
TimesTen to TimesTen
Replication Guide

Release 7.0

 B31684-03

Copyright ©1996, 2007, Oracle. All rights reserved.
ALL SOFTWARE AND DOCUMENTATION (WHETHER IN
HARD COPY OR ELECTRONIC FORM) ENCLOSED AND ON
THE COMPACT DISC(S) ARE SUBJECT TO THE LICENSE
AGREEMENT.
The documentation stored on the compact disc(s) may be printed by
licensee for licensee’s internal use only. Except for the foregoing,
no part of this documentation (whether in hard copy or electronic
form) may be reproduced or transmitted in any form by any means,
electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without the prior
written permission of TimesTen Inc.
Oracle, JD Edwards, PeopleSoft, Retek, TimesTen, the TimesTen
icon, MicroLogging and Direct Data Access are trademarks or reg-
istered trademarks of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.
The Programs (which include both the software and documenta-
tion) contain proprietary information; they are provided under a li-
cense agreement containing restrictions on use and disclosure and
are also protected by copyright, patent, and other intellectual and
industrial property laws. Reverse engineering, disassembly, or de-
compilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as
specified by law, is prohibited.
The information contained in this document is subject to change
without notice. If you find any problems in the documentation,
please report them to us in writing. This document is not warranted
to be error-free. Except as may be expressly permitted in your li-
cense agreement for these Programs, no part of these Programs may
be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, for any purpose.
September 2007
Printed in the United States of America

Contents
About this Guide

TimesTen documentation . 2
Background reading . 4
Conventions used in this guide 5
Technical Support . 7

1 TimesTen Replication
What is replication? . 10

Master and subscriber data stores and elements 10
Requirements for replication compatibility 11
How replication works . 11

Replication agents . 11
How replication agents copy updates between data stores 12

Default replication . . 12
Return receipt replication 14
Return twosafe replication 16

Master/subscriber relationships 18
Full or selective replication 18
Unidirectional or bidirectional replication 19

Split workload configuration 19
General workload configuration 20

Direct replication or propagation 22
Active standby pair with read-only subscribers 24

Cache groups and replication 25
Replicating READONLY cache groups to regular tables 26
Replicating READONLY cache groups to cache groups

using active standby pair replication 27
Replicating ASYNCHRONOUS WRITETHROUGH

cache groups using active standby pair replication 28
Sequences and replication . 29
Foreign keys and replication . 29
Table and cache group aging and replication 30
Replication schemes . 31

2 Quick Start
A simple replication scheme . 33

Step 1: Create a master and subscriber data store 34
Step 2: Create a table and replication scheme 35
Step 3: Start the replication agents 36
 iii

Step 4: Insert data into the replicated table 37
Step 5: Drop the replication scheme and table 38

Problems replicating? . . 38

3 Defining Replication Schemes
Designing a highly available system 39

Physical configuration of hosts 39
Efficiency and economy . 40
Failover and recovery . 40
Performance and recovery trade-offs 42

Commit sequence . 42
Performance on master 42
Effect of a runtime error 43
Failover (after master failure) 43
Impact of TRANSMIT DURABLE/NONDURABLE on master data store

recovery . 43
Recovery of a subscriber data store 44

Defining a replication scheme. 44
Owner of the replication scheme and tables 45
Defining replication elements 46

Defining data store elements 46
Defining table elements 47
Defining sequence elements 48

Setting additional parameters for replication elements 48
Checking for replication conflicts on table elements 48
Setting transmit durability on data store elements 49
Setting a return service attribute on table or data store elements . . . 49

Setting STORE attributes . 52
Compressing replicated traffic 54
Dynamic vs. static port assignments 55
Replication with multiple network interfaces 55

Using a return service . . 57
Establishing a return service 57

RETURN RECEIPT . 58
RETURN RECEIPT BY REQUEST 59
RETURN TWOSAFE 60

Responding to a return twosafe failure in a bidirectional replication
scheme . 61

RETURN TWOSAFE BY REQUEST 62
NO RETURN . . 63

Setting the return service timeout period 63
Checking the status of return service transactions 64
Managing return service timeout errors and replication state changes . . . 66
iv TimesTen to TimesTen Replication Guide

When to manually disable return service blocking 67
Establishing return service failure/recovery policies 67

RETURN SERVICES { ON | OFF } WHEN REPLICATION
STOPPED . 67

DISABLE RETURN 68
RESUME RETURN 70
DURABLE COMMIT 70

Creating multiple replication schemes 71
Replicating tables with foreign key relationships 72
Replicating materialized views 73
Replicating cache groups . 73

Using ttRepAdmin to set up replication of cache groups 74
Bidirectional hot standby READONLY cache groups with AUTORE-

FRESH: -keepCG option 74
Bidirectional hot standby WRITETHROUGH cache groups:

-keepCG option . . 77
Load-balancing AUTOREFRESH cache groups: -noKeepCG option . 78

Using CREATE CACHE GROUP to set up replication of cache groups . . 79
Unidirectional replication of cache groups to cache groups 80

Restrictions on AUTOREFRESH configuration 80
Restrictions on AGING configuration 80
Restrictions on the WHERE clause 80

Bidirectional replication of cache groups to cache groups 81
Replicating sequences . . 81
Example replication schemes 82

Single subscriber scheme . 83
Multiple subscriber schemes 84
Selective replication scheme 87
Propagation scheme . 88
Bidirectional split workload scheme 89
Bidirectional general workload scheme 90
Cache group replication scheme 91
Active standby pair . 94

Creating replication schemes with scripts 95

4 Setting Up a Replicated System
Configuring the network . 100

Network bandwidth requirements 100
Replication in a WAN environment 101
Configuring host IP addresses 102

Identifying data store hosts and network interfaces 102
Host name resolution on Windows 102

User-specified addresses for TimesTen daemons and subdaemons 103
v

Identifying the local host of a replicated data store 103
Setting up the replication environment 104

Establishing the data stores 104
Data store attributes 104
Table requirements and restrictions 105
Copying a master data store to a subscriber 105

On server1:. . 106
On server2:. . 106

Managing the log on a replicated data store 107
About log buffer size and persistence 107
About log growth on a master data store 107
Setting the log failure threshold 108
Setting attributes for disk-based logging 109

Configuring a large number of subscribers 110
Replicating access controlled data stores 110
Replicating data stores across releases 110
Applying a replication scheme to a data store 111
Starting and stopping the replication agents 111

Controlling replication agents from the command line. 112
Controlling replication agents from a program. 114

Setting the replication state of subscribers 114

5 Monitoring Replication
Show state of replication agents 117

From the command line: ttStatus 118
From the command line: ttAdmin -query 119
From a program: ttDataStoreStatus 119

Show master data store information 120
From the command line: ttRepAdmin -self -list 120
From a program: SQL SELECT statement 121

Show subscriber data store information 122
From the command line: ttRepAdmin -receiver -list 122
From a program: ttReplicationStatus procedure 123
From a program: SQL SELECT statement 125

Show configuration of replicated data stores 126
From ttIsql: repschemes command 126
From the command line: ttRepAdmin -showconfig 127
From a program: SQL SELECT statements 129

Show replicated log records 130
From the command line: ttRepAdmin -bookmark 130
From a program: ttBookMark procedure 131

Show replication status . 131
vi TimesTen to TimesTen Replication Guide

MAIN thread status fields 134
Replication peer status fields. 135
TRANSMITTER thread status fields 136
RECEIVER thread status fields 137

Show the return service status for a subscriber 139

6 Altering Replication
Altering a replication scheme 141

Adding a table or sequence to an existing
replication scheme . 143

Adding a cache group to an existing replication scheme 143
Adding a DATASTORE element to an existing replication scheme. . . 144

Including tables, sequences or cache groups when you add a
DATASTORE element 144

Excluding a table, sequence or cache group when you add a
DATASTORE element 144

Dropping a table or sequence from a replication scheme 145
Dropping a table or sequence that is replicated as part of a

DATASTORE element 145
Dropping a table or sequence that is replicated as a TABLE or

SEQUENCE element 146
Creating and adding a subscriber data store 146
Dropping a subscriber data store 147
Changing a TABLE or SEQUENCE element name 147
Replacing a master data store 147
Eliminating conflict detection 147
Eliminating the return receipt service 148
Changing the port number. 148
Changing the replication route 148

Altering a replicated table . 149
Truncating a replicated table 149
Dropping a replication scheme 150

7 Administering an Active Standby Pair
Restrictions on active standby pairs 151
Master data store states . 152
Active standby pairs with cache groups 153

READONLY cache groups with AUTOREFRESH
in an active standby pair 153

ASYNCHRONOUS WRITETHROUGH cache groups in an active standby
pair . 153

Setting up an active standby pair 154
vii

Recovering from a failure of the active master data store 155
Recovering when the standby master data store is ready 155

When replication is return receipt or asynchronous 155
When replication is return twosafe 157

Recovering when the standby master data store is not ready 157
Recover the active master data store 158
Recover the standby master data store 158

Failing back to the original nodes 159
Recovering from a failure of the standby master data store 159
Recovering from the failure of a subscriber data store 160
Reversing the roles of the active and standby

master data stores . 161
Changing the configuration of an active standby pair 162
Upgrading the data stores in an active standby pair 164

Upgrades for TimesTen patch releases on the standby
master data store and subscriber stores 164

Upgrades for TimesTen patch releases on the active
master data store. . 164

Upgrades for major TimesTen releases, application
software and hardware 165

8 Conflict Resolution and Failure Recovery
Replication conflict detection and resolution 167

Update and insert conflicts 168
Delete/update conflicts . 169
Timestamp resolution . 170
Configuring timestamp comparison 171

Establishing a timestamp column in replicated tables 171
Configuring the CHECK CONFLICTS clause 172

System timestamp column maintenance 173
User timestamp column maintenance 173
Local updates. . 174
Conflict reporting . 174

Reporting conflicts to a text file 174
Reporting conflicts to an XML file 175
Reporting uniqueness conflicts 176
Reporting update conflicts 177
Reporting delete/update conflicts 179
Suspending and resuming the reporting of conflicts 181

Managing data store failover and recovery. 183
General failover and recovery procedures 184

Subscriber failures . 184
Master failures . 185
viii TimesTen to TimesTen Replication Guide

Automatic catch-up of a failed master data store 185
Master/subscriber failures 186
Network failures . 187
Failures involving sequences 187

Recovering a failed data store 187
From the command line 188
From a program . 188

Recovering NONDURABLE data stores 189
Writing a failure recovery script 190

9 XML Document Type Definition for the Conflict Report File
The conflict report XML Document Type Definition. 191
The main body of the document 193
The uniqueness conflict element. 193
The update conflict element 195
The delete/update conflict element 197

Glossary

Index
ix

x TimesTen to TimesTen Replication Guide

About this Guide
This guide is for application developers and for system administrators who
configure and manage TimesTen to TimesTen Replication. It provides:
• Background information on how TimesTen Replication works.
• Procedures and examples for common replication tasks.

To work with this guide, you should understand how database systems work. You
should also have knowledge of SQL (Structured Query Language) and either
ODBC (Open DataBase Connectivity) or JDBC (Java DataBase Connectivity).
See “Background reading” on page 4 if you are not familiar with these interfaces.
 1

TimesTen documentation
TimesTen documentation is available on the product distribution media and on
the Oracle Technology Network:
http://www.oracle.com/technology/documentation/timesten_doc.html.

Including this guide, the TimesTen documentation set consists of these
documents:

Book Titles Description

Oracle TimesTen In-Memory
Database Installation Guide

Contains information needed to install and configure
TimesTen on all supported platforms.

Oracle TimesTen In-Memory
Database Introduction

Describes all the available features in the Oracle
TimesTen In-Memory Database.

Oracle TimesTen In-Memory
Database Operations Guide

Provides information on configuring TimesTen and
using the ttIsql utility to manage a data store. This
guide also provides a basic tutorial for TimesTen.

Oracle TimesTen In-Memory
Database C Developer’s and
Reference Guide
and the
Oracle TimesTen In-Memory
Database Java Developer’s
and Reference Guide

Provide information on how to use the full set of
available features in TimesTen to develop and
implement applications that use TimesTen.

Oracle TimesTen In-Memory
Database API Reference
Guide

Describes all TimesTen utilities, procedures, APIs and
provides a reference to other features of TimesTen.

Oracle TimesTen In-Memory
Database SQL Reference
Guide

Contains a complete reference to all TimesTen SQL
statements, expressions and functions, including
TimesTen SQL extensions.

Oracle TimesTen In-Memory
Database Error Messages
and SNMP Traps

Contains a complete reference to the TimesTen error
messages and information on using SNMP Traps with
TimesTen.

Oracle TimesTen In-Memory
Database TTClasses Guide

Describes how to use the TTClasses C++ API to use
the features available in TimesTen to develop and
implement applications.
2 TimesTen to TimesTen Replication Guide

http://www.oracle.com/technology/documentation/timesten_doc.html

TimesTen to TimesTen
Replication Guide

Provides information to help you understand how
TimesTen Replication works and step-by-step
instructions and examples that show how to perform
the most commonly needed tasks.
This guide is for application developers who use and
administer TimesTen and for system administrators
who configure and manage TimesTen Replication.

TimesTen Cache Connect to
Oracle Guide

Describes how to use Cache Connect to cache Oracle
data in TimesTen data stores. This guide is for
developers who use and administer TimesTen for
caching Oracle data.

Oracle TimesTen In-Memory
Database Troubleshooting
Procedures Guide

Provides information and solutions for handling
problems that may arise while developing applications
that work with TimesTen, or while configuring or
managing TimesTen.
About this Guide 3

Background reading
For a Java reference, see:
• Horstmann, Cay and Gary Cornell. Core Java(TM) 2, Volume I--

Fundamentals (7th Edition) (Core Java 2). Prentice Hall PTR; 7 edition
(August 17, 2004).

A list of books about ODBC and SQL is in the Microsoft ODBC manual
included in your developer’s kit. Your developer’s kit includes the appropriate
ODBC manual for your platform:
• Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide provides all

relevant information on ODBC for Windows developers.
• Microsoft ODBC 2.0 Programmer’s Reference and SDK Guide, included

online in PDF format, provides information on ODBC for UNIX developers.

For a conceptual overview and programming how-to of ODBC, see:
• Kyle Geiger. Inside ODBC. Redmond, WA: Microsoft Press. 1995.

For a review of SQL, see:
• Melton, Jim and Simon, Alan R. Understanding the New SQL: A Complete

Guide. San Francisco, CA: Morgan Kaufmann Publishers. 1993.
• Groff, James R. / Weinberg, Paul N. SQL: The Complete Reference, Second

Edition. McGraw-Hill Osborne Media. 2002.

For information about Unicode, see:
• The Unicode Consortium, The Unicode Standard, Version 5.0,

Addison-Wesley Professional, 2006.
• The Unicode Consortium Home Page at http://www.unicode.org
4 TimesTen to TimesTen Replication Guide

Conventions used in this guide
TimesTen supports multiple platforms. Unless otherwise indicated, the
information in this guide applies to all supported platforms. The term Windows
refers to Windows 2000, Windows XP and Windows Server 2003. The term
UNIX refers to Solaris, Linux, HP-UX, Tru64 and AIX.

TimesTen documentation uses these typographical conventions:

TimesTen documentation uses these conventions in command line examples and
descriptions:

If you see... It means...

code font Code examples, filenames, and pathnames.

For example, the .odbc.ini. or ttconnect.ini file.

italic code
font

A variable in a code example that you must replace.

For example:
Driver=install_dir/lib/libtten.sl
Replace install_dir with the path of your TimesTen
installation directory.

If you see... It means...

fixed width
italics

Variable; must be replaced with an appropriate value. In
some cases, such as for parameter values in built-in
procedures, you may need to single quote (' ') the value.

[] Square brackets indicate that an item in a command line
is optional.

{ } Curly braces indicated that you must choose one of the
items separated by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates arguments that you may
use more than one argument on a single command line.

... An ellipsis (. . .) after an argument indicates that you may
use more than one argument on a single command line.

% The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the UNIX root
prompt.
About this Guide 5

TimesTen documentation uses these variables to identify path, file and user
names:

If you see... It means...

install_dir The path that represents the directory where the current
release of TimesTen is installed.

TTinstance The instance name for your specific installation of
TimesTen. Each installation of TimesTen must be
identified at install time with a unique alphanumeric
instance name. This name appears in the install path. The
instance name “giraffe” is used in examples in this guide.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit
or 64-bit operating system.

release or rr Two digits that represent the first two digits of the current
TimesTen release number, with or without a dot. For
example, 51 or 7.0 represents TimesTen Release 7.0.

jdk_version Two digits that represent the version number of the
major JDK release. Specifically, 14 represent JDK 1.4;
5 represents JDK 5.

timesten A sample name for the TimesTen instance administrator.
You can use any legal user name as the TimesTen
administrator. On Windows, the TimesTen instance
administrator must be a member of the Administrators
group. Each TimesTen instance can have a unique
instance administrator name.

DSN The data source name.
6 TimesTen to TimesTen Replication Guide

Technical Support
For information about obtaining technical support for TimesTen products, go to
the following Web address:

http://www.oracle.com/support/contact.html
About this Guide 7

http://www.oracle.com/support/contact.html

8 TimesTen to TimesTen Replication Guide

1
TimesTen Replication

This chapter provides an overview of TimesTen replication. The general topics
are:
• What is replication?
• How replication works
• Master/subscriber relationships
• Cache groups and replication
• Sequences and replication
• Foreign keys and replication
• Sequences and replication
• Replication schemes
 9

What is replication?
Replication is the process of maintaining copies of data in multiple data stores.
The purpose of TimesTen replication is to make data continuously available to
mission-critical applications with minimal impact on performance.

Some of the benefits of replication include:
• Recovery from failures: You can maintain duplicate data stores on two or

more servers. In the event of a software or hardware failure on one server, the
data is available from data stores on other servers.

• Online upgrades and maintenance: When data is duplicated across data stores
on different servers, you can perform upgrades, schema changes and other
maintenance activities on one server, while providing your applications with
continuous access to the replicated data on another server.

• Load sharing: By maintaining duplicate data stores on different servers, you
can scale the number of servers to distribute workloads.

Master and subscriber data stores and elements
An entity that is replicated between data stores is called a replication element.
TimesTen supports data stores, tables, and sequences as replication elements. As
shown in Figure 1.1, TimesTen replication copies updates made to a master data
store into a corresponding subscriber data store. You can replicate your entire
data store or any number of selected tables to one or more subscriber data stores.

Currently, the master and subscriber data stores must reside on machines that
have the same operating system, CPU type, and word size. Though you can
replicate between data stores that reside on the same machine, replication is
generally used for copying updates into a data store that resides on another
machine. This helps prevent data loss from node failure. See “Configuring the
network” on page 100 for information on the network requirements for
replicating data between TimesTen systems.

Figure 1.1 Replicating the entire master data store

Master Data Store Subscriber Data Store

Applications

Updates

Update Records
10 TimesTen to TimesTen Replication Guide

Requirements for replication compatibility
For replication to succeed between two data stores, the stores must be replication
compatible. Two data stores are guaranteed to be replication compatible when
their DSNs are configured with identical DatabaseCharacterSet and
TypeMode attributes.

Note: If replication is configured between a data store from the current release
of TimesTen and a data store from a TimesTen release previous to 7.0, then there
are additional restrictions for replication compatibility. A data store may only
replicate to a TimesTen release previous to 7.0 if it is configured with a
DatabaseCharacterSet attribute of TIMESTEN8 and may only replicate tables
with columns that use the original TimesTen data types (data types with the
prefix TT_- or the data types BINARY_FLOAT and BINARY_DOUBLE). See
“Types supported for backward compatibility in Oracle type mode” in the Oracle
TimesTen In-Memory Database SQL Reference Guide for more information.

How replication works
This section describes the TimesTen replication agents and how they work
together to replicate data from a master data store to its subscriber data stores.

Replication agents
Replication at each master and subscriber data store is controlled by a replication
agent. The replication agent on the master data store reads the records from the
transaction log and forwards any detected changes to replicated elements to the
replication agent on the subscriber data store. The replication agent on the
subscriber then applies the updates to its data store. If the subscriber agent is not
running when the updates are forwarded by the master, the master retains the
updates in the log until they can be transmitted.

The master and subscriber agents communicate through TCP/IP stream sockets.
Each master and subscriber data store is identified by:
• A data store name derived from the file system’s path name for the data store
• A host name

The replication agents obtain the TCP/IP address, host name, and other
configuration information from the TTREP system tables described in Chapter 7,
“System and Replication Tables” in the Oracle TimesTen In-Memory Database
SQL Reference Guide.
TimesTen Replication 11

How replication agents copy updates between data
stores
In default replication, updates are copied between data stores in an asynchronous
manner. Though asynchronous replication provides the best performance, it does
not provide the application with confirmation that the replicated updates have
been committed on the subscriber data stores. For “pessimistic” applications that
need higher levels of confidence that the replicated data is consistent between the
master and subscriber data stores, you can enable either the optional return
receipt or return twosafe service.

The return receipt service loosely couples or “synchronizes” the application with
the replication mechanism by blocking the application until replication confirms
that the update has been received by the subscriber. The return twosafe service
provides a fully synchronous option by blocking the application until replication
confirms that the update has been both received and committed on the subscriber.

Return receipt replication has less performance impact than return twosafe at the
expense of less synchronization. The operational details for asynchronous, return
receipt, and return twosafe replication are discussed in the following sections:
• Default replication
• Return receipt replication
• Return twosafe replication

Default replication
When using default TimesTen replication, an application updates a master data
store and continues working without waiting for the updates to be received and
applied by the subscribers. The master and subscriber data stores have internal
mechanisms to confirm that the updates have been successfully received and
committed by the subscriber. These mechanisms ensure that updates are applied
at a subscriber only once, but they are completely independent of the application.

Default TimesTen replication provides maximum performance, but the
application is completely decoupled from the receipt process of the replicated
elements on the subscriber.
12 TimesTen to TimesTen Replication Guide

Figure 1.2 Basic asynchronous replication cycle

The default TimesTen replication cycle is:

1. The application commits a local transaction to the master data store and is free to
continue with other transactions.

2. During the commit, TimesTen Data Manager writes the transaction update
records to the transaction log buffer.

3. The replication agent on the master data store directs the Data Manager to flush a
batch of update records for the committed transactions from the log buffer to a
log file on disk and synchronizes the disk. This step ensures that, if the master
fails and you need to recover the data store from the checkpoint and log files on
disk, the recovered master contains all the data it replicated to the subscriber.

However, this flush-log-to-disk operation is skipped under any of the following
conditions:
• The update records for the committed transactions are already on disk.
• The replication scheme is configured with a TRANSMIT NONDURABLE

option, as described in “Setting transmit durability on data store elements” on
page 49.

4. The master replication agent forwards the batch of transaction update records to
the subscriber replication agent, which applies them to the subscriber data store.

Note: Update records are flushed to disk and forwarded to the subscriber in
batches of 256K or less, depending on the master data store’s transaction load. A
batch is created when there is no more log data in the transaction log buffer or
when the current batch is roughly 256K bytes. Batches are smaller than 256K
bytes for lighter transaction loads when fewer log records are written.

Application

Log Files
DSName1.log2

DSName1.log1
DSName1.log0

3) Flush batch of update
 records to disk

Log Files
DSName2.log2

DSName2.log1
DSName2.log0

Transaction
Log Buffer

1) Commit transaction

2) Write update
 records
 to log

4) Send batch of
 update records
 to subscriber

5) Acknowledge receipt of batch

6) Write each received
 update record to log

7) In a separate thread,
 flush batch of
 updates to disk

Master Data Store Subscriber Data Store

Transaction
Log Buffer
TimesTen Replication 13

5. The subscriber replication agent sends an acknowledgement back to the master
replication agent that the batch of update records was received. (This
acknowledgement includes information on which batch of records the subscriber
last flushed to disk.) The master replication agent is now free to purge from the
transaction log the update records that have been received, applied, and flushed
to disk by all subscribers and to forward another batch of update records, while
the subscriber replication agent asynchronously continues on to Step 6.

6. The replication agent at the subscriber updates the data store and directs its Data
Manager to write the transaction update records to the transaction log buffer.

7. The replication agent at the subscriber data store uses a separate thread to direct
the Data Manager to flush the update records to a disk-based log file.

Return receipt replication
The return receipt service provides a level of synchronization between the master
and a subscriber data store by blocking the application after commit on the
master until the updates of the committed transaction have been received by the
subscriber.

An application requesting return receipt updates the master data store in the same
manner as in the basic asynchronous case. However, when the application
commits a transaction that updates a replicated element, the master data store
blocks the application until it receives confirmation that the updates for the
completed transaction have been received by the subscriber.

Return receipt replication trades some performance in order to provide more
“pessimistic” applications with the ability to ensure higher levels of data integrity
and consistency between the master and subscriber data stores. In the event of a
master failure, the application has a high degree of confidence that a transaction
committed at the master persists in the subscribing data store.
14 TimesTen to TimesTen Replication Guide

Figure 1.3 Return receipt replication

As shown in Figure 1.3, the return receipt replication cycle is the same as shown
for the basic asynchronous cycle in Figure 1.2, only the master replication agent
blocks the application thread after it commits a transaction (Step 1) and retains
control of the thread until the subscriber acknowledges receipt of the update
batch (Step 5). Upon receiving the return receipt acknowledgement from the
subscriber, the master replication agent returns control of the thread to the
application (Step 6), freeing it to continue executing transactions.

Note: In order to obtain the best compromise between assuring data store
integrity and performance, return receipt is not fully synchronous. Though this
service informs the application that the transaction has been received by the
subscriber, it does not guarantee that the transaction has been committed or made
durable in the subscriber data store.

If the subscriber is unable to acknowledge receipt of the transaction within a
configurable timeout period (default is 10 seconds), the master replication agent
returns a warning stating that it did not receive acknowledgement of the update
from the subscriber and returns control of the thread to the application. The
application is then free to commit another transaction to the master, which
continues replication to the subscriber as before. Return receipt transactions may
timeout for many reasons. The most likely causes for timeout are the network, a
failed replication agent, or the master replication agent may be so far behind with
respect to the transaction load that it cannot replicate the return receipt
transaction before its timeout expires. For information on how to manage return-

Applications

Log Files
DSName.log2

DSName.log1
DSName.log0

3) Flush batch of update
 records to disk

Log Files
DSName.log2

DSName.log1
DSName.log0

Transaction
Log Buffer

2) Write update
 records
 to log

4) Send batch of
 update records
 to subscriber

5) Acknowledge receipt of batch

7) Write each received
 update record to log

8) In a separate thread,
 flush batch of
 updates to disk

Master Data Store Subscriber Data Store

Transaction
Log Buffer

6) Unblock
 thread

1) Commit
 transaction
 and block
 thread
TimesTen Replication 15

receipt timeouts, see “Managing return service timeout errors and replication
state changes” on page 66.

See “RETURN RECEIPT” on page 58 for information on how to configure
replication for return receipt.

Return twosafe replication
The return twosafe service provides fully synchronous replication between the
master and subscriber. Unlike the previously described replication modes, where
transactions are transmitted to the subscriber after being committed on the
master, transactions in twosafe mode are first committed on the subscriber before
they are committed on the master.

Note: The return twosafe service can only be used in a “hot standby” replication
scheme where there is a single master and subscriber and the replication element
is the entire data store. See “General workload configuration” on page 20 for
more information on the hot standby configuration.

Figure 1.4 Twosafe replication

The following describes the replication behavior between a master and subscriber
configured for return twosafe replication:

1. The application commits the transaction on the master data store.

2. The master replication agent writes the transaction records to the log and inserts a
special precommit log record before the commit record. This precommit record
acts as a place holder in the log until the master replication receives an
acknowledgement that indicates the status of the commit on the subscriber.

Applications

3) Send batch of update
 records to subscriber

5) Acknowledge commit of
 transaction on the subscriber

Master Data Store Subscriber Data Store

Transaction
Log Buffer

7) Unblock
 thread

1) Block
 thread

4) Commit transaction
 on the subscriber

6) Commit transaction
 on the master

2) Write update
 records to log
16 TimesTen to TimesTen Replication Guide

Note: Transmission of return twosafe transactions are nondurable, so the master
replication agent does not flush the log records to disk before sending them to the
subscriber, as it does by default when replication is configured for asynchronous
or return receipt replication.

3. The master replication agent transmits the batch of update records to the
subscriber.

4. The subscriber replication agent commits the transaction on the subscriber data
store.

5. The subscriber replication agent returns an acknowledgement back to the master
replication agent with notification of whether the transaction was committed on
the subscriber and whether the commit was successful.

6. If the commit on the subscriber was successful, the master replication agent
commits the transaction on the master data store.

7. The master replication agent returns control to the application.

If the subscriber is unable to acknowledge commit of the transaction within a
configurable timeout period (default is 10 seconds) or if the acknowledgement
from the subscriber indicates the commit was unsuccessful, the replication agent
returns control to the application without committing the transaction on the
master data store. The application can then to decide whether to unconditionally
commit or retry the commit. You can optionally configure your replication
scheme to direct the master replication agent to commit all transactions that time
out.

See “RETURN TWOSAFE” on page 60 for information on how to configure
replication for return twosafe.

Note: RETURN RECEIPT and RETURN TWOSAFE subscriber attributes
cannot coexist. Transactions can be either be return twosafe or return receipt, but
not both.
TimesTen Replication 17

Master/subscriber relationships
You create a replication scheme to define a specific configuration of master and
subscriber data stores. This section describes the possible relationships you can
define between master and subscriber data stores when creating your scheme.
How to create a replication scheme is described in “Replication schemes” on
page 31.

When defining a relationship between a master and subscriber, you must consider
some combination of the following:
• Full or selective replication
• Unidirectional or bidirectional replication
• Direct replication or propagation
• Active standby pair with read-only subscribers

Full or selective replication
Figure 1.1 illustrates a full replication scheme in which the entire master data
store is replicated to the subscriber. You can also configure your master and
subscriber data stores in various combinations to selectively replicate some table
elements in a master data store to subscribers.

Figure 1.5 shows some examples of selective replication. The left side shows a
master data store that replicates the same selected elements to multiple
subscribers, while the right side shows a master that replicates different elements
to each subscriber.

Figure 1.5 Replicating selected elements to multiple subscribers

Master Data Store

Subscriber Data Store

Applications

Subscriber Data Store

Subscriber Data Store

Master Data Store

Applications

Subscriber Data Store

Subscriber Data Store

Replicating same elements
to each subscriber

Replicating different elements
to each subscriber
18 TimesTen to TimesTen Replication Guide

Another way to use selective replication is to configure multiple master data
stores to replicate elements to a single subscriber that serves as a common
backup data store, as shown in Figure 1.6.

Figure 1.6 Multiple masters replicating to a single subscriber

Unidirectional or bidirectional replication
So far in this chapter, we have described unidirectional replication, where a
master data store sends updates to one or more subscriber data stores. However,
you can also configure data stores to operate bidirectionally, where each store is
both a master and a subscriber.

There are two basic ways to use bidirectional replication:
• Split workload configuration
• General workload configuration

Split workload configuration
In a split workload configuration, each data store serves as a master for some
table elements and a subscriber for others.

Consider the example shown in Figure 1.7, where the accounts for Chicago are
processed on data store A while the accounts for New York are processed on data
store B.

Master Data Store

Applications

Master Data Store

Applications

Subscriber Data Store
TimesTen Replication 19

Figure 1.7 “Split workload” bidirectional replication

Note: It may be difficult to achieve a clean split of the workload. In Figure 1.7,
imagine that there are rows that must be updated by transactions on both Chicago
and New York applications. In that case, update conflicts are possible in the
shared rows.

General workload configuration
In a general workload configuration, each data store serves as both a master and
subscriber for the same table elements. Applications on either data store can
update any of the elements and the update is replicated to the other data store.
This type of configuration is often referred to as multimaster.

There are two basic types of general workload schemes:
• Hot standby: In this scheme, users access a specific application/data store

combination that replicates updates to a duplicate backup application/data
store combination. In the event of a failure, the user load can be quickly
shifted to the backup application/data store.

• Distributed workload: In this scheme, user access is distributed across
duplicate application/data store combinations that replicate any update on any
element to each other. In the event of a failure, the affected users can be
quickly shifted to any application/data store combination.

The hot standby configuration is shown in Figure 1.8. This configuration mimics
the simplicity of unidirectional replication while allowing for simple and fast
recovery in the event of a data store failure. Although there are two master data
stores, applications update only one data store until it fails, at which time the
applications are shifted to the other data store.

 Data Store A Data Store B

Applications
for Chicago

Applications
for New York

Update
20 TimesTen to TimesTen Replication Guide

Users operate on data store A and updates are replicated to data store B, which
assumes the role of subscriber. In the event data store A fails, users can be
redirected to a copy of the application already configured on data store B. When
data store A is restored, it can then assume the role of subscriber.

Figure 1.8 Hot standby configuration

The distributed workload configuration is shown in Figure 1.9. Users access
duplicate applications on each data store, which serves as both master and
subscriber for the other data store.

Figure 1.9 Distributed workload configuration

When data stores are replicated in a distributed workload configuration, it is
possible for separate users to concurrently update the same rows and replicate the
updates to one another. Your application should ensure that such conflicts cannot
occur, that they be acceptable if they do occur, or that they can be successfully
resolved using the conflict resolution mechanism described in “Replication
conflict detection and resolution” on page 167.

 Data Store A Data Store B

Applications Applications

Update

Users

 Data Store A Data Store B

Applications Applications

Update

Users

 Data Store A Data Store B

Applications Applications

Update

Users
TimesTen Replication 21

Note: A distributed workload configuration should not be used with the return
twosafe return service, nor should it be used with Cache Connect to Oracle.

Direct replication or propagation
You can define a subscriber to serve as a propagator that receives replicated
updates from a master and passes them on to subscribers of its own.

Propagators are useful for optimizing replication performance over lower-
bandwidth network connections, such as those between servers in an intranet. For
example, consider the direct replication configuration illustrated in Figure 1.10,
where a master directly replicates to four subscribers over an intranet connection.
Replicating to each subscriber over a network connection in this manner is an
inefficient use of network bandwidth.

Figure 1.10 Master replicating to multiple subscribers over a network

For optimum performance, consider the configuration shown in Figure 1.11,
where the master replicates to a single propagator over the network connection.
The propagator in turn forwards the updates to each subscriber on its local area
network.

Subscribers

Application

Master

Intranet
22 TimesTen to TimesTen Replication Guide

Figure 1.11 Master replicating to a single propagator over a network

Propagators are also useful for distributing replication loads in configurations
that involve a master data store that must replicate to a large number of
subscribers. For example, it is more efficient for the master to replicate to three
propagators, rather than directly to the 12 subscribers as shown in Figure 1.12.

Figure 1.12 Using propagators to replicate to many subscribers

Note: Each propagator is one-hop, which means that you can forward an update
only once. You cannot have a hierarchy of propagators where propagators
forward updates to other propagators.

Propagator

Subscribers

Application

Master

Intranet

Applications

Master

Propagators

Subscribers
TimesTen Replication 23

Active standby pair with read-only subscribers
Figure 1.13 shows an active standby pair configuration with an active master data
store, a standby master data store, and four read-only subscriber data stores.

Figure 1.13 Active standby pair

Use the CREATE ACTIVE STANDBY PAIR SQL statement to create an active
standby pair. The CREATE ACTIVE STANDBY PAIR statement specifies an
active master data store, a standby master data store, the subscriber data stores,
and the tables and cache groups that comprise the data stores.

Note: The other replication schemes in this chapter are created by using the
CREATE REPLICATION statement.

In an active standby pair, two data stores are defined as masters. One is an active
master data store, and the other is a standby master data store. The application
updates the active master data store directly. The standby master data store
cannot be updated directly. It receives the updates from the active master data
store and propagates the changes to as many as 127 read-only subscriber data
stores. This arrangement ensures that the standby master data store is always
ahead of the subscriber data stores and enables rapid failover to the standby data
store if the active master data store fails.

Only one of the master data stores can function as an active master data store at a
specific time. The ttRepStateSet procedure assigns the role of a master data
store. If the active master data store fails, then the user can use the ttRepStateSet

Applications

Read-only subscribers

Replication

Propagation

Standby
master
data store

Active
master
data store
24 TimesTen to TimesTen Replication Guide

procedure to change the role of the standby master data store to active before
recovering the failed data store as a standby data store. The user must also start
the replication agent on the new standby master data store.

If the standby master data store fails, then the active master data store can
replicate changes directly to the subscribers. After the standby master data store
has been recovered, it contacts the active standby data store to receive any
updates that have been sent to the subscribers while the standby was down or was
recovering. When the active and the standby master data stores have been
synchronized, then the standby resumes propagating changes to the subscribers.

For details about setting up an active standby pair, see “Active standby pair” on
page 94. For more information about administering an active standby pair, see
Chapter 7, “Administering an Active Standby Pair.”

Cache groups and replication
As described in the TimesTen Cache Connect to Oracle Guide, a cache group is a
group of tables stored in a central Oracle database that are cached in a local
TimesTen data store. This section describes how cache groups can be replicated
between TimesTen data stores. The recommended way to replicate cache groups
is to use an active standby pair replication scheme, due to its ability to simplify
recovery in case of a failure. See “Active standby pairs with cache groups” on
page 153 for more information on this method of replicating cache groups for
high availability. See “Replicating cache groups” on page 73 for details on other,
less recoverable, methods of replicating cache groups.

For most of the cache group replication examples in this section, assume unless
otherwise indicated that there is a database server running the Oracle database
and two application servers that host the TimesTen data stores, named A and B.
The TimesTen data stores on A and B are caching subsets of the same tables in
the Oracle database.

This section describes four examples of replicating cache groups:
• Replicating READONLY cache groups to regular tables
• Replicating READONLY cache groups to cache groups using active standby

pair replication
• Replicating ASYNCHRONOUS WRITETHROUGH cache groups using

active standby pair replication
TimesTen Replication 25

Replicating READONLY cache groups to regular tables
You need the cache groups in data stores A and the tables in B to contain
identical subsets of the same catalog information stored on Oracle. This
information might change every four hours.

Figure 1.14 Replicating READONLY cache groups to regular tables

As shown in Figure 1.14, you can create a READONLY cache group in data store
A and normal tables with identical column definitions in data store B. You can
cache the catalog information in the cache group in data store A, and set up
unidirectional replication from the cache group in A to the tables in B. You can
then set the AUTOREFRESH INTERVAL value for the cache group in data store
A to refresh the catalog information every four hours.

This configuration can be useful for spreading the application load across two or
more data stores, but if data store A fails, recovery takes some time, as all of the
data stores need to recreated to ensure that they are in sync with the catalog
information in the central database.

Oracle DB

Application Application

 Data Store A Data Store B

READONLY Cache Group READONLY Cache Group
26 TimesTen to TimesTen Replication Guide

Replicating READONLY cache groups to cache groups
using active standby pair replication
You need the cache groups in data stores A and B to contain identical subsets of
the same catalog information stored on Oracle. This information might change
every four hours. Also, data store B needs to be able to take over for data store A
in the event that data store A fails.

Figure 1.15 Replicating READONLY cache groups with active standby
pair replication

As shown in Figure 1.15, you can create a READONLY cache group that, after
the active standby pair rollout procedure, exists in both data stores A and B. Data
store A acts as the active master data store in the active standby pair, and data
store B acts as the standby master. An active standby paid allows you to cache
the catalog information in the cache group in data store A, with bidirectional
replication between the cache group in A and the cache group in B. You can set
the AUTOREFRESH INTERVAL to refresh the catalog information every four
hours, although AUTOREFRESH is automatically set to the PAUSED state on
the cache group in data store B as part of the active standby pair rollout
procedure, so only the cache group on data store A is updated by the
AUTOREFRESH mechanism. When updates to the catalog information are
autorefreshed to the cache group in data store A, replication automatically
transfers the updates to the cache group in B. In addition, replication transfers the
bookkeeping information necessary to allow the cache group on B to take over as
the autorefreshed cache group if data store A fails.

In the event that data store A fails, data store B can quickly be reconfigured as the
active master data store in the active standby pair. This automatically sets the
AUTOREFRESH configuration for the cache group in data store B to the ON
state, allowing data store B to take over as the autorefreshed cache group. This
configuration allows quick recovery from a data store failure, with minimal
interruption of data store availability.

Oracle DB

Application Application

 Data Store A Data Store B

READONLY Cache Group READONLY Cache Group
TimesTen Replication 27

Replicating ASYNCHRONOUS WRITETHROUGH
cache groups using active standby pair replication
You need to cache multiple identical subsets of the same customer profile
instance from Oracle. The profiles are occasionally updated in TimesTen, and
never in Oracle, and they are read by applications connected to TimesTen very
frequently. In addition, the entire configuration must be robust, with little chance
of downtime.

Figure 1.16 Replicating ASYNCHRONOUS WRITETHROUGH cache
groups with active standby pair replication

Figure 1.16 shows that you can create an ASYNCHRONOUS
WRITETHROUGH cache group in data store A that, after the active standby pair
rollout procedure, also exists in data store B. The cache groups in data store A
and B replicate to each other and to standard tables in data stores C and D.

Application

Data Store B

Oracle DB

 Data Store A

AWT Cache Group AWT Cache Group

 Data Store C

Normal Tables

 Data Store D

Normal Tables

Application Application
28 TimesTen to TimesTen Replication Guide

Application reads are distributed amongst the read-only subscriber data stores C
and D, and application updates are made to the active master data store A.
Updates made to data store A are automatically replicated using bidirectional
replication to standby master data store B, which then transfers the updates to the
Oracle database and replicates the updates to data stores C and D. Note that
updates may not be made directly to data store B while it is the standby master.

If either the active or the standby master data store fails, the remaining master
data store can take on the role of the failed data store, in addition to its normal
role, until the failed data store recovers. For example, if data store A fails, data
store B can accept application updates, and also continue to transfer the updates
to the Oracle database as well as replicate them to data stores C and D.

If a read-only subscriber data store fails, it can be recreated from the standby
master data store, with all application reads occurring from the surviving read-
only subscriber data store in the meantime. For example, if data store C fails,
application reads can continue to made from data store D, while data store C is
recreated from data store B.

See “Active standby pairs with cache groups” on page 153 for more information.

Sequences and replication
In some replication configurations, you may find a need to keep sequences
synchronized between two or more data stores. For example, you may have a
master data store containing a replicated table that uses a sequence to fill in the
primary key value for each row. The subscriber data store is used as a hot backup
for the master data store. If updates to the sequence’s current value are not
replicated, insertions of new rows on the subscriber after the master has failed
could conflict with rows that were originally inserted on the master.

TimesTen replication allows the incrementation of a sequence’s current value to
be replicated to subscriber data stores, ensuring that rows in this configuration
inserted on either data store does not conflict. See “Replicating sequences” on
page 81 for details on writing a replication scheme to replicate sequences.

Foreign keys and replication
If a table with a foreign key configured with ON DELETE CASCADE is
replicated, then the matching foreign key on the subscriber must also be
configured with ON DELETE CASCADE. In addition, you must replicate any
other table with a foreign key relationship to that table. This requirement
prevents foreign key conflicts from occurring on subscriber tables when a
cascade deletion occurs on the master data store.

TimesTen replicates a cascade deletion as a single operation, rather than
replicating to the subscriber each individual row deletion which occurs on the
child table when a row is deleted on the parent. As a result, any row on the child
TimesTen Replication 29

table on the subscriber data store, which contains the foreign key value that was
deleted on the parent table, is also deleted, even if that row did not exist on the
child table on the master data store.

Table and cache group aging and replication
When a table or cache group is configured with either Least-Recently Used
(LRU) or time-based aging, the following rules apply to the interaction with
replication:
• If the replication scheme is an active standby pair, then aging is only

performed on the active master data store, and deletes performed by aging are
replicated to the standby master data store. Also, aging is automatically turned
on on the standby master in the event that it takes over for the active master
after a data store failure.

• In any other replication configuration, aging is performed individually on each
data store, and deletes performed by aging are not replicated to other data
stores. If LRU aging is being used, this means that the data available in the
cache group on each data store may differ depending on when the data has last
been accessed by applications.

Note: The aging configuration on replicated tables and cache groups must be
identical on every peer data store. This is true even for tables and cache groups
that are replicated as part of an active standby pair. Although table updates
caused by aging are replicated to the standby data store in an active standby pair,
the aging configuration must be set to ON on both the active and standby data
stores. TimesTen automatically determines which data store is actually
performing the aging based on its current role as active or standby.

Note: Delete operations on a cache group caused by aging are not propagated to
the Oracle database when using Asynchronous or Synchronous Writethrough
(AWT or SWT) cache groups.
30 TimesTen to TimesTen Replication Guide

Replication schemes
A replication scheme defines the configuration of data stores and replicated
elements for a particular deployment of TimesTen. Replication schemes are
created, altered, and deleted with SQL statements.

A replication scheme begins with a CREATE REPLICATION statement and
assigns:
• The elements that describe the data set to be replicated
• The names of the master and subscriber data stores, as well as their server

locations and their relationships, as described in “Master/subscriber
relationships” on page 18

A replication scheme may optionally include the names of propagator data stores
and attributes to configure a return service, transmit durability, conflict
resolution, port number, log threshold, timeout period, and so on.

A scheme can define multiple roles for a single data store. Consider the example
shown in Figure 1.17. Here an application makes updates on selected elements in
data store B, which replicates them to data store C. Data store B also propagates
selected elements between data stores A and D, and is a subscriber for other
elements from data store A.

Figure 1.17 Data store with multiple roles

Note: The purpose of the example shown in Figure 1.17 is to illustrate the
potential multiple roles of data stores. Although you could configure data stores
in this manner, the performance and recovery issues would make such a complex
configuration impractical for most deployments.

Applications

Replicated

Replicated

Replicated

Data Store A Data Store B

Data Store C

Data Store D

Applications

(unidirectional)

(bi-directional)

Propagated
TimesTen Replication 31

32 TimesTen to TimesTen Replication Guide

2
Quick Start

This chapter describes how to configure, start up, and operate a simple
replication scheme. See Chapter 3, “Defining Replication Schemes” and Chapter
4, “Setting Up a Replicated System” for more details on each step.

A simple replication scheme
This section describes how to configure a simple replication scheme that
replicates the contents of a single table in a master data store to a subscriber data
store. To keep the example simple, both data stores reside on the same computer.

Figure 2.1 Simple Replication Scheme

The steps are:
• Step 1: Create a master and subscriber data store
• Step 2: Create a table and replication scheme
• Step 3: Start the replication agents
• Step 4: Insert data into the replicated table
• Step 5: Drop the replication scheme and table

Note: If TimesTen was installed with Access Control enabled, you must have
ADMIN privileges to the data store to complete the procedures in this section.
See Chapter 1, “Access Control” in the Oracle TimesTen In-Memory Database
Installation Guide for details.

Applications

Master Data Store Subscriber Data Store
 33

Step 1: Create a master and subscriber data store
Create two system data sources (System DSNs), named masterDSN and
subscriberDSN, as described in Chapter 1, “Creating TimesTen Data Stores” of
Oracle TimesTen In-Memory Database Operations Guide.

Note: Each data store “name” specified in a replication scheme must match the
the prefix of the file name (without the path) given for the DataStore attribute in
the DSN definition for the data store. A replication scheme that uses the names
specified in the Data Source Name attributes do not work. To avoid confusion,
use the same name for both your DataStore and Data Source Name attributes in
each DSN definition. For example, if the data store path is directory/
subdirectory/foo.ds0, then foo is the data store name that should be used in
the CREATE REPLICATION statement.

Figure 2.2 Master and Subscriber Data Stores

For masterds, set:
• Data Store Path and Name:

Unix: DataStore=/tmp/masterds
Windows: c:\temp\masterds

• Permanent Data Sz (MB): 16
• Temporary Data Sz (MB): 16
• Database Character Set: WE8ISO8859P1

Use defaults for all other settings.

For subscriberds, set:
• Data Store Path and Name:

Unix: DataStore=/tmp/subscriberds
Windows: c:\temp\subscriberds

• Permanent Data Sz (MB): 16
• Temporary Data Sz (MB): 16
• Database Character Set: WE8ISO8859P1

Use defaults for all other settings.

Data Store: masterds Data Store: subscriberds
34 TimesTen to TimesTen Replication Guide

Step 2: Create a table and replication scheme
Figure 2.3 Replicating repl.tab from master to subscriber

Use your text editor to create a SQL file, named repscheme.sql, and enter:
• A CREATE TABLE statement to create an empty table, named repl.tab,

with three columns named a, b, and c
• A CREATE REPLICATION statement to define a replication scheme, named

repl.scheme, to replicate the repl.tab table from the master data store to the
subscriber

The contents of repscheme.sql should look like the following:

Example 2.1 CREATE TABLE repl.tab (a NUMBER NOT NULL,
 b NUMBER,
 c CHAR(8),
 PRIMARY KEY (a));

CREATE REPLICATION repl.repscheme
ELEMENT e TABLE repl.tab
 MASTER masterds
 SUBSCRIBER subscriberds;

Open a command prompt window and use the ttIsql utility to apply the SQL
commands specified in the repscheme.sql file to both the master and subscriber
data stores:
> ttIsql -f repscheme.sql masterds
> ttIsql -f repscheme.sql subscriberds

Data Store: masterds Data Store: subscriberds

repl.tab repl.tab
Quick Start 35

Step 3: Start the replication agents
Use the ttAdmin utility to start the master and subscriber replication agents:
> ttAdmin -repStart masterds
> ttAdmin -repStart subscriberds

Figure 2.4 Master and Subscriber Replication Agents

The output for each ttAdmin -repStart command should show ‘Replication
Manually Started: True’.

Example 2.2 > ttAdmin -repStart masterds
RAM Residence Policy : inUse
Manually Loaded In Ram : False
Replication Agent Policy : manual
Replication Manually Started : True
Oracle Agent Policy : manual
Oracle Agent Manually Started : False

> ttAdmin -repStart subscriberds
RAM Residence Policy : inUse
Manually Loaded In Ram : False
Replication Agent Policy : manual
Replication Manually Started : True
Oracle Agent Policy : manual
Oracle Agent Manually Started : False

Data Store: masterds Data Store: subscriberds

repl.tab repl.tab

masterds
Replication

Agent

subscriberds
Replication

Agent
36 TimesTen to TimesTen Replication Guide

Step 4: Insert data into the replicated table
In the command prompt window, use ttIsql to connect to the master data store,
and INSERT some rows into the repl.tab table:
> ttIsql masterds
Command> INSERT INTO repl.tab VALUES (1, 22, ‘Hello’);
Command> INSERT INTO repl.tab VALUES (3, 86, ‘World’);

Open a second command prompt window for the subscriber, connect to the
subscriber data store, and check the contents of the repl.tab table:
> ttIsql subscriberds
Command> SELECT * FROM repl.tab;
< 1, 22, Hello>
< 3, 86, World>
2 rows found.

Note: Under some circumstances, there may be a short delay before the data is
available on the subscriber.

Figure 2.5 Replicating Changes to Subscriber Data Store

Any further changes you make to the repl.tab table in the masterds data store
is replicated on the table in the subscriberds data store.

If you were able to replicate from masterds to subscriberds, continue to Step
5: Drop the replication scheme and table. Otherwise, review the troubleshooting
tips in “Problems replicating?” on page 38.

Data Store: masterds Data Store: subscriberds

repl.tab repl.tab

masterds
Replication

Agent

subscriberds
Replication

Agent

Subscriber Data Store

insert into repl.tab values (1, 22, 'Hello');
insert into repl.tab values (3, 86, 'World');

1 22 Hello
3 86 World

1 22 Hello
3 86 World
Quick Start 37

Step 5: Drop the replication scheme and table
After you have completed your replication tests, exit ttIsql and use the ttAdmin
utility to stop the master and subscriber replication agents:
Command> exit
> ttAdmin -repStop masterds
> ttAdmin -repStop subscriberds

To remove the repl.tab table and repl.scheme replication scheme from the
master and subscriber data stores, use your text editor to create another SQL file,
called dropRepscheme.sql, with the contents:

Example 2.3 DROP REPLICATION repl.scheme;
DROP TABLE repl.tab;

Note: You must drop the replication scheme before dropping a replicated table.
Otherwise, you receive a “Cannot drop replicated table or index” error.

In a command prompt window, use the ttIsql utility to apply the SQL commands
specified in the dropRepscheme.sql file to both the master and subscriber data
stores:
> ttIsql -f dropRepscheme.sql masterds
> ttIsql -f dropRepscheme.sql subscriberds

Problems replicating?
If, after modifying the repl.tab table for masterds as described in Step 4: Insert
data into the replicated table, the repl.tab table is empty on subscriberds:
> ttIsql subscriberds
Command> SELECT * FROM repl.tab;
0 rows found.

then there is something wrong with the replication between the masterds and
subscriberds data stores.

For troubleshooting information, see "Troubleshooting Replication" in Oracle
TimesTen In-Memory Database Troubleshooting Procedures Guide.
38 TimesTen to TimesTen Replication Guide

3
Defining Replication Schemes

This chapter describes how to design a highly available system and define
replication schemes. It includes the following topics:
• Designing a highly available system
• Defining a replication scheme
• Using a return service
• Creating multiple replication schemes
• Replicating materialized views
• Replicating cache groups
• Replicating sequences
• Example replication schemes
• Creating replication schemes with scripts

Designing a highly available system
As described in Chapter 1, the primary objectives of any replication scheme are
to:
• Provide one or more backup data stores to ensure the data is always available

to applications.
• Provide a means to recover failed data stores from their backup stores.
• Efficiently distribute workloads to provide applications with the quickest

possible access to the data.
• Enable software upgrades and maintenance without disrupting service to

users.

Physical configuration of hosts
When designing a highly available system, the subscriber data store must be able
to survive failures that may affect the master. At a minimum, the master and
subscriber need to be on separate machines. For some applications, you may
want to place the subscriber in an environment that has a separate power supply.
In certain cases, you may need to place a subscriber at an entirely separate site.
 39

Efficiency and economy
Configure your data stores to best distribute application workloads and make the
best use of a limited number of server machines. For example, it might be more
efficient and economical to configure your data stores bidirectionally in a
distributed workload manner so that each serves as both master and subscriber,
rather than as separate master and subscriber data stores in a “hot standby”
configuration. However, a distributed workload scheme works best with
applications that primarily read from the data stores. Implementing a distributed
workload scheme for applications that frequently write to the same elements in a
data store may diminish performance and require that you implement a solution
to prevent or manage update conflicts, as described in “Replication conflict
detection and resolution” on page 167.

Failover and recovery
As you plan your replication scheme, consider every conceivable failover and
recovery scenario. For example, subscriber failures generally have no impact on
the applications connected to the master data stores and can be recovered from
without disrupting user service. On the other hand, should a failure occur on a
master data store, you should have a means to redirect the application load to a
subscriber and continue service with no or minimal interruption. This process is
typically handled by a “cluster manager” or custom software designed to detect
failures, redirect users or applications from the failed data store to one of its
subscribers, and manage recovery of the failed data store.

When planning your failover strategies, consider which subscriber(s) are to take
on the role of its master and for which users or applications. Also consider
recovery factors. For example, a failed master must be able to recover its data
store from its most up-to-date subscriber, and any subscriber must be able to
recover from its master.

Consider the failure scenario for unidirectionally replicated data stores shown in
Figure 3.1. In the case of a master failure, the application cannot access the data
store until it is recovered from the subscriber. There is no way to switch the
application connection or user load to the subscriber, unless you use an ALTER
REPLICATION statement to redefine the subscriber data store as the master.
40 TimesTen to TimesTen Replication Guide

Figure 3.1 Recovering a master in a unidirectional scheme

Failover and recovery are more efficient when the data stores are configured in a
bidirectional general-workload scheme, such as the hot standby scheme shown in
Figure 3.2. In the hot-standby scheme, should the master data store fail, the
cluster manager need only shift the user load to the “hot standby” application on
the subscriber data store. Upon recovering the failed data store, you can resume
replication with the master/subscriber roles reversed with minimal interruption to
service.

Figure 3.2 Recovering a master in a hot standby scheme

The failover procedure for data stores configured using a distributed workload
scheme, such as the one shown in Figure 3.3, is similar to that used for the hot
standby, only failover involves shifting the users affected by the failed data store
to join the other users of an application on a surviving data store. Upon recovery,
the workload can be redistributed to the application on the recovered data store.

Figure 3.3 Recovering a master in a distributed workload scheme

 Data Store A Data Store B

Applications

Copy

Users

 Data Store A Data Store B

ApplicationsApplications

Users

FAILED

 Data Store A Data Store B

Applications

Copy

Users

Normal Operation Failure of Master Recovered Master

 Data Store A Data Store B

Applications Applications

Copy

Users

 Data Store A Data Store B

Applications Applications

Users

FAILED

 Data Store A Data Store B

Applications Applications

Copy

Users

Normal Operation Failure of Master Recovered Master

 Data Store A Data Store B

Applications Applications

Copy

Users

 Data Store A Data Store B

ApplicationsApplications Applications

Users

 Data Store A Data Store B

Applications Applications

Copy

Users

FAILED

Normal Operation Failure of Master Recovered Master
Defining Replication Schemes 41

Performance and recovery trade-offs
When designing your replication scheme, you should weigh operational
efficiencies against the complexities of failover and recovery. Factors that may
complicate failover and recovery include the network topology that connects a
master with its subscribers and the complexity of your replication scheme. For
example, it is easier to recover a master that has been fully replicated to a single
subscriber than recover a master that has selected elements replicated to different
subscribers.

As described in “How replication works” on page 11, you can configure
replication to work either asynchronously, “semi-synchronously” with the return
receipt service, or fully synchronously with the return twosafe service. The
following sections summarize the behavior of the asynchronous, return receipt,
and return twosafe modes and contrast how these behaviors impact replication
performance and your ability to recover from a failure. The discussions assume
two data stores configured in a bidirectional, hot standby replication scheme, and
replication of the entire data store.
• Commit sequence
• Performance on master
• Effect of a runtime error
• Failover (after master failure)
• Impact of TRANSMIT DURABLE/NONDURABLE on master data store

recovery
• Recovery of a subscriber data store

For more information on failover and recovery, see “Managing data store failover
and recovery” on page 183.

Commit sequence
• Asynchronous and Return Receipt: Each transaction is committed first on

the master data store.
• Return Twosafe: Each transaction is committed first on the subscriber data

store.

Performance on master
• Asynchronous: Shortest response time and best throughput because there is

no long wait between transactions or before the commit on the master.
• Return Receipt: Longer response time and less throughput than

asynchronous. The longer response time is due to the application being
blocked for the duration of the network round-trip after commit. Though there
is no wait before the commit on the master, replicated transactions are more
serialized than with asynchronous replication, which results in less
throughput.
42 TimesTen to TimesTen Replication Guide

• Return Twosafe: Longest response-time and least throughput. The longer
response time is due to the application being blocked for the duration of the
network round-trip and remote commit on the subscriber before the commit
on the master. Because the commit must occur on the subscriber before the
master, transactions are fully serialized, which results in the least throughput
of the three modes.

Effect of a runtime error
• Asynchronous and Return Receipt: Because the transaction is first

committed on the master data store, errors that occur when committing on a
subscriber require the subscriber to be either:
– manually corrected
– destroyed and then recovered from the master data store

• Return Twosafe: Because the transaction is first committed on the subscriber
data store, errors that occur when committing on the master require the master
to be either:
– manually corrected
– destroyed and then recovered from the subscriber data store

Note: In twosafe mode, it is an error if a commit to succeeds on the subscriber
and fails on the master. In this event, the error is likely to be fatal, requiring the
master to be destroyed and then recovered from the subscriber data store.

Failover (after master failure)
• Asynchronous and Return Receipt: If the master fails and the subscriber

takes over, the subscriber may be behind the master and so must reprocess
data feeds and be able to remove duplicates.

• Return Twosafe: If the master fails and the subscriber takes over, the
subscriber is at least be up-to-date with the master. It is also possible for the
subscriber to be “ahead” of the master, should the master fail before
committing a transaction it had replicated to the subscriber.

Impact of TRANSMIT DURABLE/NONDURABLE on master data
store recovery
As described in “How replication agents copy updates between data stores” on
page 12 and “Setting transmit durability on data store elements” on page 49, a
master data store can be either “durable” or “non-durable.” Master data stores
configured for asynchronous or return receipt replication are durable by default
but can be set to nondurable using the TRANSMIT NONDURABLE option in
the CREATE REPLICATION statement. Master data stores configured for
return twosafe replication are nondurable by default and cannot be made durable.
Defining Replication Schemes 43

In general, if a master data store fails, you have to initiate the
ttRepAdmin -duplicate operation described in “Recovering a failed data
store” on page 187 to recover the failed master from the subscriber data store.
This is always true for a master data store configured with TRANSMIT
DURABLE.

A data store configured with TRANSMIT NONDURABLE is recovered
automatically by the subscriber replication agent if it is configured in the specific
type of hot-standby scheme described in “Automatic catch-up of a failed master
data store” on page 185. Otherwise, you must follow the procedures described in
“Recovering NONDURABLE data stores” on page 189 to recover a failed
nondurable data store.

Recovery of a subscriber data store
If a subscriber in any type of replication configuration fails, you can recover it
and restart replication. Some transaction records may be missing on the
recovered subscriber, but the master re-sends all of the records associated with
unacknowledged transactions to the subscriber. (This is the acknowledgement the
subscriber replication agent sends to the master replication agent, not the
application-level acknowledgements enabled by the return services.) The
subscriber automatically removes any duplicate records.

Alternatively, you can initiate the ttRepAdmin -duplicate operation described
in “Recovering a failed data store” on page 187 to recover a failed subscriber.

See “Subscriber failures” on page 184 for details.

Defining a replication scheme
After you have designed your replication scheme, as described in “Designing a
highly available system” on page 39, you can use the CREATE REPLICATION
SQL statement to apply the scheme to your data stores.

Note: To create an active standby pair, you must use the CREATE ACTIVE
STANDBY PAIR SQL statement. See “Active standby pair” on page 94.

Note: If TimesTen was installed with Access Control enabled, you must have
DDL privileges to the data store to use CREATE REPLICATION statement. See
Chapter 1, “Access Control” in the Oracle TimesTen In-Memory Database
Installation Guide for details.

The complete syntax for the CREATE REPLICATION statement is provided in
the Oracle TimesTen In-Memory Database SQL Reference Guide. Table 3.1
shows the components of a simple replication scheme and identifies the
parameters associated with the topics in this section.
44 TimesTen to TimesTen Replication Guide

Table 3.1 Components of a Replication Scheme

See “Replicating sequences” on page 81 for an extensive range of sample
replication schemes.

Note: Naming errors in your CREATE REPLICATION statement are often hard
to troubleshoot, so take the time to check and double-check your element, data
store, and host names for typos.

The replication scheme used by a data store is represented in its TTREP tables
and persists across system reboots. See Chapter 7, “System and Replication
Tables in the Oracle TimesTen In-Memory Database SQL Reference Guide for
descriptions of the TTREP tables.

Note: You cannot directly modify the contents of the TTREP tables.
Modifications can only be done by means of the CREATE REPLICATION or
ALTER REPLICATION SQL statements.

Owner of the replication scheme and tables
The owner and name of the replication scheme and the replicated tables must be
identical on both the master and subscriber data stores. To ensure you have a
common owner across all data stores, you can explicitly specify an owner name
with your replication scheme name in the CREATE REPLICATION statement.

For example, to assign an owner named repl to the replication scheme named
repscheme, the first line of your CREATE REPLICATION statement would
look like:
CREATE REPLICATION repl.repscheme

If you omit the owner from the name of your replication scheme and the
replicated tables, the default owner name, as specified by the login name of the

Component See...

CREATE REPLICATION Owner.SchemeName “Owner of the replication scheme and
tables” on page 45

ELEMENT ElementName ElementType
“Defining replication elements” on page
46

MASTER DataStoreName ON "HostName"

SUBSCRIBER DataStoreName ON "HostName"

ReturnServiceAttribute “Setting a return service attribute on table
or data store elements” on page 49

STORE DataStoreName DataStoreAttributes; “Setting STORE attributes” on page 52
Defining Replication Schemes 45

requester or the name set by the UID attribute in the DSN, is used in its place.
Your replication scheme does not work if owner names are different across its
data stores.

Defining replication elements
A replication scheme consists of one or more ELEMENT descriptions that
contain the name of the element, its type (DATASTORE, TABLE or
SEQUENCE), the master data store on which it is updated, and the subscriber
stores to which the updates are replicated.

The name of each element in your scheme can be used to identify the element if
you decide later to drop or modify the element or any of its parameters by using
the ALTER REPLICATION statement. Element names must be unique within a
replication scheme.

Do not:
• Include a specific object (table, sequence or data store) in more than one

element description
• Define the same element in the role of both master and propagator
• Define an element that does not include the data store on the current host as

either the master, subscriber or propagator

The correct way to define elements in a multiple subscriber scheme is described
in “Multiple subscriber schemes” on page 84. The correct way to propagate
elements is described in “Propagation scheme” on page 88.

You can add tables, cache groups, sequences, and data stores to an existing
replication scheme by using the ALTER REPLICATION statement. See
“Altering a replication scheme” on page 141. You can also drop a table or
sequence from a data store that is part of an existing replication scheme. See
“Dropping a table or sequence from a replication scheme” on page 145.

The rest of this section includes the following topics:
• Defining data store elements
• Defining table elements
• Defining sequence elements

Defining data store elements
To replicate the entire contents (all of the tables and sequences) of the master data
store (masterds) to the subscriber data store (subscriberds), the ELEMENT
description (named ds1) might look like the following:
ELEMENT ds1 DATASTORE

MASTER masterds ON "system1"
SUBSCRIBER subscriberds ON "system2"
46 TimesTen to TimesTen Replication Guide

You can choose to exclude certain tables, sequences and cache groups from the
data store element by using the EXCLUDE TABLE, EXCLUDE SEQUENCE
and EXCLUDE CACHE GROUP clauses of the CREATE REPLICATION
statement. When you use the EXCLUDE clauses, the entire data store is
replicated to all subscribers in the element except for the objects that are specified
in the EXCLUDE clauses. Use only one EXCLUDE clause for each kind of
object (table, sequence or cache group). For example:
ELEMENT ds1 DATASTORE

MASTER masterds ON "system1"
SUBSCRIBER subscriberds ON "system2"
EXCLUDE TABLE tab1, tab2
EXCLUDE SEQUENCE seq1
EXCLUDE CACHE GROUP cg3

You can choose to include only certain tables, sequences and cache groups in the
data store by using the INCLUDE TABLE, INCLUDE SEQUENCE and
INCLUDE CACHE GROUP clauses of the CREATE REPLICATION
statement. When you use the INCLUDE clauses, only the objects that are
specified in the INCLUDE clauses are replicated to each subscriber in the
element. Use only one INCLUDE clause for each kind of object (table, sequence
or cache group). For example:
ELEMENT ds1 DATASTORE

MASTER masterds ON "system1"
SUBSCRIBER subscriberds ON "system2"
INCLUDE TABLE tab3
INCLUDE SEQUENCE seq2, seq3
INCLUDE CACHE GROUP cg1, cg2

When you create a new table or sequence in a data store that is configured to
replicate using a data store element, the table or sequence is not replicated unless
you use the ALTER REPLICATION statement to modify the replication scheme.
See “Adding a table or sequence to an existing replication scheme” on page 143
for details.

Defining table elements
To replicate the repl.tab1 and repl.tab2 tables from a master data store
(named masterds and located on a host named system1) to a subscriber data
store (named subscriberds on a host named system2), your ELEMENT
descriptions (named a and b) might look like the following:
ELEMENT a TABLE repl.tab1

MASTER masterds ON "system1"
SUBSCRIBER subscriberds ON "system2"

ELEMENT b TABLE repl.tab2
MASTER masterds ON "system1"
SUBSCRIBER subscriberds ON "system2"
Defining Replication Schemes 47

Defining sequence elements
To replicate updates to the current value of the repl.seq sequence from a master
data store (named masterds and located on a host named system1) to a
subscriber data store (named subscriberds on a host named system2), your
ELEMENT description (named a) might look like the following:
ELEMENT a SEQUENCE repl.seq

MASTER masterds ON "system1"
SUBSCRIBER subscriberds ON "system2"

Note: Each data store “name” specified in a replication scheme must match the
the prefix of the file name (without the path) given for the DataStore attribute in
the DSN definition for the data store. A replication scheme that uses the names
specified in the Data Source Name attributes does not work. To avoid confusion,
use the same name for both your DataStore and Data Source Name attributes in
each DSN definition. For example, if the data store path is directory/
subdirectory/foo.ds0, then foo is the data store name that you should use in
the CREATE REPLICATION statement.

You should identify a data store host using the host name returned by the
hostname operating system command. If you need replication to use a different
network interface than the default, you may specify one or more replication
routes using the ROUTE store attribute. See “Replication with multiple network
interfaces” on page 55.

Note: Host names containing special characters must be surrounded by double
quotes (").

Setting additional parameters for replication elements
A data store or table element description can include additional parameters. The
following sections describe them:
• Checking for replication conflicts on table elements
• Setting transmit durability on data store elements
• Setting a return service attribute on table or data store elements

Checking for replication conflicts on table elements
When data stores are configured for bidirectional replication, there is a potential
for replication conflicts to occur if the same table row in two or more data stores
is independently updated at the same time.

Such conflicts can be detected and resolved on a table-by-table basis by including
timestamps in your replicated tables and configuring your replication scheme
with the optional CHECK CONFLICTS clause in each table’s ELEMENT
description.
48 TimesTen to TimesTen Replication Guide

Note: A CHECK CONFLICTS clause cannot be specified for DATASTORE
elements.

See “Replication conflict detection and resolution” on page 167 for a complete
discussion on replication conflicts and how to configure the CHECK
CONFLICTS clause in your CREATE REPLICATION statement.

Setting transmit durability on data store elements
As described in “How replication works” on page 11, transaction records in the
master data store log buffer are, by default, flushed to disk before they are
forwarded to subscribers. If the entire master data store is replicated (ELEMENT
is of type DATASTORE), you can improve replication performance by
eliminating the master’s flush-log-to-disk operation from the replication cycle.
This is done by including a TRANSMIT NONDURABLE option in the
ELEMENT description.

Note: When using the return twosafe service, replication is TRANSMIT
NONDURABLE. Setting TRANSMIT DURABLE has no effect on return
twosafe transactions.

Note: TRANSMIT DURABLE cannot be set for active standby pairs.

Example 3.1 To replicate the entire contents of the master data store (masterds) to the
subscriber data store (subscriberds) and to eliminate the flush-log-to-disk
operation, your ELEMENT description (named a) might look like:
ELEMENT a DATASTORE

MASTER masterds ON "system1"
TRANSMIT NONDURABLE
SUBSCRIBER subscriberds ON "system2"

If TRANSMIT NONDURABLE is set and the master data store fails, you cannot
recover the master from its log files. In this situation, follow the procedure
described in “Recovering NONDURABLE data stores” on page 189.

Note: Regardless of the TRANSMIT setting, the flush-log-to-disk operation still
takes place on the subscriber. See “How replication works” on page 11 for a
complete description.

Setting a return service attribute on table or data store elements
As described in “How replication agents copy updates between data stores” on
page 12, you can use a return receipt or return twosafe service to ensure a higher
Defining Replication Schemes 49

level of confidence that your replicated data is consistent on both the master and
subscriber data stores.

You can specify a return service attribute independently for any subscriber
defined in a CREATE REPLICATION or ALTER REPLICATION statement.
Alternatively, you can specify the same return service attribute for all of the
subscribers defined in an element. Example 3.2 shows separate SUBSCRIBER
clauses that may define different return service attributes for SubDataStore1 and
SubDataStore2. Example 3.3 shows the use of a single SUBSCRIBER clause that
defines the same return service attributes for both SubDataStore1 and
SubDataStore2.

Note: Return service attributes cannot be specified for sequence elements.

Example 3.2 CREATE REPLICATION Owner.SchemeName
ELEMENT ElementName ElementType
MASTER DataStoreName ON "HostName"
SUBSCRIBER SubDataStore1 ON "HostName" ReturnServiceAttribute1
SUBSCRIBER SubDataStore2 ON "HostName" ReturnServiceAttribute2;

Example 3.3 CREATE REPLICATION Owner.SchemeName
 ELEMENT ElementName ElementType

MASTER DataStoreName ON "HostName"
SUBSCRIBER SubDataStore1 ON "HostName",

 SubDataStore2 ON "HostName"
 ReturnServiceAttribute;

The following return service attributes can be defined for each SUBSCRIBER in
your replication scheme. The use of each of these attributes is discussed in
“Using a return service” on page 57.

Return Service Attribute Description

RETURN RECEIPT Enable the return receipt service for
all transaction updates to this
subscriber. See “RETURN
RECEIPT” on page 58 for details.

RETURN RECEIPT BY REQUEST Enable the return receipt service for
specific transaction updates to this
subscriber. See “RETURN RECEIPT
BY REQUEST” on page 59 for
details.
50 TimesTen to TimesTen Replication Guide

RETURN TWOSAFE Enable the return twosafe service for
all transaction updates to this
subscriber. See “RETURN
TWOSAFE” on page 60 for details.

RETURN TWOSAFE BY
REQUEST

Enable the return twosafe service for
specific transaction updates to this
subscriber. See “RETURN
TWOSAFE BY REQUEST” on page
62 for details.

NO RETURN Disable the return service (either
return receipt or return twosafe,
depending on which service is
enabled) for this subscriber (default).
See “NO RETURN” on page 63 for
details.

Return Service Attribute Description
Defining Replication Schemes 51

Setting STORE attributes
You can use the STORE parameter in your CREATE REPLICATION or ALTER
REPLICATION statement to set optional attributes shown below for one or more
data stores. The first three attributes are used to set the return service failure/
recovery policies for the data store. These attributes are discussed in “Managing
return service timeout errors and replication state changes” on page 66.

STORE Attribute Description

RETURN SERVICES { ON |
OFF } WHEN
REPLICATION STOPPED

Continue or disable the return service when
replication is stopped, as described in
“Establishing return service failure/
recovery policies” on page 67.

DISABLE RETURN Set the return service failure policy as
described in “Establishing return service
failure/recovery policies” on page 67.

RESUME RETURN If return service blocking has been disabled
by DISABLE RETURN, this attribute sets
the policy on when to re-enable the return
service.

DURABLE COMMIT Set to override the DurableCommits
setting on a data store and enable durable
commit when return service blocking has
been disabled by DISABLE RETURN.

COMPRESS TRAFFIC Compress replicated traffic to reduce the
amount of network bandwidth used. See
“Compressing replicated traffic” on page
54 for details.

PORT Set the port number used by subscriber data
stores to ‘listen’ for updates from a master.
If no PORT attribute is specified, the
TimesTen daemon dynamically selects the
port. While static port assignment is
allowed by TimesTen, dynamic port
allocation is recommended.
See “Dynamic vs. static port assignments”
on page 55 for details on static port
assignment.
52 TimesTen to TimesTen Replication Guide

TIMEOUT Set the maximum number of seconds the
data store waits before re-sending a
message to an unresponsive subscriber.

RETURN WAIT TIME Specifies the number of seconds to wait for
return service acknowledgement. The
default value is 10 seconds.

Your application can override this timeout
setting by using the returnWait parameter in
the ttRepSyncSet procedure.
See “Setting the return service timeout
period” on page 63 for details.

LOCAL COMMIT ACTION Specify the default action to be taken for a
return service transaction in the event of a
timeout. The options are:

NO ACTION — On timeout, the commit
function returns to the application, leaving
the transaction in the same state it was in
when it entered the commit call, with the
exception that the application is not able to
update any replicated tables. The
application can reissue the commit.

COMMIT — On timeout, the commit
function writes a COMMIT log record and
effectively ends the transaction locally. No
more operations are possible on the same
transaction.

This default setting can be overridden for
specific transactions by using the
localAction parameter in the ttRepSyncSet
procedure.

FAILTHRESHOLD Set the log threshold, as described in
“Setting the log failure threshold” on page
108.

CONFLICT REPORTING
{SUSPEND|RESUME} AT

Specify the number of replication conflicts
per second at which conflict reporting is
suspended, and the number of conflicts per
second at which conflict reporting resumes.

STORE Attribute Description
Defining Replication Schemes 53

The FAILTHRESHOLD and TIMEOUT attributes can be unique to a specific
replication scheme definition. This means these attribute settings can vary if you
have applied different replication scheme definitions to your replicated data
stores. This is not true for any of the other attributes, which must be the same
across all replication scheme definitions. For example, setting the PORT attribute
for one scheme sets it for all schemes.

For an example replication scheme that uses a STORE clause to set the
FAILTHRESHOLD attribute, see Example 3.23 on page 85. For example
replication schemes that set the DISABLE RETURN attribute, see Example 3.17
on page 69 and Example 3.18 on page 70.

Note: If you use CREATE REPLICATION to establish different schemes on the
same data store with different PORT attributes, TimesTen ignores the setting
from the last CREATE REPLICATION statement. In this case, you must use
ALTER REPLICATION to change the PORT setting.

Compressing replicated traffic
If you are replicating over a low-bandwidth network, or if you are replicating
massive amounts of data, you can set the COMPRESS TRAFFIC attribute to
reduce the amount of bandwidth required for replication. The COMPRESS
TRAFFIC attribute compresses the replicated data from the data store specified
by the STORE parameter in your CREATE REPLICATION or ALTER
REPLICATION statement. TimesTen does not compress traffic from other data
stores.

Note: Though the compression algorithm is optimized for speed, enabling the
COMPRESS TRAFFIC attribute has some impact on replication throughput and
latency.

Example 3.4 For example, to compress replicated traffic from data store dsn1 and leave the
replicated traffic from dsn2 uncompressed, the CREATE REPLICATION
statement looks like:
CREATE REPLICATION repl.repscheme
ELEMENT d1 DATASTORE

MASTER dsn1 ON machine1
SUBSCRIBER dsn2 ON machine2

ELEMENT d2 DATASTORE
MASTER dsn2 ON machine2
SUBSCRIBER dsn1 ON machine1

STORE dsn1 ON machine1 COMPRESS TRAFFIC ON;
54 TimesTen to TimesTen Replication Guide

Example 3.5 To compress the replicated traffic between both the dsn1 and dsn2 data stores,
use:
CREATE REPLICATION repl.scheme
ELEMENT d1 DATASTORE

MASTER dsn1 ON machine1
SUBSCRIBER dsn2 ON machine2

ELEMENT d2 DATASTORE
MASTER dsn2 ON machine2
SUBSCRIBER dsn1 ON machine1

STORE dsn1 ON machine1 COMPRESS TRAFFIC ON
STORE dsn2 ON machine2 COMPRESS TRAFFIC ON;

Dynamic vs. static port assignments
As described in “Setting STORE attributes” on page 52, if you do not assign a
PORT attribute, the TimesTen daemon dynamically selects the port. When ports
are assigned dynamically in this manner for the replication agents, then the ports
of the TimesTen daemons have to match as well.

When statically assigning ports, it is important to specify the full host name,
DSN and PORT in the STORE attribute of the CREATE REPLICATION
statement.

Example 3.6 For example:
CREATE REPLICATION repl.repscheme
ELEMENT el1 TABLE repl.tab

MASTER dsn1 ON machine1
SUBSCRIBER dsn2 ON machine2

ELEMENT el2 TABLE repl.tab
MASTER dsn2 ON machine2
SUBSCRIBER dsn1 ON machine1

STORE dsn1 ON machine1 PORT 16080
STORE dsn2 ON machine2 PORT 16083;

Replication with multiple network interfaces
If your replication host has more than one network interface, you may wish to
configure replication to use an interface other than the default interface.
Although you must specify the host name returned by the operating system’s
hostname command when you define a replication element, you may configure
replication to send or receive traffic over a different interface using the ROUTE
clause.

Example 3.7 If host machine1 is configured with a second interface accessible by the host
name machine1fast, and machine2 is configured with a second interface at IP
address 192.168.1.100, you may specify that the secondary interfaces are used
with the replication scheme:
Defining Replication Schemes 55

CREATE REPLICATION repl.repscheme
ELEMENT e1 TABLE repl.tab

MASTER dsn1 ON machine1
SUBSCRIBER dsn2 ON machine2

ELEMENT e2 TABLE repl.tab
MASTER dsn2 ON machine2
SUBSCRIBER dsn1 ON machine1

ROUTE MASTER dsn1 ON machine1 SUBSCRIBER dsn2 ON machine2
MASTERIP machine1fast PRIORITY 1
SUBSCRIBERIP "192.168.1.100" PRIORITY 1

ROUTE MASTER dsn2 ON machine2 SUBSCRIBER dsn1 ON machine1
MASTERIP "192.168.1.100" PRIORITY 1
SUBSCRIBERIP machine1fast PRIORITY 1;

Alternately, on a replication host with more than one interface, you may wish to
configure replication to use one or more interfaces as backups, in case the
primary interface fails or the connection from it to the receiving host is broken.
You may use the ROUTE clause to specify two or more interfaces for each
master or subscriber that are used by replication in order of priority.

Example 3.8 If host machine1 is configured with two network interfaces at IP addresses
192.168.1.100 and 192.168.1.101, and host machine2 is configured with two
interfaces at IP addresses 192.168.1.200 and 192.168.1.201, you may specify that
replication use IP addresses 192.168.1.100 and 192.168.200 to transmit and
receive traffic first, and to try IP addresses 192.168.1.101 or 192.168.1.201 if the
first connection fails:
CREATE REPLICATION repl.repscheme
ELEMENT e TABLE repl.tab

MASTER dsn1 ON machine1
SUBSCRIBER dsn2 ON machine2

ROUTE MASTER dsn1 ON machine1 SUBSCRIBER dsn2 ON machine2
MASTERIP "192.168.1.100" PRIORITY 1
MASTERIP "192.168.1.101" PRIORITY 2
SUBSCRIBERIP "192.168.1.200" PRIORITY 1
SUBSCRIBERIP "192.168.1.201" PRIORITY 2;

Note: If replication on the master host is unable to bind to the MASTERIP with
the highest priority, it will try to connect using subsequent MASTERIP addresses
in order of priority immediately. However, if the connection to the subscriber
fails for any other reason, replication will try to connect using each of the
SUBSCRIBERIP addresses in order of priority before it tries the MASTERIP
address with the next highest priority.
56 TimesTen to TimesTen Replication Guide

Using a return service
As described in “How replication agents copy updates between data stores” on
page 12, you can configure your replication scheme with a return service to
ensure a higher level of confidence that your replicated data is consistent on both
the master and subscriber data stores. This section describes how to configure
and manage the return receipt and return twosafe services.

The topics in this section are:
• Establishing a return service
• Setting the return service timeout period
• Checking the status of return service transactions
• Managing return service timeout errors and replication state changes

Note: The term “return service” is used when describing either the return receipt
and return twosafe service. The term “return receipt” or “return twosafe” is used
when describing a specific type of return service.

Establishing a return service
You select a return service for greater confidence that your data is consistent on
both the master and subscriber data stores. Your decision to use either the default
asynchronous, return receipt, or return twosafe mode depends on the degree of
confidence you require and the performance trade-off you are willing to make in
exchange. See “Performance and recovery trade-offs” on page 42 for a complete
discussion of these trade-offs. In addition to the performance and recovery trade-
offs between the two return services, you should also consider the following:
• Return receipt can be used in more configurations, whereas return twosafe can

only be used in a bidirectional, hot-standby configuration.
• Return twosafe allows you to specify a “local action” to be taken on the

master data store in the event of a timeout or other error encountered when
replicating a transaction to the subscriber data store.

Note: A transaction is classified as return receipt or return twosafe when the
application updates a table that is configured for either return receipt or return
twosafe. Once a transaction is classified as either return receipt or return twosafe,
it remains so, even if the replication scheme is altered before the transaction
completes.
Defining Replication Schemes 57

The following sections describe the following return service attributes:
• RETURN RECEIPT
• RETURN RECEIPT BY REQUEST
• RETURN TWOSAFE
• RETURN TWOSAFE BY REQUEST
• NO RETURN

RETURN RECEIPT
As described in “Return receipt replication” on page 14, TimesTen provides an
optional return receipt service to loosely couple or synchronize your application
with the replication mechanism.

You can specify the RETURN RECEIPT attribute to enable the return receipt
service for the subscribers listed in the SUBSCRIBER clause of an ELEMENT
description. With return receipt enabled, when your application commits a
transaction for an element on the master data store, the application remains
blocked until the subscriber acknowledges receipt of the transaction update. If
the master is replicating the element to multiple subscribers, your application
remains blocked until all of the subscribers have acknowledged receipt of the
transaction update.

For an example replication scheme that uses return receipt services, see Example
3.20 on page 83.

Example 3.9 To confirm that all transactions committed on the repl.tab table in the master
store (masterds) are received by the subscriber (subscriberds), your
ELEMENT description (e) might look like the following:
ELEMENT e TABLE repl.tab

MASTER masterds ON "system1"
SUBSCRIBER subscriberds ON "system2"
 RETURN RECEIPT

If any of the subscribers are unable to acknowledge receipt of the transaction
within a configurable timeout period, your application receives a
tt_ErrRepReturnFailed (8170) warning on its commit request. See “Setting the
return service timeout period” on page 63 for more information on the return
service timeout period.

You can use the ttRepXactStatus procedure to check on the status of a return
receipt transaction. See “Checking the status of return service transactions” on
page 64 for details.

You can also configure the replication agent to disable the return receipt service
after a specific number of timeouts. See “Managing return service timeout errors
and replication state changes” on page 66 for details.
58 TimesTen to TimesTen Replication Guide

Note: The RETURN SERVICES OFF WHEN REPLICATION STOPPED
setting is the default setting for the return receipt service. The return receipt
service is disabled if replication is stopped. See “RETURN SERVICES { ON |
OFF } WHEN REPLICATION STOPPED” on page 67 for details.

RETURN RECEIPT BY REQUEST
RETURN RECEIPT enables notification of receipt for all transactions. You can
use RETURN RECEIPT with the BY REQUEST option to enable receipt
notification only for specific transactions identified by your application.

If you specify RETURN RECEIPT BY REQUEST for a subscriber, you must use
the ttRepSyncSet procedure to enable the return receipt service for a transaction.
The call to enable the return receipt service must be part of the transaction
(AutoCommit must be off).

Example 3.10 To enable confirmation that specific transactions committed on the repl.tab
table in the master store (masterds) are received by the subscriber
(subscriberds), your ELEMENT description (e) might look like:
ELEMENT e TABLE repl.tab

MASTER masterds ON "system1"
SUBSCRIBER subscriberds ON "system2"
 RETURN RECEIPT BY REQUEST

Prior to committing a transaction that requires receipt notification, we call
ttRepSyncSet within a SQLExecDirect function to request the return services
and to set the timeout period to 45 seconds:
rc = SQLExecDirect(hstmt, (SQLCHAR *)

"CALL ttRepSyncSet(0x01, 45, NULL)", SQL_NTS)

If any of the subscribers are unable to acknowledge receipt of the transaction
update within a configurable timeout period, your application receives a
tt_ErrRepReturnFailed (8170) warning on its commit request. See “Setting the
return service timeout period” on page 63 for more information on the return
service timeout period.

You can use ttRepSyncGet to check if a return service is enabled and obtain the
timeout value. For example:
Command> CALL ttRepSyncGet();
< 01, 45, 1>
1 row found.

For another example replication scheme that uses RETURN RECEIPT BY
REQUEST, see Example 3.25 on page 86.
Defining Replication Schemes 59

RETURN TWOSAFE
As described in “Return twosafe replication” on page 16, TimesTen provides a
return twosafe service to fully synchronize your application with the replication
mechanism. The return twosafe service ensures that each replicated transaction is
committed on the subscriber data store before it is committed on the master data
store. If replication is unable to verify the transaction has been committed on the
subscriber, it returns notification of the error. Upon receiving an error, your
application can either take a unique action or fall back on preconfigured actions,
depending on the type of failure.

Note: The return twosafe service is intended to be used in replication schemes
where two data stores must stay synchronized. One data store has an active role,
while the other data store has a standby role but must be ready to assume an
active role at any moment. You can use return twosafe with an active standby pair
or with a bidirectional replication scheme with exactly two data stores.

Note: The return twosafe service can not be used with replicated asynchronous
writethrough cache groups, except in an active standby pair configuration. See
Chapter 7, “Administering an Active Standby Pair” on page 151.

To enable the return twosafe service for the subscriber, specify the RETURN
TWOSAFE attribute in the SUBSCRIBER clause in your CREATE
REPLICATION or ALTER REPLICATION statement.

Example 3.11 To confirm all transactions committed on the master store (datastoreA) are also
committed by the subscriber (datastoreB), your ELEMENT description (a)
might look like the following:
ELEMENT a DATASTORE

MASTER datastoreA ON "system1"
SUBSCRIBER datastoreB ON "system2"
 RETURN TWOSAFE

The entire CREATE REPLICATION statement that specifies both datastoreA
and datastoreB in a bidirectional, hot-standby configuration with RETURN
TWOSAFE might look like the following:
CREATE REPLICATION repl.hotstandby
ELEMENT a DATASTORE

MASTER datastoreA ON "system1"
SUBSCRIBER datastoreB ON "system2"
 RETURN TWOSAFE

ELEMENT b DATASTORE
MASTER datastoreB ON "system2"
SUBSCRIBER datastoreA ON "system1"
 RETURN TWOSAFE;
60 TimesTen to TimesTen Replication Guide

When replication is configured with RETURN TWOSAFE, you must disable the
AutoCommit connection attribute.

When your application commits a transaction on the master data store, the
application remains blocked until the subscriber acknowledges it has successfully
committed the transaction. Initiating identical updates or deletes on both data
stores can lead to deadlocks in commits that can be resolved only by stopping the
processes.

If the subscriber is unable to acknowledge commit of the transaction update
within a configurable timeout period, your application receives a
tt_ErrRepReturnFailed (8170) warning on its commit request. See “Setting the
return service timeout period” on page 63 for more information on the return
service timeout period.

Responding to a return twosafe failure in a bidirectional replication
scheme
When using the twosafe service, you can specify how the master replication
agent responds to timeout errors by setting the LOCAL COMMIT ACTION
attribute in the STORE clause of your CREATE REPLICATION statement or
programmatically by means of the localAction parameter in the ttRepSyncSet
procedure. The possible actions upon receiving a timeout during replication of a
twosafe transaction are:
• COMMIT — Upon timeout, the replication agent on the master data store

commits the transaction and no more operations are allowed in the
transaction.

• NO ACTION — Upon timeout, the replication agent on the master data store
does not commit the transaction. The process recovery commits the
transaction. This is equivalent to a forced commit.

You can also configure the replication agent to disable the return twosafe service
after a specific number of timeouts. See “Managing return service timeout errors
and replication state changes” on page 66 for details.

If the call returns with an error related to applying the transaction on the
subscriber, such as primary key lookup failure, the application can choose to
rollback the transaction.

If the call returns with a type of error not mentioned above, you can use the
ttRepXactStatus procedure described in “Checking the status of return service
transactions” on page 64 to check on the status of the transaction. Depending on
the error, your application can choose to:
• Reissue the commit call — This repeats the entire return twosafe replication

cycle, so that the commit call returns when the success or failure of the
replicated commit on the subscriber is known or if the timeout period expires.
Defining Replication Schemes 61

• Roll back the transaction — If the call returns with an error related to applying
the transaction on the subscriber, such as primary key lookup failure, you can
rollback the transaction on the master.

If the master data store fails, then the catch-up feature described in “Automatic
catch-up of a failed master data store” on page 185 automatically restores the
master from the subscriber.

Note: The RETURN SERVICES ON WHEN REPLICATION STOPPED
setting is the default setting for the return twosafe service, so the return twosafe
service continues to block the application if replication is stopped. See
“RETURN SERVICES { ON | OFF } WHEN REPLICATION STOPPED” on
page 67 for details.

RETURN TWOSAFE BY REQUEST
RETURN TWOSAFE enables notification of commit on the subscriber for all
transactions. You can use RETURN TWOSAFE with the BY REQUEST option
to enable notification of subscriber commit only for specific transactions
identified by your application.

If you specify RETURN TWOSAFE BY REQUEST for a subscriber, you must
use the ttRepSyncSet procedure to enable the return twosafe service for a
transaction. The call to enable the return twosafe service must be part of the
transaction (autocommit must be off).

Example 3.12 To enable confirmation that specific transactions committed on the master store
(datastoreA) are also committed by the subscriber (datastoreB), your
ELEMENT description (a) might look like:
ELEMENT a DATASTORE

MASTER datastoreA ON "system1"
SUBSCRIBER datastoreB ON "system2"
 RETURN TWOSAFE BY REQUEST;

Before calling commit for a transaction that requires confirmation of commit on
the subscriber, we call ttRepSyncSet within a SQLExecDirect function to
request the return service, set the timeout period to 45 seconds, and specify no
action (1) in the event of a timeout error:
rc = SQLExecDirect(hstmt, (SQLCHAR *)

"CALL ttRepSyncSet(0x01, 45, 1)", SQL_NTS)

In this example, if the subscriber is unable to acknowledge commit of the
transaction within the timeout period, your application receives a
tt_ErrRepReturnFailed (8170) warning on its commit request. Your application
can then chose how to handle the timeout, in the same manner as described for
“RETURN TWOSAFE” on page 60.
62 TimesTen to TimesTen Replication Guide

See “Setting the return service timeout period” on page 63 for more information
on setting the return service timeout period.

You can use ttRepSyncGet to check if a return service is enabled and obtain the
timeout value. For example:
Command> CALL ttRepSyncGet();
< 01, 45, 1>
1 row found.

NO RETURN
You can use the NO RETURN attribute to explicitly disable either the return
receipt or return twosafe service, depending on which one you have enabled. NO
RETURN is the default condition. This attribute is typically set in ALTER
REPLICATION statements. See Example 6.14 on page 148 for an example.

Setting the return service timeout period
If your replication scheme is configured with one of the return services described
in “Using a return service” on page 57, a timeout occurs if any of the subscribers
are unable to send an acknowledgement back to the master within a specified
timeout period.

The default return service timeout period is 10 seconds. You can specify a
different return service timeout period by configuring the RETURN WAIT TIME
attribute in the STORE clause of your CREATE REPLICATION or ALTER
REPLICATION statement, or programmatically by calling the ttRepSyncSet
procedure with a new returnWait parameter. A RETURN WAIT TIME of ‘0’
indicates ‘no timeout.’

A return service may time out because of a replication failure or because
replication is so far behind that the return service transaction times out before it is
replicated. However, unless there is a simultaneous replication failure, failure to
obtain a return service confirmation from the subscriber does not necessarily
mean the transaction has not or will not be replicated.

You can set other STORE attributes to establish policies that automatically
disable return service blocking in the event of excessive timeouts and re-enable
return service blocking when conditions improve. See “Managing return service
timeout errors and replication state changes” on page 66 for details.

Note: Once set, the timeout period applies to all subsequent return service
transactions until you either reset the timeout period or terminate the application
session. The timeout setting applies to all return services for all subscribers.
Defining Replication Schemes 63

Example 3.13 To set the timeout period to 30 seconds for both bidirectionally replicated data
stores, datastoreA and datastoreB, in the hotstandby replication scheme, the
CREATE REPLICATION statement might look like the following:
CREATE REPLICATION repl.hotstandby
ELEMENT a DATASTORE

MASTER datastoreA ON "system1"
SUBSCRIBER datastoreB ON "system2"
 RETURN TWOSAFE

ELEMENT b DATASTORE
MASTER datastoreB ON "system2"
SUBSCRIBER datastoreA ON "system1"
 RETURN TWOSAFE

STORE datastoreA RETURN WAIT TIME 30
STORE datastoreB RETURN WAIT TIME 30;

Example 3.14 To use the ttRepSyncSet procedure to reset the timeout period to 45 seconds,
call ttRepSyncSet within a SQLExecDirect function. To avoid resetting the
requestReturn and localAction values, specify NULL:
rc = SQLExecDirect(hstmt, (SQLCHAR *)

"CALL ttRepSyncSet(NULL, 45, NULL)", SQL_NTS)

Checking the status of return service transactions
You can check the status of the last return receipt or return twosafe transaction
executed on the connection handle by calling the ttRepXactTokenGet and
ttRepXactStatus procedures.

First, call ttRepXactTokenGet to get a unique token for the last return service
transaction. If you are using return receipt, the token identifies the last return
receipt transaction committed on the master data store. If you are using return
twosafe, the token identifies the last twosafe transaction on the master that, in the
event of a successful commit on the subscriber, is committed by the replication
agent on the master. However, in the event of a timeout or other error, the twosafe
transaction identified by the token is not committed by the replication agent on
the master.

Next, pass the token returned by ttRepXactTokenGet to the ttRepXactStatus
procedure to obtain the return service status. The output of the ttRepXactStatus
procedure reports which subscriber or subscribers are configured to receive the
replicated data and the current status of the transaction (not sent, received,
committed) with respect to each subscriber. If the subscriber replication agent
encountered a problem applying the transaction to the subscriber data store, the
ttRepXactStatus procedure also includes the error string. If you are using return
twosafe and receive a timeout or other error, you can then decide whether to
unconditionally commit or retry the commit, as described in “RETURN
TWOSAFE” on page 60.
64 TimesTen to TimesTen Replication Guide

Note: If ttRepXactStatus is called without a token from ttRepXactTokenGet,
it returns the status of the most recent transaction on the connection which was
committed with the return receipt or return twosafe replication service.

The ttRepXactStatus procedure returns the return service status for each
subscriber as a set of rows formatted as:

subscriberName, status, error

Example 3.15 For example, you can use ttRepXactTokenGet and ttRepXactStatus in a
GetRSXactStatus function to report the status of each subscriber in your
replicated system:
SQLRETURN GetRSXactStatus (HDBC hdbc)
{
SQLRETURN rc = SQL_SUCCESS;
HSTMT hstmt = SQL_NULL_HSTMT;
char xactId [4001] = "";
char subscriber [62] = "";
char state [3] = "";

/* get the last RS xact id executed on this connection */
SQLAllocStmt (hdbc, &hstmt);
SQLExecDirect (hstmt, "CALL ttRepXactTokenGet ('R2')", SQL_NTS);

/* bind the xact id result as a null terminated hex string */
SQLBindCol (hstmt, 1, SQL_C_CHAR, (SQLPOINTER) xactId,
sizeof (xactId), NULL);

/* fetch the first and only row */
rc = SQLFetch (hstmt);

/* close the cursor */
SQLFreeStmt (hstmt, SQL_CLOSE);

if (rc != SQL_ERROR && rc != SQL_NO_DATA_FOUND)
{
/* display the xact id */
printf ("\nRS Xact ID: 0x%s\n\n", xactId);

/* get the status of this xact id for every subscriber */
SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR,
SQL_VARBINARY, 0, 0,

 (SQLPOINTER) xactId, strlen (xactId), NULL);

/* execute */
SQLExecDirect (hstmt, "CALL ttRepXactStatus (?)", SQL_NTS);

/* bind the result columns */
SQLBindCol (hstmt, 1, SQL_C_CHAR, (SQLPOINTER) subscriber,
sizeof (subscriber), NULL);

SQLBindCol (hstmt, 2, SQL_C_CHAR, (SQLPOINTER) state,
sizeof (state), NULL);
Defining Replication Schemes 65

/* fetch the first row */
rc = SQLFetch (hstmt);

while (rc != SQL_ERROR && rc != SQL_NO_DATA_FOUND)
{
/* report the status of this subscriber */
printf ("\n\nSubscriber: %s", subscriber);
printf ("\nState: %s", state);

/* are there more rows to fetch? */
rc = SQLFetch (hstmt);

}
}

/* close the statement */
SQLFreeStmt (hstmt, SQL_DROP);

return rc;
}

Managing return service timeout errors and replication
state changes
The replication state can be reset to Stop by a user or by the master replication
agent in the event of a subscriber failure. Also, as described in “Return receipt
replication” on page 14 and “Return twosafe replication” on page 16, a
subscriber may be unable to acknowledge a transaction that makes use of a return
service and may timeout with respect to the master. If any of the subscribers are
unable to acknowledge the transaction update within the timeout period, your
application receives an errRepReturnFailed warning on its commit request.

The default return service timeout period is 10 seconds. You can specify a
different return service timeout period by means of the RETURN WAIT TIME
attribute in the STORE clause of your CREATE REPLICATION or ALTER
REPLICATION statement, or programmatically by calling the ttRepSyncSet
procedure with a new returnWait parameter.

A return service may time out or fail because of a replication failure or because
replication is so far behind that the return service transaction times out before it is
replicated. However, unless there is a simultaneous replication failure, failure to
obtain a return service confirmation from the subscriber does not necessarily
mean the transaction has not or will not be replicated.

This section describes how to detect and respond to timeouts on return service
transactions. The main topics are:
• When to manually disable return service blocking
• Establishing return service failure/recovery policies
66 TimesTen to TimesTen Replication Guide

When to manually disable return service blocking
You may want respond in some manner if replication is stopped or return service
timeout failures begin to adversely impact the performance of your replicated
system. Your “tolerance threshold” for return service timeouts may depend on the
historical frequency of timeouts and the performance/availability equation for
your particular application, both of which should be factored into your response
to the problem.

When using the return receipt service, you can manually respond by using
ALTER REPLICATION to make changes to the replication scheme in order to
disable return receipt blocking for a particular subscriber, and possibly call the
ttDurableCommit procedure to durably commit transactions on the master that
you can no longer verify as being received by the subscriber. Should you decide
to disable return receipt blocking, your decision to re-enable it depends on your
confidence level that the return receipt transaction is no longer likely to timeout.

An alternative to manually responding to return service timeout failures is to
establish return service failure and recovery policies in your replication scheme.
These policies direct the replication agents to detect changes to the replication
state and to keep track of return service timeouts and then automatically respond
in some predefined manner.

Establishing return service failure/recovery policies
The following attributes in your CREATE REPLICATION or ALTER
REPLICATION statement set the failure/recovery policies when using a
RETURN RECEIPT or RETURN TWOSAFE service:
• RETURN SERVICES { ON | OFF } WHEN REPLICATION STOPPED
• DISABLE RETURN
• RESUME RETURN
• DURABLE COMMIT

The policies set by these attributes are applicable for the life of the data store or
until changed. However, the replication agent must be running to enforce these
policies.

RETURN SERVICES { ON | OFF } WHEN REPLICATION STOPPED
The RETURN SERVICES { ON | OFF } WHEN REPLICATION STOPPED
attribute determines whether a return receipt or return twosafe service continues
to be enabled or is disabled when replication is stopped. “Stopped” in this context
means that either the master replication agent is stopped (for example, by
ttAdmin -repStop master) or the replication state of the subscriber data store
is set to Stop or Pause with respect to the master data store (for example, by
ttRepAdmin -state stop subscriber). A failed subscriber that has exceeded
the specified FAILTHRESHOLD value is set to the Failed state, but is eventually
set to the Stop state by the master replication agent.
Defining Replication Schemes 67

Note: A subscriber may become unavailable for a period of time that exceeds
the timeout period specified by RETURN WAIT TIME but still be considered by
the master replication agent to be in the Start state. Failure policies related to
timeouts are set by the DISABLE RETURN attribute.

RETURN SERVICES OFF WHEN REPLICATION STOPPED disables the
return service when replication is stopped and is the default when using the
RETURN RECEIPT service. RETURN SERVICES ON WHEN REPLICATION
STOPPED allows the return service to continue to be enabled when replication is
stopped and is the default when using the RETURN TWOSAFE service.

Example 3.16 You have configured your CREATE REPLICATION statement to replicate
updates from the masterds data store to the subscriber1 data store. Your
CREATE REPLICATION statement specifies the use of RETURN RECEIPT
and RETURN SERVICES ON WHEN REPLICATION STOPPED.
CREATE REPLICATION repl.myscheme
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER subscriber1 ON "server2"
RETURN RECEIPT
STORE masterds ON "server1"

RETURN SERVICES ON WHEN REPLICATION STOPPED;

While the application is committing updates to the master, ttRepAdmin is used
to set subscriber1 to the Stop state:
ttRepAdmin -dsn masterds -receiver -name subscriber1 -state stop

The application continues to wait for return-receipt acknowledgements from
subscriber1 until the replication state is reset to Start and it receives the
acknowledgment:
ttRepAdmin -dsn masterds -receiver -name subscriber1 -state start

DISABLE RETURN
When a DISABLE RETURN value is set, the data store keeps track of the
number of return receipt or return twosafe transactions that have exceeded the
timeout period set by RETURN WAIT TIME. Should the number of timeouts
exceed the maximum value set by DISABLE RETURN, your applications revert
to a default replication cycle in which they no longer wait for subscribers to
acknowledge the replicated updates.

You can set DISABLE RETURN SUBSCRIBER to establish a failure policy to
disable return service blocking for only those subscribers that have timed out, or
DISABLE RETURN ALL to establish a policy to disable return service blocking
for all subscribers. You can use the ttRepSyncSubscriberStatus built-in
procedure or the ttRepReturnTransitionTrap SNMP trap to determine whether
68 TimesTen to TimesTen Replication Guide

a particular subscriber has been disabled by the DISABLE RETURN failure
policy.

The DISABLE RETURN failure policy is only enabled when the replication
agent is running. You can cancel this failure policy by stopping the replication
agent and specifying either DISABLE RETURN SUBSCRIBER or DISABLE
RETURN ALL with a zero value for NumFailures. The count of timeouts to
trigger the failure policy is reset either when you restart the replication agent,
when you set the DISABLE RETURN value to 0, or when return service
blocking is re-enabled by RESUME RETURN.

Note: DISABLE RETURN maintains a cumulative timeout count for each
subscriber. If there are multiple subscribers and you set DISABLE RETURN
SUBSCRIBER, the replication agent disables return service blocking for the first
subscriber that reaches the timeout threshold. Should one of the other subscribers
later reach the timeout threshold, the replication agent disables return service
blocking for that subscriber also, and so on.

Example 3.17 You have configured your CREATE REPLICATION statement to replicate
updates from the masterds data store to the data stores, subscriber1 and
subscriber2. Your CREATE REPLICATION statement specifies the use of
RETURN RECEIPT and DISABLE RETURN SUBSCRIBER with a
NumFailures value of 5. The RETURN WAIT TIME is set to 30 seconds.
CREATE REPLICATION repl.myscheme
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER subscriber1 ON "server2",

 subscriber2 ON "server3"
RETURN RECEIPT
STORE masterds ON "server1"

DISABLE RETURN SUBSCRIBER 5
RETURN WAIT TIME 30;

While the application is committing updates to the master, subscriber1
experiences problems and fails to acknowledge a replicated transaction update.
The application is blocked 30 seconds after which it commits its next update to
the master. Over the course of the application session, this commit/timeout cycle
repeats 4 more times until DISABLE RETURN disables return-receipt blocking
for subscriber1. The application continues to wait for return-receipt
acknowledgements from subscriber2 but not from subscriber1.

RETURN SERVICES OFF WHEN REPLICATION STOPPED is the default
setting for the return receipt service. Therefore, return receipt is disabled under
either one of the following conditions:
• The subscriber is unable to acknowledge an update within the specified

RETURN WAIT TIME, as described above.
Defining Replication Schemes 69

• Replication is stopped, as described in “RETURN SERVICES { ON | OFF }
WHEN REPLICATION STOPPED” on page 67.

RESUME RETURN
When we say return service blocking is “disabled,” we mean that the applications
on the master data store no longer block execution while waiting to receive
acknowledgements from the subscribers that they received or committed the
replicated updates (see Figure 1.3 on page 15 and Figure 1.4 on page 16). Note,
however, that the master still listens for an acknowledgement of each batch of
replicated updates from the subscribers as it would in the default replication case
described in “Default replication” on page 12.

You can establish a return service recovery policy by setting the RESUME
RETURN attribute and specifying a resume latency value. When this attribute is
set, and return service blocking has been disabled for a subscriber, the return
receipt or return twosafe service is re-enabled when the commit-to-acknowledge
time for a transaction falls below the value set by RESUME RETURN. The
commit-to-acknowledge time is the latency between when the application issues
a commit and when the master receives acknowledgement of the update from the
subscriber, as shown in Steps 2 and 5 in Figure 1.3 on page 15.

Example 3.18 For example, if return-receipt blocking has been disabled for subscriber1 and if
RESUME RETURN is set to 8 milliseconds, then return-receipt blocking is re-
enabled for subscriber1 the instant it acknowledges an update in less than 8
milliseconds from when it was committed by the application on the master.
CREATE REPLICATION repl.myscheme
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER subscriber1 ON "server2",

 subscriber2 ON "server3"
RETURN RECEIPT
STORE masterds ON "server1"

DISABLE RETURN SUBSCRIBER 5
RESUME RETURN 8;

The RESUME RETURN policy is enabled only when the replication agent is
running. You can cancel a return receipt resume policy by stopping the
replication agent and then using ALTER REPLICATION to set RESUME
RETURN to zero.

DURABLE COMMIT
You can set the DURABLE COMMIT attribute to specify the durable commit
policy for applications that have return service blocking disabled by DISABLE
RETURN. When DURABLE COMMIT is set to ON, it overrides the
DurableCommits setting on the master data store and forces durable commits
for those transactions that have had return service blocking disabled.
70 TimesTen to TimesTen Replication Guide

Note: If the replication scheme is configured with RETURN SERVICES ON
WHEN REPLICATION STOPPED, the replication agent must be running to
enforce the DURABLE COMMIT policy.

Example 3.19 For example, you can set DURABLE COMMIT ON when establishing a
DISABLE RETURN ALL policy to disable return-receipt blocking for all
subscribers. If return-receipt blocking is disabled, commits are durably
committed to disk to provide redundancy.
CREATE REPLICATION repl.myscheme
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER subscriber ON "server2",

 subscriber2 ON "server3"
RETURN RECEIPT
STORE masterds ON "server1"

DISABLE RETURN ALL 5
DURABLE COMMIT ON
RESUME RETURN 8;

Note: DURABLE COMMIT is also useful if you have only one subscriber.
However, if you are replicating the same data to two subscribers, as shown in
Example 3.17 and Example 3.18, and you disable return service blocking to one
subscriber, then you achieve better performance if you rely on the other
subscriber than you would by enabling durable commits.

Creating multiple replication schemes
Though it is often valid to assign more than one replication scheme to a data
store, managing your replicated system is usually much easier if you contain your
replication definition in a single scheme and apply that scheme to all of your
replicated data stores.

However, there may be circumstances in which you want to define different
replication schemes on different data stores. For example, in a large replicated
system that is distributed across multiple sites, it might be more efficient for each
site to autonomously manage a separate scheme. It might also be useful to create
separate schemes with different SUBSCRIBER and STORE attributes to better
accommodate the characteristics of the various hosts.

Note the following restrictions when creating multiple replication schemes:
• There cannot be more than one replication scheme that describes replication

from one data store to another data store. For example, you cannot have two
separate replication schemes that replicate from the masterds data store to the
subscriberds data store:
Defining Replication Schemes 71

CREATE REPLICATION repl.scheme1
ELEMENT e TABLE repl.tab1
MASTER masterds
SUBSCRIBER subscriberds;

CREATE REPLICATION repl.repscheme2
ELEMENT e2 TABLE repl.tab2
MASTER masterds
SUBSCRIBER subscriberds;

• A table for which a data store is the master in one replication scheme cannot
have the same data store as a master for the same table in another replication
scheme. For example, you cannot have two replication schemes that replicate
the repl.tab1 table from the masterds data store to the subscriber1ds and
subscriber2ds data stores:

CREATE REPLICATION repl.repscheme1
ELEMENT e TABLE repl.tab1
MASTER masterds
SUBSCRIBER subscriber1ds;

CREATE REPLICATION repl.repscheme2
ELEMENT e2 TABLE repl.tab1
MASTER masterds
SUBSCRIBER subscriber2ds;

Replicating tables with foreign key relationships
Ordinarily, you may choose to replicate all or merely a subset of tables that have
foreign key relationships with one another. However, if the foreign key
relationships have been configured with ON DELETE CASCADE, then you
must configure replication to replicate all of the tables, either by configuring the
replication scheme with a DATASTORE element that does not EXCLUDE any
of the tables, or by configuring the scheme with a TABLE element for every table
that is involved in the relationship.

Note: As a consequence of this requirement, it is not possible to add a table with
a foreign key relationship configured with ON DELETE CASCADE to a pre-
existing replication scheme using ALTER REPLICATION. Instead, you must use
DROP REPLICATION to drop the replication scheme, create the new table with
the foreign key relationship, and then use CREATE REPLICATION to create a
new replication scheme replicating all of the related tables.
72 TimesTen to TimesTen Replication Guide

Replicating materialized views
A materialized view is a summary of data selected from one or more TimesTen
tables, called detail tables. Though you cannot replicate materialized views
directly, you can replicate their underlying detail tables in the same manner as
you would replicate regular TimesTen tables.

The detail tables on the master and subscriber data stores can be referenced by
materialized views. However, TimesTen replication verifies only that the
replicated detail tables have the same structure on both the master and subscriber.
It does not enforce that the materialized views are the same on each data store.

If you replicate an entire data store containing a materialized or non-materialized
view as a DATASTORE element, only the detail tables associated with the view
are replicated. The view itself is not replicated. A matching view can be defined
on the subscriber data store, but is not required. If detail tables are replicated,
TimesTen automatically updates the corresponding view.

Materialized views defined on replicated tables may result in replication failures
or inconsistencies if the materialized view is specified so that overflow or
underflow conditions occur when the materialized view is updated.

Replicating cache groups
You can replicate cache groups to cache groups or to standard TimesTen tables. If
a cache group is replicated, then all of the tables in the cache group must be
replicated. You may not replicate some tables in a cache group and without
replicating all of them.

Note: The recommended method of replicating cache groups for high
availability is by using an active standby pair replication configuration. Active
standby pair replication allows for quick recovery in the event of a failure. See
“Active standby pairs with cache groups” on page 153 for more information.

A cache group can be replicated by one of the following methods:
• Replicate each of the tables in the cache group
• Replicate the data store that contains the cache group

See “Cache group replication scheme” on page 91 for examples.

This section includes the following topics on using standard replication to
replicate cache groups:
• Using ttRepAdmin to set up replication of cache groups
• Using CREATE CACHE GROUP to set up replication of cache groups
• Unidirectional replication of cache groups to cache groups
• Bidirectional replication of cache groups to cache groups
Defining Replication Schemes 73

See “Defining data store elements” on page 46 in the section about “Defining a
replication scheme” on page 44 for more information about including specific
cache groups in a replication scheme.

See “Recovering a failed data store” on page 187 for information about
recovering a failed data store that contains cache groups.

See “Administering an Active Standby Pair” on page 151 for more information
on setting up, administering and recovering replicated cache groups using active
standby pair replication. You should use active standby pair replication for
replicating cache groups whenever possible, in order to simplify both the initial
set up of your data stores and recovery from failures.

Using ttRepAdmin to set up replication of cache groups
You can duplicate cache groups by using the ttRepAdmin utility with the
-duplicate option to duplicate a data store containing cache groups. The
-duplicate option has two options: -keepCG and -noKeepCG. The -keepCG
option preserves the cache group definitions when the cache group is duplicated.
The -noKeepCG option does not preserve the cache group definitions. It converts
cache group tables into standard TimesTen tables during duplication. Both of
these options are instrumental in rolling out an active standby pair replication
configuration that includes cache groups.

Use ttRepAdmin -duplicate -keepCG to set up replication between cache
groups and also for failover when a master data store with cache groups fails.

Use ttRepAdmin -duplicate -noKeepCG to set up replication between a cache
group and standard TimesTen tables for load balancing.

The following sections illustrate the use of the -keepCG and -noKeepCG options
of ttRepAdmin -duplicate:
• Bidirectional hot standby READONLY cache groups with AUTOREFRESH:

-keepCG option
• Bidirectional hot standby WRITETHROUGH cache groups: -keepCG option
• Load-balancing AUTOREFRESH cache groups: -noKeepCG option

Bidirectional hot standby READONLY cache groups with
AUTOREFRESH: -keepCG option
In this scenario, the master data store contains an autorefresh READONLY cache
group as well as TimesTen tables that are not part of a cache group. You can use
the -keepCG option to create a subscriber data store that preserves the autorefresh
read-only cache group definition.

The cache group can be set up to be autorefreshed directly from Oracle. The
cache group on the master data store receives its updates directly from Oracle,
while the cache group on the subscriber automatically has its AUTOREFRESH
state set to PAUSED, and receives its updates from the master. If there is a failure
74 TimesTen to TimesTen Replication Guide

of the master data store, the AUTOREFRESH state on the subscriber can be set
to ON and it may be used as a master data store with no data loss. The original
master can then be recovered by duplicating it from the new master, or by
allowing the Master Catch-Up process to automatically resynchronize them if the
replication scheme has been configured with RETURN TWOSAFE.

The TimesTen tables that are not in the cache group should also be included in
the bidirectional replication scheme between the master data store and the
subscriber data store.

See Figure 3.4.

Figure 3.4 Bidirectional hot standby READONLY AUTOREFRESH
cache groups

Complete the following tasks to set up a pair of bidirectionally replicating data
stores that contain identical READONLY cache groups with AUTOREFRESH:

1. Create the master data store.

2. Set the cache agent user ID and password by calling ttCacheUidPwdSet. Start
the cache agent for the master data store by calling ttCacheStart or using the
ttAdmin -cacheStart command.

3. Create the READONLY cache group using the CREATE CACHE GROUP
command on the master data store with the AUTOREFRESH STATE set to
PAUSED (the default).

Oracle database

 Master Data Store Subscriber Data Store

Replication
TimesTen
table

TimesTen
table

Cache
table

Cache
table

Autorefresh Autorefresh
Defining Replication Schemes 75

4. Create the replication scheme on the master data store using the CREATE
REPLICATION statement.

5. Load the cache group on the master data store with the LOAD CACHE GROUP
statement. This sets the AUTOREFRESH STATE to ON.

6. Start the replication agent for the master data store by calling ttRepStart or using
the ttAdmin -repStart command.

7. Use the ttRepAdmin -duplicate command with the -keepCG option to create
the subscriber data store. The -keepCG option sets up the autorefresh objects for
the subscriber data store on the Oracle database. You must provide the cache
administration user ID and password because the cache groups are autorefresh.
The AUTOREFRESH STATE for the subscriber data store is automatically set to
PAUSED.

8. Start the cache agent for the subscriber data store.

9. Start the replication agent for the subscriber data store.

To recover from a master data store failure, complete the following tasks:

1. Stop the cache agent on the master data store if it is not already stopped, by
calling ttCacheStop or using the ttAdmin -cacheStop command.

2. Stop the replication agent on the master data store if it is not already stopped, by
calling ttRepStop or using the ttAdmin -repStop command.

3. On the subscriber data store, use the ALTER CACHE GROUP statement to set
the AUTOREFRESH STATE of the cache group to ON.

4. Restore the failed master data store using one of two methods:
• If the replication scheme is configured with RETURN TWOSAFE, reconnect

to the failed master data store. The Master Catch-Up process automatically
synchronizes the two data stores, and the AUTOREFRESH STATE on the
failed master is set to PAUSED. It now acts as the hot standby subscriber data
store.

• If the replication scheme is not configured with RETURN TWOSAFE, use
the ttRepAdmin -duplicate -keepCG command to duplicate the failed
master data store from the current master data store, as described in Step 7 of
the instructions for setting up the two data stores.

5. Start the cache agent for the recovered data store.

6. Start the replication agent for the recovered data store.

Note: See “Setting up an active standby pair” on page 154 for instructions on
using the -keepCG option as part of rolling out an active standby pair with read-
only AUTOREFRESH cache groups.
76 TimesTen to TimesTen Replication Guide

Bidirectional hot standby WRITETHROUGH cache groups:
-keepCG option
In this scenario, the master data store contains an ASYNCHRONOUS
WRITETHROUGH or SYNCHRONOUS WRITETHROUGH cache group. You
can use the -keepCG option to create a subscriber data store that preserves the
WRITETHROUGH cache group definition. See Figure 3.5.

Figure 3.5 Bidirectional hot standby WRITETHROUGH cache groups

Complete the following tasks to set up a pair of bidirectional hot standby data
stores that contain identical WRITETHROUGH cache groups:

1. Create the master data store.

2. Register the cache administration user ID and password if the
WRITETHROUGH cache group is ASYNCHRONOUS.

3. Create the WRITETHROUGH cache groups in the master data store and on the
node on which the subscriber data store are to be created.

4. Start the replication agent for the master data store.

5. Use ttRepAdmin -duplicate with the -keepCG option to create the subscriber
data store. The -keepCG option sets up the ASYNCHRONOUS
WRITETHROUGH (AWT) objects for the subscriber data store on the Oracle
database. You must provide the cache administration user ID and password if the
cache groups are AUTOREFRESH or AWT.

6. Start the replication agent for the subscriber data store.

Oracle database

 Master Data Store Subscriber Data Store

Replication
Cache
table

Cache
table

Asynchronous
or synchronous
writethrough

Asynchronous
or synchronous
writethrough
Defining Replication Schemes 77

If the cache group is ASYNCHRONOUS WRITETHROUGH, the subscriber
data store and the Oracle database may be in different replication states after a
master data store failure. The application may need to replay some of the
transactions to bring them into the same state.

To recover from a master data store failure, perform Steps 5 and 6 on the master
data store.

Note: The data stores can contain both AUTOREFRESH cache groups and
WRITETHROUGH cache groups. The tasks in this section set up replication
between the WRITETHROUGH cache groups but not between the
AUTOREFRESH cache groups. See “Bidirectional hot standby READONLY
cache groups with AUTOREFRESH: -keepCG option” on page 74.

Note: See “Setting up an active standby pair” on page 154 for instructions on
using the -keepCG option as part of rolling out an active standby pair with
ASYNCHRONOUS WRITETHROUGH cache groups.

Load-balancing AUTOREFRESH cache groups: -noKeepCG option
In this scenario, the master data store contains an AUTOREFRESH cache group
that receives changes from the Oracle database. The master data store is
replicated to subscriber data stores for read-only access. The subscriber data
stores contain TimesTen tables that are not in cache groups. Autorefresh occurs
only on the master data store. The subscriber data stores do not communicate
with the Oracle database and you do not need to have the Oracle client installed.
See Figure 3.6.
78 TimesTen to TimesTen Replication Guide

Figure 3.6 Load-balancing AUTOREFRESH cache groups

Complete the following tasks to set up replication for load-balancing
AUTOREFRESH cache groups:

1. Create the master data store.

2. Start the cache agent for the master data store.

3. Create the AUTOREFRESH cache group on the master data store.

4. Create the replication scheme.

5. Start the replication agent for the master data store.

6. Use ttRepAdmin -duplicate with the -noKeepCG option to create the
subscriber data stores.

7. Start the replication agent for the subscriber data stores.

Using CREATE CACHE GROUP to set up replication of
cache groups
Another way to set up replication between cache groups is to create both cache
groups with the CREATE CACHE GROUP statement and then to set up the
replication scheme. Both cache groups must specify identical cache group types.

Oracle database

Cache
table

TimesTen
table

TimesTen
table

Autorefresh

Master
data store

Subscriber data store
(read-only)

Subscriber data store
(read-only)

ReplicationReplication

Defining Replication Schemes 79

For example, a READONLY cache group can be replicated only to another
READONLY cache group. In addition, any cache group attributes specified in
the CREATE CACHE GROUP statement must be the same, with the exception
of the AUTOREFRESH, READONLY, AGING, and PROPAGATE attributes, as
described in “Unidirectional replication of cache groups to cache groups” on
page 80 and “Bidirectional replication of cache groups to cache groups” on page
81.

Unidirectional replication of cache groups to cache
groups
If unidirectionally replicated cache groups are created independently on each
data store using the CREATE CACHE GROUP statement, there are restrictions
on the valid configuration of some cache group attributes.

See “Cache group replication scheme” on page 91 for an example of a
unidirectional replication scheme that replicates a cache group.

Restrictions on AUTOREFRESH configuration
If the cache group is READONLY, AUTOREFRESH is automatically set to ON
when the cache group is loaded, so the AUTOREFRESH STATE on the
subscriber cache group must be explicitly set to OFF or PAUSED in the
CREATE CACHE GROUP statement.

If the cache group is USERMANAGED (the default) and the AUTOREFRESH
STATE on the master cache group is set to ON, then the AUTOREFRESH
STATE on the subscriber cache group must be set to OFF and the all of the tables
in the subscriber cache group must be configured as READONLY.

If the cache group is USERMANAGED and the subscriber cache group is
configured with PROPAGATE, then the cache group on both the master and
subscriber may not autorefresh. The cache groups must have no
AUTOREFRESH configuration, or if they do, they must both have the
AUTOREFRESH STATE set to OFF.

Restrictions on AGING configuration
If time-based aging is configured, the LIFETIME setting must be identical on
both the master and subscriber cache groups. Additionally, if AGING is set to
ON for one cache group, it must be set to ON for both

Restrictions on the WHERE clause
The WHERE clauses must identical for the both the master and subscriber cache
groups.
80 TimesTen to TimesTen Replication Guide

Bidirectional replication of cache groups to cache
groups
When replicating cache groups in a bidirectional replication scheme,
READONLY cache groups may specify AUTOREFRESH for both cache groups.
WRITETHROUGH cache groups may only specify AUTOREFRESH for one of
the cache groups. USERMANAGED cache groups may not use
AUTOREFRESH.

More specifically, for:
• READONLY cache groups - One cache group must specify an

AUTOREFRESH state of either PAUSED or OFF.
• SYNCHRONOUS WRITETHROUGH cache groups - No replication

issues.
• ASYNCHRONOUS WRITETHROUGH cache groups - No replication

issues
• USERMANAGED cache groups - Both cache groups must specify

AUTOREFRESH STATE OFF.

Note: The replication agent does not recognize changes made by ALTER
CACHE GROUP. If you use ALTER CACHE GROUP to reset the
AUTOREFRESH STATE, you must then restart the replication agent.

Replicating sequences
You can use replication to ensure that the current value of a sequence on a
subscriber data store is always in advance of the current value on the master data
store, thereby preventing conflicts if the sequence is later used to make updates
directly on the subscriber data store. For example, you may have an application
that uses a sequence to determine primary key values in a replicated table, and a
configuration that includes a hot standby data store that must assume the master
role when the master data store fails. By replicating your sequence, you can
guarantee that the same sequence value is not used twice, regardless of which
data store you update directly.

Sequence replication works by transmitting a new current value from the master
data store to the subscriber every 20 references to the sequence’s NEXTVAL,
starting with the first reference. For example, consider a sequence my.seq with a
MINVALUE of 1 and an INCREMENT of 2. The very first time that you use
my.seq.NEXTVAL in a transaction, the current value of the sequence on the master
data store is changed to three, and a new current value of 41 is replicated to the
subscriber. The next 19 references to my.seq.NEXTVAL on the master data store
result in no new current value being replicated, since the current value of 41 on
the subscriber data store is still ahead of the current value on the master. Only on
the twenty-first reference to my.seq.NEXTVAL is a new current value, 61,
Defining Replication Schemes 81

transmitted to the subscriber data store, as the subscriber’s previous current value
of 41 would now be behind the value of 43 on the master.

Sequence replication has these limitations:
• Sequences with the CYCLE attribute cannot be replicated.
• The definition of the replicated sequence on each peer data store must be

identical.
• No conflict checking is performed on sequences. If you make updates to

sequences in both data stores in a bidirectional replication configuration
without using the RETURN TWOSAFE service, it is possible for both
sequences to return the identical NEXTVAL.

If you need to use sequences in a bidirectional replication scheme where updates
may occur on either peer, you may instead use a non-replicated sequence with
different MINVALUE and MAXVALUE attributes on each data store. For
example, you may create sequence my.seq on datastore DS1 with a MINVALUE
of 1 and a MAXVALUE of 100, and the same sequence on DS2 with a
MINVALUE of 101 and a MAXVALUE of 200. Then, if you configure DS1 and
DS2 with a bidirectional replication scheme, you may make updates to either
data store using the sequence my.seq with the guarantee that the sequence values
never conflict. Be aware that if you are planning on using ttRepAdmin
-duplicate to recover from a failure in this configuration, you must drop and
then re-create the sequence with a new MINVALUE and MAXVALUE after you
have performed the duplicate.

Note: Replicated sequences are intended to be used in conjunction with
replicated tables. Therefore, sequence updates are only replicated when they are
followed by or used in updates to replicated tables. Operations on sequences such
as SELECT my.seq.NEXTVAL FROM sys.dual, while incrementing the sequence
value, are not replicated until they are followed by updates to tables that are
replicated. A side effect of this behavior is that these sequence updates are not
purged from the log until followed by updates to tables that are replicated. This
causes ttRepSubscriberWait and ttRepAdmin -wait to fail when only these
sequence updates are present at the end of the log.

See “Defining replication elements” on page 46 for more information on
configuring a replication scheme to include sequences.

Example replication schemes
The examples described in this section illustrate how to configure a variety of
replication schemes. The examples have been kept simple for clarity. You can use
these examples as a starting point from which to build more complex replication
schemes.

The schemes described are:
82 TimesTen to TimesTen Replication Guide

• Single subscriber scheme
• Multiple subscriber schemes
• Selective replication scheme
• Propagation scheme
• Bidirectional split workload scheme
• Bidirectional general workload scheme
• Cache group replication scheme
• Active standby pair

Single subscriber scheme
The scheme shown in Example 3.3 is based on the single master and subscriber
unidirectional replication scheme described in Chapter 2, “Quick Start.”
However, in this example, the two data stores are located on separate hosts,
system1 and system2. We also make use of the RETURN RECEIPT service to
confirm all transactions committed on the repl.tab table in the master store are
received by the subscriber, as described in “Return receipt replication” on page
14.

Figure 3.7 Unidirectional replication (single table)

Example 3.20 CREATE REPLICATION repl.repscheme
ELEMENT e TABLE repl.tab

MASTER masterds ON "system1"
SUBSCRIBER subscriberds ON "system2"
 RETURN RECEIPT;

The scheme shown in Example 3.21 establishes a master data store, named
MASTERDS, that replicates its entire contents (tab1 through tab7) to the
subscriber data store, named subscriberds, located on server2.

MASTERDS

Applications

SUBSCRIBERDS

REPL.TAB REPL.TAB

SYSTEM1 SYSTEM2
Defining Replication Schemes 83

Figure 3.8 Unidirectional replication (entire data store)

Example 3.21 CREATE REPLICATION repl.repscheme
 ELEMENT e DATASTORE

MASTER masterds ON "server1"
SUBSCRIBER subscriberds ON "server2";

Multiple subscriber schemes
You can create a replication scheme that includes up to 128 subscriber data
stores.

Figure 3.9 shows a master data store with a table (repl.tab) that is replicated to
two subscriber data stores:
• masterds master data store is on server1
• subscriber1ds subscriber data store is on server2
• subscriber2ds subscriber data store is on server3

Subscriber Data Store

MASTERDS

Applications

SERVER1 SERVER2

TAB1
TAB2

SUBSCRIBERDS

TAB3
TAB4

TAB5

TAB6

TAB7

TAB1
TAB2

TAB3
TAB4

TAB5

TAB6

TAB7
84 TimesTen to TimesTen Replication Guide

Figure 3.9 Replicating to multiple subscribers

Example 3.22 This example establishes a master data store, named masterds, that replicates the
repl.tab table to two subscriber data stores, subscriber1ds and
subscriber2ds, located on server2 and server3, respectively. The name of the
replication scheme is repl.twosubscribers. The name of the replication
element is e.
CREATE REPLICATION repl.twosubscribers
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER subscriber1ds ON "server2",

 subscriber2ds ON "server3";

Example 3.23 This example uses the basic example in Example 3.22 and adds a RETURN
RECEIPT attribute and a STORE parameter. RETURN RECEIPT enables the return
receipt service for both data stores. The STORE parameter sets a
FAILTHRESHOLD value of 10 to establish the maximum number of log files that
can accumulate on masterds for a subscriber before it assumes the subscriber has
failed. CREATE REPLICATION repl.twosubscribers
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER subscriber1ds ON "server2",

 subscriber2ds ON "server3"
RETURN RECEIPT

STORE masterds FAILTHRESHOLD 10;

MASTERDS

Applications

SUBSCRIBER1DS

REPL.TAB

REPL.TAB

SUBSCRIBER2DS

REPL.TABSERVER1

SERVER2

SERVER3
Defining Replication Schemes 85

Example 3.24 This example shows how to enable RETURN RECEIPT for only subscriber2ds
(no comma after the subsciber1ds definition).
CREATE REPLICATION repl.twosubscribers
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER subscriber1ds ON "server2"
SUBSCRIBER subscriber2ds ON "server3" RETURN RECEIPT

STORE masterds FAILTHRESHOLD 10;

Example 3.25 This example shows how to apply RETURN RECEIPT BY REQUEST to
subscriber1ds and RETURN RECEIPT to subscriber2ds. In this scheme,
applications accessing subscriber1ds must use the ttRepSyncSet procedure to
enable the return services for a transaction, while subscriber2ds
unconditionally provides return services for all transactions.
CREATE REPLICATION repl.twosubscribers
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER subscriberds1 ON "server2" RETURN RECEIPT BY REQUEST
SUBSCRIBER subscriber2ds ON "server3" RETURN RECEIPT

STORE masterds FAILTHRESHOLD 10;
86 TimesTen to TimesTen Replication Guide

Selective replication scheme
The selective replication scheme shown in Example 3.26 establishes a master
data store, named centralds, that replicates four tables. tab1 and tab2 are
replicated to the subscriber backup1ds. tab3 and tab4 are replicated to
backup2ds. The master data store is located on the finance server.Both
subscribers are located on the backupsystem server.

Figure 3.10 Selective replication

Example 3.26 CREATE REPLICATION repl.twobackups
ELEMENT a TABLE tab1
MASTER centralds ON "finance"
SUBSCRIBER backup1ds ON "backupsystem"

ELEMENT b TABLE tab2
MASTER centralds ON "finance"
SUBSCRIBER backup1ds ON "backupsystem"

ELEMENT d TABLE tab3
MASTER centralds ON "finance"
SUBSCRIBER backup2ds ON "backupsystem"

ELEMENT d TABLE tab4
MASTER centralds ON "finance"
SUBSCRIBER backup2ds ON "backupsystem";

Subscriber Data Store

CENTRALDS

Applications

BACKUP1DS

BACKUP2DS

FINANCE

BACKUPSYSTEM

TAB1

TAB1

TAB2

TAB2

TAB3

TAB3

TAB4

TAB4
Defining Replication Schemes 87

Propagation scheme
Example 3.27 shows a one-way replication scheme from a master data store to a
propagator that forwards the changes to two subscribers. For ELEMENT a, the
repl.tab table is updated at the centralds data store on the finance machine
and replicated to the propds propagator data store on the nethandler machine.
For ELEMENT b, the changes to the repl.tab table received by propds are
replicated to the two subscribers, backup1ds and backup2ds, on their respective
machines, backupsystem1 and backupsystem2.

Example 3.28 provides a similar configuration, but it uses two replication
schemes instead of one.

Note that replication for the repl.tab table must be described with separate
element names (a and b) in the same scheme, but can be described with the same
element name (a) when using separate schemes.

Figure 3.11 Propagation

Example 3.27 CREATE REPLICATION repl.propagator
ELEMENT a TABLE repl.tab
MASTER centralds ON "finance"
SUBSCRIBER propds ON "nethandler"

ELEMENT b TABLE repl.tab
PROPAGATOR propds ON "nethandler"
SUBSCRIBER backup1ds ON "backupsystem1",

 backup2ds ON "backupsystem2";

PROPDS

BACKUP1DS

BACKUP2DS

NETHANDLER

BACKUPSYSTEM2

Subscriber Data Store

CENTRALDS

Applications

FINANCE

REPL.TAB REPL.TAB

REPL.TAB

REPL.TAB

BACKUPSYSTEM1

N
et

w
o

rk
 (

W
A

N
)

88 TimesTen to TimesTen Replication Guide

Example 3.28 CREATE REPLICATION repl.propagator
ELEMENT a TABLE repl.tab
MASTER centralds ON "finance"
SUBSCRIBER propds ON "nethandler";

CREATE REPLICATION repl.propagator2
ELEMENT a TABLE repl.tab
PROPAGATOR propds ON "nethandler"
SUBSCRIBER backup1ds ON "backupsystem1",

 backup2ds ON "backupsystem2";

Bidirectional split workload scheme
Figure 3.12 shows a split workload bidirectional replication scheme for two data
stores, westds on the westcoast host and eastds on the eastcoast host.
Customers are represented in two tables: waccounts contains data for customers
in the Western region and eaccounts has data for customers from the Eastern
region. The westds data store updates the waccounts table and replicates it to the
eastds data store. The eaccounts table is owned by the eastds data store and is
replicated to the westds data store. The RETURN RECEIPT attribute enables the
return receipt service to guarantee that transactions on either master table are
received by their subscriber.

Example 3.30 shows the same configuration using separate replication schemes,
r1 and r2.

Figure 3.12 Split workload replication

Example 3.29 CREATE REPLICATION repl.r1
ELEMENT elem_waccounts TABLE repl.waccounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast" RETURN RECEIPT

ELEMENT elem_eaccounts TABLE repl.eaccounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast" RETURN RECEIPT;

WESTDS

Applications

EASTDS

Applications

WACCOUNTS WACCOUNTS

EACCOUNTSEACCOUNTS

WESTCOAST EASTCOAST
Defining Replication Schemes 89

Example 3.30 CREATE REPLICATION repl.r1
ELEMENT elem_waccounts TABLE repl.waccounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast" RETURN RECEIPT;

CREATE REPLICATION repl.r2
ELEMENT elem_eaccounts TABLE repl.eaccounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast" RETURN RECEIPT;

Bidirectional general workload scheme
Figure 3.13 shows a general workload bidirectional replication scheme in which
the accounts table can be updated on either the eastds or westds data store.
Each data store is both a master and a subscriber for the accounts table.

When elements are replicated in this manner, your applications should write to
each data store in a coordinated manner to avoid simultaneous updates on the
same data. To manage update conflicts, you can include a timestamp column of
type BINARY(8) in your table (as shown by the tstamp column in Example
3.32) and enable timestamp comparison by using the replication scheme shown
in Example 8.2 on page 172.

See “Replication conflict detection and resolution” on page 167 for a complete
discussion on how to manage update conflicts.

Note: A general workload configuration should not be used with the return
twosafe return service, nor should it be used with Cache Connect to Oracle.

Figure 3.13 Distributed workload replication

WESTDS

Applications

EASTDS

Applications

ACCOUNTS ACCOUNTS

WESTCOAST EASTCOAST
90 TimesTen to TimesTen Replication Guide

Example 3.31 CREATE REPLICATION repl.r1
ELEMENT elem_accounts_1 TABLE repl.accounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"

ELEMENT elem_accounts_2 TABLE repl.accounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";

Example 3.32 CREATE TABLE repl.accounts (custname VARCHAR2(30) NOT NULL,
 address VARCHAR2(80),
 curbalance DEC(15,2),
 tstamp BINARY(8),
 PRIMARY KEY (custname));

Cache group replication scheme
Figure 3.14 shows a database server running Oracle and two application servers,
server1 and server2, running TimesTen. The TargetCustomers cache group
shown in Example 3.34 is replicated in a unidirectional manner from the
masterds data store running on server1 to the TargetCustomers cache group
shown in Example 3.35 in the subscriberds data store running on server2.

Note: Though the replication scheme definition is shown before the cache group
definitions in the example, you must create these cache groups in their respective
data stores before you apply the replication scheme.

Figure 3.14 Replicating a cache group

Example 3.33 This example shows a scheme that replicates the read-only cache group,
TargetCustomers, to another read-only cache group.

TargetCustomers
Oracle DB

Application Application

MASTERDS SUBSCRIBERDS

SERVER1 SERVER2

Customer

Interests

OrderDetails

TargetCustomers

Orders

Customer

Interests

OrderDetails

Orders

Customer

Interests

OrderDetails

Orders

O
ra

cl
e

C
o

n
n

ec
t

Defining Replication Schemes 91

CREATE REPLICATION repl.reptargetcustomers
ELEMENT root TABLE repl.customer
 MASTER masterds ON "server1"
 SUBSCRIBER subscriberds ON "server2"

ELEMENT childorders TABLE repl.orders
 MASTER masterds ON "server1"
 SUBSCRIBER subscriberds ON "server2"

ELEMENT childorderdetails TABLE repl.orderdetails
 MASTER masterds ON "server1"
 SUBSCRIBER SUBSCRIBERDS ON "SERVER2"

ELEMENT childinterests TABLE repl.interests
 MASTER masterds ON "server1"
 SUBSCRIBER subscriberds ON "server2";

Example 3.34 This example demonstrates replication of the cache group with AUTOREFRESH
STATE ON.
CREATE READONLY CACHE GROUP TargetCustomers
AUTOREFRESH INTERVAL 240 MINUTES
FROM
customer(custid NUMBER NOT NULL,

name CHAR(100) NOT NULL,
addr CHAR(100),
zip NUMBER,
region CHAR(10),
PRIMARY KEY (custid)),

orders(orderid NUMBER NOT NULL,
custid NUMBER NOT NULL,
PRIMARY KEY (orderid),
FOREIGN KEY (custid) REFERENCES customer(custid)),

orderdetails(orderid NUMBER NOT NULL,
itemid NUMBER NOT NULL,
quantity NUMBER NOT NULL,
PRIMARY KEY (orderid, itemid),
FOREIGN KEY (orderid) REFERENCES orders(orderid)),

INTERESTS(custid NUMBER NOT NULL,
interest NUMBER NOT NULL,
PRIMARY KEY (custid, interest),
FOREIGN KEY (custid) REFERENCES customer(custid));
92 TimesTen to TimesTen Replication Guide

Example 3.35 This example demonstrates replication of the cache group with AUTOREFRESH
STATE OFF.
CREATE READONLY CACHE GROUP TargetCustomers
AUTOREFRESH STATE OFF
FROM
customer(custid NUMBER NOT NULL,

name CHAR(100) NOT NULL,
addr CHAR(100),
zip NUMBER,
region CHAR(10),
PRIMARY KEY (custid)),

orders(orderid NUMBER NOT NULL,
custid NUMBER NOT NULL,
PRIMARY KEY (orderid),
FOREIGN KEY (custid) REFERENCES customer(custid)),

orderdetails(orderid NUMBER NOT NULL,
itemid NUMBER NOT NULL,
quantity NUMBER NOT NULL,
PRIMARY KEY (orderid, itemid),
FOREIGN KEY (orderid) REFERENCES orders(orderid)),

interests(custid NUMBER NOT NULL,
interest NUMBER NOT NULL,
PRIMARY KEY (custid, interest),
FOREIGN KEY (custid) REFERENCES customer(custid));
Defining Replication Schemes 93

Active standby pair
An active standby pair is shown in Figure 3.15.

Figure 3.15 Active standby configuration

In an active standby pair, two data stores are defined as masters. One is an active
master data store, and the other is a standby master data store. The active master
data store is updated directly. The standby master data store receives the updates
from the active master data store and propagates the changes to up to 127 read-
only subscriber data stores.

In Example 3.36, rep1 and rep2 are designated as the master data stores. rep3
and rep4 are designated as the subscriber data stores. The replication mode is
return receipt.

Note: To create an active standby pair, use the CREATE ACTIVE STANDBY
PAIR statement. For more details about setting up an active standby pair, see
“Setting up an active standby pair” on page 154.

Example 3.36 CREATE ACTIVE STANDBY PAIR rep1 on "node1", rep2 on "node2"
RETURN RECEIPT
SUBSCRIBER rep3 ON "node3", rep4 ON "node4";

Applications

Read-only subscribers

Replication

Propagation

Standby
master
data store

Active
master
data store

rep3 rep4

rep1

rep2
94 TimesTen to TimesTen Replication Guide

Creating replication schemes with scripts
Creating your replication schemes with scripts can save you time and help you
avoid mistakes. This section provides some suggestions for automating the
creation of replication schemes using Perl.

Consider the general-workload bidirectional scheme shown in Example 3.37.
Entering the ELEMENT description for the five tables, repl.accounts,
repl.sales, repl.orders, repl.inventory, and repl.customer, would be
tedious and error-prone if done manually.

Example 3.37 CREATE REPLICATION repl.bigscheme
 ELEMENT elem_accounts_1 TABLE repl.accounts
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"

 ELEMENT elem_accounts_2 TABLE repl.accounts
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"

 ELEMENT elem_sales_1 TABLE repl.sales
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"

 ELEMENT elem_sales_2 TABLE repl.sales
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"

 ELEMENT elem_orders_1 TABLE repl.orders
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"

 ELEMENT elem_orders_2 TABLE repl.orders
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"

 ELEMENT elem_inventory_1 TABLE repl.inventory
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"

 ELEMENT elem_inventory_2 TABLE repl.inventory
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast"

 ELEMENT elem_customers_1 TABLE repl.customers
 MASTER westds ON "westcoast"
 SUBSCRIBER eastds ON "eastcoast"

 ELEMENT elem_customers_2 TABLE repl.customers
 MASTER eastds ON "eastcoast"
 SUBSCRIBER westds ON "westcoast";
Defining Replication Schemes 95

It is often more convenient to automate the process of writing a replication
scheme with scripting. For example, the Perl script shown in Example 3.38 can
be used to build the scheme shown in Example 3.37.

Example 3.38 @tables = qw(
 repl.accounts
 repl.sales
 repl.orders
 repl.inventory
 repl.customers

);

print "CREATE REPLICATION repl.bigscheme";

foreach $table (@tables) {
$element = $table;
$element =~ s/repl\./elem_/;

print "\n";
print " ELEMENT $element_1 TABLE $table\n";
print " MASTER westds ON \"westcoast\"\n";
print " SUBSCRIBER eastds ON \"eastcoast\"\n";
print " ELEMENT $element_2 TABLE $table\n";
print " MASTER eastds ON \"eastcoast\"\n";
print " SUBSCRIBER westds ON \"westcoast\"";

 }
print ";\n";

The @tables array shown in Example 3.38 can be obtained from some other
source, such as a data store. For example, you can use ttIsql and grep in a Perl
statement to generate a @tables array for all of the tables in the WestDSN data
store with the owner name repl:
@tables = `ttIsql -e "tables; quit" WestDSN

 | grep " REPL\."`;
96 TimesTen to TimesTen Replication Guide

Example 3.39 shows a modified version of the script in Example 3.38 that creates
a replication scheme for all of the repl tables in the WestDSN data store. (Note
that some substitution may be necessary to remove extra spaces and line feeds
from the grep output.)

Example 3.39 @tables = `ttIsql -e "tables; quit" WestDSN
 | grep " REPL\."`;

print "CREATE REPLICATION repl.bigscheme";

foreach $table (@tables) {
$table =~ s/^\s*//; # Remove extra spaces
$table =~ s/\n//; # Remove line feeds
$element = $table;
$element =~ s/repl\./elem_/;

print "\n";
print " ELEMENT $element_1 TABLE $table\n";
print " MASTER westds ON \"westcoast\"\n";
print " SUBSCRIBER eastds ON \"eastcoast\"\n";
print " ELEMENT $element_2 TABLE $table\n";
print " MASTER eastds ON \"eastcoast\"\n";
print " SUBSCRIBER westds ON \"westcoast\"";

 }
print ";\n";
Defining Replication Schemes 97

98 TimesTen to TimesTen Replication Guide

4
Setting Up a Replicated System

This chapter describes how to set up and start replication. The typical tasks
related to setting up and starting a replicated system are listed in Table 4.1.

Table 4.1 Tasks related to setting up and starting a replicated system

Note: To set up an active standby pair, see “Setting up an active standby pair” on
page 154 in Chapter 7, “Administering an Active Standby Pair.”

Task What you do

Configure the network See “Configuring the network” on page 100

Establish data stores and
set up environment

See “Setting up the replication environment” on
page 104

Set security on replicated
data stores

See “Replicating access controlled data stores”
on page 110

Define a replication
scheme

See Chapter 3, “Defining Replication Schemes”

Apply replication scheme
to the data stores

See “Applying a replication scheme to a data
store” on page 111

Start and stop the
replication agent for each
data store

See “Starting and stopping the replication
agents” on page 111

Set the replication state of
subscribers

See “Setting the replication state of subscribers”
on page 114
 99

Configuring the network
This section describes some of the issues to be considered when replicating
TimesTen data over a network. The general topics are:
• Network bandwidth requirements
• Replication in a WAN environment
• Configuring host IP addresses
• Identifying the local host of a replicated data store

Network bandwidth requirements
The network bandwidth required for TimesTen replication depends on the bulk
and frequency of the data being replicated. This discussion explores the types of
transactions that characterize the high and low ends of the data range and the
network bandwidth required to replicate the data between TimesTen data stores.

The high end of the data range can be characterized by updates or inserts of small
amounts of data, such as inserting 128 bytes into a row, which can result in
approximately 1.5 - 1.6 MB per second of replicated data. The lower end might
be characterized by a single char(10) column update running with return receipt,
which can result in approximately 125 KB per second of replicated data.

The following table provides guidelines for calculating the size of replicated
records.

Record Type Size

Begin transaction 48 bytes

Propagate 48 bytes

Update 116 bytes
+ 18 bytes per column updated
+ size of old column values
+ size of new column values
+ size of the primary key or unique key

Delete 104 bytes
+ size of the primary key or unique key

Insert 104 bytes
+ size of the primary key or unique key
+ size of inserted row

End transaction 48 bytes
100 TimesTen to TimesTen Replication Guide

Transactions are sent between replicated data stores in batches. A batch is created
whenever there is no more data in the transaction log buffer in the master data
store, or when the current batch is roughly 256K bytes. At the end of each batch,
the master sends a 48-byte end-of-batch message and waits for a 48-byte
acknowledgement from the subscriber when the batch is received. See “How
replication agents copy updates between data stores” on page 12 for more
information.

As shown in the table below, the 100 Base-T Ethernet typical in a LAN can
sustain speeds of around 10 MB per second, which is more than enough sustained
bandwidth for the most demanding replication rates. However, if servers are
communicating in a WAN, the configuration of the replication scheme and
transaction load must be carefully matched to the available bandwidth of the
network.

As shown in the above table, with an available bandwidth of 4.8 MB per second,
a T3 line should provide sufficient bandwidth to support 2 subscribers operating
at the fastest possible transaction rates (totaling 3.2 MB/s) without loss of
performance.

In contrast, a T1 line should provide sufficient bandwidth to accommodate return
receipt replication for users inserting less than 1 KB into rows.

Replication in a WAN environment
TimesTen replication uses the TCP/IP protocol, which is not optimized for a
WAN environment. You can improve replication performance over a WAN by
installing a third-party “TCP stack” product. If replacing the TCP stack is not a
feasible solution, you can reduce the amount of network traffic that the TCP/IP
protocol has to deal with by setting the COMPRESS TRAFFIC attribute in your
CREATE REPLICATION statement. See “Compressing replicated traffic” on
page 54 for details.

See Oracle TimesTen In-Memory Database Installation Guide for information
about changing TCP/IP kernel parameters for better performance.

Network Area Network Sustained Speed

LAN 100 Base-T Ethernet 10 MB per second

WAN T3 4.8 MB per second

WAN T2 780 KB per second

WAN T1 197 KB per second
Setting Up a Replicated System 101

Configuring host IP addresses
In a replication scheme, you need to identify the name of the host machine on
which your data store resides. The operating system translates this host name to
one or more IP addresses. This section describes how to configure replication so
that it uses the correct host names and IP addresses each host machine.

Identifying data store hosts and network interfaces
When specifying the host for a data store in a replication element, you should
always use the name returned by the hostname command, as replication uses the
this same host name to verify that the current host is involved in the replication
scheme. Replication schemes may not be created that do not include the current
host.

If a host contains multiple network interfaces (with different IP addresses), you
should specify which interfaces are to be used by replication using the ROUTE
clause. You must specify a priority for each interface. Replication tries to first
connect using the address with the highest priority, and if a connection cannot be
established, it tries the remaining addresses in order of priority until a connection
is established. If a connection to a host fails while using one IP address,
replication attempts to re-connect (or fall back) to another IP address, if more
than one address has been specified in the ROUTE clause.

Note: Addresses for the ROUTE clause may be specified as either host names or
IP addresses. However, if your host has more than one IP address configured for
a given host name, you should only configure the ROUTE clause using the IP
addresses, in order to ensure that replication uses only the IP addresses that you
intend.

See “Replication with multiple network interfaces” on page 55 for more
information.

Host name resolution on Windows

If a replication configuration is specified using host names rather than IP
addresses, replication must be able to translate host names of peers into IP
addresses. For this to happen efficiently on Windows, make sure each Windows
machine is set up to query either a valid WINS server or a valid DNS server that
has correct information about the hosts on the network. In the absence of such
servers, static HOST-to-IP entries can be entered in either:
%windir%\system32\drivers\etc\hosts

or
%windir%\system32\drivers\etc\lmhosts

Without any of these four options, a Windows machine resorts to broadcasting,
which is extremely slow, to detect peer nodes.
102 TimesTen to TimesTen Replication Guide

You may also encounter extremely slow host name resolution if the Windows
machine cannot communicate with the defined WINS servers or DNS servers, or
if the host name resolution set up is incorrect on those servers. Use the ping
command to test whether a host can be efficiently located. The ping command
responds immediately if host name resolution is set up properly.

Note: You must be consistent in identifying a data store host in a replication
scheme. Do not identify a host using its IP address for one data store and then use
its host name for the same or another data store.

User-specified addresses for TimesTen daemons and subdaemons
By default, the TimesTen main daemon, all subdaemons and all agents use any
available address to listen on a socket for requests. You can modify the
ttendaemon.options file to specify an address for communication among the
agents and daemons by including a -listenaddr option. See "Managing
TimesTen daemon options" in Oracle TimesTen In-Memory Database
Operations Guide for details.

Suppose that your machine has two NICs whose addresses are 10.10.10.100 and
10.10.11.200. The loopback address is 127.0.0.1. Then keep in mind the
following as it applies to the replication agent:
• If you do not set the -listenaddr option in the ttendaemon.options file,

then any process can talk to the daemons and agents.
• If you set -listenaddr to 10.10.10.100, then any process on the local host or

the 10.10.10 net can talk to daemons and agents on 10.10.10.100. No
processes on the 10.10.11 net can talk to the daemons and agents on
10.10.10.100.

• If you set -listenaddr to 127.0.0.1, then only processes on the local host can
talk to the daemons and agents. No processes on other hosts can talk the
daemons and agents.

Identifying the local host of a replicated data store
Ordinarily, TimesTen replication is able to identify the hosts involved in a
replication configuration using normal operating system host name resolution
methods. However, in some rare instances, if the host has an unusual host name
configuration, TimesTen is unable to determine that the local host matches the
host name as specified in the replication scheme. When this occurs, you receive
error 8191, “This store is not involved in a replication scheme,” when attempting
to start replication using ttRepStart or ttAdmin -repStart. The built-in
procedure ttHostNameSet may be used in this instance to explicitly indicate to
TimesTen that the current data store is in fact the data store specified in the
replication scheme. See "ttHostNameSet" in the Oracle TimesTen In-Memory
Database API Reference Guide for more information.
Setting Up a Replicated System 103

Setting up the replication environment
The topics related to setting up your replication environment include:
• Establishing the data stores
• Managing the log on a replicated data store
• Managing the log on a replicated data store

Establishing the data stores
You can replicate one or more tables on any existing data store. If the data store
you want to replicate does not yet exist, you must first create one, as described in
Chapter 1, “Creating TimesTen Data Stores” in Oracle TimesTen In-Memory
Database Operations Guide.

After you have identified or created the master data store, create a DSN
definition for the subscriber data store on the receiving machine. Set the DSN
attributes for the master and subscriber data stores as described in "Data store
attributes" below.

After you have defined the DSN for your subscriber, you can populate the
subscriber data store with the tables to be replicated from the master in one of
two ways:
• Connect to the data store and use SQL statements to create new tables in the

subscriber data store that match those to be replicated from the master.
• Use the ttRepAdmin -duplicate utility to copy the entire contents of the

master data store to the subscriber, as described in “Copying a master data
store to a subscriber” on page 105.

Data store attributes
Replicated data stores must have the following attribute settings in their DSN
definitions:
• Logging: See “Managing the log on a replicated data store” on page 107 for

more information.
• LogBuffSize and LogFileSize: See “Managing the log on a replicated data

store” on page 107.

In addition, data stores which replicate to each other must all have the same
DatabaseCharacterSet attribute. TimesTen does not perform any character set
conversion between replicated data stores.

Note: It is possible to replicate between data stores with different settings for the
TypeMode attribute. However, you must make sure that the underlying data type
for each replicated column is the same on each node. See “TypeMode” on page
21 of the Oracle TimesTen In-Memory Database API Reference Guide for more
information.
104 TimesTen to TimesTen Replication Guide

Table requirements and restrictions
Tables to be replicated in any type of replication scheme must have the following
characteristics:
• The name, owner, and column definitions of the tables participating in the

replication scheme must be identical on both the master and subscriber data
stores.

• Tables to be replicated must have one of the following:
– A primary key
– A unique index over non-nullable columns

Replication uses the primary key or unique index to uniquely identify each
row in the replicated table. Replication always selects the first usable index
that turns up in a sequential check of the table's index array. If there is no
primary key, replication selects the first unique index without NULL columns
it encounters. The selected index on the replicated table in the master data
store must also exist on its counterpart table in the subscriber.

Note: The keys on replicated tables are transported in each update record to the
subscribers. Smaller keys transport most efficiently.

• VARCHAR2, NVARCHAR2, VARBINARY and TT_VARCHAR columns in
replicated tables must be limited to a size of 256,000 bytes. For a
VARCHAR2 column, the maximum length when using character length
semantics depends on the number of bytes each character occupies when
using a particular data store character set. For example, if the character set
requires four bytes for each character, the maximum possible length is 64,000
characters. For an NVARCHAR2 column, which requires two bytes for each
character, the maximum length when using character length semantics is
128,000 characters.

• If Access Control is enabled, you must have privileges to CREATE
REPLICATION, DROP TABLE, INSERT, SELECT, UPDATE, DELETE
for the tables that are replicated.

• Temporary tables can be defined and used in a data store that has a replication
scheme defined, but temporary tables themselves cannot be replicated.

Copying a master data store to a subscriber
A shorthand method for populating a subscriber data store that is to fully
replicate its master data store is to simply copy the contents of the master.
Copying a data store in this manner is also essential when recovering a failed
data store, as described in “Managing data store failover and recovery” on page
183.
Setting Up a Replicated System 105

You can use either the ttRepAdmin -duplicate utility or the
ttRepDuplicateEx C function to duplicate a data store. However, before copying
the contents of a master data store to populate a subscriber data store, you must:

1. Create a DSN for the new subscriber data store.

2. Create or alter a replication scheme to include the new subscriber data store and
its host, as described in “Defining a replication scheme” on page 44.

3. Apply the replication scheme to the master data store, as described in “Applying
a replication scheme to a data store” on page 111.

4. Start the replication agent for the master data store, as described in “Starting and
stopping the replication agents” on page 111.

For example, on host server1, we have a DSN named masterDSN that describes
the masterds data store. On host server2, we have a DSN named newstoreDSN
that describes the newstore data store.

To populate the newstore data store with the contents of masterds, perform the
following tasks:

On server1:
Using a text editor, create a new SQL file, named newrepscheme.sql, that
defines the replication scheme and calls the ttRepStart procedure to start
replication:
CREATE REPLICATION repl.repscheme
ELEMENT e TABLE repl.tab
MASTER masterds ON "server1"
SUBSCRIBER newstore ON "server2";

call ttRepStart;

From the command line, configure masterds with the replication scheme and
start the replication agent:
> ttIsql -f newrepscheme.sql masterds

On server2:
From the command line, copy the contents of the masterds data store into the
newstore data store:
> ttRepAdmin -dsn newstore -duplicate -from masterds
-host "server1"

The newstore data store should now have the same contents as the masterds
data store.

Note: The -host can be identified with either the name of the remote host or its
TCP/IP address. If you identify hosts using TCP/IP addresses, you must identify
the address of the local host (server2 in this example) by using the -localhost
106 TimesTen to TimesTen Replication Guide

option. For details, see “ttRepAdmin” in the Oracle TimesTen In-Memory
Database API Reference Guide.

You can also do a duplication operation similar to that shown above from a C
program by using the ttRepStart procedure and ttRepDuplicateEx C function.
See “Starting and stopping the replication agents” on page 111 and “Recovering
a failed data store” on page 187 for more information.

Problems? For the latest troubleshooting information, see "Troubleshooting Replication" in
Oracle TimesTen In-Memory Database Troubleshooting Procedures Guide.

Managing the log on a replicated data store
This section includes the following topics:
• About log buffer size and persistence
• About log growth on a master data store
• Setting the log failure threshold
• Setting attributes for disk-based logging

About log buffer size and persistence
A common misconception among TimesTen users is that there is a relationship
between the size of the log buffer and lost transactions. The size of the log buffer
has no impact on persistence.

If your DSN is configured with DurableCommits=0, then transactions are
written durably to disk only under the following circumstances:
• When the log buffer fills up.
• When a ttDurableCommit is called or when a transaction on a connection

with DurableCommits=1 is committed or rolled back.
• When the replication agent sends a batch of transactions to a subscriber and

the master has been configured for replication with the TRANSMIT
DURABLE attribute (the default). (See “Default replication” on page 12.)

• When the replication agent periodically executes a durable commit, whether
the primary store is configured with TRANSMIT DURABLE or not.

• When your DSN is configured with LogFlushMethod=2, writes are written
to disk before control is returned to the application.

The size of the log buffer has no influence on the ability of TimesTen to write
data to disk under any of the circumstances listed above.

About log growth on a master data store
With data stores that do not use replication, XLA, Cache Connect, or incremental
backup, unneeded records in the log buffer and unneeded log files are purged
each time the application calls a ttCkpt or ttCkptBlocking procedure. With a
Setting Up a Replicated System 107

replicated data store, transactions remain in the log buffer and log files until the
master replication agent confirms they have been fully processed by the
subscriber, as described in “How replication works” on page 11. Only then can
the master consider purging them from the log buffer and log files.

A master data store log can grow much larger than it would on an unreplicated
data store if there are changes to its subscriber state (see “Setting the replication
state of subscribers” on page 114 for information on the subscriber states). When
the subscriber is in the Start state, the master can purge logged data after it
receives confirmation it has been received by the subscriber. However, if a
subscriber becomes unavailable or set to the Pause state, the log on the master
data store cannot be flushed and the space used for logging can be exhausted.
When the log space is exhausted, subsequent updates on the master data store are
aborted.

Setting the log failure threshold
You can establish a threshold value that, when exceeded, sets an unavailable
subscriber to the Failed state before the available log space is exhausted.
You can set the log threshold by specifying a STORE parameter with a
FAILTHRESHOLD value in your CREATE REPLICATION or ALTER
REPLICATION statement. (See Example 3.23 on page 85 for an example.)

Note: If you use ALTER REPLICATION to reset the threshold value on an
existing replication scheme, you must first stop the replication agents before
using the ALTER REPLICATION to define a new threshold value, and then
restart the replication agents.

The default threshold value is 0, which means “no limit.” See “Setting attributes
for disk-based logging” on page 109 for details.

If a master sets a subscriber data store to the Failed state, it drops all of the data
for the failed subscriber from its log and transmits a message to the failed
subscriber data store. (If the master replication agent can communicate with the
subscriber replication agent, then the message is transmitted immediately.
Otherwise, the message is transmitted when the connection is reestablished.)
After receiving the message from the master, if the subscriber is configured for
bidirectional replication or to propagate updates to other subscribers, it does not
transmit any further updates, because its state from a replication standpoint has
been compromised.

Any application that connects to the failed subscriber receives a
tt_ErrReplicationInvalid (8025) warning indicating that the data store has been
marked Failed by a replication peer. Once the subscriber data store has been
informed of its failed status, its state on the master data store is changed from
Failed to Stop.
108 TimesTen to TimesTen Replication Guide

Applications can use the ODBC SQLGetInfo function to check if the data store
it is connected to has been set to the Failed state, as described in “Subscriber
failures” on page 184.

Setting attributes for disk-based logging
The LogBuffSize specifies the maximum size of your in-memory log buffer.
This buffer is flushed to a log file on the disk when it becomes full. Smaller
LogBuffSize values may impact performance, but not reliability.

When logging to disk, your main concern is establishing enough disk space for
the replication log files. There are two settings that control the amount of disk
space used by your log:
• The LogFileSize setting in your DSN specifies the maximum size of a log

file. Should your logging requirements exceed this value, additional log files
with the same maximum size are created. (If you set the LogFileSize to a
smaller value than the LogBuffSize, TimesTen automatically increases the
LogFileSize to match the LogBuffSize.)

• The log threshold setting specifies the maximum number of log files allowed
to accumulate before the master assumes a subscriber has failed. The
threshold value is the number of log files between the most recently written to
log file and the earliest log file being held for the subscriber. For example, if
the last record successfully received by all subscribers was in Log File 1 and
the last log record written to disk is at the beginning of Log File 4, then
replication is at least 2 log files behind (the contents of Log Files 2 and 3). If
the threshold value is 2, then the master sets the subscriber to the Failed state
after detecting the threshold value had been exceeded. This may take up to 10
seconds. See “Setting the log failure threshold” on page 108 for more
information.

When transactions are logged to disk, you can use bookmarks to detect the LSNs
(log sequence numbers) of the update records that have been replicated to
subscribers and those that have been written to disk. To view the location of the
bookmarks for the subscribers associated with masterDSN, use the c utility or
ttBookmark procedure, as described in “Show replicated log records” on page
130.

If a subscriber goes down and then comes back up before the threshold is
reached, then replication automatically “catches up” as the committed
transactions in the log files following the bookmark are automatically
transmitted. However, if the threshold is exceeded, the master sets the subscriber
to the Failed state. A failed subscriber must use ttRepAdmin -duplicate to
copy the master data store and start over, as described in “Managing data store
failover and recovery” on page 183.
Setting Up a Replicated System 109

Configuring a large number of subscribers
A replication scheme can include up to 128 subscribers. An active standby pair
can include up to 127 read-only subscribers. If you are planning a replication
scheme that includes a large number of subscribers, then ensure the following:
• The log buffer size should result in the value of LOG_FS_READS in the

SYS.MONITOR table being 0 or close to 0. This ensures that the replication
agent does not have to read any log records from disk. If the value of
LOG_FS_READS is increasing, then increase the log buffer size.

• CPU resources are adequate. The replication agent on the master data store
spawns a thread for every subscriber data store. Each thread reads and
processes the log independently and needs adequate CPU resources to make
progress.

Replicating access controlled data stores
When a data store is installed with Access Control enabled, replication daemon
administration is restricted to users with the ADMIN privilege and the ability to
create and change replication schemas is restricted to users with the DDL
privilege. However, replicated updates from the master are applied to a
subscriber regardless of access controls present on the subscriber. This means
you can enable Access Control on a master and not on a subscriber, or the other
way around.

In general, you should configure similar Access Controls on all instances in a
replication schema to avoid confusion. In some configurations it might make
sense to control access to the master and not the subscriber(s). That way you can
ensure the integrity of the data on the master but still provide global access to the
data on the subscribers. For example, you can replicate data from a secure master
to both a secure subscriber (for recovery) and a non-secure subscriber that can be
read by everyone.

See Chapter 1, “Access Control” in the Oracle TimesTen In-Memory Database
Installation Guide for more information on how to install and configure
TimesTen Access Control.

Replicating data stores across releases
Replication functions across releases only if the data store of the more recent
version of TimesTen was upgraded using ttMigrate from a data store of the older
version of TimesTen. A data store created in the more recent version of TimesTen
is not guaranteed to replicate correctly with the older version.

For example, replication between a data store created in a 5.1 version of
TimesTen and a data store created in a 6.0 version of TimesTen is not supported.
However, if one data store was created in a 5.1 version, and the peer data store
110 TimesTen to TimesTen Replication Guide

was created in a 5.1 version and then upgraded to a 6.0 version, replication
between them is supported.

Applying a replication scheme to a data store
Define your replication scheme as described in Chapter 3, “Defining Replication
Schemes.” Save the CREATE REPLICATION statement in a SQL file.

After you have described your replication scheme in a SQL file, you can execute
the SQL on the data store using the -f option to the ttIsql utility. The syntax is:
ttIsql -f schemefile.sql -connstr "dsn=DSN"

Example 4.1 If your replication scheme is described in a file called repscheme.sql, you can
execute the file on a DSN, called masterDSN, by entering:
> ttIsql -f repscheme.sql -connstr "dsn=masterDSN"

Under most circumstances, you should apply the same scheme to all of your
replicated data stores. You must invoke a separate ttIsql command on each host
to apply the replication scheme.

Example 4.2 If your scheme includes the data stores masterDSN on host S1, subscriber1DSN
on host S2, and subscriber2DSN on host S3, do the following:

On host S1, enter:
> ttIsql -f repscheme.sql masterDSN

On host S2, enter:
> ttIsql -f repscheme.sql subscriber1DSN

On host S3, enter:
> ttIsql -f repscheme.sql subscriber2DSN

You can also execute the SQL file containing your replication scheme from the
ttIsql command line. For example:
Command> run repscheme.sql;

Starting and stopping the replication agents
After you have defined a replication scheme, you can start the replication agents
for each data store involved in the replication scheme.

Note: If TimesTen was installed with Access Control enabled, you must have
ADMIN privileges to the data store to start or stop a replication agent. See
Chapter 1, “Access Control” in the Oracle TimesTen In-Memory Database
Installation Guide for details.
Setting Up a Replicated System 111

You can start and stop replication agents from either the command line or from
your program, as described in the sections:
• Controlling replication agents from the command line
• Controlling replication agents from a program

Note: If a data store does not participate in a replication scheme, attempts to
start a replication agent for that data store fail.

Controlling replication agents from the command line
To start and stop a replication agent from the command line, use the ttAdmin
utility with the -repStart or -repStop option:
ttAdmin -repStart DSN
ttAdmin -repStop DSN

Note: Replication DDL that is not permitted when the replication agent is
running may be possible during the brief period of time between issuing
ttAdmin -repStart command and the actual start of the replication agent. For
example, it may be possible to drop a replication scheme during this time.

Example 4.3 To start the replication agents for the DSNs named masterDSN and
subscriberDSN, enter:
ttAdmin -repStart masterDSN
ttAdmin -repStart subscriberDSN

To stop the replication agents, enter:
ttAdmin -repStop masterDSN
ttAdmin -repStop subscriberDSN

You can also use the ttRepStart and ttRepStop procedures to start and stop a
replication agent from the ttIsql command line.

Example 4.4 To start and stop the replication agent for the DSN named masterDSN, enter:
> ttIsql masterDSN
Command> call ttRepStart;
Command> call ttRepStop;

You can also use the ttAdmin utility to set the replication restart policy. By
default the policy is manual, which enables you to start and stop the replication
agents as described above. Alternatively, you can set the replication restart policy
for a data store to always or norestart.
112 TimesTen to TimesTen Replication Guide

Table 4.2 Replication Restart Policies

Note: The replication agents are managed by the TimesTen daemon, which must
be started before starting any replication agents.

When the restart policy is always, the replication agent is automatically started
when the data store is loaded into memory. (See "Specifying a RAM policy" in
the Oracle TimesTen In-Memory Database Operations Guide to determine when
a data store is loaded into memory.)

Example 4.5 To use ttAdmin to set the replication restart policy to always, enter:
ttAdmin -repPolicy always DSN

To reset the policy back to manual, enter:
ttAdmin -repPolicy manual DSN

Following an error or data store invalidation, both manual and always policies
cause the replication agent to be automatically restarted. When the agent restarts
automatically, it is often the first connection to the data store. This happens after
a fatal error that, for example, requires all applications to disconnect. The first
connection to a data store usually has to load the most recent checkpoint file and
often needs to do recovery. For a very large data store, this process may take
several minutes. During this period, all activity on the data store is blocked so
that new connections cannot take place and any old connections cannot finish
disconnecting. This may also result in two copies of the data store existing at the
same time because the old one stays around until all applications have
disconnected. For very large data stores for which the first-connect time may be
significant, you may want to wait for the old data store to become inactive first
before starting up the new one. You can do this by setting the restart policy to
norestart to specify that the replication agent is not to be automatically
restarted.

Restart
Policy

Start replication agent
when the TimesTen
daemon starts

Restart replication
agent on errors or
invalidations

always Yes Yes

manual No Yes

norestart No No
Setting Up a Replicated System 113

Controlling replication agents from a program
To start and stop the replication agent for a data store from your program,
connect to the replicated data store and use the ttRepStart and ttRepStop
procedures.

Example 4.6 To start and stop the replication agent for the data store that is identified by the
hdbc connection handle:
rc = SQLAllocStmt(hdbc, &hstmt);
rc = SQLExecDirect(hstmt, (SQLCHAR *)

"CALL ttRepStart()", SQL_NTS);
rc = SQLExecDirect(hstmt, (SQLCHAR *)

"CALL ttRepStop()", SQL_NTS);

You can programmatically set the replication restart policy by calling the
ttRepPolicySet procedure. You can use this procedure to set the restart policy for
a data store to either manual (default), always, or norestart in the same manner
as described for ttAdmin -repPolicy in “Controlling replication agents from
the command line” on page 112.

Example 4.7 To set the replication policy to always for the data store identified by the hdbc
connection handle:
rc = SQLAllocStmt(hdbc, &hstmt);
rc = SQLExecDirect(hstmt, (SQLCHAR *)

"CALL ttRepPolicy ('always')", SQL_NTS);

Setting the replication state of subscribers
The “state” of a subscriber replication agent is described by its master data store.
When recovering a failed subscriber data store, you must reset the replication
state of the subscriber data store with respect to the master data store it
communicates with in a replication scheme. You can reset the state of a
subscriber data store from either the command line or your program:
• From the command line, use ttRepAdmin -state to direct a master data

store to reset the replication state of one of its subscriber data stores.
• From your program, invoke the ttRepSubscriberStateSet procedure to direct

a master data store to reset the replication state of one or all of its subscriber
data stores.

See Chapter 5, “Monitoring Replication” for information on how to query the
state of a data store.
114 TimesTen to TimesTen Replication Guide

A master data store can set a subscriber data store to either the Start, Pause, or
Stop states. The data store state appears as an integer value in the STATE column
in the TTREP.REPNETWORK table, as shown below.

When a master data store sets one of its subscribers to the Start state, updates for
the subscriber are retained in the master’s log. When a subscriber is in the Stop
state, updates intended for it are discarded.

When a subscriber is in the Pause state, updates for it are retained in the master’s
log, but are not transmitted to the subscriber data store. When a master transitions
a subscriber from Pause to Start, the backlog of updates stored in the master’s
log is transmitted to the subscriber. (There is an exception to this, which is
described in “Managing data store failover and recovery” on page 183.) If a
master data store is unable to establish a connection to a stated subscriber, the
master periodically attempts to establish a connection until successful.

State Description

Start
STATE Value: 0

Replication updates are collected and transmitted to the
subscriber data store as soon as possible. If replication
for the subscriber data store is not operational, the
updates are saved in the log files until they can be sent.

Pause
STATE Value: 1

Replication updates are retained in the log with no
attempt to transmit them. Transmission begins when the
state is changed to Start.

Stop
STATE Value: 2

Replication updates are discarded without being sent to
the subscriber data store. Placing a subscriber data store
in the Stop state discards any pending updates from the
master’s transaction log.

Failed
STATE Value: 4

Replication to a subscriber is considered failed because
the threshold limit (log data) has been exceeded. This
state is set by the system is a transitional state before the
system sets the state to Stop.
Applications that connect to a Failed data store receive a
warning. See “General failover and recovery procedures”
on page 184 for more information.
Setting Up a Replicated System 115

Example 4.8 To use ttRepAdmin from the command line to direct the masterds master data
store to set the state of the subscriberds subscriber data store to Stop:
ttRepAdmin -dsn masterds -receiver -name subscriberds -state stop

Note: If you have multiple subscribers with the same name on different hosts,
use the ttRepAdmin -host parameter to identify the host for the subscriber.

Example 4.9 Assuming the replication scheme is named repl.scheme, the following
ttRepSubscriberStateSet procedure directs the master data store to set the state
of the subscriber data store (subscriberds ON system1) to Stop:
rc = SQLAllocStmt(hdbc, &hstmt);
rc = SQLExecDirect(hstmt, (SQLCHAR *)

"CALL ttRepSubscriberStateSet('repscheme', 'repl',
'subscriberds', 'system1', 2)", SQL_NTS);

Example 4.10 The following ttRepSubscriberStateSet procedure directs the master data store
to set the state of all of its subscriber data stores to Pause:
rc = SQLAllocStmt(hdbc, &hstmt);
rc = SQLExecDirect(hstmt, (SQLCHAR *)

"CALL ttRepSubscriberStateSet(, , , , 1)", SQL_NTS);

Only ttRepSubscriberStateSet can be used to set all of the subscribers of a
master to a particular state.The ttRepAdmin utility does not have any equivalent
functionality.
116 TimesTen to TimesTen Replication Guide

5
Monitoring Replication

This chapter describes some of the TimesTen utilities and procedures you can use
to monitor the replication status of your data stores.

You can monitor replication from both the command line and within your
programs. The ttStatus and ttRepAdmin utilities described in this chapter are
useful for command line queries. To monitor replication from your programs,
you can use the TimesTen procedures described in Chapter 2, “Built-In
Procedures” of the Oracle TimesTen In-Memory Database API Reference Guide
or create your own SQL SELECT statements to query the replication tables
described in Chapter 7, “System and Replication Tables” of the Oracle TimesTen
In-Memory Database SQL Reference Guide.

Note: The TimesTen SYS and TTREP tables can only be accessed for queries.
You cannot directly alter the contents of these tables.

This chapter includes the following topics:
• Show state of replication agents
• Show master data store information
• Show subscriber data store information
• Show configuration of replicated data stores
• Show replicated log records
• Show replication status
• Show the return service status for a subscriber

Show state of replication agents
You can display information about the current state of the replication agents:
• From the command line: ttStatus
• From the command line: ttAdmin -query
• From a program: ttDataStoreStatus

You can also obtain the state of specific replicated data stores as described in
“Show subscriber data store information” on page 122 and “Show configuration
of replicated data stores” on page 126.
 117

From the command line: ttStatus
Use the ttStatus utility to confirm that the replication agents are started for the
master and subscriber data stores. The output from a simple replication scheme
using a single master and subscriber data store (such as the scheme described in
“Single subscriber scheme” on page 83) should look similar to the output in
Example 5.1.

Example 5.1

> ttStatus
TimesTen status report as of Mon Dec 13 16:07:09 2004

Daemon pid 568 port 15100 instance tt51
TimesTen server pid 1372 started on port 15102
TimesTen webserver pid 1168 started on port 15104

--
Data store c:\temp\subscriberds
There are 7 connections to the data store
Data store is in shared mode
Shared Memory KEY Global\DBI41be2db3.1.SHM.4 HANDLE 0x294
Process pid 2764 context 0xb9ab70 connected (KEY
Global\DBI41be2db3.1.SHM.4)
Replication pid 1784 context 0x849008 connected (KEY
Global\DBI41be2db3.1.SHM.4)
Replication pid 1784 context 0x900008 connected (KEY
Global\DBI41be2db3.1.SHM.4)
Replication pid 1784 context 0x904f68 connected (KEY
Global\DBI41be2db3.1.SHM.4)
Subdaemon pid 156 context 0xda0068 connected (KEY Global\DBI41be2db3.1.SHM.4)
Subdaemon pid 156 context 0xe4bd30 connected (KEY Global\DBI41be2db3.1.SHM.4)
Subdaemon pid 156 context 0xe5c008 connected (KEY Global\DBI41be2db3.1.SHM.4)
Replication policy : Manual
Replication agent is running.
Oracle agent policy : Manual
--
Data store c:\temp\masterds
There are 8 connections to the data store
Data store is in shared mode
Shared Memory KEY Global\DBI41b8bacb.0.SHM.6 HANDLE 0x2dc
Process pid 2208 context 0xb9ab70 connected (KEY
Global\DBI41b8bacb.0.SHM.6)
Replication pid 2708 context 0x849008 connected (KEY
Global\DBI41b8bacb.0.SHM.6)
Replication pid 2708 context 0x8ebf28 connected (KEY
Global\DBI41b8bacb.0.SHM.6)
Replication pid 2708 context 0x8fbff8 connected (KEY
Global\DBI41b8bacb.0.SHM.6)
118 TimesTen to TimesTen Replication Guide

Replication pid 2708 context 0x900f58 connected (KEY
Global\DBI41b8bacb.0.SHM.6)
Subdaemon pid 1120 context 0xda0068 connected (KEY Global\DBI41b8bacb.0.SHM.6)
Subdaemon pid 1120 context 0xe3bb28 connected (KEY Global\DBI41b8bacb.0.SHM.6)
Subdaemon pid 1120 context 0xe60008 connected (KEY Global\DBI41b8bacb.0.SHM.6)
Replication policy : Manual
Replication agent is running.
Oracle agent policy : Manual

From the command line: ttAdmin -query
Use the ttAdmin utility with the -query option to confirm the policy settings
for a data store, including the replication restart policy described in “Starting and
stopping the replication agents” on page 111.

Example 5.2 > ttAdmin -query masterDSN
RAM Residence Policy : inUse
Manually Loaded In Ram : False
Replication Agent Policy : manual
Replication Manually Started : True
Oracle Agent Policy : manual
Oracle Agent Manually Started : False

From a program: ttDataStoreStatus
To obtain the status of the replication agents from a program, use the
ttDataStoreStatus procedure.

Example 5.3 To call ttDataStoreStatus within SQL to obtain the status of the replication
agents for the masterds and subscriberds data stores, you could use:

> ttIsql masterds
Command> CALL ttDataStoreStatus('/tmp/masterds');
< /tmp/masterds, 964, 00000000005D8150, subdaemon,
Global\DBI3b3234c0.0.SHM.35 >
< /tmp/masterds, 1712, 00000000016A72E0, replication,
Global\DBI3b3234c0.0.SHM.35 >
< /tmp/masterds, 1712, 0000000001683DE8, replication,
Global\DBI3b3234c0.0.SHM.35 >
< /tmp/masterds, 1620, 0000000000608128, application,
Global\DBI3b3234c0.0.SHM.35 >
4 rows found.

Command> CALL ttDataStoreStatus('/tmp/subscriberds');
< /tmp/subscriberds, 956, 00000000005D8150, subdaemon,
Global\DBI3b5c82a2.1.SHM.42 >
< /tmp/subscriberds, 1760, 00000000016B72E8, replication,
Global\DBI3b5c82a2.1.SHM.42 >
Monitoring Replication 119

< /tmp/subscriberds, 1760, 0000000001683DE8, replication,
Global\DBI3b5c82a2.1.SHM.42 >
3 rows found.

The output from ttDataStoreStatus is similar to that shown for the ttStatus
utility in “From the command line: ttStatus” on page 118.

Example 5.4 You can also call ttDataStoreStatus within a SQLExecDirect function to obtain
the status of the masterds replication agent:

#define STATUS_LEN 30
UCHAR status[STATUS_LEN];

rc = SQLExecDirect(hstmt, (SQLCHAR *)
"CALL ttDataStoreStatus ('/tmp/masterds')", SQL_NTS);
if (rc == SQL_SUCCESS) {
SQLBindCol(hstmt, 4, SQL_C_CHAR, status, STATUS_LEN, &cbStat);
}

Show master data store information
You can display information for a master data store:
• From the command line: ttRepAdmin -self -list
• From a program: SQL SELECT statement

From the command line: ttRepAdmin -self -list
To display information for a master data store from the command line, use the
ttRepAdmin utility with the -self -list options:

ttRepAdmin -dsn masterDSN -self -list

Example 5.5 This example shows the output for the master data store described in “Multiple
subscriber schemes” on page 84.

> ttRepAdmin -dsn masterds -self -list
Self host "server1", port auto, name "masterds", LSN 0/2114272

See Example 5.6 for a description of each field.
120 TimesTen to TimesTen Replication Guide

From a program: SQL SELECT statement
To obtain the information for a master data store from a program, use the
following SQL SELECT statement to query the TTREP.REPSTORES and
TTREP.REPSTORES tables:

SELECT t.host_name, t.rep_port_number, t.tt_store_name
 FROM ttrep.ttstores t, ttrep.repstores s
WHERE t.is_local_store = 0x01
AND t.tt_store_id = s.tt_store_id;

Use the ttBookmark procedure to obtain the replication hold LSN, as described
in “Show replicated log records” on page 130.

Example 5.6 This is the output of the above SELECT statement for the master data store
described in “Multiple subscriber schemes” on page 84. The fields are the host
name, the replication port number, and the data store name.

< server1, 0, masterds>

Call the ttBookmark procedure to obtain the replication hold LSN.

> ttIsql masterds
Command> call ttBookMark();
< 10, 928908, 10, 280540, 10, 927692 >
1 row found.

The output fields are defined as follows:

Field Description

host The name of the host machine for the data store.

port TCP/IP port used by a replication agent of another
data store to receive updates from this data store. A
value of 0 (zero) indicates replication has
automatically assigned the port.

name Name of the data store

Log File / Last written
LSN

The log file and log sequence number (LSN) that
identify the location of the most recently generated
transaction log record for the data store.
Monitoring Replication 121

Show subscriber data store information
Replication uses the TimesTen transaction log to retain information that must be
transmitted to subscriber sites. When communication to subscriber data stores is
interrupted or the subscriber sites are down, the log data accumulates. Part of the
output from the queries described in this section allows you to see how much log
data has accumulated on behalf of each subscriber data store and the amount of
time since the last successful communication with each subscriber data store.

You can display information for subscriber data stores:
• From the command line: ttRepAdmin -receiver -list
• From a program: ttReplicationStatus procedure
• From a program: SQL SELECT statement

From the command line: ttRepAdmin -receiver -list
To display information about a master data store’s subscribers from the command
line, use the ttRepAdmin utility with the -receiver -list options:

ttRepAdmin -dsn masterDSN -receiver -list

Example 5.7 This example shows the output for the subscribers described in “Multiple
subscriber schemes” on page 84.

> ttRepAdmin -dsn masterds -receiver -list
Peer name Host name Port State Proto
---------------- ------------------------ ------ ------- -----
subscriber1ds server2 Auto Start 10

Last Msg Sent Last Msg Recv Latency TPS RecordsPS Logs
------------- ------------- ------- ------- --------- ----
0:01:12 - 19.41 5 52 2

Peer name Host name Port State Proto
---------------- ------------------------ ------ ------- -----
subscriber2ds server3 Auto Start 10

Log File / Last LSN
forced to disk

The log file and LSN that identify the location of the
most recent transaction log record written to the disk.

Log File / Replication
hold LSN

The log file and LSN that identify the location of the
lowest (or oldest) record held in the log for possible
transmission to a subscriber. A value of -1/-1
indicates replication is in the Stop state with respect
to all subscribers.

Field Description
122 TimesTen to TimesTen Replication Guide

Last Msg Sent Last Msg Recv Latency TPS RecordsPS Logs
------------- ------------- ------- ------- --------- ----
0:01:04 - 20.94 4 48 2

The first line of the display contains the subscriber definition. The following row
of the display contains latency and rate information, as well as the number of log
files being retained on behalf of this subscriber. See Example 5.10 on page 125
for a description of each field.

Problems? If you have more than one scheme specified in your TTREP.REPLICATIONS
table, you must use the -scheme option to specify which scheme you wish to list.
Otherwise you receive the following error:

Must specify -scheme to identify which replication scheme to use

For the latest troubleshooting information, "Troubleshooting Replication" in
Oracle TimesTen In-Memory Database Troubleshooting Procedures Guide.

From a program: ttReplicationStatus procedure
You can obtain more detailed status for a specific replicated data store from a
program by using the ttReplicationStatus procedure.

Example 5.8 You can use ttReplicationStatus to obtain the replication status of the
subscriberds data store in relation to its master data store. From the master data
store, enter:

> ttIsql masterds

Command> CALL ttReplicationStatus ('subscriberds');
< subscriberds, myhost, 0, start, 1, 152959, repscheme, repl>
1 row found.

See Example 5.9 for an explanation of the output fields.

Example 5.9 You can also call ttReplicationStatus within a SQLExecDirect function to
obtain the replication status of the subscriberds data store:

#define STATUS_LEN 30
UCHAR status[STATUS_LEN];

rc = SQLExecDirect(hstmt, (SQLCHAR *)
"CALL ttReplicationStatus ('subscriberds')", SQL_NTS);
if (rc == SQL_SUCCESS) {
SQLBindCol(hstmt, 4, SQL_C_CHAR, status, STATUS_LEN, &cbStat);
}

The columns in the returned row are shown in the following table:
Monitoring Replication 123

Column Description

Subscriber name Name of the subscriber data store.

Host name Name of the machine that hosts the subscriber.

Port TCP/IP port used by the subscriber agent to receive
updates from the master. A value of 0 indicates
replication has automatically assigned the port.

State Current state of the subscriber with respect to its master
data store (see “Setting the replication state of
subscribers” on page 114 for information).

Logs Number of log files the master data store is retaining for
this subscriber.

Last Msg Sent Time (in seconds) since the master sent the last message
to the subscriber. Note that this includes the “heart beat”
messages sent between the data stores.

Replication
scheme name

The name of the replication scheme used.

Owner name The name of the owner of the replication scheme.
124 TimesTen to TimesTen Replication Guide

From a program: SQL SELECT statement
To obtain information about a master’s subscribers from a program, use the
following SQL SELECT statement to query the TTREP.REPNETWORK,
TTREP.TTSTORES, and SYS.MONITOR tables:

SELECT t1.tt_store_name, t1.host_name, t1.rep_port_number,
p.state, p.protocol, p.timesend, p.timerecv, p.latency,
p.tps, p.recspersec, t3.last_log_file - p.sendlsnhigh + 1
FROM ttrep.reppeers p, ttrep.ttstores t1, ttrep.ttstores t2,
sys.monitor t3
WHERE p.tt_store_id = t2.tt_store_id
AND t2.is_local_store = 0X01
AND p.subscriber_id = t1.tt_store_id
AND p.replication_name = 'repscheme'
AND p.replication_owner = 'repl'
AND (p.state = 0 OR p.state = 1);

Example 5.10 The following is sample output from the SELECT statement above:
< subscriber1ds, server2, 0, 0, 7, 1003941635, 0, -1.00000000000000, -1, -1, 1 >
< subscriber2ds, server3, 0, 0, 7, 1003941635, 0, -1.00000000000000, -1, -1, 1 >

The output from either the ttRepAdmin utility or the SQL SELECT statement
contains the following fields:

Field Description

Peer name Name of the subscriber data store

Host name Name of the machine that hosts the subscriber

Port TCP/IP port used by the subscriber agent to receive
updates from the master. A value of 0 indicates
replication has automatically assigned the port.

State Current replication state of the subscriber with respect to
its master data store (see “Setting the replication state of
subscribers” on page 114 for information).

Proto Internal protocol used by replication to communicate
between this master and its subscribers. You can ignore
this value.

Last Msg Sent Time (in seconds) since the master sent the last message
to the subscriber. Note that this includes the “heart beat”
messages sent between the data stores.

Last Msg Recv Time (in seconds) since this subscriber received the last
message from the master.
Monitoring Replication 125

Note: Latency, TPS, and RecordsPS report averages detected while replicating a
batch of records. These values can be unstable if the workload is not relatively
constant. A value of -1 indicates the master’s replication agent has not yet
established communication with its subscriber replication agents or sent data to
them.

Show configuration of replicated data stores
You can display the configuration of your replicated data stores:
• From ttIsql: repschemes command
• From the command line: ttRepAdmin -showconfig
• From a program: SQL SELECT statements

From ttIsql: repschemes command
To display the configuration of your replicated data stores from the ttIsql
prompt, use the repschemes command:

Command> repschemes;

Example 5.11 shows the configuration output from the replication scheme shown
in “Propagation scheme” on page 88.

Example 5.11 Replication Scheme REPL.PROPAGATOR:

Element: A
Type: Table REPL.TAB
Master Store: CENTRALDS on FINANCE Transmit Durable
Subscriber Store: PROPDS on NETHANDLER

Latency The average latency time (in seconds) between when the
master sends a message and when it receives the final
acknowledgement from the subscriber. (See note below.)

TPS The average number of transactions per second that are
committed on the master and processed by the
subscriber. (See note below.)

RecordsPS The average number of transmitted records per second.
(See note below.)

Logs Number of log files the master data store is retaining for
a subscriber.

Field Description
126 TimesTen to TimesTen Replication Guide

Element: B
Type: Table REPL.TAB
Propagator Store: PROPDS on NETHANDLER Transmit Durable
Subscriber Store: BACKUP1DS on BACKUPSYSTEM1
Subscriber Store: BACKUP2DS on BACKUPSYSTEM2

Store: BACKUP1DS on BACKUPSYSTEM1
Port: (auto)
Log Fail Threshold: (none)
Retry Timeout: 120 seconds
Compress Traffic: Disabled

Store: BACKUP2DS on BACKUPSYSTEM2
Port: (auto)
Log Fail Threshold: (none)
Retry Timeout: 120 seconds
Compress Traffic: Disabled

Store: CENTRALDS on FINANCE
Port: (auto)
Log Fail Threshold: (none)
Retry Timeout: 120 seconds
Compress Traffic: Disabled

Store: PROPDS on NETHANDLER
Port: (auto)
Log Fail Threshold: (none)
Retry Timeout: 120 seconds
Compress Traffic: Disabled

From the command line: ttRepAdmin -showconfig
To display the configuration of your replicated data stores from the command
line, use the ttRepAdmin utility with the -showconfig option:

ttRepAdmin -showconfig -dsn masterDSN

Example 5.12 shows the configuration output from the propagated data stores
configured by the replication scheme shown in “Propagation scheme” on page
88.

Example 5.12 > ttRepAdmin -showconfig -dsn centralds
Self host "finance", port auto, name "centralds", LSN 0/155656,
timeout 120, threshold 0

List of subscribers

Peer name Host name Port State Proto
---------------- ------------------------ ------ ------- -----
propds nethandler Auto Start 10
Monitoring Replication 127

Last Msg Sent Last Msg Recv Latency TPS RecordsPS Logs
------------- ------------- ------- ------- --------- ----
0:01:12 - 19.41 5 52 2

List of tables and subscriptions

Table details

Table : repl.tab Timestamp updates : -

Master Name Subscriber Name
----------- -------------
centralds propds

Table details

Table : repl.tab Timestamp updates : -

Master Name Subscriber name
----------- -------------
propds backup1ds
propds backup2ds

See Example 5.10 on page 125 for the meaning of the “List of subscribers”
fields. The “Table details” fields list the table and the names of its master
(Sender) and subscriber data stores.
128 TimesTen to TimesTen Replication Guide

From a program: SQL SELECT statements
To display the configuration of your replicated data stores from a program, use
the following SQL SELECT statements to query the TTREP.TTSTORES,
TTREP.REPSTORES, TTREP.REPNETWORK, SYS.MONITOR,
TTREP.REPELEMENTS, and TTREP.REPSUBSCRIPTIONS tables:

SELECT t.host_name, t.rep_port_number, t.tt_store_name,
s.peer_timeout, s.fail_threshold
 FROM ttrep.ttstores t, ttrep.repstores s
WHERE t.is_local_store = 0X01
AND t.tt_store_id = s.tt_store_id;

SELECT t1.tt_store_name, t1.host_name, t1.rep_port_number,
p.state, p.protocol, p.timesend, p.timerecv, p.latency,
p.tps, p.recspersec, t3.last_log_file - p.sendlsnhigh + 1
FROM ttrep.reppeers p, ttrep.ttstores t1, ttrep.ttstores t2,
sys.monitor t3
WHERE p.tt_store_id = t2.tt_store_id
AND t2.is_local_store = 0X01
AND p.subscriber_id = t1.tt_store_id
AND (p.state = 0 OR p.states = 1);

SELECT ds_obj_owner, DS_OBJ_NAME, t1.tt_store_name,t2.tt_store_name
FROM ttrep.repelements e, ttrep.repsubscriptions s,
ttrep.ttstores t1, ttrep.ttstores t2
WHERE s.element_name = e.element_name
AND e.master_id = t1.tt_store_id
AND s.subscriber_id = t2.tt_store_id
ORDER BY ds_obj_owner, ds_obj_name;

Use the ttBookmark procedure to obtain the replication hold LSN, as described
in “From a program: ttBookMark procedure” on page 131.

Example 5.13 The output from the above queries for the data stores configured by the
replication scheme shown in “Propagation scheme” on page 88 might look like
the following:

< finance, 0, centralds, 120, 0 >
< propds, nethandler, 0, 0, 7, 1004378953, 0, -1.00000000000000, -1, -1, 1 >
< repl, tab, centralds, propds >
< repl, tab, propds, backup1ds >
< repl, tab, propds, backup2ds >

See Example 5.6 on page 121 for descriptions for the first three columns in the
first row (minus the Replication hold LSN). The fourth column is the TIMEOUT
value that defines the amount of time a data store waits for a response from
another data store before resending a message. The last column is the log failure
threshold value described in “Setting the log failure threshold” on page 108.
Monitoring Replication 129

See Example 5.10 on page 125 for a description of the second row. The last three
rows show the replicated table and the names of its master (sender) and
subscriber (receiver) data stores.

Show replicated log records
Transactions are stored in the log in the form of log records. You can use
bookmarks to detect which log records have or have not been replicated by a
master data store.

A bookmark consists of log sequence numbers (LSNs) that identify the location
of particular records in the transaction log that you can use to gauge replication
performance. The LSNs associated with a bookmark are: hold LSN, last written
LSN, and last LSN forced to disk. The hold LSN describes the location of the
lowest (or oldest) record held in the log for possible transmission to a subscriber.
You can compare the hold LSN with the last written LSN to determine the number
of records in the transaction log that have not yet been transmitted to the
subscribers. The last LSN forced to disk describes the last records saved in a log
file on disk.

A more accurate way to monitor replication to a particular subscriber is to look at
the send LSN for the subscriber, which consists of the SENDLSNHIGH and
SENDLSNLOW fields in the TTREP.REPNETWORK table. In contrast to the
send LSN value, the hold LSN returned in a bookmark is computed every 10
seconds to describe the minimum send LSN for all the subscribers, so it provides
a more general view of replication progress that does not account for the progress
of replication to the individual subscribers. However, due to the asynchronous
nature of replication acknowledgements, which was mainly done to improve
performance, the send LSN can also be some distance behind. But the send LSN
for a subscriber is the most accurate value available and is always ahead of the
hold LSN.

You can display replicated log records:
• From the command line: ttRepAdmin -bookmark
• From a program: ttBookMark procedure

From the command line: ttRepAdmin -bookmark
To display the location of the bookmarks from the command line, use the
ttRepAdmin utility with the -bookmark option:

> ttRepAdmin -dsn masterds -bookmark
Replication hold LSN 10/927692
Last written LSN 10/928908
Last LSN forced to disk ... 10/280540

Each LSN is defined by two values:
130 TimesTen to TimesTen Replication Guide

Log file number / Offset in log file

The LSNs output from ttRepAdmin -bookmark are:

From a program: ttBookMark procedure
To display the location of the bookmarks from a program, use the ttBookmark
procedure.

Example 5.14 > ttIsql masterds

Command> call ttBookMark();
< 10, 928908, 10, 280540, 10, 927692 >
1 row found.

The first two columns in the returned row define the “Last written LSN,” the next
two columns define the “Last LSN forced to disk,” and the last two columns
define the “Replication hold LSN.”

Show replication status
You can use the ttRepAdmin utility with the -showstatus option to display the
current status of the replication agent. The status output includes the bookmark
locations, port numbers, and communication protocols used by the replication
agent for the queried data store.

The output from ttRepAdmin -showstatus includes the status of the MAIN
thread and the TRANSMITTER and RECEIVER threads used by the replication
agent. A master data store has a TRANSMITTER thread and a subscriber data
store has a RECEIVER thread. A data store that serves a master/subscriber role
in a bidirectional replication scheme has both a TRANSMITTER and a
RECEIVER thread.

Line Description

Replication hold LSN The location of the lowest (or oldest) record held
in the log for possible transmission to a subscriber.
A value of -1/-1 indicates replication is in the Stop
state with respect to all subscribers (or the queried
data store is not a master data store).

Last written LSN The location of the most recently generated
transaction log record for the data store.

Last LSN forced to disk The location of the most recent transaction log
record written to the disk.
Monitoring Replication 131

Each replication agent has a single REPLISTENER thread that listens on a port
for peer connections. On a master data store, the REPLISTENER thread starts a
separate TRANSMITTER thread for each subscriber data store. On a subscriber
data store, the REPLISTENER thread starts a separate RECEIVER thread for
each connection from a master.

If the TimesTen daemon requests that the replication agent stop or if a fatal error
occurs in any of the other threads used by the replication agent, the MAIN thread
waits for the other threads to gracefully terminate. The TimesTen daemon may or
may not restart the replication agent, depending upon certain fatal errors. The
REPLISTENER thread never terminates during the lifetime of the replication
agent. A TRANSMITTER or RECEIVER thread may stop but the replication
agent may restart it. The RECEIVER thread terminates on errors from which it
cannot recover or when the master disconnects.

Example 5.15 shows ttRepAdmin -showstatus output for a unidirectional
replication scheme in which the rep1 data store is the master and rep2 data store
is the subscriber. The first ttRepAdmin -showstatus output shows the status of
the rep1 data store and its TRANSMITTER thread. The second output shows the
status of the rep2 data store and its RECEIVER thread.

Following the example are sections that describe the meaning of each field in the
ttRepAdmin -showstatus output:
• MAIN thread status fields
• Replication peer status fields
• TRANSMITTER thread status fields
• RECEIVER thread status fields

Example 5.15 Consider the unidirectional replication scheme from the rep1 data store to the
rep2 data store:

CREATE REPLICATION r
ELEMENT e1 TABLE t

MASTER rep1
SUBSCRIBER rep2;

The replication status for the rep1 data store should look similar to the following:

> ttRepAdmin -showstatus rep1

DSN : rep1
Process ID : 1980
Replication Agent Policy : MANUAL
Host : MYHOST
RepListener Port : 1113 (AUTO)
Last write LSN : 0.1487928
Last LSN forced to disk : 0.1487928
Replication hold LSN : 0.1486640
132 TimesTen to TimesTen Replication Guide

Replication Peers:
Name : rep2
Host : MYHOST
Port : 1154 (AUTO)
Replication State : STARTED
Communication Protocol : 12

TRANSMITTER thread(s):
 For : rep2

Start/Restart count : 2
Send LSN : 0.1485960
Transactions sent : 3
Total packets sent : 10
Tick packets sent : 3
MIN sent packet size : 48
MAX sent packet size : 460
AVG sent packet size : 167
Last packet sent at : 17:41:05
Total Packets received: 9
MIN rcvd packet size : 48
MAX rcvd packet size : 68
AVG rcvd packet size : 59
Last packet rcvd'd at : 17:41:05
Earlier errors (max 5):
TT16060 in transmitter.c (line 3590) at 17:40:41 on 08-25-2004
TT16122 in transmitter.c (line 2424) at 17:40:41 on 08-25-2004
Monitoring Replication 133

The replication status for the rep2 data store should look similar to the following:

> ttRepAdmin -showstatus rep2

DSN : rep2
Process ID : 2192
Replication Agent Policy : MANUAL
Host : MYHOST
RepListener Port : 1154 (AUTO)
Last write LSN : 0.416464
Last LSN forced to disk : 0.416464
Replication hold LSN : -1.-1

Replication Peers:
Name : rep1
Host : MYHOST
Port : 0 (AUTO)
Replication State : STARTED
Communication Protocol : 12

RECEIVER thread(s):
 For : rep1

Start/Restart count : 1
Transactions received : 0
Total packets sent : 20
Tick packets sent : 0
MIN sent packet size : 48
MAX sent packet size : 68
AVG sent packet size : 66
Last packet sent at : 17:49:51
Total Packets received: 20
MIN rcvd packet size : 48
MAX rcvd packet size : 125
AVG rcvd packet size : 52
Last packet rcvd'd at : 17:49:51

MAIN thread status fields
The following fields are output for the MAIN thread in the replication agent for
the queried data store.

MAIN Thread Description

DSN Name of the data store to be queried.

Process ID Process Id of the replication agent.

Replication Agent
Policy

The restart policy, as described in “Starting and
stopping the replication agents” on page 111
134 TimesTen to TimesTen Replication Guide

Replication peer status fields
The following fields are output for each replication peer that participates in the
replication scheme with the queried data store. A “peer” could play the role of
master, subscriber, propagator or both master and subscriber in a bidirectional
replication scheme.

Host Name of the machine that hosts this data store.

RepListener Port TCP/IP port used by the replication agent to listen
for connections from the TRANSMITTER threads
of remote replication agents. A value of 0
indicates that this port has been assigned
automatically to the replication agent (the default),
rather than being specified as part of a replication
scheme.

Last write LSN The location of the most recently generated
transaction log record for the data store. See
“Show replicated log records” on page 130 for
more information.

Last LSN forced to disk The location of the most recent transaction log
record written to the disk. See “Show replicated
log records” on page 130 for more information.

Replication hold LSN The location of the lowest (or oldest) record held
in the log for possible transmission to a subscriber.
A value of -1/-1 indicates replication is in the Stop
state with respect to all subscribers. See “Show
replicated log records” on page 130 for more
information.

MAIN Thread Description

Replication Peers Description

Name Name of a data store that is a replication peer to
this data store.

Host Host machine of peer data store.

Port TCP/IP port used by the replication agent for the
peer data store. A value of 0 indicates this port has
been assigned automatically to the replication
agent (the default), rather than being specified as
part of a replication scheme.
Monitoring Replication 135

TRANSMITTER thread status fields
The following fields are output for each TRANSMITTER thread used by a
master replication agent to send transaction updates to a subscriber. A master
with multiple subscribers has multiple TRANSMITTER threads.

Note: The counts in the TRANSMITTER output begin to accumulate when the
replication agent is started. These counters are reset to 0 only when the
replication agent is started or restarted.

Replication State Current replication state of the replication peer
with respect to the queried data store (see “Setting
the replication state of subscribers” on page 114
for information).

Communication
Protocol

Internal protocol used by replication to
communicate between the peers. (For internal use
only.)

Replication Peers Description

TRANSMITTER
Thread

Description

For Name of the subscriber data store that is receiving
replicated data from this data store.

Start/Restart count Number of times this TRANSMITTER thread was
started or restarted by the replication agent due to
a temporary error, such as operation timeout,
network failure, and so on.

Send LSN The last LSN transmitted to this peer. See “Show
replicated log records” on page 130 for more
information.

Transactions sent Total number of transactions sent to the subscriber.

Total packets sent Total number of packets sent to the subscriber
(including tick packets)
136 TimesTen to TimesTen Replication Guide

RECEIVER thread status fields
The following fields are output for each RECEIVER thread used by a subscriber
replication agent to receive transaction updates from a master. A subscriber that
is updated by multiple masters has multiple RECEIVER threads.

Note: The counts in the RECEIVER output begin to accumulate when the
replication agent is started. These counters are reset to 0 only when the
replication agent is started or restarted.

Tick packets sent Total number of tick packets sent. Tick packets are
used to maintain a “heartbeat” between the master
and subscriber. You can use this value to
determine how many of the 'Total packets sent'
packets are not related to replicated data.

MIN sent packet size Size of the smallest packet sent to the subscriber.

MAX sent packet size Size of the largest packet sent to the subscriber.

AVG sent packet size Average size of the packets sent to the subscriber.

Last packet sent at Time of day last packet was sent (24-hour clock
time)

Total packets received Total packets received from the subscriber (tick
packets and acknowledgement data)

MIN rcvd packet size Size of the smallest packet received

MAX rcvd packet size Size of the largest packet received

AVG rcvd packet size Average size of the packets received

Last packet rcvd at Time of day last packet was received (24-hour
clock time)

Earlier errors (max 5) Last five errors generated by this thread

TRANSMITTER
Thread

Description
Monitoring Replication 137

RECEIVER Thread Description

For Name of the master data store that is sending
replicated data from this data store

Start/Restart count Number of times this RECEIVER thread was
started or restarted by the replication agent due to
a temporary error, such as operation timeout,
network failure, and so on.

Transactions received Total number of transactions received from the
master

Total packets sent Total number of packets sent to the master (tick
packets and acknowledgement data)

Tick packets sent Total number of tick packets sent to the master.
Tick packets are used to maintain a “heartbeat”
between the master and subscriber. You can use
this value to determine how many of the 'Total
packets sent' packets are not related to
acknowledgement data.

MIN sent packet size Size of the smallest packet sent to the master

MAX sent packet size Size of the largest packet sent to the master

AVG sent packet size Average size of the packets sent to the master

Last packet sent at Time of day last packet was sent to the master (24-
hour clock time)

Total packets received Total packets of acknowledgement data received
from the master

MIN rcvd packet size Size of the smallest packet received

MAX rcvd packet size Size of the largest packet received

AVG rcvd packet size Average size of the packets received

Last packet rcvd at Time of day last packet was received (24-hour
clock time)
138 TimesTen to TimesTen Replication Guide

Show the return service status for a subscriber
As described in “When to manually disable return service blocking” on page 67,
a replication scheme that makes use of a return service (either RETURN
TWOSAFE or RETURN RECEIPT) can be configured with a DISABLE
RETURN failure policy to disable return service blocking for unresponsive
subscribers.

You can determine whether the return service for particular subscriber has been
disabled by the DISABLE RETURN failure policy by calling the
ttRepSyncSubscriberStatus built-in procedure or by means of the SNMP trap,
ttRepReturnTransitionTrap. The ttRepSyncSubscriberStatus procedure
returns a value of ‘1’ to indicate the return service has been disabled for the
subscriber, or a value of ‘0’ to indicate that the return service is still enabled.

Example 5.16 To use ttRepSyncSubscriberStatus to obtain the return receipt status of the
subscriberds data store with respect to its master data store, masterDSN, enter:

> ttIsql masterDSN

Command> CALL ttRepSyncSubscriberStatus ('subscriberds');
< 0 >
1 row found.

This result indicates that the return service is still enabled.

See “DISABLE RETURN” on page 68 for more information.
Monitoring Replication 139

140 TimesTen to TimesTen Replication Guide

6
Altering Replication

This chapter describes how to alter an existing replication system. Table 6.1 lists
the tasks often performed on an existing replicated system.

Table 6.1 Tasks performed on an existing replicated system

Altering a replication scheme
You can use ALTER REPLICATION to alter your replication scheme on the
master and subscriber data stores. Any alterations on the master store must also
be made on its subscribers.

Task What you do

Alter or drop a replication
scheme

See “Altering a replication scheme” on page
141 and “Dropping a replication scheme” on
page 150

Alter a table used in a
replication scheme

See “Altering a replicated table” on page 149

Truncate a table used in a
replication scheme

 See “Truncating a replicated table” on page
149

Change the replication state
of a subscriber data store

See “Setting the replication state of
subscribers” on page 114

Resolve update conflicts See “Replication conflict detection and
resolution” on page 167 in Chapter 8.

Recover from failures See “Managing data store failover and
recovery” on page 183 in Chapter 8.

Upgrade data store Use the ttMigrate and ttRepAdmin
utilities, as described in Chapter 3, “Data
Store Upgrades” in the Oracle TimesTen In-
Memory Database Installation Guide.
 141

Note: If TimesTen was installed with Access Control enabled, you must have
DDL privileges to the data store to use the ALTER REPLICATION statement.
See Chapter 1, “Access Control” in the Oracle TimesTen In-Memory Database
Installation Guide for details.

If you use ALTER REPLICATION to change a replication scheme that specifies
a DATASTORE element, then:
• You cannot use SET NAME to change the name of the DATASTORE element
• You cannot use SET CHECK CONFLICTS to enable conflict resolution

Most ALTER REPLICATION operations are supported only when the
replication agent is stopped (ttAdmin -repStop). However, it is possible to
dynamically add a data store to a replication scheme while the replication agent
is running, as described in “Creating and adding a subscriber data store” on page
146.

The procedure for ALTER REPLICATION operations that require the
replication agents to be stopped is:

1. Use the ttRepStop procedure or ttAdmin -repStop to stop the replication agent
for the master and subscriber data stores. While the replication agents are
stopped, changes to the master data store are stored in the log.

2. Issue the same ALTER REPLICATION statement on both master and subscriber
data stores.

3. Use the ttRepStart procedure or ttAdmin -repStart to restart the replication
agent for the master and subscriber data stores. The changes stored in the master
data store log are sent to the subscriber data store.

This section includes the following topics:
• Adding a table or sequence to an existing replication scheme
• Adding a cache group to an existing replication scheme
• Adding a DATASTORE element to an existing replication scheme
• Dropping a table or sequence from a replication scheme
• Creating and adding a subscriber data store
• Dropping a subscriber data store
• Changing a TABLE or SEQUENCE element name
• Replacing a master data store
• Eliminating conflict detection
• Eliminating the return receipt service
• Changing the port number
• Changing the replication route
142 TimesTen to TimesTen Replication Guide

Adding a table or sequence to an existing
replication scheme
There are two ways to add a table or sequence to an existing replication scheme:
• When the element level of the replication scheme is TABLE or SEQUENCE,

use the ALTER REPLICATION statement with the ADD ELEMENT clause
to add a table or sequence. See Example 6.1.

• When the element level of the replication scheme is DATASTORE, use the
ALTER REPLICATION statement with the ALTER ELEMENT clause to
include a table or sequence. See Example 6.2.

Example 6.1 This example uses the replication scheme repl.r1, which was defined in
Example 3.29 on page 89. It alters replication scheme repl.r1 to add sequence
seq and table westleads, which will be updated on data store westds and
replicated to data store eastds.
ALTER REPLICATION repl.r1

ADD ELEMENT elem_seq SEQUENCE repl.seq
MASTER westds ON "westcoast"
SUBSCRIBER eastds ON "eastcoast"

ADD ELEMENT elem_westleads TABLE repl.westleads
MASTER westds ON "westcoast"
SUBSCRIBER eastds ON "eastcoast";

Example 6.2 Add the sequence my.seq and the table my.tab1 to the ds1 DATASTORE
element in my.rep1 replication scheme.
ALTER REPLICATION my.rep1
ALTER ELEMENT ds1 DATASTORE

INCLUDE SEQUENCE my.seq
ALTER ELEMENT ds1 DATASTORE

INCLUDE TABLE my.tab1;

Adding a cache group to an existing replication scheme
You can add a cache group to a DATASTORE element in an existing replication
scheme. Use the ALTER REPLICATION statement with the ALTER
ELEMENT clause and the INCLUDE CACHE GROUP clause.

Example 6.3 Add my.cg1 cache group to the ds1 DATASTORE element in my.rep1
replication scheme.
ALTER REPLICATION my.rep1
ALTER ELEMENT ds1 DATASTORE

INCLUDE CACHE GROUP my.cg1;
Altering Replication 143

Adding a DATASTORE element to an existing replication
scheme
You can add a DATASTORE element to an existing replication scheme by using
the ALTER REPLICATION statement with the ADD ELEMENT clause. All
tables except temporary tables, materialized view, and nonmaterialized views are
included in the data store if you do not use the INCLUDE or EXCLUDE clauses.
See “Including tables, sequences or cache groups when you add a DATASTORE
element” on page 144 and “Excluding a table, sequence or cache group when you
add a DATASTORE element” on page 144.

Example 6.4 Add a DATASTORE element to an existing replication scheme.
ALTER REPLICATION my.rep1
ADD ELEMENT ds1 DATASTORE

MASTER rep2
SUBSCRIBER rep1, rep3;

Including tables, sequences or cache groups when you add a
DATASTORE element
You can restrict replication to specific tables, sequences and cache groups when
you add a data store to an existing replication scheme. Use the ALTER
REPLICATION statement with the ADD ELEMENT clause and the INCLUDE
TABLE clause, INCLUDE SEQUENCE clause or INCLUDE CACHE GROUP
clause. You can have one INCLUDE clause for each object type (table, sequence
and cache group) in the same ALTER REPLICATION statement.

Example 6.5 Add the ds1 DATASTORE element to my.rep1 replication scheme. Include the
table my.tab2, the sequence my.seq, and the cache groups my.cg2 and my.cg3 in
the DATASTORE element.
ALTER REPLICATION my.rep1
ADD ELEMENT ds1 DATASTORE

MASTER rep2
SUBSCRIBER rep1, rep3
INCLUDE TABLE my.tab2
INCLUDE SEQUENCE my.seq
INCLUDE CACHE GROUP my.cg2, my.cg3;

Excluding a table, sequence or cache group when you add a
DATASTORE element
You can exclude tables, sequences or cache groups when you add a
DATASTORE element to an existing replication scheme. Use the ALTER
REPLICATION statement with the ADD ELEMENT clause and the EXCLUDE
TABLE clause, EXCLUDE SEQUENCE clause or EXCLUDE CACHE GROUP
144 TimesTen to TimesTen Replication Guide

clause. You can have one EXCLUDE clause for each object type (table, sequence
and cache group) in the same ALTER REPLICATION statement.

Example 6.6 Add the ds2 DATASTORE element to a replication scheme, but exclude the table
my.tab1, the sequence my.seq and the cache groups my.cg0 and my.cg1.
ALTER REPLICATION my.rep1
ADD ELEMENT ds2 DATASTORE

MASTER rep2
SUBSCRIBER rep1
EXCLUDE TABLE my.tab1
EXCLUDE SEQUENCE my.seq
EXCLUDE CACHE GROUP my.cg0, my.cg1;

Dropping a table or sequence from a replication scheme
This section includes the following topics:
• Dropping a table or sequence that is replicated as part of a DATASTORE

element
• Dropping a table or sequence that is replicated as a TABLE or SEQUENCE

element

Dropping a table or sequence that is replicated as part of a
DATASTORE element
To drop a table or sequence that is part of a replication scheme at the
DATASTORE level, complete the following tasks:

1. Stop the replication agent.

2. Exclude the table or sequence from the DATASTORE element in the replication
scheme.

3. Drop the table or sequence.

If you have more than one DATASTORE element that contains the table or
sequence, then you must exclude the table or sequence from each element before
you drop it.

Example 6.7 Exclude the table my.tab1 from the ds1 DATASTORE element in the my.rep1
replication scheme. Then drop the table.
ALTER REPLICATION my.rep1
ALTER ELEMENT ds1 DATASTORE

EXCLUDE TABLE my.tab1;
DROP TABLE my.tab1;
Altering Replication 145

Dropping a table or sequence that is replicated as a TABLE or
SEQUENCE element
To drop a table that is part of a replication scheme at the TABLE or SEQUENCE
level, complete the following tasks:

1. Stop the replication agent.

2. Drop the element from the replication scheme.

3. Drop the table or sequence.

Example 6.8 Drop the SEQUENCE element elem_seq from the replication scheme repl.r1.
Then drop the sequence repl.seq.
ALTER REPLICATION repl.r1
DROP ELEMENT elem_seq;

DROP SEQUENCE repl.seq;

Creating and adding a subscriber data store
You can add a new subscriber data store while the replication agents are running.
To add a data store to a replication scheme, do the following:

1. Make sure the new data store does not exist.

2. Apply the appropriate statements to all participating data stores:
ALTER REPLICATION ...

ALTER ELEMENT ...
ADD SUBSCRIBER ...

3. Run the ttRepAdmin -duplicate command to copy the contents of the master
data store to the newly created subscriber. You can use the -setMasterRepStart
option to ensure that any updates made to the master after the duplicate operation
has started are also copied to the subscriber.

4. Start the replication agent on the newly created data store (ttAdmin -repStart).

Example 6.9 This example alters the repl.r1 replication scheme to add an additional
subscriber (backup3) to the westleads table (step 2. above):
ALTER REPLICATION repl.r1
ALTER ELEMENT elem_westleads

ADD SUBSCRIBER backup3 ON "backupserver";
146 TimesTen to TimesTen Replication Guide

Dropping a subscriber data store
Stop the replication agent before you drop a subscriber data store.

This example alters the repl.r1 replication scheme to drop the backup3
subscriber for the westleads table:

Example 6.10 ALTER REPLICATION repl.r1
ALTER ELEMENT elem_westleads

DROP SUBSCRIBER backup3 ON "backupserver";

Changing a TABLE or SEQUENCE element name
Stop the replication agent before you change a TABLE or SEQUENCE element
name.

Change the element name of the westleads table from elem_westleads to
newelname:

Example 6.11 ALTER REPLICATION repl.r1
ALTER ELEMENT Eelem_westleads

SET NAME newelname;

Note: You cannot use the SET NAME clause to change the name of a
DATASTORE element.

Replacing a master data store
Stop the replication agent before you replace a master data store.

In this example, newwestds is made the new master for all elements currently
configured for the master, westds:

Example 6.12 ALTER REPLICATION repl.r1
ALTER ELEMENT * IN westds

SET MASTER newwestds;

Eliminating conflict detection
In this example, conflict detection configured by the CHECK CONFLICTS
clause in the scheme shown in Example 8.2 on page 172 is eliminated for the
elem_accounts_1 table:

Example 6.13 ALTER REPLICATION repl.r1
ALTER ELEMENT elem_accounts_1

SET NO CHECK;
Altering Replication 147

See “Replication conflict detection and resolution” on page 167 for a detailed
discussion on conflict checking.

Eliminating the return receipt service
In this example, the return receipt service is eliminated for the first subscriber in
the scheme shown in Example 3.29 on page 89:

Example 6.14 ALTER REPLICATION repl.r1
ALTER ELEMENT elem_waccounts

ALTER SUBSCRIBER eastds ON "eastcoast"
SET NO RETURN;

Changing the port number
The port number is the TCP/IP port number on which a subscribing data store’s
replication agent accepts connection requests from its master replication agent.
See “Dynamic vs. static port assignments” on page 55 for details on how to
assign port to the replication agents.

In this example, the repl.r1 replication scheme is altered to change the eastds
data store's port number to 22251:

Example 6.15 ALTER REPLICATION repl.r1
ALTER STORE eastds ON "eastcoast"
SET PORT 22251;

Changing the replication route
If a replication host has multiple network interfaces, you may specify which
interfaces are used for replication traffic using the ROUTE clause. If you need to
change which interfaces are used by replication, you may do so by dropping and
adding IP addresses from or to a ROUTE clause.

Example 6.16 In this example, the rep.r1 replication scheme is altered to change the priority 2
IP address for the master data store from 192.168.1.100 to 192.168.1.101:
ALTER REPLICATION repl.r1

DROP ROUTE MASTER eastds ON "eastcoast"
SUBSCRIBER westds ON "westcoast”
MASTERIP "192.168.1.100"

ADD ROUTE MASTER eastds ON "eastcoast"
SUBSCRIBER westds ON "westcoast"
MASTERIP "192.168.1.101" PRIORITY 2;
148 TimesTen to TimesTen Replication Guide

Altering a replicated table
You can use ALTER TABLE to add or drop columns on the master data store.
The ALTER TABLE operation is replicated to alter the subscriber data stores.

If you use ALTER TABLE on a data store configured for bidirectional
replication, first stop updates to the table on all of the replicated data stores and
confirm all replicated updates to the table have been received by the data stores
before issuing the ALTER TABLE statement. Do not resume updates until the
ALTER TABLE operation has been replicated to all data stores. This is
necessary to ensure there will be no write operations in the pre-altered format
after the table is altered on all data stores.

Note: You can use the ttRepSubscriberWait procedure or monitoring tools
described in Chapter 5, “Monitoring Replication” to confirm the updates have
been received and committed on the data stores.

Also, if you are executing a number of successive ALTER TABLE operations on
a data store, you should only proceed with the next ALTER TABLE after you
have confirmed the previous ALTER TABLE has reached all of the subscribers.

Note: You can use the ALTER TABLE statement to change default column
values, but the ALTER TABLE statement is not replicated. Thus default column
values need not be identical on all nodes.

Truncating a replicated table
You can use TRUNCATE TABLE to delete all of the rows of a table without
dropping the table itself. Truncating a table is faster than using a DELETE
FROM table statement.

Truncate operations on replicated tables are replicated and result in truncating the
table on the subscriber data store. Unlike delete operations, however, the
individual rows are not deleted. Even if the contents of the tables do not match at
the time of the truncate operation, the rows on the subscriber data store are
deleted anyway.

The TRUNCATE statement replicates to the subscriber, even when no rows are
operated upon.

When tables are being replicated with timestamp conflict checking enabled,
conflicts are not reported.
Altering Replication 149

Dropping a replication scheme
You can use the DROP REPLICATION statement to remove a replication
scheme from a data store. You cannot drop a replication scheme when master
catchup is required unless it is the only replication scheme in the data store.

Note: If TimesTen was installed with Access Control enabled, you must have
DDL privileges to the data store to use the DROP REPLICATION statement. See
Chapter 1, “Access Control” in the Oracle TimesTen In-Memory Database
Installation Guide for details.

You must stop the replication agent before you drop a replication scheme.

Example 6.17 To remove the repl.repscheme replication scheme from a data store, enter the
following:
DROP REPLICATION repl.repscheme;

If you are dropping replicated tables, you must drop the replication scheme
before dropping the replicated tables. Otherwise, you receive an error indicating
that you have attempted to drop a replicated table or index.

Example 6.18 To remove the repl.tab table and repl.repscheme replication scheme from a
data store, enter the following:
DROP REPLICATION repl.repscheme;
DROP TABLE repl.tab;
150 TimesTen to TimesTen Replication Guide

7
Administering an Active Standby Pair

This chapter describes how to administer an active standby pair. It includes the
following topics:
• Restrictions on active standby pairs
• Master data store states
• Setting up an active standby pair
• Recovering from a failure of the active master data store
• Recovering from a failure of the active master data store
• Recovering from a failure of the standby master data store
• Recovering from the failure of a subscriber data store
• Reversing the roles of the active and standby master data stores
• Upgrading the data stores in an active standby pair

See “Active standby pair with read-only subscribers” on page 24 for an overview
of active standby pairs.

Restrictions on active standby pairs
When you are planning an active standby pair, keep in mind the following
restrictions:
• You can specify at most 127 subscriber data stores.
• The active master data store and the standby master data store should be on

the same LAN.
• The clock skew between the active node and the standby node cannot exceed

250 milliseconds.
• The DATASTORE element is required.
• For the initial set-up, you can create a standby master data store only by

duplicating the active master data store with the ttRepAdmin -duplicate
utility or the ttRepDuplicateEx C function.

• Read-only subscribers can be created only by duplicating the standby master
data store. If the standby master data store is unavailable, then the read-only
subscribers can be created by duplicating the active master standby store.
 151

• After failover, the new standby master data store can only be recovered from
the active master data store by duplicating the active master data store unless
return twosafe replication is used between the active and the standby master
data stores. If return twosafe replication is used, the automated master catch-
up feature may be used instead. See “Automatic catch-up of a failed master
data store” on page 185.

• Operations on replicated tables are not allowed on the standby master data
store and the subscriber stores. However, operations on sequences and XLA
bookmarks are allowed on the standby master data store and the subscriber
stores.

• Replication to the subscribers can occur only in asynchronous mode.
• ALTER REPLICATION statements can be executed only on the active master

data store. If ALTER REPLICATION is executed on the active master data
store, then the standby master data store must be regenerated by duplicating
the active master data store. All subscribers must also be regenerated from the
standby master data store. See “Reversing the roles of the active and standby
master data stores” on page 161.

The following restrictions apply to active standby pairs and cache groups:.
• An active standby pair that uses the RETURN TWOSAFE return service

cannot contain a synchronous writethrough (SWT) cache group.
• An active standby pair that uses the RETURN TWOSAFE return service

cannot contain a USERMANAGED cache group with the PROPAGATE
option.

• The replication agent for a master data store in an active standby pair must be
stopped before you can create an AWT cache group in that data store.

Master data store states
The master data stores can be in one of the following states:
• ACTIVE - A store in this state is the active master data store. Applications can

update its replicated tables.
• STANDBY - A store in this state is the standby master data store.

Applications can update only its nonreplicated tables (tables that have been
excluded from the replication scheme by using the EXCLUDE TABLE or
EXCLUDE CACHE GROUP clauses of the CREATE REPLICATION
statement).

• FAILED - A data store in this state is a failed master data store. No updates
can be replicated to it.

• IDLE - A store in this state has not yet had its role in the active standby pair
assigned. It cannot be updated. Every store comes up in the IDLE state.

• RECOVERING - When a previously failed master data store is synchronizing
updates with the active master data store, it is in the RECOVERING state.
152 TimesTen to TimesTen Replication Guide

You can use the ttRepStateGet procedure to discover the state of a master data
store.

Active standby pairs with cache groups
An active standby pair configured with an autorefreshed READONLY cache
group or an ASYNCHRONOUS WRITETHROUGH cache group can change
the role of a data store’s cache group automatically as part of failover and
recovery, to help ensure high availability of cache instances with minimal chance
for data loss.

READONLY cache groups with AUTOREFRESH
in an active standby pair
In a READONLY cache group configuration with AUTOREFRESH, the cache
group on the active master data store is autorefreshed from the Oracle database
and replicates the updates to the standby master, where AUTOREFRESH is also
configured on the cache group but is in the PAUSED state. In the event of a
failure of the active master, TimesTen automatically reconfigures the standby
master to be autorefreshed when it takes over for the failed master data store by
setting the AUTOREFRESH STATE to ON.

TimesTen also tracks whether updates that have been autorefreshed from the
Oracle database to the active master data store have been replicated to the
standby master. This ensures that the autorefresh process picks up from the
correct point after the active master fails, and no autorefreshed updates are lost.

This configuration may also include read-only subscriber data stores, which are
updated by the standby master data store. This allows the read workload to be
distributed across many data stores.

ASYNCHRONOUS WRITETHROUGH cache groups in an
active standby pair
An ASYNCHRONOUS WRITETHROUGH (AWT) cache group can be
configured as part of an active standby pair in order to ensure high availability
and to distribute the application workload. Application updates are made to the
active master data store, the updates are replicated to the standby master data
store, and then the updates are asynchronously written to the Oracle database by
the standby master. At the same time, the updates are also replicated from the
standby master to the read-only subscribers, which may be used to distribute the
load from reading applications.

When there is no standby master data store, the active master both accepts
application updates and writes the updates asynchronously to the Oracle
database. This situation can occur when the standby master has not yet been
created, or when the active master fails and the standby master becomes the new
Administering an Active Standby Pair 153

active master. TimesTen automatically performs the necessary reconfiguration of
the AWT cache group when the standby master becomes the new active master.

Because updates are always written to both master data stores before being
transferred to the Oracle database, neither master data store can ever fall behind
the Oracle database in the event of that one of the data stores fails.

Setting up an active standby pair
To set up an active standby pair, complete the following tasks. If you intend to
replicate a READONLY cache group with AUTOREFRESH or an
ASYNCHRONOUS WRITETHROUGH (AWT) cache group, you must also
complete the tasks indicated in italics:

1. Create a data store.

2. If you are replicating an AUTOREFRESH or AWT cache group, set the cache
agent user ID and password using ttCacheUidPwdSet (see “Defining a Cache
Group” on page 31 of the TimesTen Cache Connect to Oracle Guide) and then
start the cache agent for the data store using the ttCacheStart procedure or the
ttAdmin -cacheStart utility (see “Starting and stopping the cache agent” on
page 82 of the TimesTen Cache Connect to Oracle Guide). Next, create the cache
group using the CREATE CACHE GROUP statement. If you have created an
AUTOREFRESH cache group, the AUTOREFRESH STATE must be set to
PAUSED before continuing with the next step.

3. Create the replication scheme using the CREATE ACTIVE STANDBY PAIR
statement.

In , master1 and master2 are designated as the master data stores. sub3 and
sub4 are designated as the subscriber data stores. The data stores reside on
node1, node2, node3, and node4. The replication mode is RETURN RECEIPT.

The FullStoreName (master1 ON "node1") is an optional form. It is also correct
to specify master1 alone as the data store name. For example:
CREATE ACTIVE STANDBY PAIR master1 ON "node1", master2 ON "node2"
RETURN RECEIPT
SUBSCRIBER sub1 ON "node3", sub2 ON "node4"
STORE master1 ON "node1" PORT 21000 TIMEOUT 30
STORE master2 ON "node2" PORT 20000 TIMEOUT 30;

4. Set up the replication agent policy for master1 and start the replication agent.
See “Starting and stopping the replication agents” on page 111.

5. Execute ttRepStateSet('ACTIVE') on the active master data store (master1).

6. If you are replicating an AUTOREFRESH cache group, load the cache group
using the LOAD CACHE GROUP command to begin the autorefresh process.
You may also load the cache group if you are replicating an AWT cache group,
154 TimesTen to TimesTen Replication Guide

although it is not required. See “LOAD CACHE GROUP” on page 322 of the
Oracle TimesTen In-Memory Database SQL Reference Guide for more
information.

7. Duplicate the active master data store (master1) to the standby master data store
(master2). You can use either the ttRepAdmin -duplicate utility or the
ttRepDuplicateEx C function to duplicate a data store. If you are replicating an
AUTOREFRESH or AWT cache group, you must use the -keepCG command line
option with ttRepAdmin in order to preserve the cache group.

8. Set up the replication agent policy on master2 and start the replication agent. See
“Starting and stopping the replication agents” on page 111.

9. Wait for master2 to enter the STANDBY state. Use the ttRepStateGet
procedure to check the state of master2.

10. If you are replicating an AUTOREFRESH or AWT cache group, start the cache
agent for master2 using the ttCacheStart procedure or the ttAdmin
-cacheStart utility.

11. Duplicate all of the subscribers (sub1 and sub2) from the standby master data
store (master2). See “Copying a master data store to a subscriber” on page 105.
If you are replicating an AUTOREFRESH or AWT cache group, you must use the
-noKeepCG command line option with ttRepAdmin in order to convert the cache
group to normal TimesTen tables on the subscribers.

12. Set up the replication agent policy on the subscribers and start the agent on each
of the subscriber stores. See “Starting and stopping the replication agents” on
page 111.

Recovering from a failure of the active master data store
This section includes the following topics:
• Recovering when the standby master data store is ready
• Recovering when the standby master data store is not ready
• Failing back to the original nodes

Recovering when the standby master data store is ready
This section describes how to recover the active master data store when the
standby master data store is available and synchronized with the active master
data store. It includes the following topics:
• When replication is return receipt or asynchronous
• When replication is return twosafe

When replication is return receipt or asynchronous
Complete the following tasks:
Administering an Active Standby Pair 155

1. Stop the replication agent on the failed data store if it has not already been
stopped.

2. On the standby master data store, execute ttRepStateSet('ACTIVE'). This
changes the role of the data store from STANDBY to ACTIVE. If you are
replicating an AUTOREFRESH cache group, this action automatically causes
the AUTOREFRESH state to change from PAUSED to ON for this data store.

3. On the new active master data store, execute ttRepStateSave('FAILED',
'failed_store', 'host_name'), where failed_store is the former active
master data store that failed. This step is necessary for the new active master data
store to replicate directly to the subscriber data stores.

4. If you are replicating an AUTOREFRESH or AWT cache group, stop the cache
agent on the failed data store if it is not already stopped.

5. Destroy the failed data store.

6. Duplicate the new active master data store to the new standby master data store.
You can use either the ttRepAdmin -duplicate utility or the
ttRepDuplicateEx C function to duplicate a data store. If you are replicating an
AUTOREFRESH or AWT cache group, you must use the -keepCG
-recoveringNode command line options with ttRepAdmin in order to preserve
the cache group.

7. Set up the replication agent policy on the new standby master data store and start
the replication agent. See “Starting and stopping the replication agents” on page
111.

8. If you are replicating an AUTOREFRESH or AWT cache group, start the cache
agent on the new standby master data store.

The standby master data store contacts the active master data store. The active
master data store stops sending updates to the subscribers. When the standby
master data store is fully synchronized with the active master data store, then the
standby master data store enters the STANDBY state and starts sending updates
to the subscribers. If you are replicating an AWT cache group, the new standby
master data store takes over processing of the cache group automatically when it
enters the STANDBY state.

Note: You can verify that the standby master data has entered the STANDBY
state by using the ttRepStateGet procedure.
156 TimesTen to TimesTen Replication Guide

When replication is return twosafe
Complete the following tasks:

1. On the standby master data store, execute ttRepStateSet('ACTIVE'). This
changes the role of the data store from STANDBY to ACTIVE. If you are
replicating an AUTOREFRESH cache group, this action automatically causes
the AUTOREFRESH state to change from PAUSED to ON for this data store.

2. On the new active master data store, execute ttRepStateSave('FAILED',
'failed_store', 'host_name'), where failed_store is the former active
master data store that failed. This step is necessary for the new active master data
store to replicate directly to the subscriber data stores.

3. Connect to the failed data store. This triggers recovery from the local transaction
logs. If data store recovery fails, you must continue from Step 5 of the procedure
for recovering when replication is return receipt or asynchronous. See “When
replication is return receipt or asynchronous” on page 155. If you are replicating
an AUTOREFRESH cache group, the autorefresh state is automatically set to
PAUSED.

4. Verify that the replication agent for the failed data store has restarted. If it has not
restarted, then start the replication agent. See “Starting and stopping the
replication agents” on page 111.

5. If you are replicating an AUTOREFRESH or AWT cache group, verify that the
cache agent for the failed data store has restarted. If it has not restarted, then
start the cache agent. See “Starting and stopping the cache agent” on page 82 of
the TimesTen Cache Connect to Oracle Guide.

When the active master data store determines that it is fully synchronized with
the standby master data store, then the standby master store enters the
STANDBY state and starts sending updates to the subscribers. If you are
replicating an AWT cache group, the new standby master data store takes over
processing of the cache group automatically when it enters the STANDBY state.

Note: You can verify that the standby master data has entered the STANDBY
state by using the ttRepStateSet procedure.

Recovering when the standby master data store is not
ready
Consider the following scenarios:
• The standby master data store fails. The active master data store fails before

the standby comes back up or before the standby has been synchronized with
the active master data store.

• The active master data store fails. The standby master data store becomes
ACTIVE, and the rest of the recovery process begins. (See “Recovering from
Administering an Active Standby Pair 157

a failure of the active master data store” on page 155.) The new active master
data store fails before the new standby master data store is fully synchronized
with it.

In both scenarios, the subscribers may have had more changes applied than the
standby master data store.

When the active master data store fails and the standby master data store has not
applied all of the changes that were last sent from the active master data store,
there are two choices for recovery:
• Recover the active master data store from the local transaction logs.
• Recover the standby master data store from the local transaction logs.

The choice depends on which data store is available and which is more up to
date.

Recover the active master data store
1. Connect to the failed active data store. This triggers recovery from the local

transaction logs. If you are replicating an AUTOREFRESH cache group, the
autorefresh state is automatically set to PAUSED.

2. Verify that the replication agent for the failed active data store has restarted. If it
has not restarted, then start the replication agent. See “Starting and stopping the
replication agents” on page 111.

3. Execute ttRepSyncSet('ACTIVE') on the newly recovered store. If you are
replicating an AUTOREFRESH cache group, this action automatically causes
the AUTOREFRESH state to change from PAUSED to ON for this data store.

4. If you are replicating an AUTOREFRESH or AWT cache group, verify that the
cache agent for the failed data store has restarted. If it has not restarted, then
start the cache agent. See “Starting and stopping the cache agent” on page 82 of
the TimesTen Cache Connect to Oracle Guide.

5. Continue with Step 7. in “Setting up an active standby pair” on page 154.

Recover the standby master data store
1. Connect to the failed standby data store. This triggers recovery from the local

transaction logs. If you are replicating an AUTOREFRESH cache group, the
autorefresh state is automatically set to PAUSED.

2. If the replication agent for the standby data store has automatically restarted, you
must stop the replication agent. See “Starting and stopping the replication
agents” on page 111.

3. If you are replicating an AUTOREFRESH or AWT cache group and the cache
agent has automatically restarted, you must stop the cache agent. See “Starting
and stopping the cache agent” on page 82 of the TimesTen Cache Connect to
Oracle Guide.
158 TimesTen to TimesTen Replication Guide

4. Drop the replication configuration using the DROP ACTIVE STANDBY PAIR
statement.

5. If you are replicating an AWT cache group, drop and recreate all AWT cache
groups using the DROP CACHE GROUP and CREATE CACHE GROUP
statements.

6. Re-create the replication configuration using the CREATE ACTIVE STANDBY
PAIR statement.

7. Set up the replication agent policy and start the replication agent. See “Starting
and stopping the replication agents” on page 111.

8. Execute ttRepStateSet('ACTIVE') on the master data store, giving it the
ACTIVE role. If you are replicating an AUTOREFRESH cache group, this action
automatically causes the AUTOREFRESH state to change from PAUSED to ON
for this data store.

9. If you are replicating an AUTOREFRESH or AWT cache group, start the cache
agent. See “Starting and stopping the cache agent” on page 82 of the TimesTen
Cache Connect to Oracle Guide.

10. Continue from Step 7. in “Setting up an active standby pair” on page 154.

Failing back to the original nodes
After a successful failover, you may wish to fail back so that the active master
data store and the standby master data store are on their original nodes. See
“Reversing the roles of the active and standby master data stores” on page 161
for instructions.

Recovering from a failure of the standby master data store
To recover from a failure of the standby master data store, complete the
following tasks:

1. Detect the standby master data store failure.

2. If return twosafe service is enabled, the failure of the standby master data store
may prevent a transaction in progress from being committed on the active master
data store, resulting in error 8170, “Receipt or commit acknowledgement not
returned in the specified timeout interval”. If so, then call the ttRepStateSet
procedure with a localAction parameter of 2 (COMMIT) and commit the
transaction again. For example:
call ttRepSyncSet(null, null, 2);
commit;

3. Execute ttRepStateSave('FAILED', 'standby_store', 'host_name') on
the active master data store. After this, as long as the standby data store is
unavailable, updates to the active data store are replicated directly to the
Administering an Active Standby Pair 159

subscriber data stores. Subscriber stores may also be duplicated directly from the
active master.

4. If the replication agent for the standby data store has automatically restarted, stop
the replication agent. See “Starting and stopping the replication agents” on page
111.

5. If you are replicating an AUTOREFRESH or AWT cache group and the cache
agent has automatically restarted, stop the cache agent. See “Starting and
stopping the cache agent” on page 82 of the TimesTen Cache Connect to Oracle
Guide.

6. Recover the standby master data store in one of the following ways:
• Connect to the standby master data store. This triggers recovery from the local

transaction logs.
• Duplicate the standby master data store from the active master data store. You

can use either the ttRepAdmin -duplicate utility or the ttRepDuplicateEx
C function to duplicate a data store. If you are replicating an AUTOREFRESH
or AWT cache group, you must use the -keepCG -recoveringNode command
line options with ttRepAdmin in order to preserve the cache group.

The amount of time that the standby master data store has been down and the
amount of transaction logs that need to be applied from the active master data
store determine the method of recovery that you should use.

7. Set up the replication agent policy and start the replication agent. See “Starting
and stopping the replication agents” on page 111.

8. If you are replicating an AUTOREFRESH or AWT cache group, start the cache
agent. See “Starting and stopping the cache agent” on page 82 of the TimesTen
Cache Connect to Oracle Guide.

The standby master data store enters the STANDBY state after the active master
data store determines that the two master data stores have been synchronized.

Note: You can verify that the standby master data has entered the STANDBY
state by using the ttRepStateGet procedure.

Recovering from the failure of a subscriber data store
If a subscriber data store fails, then you can recover it by one of the following
methods:
• Connect to the failed subscriber. This triggers recovery from the local

transaction logs. Start the replication agent and let the subscriber catch up.
• Duplicate the subscriber from the standby master data store. You can use

either the ttRepAdmin -duplicate utility or the ttRepDuplicateEx C
function to duplicate a data store. If you are replicating an AUTOREFRESH
160 TimesTen to TimesTen Replication Guide

or AWT cache group, you must use the -noKeepCG command line option with
ttRepAdmin in order to convert the cache group to normal TimesTen tables
on the subscriber.

If the standby master data store is down or in recovery, then duplicate the
subscriber from the active master data store.

After the subscriber data store has been recovered, then set up the replication
agent policy and start the replication agent. See “Starting and stopping the
replication agents” on page 111.

Reversing the roles of the active and standby
master data stores

To change the active master data store’s role to that of a standby master data store
and vice versa:

1. Pause any applications that are generating updates on the current active master
data store.

2. Execute ttRepSubscriberWait on the active master data store, with the DSN and
host of the current standby data store as input parameters. This ensures that all
updates have been transmitted to the current standby master data store.

3. Stop the replication agent on the current active master data store. See “Starting
and stopping the replication agents” on page 111.

4. If you are replicating an AUTOREFRESH or AWT cache group, stop the cache
agent on the active master data store. See “Starting and stopping the cache
agent” on page 82 of the TimesTen Cache Connect to Oracle Guide.

5. Execute ttRepDeactivate on the current active master data store. This puts the
store in the IDLE state. If you are replicating an AUTOREFRESH cache group,
this action automatically causes the AUTOREFRESH state to change from ON to
PAUSE for this data store.

6. Execute ttRepStateSet('ACTIVE') on the current standby master data store.
This store now acts as the active master data store in the active standby pair. If
you are replicating an AUTOREFRESH cache group, this automatically causes
the AUTOREFRESH state to change from PAUSED to ON for this data store.

7. Configure the replication agent policy as needed and start the replication agent on
the old active master data store. Use the ttRepStateGet procedure to determine
when the data store’s state has changed from IDLE to STANDBY. The data store
now acts as the standby master data store in the active standby pair.

8. If you are replicating an AUTOREFRESH or AWT cache group, start the cache
agent on the old active master data store. See “Starting and stopping the cache
agent” on page 82 of the TimesTen Cache Connect to Oracle Guide.

9. Resume any applications that were paused in Step 1.
Administering an Active Standby Pair 161

Changing the configuration of an active standby pair
You can change an active standby pair by:
• Adding or dropping a subscriber data store
• Altering store attributes - Only the PORT and TIMEOUT attributes can be set

for subscribers. The RELEASE clause cannot be set for any data store in an
active standby pair.

• Including tables or cache groups in the active standby pair
• Excluding tables or cache groups from the active standby pair

Make these changes on the active master data store. After you have changed the
replication scheme on the active master data store, it no longer replicates updates
to the standby master data store or to the subscribers. You must re-create the
standby master data store and the subscribers and restart the replication agents.

Use the ALTER ACTIVE STANDBY PAIR statement to change the active
standby pair.

To change an active standby pair, complete the following tasks:

1. Stop the replication agent on the active master data store. See “Starting and
stopping the replication agents” on page 111

2. If you are replicating an AUTOREFRESH or AWT cache group, stop the cache
agent on the active master data store. See “Starting and stopping the cache
agent” on page 82 of the TimesTen Cache Connect to Oracle Guide.

3. Use the ALTER ACTIVE STANDBY PAIR statement to make changes to the
replication scheme.

4. Start the replication agent on the active master data store. See “Starting and
stopping the replication agents” on page 111

5. If you are replicating an AUTOREFRESH or AWT cache group, start the cache
agent on the active master data store. See “Starting and stopping the cache
agent” on page 82 of the TimesTen Cache Connect to Oracle Guide.

6. Destroy the standby master data store and the subscribers.

7. Continue from Step 7. of “Setting up an active standby pair” on page 154. This
step describes duplicating the active master data store to the standby master data
store.

Example 7.1 Add a subscriber data store to the active standby pair.
ALTER ACTIVE STANDBY PAIR
ADD SUBSCRIBER sub1;
162 TimesTen to TimesTen Replication Guide

Example 7.2 Drop subscriber data stores from the active standby pair.
ALTER ACTIVE STANDBY PAIR
DROP SUBSCRIBER sub1
DROP SUBSCRIBER sub2;

Example 7.3 Alter the PORT and TIMEOUT settings for subscribers rep3 and rep4.
ALTER ACTIVE STANDBY PAIR
ALTER STORE sub1 SET PORT 23000 TIMEOUT 180
ALTER STORE sub2 SET PORT 23000 TIMEOUT 180;

Example 7.4 Add two tables and a cache group to the active standby pair.
ALTER ACTIVE STANDBY PAIR
INCLUDE TABLE tab1, tab2
INCLUDE CACHE GROUP cg0;
Administering an Active Standby Pair 163

Upgrading the data stores in an active standby pair
This section includes the following topics:
• Upgrades for TimesTen patch releases on the standby master data store and

subscriber stores
• Upgrades for TimesTen patch releases on the active master data store
• Upgrades for major TimesTen releases, application software and hardware

Upgrades for TimesTen patch releases on the standby
master data store and subscriber stores
To upgrade to a TimesTen patch release on the standby master data store and
subscriber stores, complete the following tasks on each store:

1. Stop the replication agent on the store. See “Starting and stopping the replication
agents” on page 111.

2. If you are upgrading the standby master data store and are replicating an
AUTOREFRESH or AWT cache group, stop the cache agent on the data store.
See “Starting and stopping the cache agent” on page 82 of the TimesTen Cache
Connect to Oracle Guide.

3. Install the TimesTen patch. See Chapter 3, “Performing an offline upgrade” in
Oracle TimesTen In-Memory Database Installation Guide.

4. If you are upgrading the standby master data store and are replicating an
AUTOREFRESH or AWT cache group, restart the cache agent on the data store.
See “Starting and stopping the cache agent” on page 82 of the TimesTen Cache
Connect to Oracle Guide.

5. Restart the replication agent.

Upgrades for TimesTen patch releases on the active
master data store
Complete the following tasks:

1. Reverse the roles of the active and standby master data stores. See “Reversing the
roles of the active and standby master data stores” on page 161.

2. Upgrade the former active master data store, which is now the standby master
data store. See “Upgrades for TimesTen patch releases on the standby master
data store and subscriber stores” on page 164.

3. If you wish to make the newly upgraded data store the active master data store
again, repeat the steps for reversing the roles of the active and standby master
data stores. See “Reversing the roles of the active and standby master data stores”
on page 161.
164 TimesTen to TimesTen Replication Guide

Upgrades for major TimesTen releases, application
software and hardware
Begin major upgrades on the node with the standby master data store. While this
node is being upgraded, there is no standby master data store, and updates on the
active master data store are propagated directly to the subscriber stores.

1. Execute ttRepStateSave('FAILED', standby_store, host_name) from the
active master data store.

2. Upgrade the node where the standby master data store resides. See Chapter 3,
“Performing an offline upgrade” in Oracle TimesTen In-Memory Database
Installation Guide.

3. Set the replication policy for the standby master data store and start the
replication agent. See “Starting and stopping the replication agents” on page 111.

When the upgraded standby master data store has become synchronized with the
active master data store, the upgraded standby master data store moves from the
RECOVERING state to the STANDBY state. The upgraded standby master data
store also starts sending updates to the subscribers.

4. Stop the replication agent on the active master data store.

5. On the standby master data store, execute ttRepStateSet('ACTIVE'). This
changes the role of the data store from STANDBY to ACTIVE.

6. On the new active master data store, execute ttRepStateSave('FAILED',
'upgrade_store', 'host_name'), where upgrade_store is the former
active master data store on the node that you are upgrading. This step is
necessary for the new active master data store to replicate directly to the
subscriber data stores.

7. Destroy the former active master data store.

8. Perform the upgrade on the node where the master data store was destroyed.

9. Duplicate the new standby master data store from the active master data store.
You can use either the ttRepAdmin -duplicate utility or the
ttRepDuplicateEx C function to duplicate a data store.

10. Start the replication agent on the new standby master data store.

11. Stop the replication agent on the first subscriber data store.

12. Destroy the subscriber data store.

13. Perform the upgrade on the node where the subscriber data store was destroyed.

14. Duplicate the subscriber data store from the standby master data store.

15. Start the replication agent for the duplicated subscriber data store.

16. Repeat steps 11 through 15 for each other subscriber data store.
Administering an Active Standby Pair 165

166 TimesTen to TimesTen Replication Guide

8
Conflict Resolution and Failure
Recovery

This chapter describes:
• Replication conflict detection and resolution
• Managing data store failover and recovery

Replication conflict detection and resolution
Tables in data stores configured in a bidirectional replication scheme, as
described in “General workload configuration” on page 20, may be subject to
replication conflicts. A replication conflict occurs when applications on
bidirectionally replicated data stores initiate an UPDATE, INSERT or DELETE
operation on the same data item at the same time. If no special steps are taken,
each data store can end up in disagreement with the last update made by the other
data store.

Three different types of replication conflicts can occur:
• Update conflicts: This type of conflict occurs when concurrently running

transactions at different stores make simultaneous UPDATE requests on the
same row in the same table, and install different values for one or more
columns.

• Uniqueness conflicts: This type of conflict occurs when concurrently running
transactions at different stores make simultaneous INSERT requests for a row
in the same table that has the same primary or unique key, but different values
for one or more other columns.

• Delete conflicts: This type of conflict occurs when a transaction at one store
deletes a row while a concurrent transaction at another store simultaneously
updates or inserts the same row. Currently, TimesTen can detect delete/update
conflicts, but cannot detect delete/insert conflicts. TimesTen cannot resolve
either type of delete conflict.

See “Conflict reporting” on page 174 for example reports generated by TimesTen
upon detecting update, uniqueness, and delete conflicts.

Note: TimesTen does not detect conflicts involving TRUNCATE TABLE
statements.
 167

Update and insert conflicts
Figure 8.1 shows the results from an update conflict, which would occur for the
value X under the following circumstances:

Note: Uniqueness conflicts resulting from conflicting inserts follow a similar
pattern as update conflicts, only the conflict involves the whole row.

Figure 8.1 Update conflict

If update or insert conflicts remain unchecked, the master and subscriber data
stores fall out of synchronization with each other. It may be difficult or even
impossible to determine which data store is correct.

With update conflicts, it is possible for a transaction to update many data items
but have a conflict on a few of them. Most of the transaction's effects survive the
conflict, with only a few being overwritten by replication. If you decide to ignore
such conflicts, the transactional consistency of the application data is
compromised.

Steps On Data Store A On Data Store B

Initial condition X is 1 X is 1

The application on each data store updates
X simultaneously

Set X=2 Set X=100

The replication agent on each data store
sends its update to the other

Replicate X to
data store B

Replicate X to
data store A

Each data store now has the other's update Replication says to set
X=100

Replication says to set
X=2

Data Store A

Application

Data Store B

Application

X = 100 X = 2

X = 100 X = 2
168 TimesTen to TimesTen Replication Guide

If an update conflict occurs, and if the updated columns for each version of the
row are different, then the non-primary key fields for the row may diverge
between the replicated tables.

Note: Within a single data store, update conflicts are prevented by the locking
protocol: only one transaction at a time can update a specific row in the data
store. However, update conflicts can occur in replicated systems due to the ability
of each data store to operate independently.

TimesTen replication includes timestamp-based conflict resolution to cope with
simultaneous updates or inserts. Through the use of timestamp-based conflict
resolution, you may be able to keep the replicated data stores synchronized and
transactionally consistent.

Delete/update conflicts
Figure 8.2 shows the results from a delete/update conflict, which would occur for
Row 4 under the following circumstances:

Figure 8.2 Update/Delete conflict

Steps On Data Store A On Data Store B

Initial condition Row 4 exists Row 4 exists

The applications issue a conflicting update
and delete on Row 4 simultaneously

Update Row 4 Delete Row 4

The replication agent on each data store
sends the delete or update to the other

Replicate update to
data store B

Replicate delete to
data store A

Each data store now has the delete or
update from the other data store

Replication says to
delete Row 4

Replication says to
update Row 4

Data Store A

Application

Data Store B

Application

Delete Row Update Row

Delete Row 4Update Row 4
Conflict Resolution and Failure Recovery 169

Though TimesTen can detect and report delete/update conflicts, it cannot resolve
them. Under these circumstances, the master and subscriber data stores fall out of
synchronization with each other.

Though TimesTen cannot ensure synchronization between data stores following
such a conflict, it does ensure that the most recent transaction is applied to each
data store. If the timestamp for the delete is more recent than that for the update,
the row is deleted on each data store. If the timestamp for the update is more
recent than that for the delete, the row is updated on the local data store.
However, because the row was deleted on the other data store, the replicated
update is discarded. See “Reporting delete/update conflicts” on page 179 for
example reports.

Note: There is an exception to this behavior when timestamp comparison is
enabled on a table using UPDATE BY USER. See “User timestamp column
maintenance” on page 173 for details.

Timestamp resolution
For replicated tables that are subject to conflicts, create the table with a special
column of type BINARY(8) to hold a timestamp value that indicates the time the
row was inserted or last updated. You can then configure TimesTen to
automatically insert a timestamp value into this column each time a particular
row is changed, as described in “Configuring timestamp comparison” on page
171.

Note: TimesTen does not support conflict resolution between cached tables in a
cache group and Oracle.

How replication computes the timestamp column depends on your system:
• On UNIX systems, the timestamp value is derived from the timeval structure

returned by the gettimeofday system call. This structure reports the time of
day in a pair of 4-byte words to a resolution of 1 microsecond. The actual
resolution of the value is system-dependent.

• On Windows NT systems, the timestamp value is derived from the
GetSystemTimeAsFileTime Win32 call. The Windows NT file time is
reported in units of 0.1 microseconds, but effective granularity can be as
coarse as 10 milliseconds.

TimesTen uses the time value returned by the system at the time the transaction
performs each update as the record’s INSERT or UPDATE time. Therefore, rows
that are inserted or updated by a single transaction may receive different
timestamp values.

When applying an update received from a master, the replication agent at the
subscriber data store performs timestamp resolution in the following manner:
170 TimesTen to TimesTen Replication Guide

• If the timestamp of the update record is newer than the timestamp of the stored
record, TimesTen updates the row. The same rule applies to inserts. If a
replicated insert is newer than an existing row, the existing row is overwritten.

• If the timestamp of the update and of the stored record are equal, the update is
allowed. The same rule applies to inserts.

• If the timestamp of the update is older than the timestamp of the stored record,
the update is discarded. The same rule applies to inserts.

• If a row is deleted, no timestamp is available for comparison. Any update
operations on the deleted row are discarded. However, if a row is deleted on
one system, then replicated to another system that has more recently updated
the row, then the replicated delete is rejected. A replicated insert operation on
a deleted row is applied as an insert.

• An update that cannot find the updated row is considered a delete conflict,
which is reported but cannot be resolved.

Note: If the ON EXCEPTION NO ACTION option is specified for a table, then
the update, insert, or delete that fails a timestamp comparison is rejected. This
may result in transactional inconsistencies should replication apply some, but not
all, the actions of a transaction. If the ON EXCEPTION ROLLBACK WORK
option is specified for a table, an update that fails timestamp comparison causes
the entire transaction to be skipped.

Configuring timestamp comparison
To configure timestamp comparison:
• Define a column in your replicated tables to hold the timestamp value.
• Include a CHECK CONFLICTS clause for each TABLE element in your

CREATE REPLICATION statement to identify the timestamp column, how
timestamps are to be generated, what to do in the event of a conflict, and how
to report conflicts.

Establishing a timestamp column in replicated tables
To use timestamp comparison on replicated tables, you must specify a nullable
column of type BINARY(8) to hold the timestamp value. The timestamp column
must be created along with the table as part of a CREATE TABLE statement—it
cannot be added later as part of an ALTER TABLE statement. In addition, the
timestamp column cannot be part of a primary key or index. Example 8.1 shows
the REP.TAB table contains a column named TSTAMP of type BINARY(8) to
hold the timestamp value.
Conflict Resolution and Failure Recovery 171

Example 8.1 CREATE TABLE REP.TAB (COL1 NUMBER NOT NULL,
COL2 NUMBER NOT NULL,
TSTAMP BINARY(8),
PRIMARY KEY (COL1));

If no timestamp column is defined in the replicated table, timestamp comparison
cannot be performed to detect conflicts. Instead, at each site, the value of a row in
the database reflects the most recent update applied to the row, either by local
applications or by replication.

Configuring the CHECK CONFLICTS clause
When configuring your replication scheme, you can set up timestamp
comparison for a TABLE element by including a CHECK CONFLICTS clause in
the table’s ELEMENT description in the CREATE REPLICATION statement.

Note: A CHECK CONFLICT clause cannot be specified for DATASTORE
elements.

The syntax of the CREATE REPLICATION statement is described in Chapter 5,
“SQL Statements” in the Oracle TimesTen In-Memory Database SQL Reference
Guide. Below are some examples of how CHECK CONFLICTS might be used
when configuring your replication scheme.

Example 8.2 In this example, we establish automatic timestamp comparison for the
bidirectional replication scheme shown in Example 3.29 on page 89. The DSNs,
WEST_DSN and EAST_DSN, define the WESTDS and EASTDS data stores
that replicate the table, REPL.ACCOUNTS, containing the timestamp column,
TSTAMP. In the event of a comparison failure, discard the transaction that
includes an update with the older timestamp.
CREATE REPLICATION REPL.R1
ELEMENT ELEM_ACCOUNTS_1 TABLE REPL.ACCOUNTS

CHECK CONFLICTS BY ROW TIMESTAMP
COLUMN TSTAMP
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK WORK

MASTER WESTDS ON "WESTCOAST"
SUBSCRIBER EASTDS ON "EASTCOAST"

ELEMENT ELEM_ACCOUNTS_2 TABLE REPL.ACCOUNTS
CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN TSTAMP
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK WORK

MASTER EASTDS ON "EASTCOAST"
SUBSCRIBER WESTDS ON "WESTCOAST";
172 TimesTen to TimesTen Replication Guide

When bidirectionally replicating data stores with conflict resolution, the
replicated tables on each data store must be set with the same CHECK
CONFLICTS attributes. If you need to disable or change the CHECK
CONFLICTS settings for the replicated tables, use the ALTER REPLICATION
statement described in “Eliminating conflict detection” on page 147 and apply to
each replicated data store.

System timestamp column maintenance
When timestamp comparison is enabled using:
CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN ColumnName
UPDATE BY SYSTEM

TimesTen automatically maintains the value of the timestamp column using the
current time returned by the underlying operating system. This is the default
setting.

When you specify UPDATE BY SYSTEM, TimesTen:
• Initializes the timestamp column to the current time when a new record is

inserted into the table.
• Updates the timestamp column to the current time when an existing record is

modified.

During initial load, the timestamp column values should be left NULL, and
applications should not give a value for the timestamp column when inserting or
updating a row.

When you use the ttBulkCp or ttMigrate utility to save TimesTen tables, the
saved rows maintain their current timestamp values. When the table is
subsequently copied or migrated back into TimesTen, the timestamp column
retains the values it had when the copy or migration file was created.

Note: If you configure TimesTen for timestamp comparison after using the
ttBulkCp or ttMigrate to copy or migrate your tables, the initial values of the
timestamp columns remain NULL, which is considered by replication to be the
earliest possible time.

User timestamp column maintenance
When timestamp comparison is enabled on a table using:
CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN ColumnName
UPDATE BY USER

your application is responsible for maintaining timestamp values. The timestamp
values used by your application can be arbitrary, but the time values cannot
Conflict Resolution and Failure Recovery 173

decrease. In cases where the user explicitly sets or updates the timestamp
column, the application-provided value is used instead of the current time.

Note: Replicated delete operations always carry a system-generated timestamp.
If replication has been configured with UPDATE BY USER and an update/delete
conflict occurs, the conflict is resolved by comparing the two timestamp values
and the operation with the larger timestamp wins. If the basis for the user
timestamp varies from that of the system-generated timestamp, the results may
not be as expected. Therefore, if you expect delete conflicts to occur, use system-
generated timestamps.

Local updates
To maintain synchronization of tables between replicated sites, TimesTen also
performs timestamp comparisons for updates performed by local transactions. If
an updated table is declared to have automatic timestamp maintenance, then
updates to records that have timestamps exceeding the current system time are
prohibited.

Normally, clocks on replicated systems are synchronized sufficiently to ensure
that a locally updated record is given a later timestamp than that in the same
record stored on the other systems. Perfect synchronization may not be possible
or affordable, however. But, by protecting record timestamps from “going
backwards,” replication can do what is possible to ensure that the tables on
replicated systems stay synchronized.

Conflict reporting
TimesTen conflict checking may be configured to report conflicts to a human-
readable plain text file, or to an XML file for use by user applications. This
section includes the following topics
• Reporting conflicts to a text file
• Reporting conflicts to an XML file
• Reporting uniqueness conflicts
• Reporting update conflicts
• Reporting delete/update conflicts
• Suspending and resuming the reporting of conflicts

Reporting conflicts to a text file
To configure replication to report conflicts to a human-readable text file (the
default), use:
174 TimesTen to TimesTen Replication Guide

CHECK CONFLICTS BY ROW TIMESTAMP
COLUMN ColumnName
...
REPORT TO 'FileName' FORMAT STANDARD

An entry is added to the report file FileName that describes each conflict. The
phrase FORMAT STANDARD is optional and may be omitted, as the standard
report format is the default.

Each failed operation logged in the report consists of an entry that starts with a
header, followed by information specific to the conflicting operation. Each entry
is separated by a number of blank lines in the report.

The header contains:
• The time the conflict was discovered.
• The data stores that sent and received the conflicting update.
• The table in which the conflict occurred.

The header has the following format:
Conflict detected at <time> on <date>
Datastore : <subscriber datastore>
Transmitting name : <master datastore>
Table : <username>.<tablename>

For example:
Conflict detected at 20:08:37 on 05-17-2004
Datastore : /tmp/subscriberds
Transmitting name : MASTERDS
Table : USER1.T1

Following the header is the information specific to the conflict. Data values are
shown in ASCII format. Binary data is translated into hexadecimal before
display, and floating-point values are shown with appropriate precision and scale.

For further description of the conflict report file, see “Reporting uniqueness
conflicts” on page 176, “Reporting update conflicts” on page 177 and “Reporting
delete/update conflicts” on page 179.

Reporting conflicts to an XML file
To configure replication to report conflicts to an XML file, use:
CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN ColumnName
...
REPORT TO 'FileName' FORMAT XML

Replication uses the base file name FileName to create two files.
FileName.xml is a header file that contains the XML Document Type
Definition for the conflict report structure, as well as the root element, defined as
<ttrepconflictreport>. Inside the root element is an XML directive to include
Conflict Resolution and Failure Recovery 175

the file FileName.include, and it is to this file that all conflicts are written. Each
conflict is written as a single element of type <conflict>.

For further description of the conflict report file XML elements, see “XML
Document Type Definition for the Conflict Report File” on page 191.

Note: When performing log maintenance on an XML conflict report file, only
the file FileName.include should be truncated or moved. For conflict reporting to
continue to function correctly, the file FileName.xml should be left untouched.

Reporting uniqueness conflicts
A uniqueness conflict record is issued when a replicated INSERT fails because of
a conflict.

A uniqueness conflict record in the report file contains:
• The timestamp and values for the existing tuple, which is the tuple that the

conflicting tuple is in conflict with.
• The timestamp and values for the conflicting insert tuple, which is the tuple of

the insert that failed.
• The key column values used to identify the record.
• The action that was taken when the conflict was detected (discard the single

row insert or the entire transaction)

Note: If the transaction was discarded, the contents of the entire transaction are
logged in the report file.

The format of a uniqueness conflict record is:
Conflicting insert tuple timestamp : <timestamp in binary format>
Existing tuple timestamp : <timestamp in binary format>
The existing tuple :
<<column value> [,<column value>. ..]>
The conflicting tuple :
<<column value> [,<column value> ...]>
The key columns for the tuple:
<<key column name> : <key column value>>
Transaction containing this insert skipped
Failed transaction:
Insert into table <user>.<table> <<column value> [,<column
value>...]>
End of failed transaction

Example 8.3 shows the output from a uniqueness conflict on the row identified
by the primary key value, ‘2’. The older insert replicated from SUBSCRIBERDS
conflicts with the newer insert in MASTERDS, so the replicated insert is
discarded.
176 TimesTen to TimesTen Replication Guide

Example 8.3 Conflict detected at 13:36:00 on 03-25-2002
Datastore : /tmp/masterds
Transmitting name : SUBSCRIBERDS
Table : REPL.TAB
Conflicting insert tuple timestamp : 3C9F983D00031128
Existing tuple timestamp : 3C9F983E000251C0
The existing tuple :
< 2, 2, 3C9F983E000251C0>
The conflicting tuple :
< 2, 100, 3C9F983D00031128>
The key columns for the tuple:
<COL1 : 2>
Transaction containing this insert skipped
Failed transaction:
Insert into table REPL.TAB < 2, 100, 3C9F983D00031128>
End of failed transaction

Reporting update conflicts
An update conflict record is issued when a replicated UPDATE fails because of a
conflict. This record reports:
• The timestamp and values for the existing tuple, which is the tuple that the

conflicting tuple is in conflict with.
• The timestamp and values for the conflicting update tuple, which is the tuple

of the update that failed.
• The old values, which are the original values of the conflicting tuple before

the failed update.
• The key column values used to identify the record.
• The action that was taken when the conflict was detected (discard the single

row update or the entire transaction).

Note: If the transaction was discarded, the contents of the entire transaction are
logged in the report file.
Conflict Resolution and Failure Recovery 177

The format of an update conflict record is:
Conflicting update tuple timestamp : <timestamp in binary format>
Existing tuple timestamp : <timestamp in binary format>
The existing tuple :
<<column value> [,<column value>. ..]>
The conflicting update tuple :
TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
The old values in the conflicting update:
TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
The key columns for the tuple:
<<key column name> : <key column value>>
Transaction containing this update skipped
Failed transaction:
Update table <user>.<table> with keys:
<<key column name> : <key column value>>
New tuple value:
<TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
End of failed transaction

Example 8.4 shows the output from an update conflict on the COL2 value in the
row identified by the primary key value, ‘6’. The older update replicated from the
MASTERDS data store conflicts with the newer update in SUBSCRIBERDS, so
the replicated update is discarded.

Example 8.4 Conflict detected at 15:03:18 on 03-25-2002
Datastore : /tmp/subscriberds
Transmitting name : MASTERDS
Table : REPL.TAB
Conflicting update tuple timestamp : 3C9FACB6000612B0
Existing tuple timestamp : 3C9FACB600085CA0
The existing tuple :
< 6, 99, 3C9FACB600085CA0>
The conflicting update tuple :
<TSTAMP :3C9FACB6000612B0, COL2 : 50>
The old values in the conflicting update:
<TSTAMP :3C9FAC85000E01F0, COL2 : 2>
The key columns for the tuple:
<COL1 : 6>
Transaction containing this update skipped
Failed transaction:
Update table REPL.TAB with keys:
<COL1 : 6>
New tuple value: <TSTAMP :3C9FACB6000612B0, COL2 : 50>
End of failed transaction
178 TimesTen to TimesTen Replication Guide

Reporting delete/update conflicts
A delete/update conflict record is issued when an update is attempted on a row
that has more recently been deleted. This record reports:
• The timestamp and values for the conflicting update tuple or conflicting delete

tuple, whichever tuple failed.
• If the delete tuple failed, the report also includes the timestamp and values for

the existing tuple, which is the surviving update tuple with which the delete
tuple was in conflict.

• The key column values used to identify the record.
• The action that was taken when the conflict was detected (discard the single

row update or the entire transaction).

Note: If the transaction was discarded, the contents of the entire transaction are
logged in the report file. TimesTen cannot detect DELETE/INSERT conflicts.

The format of a record that indicates a delete conflict with a failed update is:
Conflicting update tuple timestamp : <timestamp in binary format>
The conflicting update tuple :
TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
This transaction skipped
The tuple does not exist
Transaction containing this update skipped
Update table <user>.<table> with keys:
<<key column name> : <key column value>>
New tuple value:
<TSTAMP :<timestamp> :<<column value> [,<column value>. ..]>
End of failed transaction

Example 8.5 shows the output from a delete/update conflict caused by an update
on a row that has more recently been deleted. Because there is no row to update,
the update from SUBSCRIBERDS is discarded.
Conflict Resolution and Failure Recovery 179

Example 8.5 Conflict detected at 15:27:05 on 03-25-2002
Datastore : /tmp/masterds
Transmitting name : SUBSCRIBERDS
Table : REPL.TAB
Conflicting update tuple timestamp : 3C9FB2460000AFC8
The conflicting update tuple :
<TSTAMP :3C9FB2460000AFC8, COL2 : 99>
The tuple does not exist
Transaction containing this update skipped
Failed transaction:
Update table REPL.TAB with keys:
<COL1 : 2>
New tuple value: <TSTAMP :3C9FB2460000AFC8,
COL2 : 99>
End of failed transaction

The format of a record that indicates an update conflict with a failed delete is:
Conflicting binary delete tuple timestamp : <timestamp in binary
format>Example 8.7
Existing binary tuple timestamp : <timestamp in binary format>
The existing tuple :
<<column value> [,<column value>. ..]>
The key columns for the tuple:
<<key column name> : <key column value>>
Transaction containing this delete skipped
Failed transaction:
Delete table <user>.<table> with keys:
<<key column name> : <key column value>>
End of failed transaction

Example 8.6 shows the output from a delete/update conflict caused by a delete on
a row that has more recently been updated. Because the row was updated more
recently than the delete, the delete from MASTERDS is discarded.

Example 8.6 Conflict detected at 15:27:20 on 03-25-2002
Datastore : /tmp/subscriberds
Transmitting name : MASTERDS
Table : REPL.TAB
Conflicting binary delete tuple timestamp : 3C9FB258000708C8
Existing binary tuple timestamp : 3C9FB25800086858
The existing tuple :
< 147, 99, 3C9FB25800086858>
The key columns for the tuple:
<COL1 : 147>
Transaction containing this delete skipped
Failed transaction:
Delete table REPL.TAB with keys:
<COL1 : 147>
180 TimesTen to TimesTen Replication Guide

Suspending and resuming the reporting of conflicts
Provided your applications are well-behaved, replication usually encounters and
reports only sporadic conflicts. However, it is sometimes possible under heavy
load to trigger a flurry of conflicts in a short amount of time, particularly when
applications are in development and such errors are expected. This can
potentially have a negative impact on the performance of the host machine
because of excessive writes to the conflict report file and the large number of
SNMP traps that can be generated.

To avoid overwhelming a host with replication conflicts, you may configure
replication to suspend conflict reporting when the number of conflicts per second
has exceeded a user-specified threshold. Conflict reporting may also be
configured to resume once the conflicts per second have fallen below a user-
specified threshold.

Conflict reporting suspension and resumption can be detected by an application
by catching the SNMP traps ttRepConflictReportStoppingTrap and
ttRepConflictReportStartingTrap, respectively. See Chapter 3, “Diagnostics
through SNMP Traps” in Oracle TimesTen In-Memory Database Error Messages
and SNMP Traps for more information.

To configure conflict reporting to be suspended and resumed based on the
number of conflicts per second, use the CONFLICT REPORTING SUSPEND
AT and CONFLICT REPORTING RESUME AT attributes for the STORE clause
of a replication scheme. Example 8.7 demonstrates the confliguration of a
replication schemes where conflict reporting ceases when the number of conflicts
exceeds 20 per second, and conflict reporting resumes when the number of
conflicts drops below 10 per second.

Note: When conflict reporting is suspended, the SNMP trap
ttRepConflictReportStartingTrap is not sent immediately when the number of
conflicts per second drops to zero. If the number of conflicts per second drops
quickly to zero after a burst of conflicts, ttRepConflictReportStartingTrap is
only sent when the next conflict is reported.

Note: If the replication agent is stopped while conflict reporting is suspended,
conflict reporting is enabled when the replication agent is restarted. The SNMP
trap ttRepConflictReportingStartingTrap is not sent if this occurs. This means
that an application that monitors the conflict report suspension traps must also
monitor the traps for replication agent stopping and starting.
Conflict Resolution and Failure Recovery 181

Example 8.7 CREATE REPLICATION REPL.R1
ELEMENT ELEM_ACCOUNTS_1 TABLE REPL.ACCOUNTS

CHECK CONFLICTS BY ROW TIMESTAMP
COLUMN TSTAMP
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK WORK
REPORT TO 'conflicts' FORMAT XML

MASTER WESTDS ON "WESTCOAST"
SUBSCRIBER EASTDS ON "EASTCOAST"

ELEMENT ELEM_ACCOUNTS_2 TABLE REPL.ACCOUNTS
CHECK CONFLICTS BY ROW TIMESTAMP

COLUMN TSTAMP
UPDATE BY SYSTEM
ON EXCEPTION ROLLBACK WORK
REPORT TO 'conflicts' FORMAT XML

MASTER EASTDS ON "EASTCOAST"
SUBSCRIBER WESTDS ON "WESTCOAST"

STORE WESTDS ON "WESTCOAST"
CONFLICT REPORTING SUSPEND AT 20
CONFLICT REPORTING RESUME AT 10

STORE EASTDS ON "EASTCOAST”
CONFLICT REPORTING SUSPEND AT 20
CONFLICT REPORTING RESUME AT 10;
182 TimesTen to TimesTen Replication Guide

Managing data store failover and recovery
As discussed in “Designing a highly available system” on page 39, a fundamental
element in the design of a highly available system is the ability to quickly recover
from a failure. Failures may be related to:

Hardware Problems:
• System failure
• Network failure

Software Problems:
• Operating system failure
• Application failure
• Data store failure
• Operator error

Your replicated system must employ a “cluster manager” or custom software to
detect such failures and, in the event of a failure involving a master data store,
redirect the user load to one of its subscribers. TimesTen does not provide a
cluster manager or make any assumptions about how they operate, so the focus of
this discussion is on the TimesTen mechanisms that an application or cluster
manager can use to recover from failures.

Unless the replication scheme is configured to use the return twosafe service,
TimesTen replicates updates only after the original transaction commits to the
master data store. If a subscriber data store is inoperable or communication to a
subscriber data store fails, updates at the master are not impeded. During outages
at subscriber systems, updates intended for the subscriber are saved in the
TimesTen transaction log.

Note: If TimesTen was installed with Access Control enabled, most of the
procedures described in this section require that you have ADMIN privileges to
the data store. See Chapter 1, “Access Control” in the Oracle TimesTen In-
Memory Database Installation Guide for details.
Conflict Resolution and Failure Recovery 183

General failover and recovery procedures
The procedures for managing failover and recovery depend primarily on:
• Your replication scheme, as described in “Failover and recovery” on page 40.
• Whether the failure occurred on a master or subscriber data store.
• Whether the threshold for the transaction log on the master is exhausted

before the problem is resolved and the data stores reconnected.

Subscriber failures
If your replication scheme is configured for default asynchronous replication,
should a subscriber data store become inoperable or communication to a
subscriber data store fail, updates at the master are not impeded and the cluster
manager does not have to take any immediate action.

Note: If the failed subscriber is configured to use a return service, you must first
disable return service blocking, as described in “Managing return service timeout
errors and replication state changes” on page 66.

During outages at subscriber systems, updates intended for the subscriber are
saved in the transaction log on the master. If the subscriber agent reestablishes
communication with its master before the master reaches its FAILTHRESHOLD,
the updates held in the log are automatically transferred to the subscriber and no
further action is required. (See “Setting the log failure threshold” on page 108 for
details on how to establish the FAILTHRESHOLD value for the master data
store.)

If the FAILTHRESHOLD is exceeded, the master sets the subscriber to the
Failed state and it must be recovered, as described in “Recovering a failed data
store” on page 187. Any application that connects to the failed subscriber
receives a tt_ErrReplicationInvalid (8025) warning indicating that the data store
has been marked Failed by a replication peer.

Applications can use the ODBC SQLGetInfo function to check if the subscriber
data store it is connected to has been set to the Failed state. The SQLGetInfo
function includes a TimesTen-specific infotype, TT_REPLICATION_INVALID,
that returns a 32-bit integer value of ‘1’ if the data store is failed, or ‘0’ if not
failed. Since the infotype TT_REPLICATION_INVALID is specific to
TimesTen, all applications using it need to include the timesten.h file in
addition to the other ODBC include files.
184 TimesTen to TimesTen Replication Guide

Example 8.8 For example, to check if the data store identified by the hdbc handle has been set
to the Failed state:
SQLINTEGER retStatus;

SQLGetInfo(hdbc, TT_REPLICATION_INVALID,
(PTR)&retStatus, NULL, NULL);

Master failures
The cluster manager plays a more central role if a failure involves the master data
store. Should a master data store fail, the cluster manager must detect this event
and redirect the user load to one of its surviving data stores. This surviving
subscriber then becomes the master, which continues to accept transactions and
replicates them to the other surviving subscriber data stores. If the failed master
and surviving subscriber are configured in a bidirectional manner, transferring
the user load from a failed master to a subscriber does not require that you make
any changes to your replication scheme. However, when using unidirectional
replication or complex schemes, such as those involving propagators, you may
have to issue one or more ALTER REPLICATION statements to reconfigure the
surviving subscriber as the “new master” in your scheme. See “Replacing a
master data store” on page 147 for an example.

When the problem is resolved, if you are not using the hot-standby configuration
or the active standby pair described in “Automatic catch-up of a failed master
data store” on page 185, you must recover the master data store as described in
“Recovering a failed data store” on page 187.

After the data store is back online, the cluster manager can either transfer the user
load back to the original master or reestablish it as a subscriber for the “acting
master.” See “Failover and recovery” on page 40 for more information.

Automatic catch-up of a failed master data store
The master catch-up feature automatically restores a failed master data store from
a subscriber data store without the need to invoke the ttRepAdmin -duplicate
operation described in “Recovering a failed data store” on page 187.

The master catch-up feature needs no configuration, but it can be used only in the
following types of configurations:
• A single master replicated in a bidirectional, hot-standby manner to a single

subscriber
• An active standby pair in which the active master data store is replicated to the

standby data store which then propagates changes to up to 127 read-only
subscribers

In addition, the following must be true:
• The ELEMENT type is DATASTORE.
Conflict Resolution and Failure Recovery 185

• TRANSMIT NONDURABLE or RETURN TWOSAFE must enabled.
TRANSMIT NONDURABLE is optional for asynchronous and return receipt
transactions.

When the master replication agent is restarted after a crash or invalidation, any
lost transactions that originated on the master are automatically reapplied from
the subscriber to the master. No connections are allowed to the master store until
it has completely caught up with the subscriber. Applications attempting to
connect to a data store during the catch-up phase receive an error that indicates a
catch-up is in progress. The only exception is if you connect to a data store with
the ForceConnect attribute set in the DSN.

When the catch-up phase is complete, your application can connect to the data
store. An SNMP trap and message to the system log indicate the completion of
the catch-up phase.

If one of the stores is invalidated or crashes during the catch-up process, the
catch-up phase is resumed when the store comes back up.

Master/subscriber failures
As described in “Unidirectional or bidirectional replication” on page 19, you can
distribute the workload over multiple bidirectionally replicated data stores, each
of which serves as both master and subscriber. When recovering a master/
subscriber data store, the log on the failed data store may present problems when
you restart replication.

If a data store in a distributed workload scheme fails and work is shifted to a
surviving data store, the information in the surviving data store becomes more
current than that in the failed data store. If replication is restarted at the failed
system before the FAILTHRESHOLD has been reached on the surviving data
store, then both data stores attempt to update one another with the contents of
their transaction logs. In this case, the older updates in the transaction log on the
failed data store may overwrite more recent data on the surviving system.

There are two ways to recover in such a situation:
• If the timestamp conflict resolution rules described in “Replication conflict

detection and resolution” on page 167 are sufficient to guarantee consistency
for your application, then you can restart the failed system and allow the
updates from the failed data store to propagate to the surviving data store. The
conflict resolution rules prevent more recent updates from being overwritten.

• Recreate the failed data store, as described in “Recovering a failed data store”
on page 187.

Note: If the data store must be recreated, the updates in the log on the failed data
store that were not received by the surviving data store cannot be identified or
restored. In the case of several surviving data stores, you must select which of the
surviving data stores is to be used to recreate the failed data store. It is possible
186 TimesTen to TimesTen Replication Guide

that at the time the failed data store is recreated, that the selected surviving data
store may not have received all updates from the other surviving data stores. This
results in diverging data stores. The only way to prevent this situation is to
recreate the other surviving data stores from the selected surviving data store.

Network failures
In the event of a temporary network failure, you need not perform any specific
action to continue replication. The replication agents that were in communication
attempt to reconnect every few seconds. Should the agents reconnect before the
master data store runs out of log space, the replication protocol makes sure they
neither miss nor repeat any replication updates. If the network is unavailable for a
longer period and the FAILTHRESHOLD has been exceeded for the master log,
you need to recover the subscriber as described in “Recovering a failed data
store” on page 187.

Failures involving sequences
After a link failure, if replication is allowed to recover by replaying queued logs,
you do not need to take any action.

However, if the failed node was down for a significant amount of time, you must
use the ttRepAdmin -duplicate command to repopulate the data store on the
failed node with transactions from the surviving node, as sequences are not rolled
back during failure recovery. In this case, the ttRepAdmin -duplicate
command copies the sequence definitions from one node to the other.

Recovering a failed data store
If a restarted data store cannot be recovered from its master’s transaction log so
that it is consistent with the other data stores in the replicated system, you must
recreate the data store from one of its replication peers. If your data stores are
configured in a hot-standby replication scheme, as described in “Automatic
catch-up of a failed master data store” on page 185, a failed master data store is
automatically brought up to date from the subscriber. Data stores configured with
other types of replication schemes must be restored using command line utilities
or programmatically using the TimesTen Utility C functions, as described below.

Note: It is not necessary to recreate the DSN for the failed data store.

In the event of a subscriber failure, if any tables are configured with a return
service, commits on those tables in the master data store are blocked until the
return service time-out period expires. To avoid this, you can establish a return
service failure and recovery policy in your replication scheme, as described in
“Managing return service timeout errors and replication state changes” on page
66. If you are using the RETURN RECEIPT service, an alternative is to use
ALTER REPLICATION and set the NO RETURN attribute to disable return
Conflict Resolution and Failure Recovery 187

receipt until the subscriber is restored and caught up. Then, you can submit
another ALTER REPLICATION to re-establish RETURN RECEIPT.

From the command line
If the data stores are fully replicated, you can use ttDestroy to remove the failed
data store from memory and ttRepAdmin -duplicate to recreate it from a
surviving data store. If the data store contains any cache groups, you must also
use the -keepCG option of ttRepAdmin.

Example 8.9 For example, to recover a failed data store, subscriberds, from a master, named
masterds on host system1, enter:
> ttDestroy /tmp/subscriberds

> ttRepAdmin -dsn subscriberds -duplicate -from masterds
-host "system1"

Note: ttRepAdmin -duplicate is only supported between identical and patch
TimesTen releases (the major and minor release numbers must be the same).

After recreating the data store with ttRepAdmin -duplicate, the first
connection to the data store reloads it into memory. To improve performance
when duplicating large data stores, you can avoid the reload step by using the
ttRepAdmin -ramLoad option to keep the data store in memory after the
duplicate operation.

Example 8.10 For example, to recover a failed data store, subscriberds, from a master, named
masterds on host system1, and to keep the data store in memory and restart
replication after the duplicate operation, enter:
> ttDestroy /tmp/subscriberds
> ttRepAdmin -dsn subscriberds -duplicate -ramLoad -from masterds
-host "system1" -setMasterRepStart

Note: After duplicating a data store with the ttRepAdmin -duplicate
-ramLoad options, the RAM Policy for the data store is manual until explicitly
reset by ttAdmin -ramPolicy or the ttRamPolicy function.

From a program
You can use the C functions provided in the TimesTen Utility library to
programmatically recover a failed data store.

If the data stores are fully replicated, you can use ttDestroyDataStore function
to remove the failed data store and the ttRepDuplicateEx function to recreate it
from a surviving data store.
188 TimesTen to TimesTen Replication Guide

Example 8.11 For example, to recover and start a failed data store, named subscriberds on host
system2, from a master, named masterds on host system1, enter:
int rc;
ttUtilHandle utilHandle;
ttRepDuplicateExArg arg;
memset(&arg, 0, sizeof(arg));
arg.size = sizeof(ttRepDuplicateExArg);
arg.flags = TT_REPDUP_REPSTART | TT_REPDUP_RAMLOAD;
arg.localHost = "system2";
rc = ttDestroyDataStore(utilHandle, "subscriberds", 30);
rc = ttRepDuplicateEx(utilHandle, "DSN=subscriberds",

"masterds", "system1", &arg);

In this example, the timeout for the ttDestroyDataStore operation is 30 seconds.
The last parameter of the ttRepDuplicateEx function is an argument structure
containing two flags--TT_REPDUP_RESTART to set the subscriberds data store
to the Start state after the duplicate operation is completed, and
TT_REPDUP_RAMLOAD to set the RAM Policy to manual and keep the data
store in memory.

Note: When the TT_REPDUP_RAMLOAD flags is used with
ttRepDuplicateEx, the RAM policy for the duplicate data store is manual until
explicitly reset by the ttRamPolicy function or ttAdmin -ramPolicy.

See Chapter 6, “TimesTen Utility API” in the Oracle TimesTen In-Memory
Database C Developer’s and Reference Guide for the complete list of the
functions provided in the TimesTen C Language Utility Library.

Recovering NONDURABLE data stores
If your data store is configured with the TRANSMIT NONDURABLE option in
a hot-standby configuration, as described in “Automatic catch-up of a failed
master data store” on page 185, you do not need to take any action to recover a
failed master data store.

For other types of configurations, if the master data store configured with the
TRANSMIT NONDURABLE option fails, you must use ttRepAdmin
-duplicate or ttRepDuplicateEx to recreate the master data store from the
most current subscriber data store. If your application attempts to reconnect to
the master store without first performing the duplicate operation, the replication
agent recovers the data store, but any attempt to connect results in an error that
advises you to perform the 'duplicate'. To avoid this error, your application must
reconnect with the connection attribute, ForceConnect set to 1.
Conflict Resolution and Failure Recovery 189

Writing a failure recovery script
Upon detecting a failure, the cluster manager should invoke a script that
effectively executes the procedure shown by the pseudocode in Example 8.12.

Example 8.12 Detect problem {
if (Master == unavailable) {

FailedDataStore = Master
FailedDSN = Master_DSN
SurvivorDataStore = Subscriber
switch users to SurvivorDataStore

}
else {

FailedDataStore = Subscriber
FailedDSN = Subscriber_DSN
SurvivorDataStore = Master

}
}
Fix problem....
If (Problem resolved) {

Get state for FailedDataStore
if (state == "failed") {

ttDestroy FailedDataStore
ttRepAdmin -dsn FailedDSN -duplicate

 -from SurvivorDataStore -host SurvivorHost
 -setMasterRepStart

}
else {

ttAdmin -repStart FailedDSN
}
while (backlog != 0) {

wait
}

}
Switch users back to Master

This applies to either the master or subscriber data stores. If the master fails, you
may lose some transactions.
190 TimesTen to TimesTen Replication Guide

9
XML Document Type Definition for
the Conflict Report File

This chapter describes the Document Type Definition (DTD) and structure of an
XML format replication conflict report file. The TimesTen XML format conflict
report is are based on the XML 1.0 specification
(http://www.w3.org/TR/REC-xml). For information on configuring replication to
report conflicts, see “Replication conflict detection and resolution” on page 167.

This chapter includes:
• The conflict report XML Document Type Definition
• The main body of the document
• The uniqueness conflict element
• The update conflict element
• The delete/update conflict element

The conflict report XML Document Type Definition
The XML Document Type Definition (DTD) for the replication conflict report is
a set of markup declarations that describes the elements and structure of a valid
XML file containing a log of replication conflicts. This DTD can be found in the
XML header file—the file with the suffix “.xml”—that is created when
replication is configured to report conflicts to an XML file. User applications
which understand XML use the DTD to parse the rest of the XML replication
conflict report. For more information on reading and understanding XML
Document Type Definitions, see http://www.w3.org/TR/REC-xml.
 191

http://www.w3.org/TR/REC-xml

<?xml version="1.0"?>
<!DOCTYPE ttreperrorlog [

<!ELEMENT ttrepconflictreport(conflict*) >
<!ELEMENT repconflict header, conflict) >
<!ELEMENT header (time, datastore, transmitter, table) >
<!ELEMENT time (hour, min, sec, year, month, day) >
<!ELEMENT hour (#PCDATA) >
<!ELEMENT min (#PCDATA) >
<!ELEMENT sec (#PCDATA) >
<!ELEMENT year (#PCDATA) >
<!ELEMENT month (#PCDATA) >
<!ELEMENT day (#PCDATA) >
<!ELEMENT datastore (#PCDATA) >
<!ELEMENT transmitter (#PCDATA) >
<!ELEMENT table (tableowner, tablename) >
<!ELEMENT tableowner (#PCDATA) >
<!ELEMENT tablename (#PCDATA) >
<!ELEMENT scope (#PCDATA) >
<!ELEMENT failedtransaction ((insert | update | delete)+) >
<!ELEMENT insert (sql) >
<!ELEMENT update (sql, keyinfo, newtuple) >
<!ELEMENT delete (sql, keyinfo) >
<!ELEMENT sql (#PCDATA) >
<!ELEMENT keyinfo (column+) >
<!ELEMENT newtuple (column+) >
<!ELEMENT column (columnname, columntype, columnvalue) >
<!ATTLIST column

pos CDATA #REQUIRED >
<!ELEMENT columnname (#PCDATA) >
<!ELEMENT columnvalue (#PCDATA) >
<!ATTLIST columnvalue

isnull (true | false) "false"
>
<!ELEMENT existingtuple (column+) >
<!ELEMENT conflictingtuple (column+) >
<!ELEMENT conflictingtimestamp(#PCDATA) >
<!ELEMENT existingtimestamp (#PCDATA) >
<!ELEMENT oldtuple (column+) >
<!ELEMENT conflict (conflictingtimestamp, existingtimestamp*,

existingtuple*, existingtimestamp*,
conflictingtuple*, oldtuple*, keyinfo*) >

<!ATTLIST conflict
type (insert | update | deletedupdate | updatedeleted) #REQUIRED

>
<!ENTITY logFile SYSTEM "Filename.include">

]>
<ttrepconflictreport>

&logFile;
</ttrepconflictreport>
192 TimesTen to TimesTen Replication Guide

The main body of the document
The .xml file for the XML replication conflict report is merely a header,
containing the XML Document Type Definition describing the report format as
well as a link to a file with the suffix “.include”. This include file is the main
body of the report, containing each replication conflict as a separate element.
There are three possible types of elements: insert, update and delete/update
conflicts. Each conflict type requires a slightly different element structure.

The uniqueness conflict element
A uniqueness conflict occurs when a replicated insertion fails because a row with
an identical key column was inserted more recently. See “Reporting uniqueness
conflicts” on page 176 for a description of the information that is written to the
conflict report for a uniqueness conflict.

Example 9.1 illustrates the format of a uniqueness conflict XML element, using
the values from Example 8.3:

Example 9.1 <repconflict>
<header>
<time>

<hour>13</hour>
<min>36</min>
<sec>00</sec>
<year>2002</year>
<month>03</month>
<day>25</day>

</time>
<datastore>/tmp/masterds</datastore>
<transmitter>SUBSCRIBERDS</transmitter>
<table>

<tableowner>REPL</tableowner>
<tablename>TAB</tablename>

</table>
</header>
<conflict type="insert">
<conflictingtimestamp>3C9F983D00031128</conflictingtimestamp>
<existingtimestamp>3C9F983E000251C0</existingtimestamp>
<existingtuple>

<column pos="1">
<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>2</columnvalue>

</column>
XML Document Type Definition for the Conflict Report File 193

<column pos="2">
<columnname>COL2</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>2</columnvalue>

</column>
<columnname>TSTAMP</columnname>
<columntype>BINARY(8)</columntype>
<columnvalue>3C9F983E000251C0</columnvalue>

</column>
</existingtuple>
<conflictingtuple>

<column pos="1">
<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>2</columnvalue>

</column>
<column pos="2">

<columnname>COL2</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>100</columnvalue>

</column>
<column pos="3">
<columname>TSTAMP</columnname>
<columntype>BINARY(8)</columntype>
<columnvalue>3C9F983D00031128</columnvalue>

</column>
</conflictingtuple>
<keyinfo>

<column pos="1">
<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>2</columnvalue>

</column>
</keyinfo>

</conflict>
<scope>TRANSACTION</scope>
<failedtransaction>

<insert>
<sql>Insert into table REPL.TAB </sql>
<column pos="1">

<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>2</columnvalue>

</column>
194 TimesTen to TimesTen Replication Guide

<column pos="2">
<columnname>COL2</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>100</columnvalue>

</column>
<column pos="3">

<columnname>TSTAMP</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>3C9F983D00031128</columnvalue>

</column>
</insert>

</failedtransaction>
</repconflict>

The update conflict element
An update conflict occurs when a replicated update fails because the row was
updated more recently. See “Reporting update conflicts” on page 177 for a
description of the information that is written to the conflict report for an update
conflict.

Example 9.2 illustrates the format of an update conflict XML element, using the
values from Example 8.4:

Example 9.2 <repconflict>
<header>

<time>
<hour>15</hour>
<min>03</min>
<sec>18</sec>
<year>2002</year>
<month>03</month>
<day>25</day>

</time>
<datastore>/tmp/subscriberds</datastore>
<transmitter>MASTERDS</transmitter>
<table>

<tableowner>REPL</tableowner>
<tablename>TAB</tablename>

</table>
</header>
<conflict type="update">

<conflictingtimestamp>
3C9FACB6000612B0

</conflictingtimestamp>
<existingtimestamp>3C9FACB600085CA0</existingtimestamp>
XML Document Type Definition for the Conflict Report File 195

<existingtuple>
<column pos="1">

<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>6</columnvalue>

</column>
<column pos="2">

<columnname>COL2</columname>
<columntype>NUMBER(38)</columntype>
<columnvalue>99</columnvalue>

</column>
<column pos="3">

<columnname>TSTAMP</columnname>
<columntype>BINARY(8)</columntype>
<columnvalue>3C9FACB600085CA0></columnvalue>

</column>
</existingtuple>
<conflictingtuple>

<column pos="3">
<columnname>TSTAMP</columnname>
<columntype>BINARY(8)</columntype>
<columnvalue>3C9FACB6000612B0</columnvalue>

</column>
<column pos="2">

<columnname>COL2</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>50</columnvalue>

</column>
</conflictingtuple>
<oldtuple>

<column pos="3">
<columnname>TSTAMP</columnname>
<columntype>BINARY(8)</columntype>
<columnvalue>3C9FAC85000E01F0</columnvalue>

</column>
<column pos="2">

<columnname>COL2</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>2</columnvalue>

</column>
</oldtuple>
<keyinfo>

<column pos="1">
<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>6</columnvalue>

</column>
</keyinfo>

</conflict>
196 TimesTen to TimesTen Replication Guide

<scope>TRANSACTION</scope>
<failedtransaction>

<update>
<<sql>Update table REPL.TAB</sql>
<<keyinfo>

<column pos="1">
<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>6</columnvalue>

</column>
</keyinfo>
<column pos="3">

<columnname>TSTAMP</columnname>
<columntype>BINARY(8)</columntype>
<columnvalue>3C9FACB6000612B0</columnvalue>

</column>
<column pos="2">

<columnname>COL2</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>50</columnvalue>

</column>
</update>

</failedtransaction>
</repconflict>

The delete/update conflict element
A delete/update conflict occurs when a replicated update fails because the row to
be updated has already been deleted on the data store receiving the update, or
when a replicated deletion fails because the row has been updated more recently.
See “Reporting delete/update conflicts” on page 179 for a description of the
information that is written to the conflict report for a delete/update conflict.

Example 9.3 illustrates the format of a delete/update conflict XML element in
which an update fails because the row has been deleted more recently, using the
values from Example 8.5:

Example 9.3 <repconflict>
<header>

<time>
<hour>15</hour>
<min>27</min>
<sec>05</sec>
<year>2002</year>
<month>03</month>
<day>25</day>

</time>
<datastore>/tmp/masterds</datastore>
XML Document Type Definition for the Conflict Report File 197

<transmitter>SUBSCRIBERDS</transmitter>
<table>

<tableowner>REPL</tableowner>
<tablename>TAB</tablename>

</table>
</header>
<conflict type="update">

<conflictingtimestamp>
3C9FB2460000AFC8

</conflictingtimestamp>
<conflictingtuple>

<column pos="3">
<columnname>TSTAMP</columnname>
<columntype>BINARY(8)</columntype>
<columnvalue>3C9FB2460000AFC8</columnvalue>

</column>
<column pos="2">

<columnname>COL2</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>99/columnvalue>

</column>
</conflictingtuple>
<keyinfo>

<column pos="1">
<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>2</columnvalue>

</column>
</keyinfo>

</conflict>
<scope>TRANSACTION</scope>
<failedtransaction>

<update>
<sql>Update table REPL.TAB</sql>
198 TimesTen to TimesTen Replication Guide

<keyinfo>
<column pos="1">

<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>2</columnvalue>

</column>
</keyinfo>
<column pos="3">

<columnname>TSTAMP</columnname>
<columntype>BINARY(8)</columntype>
<columnvalue>3C9FB2460000AFC8</columnvalue>

</column>
<column pos="2">

<columnname>COL2</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>99</columnvalue>

</column>
</update>

</failedtransaction>
</repconflict>

Example 9.4 illustrates the format of a delete/update conflict XML element in
which a deletion fails because the row has been updated more recently, using the
values from Example 8.6:

Example 9.4 <repconflict>
<header>

<time>
<hour>15</hour>
<min>27</min>
<sec>20</sec>
<year>2002</year>
<month>03</month>
<day>25</day>

</time>
<datastore>/tmp/masterds</datastore>
<transmitter>MASTERDS</transmitter>
<table>

<tableowner>REPL</tableowner>
<tablename>TAB</tablename>

</table>
</header>
<conflict type="delete">

<conflictingtimestamp>
3C9FB258000708C8

</conflictingtimestamp>
<existingtimestamp>3C9FB25800086858</existingtimestamp>
XML Document Type Definition for the Conflict Report File 199

<existingtuple>
<column pos="1">

<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>147</columnvalue>

</column>
<column pos="2">

<columnname>COL2</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>99</columnvalue>

</column>
<column pos="3">

<columnname>TSTAMP</columnname>
<columntype>BINARY(8)</columntype>
<columnvalue>3C9FB25800086858</columnvalue>

</column>
</existingtuple>
<keyinfo>

<column pos="1">
<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>147</columnvalue>

</column>
</keyinfo>

</conflict>
<scope>TRANSACTION</scope>
<failedtransaction>

<delete>
<sql>Delete from table REPL.TAB</sql>
<keyinfo>

<column pos="1">
<columnname>COL1</columnname>
<columntype>NUMBER(38)</columntype>
<columnvalue>147</columnvalue>

</column>
</keyinfo>

</delete>
</failedtransaction>

</repconflict>
200 TimesTen to TimesTen Replication Guide

Glossary
asynchronous replication

A replication technique where one replica (or a proper subset of replicas) is
updated in an initial transaction. The update is asynchronously propagated to
other replicas after the initial updating transaction is 1-safe committed. Finally,
the updates are applied to the replicas in refresh transactions. The propagating
transactions and refresh transactions are typically separate from each other, and
separate for each replica. Some protocols coordinate the propagation and refresh
activity.

backup copy
A secondary copy of a replication element. Usually used in connection with a
single secondary copy in a double-contingency scheme, or two secondary copies
in a triple-contingency scheme.

backup data store (node)
A subscriber data store (node) in a replication scheme.

bidirectional replication
A replication configuration in which two different data stores transmit updates to
each other.

latency
In the context of asynchronous replication, the mean over time of (the time
difference between the commit of an application's update transaction on primary
copies and the commit of the corresponding refresh transaction(s) on secondary
copies). Latency is a measure of replication performance.

master copy
See primary copy.

master data store (node)
A data store (node) that owns a replication element. That is, it is granted the
capability of updating its (primary) copy of the replication element. Contrast
“subscriber data store (node)”. A data store may be both a master and a
subscriber - for different replication elements.

master/subscriber data store (node)
A data store that is both the master (holding a primary copy) for some replication
elements and the subscriber (holding a secondary copy) for others.
 201

master replication
 A replication rule whereby for each replication element, the members of some
subset of data stores (typically a singleton) are designated owners. The replica in
each of these stores is distinguished as a “primary” copy that always contains the
correct current value. An application can directly update only this copy. All other
replicas are secondary copies and (at best) read-only. TimesTen supports this
model, but also permits bidirectional replication, which permits updates to either
data store.

 missing transaction problem
The loss of transaction updates, hence, the loss of the containing transaction as
the result of the failure of a master replica in a 1-safe replication scheme. Every
1-safe scheme may possibly lose committed but incompletely transmitted
transactions, as well as any dependent transactions (minimal divergence). Some
schemes (for example, ones that run an epoch algorithm) may lose more than
this.

primary copy
An updatable copy of a replication element. Also called master copy.

refresh transaction
A transaction that a replication facility runs to install updates on subscribers. The
correspondence between application transactions and refresh transactions may be
one-to-many, one-to-one, or many-to-one. In an asynchronous replication
scheme refresh transactions are separate from the original (application) update
transaction on primary replicas.

replica
Either a primary or secondary copy of a replication element.

replication agent
Replication at each master and subscriber data store is controlled by a replication
agent. The replication agent on the master data store reads the records from the
transaction log and forwards any detected changes to replicated elements to the
replication agent on the subscriber data store. The replication agent on the
subscriber then applies the updates to its data store.

replication configuration
The assignment of primary and secondary replicas to data stores in a replication
group. In a lazy master replication scheme this assignment implicitly defines a
directed graph whose nodes are data stores and with a directed edge from each
node representing a master store to each node representing a slave store that
202 TimesTen to TimesTen Replication Guide

contains a secondary copy of a replication element whose primary copy is in the
master.

replication (data) set
A set of replication elements or data partitions that participate in a replication
scheme.

replication element
An entity that TimesTen synchronizes between data stores. At this time,
TimesTen supports data stores, sequences and complete tables as replication
elements.

replication scheme
The definition of a set of replication elements or partitions that comprise a
replication data set, a set of data stores (replication group) that house the various
replica copies of elements in the replication set, the assignment of primary and
secondary copies of each replication element to data stores in the replication
group which implicitly defines the replication configuration or topology, and
whether the replication is “full” or “selective”, a propagation rule that defines
how and when updates are transmitted, a refresh rule that defines how and when
secondary copies are updated, and a set of rules that govern the usage of
secondary copies.

A replication scheme may include additional attributes, for example a recovery
discipline for single or multiple failures.

secondary copy
A non-updatable copy of a replication element. Also called backup copy.

selective replication
A replication scheme in which different stores have different sets of replication
elements. In such a scheme, the master store for each replication element
selectively transmits its updates to a proper subset of the replication group's
slaves. Selective replication complicates recovery.
Glossary 203

204 TimesTen to TimesTen Replication Guide

In
de

x

Index
Numerics
1-safe replication 201

A
active standby pair

adding or dropping subscriber 162
adding tables or cache groups 162
altering 162
altering store attributes 162
dropping tables or cache groups 162
example 94
failback 159
overview 24
patch release on active master data store 164
patch release on standby and subscribers 164
recover active when standby not ready 157
recovering active master data store 155
restrictions 151
return twosafe service 60
setup 154
states 152
subscriber failure 160

active standby pairs
and cache groups 152

ADD ELEMENT clause
data store 144

ALTER ELEMENT clause 143
ALTER REPLICATION, use of 141
ALTER TABLE

and replication 149
asynchronous replication 11, 201
autocommit 59, 62
automatic catch-up 185
AUTOREFRESH parameter 80

B
backup copy 201, 203
backup data store 201
bidirectional replication 19, 201
bookmarks in log 109, 130

C
cache group

adding to replication scheme 143

excluding from data store 144
including in data store 144

cache groups
and active standby pairs 152
replication to TimesTen tables 78

cache groups, replicating 25, 73, 81
catch-up feature 185
CHECK CONFLICTS clause 48, 172
cluster manager, role of 40
configuring replication 39
configuring the network 100
configuring timestamp comparison 171
conflict reporting 174
conflict resolution 167, 170
conflict types 167
controlling replication 114
copying a master data store 105
CREATE ACTIVE STANDBY PAIR 154
CREATE REPLICATION

defined 31
defining data store element 46
defining table element 47, 48
use of 35, 44

CREATE TABLE
use of 35

D
data store element 46
data stores

attributes of 104
duplicating 105
establishing 104
failed 108, 183
managing logs 107
recovering 40, 183
setting state 114

data types, size limits on 105
DATASTORE element 46

adding to replication scheme 144
and materialized views 73
and nonmaterialized views 73

default column values 149
DISABLE RETURN attribute 52
DISABLE RETURN policy 68, 70
disk-based logs
205

setting size of 109
distributed workload configuration 21

recovery issues 41
DNS server 102
DROP REPLICATION 38, 150
dropping replication scheme 38, 150
DSNs

creating 34, 104
duplicating a master data store 105
DURABLE COMMIT attribute 52

E
ELEMENT descriptions 46
element, defined 10
EXCLUDE CACHE GROUP

in CREATE REPLICATION statement 47
EXCLUDE CACHE GROUP clause 144
EXCLUDE TABLE

in CREATE REPLICATION statement 47
EXCLUDE TABLE clause 144

F
failback 159
failed data store 183

connecting to 108
Failed state 108, 114, 183
failover and recovery 183

issues 40
FAILTHRESHOLD 67
FAILTHRESHOLD attribute 53, 108, 184

example use of 85
report setting 126

failure recovery script 190
ForceConnect attribute 186, 189
full replication 18

G
general workload 20
group replication 201

H
host machine configuration 39
hostnames 102
hot standby configuration 16
hot-standby configuration 20

recovery issues 41

I
INCLUDE CACHE GROUP

in CREATE REPLICATION statement 47
INCLUDE CACHE GROUP clause 143, 144
INCLUDE TABLE 163

in CREATE REPLICATION statement 47
INCLUDE TABLE clause 144
IP addresses 102

K
keepCG option 74

L
latency 201
LOCAL COMMIT ACTION attribute 53
log

locating bookmarks 109, 130
management 107
sequence number 109, 121, 130
size and persistence 107
threshold value 108, 109

LogBuffSize attribute 104
for disk-based logs 109

LogFileSize attribute 104, 109
logging

disk based 109
Logging attribute 104
LSN, see "log sequence number"

M
master catch-up 185
master copy 201, 202
master data store 10, 201
master replication 202
master/slave data store 201
materialized views, replicating 73
missing transaction problem 202
monitoring replication 117
multimaster configuration 20

N
network requirements 102
NO RETURN attribute 63
noKeepCG option 74
NVARCHAR columns, size limit 105

O
Oracle Connect cache groups 25, 73, 81
206 TimesTen to TimesTen Replication Guide

owner name 45

P
Pause state 114
PORT attribute 52
primary copy 201, 202
PROPAGATE parameter 80
propagation 22
propagator data store 22

R
READONLY cache group 26, 27
recovering failed data stores 40, 183
refresh transaction 202
replica 202
replicated tables, requirements for 105
replicating over a network 22, 100
replication

across releases 110
and ttAdmin 111
asynchronous 11
bidirectional 19
cache group to TimesTen table 78
configuration issues 39
configuring timestamp comparison 171
conflict reporting 174
conflict resolution 167
controlling 114
described 10
element 10, 46
FAILTHRESHOLD 67
gauging performance 130
monitoring 117
of materialized views 73
restart policy 112, 114
return receipt 14
starting 111
state of 114
stopping 111
timestamp column maintenance 173
unidirectional 19

replication agent
defined 11
starting 36, 111
stopping 36, 111

replication conflicts, types of 167
replication daemon, see "replication agent"
replication scheme 31, 203

active standby example 94
active standby pair 24
active standby pair setup 154
active standby restrictions 151
applying to DSNs 35, 111
configuring 39
defining 44
dropping 38
examples of 82
for cache groups 25, 73, 81
multiple 71
naming 45

replication types 18
repschemes command 126
restart policy 112, 114
RESUME RETURN attribute 52
RESUME RETURN policy 70
RETURN RECEIPT attribute 42, 58

example use of 83, 85
RETURN RECEIPT BY REQUEST attribute 59

example use of 86
RETURN RECEIPT failure policy

report settings 126
return receipt replication 14
RETURN RECEPT timeout errors 15, 53
return service

performance and recovery 42
setting 49

return service blocking
disabling 67

return service failure policy 66
return service timeout errors 66
RETURN SERVICES WHEN REPLICATION

STOPPED attribute 52
return twosafe

active standby pair 60
RETURN TWOSAFE attribute 42, 60
RETURN TWOSAFE BY REQUEST attribute 62
RETURN WAIT TIME attribute 53

S
secondary copy 203
selective replication 18, 203
split workload 19
SQLGetInfo function 109, 184
standby master data store

recover from failure 159
Start state 114
starting the replication agent 36, 111
Index 207

Stop state 114
stopping the replication agent 38, 111
STORE attributes 52
SUBSCRIBER attributes 57
subscriber data store 10
subscriber failure 160
subscribers

number allowed 84

T
table

dropping from replication scheme 145
excluding from data store 144
including in data store 144

TABLE element 46
table element 47, 48
table requirements 105
tables

altering and replication 149
threshold log setting 108, 109
TIMEOUT attribute 53
timestamp column maintenance 173
timestamp-based conflict resolution 167
TRANSMIT DURABLE

and recovery 43
TRANSMIT DURABLE attribute 49
TRANSMIT NONDURABLE

and recovery 43, 189
TRANSMIT NONDURABLE attribute 49
TRUNCATE TABLE 149
truncating a replicated table 149
ttAdmin -ramPolicy, use of 188, 189
ttAdmin -repPolicy, use of 113
ttAdmin -repStart, use of 112
ttAdmin -repStop, use of 112

ttCkpt procedure 107
ttCkptBlocking procedure 107
ttDestroy, use of 188
ttDestroyDataStore procedure, use of 188
ttIsql -f, use of 111
ttRepAdmin -bookmark, use of 130
ttRepAdmin -duplicate, use of 44, 105, 185, 188,

189
ttRepAdmin -ramLoad, use of 188
ttRepAdmin -receiver -list, use of 122
ttRepAdmin -self -list, use of 120
ttRepAdmin -showconfig, use of 127
ttRepAdmin -state, use of 114
ttRepDuplicate procedure, use of 188
ttReplicationStatus procedure 123
ttRepPolicy procedure 114
ttRepStart procedure 112, 114, 142
ttRepStop procedure 112, 114, 142
ttRepSubscriberStateSet procedure 114
ttRepSyncGet procedure 59, 63
ttRepSyncSet procedure 61, 63, 66
ttRepSyncSubscriberStatus procedure 68, 139
ttRepXactStatus procedure 58, 61

U
unidirectional replication 19
update conflicts, managing 90

V
VARBINARY columns, size limit 105
VARCHAR columns, size limit 105

W
WINS server 102
208 TimesTen to TimesTen Replication Guide

	Contents
	About this Guide
	TimesTen documentation
	Background reading
	Conventions used in this guide
	Technical Support

	TimesTen Replication
	What is replication?
	Master and subscriber data stores and elements

	Requirements for replication compatibility
	How replication works
	Replication agents
	How replication agents copy updates between data stores
	Default replication
	Return receipt replication
	Return twosafe replication

	Master/subscriber relationships
	Full or selective replication
	Unidirectional or bidirectional replication
	Split workload configuration
	General workload configuration

	Direct replication or propagation
	Active standby pair with read-only subscribers

	Cache groups and replication
	Replicating READONLY cache groups to regular tables
	Replicating READONLY cache groups to cache groups using active standby pair replication
	Replicating ASYNCHRONOUS WRITETHROUGH cache groups using active standby pair replication

	Sequences and replication
	Foreign keys and replication
	Table and cache group aging and replication
	Replication schemes

	Quick Start
	A simple replication scheme
	Step 1: Create a master and subscriber data store
	Step 2: Create a table and replication scheme
	Step 3: Start the replication agents
	Step 4: Insert data into the replicated table
	Step 5: Drop the replication scheme and table

	Problems replicating?

	Defining Replication Schemes
	Designing a highly available system
	Physical configuration of hosts
	Efficiency and economy
	Failover and recovery
	Performance and recovery trade-offs
	Commit sequence
	Performance on master
	Effect of a runtime error
	Failover (after master failure)
	Impact of TRANSMIT DURABLE/NONDURABLE on master data store recovery
	Recovery of a subscriber data store

	Defining a replication scheme
	Owner of the replication scheme and tables
	Defining replication elements
	Defining data store elements
	Defining table elements
	Defining sequence elements

	Setting additional parameters for replication elements
	Checking for replication conflicts on table elements
	Setting transmit durability on data store elements
	Setting a return service attribute on table or data store elements

	Setting STORE attributes
	Compressing replicated traffic
	Dynamic vs. static port assignments
	Replication with multiple network interfaces

	Using a return service
	Establishing a return service
	RETURN RECEIPT
	RETURN RECEIPT BY REQUEST
	RETURN TWOSAFE
	RETURN TWOSAFE BY REQUEST
	NO RETURN

	Setting the return service timeout period
	Checking the status of return service transactions
	Managing return service timeout errors and replication state changes
	When to manually disable return service blocking
	Establishing return service failure/recovery policies

	Creating multiple replication schemes
	Replicating tables with foreign key relationships
	Replicating materialized views
	Replicating cache groups
	Using ttRepAdmin to set up replication of cache groups
	Bidirectional hot standby READONLY cache groups with AUTOREFRESH: -keepCG option
	Bidirectional hot standby WRITETHROUGH cache groups: -keepCG option
	Load-balancing AUTOREFRESH cache groups: -noKeepCG option

	Using CREATE CACHE GROUP to set up replication of cache groups
	Unidirectional replication of cache groups to cache groups
	Restrictions on AUTOREFRESH configuration
	Restrictions on AGING configuration
	Restrictions on the WHERE clause

	Bidirectional replication of cache groups to cache groups

	Replicating sequences
	Example replication schemes
	Single subscriber scheme
	Multiple subscriber schemes
	Selective replication scheme
	Propagation scheme
	Bidirectional split workload scheme
	Bidirectional general workload scheme
	Cache group replication scheme
	Active standby pair

	Creating replication schemes with scripts

	Setting Up a Replicated System
	Configuring the network
	Network bandwidth requirements
	Replication in a WAN environment
	Configuring host IP addresses
	Identifying data store hosts and network interfaces
	Host name resolution on Windows

	Identifying the local host of a replicated data store

	Setting up the replication environment
	Establishing the data stores
	Data store attributes
	Table requirements and restrictions
	Copying a master data store to a subscriber

	Managing the log on a replicated data store
	About log buffer size and persistence
	About log growth on a master data store
	Setting the log failure threshold
	Setting attributes for disk-based logging

	Configuring a large number of subscribers

	Replicating access controlled data stores
	Replicating data stores across releases
	Applying a replication scheme to a data store
	Starting and stopping the replication agents
	Controlling replication agents from the command line
	Controlling replication agents from a program

	Setting the replication state of subscribers

	Monitoring Replication
	Show state of replication agents
	From the command line: ttStatus
	From the command line: ttAdmin -query
	From a program: ttDataStoreStatus

	Show master data store information
	From the command line: ttRepAdmin -self -list
	From a program: SQL SELECT statement

	Show subscriber data store information
	From the command line: ttRepAdmin -receiver -list
	From a program: ttReplicationStatus procedure
	From a program: SQL SELECT statement

	Show configuration of replicated data stores
	From ttIsql: repschemes command
	From the command line: ttRepAdmin -showconfig
	From a program: SQL SELECT statements

	Show replicated log records
	From the command line: ttRepAdmin -bookmark
	From a program: ttBookMark procedure

	Show replication status
	MAIN thread status fields
	Replication peer status fields
	TRANSMITTER thread status fields
	RECEIVER thread status fields

	Show the return service status for a subscriber

	Altering Replication
	Altering a replication scheme
	Adding a table or sequence to an existing replication scheme
	Adding a cache group to an existing replication scheme
	Adding a DATASTORE element to an existing replication scheme
	Including tables, sequences or cache groups when you add a DATASTORE element
	Excluding a table, sequence or cache group when you add a DATASTORE element

	Dropping a table or sequence from a replication scheme
	Dropping a table or sequence that is replicated as part of a DATASTORE element
	Dropping a table or sequence that is replicated as a TABLE or SEQUENCE element

	Creating and adding a subscriber data store
	Dropping a subscriber data store
	Changing a TABLE or SEQUENCE element name
	Replacing a master data store
	Eliminating conflict detection
	Eliminating the return receipt service
	Changing the port number
	Changing the replication route

	Altering a replicated table
	Truncating a replicated table
	Dropping a replication scheme

	Administering an Active Standby Pair
	Restrictions on active standby pairs
	Master data store states
	Active standby pairs with cache groups
	READONLY cache groups with AUTOREFRESH in an active standby pair
	ASYNCHRONOUS WRITETHROUGH cache groups in an active standby pair

	Setting up an active standby pair
	Recovering from a failure of the active master data store
	Recovering when the standby master data store is ready
	When replication is return receipt or asynchronous
	When replication is return twosafe

	Recovering when the standby master data store is not ready
	Recover the active master data store
	Recover the standby master data store

	Failing back to the original nodes

	Recovering from a failure of the standby master data store
	Recovering from the failure of a subscriber data store
	Reversing the roles of the active and standby master data stores
	Changing the configuration of an active standby pair
	Upgrading the data stores in an active standby pair
	Upgrades for TimesTen patch releases on the standby master data store and subscriber stores
	Upgrades for TimesTen patch releases on the active master data store
	Upgrades for major TimesTen releases, application software and hardware

	Conflict Resolution and Failure Recovery
	Replication conflict detection and resolution
	Update and insert conflicts
	Delete/update conflicts
	Timestamp resolution
	Configuring timestamp comparison
	Establishing a timestamp column in replicated tables
	Configuring the CHECK CONFLICTS clause

	System timestamp column maintenance
	User timestamp column maintenance
	Local updates
	Conflict reporting
	Reporting conflicts to a text file
	Reporting conflicts to an XML file
	Reporting uniqueness conflicts
	Reporting update conflicts
	Reporting delete/update conflicts
	Suspending and resuming the reporting of conflicts

	Managing data store failover and recovery
	General failover and recovery procedures
	Subscriber failures
	Master failures
	Automatic catch-up of a failed master data store
	Master/subscriber failures
	Network failures
	Failures involving sequences

	Recovering a failed data store
	From the command line
	From a program

	Recovering NONDURABLE data stores
	Writing a failure recovery script

	XML Document Type Definition for the Conflict Report File
	The conflict report XML Document Type Definition
	The main body of the document
	The uniqueness conflict element
	The update conflict element
	The delete/update conflict element

	Glossary
	Index

