege include:
ADMIN
CONNECT
CREATE DATASTORE
DDL
WRITE
SELECT
For a description of the TimesTen Access Control privileges, see
Chapter 6, “Access Control Privileges.”

ALL [PRIVILEGES] Assigns all TimesTen privileges to the user.

User Name of the user to whom privileges are to be granted. The user
name must first have been introduced to the TimesTen instance
through a CREATE USER statement.

PUBLIC Specifies that the privilege is granted to all user names defined in the
TimesTen instance now and in the future.
316 Oracle TimesTen In-Memory Database SQL Reference Guide

• Privileges are determined at connect time and remain in effect until
disconnect. Changes to or revocations of privileges for a user or user
identification do not take effect until the user makes a new connection.

• A user always has WRITE and SELECT privileges to any table they own,
even if the privileges have not been granted specifically to the user.

• The WITH GRANT OPTION clause is not supported. The user cannot pass
privileges on to other users.

Example 5.109 Assuming that the user Terry has no privileges, to grant administrative privileges
to the user Terry:
GRANT ADMIN TO terry;

Example 5.110 Assuming that the user Terry has no privileges, to restrict user Terry to read
operations only, use:
GRANT SELECT TO terry;
SQL Statements 317

INSERT
The INSERT statement adds rows to a table.

The following expressions can used in the values clause of an INSERT
statement:

– TO_CHAR
– TO_DATE
– Sequence NEXTVAL and Sequence CURRVAL
– CAST
– DEFAULT
– SYSDATE and GETDATE
– USER
– CURRENT_USER
– SYSTEM_USER

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
WRITE privileges or data store object ownership.

SQL syntax INSERT INTO [Owner.]TableName (ColumnName)
VALUES (SingleRowValues)

Parameters The INSERT statement has the parameters:

Parameter Description

[Owner.]TableName Table to which data is to be added.

ColumnName Column for which values are supplied.
If you omit any of the table’s columns from the column name list, the
INSERT command places the default value in the omitted columns. If
the table definition specifies NOT NULL for any of the omitted
columns and no default value has been defined for the column, the
INSERT command fails.
You can omit the column name list if you provide values for all
columns of the table in the same order the columns were
specified in the CREATE TABLE statement. If too few values are
provided, the remaining columns are assigned default values.

VALUES Values corresponding to the columns in the column name list or the
columns specified in the CREATE TABLE statement if no column
name list exists. You can also insert the sequence CURRVAL column
into a table.
318 Oracle TimesTen In-Memory Database SQL Reference Guide

SingleRowValues

SQL syntax The SingleRowValues parameter has the syntax:
{NULL | { ? | :DynamicParameter} | {Constant} | DEFAULT} [,...]

Parameters The SingleRowValues parameter has the parameters:

Description • If you omit any of the table’s columns from the column name list, the
INSERT command places the default value in the omitted columns. If the
table definition specifies NOT NULL for any of the omitted columns and does
no default value, the INSERT command fails.

• BINARY and VARBINARY data can be inserted in character or hexadecimal
format:
– Character format requires single quotes.
– Hexadecimal format requires the prefix ‘0x before the value.

• If the target table has a foreign key constraint, then logging must be enabled
for the purpose of constraint enforcement.

• The INSERT operation fails if it violates any foreign key constraint. See
“CREATE TABLE” on page 279 for a description of the foreign key
constraint.

Example 5.111 A new single row is added to the Purchasing.Vendors table.
INSERT INTO Purchasing.Vendors
VALUES (9016,

'Secure Systems, Inc.',
'Jane Secret',

SingleValue A specific single value constant.

SingleRowValues Defines column values when you insert a single row. The syntax for
SingleRowValues follows.

Parameter Description

NULL Null value.

?
:DynamicParameter

Place holder for a dynamic parameter in a prepared SQL statement.
The value of the dynamic parameter is supplied when the statement
is executed.

Constant A specific value. See “Constants” on page 79.

DEFAULT Specifies that the column should be updated with the default value.
SQL Statements 319

'454-255-2087',
'1111 Encryption Way',
'Hush',
'MD',
'00007',
'discount rates are secret');

Example 5.112 :pNo and :pName are dynamic parameters whose values are supplied at runtime.
INSERT INTO Purchasing.Parts

(PartNumber, PartName)
VALUES (:pNo, :pName);
320 Oracle TimesTen In-Memory Database SQL Reference Guide

INSERT SELECT
The INSERT SELECT command inserts the results of a query into a table.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
WRITE privileges or data store object ownership.

SQL syntax INSERT INTO [Owner.]TableName [(ColumnName [,...])] InsertQuery

Parameters The INSERT SELECT statement has the parameters:

Description • The column types of the result set must be compatible with the column types
of the target table.

• You can specify a sequence CURRVAL or NEXTVAL when inserting values.
• The target table cannot be referenced in the FROM clause of the InsertQuery.
• In the InsertQuery, the ORDER BY clause is allowed. The sort order may be

modified using the ORDER BY clause when the result set is inserted into the
target table, but the order is not guaranteed.

• The INSERT operation fails if there is an error in the InsertQuery.
• If the target table has a foreign key constraint, then logging must be enabled

for constraint enforcement.

Example 5.113 New rows are added to the Purchasing.Parts table that describe which parts
are delivered in 20 days or less.
INSERT INTO Purchasing.Parts
SELECT PartNumber, DeliveryDays
FROM Purchasing.SupplyPrice
WHERE DeliveryDays < 20;

Parameter Description

[Owner.]TableName Table to which data is to be added.

ColumnName Column for which values are supplied. If you omit any of the table’s
columns from the column name list, the INSERT command places the
default value in the omitted columns. If the table definition specifies
NOT NULL, without a default value, for any of the omitted columns,
the INSERT command fails. You can omit the column name list if you
provide values for all columns of the table in the same order the
columns were specified in the CREATE TABLE statement. If too few
values are provided, the remaining columns are assigned default
values.

InsertQuery Any supported SELECT query. See “SELECT” on page 335.
SQL Statements 321

LOAD CACHE GROUP
The LOAD CACHE GROUP statement loads data from an Oracle table into a
TimesTen cache group.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
SELECT and WRITE privileges on your cache group tables. This statement also
requires CREATE SESSION privileges on your Oracle schema and SELECT
privileges on your Oracle tables.

SQL syntax LOAD CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression]
COMMIT EVERY TransactionSize ROWS
[PARALLEL NumThreads]

or
LOAD CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList)

Parameters The LOAD CACHE GROUP has the parameters:

Parameter Description

 [Owner.]GroupName Name assigned to the cache group.

ConditionalExpression A search condition to qualify the target rows of the
operation.

TransactionSize The number of rows to insert into the cache group
before committing the work. It must be a positive
integer.

[PARALLEL
NumThreads]

Provides parallel loading for cache group tables.
Specifies the number of loading threads to run
concurrently. One thread performs the bulk fetch
from Oracle and (NumThreads - 1) performs the
inserts into TimesTen. Each thread uses its own
connection or transaction.

The minimum value for NumThreads is 1. The
maximum value is 10. If you specify a value greater
than 10, TimesTen assumes the value 10.

WITH ID
ColumnValueList

The WITH ID clauses allows you to use primary
key values to load the cache instance. Specify
ColumnValueList as either a list of literals or
binding parameters to represent the primary key
values.
322 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • Loads all new instances from Oracle that satisfy the cache group definition
and are not yet present in the cache group.

• LOAD CACHE GROUP is in its own transaction, and must be the first
operation in a transaction.

• The transaction size is the number of instances inserted before committing the
work. The value of n in COMMIT EVERY n ROWS must be positive and is
rounded up to the nearest multiple of 256 for performance reasons.

• When the COMMIT clause is omitted, the load occurs in a single transaction,
with all work committed after every row has loaded successfully. Errors cause
a rollback. When rows are committed periodically, errors abort the remainder
of the load are rolled back to the last commit.

• If the LOAD statement fails when you specify the COMMIT EVERY n
ROWS (where n is greater than 0), the content of the target cache group could
be in an inconsistent state. Some cache instances may be partially loaded. Use
the UNLOAD statement to UNLOAD the cache group, then load again.

• If you use subqueries in the WHERE clause of the LOAD CACHE GROUP
statement, the table names in the subqueries must be fully qualified.

• When loading an AUTOREFRESH or READONLY cache group:
– The AUTOREFRESH state must be paused, and
– The LOAD CACHE GROUP statement cannot have a WHERE clause, and
– The cache group must be empty.

• If either a DDL operation or a write operation (INSERT, DELETE,
UPDATE) was performed on tables that belong to a given cache group, after
the LOAD statement, TimesTen returns an error.

• SQLRowCount returns the number of cache instances loaded.
• Use the WITH ID clause:

– in place of the WHERE clause for faster loading of the cache instance
– to specify binding parameters (For example, ?,?,...?)
– if you want to rollback the load transaction upon failure

Restrictions • Do not specify the PARALLEL clause:
– with the WITH ID clause
– with the COMMIT EVERY 0 ROWS clause
– when NO LOGGING is enabled (Connection attribute Logging is set to 0)
– when data store level locking is enabled (Connection attribute LockLevel

is set to 1)
– when SMP level is 0 (Connection Attribute SMPOptLevel is set to 0)

• Do not use the WITH ID clause on Readonly, Autorefreshed User Managed or
Autorefreshed and Propagated User Managed Cache groups.

• Do not use the WITH ID clause with the COMMIT EVERY n ROWS clause.
SQL Statements 323

Example 5.114 CREATE CACHE GROUP Recreation.Cache
FROM Recreation.Clubs (

ClubName CHAR(15) NOT NULL,
ClubPhone SMALLINT,
Activity CHAR(18),
PRIMARY KEY(ClubName))

WHERE (Recreation.Clubs.Activity IS NOT NULL);

LOAD CACHE GROUP Recreation.Cache
COMMIT EVERY 30 ROWS;

Example 5.115 Use the HR schema to illustrate the use of the PARALLEL clause with the
LOAD CACHE GROUP statement. The COMMIT EVERY n rows (where n is
greater than 0) is required. Issue the CACHEGROUPS command. You see cache
group cg2 is defined and the autorefresh state is paused. UNLOAD cache group
cg2 then specify the LOAD CACHE GROUP statement with the PARALLEL
clause to provide parallel loading. You see 25 cache instances loaded.
Command> CACHEGROUPS;

Cache Group SAMPLEUSER.CG2:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 1.5 Minutes

 Root Table: SAMPLEUSER.COUNTRIES
 Table Type: Read Only

 Child Table: SAMPLEUSER.LOCATIONS
 Table Type: Read Only

 Child Table: SAMPLEUSER.DEPARTMENTS
 Table Type: Read Only

1 cache group found.

Command> UNLOAD CACHE GROUP cg2;
25 cache instances affected.
Command> COMMIT;
Command> LOAD CACHE GROUP cg2 COMMIT EVERY 10 ROWS PARALLEL 2;
25 cache instances affected.
Command> COMMIT;
324 Oracle TimesTen In-Memory Database SQL Reference Guide

MERGE
The MERGE statement allows you to select rows from one or more sources for
update or insertion into a target table. You can specify conditions that are used to
evaluate what rows are updated or inserted into the target table.

Use this statement to combine multiple INSERT and UPDATE statements.

MERGE is a deterministic statement: You cannot update the same row of the
target table multiple times in the same MERGE statement.

Access
Control

If Access Control is enabled for your TimesTen instance, WRITE privileges are
required on the target table. SELECT privileges are required on the source table.

SQL Syntax MERGE INTO [Owner.]TargetTableName [Alias] USING
{[Owner.]SourceTableName|(Subquery)}[Alias] ON (Condtion)
{MergeUpdateClause MergeInsertClause |
MergeInsertClause MergeUpdateClause |
MergeUpdateClause | MergeInsertClause
}

The syntax for MergeUpdateClause:
WHEN MATCHED THEN UPDATE SET SetClause [WHERE Condition1]

The syntax for MergeInsertClause:
WHEN NOT MATCHED THEN INSERT [Columns [,...]] VALUES

({{Expression | DEFAULT|NULL} [,...] }) [WHERE Condition2]

Parameters The MERGE statement has the parameters:

Parameter Description

[Owner.]
TargetTableName

Name of the target table. This is the table into which rows are either
updated or inserted.

[Alias] Optionally, you can specify an alias name for the target or source
table.

USING {[Owner.]
SourceTableName |
(Subquery)} [Alias]

The USING clause indicates the table name or the subquery that is
used for the source of the data. Use a subquery if you wish to use
joins or aggregates. Optionally, you can specify an alias for the table
name or the subquery.
SQL Statements 325

Description • You can specify the MergeUpdateClause by itself or with the
MergeInsertClause. Alternatively, you can specify the MergeInsertClause by
itself or with the MergeUpdateClause. If you specify both, you can specify
them in either order.

• If DUAL is the only table specified in the USING clause and it is not
referenced elsewhere in the MERGE statement, specify DUAL as a simple
table rather than use it in a subquery. In this simple case, to help performance,
specify a key condition on a unique index of the target table in the ON clause.
See Example 5.116.

• Restrictions on the MergeUpdateClause:
– You cannot update a column that is referenced in the ON condition clause.
– You cannot update source table columns.

• Restrictions on the MergeInsertClause:
– You cannot insert values of target table columns.

• Other restrictions:

ON (Condition) You specify the condition that is used to evaluate each row of the
target table to determine if the row should be considered for either a
Merge Insert or a Merge Update. If the condition is true when
evaluated, then the MergeUpdateClause is considered for the target
row using the matching row from the SourceTableName. An error is
generated if more than one row in the source table matches the same
row in the target table. If the condition is not true when evaluated,
then the MergeInsertClause is considered for that row.

SET SetClause Clause used with the UPDATE statement. For information on the
UPDATE statement, see “UPDATE” on page 358.

[WHERE Condition1] For each row that matches the ON (Condition), Condition1 is
evaluated. If the condition is true when evaluated, then the row is
updated. You can refer to either the target table or the source table in
this clause. You cannot use a subquery. The clause is optional.

INSERT [Columns
[,...]]
VALUES
({{Expression |
DEFAULT|NULL}
[,...]})

Columns to insert into the target table. For more information on the
INSERT statement, see “INSERT” on page 318.

[WHERE Condition2] If specified, Condition2 is evaluated. If the condition is true when
evaluated, then the row is inserted into the target table. The condition
can refer to the source table only. You cannot use a subquery.
326 Oracle TimesTen In-Memory Database SQL Reference Guide

– Do not use the set operators in the subquery of the source table.
– Do not use a subquery in the WHERE condition of either the

MergeUpdateClause or the MergeInsertClause.
– The target table cannot be a detail table of a materialized view.

Example 5.116 In this example, DUAL is specified as a simple table. There is a key condition on
the UNIQUE index of the target table specified in the ON clause:
Command> CREATE TABLE MergeDualEx (col1 TT_INTEGER NOT NULL,

col2 TT_INTEGER, PRIMARY KEY (col1));
Command> MERGE INTO MergeDualEx USING DUAL ON (col1 = :v1)
> WHEN MATCHED THEN UPDATE SET col2 = col2 + 1
> WHEN NOT MATCHED THEN INSERT VALUES (:V1, 1);

Type '?;' for help on entering parameter values.
Type '*;' to abort the parameter entry process.

Enter Parameter 1 (TT_INTEGER) > 10
1 row merged.
Command> SELECT * FROM MergeDualEx;
< 10, 1 >
1 row found.

Indexes on table SAMPLEUSER.T1:
 T1: unique T-tree index on columns:
 COL1
 1 index found.

Example 5.117 In this example, a table called Contacts is created with columns Employee_id and
Manager_id. One row is inserted into the Contacts table with values 101 and
NULL for Employee_id and Manager_id respectively. The MERGE statement is
used to insert rows into the contacts table using the data in the employees table. A
SELECT FIRST 3 rows is used to illustrate that in the case where employee_id is
equal to 101, manager_id is updated to 100. The remaining 106 rows from the
employees table are inserted into the contacts table:
Command> create table contacts (employee_id number (6) not null
primary key, manager_id number (6));
Command> select employee_id,manager_id from employees where
employee_id =101;
< 101, 100 >
1 row found.
Command> insert into contacts values (101,null);
1 row inserted.
Command> select count (*) from employees;
< 107 >
1 row found.
Command> MERGE INTO contacts c
SQL Statements 327

> USING employees e
> ON (c.employee_id = e.employee_id)
> WHEN MATCHED THEN
> UPDATE SET c.manager_id = e.manager_id
> WHEN NOT MATCHED THEN
> INSERT (employee_id, manager_id)
> VALUES (e.employee_id, e.manager_id);
107 rows merged.
Command> select count (*) from contacts;
< 107 >
1 row found.
Command> select first 3 employee_id,manager_id from employees;
< 100, <NULL> >
< 101, 100 >
< 102, 100 >
3 rows found.
Command> select first 3 employee_id, manager_id from contacts;
< 100, <NULL> >
< 101, 100 >
< 102, 100 >
3 rows found.
328 Oracle TimesTen In-Memory Database SQL Reference Guide

REFRESH CACHE GROUP
The REFRESH CACHE GROUP statement is equivalent to an UNLOAD
followed by a LOAD.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
SELECT and WRITE privileges on your cache group tables. This statement also
requires CREATE SESSION privileges on your Oracle schema and SELECT
privileges on your Oracle tables.

SQL syntax REFRESH CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression]
COMMIT EVERY TransactionSize ROWS
[PARALLEL NumThreads]

or
REFRESH CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList)

Parameters The REFRESH CACHE GROUP has the parameters:

Description • A REFRESH CACHE GROUP statement must be in its own transaction.

Parameter Description

 [Owner.]GroupName Name assigned to the cache group.

ConditionalExpression A search condition to qualify the target rows of the operation.

TransactionSize The positive integer number of rows to insert into the cache
group before committing the work.

PARALLEL [NumThreads] Provides parallel loading for cache group tables. Specifies the
number of loading threads to run concurrently. One thread
performs the bulk fetch from Oracle and (NumThreads - 1)
performs the inserts into TimesTen. Each thread uses its own
connection or transaction.

The minimum value for NumThreads is 1. The maximum value
is 10. If you specify a value greater than 10, TimesTen assumes
the value 10.

WITH ID ColumnValueList The WITH ID clauses allows you to use primary key values to
refresh the cache instance. Specify ColumnValueList as either a
list of literals or binding parameters to represent the primary key
values.
SQL Statements 329

• Refreshing the cache group is similar to loading the cache group, except all
instances to be refreshed (that are already in the cache) are replaced with the
most current Oracle records.

• If the REFRESH statement fails when you specify the COMMIT EVERY n
ROWS (where n is greater than 0), the content of the target cache group could
be in an inconsistent state. Some cache instances may be partially loaded. Use
the UNLOAD statement to UNLOAD the cache group, then load again.

• When refreshing an AUTOREFRESH or READONLY cache group:
• The AUTOREFRESH statement must be paused, and
• The REFRESH statement cannot have a WHERE clause.
• If you use subqueries in the WHERE clause of the REFRESH CACHE

GROUP statement, the table names in the subqueries must be fully qualified.
• When the COMMIT clause is executed, TimesTen returns an error if any

DDL operation was performed or any write operation (INSERT, DELETE,
UPDATE) was performed on tables that belong to the given cache group.

• SQLRowCount returns the number of cache instances refreshed.
• Use the WITH ID clause:

– in place of the WHERE clause for faster refreshing of the cache instance
– to specify binding parameters (For example, ?,?,...?)
– if you want to rollback the refresh transaction upon failure

Restrictions • Do not specify the PARALLEL clause:
– with the WITH ID clause
– with the COMMIT EVERY 0 ROWS clause
– when NO LOGGING is enabled (Connection attribute Logging is set to 0)
– when data store level locking is enabled (Connection attribute LockLevel

is set to 1)
– when SMP level is 0 (Connection Attribute SMPOptLevel is set to 0)

• Do not use the WITH ID clause on Readonly, Autorefreshed User Managed or
Autorefreshed and Propagated User Managed Cache groups.

• Do not use the WITH ID clause with the COMMIT EVERY n ROWS clause.

Example 5.118 REFRESH CACHE GROUP Recreation.Cache COMMIT EVERY 30 ROWS;

Is equivalent to:
UNLOAD CACHE GROUP Recreation.Cache;
LOAD CACHE GROUP Recreation.Cache COMMIT EVERY 30 ROWS;

Example 5.119 Use the HR schema to illustrate the use of the PARALLEL clause with the
REFRESH CACHE GROUP statement. The COMMIT EVERY n rows (where n
330 Oracle TimesTen In-Memory Database SQL Reference Guide

is greater than 0) is required. Issue the CACHEGROUPS command. You see
cache group cg2 is defined and the autorefresh state is paused. Specify the
REFRESH CACHE GROUP statement with the PARALLEL clause to provide
parallel loading. You see 25 cache instances refreshed.
Command> CACHEGROUPS;

Cache Group SAMPLEUSER.CG2:

 Cache Group Type: Read Only
 Autorefresh: Yes
 Autorefresh Mode: Incremental
 Autorefresh State: Paused
 Autorefresh Interval: 1.5 Minutes

 Root Table: SAMPLEUSER.COUNTRIES
 Table Type: Read Only

 Child Table: SAMPLEUSER.LOCATIONS
 Table Type: Read Only

 Child Table: SAMPLEUSER.DEPARTMENTS
 Table Type: Read Only

1 cache group found.

Command> REFRESH CACHE GROUP cg2 COMMIT EVERY 20 ROWS PARALLEL 2;
25 cache instances affected.

See Also “ALTER CACHE GROUP” on page 191
“CREATE CACHE GROUP” on page 236
“DROP CACHE GROUP” on page 306
“FLUSH CACHE GROUP” on page 314
“LOAD CACHE GROUP” on page 322
“UNLOAD CACHE GROUP” on page 356
SQL Statements 331

REVOKE
The REVOKE statement removes one or more privileges from a user.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
instance administrator privileges. If your TimesTen instance does not use Access
Control, this operation is not available. If Access Control is not enabled,
TimesTen returns an error when this statement is called.

SQL syntax REVOKE {Privilege [, …] | ALL [PRIVILEGES]}
FROM {User |PUBLIC} [,...]

Parameters The REVOKE statement has the parameters:

Description • User may be PUBLIC.
• Privileges are cumulative. Revoking a single privilege from a user does not

revoke any lower or higher level privilege for that user.
• Revoking SELECT and WRITE privileges for a user does not remove those

privileges for objects that the user owns.

Example 5.120 To revoke WRITE and DDL privileges for the user TERRY, use:
REVOKE WRITE, DDL FROM terry;

Example 5.121 To revoke WRITE privileges for all users, use:

Parameter Description

Privilege Acceptable values for Privilege include:
ADMIN
CONNECT
CREATE DATASTORE
DDL
WRITE
SELECT
For a description of the TimesTen Access Control privileges, see
Chapter 6, “Access Control Privileges.”

ALL [PRIVILEGES] Revokes all TimesTen privileges to the user.

User Name of the user to whom privileges are to be revoked. The user
name must first have been introduced to the TimesTen instance
through a CREATE USER statement.

PUBLIC Specifies that the privilege is revoked to all user names defined in the
TimesTen instance now and in the future.
332 Oracle TimesTen In-Memory Database SQL Reference Guide

REVOKE WRITE FROM PUBLIC;

See Also “ALTER USER” on page 226
“CREATE USER” on page 299
“DROP USER” on page 312
“GRANT” on page 316
SQL Statements 333

ROLLBACK
Use the ROLLBACK statement to undo work done in the current transaction.

Access
Control

This statement does not require privileges.

SQL syntax ROLLBACK [WORK]

Parameters The ROLLBACK statement allows the optional keyword:

Description • For passthrough, the Oracle transaction will also be rolled back (undone).

Example 5.122 Insert a row into the Regions table of the HR schema and then rollback the
transaction. First set autocommit to 0:
Command> SET AUTOCOMMIT 0;
Command> INSERT INTO Regions VALUES (5,'Australia');
1 row inserted.
Command> SELECT * FROM Regions;
< 1, Europe >
< 2, Americas >
< 3, Asia >
< 4, Middle East and Africa >
< 5, Australia >
5 rows found.
Command> ROLLBACK;
Command> SELECT * FROM Regions;
< 1, Europe >
< 2, Americas >
< 3, Asia >
< 4, Middle East and Africa >
4 rows found.

See Also “COMMIT” on page 228

Parameter Description

[WORK] Optional clause supported for compliance with the SQL standard.
ROLLBACK and ROLLBACK WORK are equivalent.
334 Oracle TimesTen In-Memory Database SQL Reference Guide

SELECT
The SELECT statement retrieves data from one or more tables. The retrieved
data is presented in the form of a table that is called the “result table” or “query
result.”

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
SELECT privileges or data store object ownership. If Access Control is enabled
for your TimesTen instance and you specify the SELECT FOR UPDATE
CLAUSE, WRITE privilege is also required.

SQL syntax The general syntax for a SELECT statement is:
SELECT [FIRST NumRows | ROWS M TO N] [ALL | DISTINCT] SelectList
FROM TableSpec [,...]
[WHERE SearchCondition]
[GROUP BY Expression [,...]]
[HAVING SearchCondition]
[ORDER BY {ColumnID|ColumnAlias|Expression} [ASC | DESC]]
[,...]
[FOR UPDATE [OF [[Owner.]TableName.]ColumnName [,...]]

[NOWAIT | WAIT Seconds]]

The syntax for a SELECT statement that contains the set operators UNION,
UNION ALL, MINUS, or INTERSECT is:
SELECT [ROWS M TO N] [ALL] SelectList
FROM TableSpec [,...]
[WHERE SearchCondition]
[GROUP BY Expression [,...]]
[HAVING SearchCondition] [,...]

{UNION [ALL] | MINUS | INTERSECT}
SELECT [ROWS M TO N] [ALL] SelectList
FROM TableSpec [,...]
[WHERE SearchCondition]
[GROUP BY Expression [,...]]
[HAVING SearchCondition] [,...]
[ORDER BY {ColumnID|ColumnAlias|Expression} [ASC | DESC]

Parameters The SELECT statement has the parameters:

Parameter Description

FIRST NumRows Specifies the number of rows to retrieve. NumRows must be either a
positive INTEGER or a dynamic parameter placeholder. The syntax for
a dynamic parameter placeholder is either ? or :DynamicParameter.
The value of the dynamic parameter is supplied when the statement is
executed.
SQL Statements 335

ROWS M TO N Specifies the range of rows to retrieve where M is the first row to be
selected and N is the last row to be selected. Row counting starts
at row 1. The query SELECT ROWS 1 to N ... returns the same rows as
SELECT FIRST NumRows assuming the queries are ordered and N and
NumRows have the same value.

Use either a positive INTEGER or a dynamic parameter placeholder
for M and N values. The syntax for a dynamic parameter placeholder is
either ? or :DynamicParameter. The value of the dynamic parameter is
supplied when the statement is executed.

ALL Prevents elimination of duplicate rows from the query result. If neither
ALL nor DISTINCT is specified, ALL is assumed.

DISTINCT Ensures that each row in the query result is unique. All NULL values
are considered equal for this comparison. Duplicate rows are not
evaluated.

SelectList Specifies how the columns of the query result are to be derived. The
syntax of SelectList is presented under “SelectList” on page 347.

FROM TableSpec Identifies the tables referenced in the SELECT statement. The
maximum number of tables per query is 24.

TableSpec identifies a table from which rows are selected. The table
can be a derived table, which is the result of a SELECT statement in the
FROM clause. The syntax of TableSpec is presented under
“TableSpec” on page 350.

WHERE
SearchCondition

The WHERE clause determines the set of rows to be retrieved.
Normally, rows for which SearchCondition is FALSE or NULL are
excluded from processing, but SearchCondition can be used to specify
an outer join in which rows from an outer table that do not have
SearchCondition evaluated to TRUE with respect to any rows from the
associated inner table are also returned, with projected expressions
referencing the inner table set to NULL.

The unary (+) operator may follow some column and ROWID
expressions to indicate an outer join. The (+) operator must follow all
column and ROWID expressions in the join condition(s) that refer to
the inner table. There are several conditions on the placement of the (+)
operator. These generally restrict the type of outer join queries that can
be expressed. The (+) operator may appear in WHERE clauses, but not
in HAVING clauses. Two tables cannot be outer joined together. An
outer join condition cannot be connected by OR.

See Chapter 4, “Search Conditions,” for additional information on
search conditions.
336 Oracle TimesTen In-Memory Database SQL Reference Guide

GROUP BY
Expression [,...]

The GROUP BY clause identifies one or more expressions to be used
for grouping when aggregate functions are specified in the select list
and when you want to apply the function to groups of rows.

The expression can be of various complexities. For example, it can
designate single or multiple columns. It can include aggregate
functions, arithmetic operations, the ROWID pseudo-column, or
NULL. It can also be a date or user function, a constant, or a dynamic
parameter.

When you use the GROUP BY clause, the select list can contain only
aggregate functions and columns referenced in the GROUP BY clause.
If the select list contains an *, a TableName.*, or an
Owner.TableName.* construct, then the GROUP BY clause must
contain all columns that the * includes. NULL values are considered
equivalent in grouping rows. If all other columns are equal, all NULLs
in a column are placed in a single group.

If the GROUP BY clause is omitted, the entire query result is treated as
one group.

HAVING The HAVING clause can be used in a SELECT query to filter groups
of an aggregate result. The existence of a HAVING clause in a
SELECT query turns the query into an aggregate query. All columns
referenced outside the sources of aggregate functions in every clause
except the WHERE clause must be included in the GROUP BY clause.

Subqueries can be specified in the HAVING clause.

(+) A simple join (also called an inner join) returns a row for each pair of
rows from the joined tables that satisfy the join condition specified in
SearchCondition. Outer joins an extension of this operator in which all
rows of the “outer” table are returned, whether or not matching rows
from the joined inner table are found. In the case no matching rows are
found, any projected expressions referencing the inner table are given
value NULL.
SQL Statements 337

ORDER BY Sorts the query result rows in order by specified columns or
expressions. Specify the sort key columns in order from major sort key
to minor sort key. You can specify as many as 255 columns. For each
column, you can specify whether the sort order is to be ascending or
descending. If neither ASC nor DESC is specified, ascending order is
used. Character strings are compared according to the ASCII collating
sequence for ASCII data.
The ORDER BY clause supports column aliases. Column aliases can
be referenced only in an ORDER BY clause. A single query may
declare several column aliases with the same name, but any reference
to that alias results in an error.
NCHAR types are not supported with ORDER BY.

ColumnID Must correspond to a column in the select list. You can identify a
column to be sorted by giving its name or by giving its ordinal number.
The first column in the select list is column number 1. It is better to use
a column number when referring to columns in the select list if they are
not simple columns. Some examples are aggregate functions,
arithmetic expressions, and constants.

A ColumnID in the ORDER BY clause has the syntax:

{ColumnNumber | [[Owner.]TableName.] ColumnName}

ColumnAlias Used in an ORDER BY clause, the column alias must correspond to a
column in the select list. The same alias can identify multiple columns.

{* | [Owner.]TableName.* |
{ Expression | [[Owner.]TableName.]ColumnName |

[[Owner.]TableName.]ROWID
}
[[AS] ColumnAlias] } [,...]
338 Oracle TimesTen In-Memory Database SQL Reference Guide

FOR UPDATE
[OF [[Owner.]
TableName.]
ColumnName [,...]]
[NOWAIT | WAIT
Seconds]

FOR UPDATE
• Maintains a lock on an element (usually a row) until the end of the

current transaction, regardless of isolation. All other transactions are
excluded from performing any operation on that element until the
transaction is committed or rolled back.

• FOR UPDATE may be used with joins and the ORDER BY,
GROUP BY, and DISTINCT clauses. Update locks are obtained on
either tables or rows depending on the table/row locking method
chosen by the optimizer.

• Rows from all tables that satisfy the WHERE clause are locked in
UPDATE mode unless the FOR UPDATE OF clause is specified.
This clause specifies which tables to lock.

• If using row locks, all qualifying rows in all tables from the table list
in the FROM clause are locked in update mode. Qualifying rows are
those rows that satisfy the WHERE clause. If using table locks, the
table is locked in update mode whether or not there are any
qualifying rows.

• If the serializable isolation level and row locking are turned on, non-
qualifying rows are downgraded to Shared mode. If a read-
committed isolation level and row locking are turned on, non-
qualifying rows are unlocked.

• SELECT...FOR UPDATE locks are not blocked by SELECT locks.

FOR UPDATE [OF [[Owner.]TableName.]ColumnName [,...]]
• Optionally includes the name of the column or columns in the table

to be locked for update.

[NOWAIT | WAIT Seconds]
• Specifies how to proceed if the selected rows are locked.
• NOWAIT specifies that there is no waiting period for locks and an

error is returned if the lock is not available.
• WAIT Seconds specifies the lock timeout setting.

– An error is returned if the lock is not obtained in the specified
amount of time.

– The lock timeout setting is expressed in seconds or a fraction of a
second. The data type for Seconds is NUMBER. Values between
0.0 and 1000000.0 are valid.

• If neither NOWAIT nor WAIT is specified, the lock timeout interval
for the transaction is used.
SQL Statements 339

SelectQuery1
{UNION [ALL] |
MINUS |
INTERSECT}
SelectQuery2

Specifies that the results of SelectQuery1 and SelectQuery2 are to be
combined, where SelectQuery1 and SelectQuery2 are general SELECT
statements with some restrictions.

The UNION operator combines the results of two queries where the
SelectList is compatible. If UNION ALL is specified, duplicate rows
from both SELECT statements are retained. Otherwise, duplicates are
removed.

The MINUS operator combines rows returned by the first query but not
by the second into a single result.

The INTERSECT operator combines only those rows returned by both
queries into a single result.

The data type of corresponding selected entries in both SELECT
statements must be compatible. One type can be converted to the other
type using the CAST operator. Nullability does not need to match.

The length of a column in the result is the longer length of
correspondent selected values for the column. The column names of the
final result are the column names of the leftmost select.

You can combine multiple queries using the set operators UNION,
UNION ALL, MINUS, and INTERSECT.

One or both operands of a set operator can be a set operator. Multiple or
nested set operators are evaluated from left to right.

The set operators can be mixed in the same query.

Restrictions on the SELECT statement that specify the set operators
are:
• Neither SELECT statement can specify FIRST NumRows.
• The set operators can only be used in the outermost level of a

SELECT statement, an INSERT SELECT statement, a derived table
or a view.

• ORDER BY can be specified to sort the final result but cannot be
used with any individual operand of a set operator. Only column
names of tables or column alias from the leftmost SELECT can be
specified in the ORDER BY clause.

• GROUP BY can be used to group an individual SELECT operand of
a set operator but cannot be used to group a set operator result.

• The set operators cannot be used in materialized view or a joined
table.
340 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • When using a correlation name, the correlation name must conform to the
syntax rules for a basic name (see “Basic names” on page 65). All correlation
names within one SELECT query must be unique. Correlation names are
useful when you join a table to itself. Define multiple correlation names for
the table in the FROM clause and use the correlation names in the SelectList
and the WHERE clause to qualify columns from that table.

• SELECT... FOR UPDATE can only be used in the outermost query.
• If your query specifies either FIRST NumRows or ROWS M TO N,

ROWNUM may not be used to restrict the number of rows returned.
• FIRSTNumRows and ROWS M TO N cannot be used together in the same

SELECT statement.

Example 5.123 This example shows the use of a column alias in the SELECT statement:
SELECT max(salary) AS max_salary
FROM employee WHERE employee.age < 30;

Example 5.124 This example assumes there are two tables, Orders and LineItems.

The Orders table is created as shown below:
CREATE TABLE Orders(OrderNo INTEGER, OrderDate DATE, Customer
CHAR(20));
CREATE TABLE LineItems(OrderNo INTEGER, LineNo INTEGER,

Qty INTEGER, UnitPrice DECIMAL(10,2));

Thus for each order, there is one record in the Orders table and a record for each
“line” of the order in LineItems.

To find the total value of all Orders entered since the beginning of the year, use
the HAVING clause to select only those orders that were entered on or after
January 1, 2000:
SELECT O.OrderNo, CUSTOMER, ORDERDATE, SUM(Qty * UnitPrice)
FROM Orders O, LineItems L
WHERE O.OrderNo=L.OrderNo
GROUP BY O.OrderNo, CUSTOMER, ORDERDATE
HAVING ORDERDATE >= DATE '2000-01-01';

Example 5.125 This query locks all rows in TableA where:
• TableA.Column1 equals at least one TableB.Column1 value where

TableB.Column2 is greater than 5.

In addition, this query locks all rows in TableB where:
• TableB.Column2 is greater than 5
• TableB.Column1 equals at least one TableA.Column1 value.

If no WHERE clause is specified, all rows in both tables would be locked.
SQL Statements 341

SELECT * FROM TableA, TableB
WHERE TableA.Column1 = TableB.Column1 AND TableB.Column2 > 5
FOR UPDATE

Example 5.126 This query returns an error, since the inner table t2 corresponds to two outer
tables (t1 and t3):
SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) and t3.y = t2.y(+);

This example demonstrates valid syntax:
SELECT * FROM t1, t2
WHERE t1.x = t2.x(+);

Example 5.127 This query returns an error, because an outer join condition cannot be connected
by OR:
SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) OR t3.y = 5;

But the following query is valid:
SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) AND (t3.y = 4 OR t3.y = 5);

Example 5.128 A condition cannot use the IN operator to compare a column marked with (+).
For example, the following query returns an error:
SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) AND t2.y(+) IN (4,5);

But the following query is valid:
SELECT * FROM t1, t2, t3
WHERE t1.x = t2.x(+) AND t1.y IN (4,5);

Example 5.129 The following query results in an inner join instead of an outer join, because the
(+) operator was not specified in each of the join conditions, and the condition
without the (+) is treated as an inner join condition:
SELECT * FROM t1, t2
WHERE t1.x = t2.x(+) AND t1.y = t2.y;

Example 5.130 In the following query, the WHERE clause contains a condition that compares an
inner table column of an outer join with a constant. The (+) operator was not
specified and hence the condition is treated as an inner join condition.
SELECT * FROM t1, t2
WHERE t1.x = t2.x(+) AND t2.y = 3;
342 Oracle TimesTen In-Memory Database SQL Reference Guide

Example 5.131 The following query returns an error because two tables cannot be outer joined
together:
SELECT * FROM t1, t2
WHERE x1 = x2(+) AND y2 = y1(+);

Example 5.132 Finds the current sequence value in the student table.
SELECT seq.CURRVAL FROM student;

Example 5.133 In the following query, the condition ‘x2 + y2(+) = 1’ is treated as an inner
join condition because the (+) operator was not specified for the column ‘x2’ of
inner table ‘t2.’ The statement returns an error because two tables cannot be
outer joined together:
SELECT * FROM t1, t2
WHERE x1 = x2(+) AND x2 + y2(+) = 1;

Example 5.134 The following query does not specify an outer join because the (+) operator is not
specified in a join condition:
SELECT * FROM t1, t2
WHERE x2(+) = 1;

Example 5.135 The following query produces a derived table, as it contains a SELECT statement
in the FROM clause:
SELECT * FROM t1, (SELECT MAX(x2) MAXX2 FROM t2) tab2
WHERE t1.x1 = tab2.MAXX2;

Example 5.136 The following query joins the results of two SELECT statements.
SELECT * FROM t1
WHERE x1 IN (SELECT x2 FROM t2)
UNION SELECT * FROM t1 WHERE x1 IN (SELECT x3 FROM t3);

Example 5.137 Select all orders that have the same price as the highest price in its category:
SELECT * FROM orders WHERE price = (SELECT MAX(price)
FROM stock WHERE stock.cat=orders.cat);

Example 5.138 The example illustrates the use of the INTERSECT set operator. There is a
department_id in the employees table that is NULL. In the departments table, the
department_id is defined as a NOT NULL primary key. The rows returned from
using the INTERSECT set operator does not include the row in the departments
table whose department_id is NULL.
SQL Statements 343

Command> SELECT department_id FROM employees INTERSECT SELECT
department_id FROM departments;
< 10 >
< 20 >
< 30 >
< 40 >
< 50 >
< 60 >
< 70 >
< 80 >
< 90 >
< 100 >
< 110 >
11 rows found.

Command> SELECT DISTINCT department_id FROM employees;
< 10 >
< 20 >
< 30 >
< 40 >
< 50 >
< 60 >
< 70 >
< 80 >
< 90 >
< 100 >
< 110 >
< <NULL> >
12 rows found.

Example 5.139 The example illustrates the use of the MINUS set operator by combining rows
returned by first query but not the second. The row containing the NULL
department_id in the employees table is the only row returned.
Command> SELECT department_id FROM employees MINUS SELECT
department_id FROM departments;
< <NULL> >
1 row found.

Example 5.140 The following example sums the salaries for employees in the employees table
and uses the SUBSTR expression to group the data by job function.
Command> SELECT SUBSTR (JOB_ID, 4,10), SUM (SALARY) FROM EMPLOYEES
GROUP BY SUBSTR (JOB_ID,4,10);

< PRES, 24000 >
< VP, 34000 >
< PROG, 28800 >
< MGR, 24000 >
344 Oracle TimesTen In-Memory Database SQL Reference Guide

< ACCOUNT, 47900 >
< MAN, 121400 >
< CLERK, 133900 >
< REP, 273000 >
< ASST, 4400 >
9 rows found.

Example 5.141 The example illustrates the use of the SUBSTR expression in a GROUP BY
clause and the use of a subquery in a HAVING clause. The first 10 rows are
returned.
Command> SELECT ROWS 1 TO 10 SUBSTR (JOB_ID, 4,10),department_id,
manager_id, SUM (SALARY) FROM employees
>GROUP BY SUBSTR (JOB_ID,4,10),department_id, manager_id
> HAVING (department_id, manager_id) IN
> (SELECT department_id, manager_id FROM employees x
> WHERE x.department_id = employees.department_id)
> ORDER BY substr (job_id, 4,10),department_id,manager_id;
< ACCOUNT, 100, 108, 39600 >
< ACCOUNT, 110, 205, 8300 >
< ASST, 10, 101, 4400 >
< CLERK, 30, 114, 13900 >
< CLERK, 50, 120, 22100 >
< CLERK, 50, 121, 25400 >
< CLERK, 50, 122, 23600 >
< CLERK, 50, 123, 25900 >
< CLERK, 50, 124, 23000 >
< MAN, 20, 100, 13000 >
10 rows found.

Example 5.142 The example locks the employees table for update and waits 10 seconds for the
lock to be available. An error is returned if the lock is not acquired in 10 seconds.
The first 5 rows are selected.
Command> SELECT FIRST 5 last_name FROM employees FOR UPDATE WAIT 10;
< King >
< Kochhar >
< De Haan >
< Hunold >
< Ernst >
5 rows found.

Example 5.143 The example locks the departments table for update. If the selected rows are
locked by another process, an error is returned if the lock is not available. This is
because NOWAIT is specified.
SQL Statements 345

Command> SELECT FIRST 5 last_name e FROM employees e, departments d
WHERE e.department_id = d.department_id FOR UPDATE OF d.department_id
NOWAIT;
< Whalen >
< Hartstein >
< Fay >
< Raphaely >
< Khoo >
5 rows found.

Example 5.144 Use the HR schema to illustrate the use of a subquery with the FOR UPDATE
clause.
Command> SELECT employee_id, job_id FROM job_history WHERE

(employee_id, job_id) NOT IN (SELECT employee_id, job_id
FROM employees) FOR UPDATE;

< 101, AC_ACCOUNT >
< 101, AC_MGR >
< 102, IT_PROG >
< 114, ST_CLERK >
< 122, ST_CLERK >
< 176, SA_MAN >
< 200, AC_ACCOUNT >
< 201, MK_REP >
8 rows found.

Example 5.145 Illustrate use of dynamic parameter placeholder for SELECT ROWS M to N and
SELECT FIRST:
Command> SELECT ROWS ? TO ? Employee_id FROM Employees;

Type '?;' for help on entering parameter values.
Type '*;' to abort the parameter entry process.

Enter Parameter 1 (TT_INTEGER) > 1
Enter Parameter 2 (TT_INTEGER) > 3
< 100 >
< 101 >
< 102 >
3 rows found.

Command> SELECT ROWS :A TO :B Employee_id FROM Employees;

Type '?;' for help on entering parameter values.
Type '*;' to abort the parameter entry process.

Enter Parameter 1 (TT_INTEGER) > 1
Enter Parameter 2 (TT_INTEGER) > 3
346 Oracle TimesTen In-Memory Database SQL Reference Guide

< 100 >
< 101 >
< 102 >
3 rows found.

Command> SELECT FIRST ? Employee_id FROM Employees;

Type '?;' for help on entering parameter values.
Type '*;' to abort the parameter entry process.

Enter Parameter 1 (TT_INTEGER) > 3
< 100 >
< 101 >
< 102 >
3 rows found.

SelectList

SQL syntax The SelectList parameter of the SELECT statement has the syntax:
{* | [Owner.]TableName.* |
{ Expression | [[Owner.]TableName.]ColumnName |
[[Owner.]TableName.]ROWID | NULL

}
[[AS] ColumnAlias] } [,...]

Parameters The SelectList parameter of the SELECT statement has the parameters:

Parameter Description

* Includes, as columns of the query result, all columns of all tables
specified in the FROM clause.

[Owner.]TableName.* Includes all columns of the specified table in the result.

Expression The expression can be of any complexity. For example, it can
designate a single column of one of the tables specified in the FROM
clause, or it can involve aggregate functions, arithmetic operations,
multiple columns or NULL. When the Select is an aggregate query
or expression, then you cannot specify the name(s) of the column(s)
that are not in your GROUP BY clause.

[[Owner.]Table.]
ColumnName

Includes a particular column from the named owner’s indicated
table. You can also specify the CURRVAL or NEXTVAL column of
a sequence.

[[Owner.]Table.]
ROWID

Includes the ROWID pseudo-column from the named owner’s
indicated table.
SQL Statements 347

Description • The clauses must be specified in the order given in the syntax diagram.
• A result column in the select list can be derived in any of the following ways:

– A result column can be taken directly from one of the tables listed in the
FROM clause.

– Values in a result column can be computed, using an arithmetic expression,
from values in a specified column of a table listed in the FROM clause.

– Values in several columns of a single table can be combined in an
arithmetic expression to produce the result column values.

– Values in columns of different tables can be combined in an
arithmetic expression to produce the result column values.

– The aggregate functions (AVG, MAX, MIN, SUM, and COUNT) can be
used to compute result column values over groups of rows. Aggregate
functions can be used alone or in an expression. You can specify aggregate
functions containing the DISTINCT option that operate on different
columns in the same table. If the GROUP BY clause is not specified, the
function is applied over all rows that satisfy the query. If the GROUP BY
clause is specified, the function is applied once for each group defined by
the GROUP BY clause. When you use aggregate functions with the
GROUP BY clause, the select list can contain aggregate functions,
arithmetic expressions, and columns in the GROUP BY clause.

– A result column containing a fixed value can be created by specifying a
constant or an expression involving only constants.

• In addition to specifying how the result columns are derived, the select list
also controls their relative position from left to right in the query result. The
first result column specified by the select list becomes the leftmost column in
the query result.

NULL When NULL is specified, the default resulting data type is
VARCHAR(0). You can use the CAST function to convert the result
to a different data type. NULL can be specified in the ORDER BY
clause.

ColumnAlias Used in an ORDER BY clause, the column alias must correspond to
a column in the select list. The same alias can identify multiple
columns.

{* | [Owner.]TableName.* |
{ Expression | [[Owner.]TableName.]ColumnName |

[[Owner.]TableName.]ROWID
}
[[AS] ColumnAlias] } [,...]
348 Oracle TimesTen In-Memory Database SQL Reference Guide

• Result columns in the select list are numbered from left to right. The leftmost
column is number 1. Result columns can be referred to by column number in
the ORDER BY clause. This is especially useful if you want to refer to a
column defined by an arithmetic expression or an aggregate.

• To join a table with itself, define multiple correlation names for the table in
the FROM clause and use the correlation names in the select list and the
WHERE clause to qualify columns from that table.

• When you use the GROUP BY clause, one answer is returned per group in
accordance with the select list:
– The WHERE clause eliminates rows before groups are formed.
– The GROUP BY clause groups the resulting rows.
– The select list aggregate functions are computed for each group.

Example 5.146 One value, the average number of days you wait for a part, is returned by the
statement:
SELECT AVG(DeliveryDays)
FROM Purchasing.SupplyPrice;

The part number and delivery time for all parts that take fewer than 20 days to
deliver are returned by the statement:
SELECT PartNumber, DeliveryDays
FROM Purchasing.SupplyPrice
WHERE DeliveryDays < 20;

Multiple rows may be returned for a single part.

Example 5.147 The part number and average price of each part are returned by the statement:
SELECT PartNumber, AVG(UnitPrice)
FROM Purchasing.SupplyPrice
GROUP BY PartNumber;

Example 5.148 In this example, the join returns names and locations of California suppliers.
Rows are returned in ascending PartNumber order. Rows containing duplicate
PartNumbers are returned in ascending VendorName order.

The FROM clause defines two correlation names (v and s), which are used in
both the select list and the WHERE clause.

VendorNumber is the only common column between Vendors and SupplyPrice.
SELECT PartNumber, VendorName, s.VendorNumber,

VendorCity
FROM Purchasing.SupplyPrice s,

Purchasing.Vendors v
WHERE s.VendorNumber = v.VendorNumber
AND VendorState = 'CA'
SQL Statements 349

ORDER BY PartNumber, VendorName;

Example 5.149 This query joins table Purchasing.Parts to itself to determine which parts have the
same sales price as the part whose serial number is '1133-P-01'.
SELECT q.PartNumber, q.SalesPrice
FROM Purchasing.Parts p, Purchasing.Parts q
WHERE p.SalesPrice = q.SalesPrice AND

p.SerialNumber = '1133-P-01';

Example 5.150 This example shows how to retrieve the ROWID of a specific row. The retrieved
ROWID value can be used later for another SELECT, DELETE, or UPDATE
statement.
SELECT ROWID
FROM Purchasing.Vendors
WHERE VendorNumber = 123;

Example 5.151 This example shows how to use a column alias to retrieve data from the table
employees.
SELECT max(salary) AS max_salary FROM employees;

TableSpec

SQL syntax The TableSpec parameter of the SELECT statement has the syntax:
{[Owner.]TableName [CorrelationName] | JoinedTable |

DerivedTable}

A simple table specification has the syntax:
[Owner.]TableName

Parameters The TableSpec parameter of the SELECT statement has the parameters:

Parameter Description

[Owner.]TableName Identifies a table to be referenced.

CorrelationName CorrelationName specifies a synonym for the immediately
preceding table. When accessing columns of that table, use the
correlation name instead of the actual table name within the
statement. The correlation name must conform to the syntax rules for
a basic name (see “Basic names” on page 65).

All correlation names within one statement must be unique.
350 Oracle TimesTen In-Memory Database SQL Reference Guide

DerivedTable

SQL syntax A derived table is the result of select statement in the FROM clause, with an
alias.

The syntax for DerivedTable is:
(Subquery) [CorrelationName]

Parameters The DerivedTable parameter of the TableSpec clause of a SELECT statement has
the parameters:

Description When using a derived table, these restrictions apply:
• The DUAL table can be used in a SELECT statement that references no other

tables, but needs to return at least one row. Selecting from the DUAL table is
useful for computing a constant expression with the SELECT statement.
Because DUAL has only one row, the constant is returned only once.

• The SelectQuery cannot refer to a column from another derived table.
• The derived table cannot be used as an operand of a joined table.
• The derived table cannot be used as a target of a DELETE or UPDATE

statement.
• A derived table cannot be used as a table of a joined table.
• A derived table cannot be used as a target of a DELETE or an UPDATE

statement.

JoinedTable

SQL syntax The JoinedTable specifies a table derived from a CROSS JOIN, INNER, LEFT
or RIGHT OUTER JOIN.

DerivedTable Specifies a table derived from the evaluation of a SELECT query.
No FIRST NumRows or Rows M to N clauses are allowed in this
SELECT query.

JoinedTable Specifies the query that defines the table join. The syntax of
JoinedTable is presented under “JoinedTable” on page 351.

Parameter Description

Subquery For information on subqueries, see “Subqueries” on page 74 .

CorrelationName CorrelationName must be different from any table name referenced
in the query. CorrelationName is optional.
SQL Statements 351

The syntax for JoinedTable is:
{CrossJoin | QualifiedJoin}

Where CrossJoin is:
TableSpec1 CROSS JOIN TableSpec2

and QualifiedJoin is:
TableSpec1 [JoinType] JOIN TableSpec2 ON SearchCondition

In the QualifiedJoin parameter, JoinType syntax is:
{INNER | LEFT [OUTER] | |RIGHT [OUTER]}

Parameters The JoinedTable parameter of the TableSpec clause of a SELECT statement has
the parameters:

Parameter Description

CrossJoin Performs a CROSS JOIN on two tables. A CROSS JOIN returns a
result table that is the cartesian product of the input tables. The result
is the same as that of a query with the syntax:

SELECT Selectlist FROM Table1, Table2

QualifiedJoin Specifies that the Join is the result of a join of type JoinType.

TableSpec1 Specifies the first table of the JOIN clause.

TableSpec2 Specifies the second table of the JOIN clause.

JoinType JOIN Specifies the type of join to perform. Supported join types are:
INNER
LEFT [OUTER]
RIGH [OUTER]

An INNER JOIN returns a result table that combines the rows from
two tables that meet the SearchCondition.

A LEFT OUTER JOIN returnS join rows that match the
SearchCondition and rows from the first table that do not have the
SearchCondition evaluated to true with any row from the second
table.

A RIGHT OUTER JOIN returns join rows that match the
SearchCondition and rows from the second table that do not have the
SearchCondition evaluated to true with any row from the first table.

ON SearchCondition Specifies the search criteria to be used in a JOIN parameter. This
SearchCondition can only refer to tables referenced in the current
qualified JOIN.
352 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • FULL OUTER JOIN is not supported
• A joined table can be used to replace a table in a FROM clause, anywhere

except in a statement to define a materialized view. Therefore, a joined table
can be used in a UNION, MINUS or INTERSECT, a subquery, a non-
materialized view or a derived table.

• A temporary table cannot be specified as an operand of a joined table, but a
view can.

• OUTER JOIN can be specified in two ways, using the (+) operator in the
SearchCondition of the WHERE clause, or to use a JOIN table operation. The
two cannot co-exist in the same statement.

• Join order and grouping can be specified with a JoinedTable operation, but not
with (+). For example, the following operation is not supported:

t LEFT JOIN (t2 INNER JOIN t3 ON x2=x3) ON (x1 = x2 + x3)

Example 5.152 The following statement joins tables t1 and t2, returning all the rows from t1
where x1 is less than 10:
SELECT * FROM t1 LEFT JOIN t2 ON x1=x2 WHERE x1<10;

See Also “CREATE TABLE” on page 279
“INSERT” on page 318
“INSERT SELECT” on page 321
“UPDATE” on page 358
SQL Statements 353

TRUNCATE TABLE
The TRUNCATE TABLE statement is similar to a DELETE statement that
deletes all rows. However, it is faster than DELETE in most circumstances, as
DELETE removes each row individually.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
WRITE privileges.

SQL syntax TRUNCATE TABLE [Owner.]TableName

Parameters The TRUNCATE TABLE has the parameter:

Description • TRUNCATE operations can be rolled back.
• Subsequent INSERT statements are not allowed in the same transaction as a

TRUNCATE statement.
• Concurrent read committed read operations are allowed, and semantics of the

reads are the same as for read committed reads in presence of DELETE
statements

• TRUNCATE is allowed even when there are child tables. However, child
tables need to be empty for TRUNCATE to proceed. If any of the child tables
have any rows in them, TimesTen returns an error indicating that a child table
is not empty.

• TRUNCATE is not supported with detail tables of a Materialized View and a
table that is a part of a cache group or a temporary table.

• When a table contains out-of-line varying-length data, the performance of
TRUNCATE TABLE is similar to that of DELETE statement that deletes all
rows in a table. For more details on out-of line data, see “Numeric data types”
on page 29.

• Where tables are being replicated, the TRUNCATE statement replicates to the
subscriber, even when no rows are operated upon.

• When tables are being replicated with timestamp conflict checking enabled,
conflicts are not reported.

• DROP TABLE and ALTER TABLE operations cannot be used to change
hash pages on uncommitted truncated tables.

Example 5.153 To delete all the rows from the Recreation.Clubs table, use:
TRUNCATE TABLE Recreation.Clubs;

Parameter Description

Owner.]TableName Identifies a table to be truncated.
354 Oracle TimesTen In-Memory Database SQL Reference Guide

See Also “ALTER TABLE” on page 210
“DROP TABLE” on page 311
SQL Statements 355

UNLOAD CACHE GROUP
The UNLOAD CACHE GROUP statement deletes all rows from the cache
group.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
WRITE privileges.

SQL syntax UNLOAD CACHE GROUP [Owner.]GroupName
[WHERE ConditionalExpression]

UNLOAD CACHE GROUP [Owner.]GroupName
WITH ID (ColumnValueList);

Parameters The UNLOAD CACHE GROUP has the parameter:

Description • This syntax causes the entire content of the cache group to be deleted from the
data store.

• If the cache group is replicated, an UNLOAD CACHE GROUP command
deletes the entire content of the cache group at replicas as well.

• The UNLOAD CACHE GROUP statement can be used for any type of cache
group. For a description of cache group types, see “User and system managed
cache groups” on page 236.

• Use the UNLOAD CACHE GROUP statement carefully with cache groups
that have the AUTOFRESH attribute. A row that is unloaded can reappear in
the cache group as the result of an autorefresh operation if the row or its child
rows are updated in Oracle

• SQLRowCount returns the number of cache instances unloaded.
• Use the WITH ID clause:

– to specify binding parameters (For example, ?,?,...?)

Parameter Description

[Owner.]GroupName Name assigned to the cache group.

ConditionalExpression A search condition to qualify the target rows of the
operation.

WITH ID
ColumnValueList

The WITH ID clauses allows you to use primary
key values to unload the cache instance. Specify
ColumnValueList as either a list of literals or
binding parameters to represent the primary key
values.
356 Oracle TimesTen In-Memory Database SQL Reference Guide

Restrictions • Do not use the WITH ID clause on Readonly, Autorefreshed User Managed or
Autorefreshed and Propagated User Managed Cache groups.

• Do not use the WITH ID clause with the COMMIT EVERY n ROWS clause.

Example 5.154 CREATE CACHE GROUP Recreation.Cache
FROM Recreation.Clubs (

ClubName CHAR(15) NOT NULL,
ClubPhone SMALLINT,
Activity CHAR(18),
PRIMARY KEY(ClubName))

WHERE (Recreation.Clubs.Activity IS NOT NULL);
UNLOAD CACHE GROUP Recreation.Cache;

See Also “ALTER CACHE GROUP” on page 191
“CREATE CACHE GROUP” on page 236
“DROP CACHE GROUP” on page 306
“FLUSH CACHE GROUP” on page 314
“LOAD CACHE GROUP” on page 322
“MERGE” on page 325
SQL Statements 357

UPDATE
The UPDATE statement updates the values of one or more columns in all rows
of a table or in rows that satisfy a search condition.

Access
Control

If Access Control is enabled for your TimesTen instance, this statement requires
WRITE privileges or data store object ownership.

SQL syntax The UPDATE statement has the syntax:
UPDATE [FIRST NumRows]
{[Owner.]TableName [CorrelationName]}
SET {ColumnName =
{Expression | NULL | DEFAULT}} [,...]
[WHERE SearchCondition]

Parameters The UPDATE statement has the parameters:

Parameter Description

FIRST NumRows Specifies the number of rows to update. FIRST NumRows is not
supported in subquery statements. NumRows must be either a positive
INTEGER or a dynamic parameter placeholder. The syntax for a
dynamic parameter placeholder is either ? or :DynamicParameter. The
value of the dynamic parameter is supplied when the statement is
executed.

[Owner.]TableName
[CorrelationName]

[Owner.]TableName identifies a table to be updated.

CorrelationName specifies a synonym for the immediately
preceding table. When accessing columns of that table, use the
correlation name instead of the actual table name within the statement.
The correlation name must conform to the syntax rules for a basic name
(see “Basic names” on page 65).

All correlation names within one statement must be unique.

SET
ColumnName

Column to be updated. You can update several columns of the same
table with a single UPDATE statement. Primary key columns can be
included in the list of updated columns as long as the values of the
primary key columns are not changed.

Expression Any expression that does not contain an aggregate function. The
expression is evaluated for each row qualifying for the update
operation. The data type of the expression must be compatible with the
updated column’s data type. Expression can specify a column or
sequence CURRVAL or NEXTVAL reference when updating values.
358 Oracle TimesTen In-Memory Database SQL Reference Guide

Description • If the WHERE clause is omitted, all rows of the table are updated as specified
by the SET clause.

• The TimesTen Data Manager generates a warning when a character or binary
string is truncated during an UPDATE operation.

• The target table of the UPDATE statement is designated by TableName.
• A table on which a unique constraint is defined cannot be updated to contain

duplicate rows.
• If the target table has a foreign key constraint, then logging to disk must be

enabled for constraint enforcement.
• The UPDATE operation fails if it violates any foreign key constraint. See

“CREATE TABLE” on page 279 for a description of the foreign key
constraint.

Example 5.155 This example increases the price of parts costing more than $500 by 25%.
UPDATE Purchasing.Parts
SET SalesPrice = SalesPrice * 1.25
WHERE SalesPrice > 500.00;

Example 5.156 This example updates the column with the NEXTVAL value from sequence seq.
UPDATE student SET studentno = seq.NEXTVAL WHERE name = 'Sally';

Example 5.157 The following query updates the status of all the customers who have at least one
un-shipped order:
UPDATE customers SET customers.status = 'un-shipped'
WHERE customers.id = ANY

(SELECT orders.custid FROM orders
WHERE orders.status = 'un-shipped');

Example 5.158 The following query updates all the duplicate orders assuming that id is not a
primary key:

NULL Puts a NULL value in the specified column of each row satisfying the
WHERE clause. The column must allow NULL values.

DEFAULT Specifies that the column should be updated with the default value.

WHERE
SearchCondition

The search condition can contain a subquery. All rows for which the
search condition is TRUE are updated as specified in the SET clause.
Rows that do not satisfy the search condition are not affected. If no
rows satisfy the search condition, the table is not changed.
SQL Statements 359

UPDATE orders A
WHERE EXISTS (SELECT 1 FROM orders B

WHERE A.id = B.id and A.rowid < B.rowid);

Join Update
TimesTen supports “join update” statements. A join update can be used to update
one or more columns of a table using the result of a subquery.

Syntax UPDATE [Owner.]TableName
SET ColumnName=Subquery
 [WHERE SearchCondition]

or
UPDATE [Owner.]TableName
SET (ColumnName[,…])=Subquery
 [WHERE SearchCondition]

Parameters The UPDATE statement has the parameters:

Description The subquery in the SET clause of a join update does not reduce the number of
rows from the target table that are to be updated. The reduction must be done by
specifying the WHERE clause. Thus, if a row from the target table qualifies the
WHERE clause but the subquery returns no rows for this row, this row is updated
with NULL value in the updated column.

Example 5.159 If a row from t1 has no match in t2, its x1 value in the first select and its x1,y1
values in the second select is set to NULL.

Parameter Description

[Owner.]TableName [Owner.]TableName identifies a table to be updated.

SET
(ColumnName[,...])=
Subquery

Column to be updated. You can update several columns of the same
table with a single UPDATE statement. The SET clause can contain
only one subquery, although this subquery can be nested.

The number of values in the SelectList of the subquery must be the
same as the number of columns specified in the SET clause. An error is
returned if the subquery returns more than one row for any updated
row.

WHERE
SearchCondition

The search condition can contain a subquery. All rows for which the
search condition is TRUE are updated as specified in the SET clause.
Rows that do not satisfy the search condition are not affected. If no
rows satisfy the search condition, the table is not changed.
360 Oracle TimesTen In-Memory Database SQL Reference Guide

UPDATE t1 SET x1=(SELECT x2 FROM t2 WHERE id1=id2);
UPDATE t1 SET (x1,y1)=(SELECT x2,y2 FROM t2 WHERE id1=id2);

Example 5.160 In order to restrict the update to update only rows from t1 that have a match in t2,
a where clause with subquery has to be provided as follows:
UPDATE t1 SET x1=(SELECT x2 FROM t2 WHERE id1=id2) WHERE id1 IN (SELECT
id2 FROM t2);
UPDATE t1 SET (x1,y1)=(SELECT x2,y2 FROM t2 WHERE id1=id2) WHERE
id1 IN (SELECT id2 FROM t2);

See Also “SELECT” on page 335
SQL Statements 361

362 Oracle TimesTen In-Memory Database SQL Reference Guide

6
Access Control Privileges

This chapter describes which privileges are required to perform TimesTen
operations when Access Control is enabled on your TimesTen instance.

For details about any operation, see the reference for each particular operation.

Privilege descriptions
In addition to the instance administrator, access rights for data store operations
can be assigned to any instance user based on a set of specific privileges. Some
characteristics of Access Control privileges are:
• To give a user access to controlled operations, you must use the GRANT

statement. To remove a privilege from a user, you must use the REVOKE
statement.

• Assigned privileges provide access to all data stores and all objects in those
data stores in a particular TimesTen instance. TimesTen does not support a
finer granularity of authentication, such as table level privileges.

• At install time, the CONNECT and CREATE DATASTORE privileges are
granted to PUBLIC. All users have these privileges unless they are explicitly
revoked.

• A user always has WRITE and SELECT privileges to any table they own,
even if the privileges have not been granted explicitly to the user.

• Revoking SELECT and WRITE privileges for a user does not remove those
privileges for objects that the user owns.

• Privileges are determined at connect time and remain in effect until
disconnect.

• Privileges are cumulative. Granting a lower level privilege to a user does not
degrade higher privileges which have already been granted to the user.
Granting a high level privilege to a user who does not have lower level
privileges does not give the user the lower level privileges.
 363

The privileges that TimesTen supports are:

Operations requiring instance Administrator privilege
The following operations can only be performed by the Instance Administrator.

SQL operations
ALTER USER

CREATE USER

GRANT

REVOKE

Utilities
ttDaemonAdmin

ttmodinstall

Privilege Description

Instance Administrator The system user who installed TimesTen is the TimesTen
administrator. Some operations can only be performed by the
instance administrator. This privilege cannot be granted or revoked
using the TimesTen SQL statements GRANT and REVOKE.

ADMIN Privilege to perform administrative operations on a data store. Some
data store operations, such as the administration of the replication
feature, require administrative privilege.

CONNECT Privilege to connect to any data store in the TimesTen instance. At
the time that Access Control is enabled on a TimesTen instance, all
users are granted the CONNECT privilege.

CREATE DATASTORE Privilege to create a data store. The user who creates a data store
must have CONNECT privilege before creating a data store and
DDL privilege to create data store objects. At the time that Access
Control is enabled on a TimesTen instance, all users are granted the
CREATE DATASTORE privilege.

DDL Privilege to make changes to the data store schema, such as
CREATE and ALTER operations.

WRITE Privilege to perform UPDATE, DELETE and INSERT operations
on a data store. Owners of tables always have the WRITE privilege
on the tables they own.

SELECT Privilege to perform only SELECT operations on a table. Owners of
tables always have the SELECT privilege on the tables they own.
364 Oracle TimesTen In-Memory Database SQL Reference Guide

Operations requiring ADMIN privilege
The following operations require ADMIN privilege.

Attributes
All first connection attributes require ADMIN privilege. These are:

AutoCreate

CkptFrequency

CkptLogVolume

CkptRate

Connections

ForceConnect

LogAutoTruncate

LogBuffSize

LogFileSize

LogFlushMethod

Logging

LogPurge

MemoryLock

Overwrite

PermSize

Preallocate

RecoveryThreads

TempSize

The following data store attributes require the ADMIN privilege:

Authenticate GroupRestrict

Built-in Procedures
ttBackupStatus

ttBookmark

ttCachePolicyGet

ttCachePolicySet

ttCacheSqlGet

ttCacheStart

ttCacheStop

ttCacheUidPwdSet

ttCkpt

ttCkptBlocking

ttCkptConfig (to change value)

ttCompact

ttCompactTS

ttLockWait

ttOptSetMaxCmdFreeListCnt

ttOptSetMaxPriCmdFreeListCnt

ttRamPolicyGet

ttRamPolicySet

ttRepDeactivate

ttRepPolicyGet

ttRepPolicySet

ttRepStart

ttRepStateGet

ttRepStateSave

ttRepStateSet

ttRepStop

ttRepSubscriberStateSet

ttRepSubscriberWait

ttRepSyncGet

ttRepSyncSet
Access Control Privileges 365

ttRepTransmitGet

ttRepTransmitSet

ttUserPrivileges

ttUsers

ttWarnOnLowMemory

ttXlaBookmarkCreate

ttXlaBookmarkDelete

ttXlaSubscribe

ttXlaUnsubscribe

ttAgingLRUConfig (to change value)

SQL operations
ALTER ACTIVE STANDBY PAIR

ALTER REPLICATION

CREATE ACTIVE STANDBY PAIR

CREATE REPLICATION

DROP REPLICATION

LOAD CACHE GROUP

REFRESH CACHE GROUP

UNLOAD CACHE GROUP

Utilities
ttAdmin

ttBackup

ttCheck

ttDestroy

ttMigrate

ttRepAdmin

ttRestore

Use of some options of the following utilities also require this privilege:

ttIsql

ttTraceMon

ttXactAdmin

ttXactLog

Utility C API
ttXactIdRollback

ttBackup

ttDestroyDataStore

ttDestroyDataStoreForce

ttRamGrace

ttRamLoad

ttRamPolicy

ttRamUnload

ttRepDuplicateEx

ttRestore

XLA Functions
ttXlaDeleteBookmark

Operations requiring CONNECT privilege
Any user or application that wishes to connect to a TimesTen data store must
have CONNECT privilege. By default, all users have CONNECT privilege,
unless they have been explicitly revoked.
366 Oracle TimesTen In-Memory Database SQL Reference Guide

Operations requiring CREATE DATASTORE privilege
Any user or application that wishes to create a TimesTen data store must have
CREATE DATASTORE privilege. By default, all users have CREATE
DATASTORE privilege, unless they have been explicitly revoked.

Operations requiring DDL privilege
The following operations require DDL privilege.

Built-in Procedures
ttCacheAWTThresholdSet

ttCacheSqlGet

ttOptClearStats

ttOptEstimateStats

ttOptGetMaxCmdFreeListCnt

ttOptSetColIntvlStats

ttOptSetColStats

ttOptSetTblStats

ttOptUpdateStats

ttSetUserColumnID

ttSetUserTableID

SQL operations
ALTER CACHE GROUP

ALTER TABLE

CREATE CACHE GROUP

CREATE INDEX

CREATE MATERIALIZED VIEW

CREATE SEQUENCE

CREATE TABLE

CREATE VIEW

DROP CACHE GROUP

DROP INDEX

DROP SEQUENCE

DROP TABLE

DROP VIEW

Operations requiring WRITE privilege
The following operations require WRITE privilege.

Built-in Procedures
ttCachePropagateFlagSet

ttApplicationContext

ttAgingScheduleNow

SQL operations
ALTER TABLE...ON DELETE CASCADE clause
Access Control Privileges 367

DELETE

DROP ACTIVE STANDBY PAIR

INSERT

INSERT SELECT

on target table of MERGE

TRUNCATE TABLE

UPDATE

XLA functions
ttXlaOpenTimesTen ttXlaPersistOpen

Operations requiring SELECT privilege
The following operations require SELECT privilege.

Built-in Procedures
ttBlockInfo

ttLogBufPrint

ttLogHolds

ttOptGetColStats

ttSize

SQL operations
SELECT on source table of MERGE

Utilities
ttMigrate

ttSize

ttTail

Use of some options of the following utilities also require this privilege:

ttIsql

ttTraceMon

ttXactAdmin

ttXactLog
368 Oracle TimesTen In-Memory Database SQL Reference Guide

7
System and Replication Tables

TimesTen stores metadata (information about the contents of your data store) in
system tables in your data store.

Your applications can read but cannot update the system tables. If your
application defines a table with the same name as a system table name, then your
application can read a system table by prefixing the name with SYS. For
example, SELECT * FROM SYS.TABLES selects rows from the TABLES system
table. Use the TTREP prefix when using the replication tables.

Information specific to system tables:
• Locks acquired by users on system tables may prevent others from defining

data or executing the ODBC function SQLPrepare or the JDBC method
Connection.prepareStatement.

• The last character in name columns is always a space. Therefore, while the
column length of name columns is 31, the maximum object name length is 30.

• On 64-bit systems, TimesTen system tables declare certain fields as data type
TT_BIGINT. When retrieving these columns with an ODBC program, the
application must bind them using SQL_C_BINARY.
For information on SQL_C_BINARY, see the Microsoft ODBC 2.0
Programmer’s Reference and SDK Guide.

Note: Some tables contain columns, named SYSnumber. Because these columns
contain values used internally by TimesTen, they are not documented in this
chapter.
 369

System table list
Table

SYS.CACHE_GROUP

SYS.COLUMNS

SYS.COLUMN_HISTORY

SYS.COL_STATS

SYS.DUAL

SYS.INDEXES

SYS.MONITOR

SYS.OBJ_ACC_RIGHT

SYS.PLAN

SYS.SEQUENCES

SYS.SYNONYMS

SYS.SYS_ACC_RIGHT

SYS.TABLES

SYS.TABLE_HISTORY

SYS.TBL_STATS

SYS.TCOL_STATS

SYS.TINDEXES

SYS.TRANSACTION_LOG_API

SYS.TTABLES

SYS.TTBL_STATS

SYS.USERS

SYS.VIEWS

SYS.XLASUBSCRIPTIONS
370 Oracle TimesTen In-Memory Database SQL Reference Guide

Replication table list
Table

TTREP.REPELEMENTS

TTREP.REPLICATIONS

TTREP.REPNETWORK

TTREP.REPNETWORK

TTREP.REPSTORES

TTREP.REPSUBSCRIPTIONS

TTREP.REPTABLES

TTREP.TTSTORES
System and Replication Tables 371

Tables reserved for internal or future use
Several system tables in Timesten are reserved for internal or future use. These
tables are:
• SYS.COLUMN_HISTORY
• SYS.OBJ_ACC_RIGHT
• SYS.SYS_ACC_RIGHT
• SYS.TABLE_HISTORY
• SYS.USERS

These tables are not described in detail in this chapter.
372 Oracle TimesTen In-Memory Database SQL Reference Guide

SYS.CACHE_GROUP
The CACHE_GROUP table describes the definition of a TimesTen cache.

Table name CACHE_GROUP

Columns

Column name Type Description

CGNAME TT_CHAR (31)
NOT NULL

Group name.

CGOWNER TT_CHAR (31)
NOT NULL

Group owner.

CGID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

Id of this cache group.

ROOT TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

Unique identifier for cache group's root
table

SOURCE TT_CHAR (8)
NOT NULL

Data source for caching. In this release
the only legal value is ‘ORACLE’.

CGDURATION TT_INTEGER
NOT NULL

Duration

TBLCNT TT_SMALLINT
NOT NULL

Number of tables in cache group.

REFRESH_MODE TT_CHAR(1)
NOT NULL

The current auto refresh mode.
‘N’: No auto refresh.
‘I’: Incremental auto refresh.
‘F’: Full auto refresh.
System and Replication Tables 373

REFRESH_STATE TT_CHAR(1)
NOT NULL

The current auto refresh mode.
‘N’: Off.
‘Y’: On.
‘P’: Paused.

REFRESH_INTERVAL TT_BIGINT
NOT NULL

Auto refresh interval in milliseconds.

CGATTRIBUTES BINARY (4)
NOT NULL

Bits 0-7 are for cache group types.
Bits 8-15 are for autoload options.
Bit 0: 1 - READONLY
Bit 1: 1 - SYNCHRONOUS
WRITETHROUGH
Bit 2: 1 - AUTOREFRESH
Bit 3: 1 - PROPAGATE
Bit 8: 1 - Autoload on Create (Always 1
for AUTOREFRESH)
Bit 9: 1 - Autoload on Demand (Only
be available with SYNCHRONOUS
WRITETHROUGH)

REFRESH_WITH_LIMIT TT_INTEGER NOT
NULL

The maximum number of autorefresh
change log records kept in the trigger
log table at Oracle. A larger value
causes the autorefresh to use more
space at Oracle, while it prevents the
truncation of logs that are not
autorefreshed to TimesTen yet, and
therefore reduces the possible fallback
to full refresh.
The field is used only by incremental
autorefresh
374 Oracle TimesTen In-Memory Database SQL Reference Guide

SYS.COLUMNS
The COLUMNS table describes every column in every table in the data store,
including the name of the column, the type of the column and whether the
column is nullable.

Table name COLUMNS

Columns

Column name Type Description

ID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen identifier of column’s table.

COLNUM TT_SMALLINT
NOT NULL

Ordinal number of column in table
(starting at 1).

COLNAME TT_CHAR (31)
NOT NULL

Column name.

COLOPTIONS BINARY(1)
NOT NULL

Column specification flags:
0x01 - column is in a primary key.
0x02 - column value is varying-
length (VARCHAR[2],NVARCHAR[
2],
VARBINARY).
0x04 - column value can be
NULL.
0x08 - column values are
unique.
System and Replication Tables 375

COLTYPE TT_INTEGER
NOT NULL

Data type of column
 1 TT_SMALLINT
 2 TT_INTEGER
 3 BINARY_FLOAT
 4 BINARY_DOUBLE
 5 TT_CHAR
 6 TT_VARCHAR
 7 BINARY
 8 VARBINARY
11 TT_DECIMAL
12 TT_NCHAR
13 TT_NVARCHAR
14 TT_DATE
15 TIME
16 TT_TIMESTAMP
20 TT_TINYINT
21 TT_BIGINT
22 TT_VARCHAR (inline)
23 VARBINARY (inline)
24 TT_NVARCHAR (inline)
25 NUMBER
26 CHAR
27 VARCHAR2
28 NCHAR
29 NVARCHAR2
30 DATE
31 TIMESTAMP
32 VARCHAR2 (inline)
33 NVARCHAR2 (inline)

Note: If you are using TimesTen type
mode, for information on COLTYPE,
refer to documentation from previous
releases of TimesTen. For information
on TimesTen type mode, see
“TimesTen Type Mode (Backward
Compatibility)” on page 55.

TYPE_ATTR TT_INTEGER
NOT NULL

Reserved for internal use.
376 Oracle TimesTen In-Memory Database SQL Reference Guide

COLLEN INTEGER NOT
NULL for 32-bit
systems;
BIGINT NOT NULL
for 64-bit systems

Length of the column (maximum length
for varying-length columns).

INLINELEN TT_INTEGER
NOT NULL

Identifies how many bytes a given
column contributes to the inline width
of a row.

REPUSERID TT_INTEGER
NOT NULL

User-defined identifier for column (set
with ttSetUserColumnID built-in
function).

DEFAULTVALSTR TT_VARCHAR
(409600) NOT
INLINE

The default column value.

CHAR_USED TT_CHAR (1) Indicates the semantics for the column:
‘B’ for BYYE
‘C’ for CHAR
NULL for non-character columns
System and Replication Tables 377

SYS.COL_STATS
The COL_STATS table stores the statistics for table columns in the data store.
Statistics include the number of unique values, number of nulls, number of rows
and other information regarding the distribution of column values. No values are
present if statistics have not been computed.

Table name COL_STATS

Columns

Column name Type Description

TBLID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen table identifier.

COLNUM TT_SMALLINT
NOT NULL

Ordinal number of column in
table (starting at 1).

INFO VARBINARY
(4000000) NOT
INLINE NOT NULL

Contains a binary representative
of the column value distribution
information. See
ttOptUpdateStats for an
explanation of the distribution
information stored in this
column. A text representation of
this information can be retrieved
using ttOptGetColStats.
378 Oracle TimesTen In-Memory Database SQL Reference Guide

SYS.DUAL
The DUAL table can be used in a SELECT statement that references no other
tables, but needs to return at least one row. Selecting from the DUAL table is
useful for computing a constant expression with the SELECT statement. Because
DUAL has only one row, the constant is returned only once.

Table name DUAL

Columns

Column name Type Description

DUMMY TT_VARCHAR (1)
NOT INLINE
NOT NULL

‘X’
System and Replication Tables 379

SYS.INDEXES
The INDEXES table stores information about the indexes in the data store,
including the name, the type (T-tree or hash), the index key and whether the
index is unique.

Table name INDEXES

Columns

Column name Type Description

IXNAME TT_CHAR (31)
NOT NULL

Index name.

IXOWNER TT_CHAR (31)
NOT NULL

Name of index’s owner.

IXID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen identifier of index.

TBLID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen identifier of
index’s table.

IXTYPE TT_INTEGER
NOT NULL

Index type:
0 - hash index.
1 - T-tree index.

ISUNIQUE BINARY(1)
NOT NULL

Uniqueness:
0 - nonunique index.
1 - unique index.

ISPRIMARY BINARY(1)
NOT NULL

Primary key:
0 - not a primary key for

table.
1 - primary key for table.

USETMPHEAP TT_SMALLINT
NOT NULL

Reserved for internal use.
380 Oracle TimesTen In-Memory Database SQL Reference Guide

KEYCNT TT_SMALLINT
NOT NULL

Number of columns in the
index key.

KEYCOLS BINARY(32)
NOT NULL

Array of 2-byte INTEGER
column numbers of index
key, mapped to BINARY.

PAGESPARAM TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

Number of pages specified
for hash index.

NLSSORTID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

For internal use only.

NLSSORTPARM VARBINARY (1000)
NOT INLINE

For internal use only.

NLSSORTSTR TT_VARCHAR(200)
NOT INLINE

For internal use only.

NLSSORTBUF
SIZE

TT_SMALLINT For internal use only.

NLSSORTMAX
SIZE

TT_SMALLINT
NOT NULL

For internal use only.

Column name Type Description
System and Replication Tables 381

SYS.MONITOR
The MONITOR table stores information about system performance. It contains a
single row with statistics about certain events. For many columns, statistics are
gathered starting from the first connection to the data store. For some columns,
statistics are gathered as needed. TimesTen does not gather statistics from the
time of the first connection for these columns:
• PERM_ALLOCATED_SIZE
• PERM_IN_USE_SIZE
• TEMP_ALLOCATED_SIZE
• LAST_LOG_FILE
• REPHOLD_LOG_FILE
• REPHOLD_LOG_OFF
• FIRST_LOG_FILE
• CHECKPOINT_BYTES_WRITTEN

For most columns, the MONITOR table is reset whenever there are no
connections to the data store. TimesTen does not reset the values of the following
columns, even when there are no connections to the data store:
• PERM_ALLOCATED_SIZE
• PERM_IN_USE_SIZE
• TEMP_ALLOCATED_SIZE
• LAST_LOG_FILE
• REPHOLD_LOG_FILE
• REPHOLD_LOG_OFF
• FIRST_LOG_FILE

Information in the MONITOR table is frequently updated by TimesTen. To
prevent these updates from slowing down the system, they are not protected by
latches. Hence values in the MONITOR table are not absolutely accurate. They
can be used as a reliable indication of various activities in the system.

Table name MONITOR
382 Oracle TimesTen In-Memory Database SQL Reference Guide

Columns

Column name Type Description

TIME_OF_1ST_CONNECT TT_CHAR(32)
NOT NULL

Time at which the first
connection was made.

DS_CONNECTS TT_INTEGER
NOT NULL

Number of connects to
the data store.

DS_DISCONNECTS TT_INTEGER
NOT NULL

Number of disconnects
from the data store.

DS_CHECKPOINTS TT_INTEGER
NOT NULL

Number of checkpoints
taken.

DS_CHECKPOINTS_
FUZZY

TT_INTEGER
NOT NULL

Number of fuzzy
checkpoints taken.

DS_COMPACTS TT_INTEGER
NOT NULL

Number of data store
compactions.

PERM_ALLOCATED_SIZE TT_INTEGER
NOT NULL for
32-bit systems;
TT_BIGINT
NOT NULL for
64-bit systems

Allocated size in
kilobytes of the
permanent data
partition

PERM_IN_USE_SIZE TT_INTEGER
NOT NULL for
32-bit systems;
TT_BIGINT
NOT NULL for
64-bit systems

Size in kilobytes of the
portion of the
permanent data
partition that is
currently in use.

PERM_IN_USE_HIGH_
WATER

TT_INTEGER
NOT NULL for
32-bit systems;
TT_BIGINT
NOT NULL for
64-bit systems

The highest amount (in
kilobytes) of permanent
data partition memory
in use since the first
connection to the data
store. The value of this
field can be reset to the
current value of the
PERM_IN_USE_SIZE
attribute using the
ttMonitorHighWater
Reset procedure.
System and Replication Tables 383

TEMP_ALLOCATED_SIZE TT_INTEGER
NOT NULL for
32-bit systems;
TT_BIGINT
NOT NULL for
64-bit systems

Allocated size in
kilobytes of the
temporary data
partition

TEMP_IN_USE_SIZE TT_INTEGER
NOT NULL for
32-bit systems;
TT_BIGINT
NOT NULL for
64-bit systems

Size in kilobytes of the
portion of the
temporary data
partition that’s
currently in use.

TEMP_IN_USE_HIGH_
WATER

TT_INTEGER
NOT NULL for
32-bit systems;
TT_BIGINT
NOT NULL for
64-bit systems

The highest amount (in
kilobytes) of temporary
data partition memory
in use since the first
connection to the data
store. The value of this
field can be reset to the
current value of the
TEMP_IN_USE_SIZE
attribute using the
ttMonitorHighWater
Reset procedure.

XACT_BEGINS TT_BIGINT
NOT NULL

Number of transactions
started.

XACT_COMMITS TT_BIGINT
NOT NULL

Number of durable and
non-durable
transactions committed.

XACT_D_COMMITS TT_BIGINT
NOT NULL

Number of transactions
committed durably.

XACT_ROLLBACKS TT_BIGINT
NOT NULL

Number of transactions
rolled back.

LOG_FORCES TT_BIGINT
NOT NULL

Number of log flushes
to disk.

DEADLOCKS TT_BIGINT
NOT NULL

Number of deadlocks.

Column name Type Description
384 Oracle TimesTen In-Memory Database SQL Reference Guide

LOCK_TIMEOUTS TT_BIGINT
NOT NULL

Number of lock
requests denied due to
timeouts.

LOCK_GRANTS_
IMMED

TT_BIGINT
NOT NULL

Number of lock
requests granted
without a wait.

LOCK_GRANTS_WAIT TT_BIGINT
NOT NULL

Number of lock
requests granted after a
wait.

CMD_PREPARES TT_BIGINT
NOT NULL

Number of commands
prepared (compiled).

CMD_REPREPARES TT_BIGINT
NOT NULL

Number of commands
re-prepared.

CMD_TEMP_INDEXES TT_BIGINT
NOT NULL

Number of temporary
indexes created during
query execution.

LAST_LOG_FILE TT_INTEGER
NOT NULL

Number of last log file.

REPHOLD_LOG_FILE TT_INTEGER
NOT NULL

Number of last log file
held by replication.

REPHOLD_LOG_OFF TT_INTEGER
NOT NULL

Offset in last log file
held by replication.

REP_XACT_COUNT TT_INTEGER
NOT NULL

The number of
replicated transactions
generated on the local
store that are being
replicated to at least
one peer data store.

REP_CONFLICT_COUNT TT_INTEGER
NOT NULL

The number of
replicated transactions
that ran into a conflict
when being applied on
the local store.

Column name Type Description
System and Replication Tables 385

REP_PEER_
CONNECTIONS

TT_INTEGER
NOT NULL

The sum of all peer
connections initiated by
the local replication
agent. There is one
connection for every
peer relationship where
the local store is the
master. If a transport
level failure results in
the establishment of a
new connection this
count isd incremented.

REP_PEER_RETRIES TT_INTEGER
NOT NULL

The number of retry
attempts while trying to
establish a new peer
connection.

FIRST_LOG_FILE TT_INTEGER
NOT NULL

The number of the
oldest existing (not yet
purged) log file.

LOGBYTES_TO_LOG_
BUFFER

TT_BIGINT
NOT NULL

The number of bytes
written to the log since
first connect. This value
includes the sizes of
actual log records plus
any log overhead.

LOG_FS_READS TT_BIGINT
NOT NULL

The number of times
that a log read could not
be satisfied from the in-
memory log buffer.

Column name Type Description
386 Oracle TimesTen In-Memory Database SQL Reference Guide

LOG_FS_WRITES TT_BIGINT
NOT NULL

The number of times
TimesTen wrote the
contents of the in-
memory log buffer to
the operating system.
This column does not
count the number of
times data was flushed
to disk. It only counts
writes to the operating
system's file buffers.

LOG_BUFFER_WAITS TT_BIGINT
NOT NULL

The number of times a
thread was delayed
while trying to insert a
log record into the log
buffer because the log
buffer was full.
Generally speaking, if
this value is increasing,
it indicates that the log
buffer is too small.

CHECKPOINT_BYTES_
WRITTEN

TT_INTEGER
NOT NULL for
32-bit systems;
TT_BIGINT
NOT NULL for
64-bit systems

The number of bytes
written to disk by the
most recent checkpoint
operation.

Column name Type Description
System and Replication Tables 387

REQUIRED_RECOVERY TT_INTEGER
NOT NULL

If 1, when the data store
was initially loaded into
RAM at
TIME_OF_1ST_CON
NECT, recovery ran.
This means that the
previous time the data
store was in memory,
the data store did not
shut down
cleanly. When it was
loaded into memory
this time, the log was
replayed and other
operations were
performed in an attempt
to recover data;
If DurableCommit had
been set to 0,
transactions could have
been lost.

If 0, the data store was
previously shut down
cleanly. As a result, this
time the data store was
restarted cleanly.

TYPE_MODE TT_INTEGER
NOT NULL

If 0, Oracle mode.
If 1, TimesTen mode.

Column name Type Description
388 Oracle TimesTen In-Memory Database SQL Reference Guide

SYS.PLAN
The PLAN table contains the execution plan that the TimesTen query optimizer
prepares after an application calls ttOptSetFlag (see "Generating the plan"and
"Modifying plan generation"in the Oracle TimesTen In-Memory Database
Operations Guide).

The execution plan includes the operation performed at each step and the table or
index that it references.

Table name PLAN

Columns

Column
name

Type Description

STEP TT_INTEGER
NOT NULL

Ordinal number of the operation, starting at 1.

LEVEL TT_INTEGER
NOT NULL

Level of this operation in the plan tree.
System and Replication Tables 389

OPERATION TT_CHAR (31)
NOT NULL

Type of operation, one of:
TblLkSerialScan -- full table scan
RowLkSerialScan -- full table scan
TblLkTtreeScan -- ttree scan
RowLkTtreeScan -- ttree scan
TblLkHashScan -- hash lookup
RowLkHashScan -- hash lookup
TblLkRowidScan -- rowid lookup
RowLkRowidScan -- rowid lookup
TblLkUpdate -- updates one or more rows
RowLkUpdate -- updates one or more rows
TblLkDelete -- deletes one or more rows
RowLkDelete -- deletes one or more rows
TblLkInsert -- inserts one or more rows
RowLkInsert -- inserts one or more rows
TmpTtreeScanTmpHashScan -- create a
temporary index
NestedLoop [OuterJoin | SemiJoin] --
nested loop join (with optional outer join or
semi-join)
MergeJoin -- merge join
OrderBy -- sorts rows (requires extra temp
space)
SortedDistinct -- identifies distinct rows from
a sorted list (requires minimal extra space)
Distinct -- identifies distinct rows from an
unsorted list (requires extra temporary space)
SortedGroupBy -- identifies distinct groups from
a sorted list (requires minimal extra space)
GroupBy -- identifies distinct groups from an
unsorted list (requires extra temp space)
TmpTable -- materializes intermediate results
(requires extra temporary space)
TblLkUpdView -- updates a view based on
changes to detail table(s)
RowLkUpdView -- updates a view based on
changes to detail table(s)
OracleInsert -- flushes changes to Oracle
ZeroTblScan -- evaluates a predicate on a single
set of values (no scan required)
ViewUniqueMatchScan -- uniquely identifies
those view rows that need to be updated (requires
extra temp space

Column
name

Type Description
390 Oracle TimesTen In-Memory Database SQL Reference Guide

TBLNAME TT_CHAR (31) Name of table scanned at this step.
Column is NULL if no table is scanned.

IXNAME TT_CHAR (31) Name of index used at this step.
T-tree index names may have a “(D)” after the
name, which indicates a descending scan.
Column is NULL if no index is scanned.

PRED TT_VARCHAR (1024) Predicate applied during table or index scan or
join. Column is NULL if no predicate applies.

OTHERPRED TT_VARCHAR (1024) Predicate applied after table or index scan or
join. Column is NULL if no predicate applies.

Column
name

Type Description
System and Replication Tables 391

SYS.SEQUENCES
The SEQUENCES table contains all the information about sequences. Data from
the system table is restored to the new data store during a CREATE SEQUENCE
statement.

Table name SEQUENCES

Columns

Column name Type Descriptions

NAME TT_CHAR(31)
NOT NULL

Sequence Name

OWNER TT_CHAR(31)
NOT NULL

Sequence Owner

MINVAL TT_BIGINT
NOT NULL

Minimum Value

MAXVAL TT_BIGINT
NOT NULL

Maximum Value

INCREMENT TT_BIGINT
NOT NULL

Increment value

CACHESIZE TT_BIGINT
NOT NULL

Number of sequence
number to be cached.
For internal TimesTen
use.

LASTNUMBER TT_BIGINT
NOT NULL

Last number
incremented.

SEQID TT_INTEGER
NOT NULL on
32-bit systems;
TT_BIGINT
NOT NULL on 64-
bit systems

ID of the sequence row

CYCLE BINARY(1)
NOT NULL

Flag to indicate to wrap
around value.
392 Oracle TimesTen In-Memory Database SQL Reference Guide

IS_REPLICATED BINARY(1)
NOT NULL

0 – Sequences are not
being replicated
1 – Sequences are being
replicated

REPACCESS TT_CHAR(1)
NOT NULL

Flag to indicate that
sequences cannot be
incremented on
subscriber only data
stores.
System and Replication Tables 393

SYS.SYNONYMS
The SYNONYMS table contains information about synonyms.

Table name SYNONYMS

Columns

Column name Type Descriptions

NAME TT_CHAR(31)
NOT NULL

Reserved for future use.

OWNER TT_CHAR(31)
NOT NULL

Reserved for future use.

OBJNAME TT_CHAR(31)
NOT NULL

Reserved for future use.

OBJOWNER TT_CHAR(31) Reserved for future use.
394 Oracle TimesTen In-Memory Database SQL Reference Guide

SYS.TABLES
The TABLES table stores information about the tables in the data store,
including the name, the owner, the number of columns, the size of a row and the
primary key (if any). The TABLES table also stores information on system
tables.

Specific column information is stored in the COLUMNS table.

Table name TABLES

Columns

Column name Type Descriptions

TBLNAME TT_CHAR(31)
NOT NULL

Table name.

TBLOWNER TT_CHAR(31)
NOT NULL

Name of user who owns the
table.

OWNER TT_INTEGER
NOT NULL

Owner of table:
0 - TimesTen system table.
1 - User table.

NUMVARY TT_SMALLINT
NOT NULL

Number of varying-length
columns in table.

NUMNULL TT_SMALLINT
NOT NULL

Number of nullable columns in
table.

NUMCOLS TT_SMALLINT
NOT NULL

Number of columns in table.

LENGTH TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

Length of in-line portion of each
row.

TBLID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen identifier for table.
System and Replication Tables 395

NUMTUPS TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

Table cardinality. This value is
precise only when no INSERT
or DELETE transactions are
active. The value includes
uncommitted inserts, but not
uncommitted deletes.
Consequently, the value of this
field may be larger than the
actual table cardinality.

MAXTUPS TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

Maximum table cardinality.

PRIMCNT TT_SMALLINT
NOT NULL

Number of columns in primary
key (0 if none).

PRIMCOLS BINARY(32)
NOT NULL

Array of 2-byte INTEGER
column numbers of primary key,
mapped to BINARY.

CACHEFLAG BINARY(1)
NOT NULL

1 - if the table is in a cache
group, 0 otherwise.

XLAFLAG BINARY(1)
NOT NULL

If set, updates to this table
should be transmitted to the
transaction log API.

PXLAFLAG BINARY(1)
NOT NULL

If set, indicates that persistent
XLA has been enabled for this
particular user table.

CACHEGROUP TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT
NOT NULL for 64-bit
systems

Id of cache group that this table
belongs to.
396 Oracle TimesTen In-Memory Database SQL Reference Guide

MVID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT
NOT NULL for 64-bit
systems

If the table is a VIEW, indicates
the ID of the associated row in
the VIEWS system table

MVIDS TT_VARCHAR(1024)
NOT INLINE

If the table is a VIEW detail
table, indicates the ID of the
array of the Ids of the rows in
the VIEWS system table of the
materialized views that
reference this detail table.

PERMLTBLID TT_INTEGER
 NOT NULL

The associated permanent
table's ID.

REPNUMKEY
COLS

TT_SMALLINT
NOT NULL

Number of columns in the
replication key described by
REPKEYCOLS

REPTSCOLNUM TT_SMALLINT
NOT NULL

Column number of the column
used for replication's
timestamp-based conflict
checking.

REPRETURN
SERVICE

TT_CHAR(1)
NOT NULL

Return service for this
subscriber with respect to this
replication element:
‘C’ - RETURN COMMIT
‘R’ - RETURN RECEIPT
‘2’ - RETURN TWOSAFE
‘\0’ - NO RETURN services

REPRETURNBY
REQUEST

BINARY(1)
NOT NULL

0 - RETURN services are
provided unconditionally
1 - RETURN services are
provided only BY REQUEST.
This field is ignored if
REPRETURNSERVICE = '\0'

REPUSERID TT_BIGINT
NOT NULL

User-defined identifier for table
(set with ttSetUserTableID
built-in function).
System and Replication Tables 397

REPKEYCOLS BINARY(32)
NOT NULL

Column numbers used by
replication for unique
identification of a row.
(an array of 2-byte INTEGERs,
mapped to BINARY)

REPACCESS TT_CHAR(1)
NOT NULL

The access restrictions imposed
by replication:
‘-’ - no access permitted
‘s’- may be read by read-only
(SELECT) transactions
‘r’ - may be read by updating

transactions
‘w’ - may be updated
w => r and r => s.

REPTSUPDATE
RULE

TT_CHAR(1)
NOT NULL

The rule for maintaining the
TS_COLUMN for a timestamp-
based conflict detector:
‘\0‘ - rule not defined
‘U‘ - BY USER
‘S‘ - BY SYSTEM (default)
398 Oracle TimesTen In-Memory Database SQL Reference Guide

SYS.TBL_STATS
The TBL_STATS table stores the statistics for tables in the data store, namely the
number of rows in the table. No values are present if the
statistics have not been computed.

Column-specific statistics are stored in the COL_STATS table.
See “SYS.COL_STATS” on page 378.

Table name TBL_STATS

Columns

Column name Type Description

TBLID TT_INTEGER
NOT NULL for 32-bit
systems;
TT_BIGINT
NOT NULL for 64-bit
systems

TimesTen identifier of table.

NUMTUPS TT_INTEGER
NOT NULL for 32-bit
systems;
TT_BIGINT
NOT NULL for 64-bit
systems

Number of rows in the table.

LASTSTATSUPDATE TT_CHAR(25) Time of most recent update of this table,
in the following format:
Day Mon DD HH:MM:SS YYYY
(e.g., Sun Jan 01 18:24:12 1995).
The string is NULL-terminated.
This column is NULL if no statistics
update has been performed on the table.
System and Replication Tables 399

SYS.TCOL_STATS
The TCOL_STATS table stores the statistics for table columns in temporary table
instances associated with active sessions. Statistics include the number of unique
values, number of nulls, number of rows and other information regarding the
distribution of column values. No values are present if statistics have not been
computed.

Table name TCOL_STATS

Columns

Column name Type Description

TBLID TT_INTEGER
NOT NULL for 32-
bit systems;
TT_BIGINT
NOT NULL for 64-
bit systems

TimesTen table identifier.

COLNUM TT_SMALLINT
NOT NULL

Ordinal number of column in
table (starting at 1).

INFO VARBINARY
(4000000)
NOT NULL
NOT INLINE

Contains a binary representative
of the column value distribution
information. See
ttOptUpdateStats for an
explanation of the distribution
information stored in this
column. A text representation of
this information can be retrieved
using ttOptGetColStats.
400 Oracle TimesTen In-Memory Database SQL Reference Guide

SYS.TINDEXES
The INDEXES table stores information about the indexes in the temporary table
instances associated with active sessions, including the name, the type (T-tree or
hash), the index key and whether the index is unique.

Table name TINDEXES

Columns

Column name Type Description

IXNAME TT_CHAR (31)
NOT NULL

Index name.

IXOWNER TT_CHAR (31)
NOT NULL

Name of index’s owner.

IXID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT
NOT NULL for 64-
bit systems

TimesTen identifier of index.

TBLID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT
 NOT NULL for 64-
bit systems

TimesTen identifier of index’s
table.

IXTYPE TT_INTEGER
NOT NULL

Index type:
0 - hash index.
1 - T-tree index.

ISUNIQUE BINARY(1)
NOT NULL

Uniqueness:
0 - nonunique index.
1 - unique index.

ISPRIMARY BINARY(1)
NOT NULL

Primary key:
0 - not a primary key for

table.
1 - primary key for table.

USETMPHEAP TT_SMALLINT
NOT NULL
System and Replication Tables 401

KEYCNT TT_SMALLINT
NOT NULL

Number of columns in the
index key.

KEYCOLS BINARY(32)
NOT NULL

Array of 2-byte INTEGER
column numbers of index key,
mapped to BINARY.

PAGESPARAM TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT
NOT NULL for 64-
bit systems

Number of pages specified for
hash index.

NLSSORTID TT_INTEGER
NOT NULL

For internal use only.

NLSSORTPARM VARBINARY(1000)
NOT INLINE

For internal use only.

NLSSORTSTR TT_VARCHAR(200)
NOT INLINE

For internal use only.

NLSSORTBUF
SIZE

TT_SMALLINT For internal use only.

NLSSORTMAX
SIZE

TT_SMALLINT For internal use only.

Column name Type Description
402 Oracle TimesTen In-Memory Database SQL Reference Guide

SYS.TRANSACTION_LOG_API
The TRANSACTION_LOG_API table keeps track of the persistent Transaction
Log API bookmarks. Each row in the system table corresponds to a persistent
bookmark. Each persistent bookmark has a text identifier associated with it,
which is used to keep track of the bookmark.

Table name TRANSACTION_LOG_API

Columns

Column name Type Description

ID TT_CHAR(31)
NOT NULL

A text tag identifier used to keep
track of the bookmark.

READLSNHIGH TT_INTEGER
NOT NULL

The high value of the read log
record to which this bookmark
points.

READLSNLOW TT_INTEGER
NOT NULL

The low value of the read log
record to which this bookmark
points.

PURGELSNHIGH TT_INTEGER
NOT NULL

The high value of the lowest LSN
required by this bookmark.

PURGELSNLOW TT_INTEGER
NOT NULL

The low value of the lowest LSN
required by this bookmark.

PID TT_INTEGER
NOT NULL

The process ID of the process to
last open the XLA bookmark.

INUSE BINARY (1)
NOT NULL

Bookmark being used by any
persistent Transaction Log API
connection.
System and Replication Tables 403

SYS.TTABLES
The TABLES table stores information about temporary table instances
associated with active sessions, including the name, the owner, the number of
columns, the size of a row and the primary key (if any). The TABLES table also
stores information on system tables.

Specific column information is stored in the COLUMNS table.

Table name TTABLES

Columns

Column name Type Descriptions

TBLNAME TT_CHAR(31)
NOT NULL

Table name.

TBLOWNER TT_CHAR(31)
NOT NULL

Name of user who owns the
table.

OWNER TT_INTEGER
NOT NULL

Owner of table:
0 - TimesTen system table.
1 - User table.

NUMVARY TT_SMALLINT
NOT NULL

Number of varying-length
columns in table.

NUMNULL TT_SMALLINT
NOT NULL

Number of nullable columns in
table.

NUMCOLS TT_SMALLINT
NOT NULL

Number of columns in table.

LENGTH TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

Length of in-line portion of each
row.

TBLID TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

TimesTen identifier for table.
404 Oracle TimesTen In-Memory Database SQL Reference Guide

NUMTUPS TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

Table cardinality. This value is
precise only when no INSERT
or DELETE transactions are
active. The value includes
uncommitted inserts, but not
uncommitted deletes.
Consequently, the value of this
field may be larger than the
actual table cardinality.

MAXTUPS TT_INTEGER NOT
NULL for 32-bit
systems;
TT_BIGINT NOT
NULL for 64-bit
systems

Maximum table cardinality.

PRIMCNT TT_SMALLINT
NOT NULL

Number of columns in primary
key (0 if none).

PRIMCOLS BINARY(32)
NOT NULL

Array of 2-byte INTEGER
column numbers of primary key,
mapped to BINARY.

CACHEFLAG BINARY(1)
NOT NULL

1 - if the table is in a cache
group, 0 otherwise.

XLAFLAG BINARY(1)
NOT NULL

If set, updates to this table
should be transmitted to the
transaction log API.

PXLAFLAG BINARY(1)
NOT NULL

If set, indicates that persistent
XLA has been enabled for this
particular user table.

CACHEGROUP TT_INTEGER
 NOT NULL for 32-bit
systems;
TT_BIGINT
NOT NULL for 64-bit
systems

Id of cache group that this table
belongs to.
System and Replication Tables 405

MVID TT_INTEGER
NOT NULL for 32-bit
systems;
TT_BIGINT
 NOT NULL for 64-bit
systems

If the table is a VIEW, indicates
the ID of the associated row in
the VIEWS system table

MVIDS TT_VARCHAR(1024)
NOT INLINE

If the table is a VIEW detail
table, indicates the ID of the
array of the Ids of the rows in
the VIEWS system table of the
materialized views that
reference this detail table.

PERMLTBLID TT_INTEGER
NOT NULL

The associated permanent
table's ID.

REPNUMKEYCOLS TT_SMALLINT
NOT NULL

Number of columns in the
replication key described by
REPKEYCOLS

REPTSCOLNUM TT_SMALLINT
NOT NULL

Column number of the column
used for replication's
timestamp-based conflict
checking.

REPRETURNSERVICE TT_CHAR(1)
NOT NULL

Return service for this
subscriber with respect to this
replication element:
‘C’ - RETURN COMMIT
‘R’ - RETURN RECEIPT
‘2’ - RETURN TWOSAFE
‘\0’ - NO RETURN services

REPRETURNBY
REQUEST

BINARY(1)
NOT NULL

0 - RETURN services are
provided unconditionally
1 - RETURN services are
provided only BY REQUEST.
This field is ignored if
REPRETURNSERVICE = '\0'

REPUSERID TT_BIGINT
NOT NULL

User-defined identifier for table
(set with ttSetUserTableID
built-in function).
406 Oracle TimesTen In-Memory Database SQL Reference Guide

REPKEYCOLS BINARY(32)
NOT NULL

Column numbers used by
replication for unique
identification of a row.
(an array of 2-byte INTEGERs,
mapped to BINARY)

REPACCESS TT_CHAR(1)
NOT NULL

The access restrictions imposed
by replication:
‘-’ - no access permitted
‘s’- may be read by read-only
(SELECT) transactions
‘r’ - may be read by updating

transactions
‘w’ - may be updated
w => r and r => s.

REPTSUPDATERULE TT_CHAR(1)
NOT NULL

The rule for maintaining the
TS_COLUMN for a timestamp-
based conflict detector:
‘\0‘ - rule not defined
‘U‘ - BY USER
‘S‘ - BY SYSTEM (default)
System and Replication Tables 407

SYS.TTBL_STATS
The TTBL_STATS table stores the statistics for temporary table instances
associated with active sessions, namely the number of rows in the table. No
values are present if the statistics have not been computed.

Column-specific statistics are stored in the COL_STATS table.
See “SYS.COL_STATS” on page 378.

Table name TTBL_STATS

Columns

Column name Type Description

TBLID TT_INTEGER
NOT NULL for 32-bit
systems;
TT_BIGINT
NOT NULL for 64-bit
systems

TimesTen identifier of table.

NUMTUPS TT_INTEGER
NOT NULL for 32-bit
systems;
TT_BIGINT
NOT NULL for 64-bit
systems

Number of rows in the table.

LASTSTATSUPDATE TT_CHAR(25) Time of most recent update of this
table, in the following format:
Day Mon DD HH:MM:SS YYYY
(e.g., Sun Jan 01 18:24:12 1995).
The string is NULL-terminated.
This column is NULL if no statistics
update has been performed on the table.
408 Oracle TimesTen In-Memory Database SQL Reference Guide

SYS.VIEWS
The VIEWS table stores the statistics for views in the data store.

Table name VIEWS

Columns

Column name Type Description

NAME TT_CHAR(31)
NOT NULL

View name.

OWNER TT_CHAR(31)
NOT NULL

View owner.

ID TT_INTEGER
 NOT NULL for 32-bit
systems;
TT_BIGINT
 NOT NULL for 64-bit
systems

ID of the view row.

TBLID TT_INTEGER
NOT NULL for 32-bit
systems;
TT_BIGINT
 NOT NULL for 64-bit
systems

ID of the view.

SQL TT_VARCHAR(409600)
NOT NULL
NOT INLINE

View select statement.
System and Replication Tables 409

SYS.XLASUBSCRIPTIONS
The XLASUBSCRIPTIONS table stores information needed for table
subscriptions at the bookmark level.

Table name XLASUBSCRIPTIONS

Columns

Column name Type Description

BOOKMARK TT_CHAR(31)
NOT NULL

Bookmark name.

TBLNAME TT_CHAR(31)
NOT NULL

The name of the subscribed
table.

TBLOWNER TT_CHAR(31)
NOT NULL

Owner of the subscribed table.
410 Oracle TimesTen In-Memory Database SQL Reference Guide

TTREP.REPELEMENTS
The TTREP.REPELEMENTS table describes elements in a replication scheme.
In this release, the only elements recorded are tables.

Table name REPELEMENTS

Columns

Column name Type Description

REPLICATION_
NAME

TT_CHAR(31)
NOT NULL

Name for a replication scheme.

REPLICATION_
OWNER

TT_CHAR(31)
NOT NULL

The replication scheme’s owner.

ELEMENT_NAME TT_CHAR(31)
NOT NULL

The replication name for this
element, logically different
from the DS_OBJ_NAME of
the underlying data base object.
For example, the
ELEMENT_NAME for a
replicated table may differ from
the table name. This name must
be unique in a replication
scheme.

ELEMENT_TYPE TT_CHAR(1)
NOT NULL

The type of this replication
element:
’T’ – Table
’D’ – Data store
’S’ – Sequence

OWNED_BY_
SYSTEM

BINARY(1)
NOT NULL

0x01 - Element is maintained by
the system and cannot be
directly referenced by SQL
statements.

0x00 - Element is defined and
maintained by a user.

MASTER_ID TT_BIGINT
NOT NULL

The TT_STORE_ID for the
master or propagator of this
element.
System and Replication Tables 411

OLD_MASTER_ID TT_BIGINT
NOT NULL

The TT_STORE_ID for the
immediately preceding
MASTER for this element. -1 if
none.

IS_PROPAGATOR BINARY(1)
NOT NULL

0 if the MASTER_ID identifies
a true MASTER store. 1 if it, in
fact, identifies a
PROPAGATOR.

DS_OBJ_NAME TT_CHAR(31)
NOT NULL

If this replication refers to a
single, underlying data base
object, then this is its name.
Specifically, it is the name of
the replicated table if
ELEMENT_TYPE = ‘T’.
it is NULL if ELEMENT
_TYPE = ‘D’.
DS_OBJ_OWNER._DS_OBJ_
NAME need not be unique in a
replication scheme, but each
occurrence must be associated
with a distinct
ELEMENT_NAME.

DS_OBJ_OWNER TT_CHAR(31)
NOT NULL

The owner of the replication
element – if defined. NULL
otherwise. This is always the
owner of the table.
DS_OBJ_OWNER._DS_
OBJ_NAME need not be
unique in a replication scheme,
but each occurrence must be
associated with a distinct
ELEMENT_NAME.
412 Oracle TimesTen In-Memory Database SQL Reference Guide

DS_OBJ_ID TT_INTEGER If the ELEMENT_TYPE = ‘T’:

Table ID - Table is in the
owning (master or propagator)
data store.

1- Table is in the subscriber data
store.

If the ELEMENT_TYPE = ‘D’:

0 - Data store is a master or
propagator.
1- Data store is a subscriber.
NULL - If the store has been
migrated, restored or upgraded
from an earlier version.

DURABLE_
TRANSMIT

BINARY(1)
NOT NULL

0 - Transactions are made
durable before they are
transmitted (default).
1 - Transactions are not made
durable before they are
transmitted.

CONFLICT_CHECKS BINARY(8)
NOT NULL

A bit map indicating which
conflict detectors are enabled.
This field is
either: 0x0000000000000000
(no configured conflict detector,
the default)
or: 0x0000000000000001
(ROW TIMESTAMP conflict
detector).

TS_COLUMN_NAME TT_CHAR(31) The name of the timestamp
column specified in the
CheckConflicts portion of a
CREATE REPLICATION
statement. This column must be
of type BINARY(8) and permit
NULL values.
System and Replication Tables 413

TS_EXCEPTION_
ACTION

TT_CHAR(1)
NOT NULL

The action to take upon
detecting a conflict by a
timestamp-based detector. The
action is specified by the ON
EXCEPTION clause in the
CheckConflicts portion of a
CREATE REPLICATION
statement. They appear in this
column as:
'\0' - action not defined
'N' - NO ACTION
'R' - rollback transaction
(default)

TS_UPDATE_RULE TT_CHAR (1)
NOT NULL

The rule for maintaining the
timestamp for a timestamp-
based conflict detector:
'\0'- rule not defined
'U' - by user
'S' - by system (default)

TS_REPORT_FILE TT_VARCHAR(1000)
NOT INLINE

The name of the file to which
the replication agent reports
timestamp conflicts.

This file is specified by the
REPORT TO clause in the
CheckConflicts portion of a
CREATE REPLICATION
statement.

IS_MASTER_
PROPAGATOR

BINARY(1)
NOT NULL

Indicates if the store is both a
master and a propagator.

EXTERNAL_DB TT_CHAR (1)

REPORT_FORMAT TT_CHAR(1) The report format for the
replication conflict file:
NULL - No report file specified

therefore no format
‘S’ - Standard format
‘X’ - XML format
414 Oracle TimesTen In-Memory Database SQL Reference Guide

TTREP.REPLICATIONS
The REPLICATIONS table collects together general information about all
replication schemes in which the local store participates. The table indicates
whether a replication scheme was created by ttRepAdmin -upgrade or by a
CREATE REPLICATION statement.

Table name REPLICATIONS

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR (31)
NOT NULL

Name for a replication scheme.

REPLICATION_OWNER TT_CHAR (31)
NOT NULL

The replication scheme's owner.

REPLICATION_ORIGIN TT_CHAR (1)
NOT NULL

'U' - created by ttRepAdmin -upgrade
'C' - created by CREATE
REPLICATION (or a ttRepAdmin
command that was translated into
CREATE REPLICATION).

REPLICATION_VERSION TT_INTEGER
NOT NULL

The number of ALTER
REPLICATION commands applied to
this replication scheme after its initial
creation.

SOURCE_STORE_ID_ALIGN TT_INTEGER
NOT NULL

Used internally to properly align the
SOURCE_STORE_ID column.

SOURCE_STORE_ID TT_BIGINT
NOT NULL

If this replication scheme was created
by restoring it from a backup, the store
ID of the store from which this
replication scheme was backed up and
restored. otherwise -1 (the invalid store
ID).

CHECKSUM TT_BIGINT Indicates that the replication scheme
has been updated.
System and Replication Tables 415

TTREP.REPNETWORK
The REPNETWORK table stores information on interfaces used by the
RepAgent when two peers communicate. Each row represents a communication
path between master and subscriber and describes either the sending or receiving
interface used.

Table name REPNETWORK

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR(31)
NOT NULL

Name of the replication scheme.

REPLICATION_OWNER TT_CHAR(31)
NOT NULL

The owner of the replication
scheme.

TT_STORE_ID TT_BIGINT
NOT NULL

Unique, system-generated
identifier for a HOST_NAME/
TT_STORE_NAME pair.

SUBSCRIBER_ID TT_BIGINT
NOT NULL

The identifier for a store that
subscribes to at least one
replication element owned by
TT_STORE_ID.

HOST_NAME TT_VARCHAR (200)
NOT NULL
NOT INLINE

Name associated with the network
interface.

PRIORITY TT_INTEGER
NOT NULL

Integer from 1-99 that denotes the
priority of the IP address.

INTERFACE TT_CHAR (1) Indicates whether the
HOST_NAME refers to an
interface on the sending side (‘S’)
or on the receiving side (‘R’).
416 Oracle TimesTen In-Memory Database SQL Reference Guide

TTREP.REPPEERS
The REPPEERS table displays status information about the stores in a replication
scheme. After the initial upgrade, the REPPEERS table contains peer information
only about the local store and other stores that it transmits updates to.

Table name REPPEERS

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR(31)
NOT NULL

Name for a replication scheme.

REPLICATION_OWNER TT_CHAR(31)
NOT NULL

The replication scheme’s owner

TT_STORE_ID TT_BIGINT
NOT NULL

Unique, system-generated
identifier for a HOST_NAME/
TT_STORE_NAME pair.

SUBSCRIBER_ID TT_BIGINT
NOT NULL

The identifier for a store that
subscribes to at least one
replication element owned by
TT_STORE_ID. If a valid ID then
this record describes the status of
TT_STORE_ID/
SUBSCRIBER_ID as a sender/
subscriber pair.

COMMIT_TIMESTAMP TT_INTEGER This field and
COMMIT_SEQNUM together
store the value of the Commit
Ticket Number of the refreshed
transaction that the subscriber has
just committed.

COMMIT_SEQNUM TT_INTEGER This field and
COMMIT_TIMESTAMP together
store the value of the Commit
Ticket Number of the refreshed
transaction that the subscriber has
just committed.
System and Replication Tables 417

SENDLSNHIGH TT_INTEGER The log file number of the highest
TT_STORE_ID log sequence
number sent to and acknowledged
by SUBSCRIBER_ID.

SENDLSNLOW TT_INTEGER The log file offset of the highest
TT_STORE_ID log sequence
number sent to and acknowledged
by SUBSCRIBER_ID.

REPTABLESLSNHIGH TT_INTEGER For TimesTen internal use.

REPTABLESLSNLOW TT_INTEGER For TimesTen internal use.

STATE TT_INTEGER The state of replication kept by
TT_STORE_ID with respect to
this SUBSCRIBER_ID:
0 - START: Replication is in the
active state and all log updates are
retained until they have been
applied at SUBSCRIBER_ID.
1 - PAUSE: Replication is not in
the active state but all log updates
are retained until they have been
applied at SUBSCRIBER_ID.
2 - STOP: Replication is not in the
active state and log updates are not
retained.
4 - FAILED: Replication is not in
the active state, log updates are not
retained, and the log updates that
need to be retained exceed the user
defined threshold -
TTREP.REPSTORES.FAIL_
THRESHOLD. When this state has
been communicated to
SUBSCRIBER_ID it is changed to
STOP.

TIMESEND TT_INTEGER The timestamp (in seconds) for the
time of the last known successful
transmission from TT_STORE_ID
to SUBSCRIBER_ID.

Column name Type Description
418 Oracle TimesTen In-Memory Database SQL Reference Guide

TIMERECV TT_INTEGER The timestamp (in seconds) for the
time TT_STORE_ID last received
a transmission from
SUBSCRIBER_ID.

PROTOCOL TT_INTEGER A number in the range 0 to 5
indicating the protocol level that
replication uses for communication
between TT_STORE_ID and
SUBSCRIBER_ID. A higher
number indicates a newer protocol.

LATENCY BINARY_
DOUBLE

An estimate of the time interval (in
seconds) from the commit of a
transaction on TT_STORE_ID to
its receipt of acknowledgement
that it has been applied at the
subscriber identified by
SUBSCRIBER_ID.

TPS TT_INTEGER An estimate of the number of
transactions per second that are
committed on TT_STORE_ID and
successfully received by the
subscriber identified by
SUBSCRIBER_ID.

RECSPERSEC TT_INTEGER An estimate of the number of
records per second retrieved by the
subscriber identified by
SUBSCRIBER_ID from the store
TT_STORE_ID.

DISKLESS_UNINITIALIZED BINARY(1) 0 if TT_STORE_ID is either disk-
based or is diskless and has not
initialized SUBSCRIBER_ID for
diskless replication. 1 otherwise.

CTNLISTINDEX TT_INTEGER For internal use by the replication
agent.

Column name Type Description
System and Replication Tables 419

TTREP.REPSTORES
The REPSTORES table lists the replication attributes of store’s that participate in
every TimesTen replication scheme in which the local store participates. Each
store is identified by a unique TT_STORE_ID that TimesTen replication assigns
to it. A TT_STORE_ID may appear at most once for a given replication scheme,
but may appear multiple times in the REPSTORES table. Various replication
schemes may define different replication store attributes for the same store.

Table name REPSTORES

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR(31)
NOT NULL

Name for a replication scheme.

REPLICATION_OWNER TT_CHAR(31)
NOT NULL

The replication scheme’s owner

TT_STORE_ID TT_BIGINT
NOT NULL

Unique, system-generated
identifier for a HOST_NAME/
TT_STORE_NAME pair.

PEER_TIMEOUT TT_INTEGER
NOT NULL

The number of seconds for this
store to wait for a subscriber
response before trying to
reconnect.

FAIL_THRESHOLD TT_INTEGER
NOT NULL

The number of log files whose
accumulation makes this store,
in this replication scheme, mark
subscribers “failed.” (See the
STATE field.)

HEARTBEAT_FACTOR BINARY_
DOUBLE

A multiplier of the current
heartbeat frequency.
420 Oracle TimesTen In-Memory Database SQL Reference Guide

TTREP.REPSUBSCRIPTIONS
The REPSBUBSCRIPTIONS registers each subscribing store that maintains a
secondary copy of a replication element.

Table name REPSUBSCRIPTIONS

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR (31)
NOT NULL

Name for a replication scheme.

REPLICATION_OWNER TT_CHAR (31)
NOT NULL

The replication scheme's owner.

ELEMENT_NAME TT_CHAR(31)
NOT NULL

The replication name for this
element, logically distinct from
the name of an underlying data
store object.

SUBSCRIBER_ID TT_BIGINT
NOT NULL

The TT_STORE_ID for a
subscriber to this element. A
subscriber may not subscribe
more than once to a replication
element in a replication scheme.

RETURN_SERVICE TT_CHAR(1)
NOT NULL

Return service for this subscriber
with respect to this replication
element:
’C’ - RETURN COMMIT
’R’ - RETURN RECEIPT
‘\0’ - No RETURN services
‘2‘ - RETURN TWOSAFE
System and Replication Tables 421

RETURN_BY_REQUEST BINARY(1)
NOT NULL

The type of return services for
this element.
0 - RETURN services are
provided unconditionally
1 - RETURN services are
provided only BY REQUEST
This field is ignored if
RETURN_SERVICES = ’\0’.

PRIVILEGES TT_CHAR(1)
NOT NULL

Privileges for this subscriber
with respect to this replication
element:
’\0’ - no special subscriber
privileges

Column name Type Description
422 Oracle TimesTen In-Memory Database SQL Reference Guide

TTREP.REPTABLES
The REPTABLES table contains subscriber-relative information about each of
the columns in each table transmitted to a subscriber. This information appears in
REPTABLES in the owner (transmitter) store but not in REPTABLES in the
subscriber store.

Table name REPTABLES

Columns

Column name Type Description

REPLICATION_NAME TT_CHAR(31)
NOT NULL

Name for a replication
scheme.

REPLICATION_OWNER TT_CHAR(31)
NOT NULL

The replication scheme's
owner.

ELEMENT_NAME TT_CHAR(31)
NOT NULL

The replication name for this
element, logically different
from the REF_NAME of the
underlying data base object.
For example, the
ELEMENT_NAME for a
replicated table may differ
from the table name. This
name must be unique in a
replication scheme.

SUBSCRIBER_ID TT_BIGINT
NOT NULL

The TT_STORE_ID for a
subscriber to this element. A
subscriber may not subscribe
more than once to a
replication element in a
replication scheme.

COLNUM TT_SMALLINT
NOT NULL

Ordinal number of column
in table (starting at 1).
System and Replication Tables 423

COLOPTIONS BINARY(1)
NOT NULL

Column specification flags:
0x01 - column is in a primary
key.
0x02 - column value is
varying-length
(VARCHAR[2],
NVARCHAR[2],
VARBINARY)
0x04 - column value can be
NULL.
0x08 - column values are
unique.

Column name Type Description
424 Oracle TimesTen In-Memory Database SQL Reference Guide

COLTYPE TT_INTEGER
NOT NULL

Data type of column
 1 TT_CHAR
 2 TT_DECIMAL
 3 TT_DECIMAL
 4 TT_INTEGER
 5 TT_SMALLINT
 6 BINARY_FLOAT
 7 BINARY_FLOAT
 8 BINARY_DOUBLE
 9 TT_DATE
10 TIME
11 TT_TIMESTAMP
12 TT_VARCHAR
13 DATE
14 TIMESTAMP
15 NUMBER
16 CHAR
17 VARCHAR2
18 NCHAR
19 NVARCHAR2
- 1 LONGVARCHAR
- 2 BINARY
- 3 VARBINARY
- 4 LONGVARBINARY
- 5 TT_BIGINT
- 6 TT_TINYINT
- 7 BIT
- 8 WCHAR
- 9 WVARCHAR
- 10 WLONGVARCHAR

Note: If you are using
TimesTen type mode, for
information on COLTYPE,
refer to documentation from
previous releases of
TimesTen. For information on
TimesTen type mode, see
“TimesTen Type Mode
(Backward Compatibility)”
on page 55.

Column name Type Description
System and Replication Tables 425

COLLEN TT_INTEGER
NOT NULL

Length of the column
(maximum length for
varying-length
columns).

COLPRECISION TT_INTEGER
NOT NULL

The number of digits in a
fixed-point number, or the
number of digits in the
mantissa of a floating point
number

COLSCALE TT_INTEGER
NOT NULL

A non-negative number. A
scale of 0 indicates an integer
with no digits to the right of a
decimal point. For a scale of
S, the exact numeric value is
the integer value of the
significant digits multiplied
by:

10 (exp -S).

PTNNUM TT_SMALLINT
NOT NULL

The table partition that
contains the column.

PTNCOLOFF TT_INTEGER
NOT NULL

The offset of the column
within the partition.

PTNNULLOFF TT_INTEGER
NOT NULL

The offset to the null byte
within the partition.

Column name Type Description
426 Oracle TimesTen In-Memory Database SQL Reference Guide

REPKEYPOSITION TT_SMALLINT
NOT NULL

The ordinal position of this
column in the replication key
described by the
REPKEYCOLS.

TS_EXCEPTION_ACTION TT_CHAR(1)
NOT NULL

The action to take upon
detecting a conflict by a
timestamp-based detector.
The action is specified by the
ON EXCEPTION clause in
the CheckConflicts portion of
a CREATE REPLICATION
statement. They appear in this
column as:
\0' - action not defined
'N' - NO ACTION
'R' - ROLLBACK WORK
(default)

Column name Type Description
System and Replication Tables 427

TTREP.TTSTORES
The TTSTORES table maps a store’s pair to a unique TT_STORE_ID. The
TT_STORE_ID is a foreign key for all other replication schema tables that refer
to a store in a replication scheme.

Table name TTSTORES

Columns

Column name Type Description

TT_STORE_ID TT_BIGINT
NOT NULL

Unique, system-generated
identifier for a HOST_NAME/
TT_STORE_NAME pair.

HOST_NAME TT_VARCHAR (200)
NOT NULL
NOT INLINE

Name of the participating host
node.

TT_STORE_NAME TT_VARCHAR (200)
NOT NULL
NOT INLINE

The name for this data store.

IS_LOCAL_STORE BINARY(1)
NOT NULL

1 if this TT_STORE_ID
represents the local data store. 0
otherwise.

MAJOR_RELEASE TT_INTEGER
NOT NULL

The major release part of this
data store’s TimesTen release
number. 0 indicates the current
release.

MINOR_RELEASE TT_INTEGER
NOT NULL

The minor release part of this
store’s TimesTen release number.

REP_SCHEMA_VERSION TT_INTEGER
NOT NULL

The version of the replication
schema in this data store.

REP_PORT_NUMBER TT_INTEGER
NOT NULL

The port number that replication
uses to communicate with this
data store. 0 if automatically
assigned.
428 Oracle TimesTen In-Memory Database SQL Reference Guide

RRPOLICY TT_CHAR (1) Subscribers affected by return
service failure policy. Legal
values are:
‘S’ - Single subscriber
‘A’ - All subscribers
‘N’ No policy

RRTRIGGER TT_INTEGER Number of timeouts before the
return service failure policy is
triggered

RRRESUME_LATENCY TT_INTEGER Resume latency in milliseconds.

RRDURABLE BINARY (1) Durable commits on RETURN
RECEIPT failure. Legal values
are:
1 - True
0 - False

RET_LOCAL_ACTION TT_CHAR (1) Default commit behavior for
RETURN TWOSAFE
transactions:
‘C’ - COMMIT
‘N’ - NO ACTION

RET_WAIT_TIME TT_INTEGER The defaulted timeout value for
RETURN TWOSAFE
transactions.

RET_WHEN_STOPPED BINARY (1) If either the replication agent for
the data store is stopped or if the
data store is used as master and
the replication agent for the data
store is set to STOP, then if the
value of the column is a non-zero
value, return services for the data
store are suspended.

COMPRESSION TT_CHAR (1) If Y, indicates compression of all
data from the data store.

Column name Type Description
System and Replication Tables 429

MASTER TT_CHAR (1) Active/Standby or Subscriber
store: Values are:
'Y' - active or standby store
'N' - subscriber store
NULL - all other cases.

ROLE TT_CHAR (1) Role is one of:
'A' - active
'S' - standby
NULL - all other cases.

TS TT_BIGINT The timestamp at which the
specified role change was made.

CONFLICT_REPORT_
STOP

TT_INTEGER The threshold at which conflict
reporting is stopped.

CONFLICT_REPORT_
RESTART

TT_INTEGER The rate at which conflict
reporting is resumed.

CONFLICT_REPORT_
FLUSH_METHOD

TT_INTEGER Reserved for future use.

Column name Type Description
430 Oracle TimesTen In-Memory Database SQL Reference Guide

8
Reserved Words

This chapter lists words reserved by TimesTen for use in SQL statements.

To use one of these words as an identifier (such as a table or column name), enclose the reserved
word in quotes. Otherwise, syntax errors may occur.:

Reserved Words

AGING CROSS GROUP

ALL CURRENT_SCHEMA HAVING

ANY CURRENT_USER INNER

AS CURSOR INT

BETWEEN DATASTORE_OWNER INTEGER

BIGINT DATE INTERSECT

BINARY DEC INTERVAL

BINARY_DOUBLE_INFINITY DECIMAL INTO

BINARY_DOUBLE_NAN DEFAULT IS

BINARY_FLOAT_INFINITY DESTROY JOIN

BINARY_FLOAT_NAN DISTINCT LEFT

CASE DOUBLE LIKE

CHAR FIRST LONG

CHARACTER FLOAT MINUS

COLUMN FOR NATIONAL

CONNECTION FOREIGN NCHAR

CONSTRAINT FROM NO

NULL RIGHT TINYINT
 431

NUMERIC ROWNUM TT_SYSDATE

NVARCHAR ROWS UNION

ON SELECT UNIQUE

ORA_SYSDATE SELF UPDATE

ORDER SESSION_USER USER

PRIMARY SET USING

PROPAGATE SMALLINT VARBINARY

PUBLIC SOME VARCHAR

READONLY SYSDATE VARYING

REAL SYSTEM_USER WHEN

RETURN TIME WHERE

Reserved Words
432 Oracle TimesTen In-Memory Database SQL Reference Guide

Index
Symbols
% in LIKE pattern strings 182
& operator 71
*, See multiplying
+ , See addition
+ operator

in outer joins 336
in WHERE clauses 336

/, See dividing
?, See dynamic parameters
^ operator 71
_ in LIKE pattern string 182
| operator 71
|| operator 71
~ operator 71

A
ABS 94
Access Control

ADMIN privilege 364
ALTER CACHE GROUP 191
ALTER REPLICATION 194
ALTER TABLE 206, 210
ALTER USER 226, 228, 334
CONNECT privilege 364
CREATE CACHE GROUP 237
CREATE DATASTORE privilege 364
CREATE INDEX 250
CREATE MATERIALIZED VIEW 254, 301
CREATE REPLICATION 258
CREATE SEQUENCE 275, 325
CREATE TABLE 279
CREATE USER 299
DDL privilege 364
DELETE 303
DROP CACHE GROUP 306
DROP INDEX 307
DROP REPLICATION 310
DROP SEQUENCE 309
DROP TABLE 311
DROP USER 312
DROP VIEW 313
GRANT 316
INSERT 318

INSERT SELECT 321
LOAD CACHE GROUP 322
REFRESH CACHE GROUP 329
REVOKE 332
SELECT 335
SELECT privilege 364
UNLOAD CACHE GROUP 354, 356
UPDATE 358
WRITE privilege 364

Access Control and SQL statements 186
ADD column 216
ADD ELEMENT

replication 195
ADD SUBSCRIBER

replication 196
ADD_MONTHS 95
addition 71
ADMIN privilege 364
aggregate functions

ALL 77
and overflow 53
AVG 76
COUNT * 76
COUNT ColumnName 76
DISTINCT 77
in query 348
MAX 76
MIN 76
over empty, ungrouped table 77
SQL syntax 76
SUM 76

AggregateFunction
in expressions 70

ALL
defined 77
in SELECT statements 335

ALL/ NOT IN predicate (subquery) 162
ALL/NOT IN predicate (value list) 164
ALTER ACTIVE STANDBY PAIR 187
ALTER CACHE GROUP

AUTOREFRESH 191, 244
defined 191
READONLY 191

ALTER ELEMENT
DROP MASTER 203
Index 433

replication 196
ALTER ELEMENT DROP SUBSCRIBER 202
ALTER REPLICATION

defined 194
ALTER SESSION

defined 206
ALTER SUBSCRIBER

replication 197
ALTER TABLE

ADD column 216
defined 210
DROP column 217
PRIMARY KEY 216
table names 211

ALTER USER 226
ANSI SQL DATA TYPES 15
ansi sql data types

table of 15
ANY predicate

defined 167
example 168
operators 167
SQL syntax 167

ANY/ IN predicate (subquery) 167
ANY/ IN predicate (value list) 170
arithmetic operations

and overflow 53
arithmetic operators

in expressions 71
ASC | DESC

defined 250
ASCII characters 80
ASCIISTR 97
AUTOREFRESH

ALTER CACHE GROUP 244
example 193
FULL 243
INCREMENTAL 243
INTERVAL 192
STATE 192

AUTOREFRESH in Cache Groups 243
AVG (aggregate function)

defined 76

B
basic names

definition 65
objects having 65
rules governing 65

BETWEEN predicate
defined 173
in search conditions 160
SQL syntax 173

BIGINT 58
storage requirements 44, 45

BINARY
storage requirements 45

Binary and Varbinary types 37
BINARY data type 12, 59
BINARY_DOUBLE 12, 35, 59

storage requirements 45
BINARY_FLOAT 11, 35, 59

storage requirements 45
bitwise AND operator 71
bitwise NOT operator 71
bitwise OR operator 71
bucket count 288

C
cache 191
cache group instance

defined 236
cache groups

ALTER CACHE GROUP statement 191
CREATE CACHE GROUP statement 236
defined 236
DROP CACHE GROUP statement 306
examples 193
FLUSH CACHE GROUP statement 314
LOAD CACHE GROUP statement 322
restrictions 244
UNLOAD CACHE GROUP statement 354,

356
CACHE_GROUP system table 373
CEIL 102
CHAR 8, 56

storage requirements 44
CHAR type 24
CHAR VARYING 15
CHARACTER

values in constants 79
character data

and truncation 53
Character Data Types 24
character string, See string
CHARACTER VARYING 15
CharacterString

defined 79
434 Oracle TimesTen In-Memory Database SQL Reference Guide

CHECK CONFLICTS
CREATE REPLICATION 267
syntax 266

CHR 101
Coalesce function 103
COL_STATS system table

overview 378, 400
column alias

in SELECT statement 338, 348
Column Definition 286
column names

in INSERT statements 318, 321
in NULL predicates 181

column reference
in SELECT statements 338
syntax 338

ColumnName
in expressions 70

columns
defining 281
in tables 281

COLUMNS system table 375
COMMIT 228
comparing data types in search conditions 161
comparison predicate

example 176
in search conditions 160
operators 175
SQL syntax 162, 167, 175

compound identifiers 66
CONCAT 104
concatenate operator 71
conflict resolution

Check Conflicts 197
replication 267

CONNECT privilege 364
constants

CHARACTER values 79
DATE values 80, 81
defined 79
fixed point values 79
FLOAT values 79
HEXIDECIMAL values 80
in expressions 70
in NULL predicates 181
INTEGER values 79
SQL syntax 79
strings 79
TIME values 81

TIMESTAMP values 82
constraints, defining 279
correlation names in SELECT statements 349
COUNT * (aggregate function)

defined 76
COUNT ColumnName (aggregate function)

defined 76
CREATE 254, 301
CREATE ACTIVE STANDBY PAIR 229
CREATE CACHE GROUP

defined 236
CREATE DATASTORE privilege 364
CREATE GLOBAL TEMPORARY TABLE 279,

280
CREATE INDEX

defined 250
example 252
index name 250
table names 250
tables without rows 250
UNIQUE option 250

CREATE MATERIALIZED VIEW
defined 254, 301

CREATE SEQUENCE 275
defined 275

CREATE TABLE
defined 279
examples 291
FOREIGN KEY 282
HashColumnName option 283
maximum columns 281, 286
maximum page number 283
PRIMARY KEY 281

CREATE USER 299
CREATE VIEW 301
creating

constraints 279
indexes 250
tables 279

D
d (ODBC-date-literal syntax) 81
Data Conversion 48
Data Definition Language (DDL) 185
Data Manipulation Language (DML) 185
data overflow 53
data truncation 53
Data Type Comparison Rules 46
data types
Index 435

data types
effect of 7

storage requirements 44
unsupported

TIMEZONE 41
DATASTORE 260
DATE 60

ODBC-date-literal syntax 81
operations 40
storage requirements 45
values in constants 80, 81

DATE data type 13, 64
DATE type 39
DateLiteral

defined 81
DateString

defined 80
DateTime and interval in TimesTen Type Mode

 56, 61
Date-time and interval types in arithmetic operations

41
Datetime data types 39
Datetime format model for TO_CHAR of

TT_TIMESTAMP and TT_DATE 91
Datetime format models 88
DDL privilege 364
DECIMAL

storage requirements 44, 45
DECIMAL data type 15
DECODE 106
DELETE

and DROP TABLE 303
defined 303
search conditions 303

deleting
indexes 311
rows 303
tables 311

DerivedTable 351
DISTINCT

and subqueries 74
defined 77
in SELECT 336

dividing expressions 71
DOUBLE

storage requirements 44
DOUBLE PRECISION 17
DROP ACTIVE STANDBY PAIR 305
DROP CACHE GROUP 306

defined 306
DROP column 217
DROP ELEMENT

replication 198
DROP INDEX 307
DROP REPLICATION 310

defined 310
DROP SEQUENCE

defined 309
DROP TABLE

defined 311
DROP USER 312
DROP VIEW

defined 313
dropping

indexes 311
tables 311

DURABLE 265
dynamic parameters

example 73
in expressions 72
in LIKE predicate 183
in single row inserts 319
names 66
naming rules 66

DynamicParameter
in expressions 70

E
ELEMENT

replication 261
escape character

in LIKE predicate 183
escaped Unicode characters 80
Exact and Approximate Types 29
exclusive OR operator 71
EXISTS predicate 177

defined 177
SQL syntax 177

ExistsPredicate 160
expressions

arithmetic operators in 71
bitwise AND operator 71
bitwise NOT operator 71
bitwise OR operator 71
concatenate operators 71
exclusive OR operator 71
in aggregate functions 76
in BETWEEN predicates 173
436 Oracle TimesTen In-Memory Database SQL Reference Guide

in comparison predicate 162, 167, 175
in IS INFINITE predicate 179
in LIKE predicates 182
in NAN predicates 180
in NULL predicates 181
in UPDATE statements 358
ROWID 68
ROWNUM 69
specification 70
SQL syntax 70

F
FAILTHRESHOLD 198, 232, 261
FixedPointValue 79

defined 79
FLOAT

storage requirements 44
values in constants 79

FLOAT and FLOAT (n) 36
FLOAT data type 16
Floating-Point numbers 35
FloatValue

defined 79
FLOOR 109
FLUSH CACHE GROUP 314
FOREIGN KEY option

in CREATE TABLE statement 282
Format Model for ROUND and TRUNC Date Func-

tions 91
Format model for TO_CHAR of TimesTen types 91
Format Models 84
fully qualified name 66

G
GLOBAL TEMPORARY TABLE 279, 280
GRANT 316
GREATEST 110
GROUP BY

in aggregate functions 77
in SELECT statements 337

H
hash index

examples 291
hash indexes

for table 283
HashColumnName option

in CREATE TABLE statement 283

HAVING
in SELECT statements 337

HEXIDECIMAL
values in constants 80

HexidecimalString
defined 80

I
IN predicate

in search conditions 160
index names

in CREATE INDEX 250
in DROP INDEX 307

index owner (not specified) 307
indexes

creating 250
dropping 311
owner not specified 307
T-tree index 250

INDEXES system table 380, 401
INF and NAN 50
INSERT 318

defined 318, 321
omitted columns 318, 321
rows with defined values 321
SingleRowValues

defined 319
INSERT SELECT 321
INTEGER

storage requirements 44, 45
values in constants 79

INTEGER data type 15
IntegerValue

defined 79
INTERVAL

storage requirements 45
INTERVAL data type 14, 60
IntervalLiteral 82
IS INFINITE predicate 179
IS NAN predicate 180
IS NULL predicate 181

defined 181
SQL syntax 179, 180, 181

J
JoinedTable 351
joins

joining table to itself 349
Index 437

outer 336

L
LEAST 113
LIKE predicate

defined 182
in search conditions 160
pattern matching of NCHAR and NVARCHAR

strings 184
SQL syntax 182

LOAD CACHE GROUP 322
defined 322

logical operators
in search conditions 160

lower case letters in names 65
LPAD 117
LTRIM 119

M
MASTER 233, 262

replication 199
MAX (aggregate function)

defined 76
maximum

columns in CREATE TABLE 281, 286
items for DISTINCT option 336
tables per query 336

maximum table cardinality 288
MERGE 325
MIN (aggregate function)

defined 76
MONITOR system table 382
multiplying expressions 71

N
names

basic names 65
compound identifiers 66
dynamic parameters 66
lower case letters 65
owner names 65
simple names 66
used in TimesTen 65
user ID 65
 See also dynamic parameters

naming dynamic parameters 66
naming rules 65
NATIONAL CHAR 15

NATIONAL CHAR VARYING 15
NATIONAL CHARACTER 15
NATIONAL CHARACTER VARYING 15
NationalCharacterString 80
NCHAR 9, 57

defined 184
example 184
storage requirements 44

NCHAR type 25
NCHAR VARYING 15
NCHR 122
NO RETURN 233, 262
NONDURABLE 265
NOT NULL

in CREATE TABLE 288, 299, 312, 316,
332, 334

in INSERT 318, 321
NULL predicate

in search conditions 160
NULL values

and INSERT 319
defined 48
in comparison predicates 176
in search conditions 161
in UPDATE statements 359
sort order in CREATE INDEX 251
sorting 48
SQLBindCol 49
SQLBindParameter 49

NUMBER
storage requirements 45

NUMBER data type 11
TimesTen Mode 63

Number Format Models 84
NUMBER type 32
NUMERIC

storage requirements 44
NUMERIC data type 15
Numeric Data Types 29
numeric data types

and truncation 53
Numeric precedence 38
NVARCHAR

defined 184
example 184
storage requirements 44

NVARCHAR2 10
storage requirements 44

NVARCHAR2 type 27
438 Oracle TimesTen In-Memory Database SQL Reference Guide

NVL function 127
SQL syntax 156, 157

O
ON EXCEPTION 267
operators

+ 336
ANY 167
comparison 175

optimizer
PLAN system table 389

ORA_CHAR 61
ORA_DATE 64
ORA_NCHAR 62
ORA_NVARCHAR2 63
ORA_TIMESTAMP data type 64
ORA_VARCHAR2 62
Oracle data types supported in TimesTen type mode

61
ORDER BY

and subqueries 74
in SELECT statement 338
specifying result columns 349

outer joins
conditions 336
indicators 336

overflow
during type conversion 53
in aggregate functions 53
in arithmetic operations 53
of data 53

owner names 65
owners of index 307

P
pattern matching in LIKE predicate 182
performance

MONITOR system table 382
PLAN table

overview 389
PORT 233, 262
POWER 128
predicates

ANY 167
BETWEEN 173
comparison 175
compatible data types 161
EXISTS 177

IS NULL 181
LIKE 182
null values 161
order of evaluation 161
Quantified 164, 170

primary
definition 70
in expressions 71

PRIMARY KEY option
in CREATE TABLE statement 281

PROPAGATOR
replication 200

Q
Quantified predicate

defined 164, 170
in search conditions 160
SQL syntax 164, 170

queries
and aggregate functions 348
results 335
See also SELECT statements
syntax 335

R
REAL

storage requirements 44
REAL data type 16
REFRESH CACHE GROUP 325
refreshing a cache group 192
replication 201, 263, 264, 266

ADD ELEMENT 195
ADD SUBSCRIBER 196
ALTER ELEMENT 196
ALTER SUBSCRIBER 197
CHECK CONFLICTS 266
conflict resolution 267
DATASTORE ELEMENT 260
DROP ELEMENT 198
ELEMENT 261
FAILTHRESHOLD 198, 232, 261
MASTER 199, 233, 262, 264
NO RETURN 233, 262
PORT 233, 262
PROPAGATOR 200
restrictions 268
RETURN RECEIPT 200
SUBSCRIBER 201, 233, 262, 264
Index 439

TIMEOUT 201, 265
TIMESTAMP 267
TRANSMIT 265

replication element 258
replication scheme 258
Replication table list 371
reserved words 431
result columns in SELECT statement 349
RETURN RECEIPT 197, 263

NO RETURN 233, 262
replication 200, 263

RETURN TWOSAFE 201, 264
replication 201, 264

REVOKE 332
ROLLBACK 334
ROUND (date) 129
ROUND (NUMBER) 130
ROWID 68
RowID

in expressions 70
ROWNUM 69
ROWNUM specification 69
rows

inserting 318
retrieving 335
selecting 335

RPAD 132

S
search condition

compatible predicates 161
type conversion 161
value extensions 161

search conditions
general syntax 159
logical operators in 160
SQL syntax 159

SELECT 335
defined 335
GROUP BY clause 337
grouping rows 348
HAVING clause 337
maximum columns 347
maximum tables per query 336
ORDER BY clause 338
select list 336
selecting data 335
unique rows 336
WHERE clause 336

SELECT privilege 364
SelectList

defined 336
SQL syntax 347

SIGN 136
simple names 66
SingleRowValues

SQL syntax 319
SingleRowValues in INSERT 319
SMALLINT 15, 58

storage requirements 44
sorting of NULL values 48
special predicates

EXISTS predicate 177
SQL naming rules 65
SQL statements

ALTER CACHE GROUP 191
ALTER REPLICATION 194
ALTER TABLE 210
CREATE CACHE GROUP 236
CREATE INDEX 250
CREATE MATERIALIZED VIEW 254, 301
CREATE SEQUENCE 275
CREATE TABLE 279
DELETE 303
DROP CACHE GROUP 306
DROP REPLICATION 310
DROP SEQUENCE 309
DROP TABLE

 311
DROP VIEW 313
FLUSH CACHE GROUP 314
INSERT 318, 321
LOAD CACHE GROUP 322
SELECT 335
UNLOAD CACHE GROUP 354, 356
UPDATE 358

SQL_C_BINARY 369
SQLBindCol

and NULL values 49
SQLBindParameter

and NULL values 49
SQLstatements

 206
SQRT 138
statistics

COL_STATS system table 378, 400
TBL_STATS system table 399, 408

Storage Requirements 44
440 Oracle TimesTen In-Memory Database SQL Reference Guide

Storage requirements 44
storage requirements for different data types 44
String functions 139
strings

in constants 79
truncated in UPDATE statement 359

Subqueries 74
subquery

in EXISTS predicates 177
SUBSCRIBER

replication 201, 264
subtraction operator

in expressions 71
SUM(aggregate function)

defined 76
SYS.CACHE_GROUP 373
SYS.COL_STATS 378
SYS.COLUMN_HISTORY 372
SYS.COLUMNS 375
SYS.DUAL 379
SYS.INDEXES 380
SYS.MONITOR 382
SYS.OBJ_ACC_RIGHT 372
SYS.PLAN 389
SYS.SEQUENCES 392
SYS.SYNONYMS 394
SYS.SYS_ACC_RIGHT 372
SYS.TABLE_HISTORY 372
SYS.TABLES 395
SYS.TBL_STATS 399
SYS.TCOL_STATS 400
SYS.TINDEXES 401
SYS.TRANSACTION_LOG_API 403
SYS.TTABLES 404
SYS.TTBL_STATS 408
SYS.USERS 372
SYS.VIEWS 409
SYS.XLASUBSCRIPTIONS 410
system 369
System table list 370

T
t (ODBC-time-literal syntax) 81
table hash indexes

pages in 283
table names

in ALTER TABLE 211
in CREATE INDEX 250
in CREATE TABLE 280

in DROP INDEX 307
in INSERT statements 318, 321

table owner (not specified) 307
table statistics system table 399, 408
tables

creating 279
dropping 311
inserting rows 318
maximum cardinality 288
maximum per query 336
owner not specified 307
unique constraints 359

Tables reserved for internal use 372
TABLES system table 395, 404
TableSpec 350
TBL_STATS system table 399, 408
TEMP_IN_USE_HIGH_WATER 384
temporary table 279, 280
TIME

ODBC-time-literal syntax 81
operations 40
storage requirements 45
values in constants 81

TIME data type 12, 60
TIME type 39
TimeLiteral 81

defined 81
TIMEOUT

replication 201, 265
TIMESTAMP 60

CHECK CONFLICTS 267
ODBC-timestamp-literal syntax 82
operations 40
replication 267
storage requirements 45
values in constants 82

TIMESTAMP data type 14
TimestampLiteral 82

defined 82
TimestampString 82
TimesTen interval 40
TimesTen system tables 65
TimesTen type mapping 21
TimesTen Type Mode (Backward Compatibility) 55
TimeString 81
TIMEZONE

conversions 41
TINYINT 58

storage requirements 44
Index 441

TO_CHAR function 144
SQL syntax 144, 147

TO_DATE function 146
SQL syntax 142, 146

TO_NUMBER function 147
TRANSACTION_LOG_API table 400
TRANSMIT

DURABLE/NONDURABLE 265
replication 265

TRIM 148
TRUNC (date) 152
TRUNC (expression) 153
TRUNCATE TABLE 354
truncation

and numeric data 53
in character data 53
of data 53

ts (ODBC-timestamp-literal syntax) 82
TT_BIGINT 31
TT_CHAR 18
TT_DATE 12
TT_DATE type 39
TT_DECIMAL 20
TT_HASH function 154
TT_INTEGER 10, 30, 58
TT_NCHAR 19
TT_NVARCHAR 19, 58
TT_SMALLINT 30
TT_TIMESTAMP 13
TT_TINYINT 29
TT_VARCHAR 19, 57
T-tree indexes

creating 250
TTREP.REPELEMENTS 411
TTREP.REPLICATIONS 415
TTREP.REPNETWORK 416
TTREP.REPPEERS 417
TTREP.REPSTORES 420
TTREP.REPSUBSCRIPTIONS 421
TTREP.REPTABLES 423
TTREP.TTSTORES 428
type conversion

and overflow 53
Types Supported for Backward Compatibility 18
Types Supported for Backward Compatibility in Or-

acle mode 18

U
unary minus

in expressions 70
unary plus

in expressions 70
underflow

defined 53
Unicode characters

example 184
pattern matching 184

unique constraints
on tables 359

UNIQUE INDEX
defined 250

unique rows 336
UNISTR 155
UNLOAD CACHE GROUP 356

defined 354, 356
UPDATE 358

defined 358
string truncation 359
WHERE clause omitted 359

UPDATE FIRST N 358
User and system managed cache groups 236
USER functions 156
user ID in names 65
Using DATE and TIME types 40
Using INTERVAL types 40
UTF-8 Unicode characters 80

V
VARBINARY

storage requirements 45
VARBINARY data type 12, 60
VARCHAR 9

storage requirements 44
VARCHAR2

storage Requirements 44
VARCHAR2 type 26
variables in SQL statements 66
views

CREATE MATERIALIZED VIEW statement
254, 301

restrictions on detail tables 254
restrictions on queries 255, 301
restrictions on views 254

W
WHERE clause in SELECT statements 336
WRITE privilege 364
442 Oracle TimesTen In-Memory Database SQL Reference Guide

	Contents
	About this Guide
	TimesTen documentation
	Background reading
	Conventions used in this guide
	Technical Support

	Data Types
	Type specifications
	ANSI SQL data types
	Types supported for backward compatibility in Oracle type mode
	TimesTen type mapping
	Character data types
	CHAR type
	NCHAR type
	VARCHAR2 type
	NVARCHAR2 type

	Numeric data types
	Exact and approximate types
	TT_TINYINT type
	TT_SMALLINT type
	TT_INTEGER type
	TT_BIGINT type
	NUMBER type
	Floating-Point numbers
	BINARY_FLOAT
	BINARY_DOUBLE
	FLOAT and FLOAT (n)

	Binary and Varbinary types
	Numeric precedence
	Datetime data types
	TIME type
	TT_DATE type
	DATE type
	TT_TIMESTAMP type
	TIMESTAMP type

	TimesTen interval
	Using INTERVAL types
	Using DATE and TIME types
	Handling TIMEZONE conversions
	Date-time and interval types in arithmetic operations
	Restrictions on date-time and interval arithmetic operations

	Storage requirements
	Data type comparison rules
	Data conversion
	Implicit Data Conversion

	NULL values
	INF and NAN
	Overflow and truncation
	Underflow
	Replication limits
	TimesTen Type Mode (Backward Compatibility)
	Data types supported in TimesTen type mode
	Oracle data types supported in TimesTen type mode

	Names
	Basic names
	Owner names
	Compound identifiers
	Dynamic parameters

	Expressions
	ROWID specification
	ROWNUM specification
	Expression specification
	Subqueries
	Aggregate functions
	Constants
	Format Models
	Number format models
	Number format elements

	Datetime format models
	Datetime format elements

	Format Model for ROUND and TRUNC Date Functions
	Format Model for TO_CHAR of TimesTen types

	ABS
	ADD_MONTHS
	ASCIISTR
	CASE
	CAST
	CHR
	CEIL
	COALESCE
	CONCAT
	DECODE
	EXTRACT
	FLOOR
	GREATEST
	LEAST
	LOWER and UPPER
	LPAD
	LTRIM
	MOD
	NCHR
	NLSSORT
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	NVL
	POWER
	ROUND (date)
	ROUND (expression)
	RPAD
	RTRIM
	SIGN
	SQRT
	String functions
	SUBSTR
	INSTR
	LENGTH

	SYSDATE and GETDATE
	TO_CHAR
	TO_DATE
	TO_NUMBER
	TRIM
	TRUNC (date)
	TRUNC (expression)
	TT_HASH
	UNISTR
	USER functions
	CURRENT_USER
	USER
	SESSION_USER
	SYSTEM_USER

	Search Conditions
	Search condition general syntax
	ALL/ NOT IN predicate (subquery)
	ALL/NOT IN predicate (value list)
	ANY/ IN predicate (subquery)
	ANY/ IN predicate (value list)
	BETWEEN predicate
	Comparison predicate
	EXISTS predicate
	IS INFINITE predicate
	IS NAN predicate
	IS NULL predicate
	LIKE predicate
	NCHAR and NVARCHAR2

	SQL Statements
	Access Control and SQL statements
	ALTER ACTIVE STANDBY PAIR
	ALTER CACHE GROUP
	ALTER REPLICATION
	ALTER SESSION
	ALTER TABLE
	ALTER USER
	COMMIT
	CREATE ACTIVE STANDBY PAIR
	CREATE CACHE GROUP
	User and system managed cache groups
	CREATE READONLY CACHE GROUP
	CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP
	CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP
	CREATE USERMANAGED CACHE GROUP

	AUTOREFRESH in Cache Groups

	CREATE INDEX
	CREATE MATERIALIZED VIEW
	Restrictions on the materialized view and detail tables
	Restrictions on the MATERIALIZED VIEW query

	CREATE REPLICATION
	CHECK CONFLICTS

	CREATE SEQUENCE
	Incrementing SEQUENCE values with CURRVAL and NEXTVAL

	CREATE TABLE
	Column Definition

	CREATE USER
	CREATE VIEW
	Restrictions on the VIEW query
	Restrictions on the VIEW

	DELETE
	DROP ACTIVE STANDBY PAIR
	DROP CACHE GROUP
	DROP INDEX
	DROP SEQUENCE
	DROP REPLICATION
	DROP TABLE
	DROP USER
	DROP VIEW
	FLUSH CACHE GROUP
	GRANT
	INSERT
	SingleRowValues

	INSERT SELECT
	LOAD CACHE GROUP
	MERGE
	REFRESH CACHE GROUP
	REVOKE
	ROLLBACK
	SELECT
	SelectList
	TableSpec
	DerivedTable
	JoinedTable

	TRUNCATE TABLE
	UNLOAD CACHE GROUP
	UPDATE
	Join Update

	Access Control Privileges
	Privilege descriptions
	Operations requiring instance Administrator privilege
	SQL operations
	Utilities

	Operations requiring ADMIN privilege
	Attributes
	Built-in Procedures
	SQL operations
	Utilities
	Utility C API
	XLA Functions

	Operations requiring CONNECT privilege
	Operations requiring CREATE DATASTORE privilege
	Operations requiring DDL privilege
	Built-in Procedures
	SQL operations

	Operations requiring WRITE privilege
	Built-in Procedures
	SQL operations
	XLA functions

	Operations requiring SELECT privilege
	Built-in Procedures
	SQL operations
	Utilities

	System and Replication Tables
	System table list
	Replication table list
	Tables reserved for internal or future use
	SYS.CACHE_GROUP
	SYS.COLUMNS
	SYS.COL_STATS
	SYS.DUAL
	SYS.INDEXES
	SYS.MONITOR
	SYS.PLAN
	SYS.SEQUENCES
	SYS.SYNONYMS
	SYS.TABLES
	SYS.TBL_STATS
	SYS.TCOL_STATS
	SYS.TINDEXES
	SYS.TRANSACTION_LOG_API
	SYS.TTABLES
	SYS.TTBL_STATS
	SYS.VIEWS
	SYS.XLASUBSCRIPTIONS
	TTREP.REPELEMENTS
	TTREP.REPLICATIONS
	TTREP.REPNETWORK
	TTREP.REPPEERS
	TTREP.REPSTORES
	TTREP.REPSUBSCRIPTIONS
	TTREP.REPTABLES
	TTREP.TTSTORES

	Reserved Words
	Index

