
Oracle TimesTen
In-Memory Database

Architectural Overview

Release 6.0

 B25267-03

For the latest updates, refer to the TimesTen release notes.

Copyright ©1996, 2006, Oracle. All rights reserved.
ALL SOFTWARE AND DOCUMENTATION (WHETHER IN
HARD COPY OR ELECTRONIC FORM) ENCLOSED AND ON
THE COMPACT DISC(S) ARE SUBJECT TO THE LICENSE
AGREEMENT.
The documentation stored on the compact disc(s) may be printed by
licensee for licensee’s internal use only. Except for the foregoing,
no part of this documentation (whether in hard copy or electronic
form) may be reproduced or transmitted in any form by any means,
electronic or mechanical, including photocopying, recording, or
any information storage and retrieval system, without the prior
written permission of TimesTen Inc.
Oracle, JD Edwards, PeopleSoft, Retek, TimesTen, the TimesTen
icon, MicroLogging and Direct Data Access are trademarks or reg-
istered trademarks of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.
The Programs (which include both the software and documenta-
tion) contain proprietary information; they are provided under a li-
cense agreement containing restrictions on use and disclosure and
are also protected by copyright, patent, and other intellectual and
industrial property laws. Reverse engineering, disassembly, or de-
compilation of the Programs, except to the extent required to obtain
interoperability with other independently created software or as
specified by law, is prohibited.
The information contained in this document is subject to change
without notice. If you find any problems in the documentation,
please report them to us in writing. This document is not warranted
to be error-free. Except as may be expressly permitted in your li-
cense agreement for these Programs, no part of these Programs may
be reproduced or transmitted in any form or by any means, elec-
tronic or mechanical, for any purpose.
March 2006
Printed in the United States of America

Contents
About this Guide

Conventions used in this guide 1
TimesTen documentation . 3
Background reading . 5
Technical Support . 6

1 What is TimesTen?
Why is TimesTen Faster Than a Conventional Database?. 10
Comparing TimesTen to a Conventional Database 12

Standard ODBC/JDBC interfaces 12
SQL . 12
Access Control . . 12
Distributed transactions . 12
Database connectivity . 13
Logging. . 13
Transaction log monitoring and materialized views. 13
Checkpoints . 14
Replication . 14
Oracle data caching . 15
Query optimization . 15
Concurrency . . 16
Administration and utilities 16

2 How is TimesTen Used?
General Uses for TimesTen . 18
TimesTen Application Scenarios 19

Scenario 1: Caller usage metering application 19
Scenario 2: Real-time quote service application 23
Scenario 3: Online travel agent application 25

Application Design Considerations 27
Alternative 1 . . 27
Alternative 2 . . 28
Alternative 3 . . 28
Architectural tradeoffs . . 29
Summary of design options 30
 i

3 Anatomy of a TimesTen System
TimesTen Data Stores . . 34

User and system DSNs . . 35
TimesTen Data Manager . . 36

TimesTen processes . 36
TimesTen ODBC and JDBC APIs 39

SQL-92 standard . 40
TimesTen built-in procedures 40
Distributed Transaction Processing (DTP) APIs 40
Transaction Log API . . 41

For More Information . . 42

4 How Applications Connect to Data Stores
Direct Driver Connection . 44

Shared data stores . . 45
Client/Server Connection . 46
Driver Manager Connection . 47
For More Information . . 47

5 Concurrent Operations
Locks . 50

Data store-level locking . 51
Table-level locking . 51
Row-level locking . . 52

Latches . 53
Transaction Isolation . 53

Read committed isolation 53
Serializable isolation . . 54

For More Information . . 55

6 Query Optimization
Optimization Time and Memory Usage 58
Statistics . 58
Optimizer Hints . 59
Indexing Techniques . 59

Hash indexes . . 60
T-tree indexes . 60

Scan Methods . . 62
Join Methods . 63

Nested Loop Join . 64
Merge Join. . 65
ii Oracle TimesTen In-Memory Database Architectural Overview

Optimizer Plan . 66
For More Information . . 67

7 Data Availability and Integrity
Logging . 70

Logging options. . 70
Autocommits . . 71
Durable and non-durable commits 72
When are log files deleted? 73

Checkpointing . . 73
Blocking and non-blocking (“fuzzy”) checkpoints 74
Recovery from log and checkpoint files 75

Replication . 75
Replication configurations 77
Active standby pair . 79
Asynchronous and return service replication 80
Replication failover and recovery 82

For More Information . . 83

8 Event Notification
Transaction Log API . 85

How XLA works . 86
Log update records . 87

Materialized Views . . 89
Materialized Views and XLA 90

SNMP Traps . 91
For More Information . . 92

9 Cache Connect to Oracle
Cache Groups . . 94
Loading and Updating Cache Groups. 95

Oracle-to-TimesTen updates (refresh) 95
TimesTen-to-Oracle updates (propagate) 96
Passthrough Feature . 97

System-Managed Cache Groups. 98
User-Managed Cache Groups 99

Cache Instances . . 99
Cache Loading Techniques 101
Cache Instance Aging . 101

Replicating Cache Groups . 101
For More Information . 103
Contents iii

10 TimesTen Administration
Installing TimesTen. . 105
TimesTen Access Control . 106
Command Line Administration 107
SQL Administration . 108
Browser-Based Administration 109
Upgrading TimesTen . 110

In-place upgrades . 110
Offline upgrades . 110
Online upgrades. . 111

For More Information . 111

Index
iv Oracle TimesTen In-Memory Database Architectural Overview

About this Guide
The purpose of this guide is to provide an overview of the TimesTen® system.
Readers of this guide will benefit most if they have a basic understanding of
database systems.

Conventions used in this guide
TimesTen supports multiple platforms. Unless otherwise indicated, the
information in this guide applies to all supported platforms. The term Windows
refers to Windows 2000, Windows XP and Windows Server 2003. The term
UNIX refers to Solaris, Linux, HP-UX, Tru64 and AIX.

TimesTen documentation uses these typographical conventions:

TimesTen documentation uses these conventions in command line examples and
descriptions:

If you see... It means...

code font Code examples, filenames, and pathnames.

For example, the .odbc.ini.ttconnect.ini file.

italic code
font

A variable in a code example that you must replace.

For example:
Driver=install_dir/lib/libtten.sl
Replace install_dir with the path of your
TimesTen installation directory.

If you see... It means...

fixed width
italics

Variable; must be replaced

[] Square brackets indicate that an item in a command line
is optional.

{ } Curly braces indicated that you must choose one of the
items separated by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates arguments that you may
use more than one argument on a single command line.

... An ellipsis (. . .) after an argument indicates that you may
use more than one argument on a single command line.
 1

TimesTen documentation uses these variables to identify path, file and user
names:

% The percent sign indicates the UNIX shell prompt.

The number (or pound) sign indicates the UNIX root
prompt.

If you see... It means...

install_dir The path that represents the directory where the current
release of TimesTen is installed.

TTinstance The instance name for your specific installation of
TimesTen. Each installation of TimesTen must be
identified at install time with a unique alphanumeric
instance name. This name appears in the install path. The
instance name “giraffe” is used in examples in this guide.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit
or 64-bit operating system.

release or rr Two digits that represent the first two digits of the current
TimesTen release number, with or without a dot. For
example, 50 or 5.0 represents TimesTen Release 5.0.

jdk_version Two digits that represent the version number of the major
JDK release. For example 14 for versions of jdk1.4.

timesten A sample name for the TimesTen instance administrator.
You can use any legal user name as the TimesTen
administrator. On Windows, the TimesTen instance
administrator must be a member of the Administrators
group. Each TimesTen instance can have a unique
instance administrator name.

DSN The data source name.
2 Oracle TimesTen In-Memory Database Architectural Overview

TimesTen documentation
Including this guide, the TimesTen documentation set consists of these
documents:
• The Oracle TimesTen In-Memory Database Installation Guide provides

information needed to install and configure TimesTen on all supported
platforms.

• The Oracle TimesTen In-Memory Database Architectural Overview provides
a description of all the available features in TimesTen.

• The Oracle TimesTen In-Memory Database Operations Guide provides
information on configuring TimesTen and using the ttIsql utility to manage a
data store. This guide also provides a basic tutorial for TimesTen.

• The Oracle TimesTen In-Memory Database C Developer’s and Reference
Guide and the Oracle TimesTen In-Memory Database Java Developer’s and
Reference Guide provide information on how to use the full set of available
features in TimesTen to develop and implement applications that use
TimesTen.

• The Oracle TimesTen In-Memory Database Recommended Programming
Practices provides information that will assist developers who are writing
applications to work with TimesTen.

• The Oracle TimesTen In-Memory Database API and SQL Reference Guide
contains a complete reference to all TimesTen utilities, procedures, APIs and
other features of TimesTen.

• The Oracle TimesTen In-Memory Database TTClasses Guide describes how
to use the TTClasses C++ API to use the features available features in
TimesTen to develop and implement applications that use TimesTen.

• The TimesTen to TimesTen Replication Guide. This guide is for application
developers who use and administer TimesTen and for system administrators
who configure and manage TimesTen Replication. This guide provides back-
ground information to help you understand how TimesTen Replication works
and step-by-step instructions and examples that show how to perform the most
commonly needed tasks.

• The TimesTen Cache Connect to Oracle Guide describes how to use Cache
Connect to cache Oracle data in TimesTen. This guide is for developers who
use and administer TimesTen for caching Oracle data. It provides information
on caching Oracle data in TimesTen data stores. It also describes how to use
the Cache Administrator, a web-based interface for creating cache groups.

• The Oracle TimesTen In-Memory Database Troubleshooting Procedures
Guide provides information and solutions for handling problems that may
arise while developing applications that work with TimesTen, or while
configuring or managing TimesTen.
About this Guide 3

TimesTen documentation is available on the product CD-ROM and on the Oracle
Technology Network: http://www.oracle.com/technology/documentation/
timesten_doc.html.
4 Oracle TimesTen In-Memory Database Architectural Overview

Background reading
For a conceptual overview and programming how-to of JDBC, see:
• Hamilton, Cattell, Fisher. JDBC Database Access with Java. Reading, MA:

Addison Wesley. 1998.

For a Java reference, see:
• Horstmann, Cornell. Core Java. Palo Alto, CA: Sun Microsystems Press.

1999.
• For the JDBC API specification, refer to java.sql package in the appropriate

Java Platform API Specification.
• If you are working with JDK 1.2, refer to the Java 2 Platform API

specification at: http://java.sun.com/products/jdk/1.2/docs/api/
index.html

• If you are working with JDK 1.3, refer to the Java 2 Platform API
specification at: http://java.sun.com/j2se/1.3/docs/api/index.html

An extensive list of books about ODBC and SQL is in the Microsoft ODBC
manual included in your developer’s kit. In addition to this guide, your
developer’s kit includes:
• SQL—Oracle TimesTen In-Memory Database API and SQL Reference Guide

is a complete reference to TimesTen SQL.

For a review of SQL, see:
• Jim Melton and Alan R. Simon. Understanding the New SQL: A Complete

Guide. San Francisco, CA: Morgan Kaufmann Publishers. 1993.

For information on Unicode, see:
• The Unicode Consortium, The Unicode Standard, Version 4.0,

Addison-Wesley, 2003.
• The Unicode Consortium Home Page at http://www.unicode.org
About this Guide 5

Technical Support
For information about obtaining technical support for TimesTen products, go to
the following Web address:

http://www.oracle.com/support/contact.html

Email: timesten-support_us@oracle.com
6 Oracle TimesTen In-Memory Database Architectural Overview

http://www.oracle.com/support/contact.html

About this Guide 7

8 Oracle TimesTen In-Memory Database Architectural Overview

1
What is TimesTen?

TimesTen is a high performance event-processing software component that
enables applications to capture, store, use, and distribute information in real-time,
while preserving transactional integrity and continuous availability.

Applications that incorporate TimesTen can process massive transaction volumes
and respond instantly to requests using less expensive hardware configurations
than would be required by conventional software architectures. TimesTen has
been successfully integrated into many applications in telecom and networking,
financial services, travel and logistics, and real-time enterprises.

TimesTen is designed to operate most efficiently in an application’s address
space. Using standard interfaces, TimesTen can be integrated into an application
to serve as either a stand-alone relational database management system
(RDBMS) or an application-tier cache that works in conjunction with a
traditional disk-based RDBMS, such as the Oracle database. TimesTen can be
configured to operate entirely in memory, or it can be configured for disk-based
environments to log and checkpoint data to disk.
 9

Why is TimesTen Faster Than a Conventional Database?
In a conventional RDBMS, client applications communicate with a database
server process over some type of IPC connection, which adds substantial
performance overhead to all SQL operations. An application can link TimesTen
directly into its address space to eliminate the IPC overhead and streamline query
processing. This is accomplished through a direct connection to TimesTen.
Client/server connections are also available to applications. From an
application’s perspective, the TimesTen API is identical whether it is a direct
connection or a client/server connection.

Furthermore, much of the work that is done by a conventional, disk-optimized
RDBMS is done under the assumption that data is primarily disk resident.
Optimization algorithms, buffer pool management, and indexed retrieval
techniques are designed based on this fundamental assumption.

Even when an RDBMS has been configured to hold all of its data in main
memory, its performance is hobbled by deeply interwoven assumptions of disk-
based data residency. These assumptions cannot be easily reversed because they
are hard coded—spanning decades of research and development—within the
deepest recesses of RDBMS processing logic, indexing schemes, data access
mechanisms, etc.

TimesTen, on the other hand, is designed with the knowledge that data resides in
main memory and can therefore take more direct routes to data, reducing
codepath length and simplifying both algorithm and structure.

When the assumption of disk-residency is removed, complexity is dramatically
reduced. The number of machine instructions drops by at least a factor of ten,
buffer pool management disappears, extra data copies aren't needed, index pages
shrink, and their structure is simplified. When memory-residency for data is the
bedrock assumption, the design gets simpler, more elegant, more compact, and
requests are executed faster.
10 Oracle TimesTen In-Memory Database Architectural Overview

Figure 1.1 Comparing a disk-based RDBMS to TimesTen

SQL

Applications

Memory Address

TimesTen
Query Optimizer

Data Store

SQL

Applications

Data Pages

RDBMS
Query Optimizer

Table# Page#

Hash
Function

Linked ListLinkLink d Lisd List
into Buffersintointo ufferufferBuffer Pooolo

Assuming page
is already in
memory...

Copy record to
private buffer

Use IPC to send
buffer to application

IPC

IPC
Locate pointer to page in buffer pool
using hashing and linear search

Data storre is
preloadedp
from diskk
into memomory

Copy record to
application buffer

Determine memory
address of record

TimesTenDisk-Based RDBMS
What is TimesTen? 11

Comparing TimesTen to a Conventional Database
TimesTen looks in many ways like other RDBMS systems, so much of its
interface and administration should be familiar. This section describes many
familiar database features, and indicates where TimesTen is similar to a typical
RDBMS and where it differs. In comparing TimesTen to conventional RDBMS
systems, there are a number of key differences that clearly illustrate how
TimesTen attains a many-fold performance improvement over its disk-based
counterparts.

Standard ODBC/JDBC interfaces
TimesTen supports version 2.5 of ODBC and version 1.2 of JDBC. Unlike many
other database systems, where ODBC and/or JDBC API support may be much
slower than the proprietary interface, ODBC and JDBC are native TimesTen
interfaces that operate directly with the database engine. TimesTen supports
versions of these APIs that are both fully compliant with the standards and tuned
for maximum performance in the TimesTen environment.

See “TimesTen ODBC and JDBC APIs” on page 39 for more information on
TimesTen ODBC and JDBC support.

SQL
TimesTen supports a wide range of SQL-92 functionality, as well as SQL
extensions to simplify the configuration and management of special features,
such as replication, Oracle data caching, and materialized views.

See “SQL-92 standard” on page 40 for more information on SQL support and
“SQL Administration” on page 108 for more information on how SQL is used for
administrative activities.

Access Control
TimesTen can be installed with an additional layer of user-access control by
enabling the Access Control feature. TimesTen Access Control uses standard
SQL operations to establish TimesTen user accounts with specific privilege
levels.

See “TimesTen Access Control” on page 106 for more information on TimesTen
Access Control.

Distributed transactions
TimesTen supports distributed transactions through the XA and JTA interfaces.
These standard interfaces allow TimesTen to interoperate with transaction
managers in distributed transaction processing (DTP) environments.
12 Oracle TimesTen In-Memory Database Architectural Overview

See “Distributed Transaction Processing (DTP) APIs” on page 40 for more
information.

Database connectivity
Like most other database systems, TimesTen supports client/server connections.
TimesTen also supports direct driver connections for higher performance, as well
as connections through a driver manager for applications that may want to access
several types of database systems at the same time.

This multiplicity of connection options allows users to choose the best
performance/functionality tradeoff for their applications. Direct driver
connections are fastest; client/server connections may provide more flexibility;
and driver manager connections can provide support for ODBC applications not
written for ODBC version 2.5, as well as support multiple DBMS databases from
different vendors simultaneously.

See Chapter 4, “How Applications Connect to Data Stores” for more information
on the various ways applications connect to TimesTen.

Logging
TimesTen keeps a log of changes and can optionally write them to disk. The log
is used to:
• Redo transactions if the application or data store crashes and recovery is

needed
• Undo transactions that are rolled back
• Replicate changes to other TimesTen data stores
• Replicate changes to an Oracle database
• Enable applications to detect changes to tables (using the XLA API)

Unlike many other database systems, applications can specify whether or not
logging is enabled. If logging is enabled, then recovery, persistent XLA, and
caching Oracle data is available. Applications can specify exactly how often the
log is written to disk.

By providing logging options, TimesTen enables applications to fine-tune
logging operations to obtain the optimum balance between transaction durability
and response time.

See “Logging” on page 70 for more information on logging options and “Durable
and non-durable commits” on page 72 for more information on the commit
options.

Transaction log monitoring and materialized views
Like several other database systems, TimesTen has an API that allows
applications to monitor update activities in order to generate actions outside the
What is TimesTen? 13

database. In TimesTen, this capability is provided by the Transaction Log API (or
XLA), which allows applications to monitor update records as they are written to
the transaction log and take various actions based on the detected updates. For
example, an XLA application may apply the detected updates to another
database, which could be TimesTen or a disk-based RDBMS. Another type of
XLA application may simply notify subscribers that an update of interest has
taken place.

TimesTen provides materialized views that can be used in conjunction with the
XLA logging API to enable notification of “events” described by SQL queries.

See Chapter 8, “Event Notification” for more information on the logging API and
materialized views.

Checkpoints
Like most database systems, TimesTen has a checkpoint operation that is
designed to take place in the background and has very little impact on the
database applications. This is called a “fuzzy” checkpoint. TimesTen also has a
blocking checkpoint that does not require log files for recovery. Checkpoints are
automatic.

As is typical of many database systems, TimesTen maintains two checkpoint files
in case a crash should occur in mid-checkpoint. Checkpoints may reside on disks
separate from the transaction logs to further minimize the impact of
checkpointing on the regular application activity.

See “Checkpointing” on page 73 for more information on checkpointing.

Replication
TimesTen provides a replication subsystem for transmitting transactions between
TimesTen systems. While replication is a common component of many database
systems, TimesTen replication is highly evolved to enable maximum throughput
given application constraints on topology, consistency, and recovery. A very
high-speed asynchronous replication mechanism is provided, along with a more
synchronous, return service mechanisms that outperform asynchronous
replication on many RDBMS systems.

Several replication options are provided for resolving conflicts, recovering failed
data stores, and doing online upgrades. This range of replication options allows
users to determine the optimum balance between runtime performance,
consistency, and failover complexity.

See “Replication” on page 75 for information on replication and “Upgrading
TimesTen” on page 110 for information regarding on-line upgrades.
14 Oracle TimesTen In-Memory Database Architectural Overview

Oracle data caching
Cache Connect enables TimesTen to be used as a cache for an Oracle database.
This feature makes it easier for TimesTen applications to store frequently used or
more important data in one or more copies of TimesTen, while the remaining
bulk of the data is stored in a slower disk-based database. Cache Connect can be
configured to automatically propagate transactions from an Oracle database to
TimesTen and from TimesTen to an Oracle database. Cached data can be
automatically aged out when the caching capacity in TimesTen is exceeded.

Cache Connect is described in more detail in Chapter 9.

Query optimization
Similar to many other database systems, TimesTen has a cost-based query
optimizer that chooses the best query plan based on factors such as the ordering
of tables and choice of access method.

Optimizer cost sensitivity is somewhat higher in TimesTen than in disk-based
systems, as the cost structure of a main-memory system differs from that of disk-
based systems in which disk access is a dominant cost factor. Because disk access
is not a factor in TimesTen, the optimization cost model includes factors not
considered by optimizers for disk-based systems, such as the cost of evaluating
predicates.

TimesTen provides two types of indexes (hash and t-tree) and supports two types
of join methods (nested-loop and merge-join). The optimizer may create
temporary indexes on the fly, as needed.

The TimesTen optimizer also accepts hints that give applications the flexibility to
make tradeoffs between such factors as temporary-space usage and performance.

See Chapter 6, “Query Optimization” for more information on TimesTen's query
optimizer and indexing techniques.
What is TimesTen? 15

Concurrency
TimesTen provides full support for shared data stores, as do all database systems.
Unlike most systems, however, TimesTen provides several options to allow users
to determine the optimum balance among response time, throughput, and
transaction semantics for their system. For example, access to a data store, table,
or row can be serialized to improve performance.

For data stores with extremely strict transaction semantics, Read committed
isolation isolation is available. The default Read committed isolation isolation
provides non-blocking operations. These isolation levels conform to the ODBC
standards and are implemented with optimal performance in mind, so they avoid
copying data whenever possible. As defined by the ODBC standard, a default
isolation level can be set for a TimesTen data store, which can be dynamically
modified for each connection at runtime.

Finally, TimesTen runs well on machines with one or more processors.
Depending on the number of processors available, TimesTen can be configured
to trade off response-time for throughput.

For more information on managing concurrent operations in TimesTen, see
Chapter 5, “Concurrent Operations.”

Administration and utilities
TimesTen supports typical database utilities such as interactive SQL, backup and
restore, copy (copies data between different database systems), and migrate (a
higher speed copy for moving data between different versions of TimesTen).

Similar to most other database systems, SQL configuration is available for many
other administrative activities, such as creating indexes and altering tables.
TimesTen also uses SQL configuration to set up replication, Cache Connect, and
materialized views. A web-based administrator is also available for setting up
Cache Connect.

TimesTen built-in procedures and C language functions enable programmatic
control over TimesTen operations and settings. TimesTen command-line utilities
allow users to monitor the status of connections, locks, replication, and so on.
Status can also be obtained using SQL SELECT queries on the system tables in
the TimesTen schema. For example, the TimesTen MONITOR table records
many statistics that are of use in analyzing or debugging a TimesTen application.

For more information on TimesTen administration, see Chapter 10, “TimesTen
Administration.”
16 Oracle TimesTen In-Memory Database Architectural Overview

2
How is TimesTen Used?

As described in Chapter 1, TimesTen provides many of the capabilities of a
general-purpose database, but with a bias toward delivering real-time
performance. This chapter describes how TimesTen might be used to enable
applications that require real-time access to data.

The main sections in this chapter are:
• General Uses for TimesTen
• TimesTen Application Scenarios
• Application Design Considerations
 17

General Uses for TimesTen
In general, TimesTen can be used as:
• The primary database for real-time applications. In this case all data needed

by the application(s) resides in TimesTen.
• A real-time data manager for specific tasks in an overall workflow in

collaboration with disk-based RDBMSs. For example, a phone billing
application may capture and store recent call records in TimesTen while
storing information about customers, their billing addresses, credit
information, and so on in a disk-based RDBMS. It may also age and keep
archives of all call records in the disk-based database. Thus, the information
that requires real-time access is stored in TimesTen while the information
needed for longer-term analysis, auditing, and archival is stored in the disk-
based RDBMS.

• A data utility for accelerating performance-critical points in an architecture.
For example, providing persistence and transactional capabilities to a message
queuing system might be achieved by using TimesTen as the repository for
the messages.

• A data integration point for multiple data sources on top of which new
applications can be built. For example, an organization may have large
amounts of information stored in several data sources, but only subsets of this
information may be relevant to running its daily business. A suitable
architecture would be to pull the relevant information from the different data
sources into one TimesTen operational data store to provide a central
repository for the data of immediate interest to the applications.

Within the context of these different roles, TimesTen might be used to store the
following types of data:
• Reference data, which is relatively static and used only for validation and

enrichment purposes. This data exists in persistent storage.
• Derived data, which is constructed from other data and can be re-constructed

in case of failure. This type of data is transitory, but differs from the next
category in that it is directly accessed by end users.

• Intermediate/transitory data that a business or system process creates and
needs to manipulate in order to complete its processing. It has no intrinsic
value after the process has completed.

• Data of record, which describes the business state required for audit-trail,
regulatory and MIS purposes. This type of data is traditionally managed by
disk-based databases. TimesTen is typically integrated with a back-end
database when managing such data.
18 Oracle TimesTen In-Memory Database Architectural Overview

TimesTen Application Scenarios
This section describes some application scenarios to illustrate how TimesTen
might be integrated as part of an overall data management solution.

The application scenarios are:
• “Scenario 1: Caller usage metering application”: Uses TimesTen to store

metering data on the activities of cellular callers. The metering data is
collected from multiple TimesTen nodes distributed throughout a service area
and archived in a central disk-based database for use by a central billing
application.

• “Scenario 2: Real-time quote service application”: Uses TimesTen to store
stock quotes from a data feed for access by program trading applications.
Quote data is collected from the data feed and published on a real-time
message bus. The data is read from the message bus and stored in TimesTen,
where it is accessed by the program trading applications.

• “Scenario 3: Online travel agent application”: Uses TimesTen as an
application-tier cache to hold user profiles and reservation data maintained in
a central Oracle database.

In the following discussions, the term data store describes the memory segment
that contains the TimesTen “database.” Data stores are discussed in “TimesTen
Data Stores” on page 34.

Note: The company names used in the following application scenarios are
fictitious. Each application is not a specific actual customer application but an
amalgam of similar applications in a given market segment.

Scenario 1: Caller usage metering application
NoWires Communications, a cellular service provider, has a usage metering
application that keeps track of the duration of each cellular call and the services
used. For example, if a caller makes a regular call, a base rate is applied for the
duration of the call. If a caller uses special features, such as roaming, Web
browsing, or 3-way calling, extra charges are applied.

The usage metering application must efficiently monitor up to 100,000
concurrent calls, gather usage data on each call, and store the data in a central
database for use by other applications that generate bills, reports, audits, and so
on.

In the current configuration, all of the application data is stored in a Calls table in
a central disk-based RDBMS database. However, volume has been increasing
and the company’s infrastructure needs modernization. The company has
determined that scaling the central RDBMS database would result in too many
connections and too many records in the Calls table for acceptable performance.
How is TimesTen Used? 19

In addition, the RDBMS database isn't capable of real time updates, which are
needed by the usage metering application for maximum performance.

The company determines that performance and scaling could be improved by
using TimesTen to store the caller data that is of immediate interest to the usage
metering application and to warehouse all of the other data in the central
RDBMS database. The company’s solution is to decentralize the data gathering
operation by distributing multiple instances of the usage metering application and
TimesTen on individual nodes throughout its service areas. For maximum
performance, each usage metering application connects to its local TimesTen
data store by means of an ODBC direct driver connection.

As shown in Figure 2.1, a separate usage metering application and TimesTen
node combination is deployed to handle the real-time processing for calls
beginning and terminating at different geographical locations delineated by area
code. For each call, the local node stores a separate record for the beginning and
the termination of a call. This is because the beginning of a cellular call might be
detected by one node and its termination by another node.

Figure 2.1 Distributed collection of usage data

In this scenario, TimesTen gains a performance edge over the central RDBMS
database because it can manage millions of rows per table with relatively small
performance degradation. So each TimesTen node scales well “vertically,” and
the overall environment scales “horizontally” by adding more TimesTen nodes.

Usage Metering
Application

650

Usage Metering
Application

408

Usage Metering
Application

415

RDBMS

Service Areas

Central Office

Hot Standby Hot Standby Hot Standby
20 Oracle TimesTen In-Memory Database Architectural Overview

Revenue impacting transactions (inserts/updates) against TimesTen must be
durable, so disk-based logging is used. To ensure data availability, each
TimesTen node is replicated to a hot standby node.

The company implements a special background component, called a Transfer
Agent, that runs on each TimesTen node. As shown in Figure 2.2, the Transfer
Agent connects locally to TimesTen by means of the ODBC direct driver and to
the remote RDBMS database by means of IPC. The purpose of the Transfer
Agent is to periodically archive the TimesTen records to the central RDBMS
database, as well as to handle replication failover and recovery, manage
checkpoints, and update statistical information. In the event of a failure of the
main node, the Transfer Agent shifts the callers to a redundant usage metering
application on the TimesTen standby node.

Each time a customer makes, receives, or terminates a cellular call, the
application inserts a record of the activity into its TimesTen Calls table. Each call
record includes a timestamp, unique identifier, originating host's IP address, and
information on the services used.

The Transfer Agent periodically selects the first 5000 rows in the Calls table and
uses fast batch operations to archive them to the central RDBMS. (The SQL
SELECT's result set is limited to a 'first N' rows value to ensure low impact on
the real-time processing of calls and to keep the data being archived to a
manageable size.) After the Transfer Agent confirms successful archival of the
call records in the central RDBMS database, it deletes them from TimesTen. The
interval at which the Transfer Agent archives calls changes dynamically, based
on the call load and the current size of the data store.
How is TimesTen Used? 21

Figure 2.2 Transfer Agent archiving call records

Usage Metering
Application

RDBMS

Master Data Store

Start End ID ...
.. 12:20:23 14354 ...
..
12:19:13 .. 18756 ...
.. 12:20:59 12279 ...
.. 12:22:56 19724 ...
.. 12:26:09 20674 ...
12:18:54 .. 18673 ...
12:18:17 .. 15712 ...

Replicate
Data Store

Archived
Call records

Replication failover cation failon fail
and recoverynd recoverynd re

Checkpoint
Data

Checkpoint Che
data storeta s

Standby
Billing Activity

ppApplication

Other Applications
for generating bills,

 records, auditing, etc.

Service Area

Central Office
Transfer
Agent

Calls

veArchivchi
ordscall recocca

..

.
..
.

.. 01:27:50 12232 ...

Standby Data Store

Start End ID ...
12:29:26 .. 12714 ...
..

12:28:55 16764 ...
.. 12314 ...

12:32:17 21324 ...

12:27:11 .. 15872 ...
12:25:13 .. 13452 ...
.. 12:31:23 18756 ...

Start End ID ...
12:29:26 .. 12714 ...
.. 12:32:16 13452 ...
.. 12:28:55 16764 ...
12:28:51 .. 12314 ...
12:28:47 .. 14326 ...
.. 12:32:17 21324 ...
12:27:52 .. 16764 ...
12:27:11 .. 15872 ...
12:25:13 .. 13452 ...
.. 12:31:23 18756 ...

Calls

Calls
22 Oracle TimesTen In-Memory Database Architectural Overview

Scenario 2: Real-time quote service application
Beeman&Shuster, a financial services company, is adding a real-time quote and
news service to their online trading facility. The immediate requirement of the
real-time quote service is to read an incoming news wire from one of the major
market data vendors and to make a select subset of the data available to trading
applications that manage the automated trading operations for the company. The
company’s plan is to build an infrastructure that is extensible and flexible enough
to accommodate future expansion to provide real-time quotes, news, and other
trading services to retail subscribers.

The real-time quote service includes a NewsReader process that reads incoming
data from a real-time message bus, such as TIBCO SmartSockets® or
Rendezvous™, that is constantly fed data from a news wire. Each NewsReader is
paired with a backup NewsReader that independently reads the data from the bus
and inserts it into a separate TimesTen data store. In this way, the message bus is
used to fork incoming data to two TimesTen data stores for redundancy. In this
scenario, forking the data from the message bus is more efficient than using
TimesTen replication.

Of each pair, one NewsReader makes the stock data available to a trading
application, while the other serves as a hot standby backup to be used by the
application in the event of a failure. The current load requires four NewsReader
pairs, but more NewsReader pairs can be added in the future to scale the service
to deliver real-time quotes to other types of clients over the Web, pager, cellular
phone, and so on.

Figure 2.3 Capturing feed data from a message bus

As shown in Figure 2.4, the NewsReader updates stock price data in a Quotes
table in the TimesTen data store. Less dynamic earnings data is updated in an
Earnings table. The Stock columns in the Quotes and Earnings tables are linked
through a foreign key relationship.

Data Feed Message Bus

NewsReader

Trading
Application

Backup
NewsReader

.....
How is TimesTen Used? 23

The purpose of the trading application is to track only those stocks with PE ratios
below 50, then use some internal logic to analyze the current stock price and
trading volume to determine whether to place a trade using another part of the
trading facility. For maximum performance, the trading application implements
an event facility that uses the TimesTen Transaction Log API (XLA) to monitor
the TimesTen transaction log for updates to the stocks of interest.

To provided the fastest possible access to such updates, the company creates a
Materialized View, named PE_Alerts, with a WHERE clause that calculates the
PE ratio from the Price column in the Quotes table and the Earns column in the
Earnings table. By using the XLA event facility to monitor the transaction log for
price updates in the Materialized View, the trading application only receives
alerts for those stocks that meet its trading criteria.

Figure 2.4 Use of Materialized Views and XLA

Stock Price Vol Earns
IBM 135.03 10 4.35
ORCL 16.23 15 0.43
JNPR 15.36 1 0.36

PE_Alerts

Quotes Earnings

CREATE MATERIALIZED VIEW PE_Alerts AS
SELECT Q.Stock, Q.Price, Q.Vol, E.Earns
FROM Quotes Q, Earnings E
WHERE Q.Stock = E.Stock AND Q.Price / E.Earns < 50;

....

Read Update
Records

....Transaction
Log Buffer

ORCL
Update

Detail
Tables

Materialized
View

NewsReader

TimesTen

Stock Price Vol Time
IBM 135.03 10 9:54:03
ORCL 16.23 15 9:54:02
SUNW 15.21 4 9:54:02
MSFT 61.06 12 9:54:01
JNPR 15.36 1 9:54:01

Stock Earns Est
IBM 4.35 4.25
ORCL 0.43 0.55
SUNW -0.17 0.25
MSFT 1.15 0.95
JNPR 0.36 0.51

Trading
Application

XLA Interface

IBM
Update

JNPR
Update
24 Oracle TimesTen In-Memory Database Architectural Overview

Scenario 3: Online travel agent application
CustomTravel.com, an on-line travel agency, provides Web-based interactive
travel services. The company maintains extensive profiles for each customer to
track characteristics that include travel history and personal preferences
regarding airlines, destinations, rental cars, hotels, and so on. These profiles are
used by a reservation application to provide each customer with a personalized
interactive travel-planning session.

As shown in the lower portion of Figure 2.5, the company’s system includes a
central server, which hosts back-end applications and an Oracle database that
stores the customer profiles and reservation data. The reservation data includes
flight schedules, available seats, hotel and car rental availability, and similar
information from travel-industry vendors. This reservation data is constantly
updated in the Oracle database by a vendor services application that manages the
communication between the company and its travel vendors.

In order to efficiently manage an expected volume of up to 1000 concurrent
customer sessions, the company has distributed a number of application servers
throughout its service region, as shown in the upper portion of Figure 2.5. Each
application server includes a separate reservation application and caches the
customer session data in a local TimesTen data store. To ensure availability, each
TimesTen data store is replicated to a hot standby data store.

Figure 2.5 Using Cache Connect to cache Oracle data

The session data in each TimesTen data store includes a copy of the reservation
data and selected customer profiles stored in the central Oracle database. This
Oracle data is cached in TimesTen cache groups and is propagated between
TimesTen and Oracle using the TimesTen “Cache Connect to Oracle” feature.

Reservation
Application

Oracle
Database

Central Server

Hot Standby

Billing
Application

Vendor
 Services

Application

Airline Services

Hotel Services

Car Rental Services

Data Exchanged with Vendors

Oracle
Connect

Hot Standby

Oracle
Connect

Hot Standby

Oracle
Connect

Reservation
Application

Reservation
Application

Data Mining
Application

App Server 1 App Server 2 App Server 3
How is TimesTen Used? 25

TimesTen “Cache Connect to Oracle” periodically refreshes the reservation data
from the central Oracle database to a cache group in the TimesTen data store.
Customer profiles are cached in another cache group. When a customer logs on,
the reservation application loads that customer’s profile from the central Oracle
database as a cache instance in the customer profiles cache group. After querying
the customer for initial information, such as destination and date, the reservation
application uses the customer’s profile in the TimesTen cache to formulate
SELECT queries that “filter” the reservation data in a manner that provides the
customer with the data that is of most interest.

When a customer completes a session, the final selections of the flight, hotel, and
so on are flushed from TimesTen to Oracle. “Cache Connect to Oracle” ages out
the cache instances for non-active customer profiles from TimesTen to Oracle, as
space is needed.

All of the final reservation and scheduling data is stored in the Oracle database.
The Oracle database is much larger than each TimesTen data store and is best
accessed by applications that do not require the real-time performance of
TimesTen but do require access to large amounts of data. Such applications
include the company’s vendor services application, which updates the
reservation data supplied by the travel vendors and confirms the final
reservations supplied by TimesTen with the vendors, and a billing application,
which charges the customer’s account for the selected services and generates an
invoice. Another Oracle application is the company’s data mining application,
which analyzes the historical data to determine reservation patterns as they relate
to time of year, time of week, duration of travel, and number of family members
traveling together. The results of this application are used to improve the overall
revenue of the company by offering travel discounts during periods of infrequent
travel.
26 Oracle TimesTen In-Memory Database Architectural Overview

Application Design Considerations
TimesTen is designed to offer maximum flexibility to accommodate a wide range
of application architectures. For example, consider the following alternatives to
the online travel agent application described in “Scenario 3: Online travel agent
application” on page 25.

Alternative 1
To efficiently manage the large number of concurrent customer sessions,
CustomTravel.com could have chosen an alternate, more centralized architecture
for its online travel agent application, such as the one shown in Figure 2.6.

In this alternative architecture, the company implements separate applications to
provide the airline services, hotel services, and car rental services. Each
application runs on a separate server at a central location and caches only the data
relevant to the application. This architecture has the same benefits as the one
described in the original scenario, but uses a more centralized approach to data
management.

Figure 2.6 Centralized TimesTen caches on multiple co-located servers

Airline Services
Application

Oracle
Database

Central Server

Hot Standby

Billing
Application

Vendor
 Services

Application

Airline Services

Hotel Services

Car Rental Services

Data Exchanged with Vendors

Oracle
Connect

Hot Standby

Oracle
Connect

Hot Standby

Oracle
Connect

Data Mining
Application

Hotel Services
Application

Car Rental
Services

Application

App Server 1 App Server 2 App Server 3
How is TimesTen Used? 27

Alternative 2
The three applications in Scenario 3 could run on the same server, as shown in
Figure 2.7, if the server has enough processing power to handle all three
applications.

Figure 2.7 Centralized TimesTen caches on the same server

Alternative 3
If all three applications in Scenario 3 were to run on the same server, they could
also access the same TimesTen data store, as shown in Figure 2.8. A single data
store could contain the union of data needed by the three applications.

Figure 2.8 Centralized, shared TimesTen cache on the same server

Airline Services
Application

Oracle
Database

Central Server

Hot Standby

Billing
Application

Vendor
 Services

Application

Airline Services

Hotel Services

Car Rental Services

Data Exchanged with Vendors

Oracle
Connect

Hot Standby

Oracle
Connect

Hot Standby

Oracle
Connect

Data Mining
Application

Hotel Services
Application

Car Rental
Services

Application

Single App Server

Airline Services
Application

Oracle
Database

Central Server

Billing
Application

Vendor
 Services

Application

Airline Services

Hotel Services

Car Rental Services

Data Exchanged with Vendors

Hot Standby

Oracle
Connect

Data Mining
Application

Hotel Services
Application

Car Rental
Services

Application

Single App Server
28 Oracle TimesTen In-Memory Database Architectural Overview

Architectural tradeoffs
The original Scenario 3 design and the alternative designs described above
illustrate the following architectural tradeoffs:
• Geographically distributed servers, as described in the original discussion of

Scenario 3, can provide better response time for local applications and end
users. They can also provide better fault tolerance because multiple servers in
a centralized location can all suffer from the same failure, such as a power
outage or a fire.

• Multiple servers at the same site, as shown in Alternative 1, may provide
more fault tolerance than one large centralized server, but they also require
more administrative overhead and more coordination.

• Multiple specialized applications can provide better fault tolerance to
software failures than a single more general-purpose application. For
example, in Alternative 1, a bug in the Airline Services Application will not
affect the Car Rental Services Application, while in the original scenario,
since all reservation services are combined into one application, bugs in one
of the applications can affect all of the services on that node.

• Multiple specialized applications with different, but potentially overlapping
data stores (Alternative 2), can provide better performance than multiple
applications sharing one data store (Alternative 3) as each application may
have different access patterns and may require different indexes on the data.

• A single, shared data store described in Alternative 3 has some advantages
and some disadvantages. On the positive side, it simplifies data management
as all policies for when/how to transfer data to/from TimesTen and Oracle can
be handled in one place. It can also save on main memory consumption since
multiple caches may contain redundant data. However, performance and
scalability may be better with multiple data stores. Furthermore, failure of the
one-shared data store may affect all applications. On the other hand, a standby
data store can provide rapid failover should such a failure occur.
How is TimesTen Used? 29

Summary of design options
Connection to TimesTen
For best performance, use a direct connection to the TimesTen data manager, as
described in “Direct Driver Connection” on page 44. Direct connections avoid
the high cost of context switches and IPC that are associated with Client/Server
connections.

Operation with a disk-based RDBMS
TimesTen is appropriate for managing relatively small to moderate amounts of
data (from single-digit to the tens of gigabyte range), while a disk-based RDBMS
like the Oracle database is more appropriate for managing large amounts of data
(in the terabyte range).

TimesTen can work in partnership with the Oracle database, where TimesTen
manages operational data that requires high performance while the Oracle
database manages historical data. This was shown in Scenario 1: Caller usage
metering application and Scenario 3: Online travel agent application. Several
options are available when TimesTen is used with the Oracle database:
• The transfer of data between TimesTen and the Oracle database may either be

handled by the application (as shown in Scenario 1) or by the TimesTen
“Cache Connect to Oracle” feature (as shown in Scenario 3).

• TimesTen may be used to collect rapidly arriving new data that is later
transferred in batches to a historical Oracle database (as shown in Scenario 1).

• TimesTen may be used to manage frequently accessed subsets of a much
larger database (as shown in Scenario 3).

• The operational data may be managed in several TimesTen data stores or in a
single data store. In the case of multiple data stores, the data stores may be
overlapping or may be completely disjoint. Multiple data stores provide the
advantage of scalability, fault-tolerance and potentially better tuning for
specific application needs, as discussed in the alternatives to Scenario 3.

Data partitioning
Data partitioning may be used to scale applications for higher throughput. This is
shown in Scenario 1: Caller usage metering application, where the caller
information is captured in different nodes. This partitioning allows the
application to scale infinitely as more nodes may be added when the capacity of
existing nodes is saturated. Such partitioning also provides geographic flexibility,
where different nodes can be used to capture caller data as the caller changes
location between the beginning and the end of the call.
30 Oracle TimesTen In-Memory Database Architectural Overview

Data availability
In all three scenarios described in “TimesTen Application Scenarios” on page 19,
continuous availability to data managed by TimesTen is essential. This is
achieved by always maintaining a standby copy of the data in another TimesTen
data store. In Scenario 1: Caller usage metering application and Scenario 3:
Online travel agent application, the standby copy is maintained by TimesTen’s
replication feature, while in Scenario 2: Real-time quote service application, the
standby copy of the data store is maintained by the application through redundant
messaging and through the redundant processing of messages on both the master
and the standby.

TimesTen’s replication provides an asynchronous and more synchronous-like
return service options. In the event of a failure of the master data store,
TimesTen replication enables rapid failover to a standby data store. In Scenarios
1 and 3, applications run against the master data store. TimesTen automatically
replicates all updates from the master data store to the standby data store. If the
master data store fails, an OS-specific cluster manager can detect the failure and
automatically switch all activities to the applications running on the standby data
store.

In environments where updates are delivered to the application by messaging
middleware, the application may choose to implement high availability through
redundant messaging. In this case, the messaging middleware delivers messages
to both the primary and the standby. The applications on both the primary and
standby apply updates to their respective data stores. Read requests may be
handled by either the primary only or by both the primary and the standby. Again,
in case of failure, a cluster manager can detect the failure and can automatically
route requests to the surviving data store.
How is TimesTen Used? 31

32 Oracle TimesTen In-Memory Database Architectural Overview

3
Anatomy of a TimesTen System

As shown in the middle of Figure 3.1, a TimesTen “database” (or data store) is
maintained at runtime in a segment of shared memory that contains all of the
tables, indexes and related data structures needed to manage the data in the
TimesTen system.

The TimesTen ODBC direct driver serves as the “database engine” that manages
the interaction between applications and the data stores. As shown in Figure 3.1,
ODBC applications running on the same machine as TimesTen can obtain
maximum performance by connecting directly to the ODBC direct driver. Java
applications access the direct driver through the JDBC library. Client
applications running on remote machines communicate over TCP/IP connections
with TimesTen server child processes that, in turn, access the direct driver.

Figure 3.1 TimesTen Components

As shown in Figure 3.1, TimesTen provides disk-based logging and
checkpointing facilities. Applications can also fine-tune logging and
checkpointing to make tradeoffs between performance and durability by various
degrees.

Client MachinesClient Machines

CP/IPTCTT

Client
Application

ODBC
Applications

O
racle

C
o

n
n

ect

JDBC

Oracle DB

Utili
tie

s

TimesTenDaemon

Sub-

daemons

Re
p

lic
at

io
n

Java
Applications

Client
Driver

Se
rv

er
Ch

ild
Pr

oc
s

O
DBC Direct Driver

Log Files Checkpoint
Files
 33

Other TimesTen features include replication support for enhanced data
availability and Cache Connect to enable TimesTen to operate as a cache for
Oracle data.

The remainder of this chapter describes the main TimesTen components:
• TimesTen Data Stores
• TimesTen Data Manager
• TimesTen ODBC and JDBC APIs

The other components are described in subsequent chapters.

TimesTen Data Stores
A TimesTen data store is managed at runtime in a segment of memory that
contains a collection of TimesTen tables and indexes. The TimesTen Data
Manager can manage multiple data stores.

Figure 3.2 TimesTen Data Stores

Each data store is identified by a logical name and a set of attributes that define
its configuration. Under most circumstances, the name and attributes of a data
store are defined in an ODBC data source name (DSN).

O
racle

C
o

n
n

ect

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

Re
p

lic
at

io
n

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver
34 Oracle TimesTen In-Memory Database Architectural Overview

User and system DSNs
Each DSN uniquely identifies a data store. However, a data store can be
referenced by multiple DSNs to define different connection configurations to that
data store. This allows users to give convenient names to different connection
configurations for the same data store. Figure 3.3 shows a TimesTen data store
identified by three DSNs, each with unique configuration attributes.

DSNs are resolved using a two-tiered naming system, consisting of user DSNs
and system DSNs:
• A user DSN can be used only by select users. Although a user DSN is private

to select users, it is only the DSN (the character-string name and its attributes)
that is private. The underlying data store can be referenced by other user or
system DSNs.

• A system DSN can be used by any user on the machine on which the system
DSN is defined.

For example, Figure 3.3 shows a data store, named MyDS, that is referenced by
three DSNs, each with its own unique configuration attributes for the data store.
DSN1 is a user DSN belonging to the user Joe; while DSN2 and DSN3 are system
DSNs that can be accessed by any of the users, including Joe.

Figure 3.3 Multiple DSNs for a TimesTen Data Store

When looking for a specific DSN, TimesTen first looks for a user DSN with the
specified name. If no matching user DSN is found, TimesTen looks for a system
DSN with the specified name. If a user DSN and a system DSN with the same
name exist, TimesTen selects the user DSN.

DSN Name: "DSN1"
Data Store: /tmp/MyDS
Config Attributes: A, B, C

DSN Name: "DSN2"
Data Store: /tmp/MyDS
Config Attributes: A, C, D, E

DSN Name: "DSN3"
Data Store: /tmp/MyDS
Config Attributes: F, H

User DSN (Joe) System DSN System DSN

Joe, Sally, Roberto, Patrice, Gagan

Users

Only Joe has access
Everyone has access
Anatomy of a TimesTen System 35

TimesTen Data Manager
As shown in Figure 3.4, the TimesTen Data Manager describes all of the
TimesTen processes and libraries and is responsible for processing ODBC and
JDBC function calls and SQL statements issued by applications on data stores.

Figure 3.4 TimesTen Data Manager

At the core of the data manager is the ODBC direct driver, which is a library of
standard ODBC routines and core TimesTen routines that implement SQL,
logging, checkpointing, locking, failure recovery, and so on. As described in
“Direct Driver Connection” on page 44, ODBC applications can gain a
significant performance edge by communicating directly with a data store
through the direct driver.

TimesTen processes
The TimesTen data manager includes a number of processes that access the
ODBC direct driver to provide specific TimesTen services.

The TimesTen processes are:
• TimesTen Daemon
• TimesTen Subdaemons
• TimesTen Server Daemon and Server Child Processes
• Cache agents
• Replication Agents

TimesTen Daemon
There is one TimesTen daemon for each TimesTen installation. The TimesTen
daemon is a single multithreaded process that is automatically started when the
machine boots. One thread is created for each application connection to
TimesTen to implement communication and failure detection.

Data
Manager

O
racle

C
o

n
n

ect

JDBCUtili
tie

s

TimesTenDaemon

Lo
ggin

g

 Checkpointing
Sub-

daemons

R
ep

lic
at

io
n

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver
36 Oracle TimesTen In-Memory Database Architectural Overview

In order for an application or server process to establish a connection to a
TimesTen data store, it first contacts the ODBC or JDBC driver to establish a
TCP socket connection with the TimesTen daemon running on that machine.

This socket is used for two purposes:
• The TimesTen ODBC/JDBC driver, running as part of the application's

process (packaged as a shared library / DLL), communicates with the
TimesTen daemon using the socket. This connection is used to implement
much of the logic involved in connecting to and disconnecting from a data
store. For example, applications contact the TimesTen daemon via the socket
connection to obtain the id of a data store memory segment.

• The TimesTen daemon uses the socket as a failure detection mechanism. If an
application that is connected to one or more data stores exits (either
voluntarily or involuntarily), the socket connecting that application to the
TimesTen daemon is automatically closed by the operating system. This alerts
the TimesTen daemon that the application has exited, so it can initiate the
necessary recovery processes.

Note: The TimesTen daemon simply manages application connections to the
data store and plays no role in processing queries.

TimesTen Subdaemons
The TimesTen daemon does not directly access the individual data stores.
Instead, the TimesTen daemon assigns a separate subdaemon to each shared data
store to coordinate the access of multiple applications to the data store. An
application that has an exclusive connection to a data store manages the data
store directly, without any intervention from a subdaemon.

When the system starts, the TimesTen daemon starts a predetermined
configurable number of subdaemons. When a data store is loaded into memory,
the TimesTen daemon allocates one of its free subdaemons to manage that data
store.

The subdaemon assigned to manage a shared data store performs a number of
operations that include:
• Loading the data store into memory from a checkpoint file on disk (if present).
• Periodically checking for deadlocks and canceling SQL operations on behalf

of other applications in order to break any deadlocks.
• Performing the final checkpoint operation when the data store is unloaded

from RAM.
• Recovering the data store from checkpoint files and log files after failures, as

described in “Recovery from log and checkpoint files” on page 75.
• Performing periodic checkpoints
Anatomy of a TimesTen System 37

TimesTen Server Daemon and Server Child Processes
The TimesTen server daemon manages incoming connections from remote client
applications. Its behavior is much like the TimesTen daemon for local
applications, only it allocates a server child process to access the data store on
behalf of the client.

See “Client/Server Connection” on page 46 for more information.

Cache agents
If Cache Connect is enabled, a cache agent process is used to automatically
propagate updates from the Oracle database to the TimesTen data store and to
“age out” unused data from the TimesTen cache.

See Chapter 9, “Cache Connect to Oracle” for more information.

Replication Agents
If TimesTen data stores are configured for replication, replication agents are
used to copy updates between the replicated data stores. When an application
updates the master data store, its replication agent detects the update and
forwards it to another replication agent on the subscriber data store. There is one
replication agent for each data store configured in a replication scheme.

See “Replication” on page 75 for more information.
38 Oracle TimesTen In-Memory Database Architectural Overview

TimesTen ODBC and JDBC APIs
The runtime architecture of TimesTen supports connectivity through the ODBC
and JDBC APIs, which allow applications to access TimesTen data using SQL-
92 as the standard data access language. ODBC and JDBC are supported by most
DBMS vendors and are widely adopted by DBMS application developers
because they provide a standard, vendor-independent interface to the most
commonly used database systems.

Figure 3.5 TimesTen ODBC and JDBC APIs

TimesTen provides built-in procedures that extend the standard ODBC and
JDBC functionality for TimesTen-specific operations. TimesTen also provides
specialized APIs to support applications that manage distributed transactions or
monitor the transaction log.

The remainder of this section describes the:
• SQL-92 standard
• TimesTen built-in procedures
• Distributed Transaction Processing (DTP) APIs
• Transaction Log API

ODBC
Applications

O
racle

C
o

n
n

ect

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

Re
p

lic
at

io
n

Java
Applications

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver
Anatomy of a TimesTen System 39

SQL-92 standard
TimesTen supports the SQL-92 standard, through which the TimesTen Data
Manager provides full relational semantics. Applications pass SQL statements to
TimesTen through the ODBC or JDBC interface.

TimesTen SQL support includes standard Data Definition Language (DDL)
statements (such as CREATE TABLE, ALTER TABLE, and DROP TABLE) to
define database objects, and Data Manipulation Language (DML) statements
(such as SELECT, INSERT, UPDATE and DELETE) to query and manipulate
the data within the database.

TimesTen SQL expressions include arithmetic and string functions (MOD,
CONCAT, UPPER), conversion functions (TO_DATE, TO_CHAR), and
aggregates (AVG, COUNT, MAX, MIN, SUM). Subqueries may be used in
predicates in SELECT, UPDATE, and DELETE. TimesTen has support for
ROWID and SEQUENCEs. A MATERIALIZED VIEW feature propagates
changes synchronously to view tables. A TimesTen-specific FIRST ‘n’ rows
extension to the SQL syntax allows halting SELECT/UPDATE/DELETE after
the first few rows. SELECT support includes GROUP BY, HAVING, and
ORDER BY.

TimesTen also provides extended SQL to support TimesTen-specific
functionality, such as cache group and replication configuration, as described in
“Replication” on page 75 and “Cache Groups” on page 94.

TimesTen built-in procedures
TimesTen provides built-in procedures that extend standard ODBC and JDBC
functionality to provide applications with programmatic control over TimesTen-
specific operations such as initiating checkpoints, setting lock levels, obtaining
status information, and so on. The TimesTen built-in procedures are called
through the ODBC or JDBC API. TimesTen does not support user-defined stored
procedures.

Distributed Transaction Processing (DTP) APIs
TimesTen implements the X/Open XA Specification and its Java derivative, the
Java Transaction API (JTA).

The TimesTen implementation of the XA interfaces is intended for use by
transaction managers in distributed transaction processing (DTP) environments.
These interfaces can be used to write a new transaction manager or to adapt an
existing transaction manager to operate with TimesTen resource managers.

The TimesTen implementation of the Java JTA interfaces is intended to enable
Java applications, application servers, and transaction managers to use TimesTen
resource managers in DTP environments.
40 Oracle TimesTen In-Memory Database Architectural Overview

Figure 3.6 illustrates the interfaces defined by the X/Open DTP model.

Figure 3.6 Distributed Transaction Processing Model

In the DTP model, a transaction manager breaks each global transaction down
into multiple branches and distributes them to separate resource managers for
service. In the context of TimesTen XA, the resource managers can be a
collection of TimesTen data stores, or data stores in combination with other
commercial databases that support XA.

As shown in Figure 3.6, applications use the TX interface to communicate global
transactions to the transaction manager. The transaction manager breaks the
global transaction down into branches and uses the XA interface to coordinate
each transaction branch with the appropriate resource manager.

Global transaction control provided by the TX and XA interfaces is distinct from
local transaction control provided by the native ODBC and JDBC interfaces. An
application can maintain separate connections for local and global transactions or
initiate both local and global transactions over the same connection.

Note: The TimesTen implementation of the X/Open XA Specification is fairly
generic and should be used only as needed, as the semantics of XA restrict the
performance of distributed transactions.

Transaction Log API
The Transaction Log API (XLA) allows applications to detect changes made to
specified tables in a local data store. XLA also provides functions that can be
used by applications to apply changes detected in one data store to another data
store. See “Transaction Log API” on page 85 for more information.

XA or JTA Interface

Global

Transactions

Native Interface

(ODBC or JDBC)

Transaction

Branches

Application

Transaction
Manager

TX or proprietary

transaction interface
Anatomy of a TimesTen System 41

For More Information
For more information on TimesTen data stores, see Chapter 1, “Working with
TimesTen Data Stores” and “Chapter 6, “Working with Data in a TimesTen Data
Store” in the Oracle TimesTen In-Memory Database Operations Guide.

For more information on the TimesTen Data Manager, see “Chapter 4, “Working
with the Oracle TimesTen Data Manager Daemon” in the Oracle TimesTen In-
Memory Database Operations Guide.

For more information on the TimesTen APIs, see the TimesTen C and Java
Developer Guides and the Oracle TimesTen In-Memory Database API and SQL
Reference Guide.
42 Oracle TimesTen In-Memory Database Architectural Overview

4
How Applications Connect to Data
Stores

Applications can connect to a data store in one of three ways:
• Direct Driver Connection
• Client/Server Connection
• Driver Manager Connection

Once connected, applications can communicate with the TimesTen data store by
means of the JDBC or ODBC APIs, as described in “TimesTen ODBC and
JDBC APIs” on page 39.

The TimesTen Data Manager supports multithreaded applications, so that
multiple application threads can connect to the same or to different TimesTen
data stores simultaneously. Each connection to a data store is represented by an
ODBC connection handle or a JDBC connection object.

Note: Client/server and driver manager connections add performance overhead
to TimesTen. The performance overhead for client/server connections can be
significant.
 43

Direct Driver Connection
In a traditional database system, TCP/IP or another IPC mechanism is used by
client applications to communicate with a database server process. All exchanges
between client and server are sent over a TCP/IP connection. This IPC overhead
adds substantial cost to all SQL operations and can be avoided in TimesTen by
connecting the application directly to the TimesTen ODBC direct driver.

Figure 4.1 Direct driver connection

As described in “TimesTen Data Manager” on page 36, the ODBC direct driver
is a library of ODBC and TimesTen routines that implement the database engine
used to manage the data stores. Java applications access the ODBC direct driver
through the JDBC library, as shown in Figure 4.1.

An application can create a direct driver connection when it runs on the same
machine as the TimesTen data store. In a direct driver connection, the ODBC
driver directly loads the TimesTen data store into either the application’s heap
space or a shared memory segment, as described in “Shared data stores” on page
45. The application then uses the direct driver to access the memory image of the
data store. Because no inter-process communication (IPC) of any kind is
required, a direct-driver connection provides extremely fast performance and is
the preferred way for applications to access TimesTen data stores.

ODBC
Applications

O
racle

C
onnect

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

Re
pl

ic
at

io
n

Java
Applications

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver
44 Oracle TimesTen In-Memory Database Architectural Overview

Shared data stores
When creating a direct driver connection to a data store, an application can
accesses the data store in shared mode. In shared mode, the data store is loaded
into a shared memory segment, where it can be shared by multiple applications
and accept multiple connections from each.

Figure 4.2 Shared mode access

All applications connected to a shared data store use the same shared memory
segment. As a result, changes made from one application are instantly visible to
all other applications once the first application commits the transaction.

ODBC
Application

O
racle

Connect

JDBCUtili
tie

s

TimesTenDaemon

 Data
Store

Sub-

daemons
Re

pl
ic

at
io

n

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver

Shared Memory
Segment

Java
Application

ODBC
Application

Shared Access
How Applications Connect to Data Stores 45

Client/Server Connection
The TimesTen client driver and server daemon processes accommodate
connections from remote client machines to data stores across a network. The
server daemon spawns a separate server child process for each client connection
to the data store, as shown in Figure 4.3

Figure 4.3 Client/server connection to a data store

Applications on a client machine issue ODBC calls to a local ODBC client driver
that communicates with a server child process on the TimesTen server machine.
The server child process, in turn, issues native ODBC requests to the ODBC
direct driver to access the TimesTen data store.

If the client and server reside on separate nodes in a network, they communicate
by means of sockets and TCP/IP. If both the client and server reside on the same
machine, they can communicate more efficiently by means of a shared memory
segment (SHM) as IPC.

Traditional database systems are typically structured in this client/server model,
even when the application and the database are on the same system. Client/server
communication adds extra cost to all database operations, so it should only be
used in TimesTen for applications that are not performance sensitive.

Client MachinesClient Machines

Client
Application

O
racle

C
o

n
n

ect

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

Re
p

lic
at

io
n

Client
Driver

Se
rv

er
Ch

ild
Pr

oc
s

O
DBC Direct Driver

TimesTen
Server Daemon

P/IP orCPTCT
M as IPCMHSH
46 Oracle TimesTen In-Memory Database Architectural Overview

Driver Manager Connection
Applications can connect to TimesTen through an ODBC driver manager, which
is a database-independent interface that adds a layer of abstraction between the
applications and the TimesTen data store. In this way, the driver manager allows
applications to be written to operate independently of the data store and to use
interfaces that are not directly supported by TimesTen. The use of a driver
manager also enables a single process to have both direct and client connections
to the data store.

On Microsoft Windows systems, applications can connect to the MS ODBC
driver manager to make use of a TimesTen data store along with data sources
from other vendors, such as Oracle. Driver managers for UNIX systems are
available as open-source software, such as unixODBC, as well as from third-
party vendors.

Figure 4.4 Driver manager connections

For More Information
For more information on connecting to data stores, see Chapter 2, “Creating
TimesTen Data Stores” and Chapter 3, “Working with the TimesTen Client and
Server” in the Oracle TimesTen In-Memory Database Operations Guide.

O
racle

C
o

n
n

ect

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

Re
p

lic
at

io
n

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver

Driver ManagerODBC Interface JDBC Interface

ODBC
Applications

Java
Applications

O
racle D

river

SQ
L

Se
rv

er
 D

riv
er

Oracle DB SQL Server
How Applications Connect to Data Stores 47

48 Oracle TimesTen In-Memory Database Architectural Overview

5
Concurrent Operations

As described in “Shared data stores” on page 45, a data store can be accessed in
either exclusive mode or shared mode. When a shared data store is accessed by
multiple transactions, there must be a means to coordinate concurrent changes to
and scans of the same data in the data store.

TimesTen uses two tools to coordinate concurrent access to data:
• “Locks”, which are reservations placed on data store objects, such as rows,

tables, or the entire data store. Locks give a precise specification of the
reservation (different levels of sharing); provide first-come, first-served
ordering; and provide deadlock detection and timeout. Locks are designed to
be held for a relatively long time, such as across application interactions.

• “Latches”, which are simple low-level concurrency tools that operate quickly.
In contrast to locks, latches are not designed to be held across application
interactions and should be invisible to all customer applications.

Applications can choose one of two transaction isolation levels for a connection
to control how locks are placed on fetched rows. Isolation levels are described in
“Transaction Isolation” on page 53.

TimesTen also provides an SMP scaling attribute that can be used to adjust
latches to gain maximum performance when running applications on multi-
processor machines. SMP scaling is described in “For More Information” on
page 55.
 49

Locks
Locks are high-level constructs used to serialize access to resources in order to
prevent one user from changing an element that is being read or changed by
another user. TimesTen automatically performs locking if a data store is accessed
in shared mode.

Applications can select from three lock levels:
• Data store-level locking
• Table-level locking
• Row-level locking

TimesTen provides a LockLevel configuration attribute and a ttLockLevel()
procedure to either lock the entire data store or to direct the optimizer to choose
whether to place locks on a row or on the entire data store. Applications can
optionally call the ttOptSetFlag() procedure to suggest that the query optimizer
place locks on tables. Row- and table-level locking require that logging be
enabled. Only data store-level locking is possible if logging is disabled.

Serializable transactions acquire share locks on the items the read and exclusive
locks on the items they write. These locks are held until the transaction commits
or rolls back. Read-committed transactions acquire exclusive locks on the items
they write and hold these locks until the transactions are committed. Read-
committed transactions do not acquire locks on the items they read. Committing
or rolling back a transaction closes all cursors and releases all locks held by the
transaction. (See “Transaction Isolation” on page 53 for a discussion of
serializable and read committed isolation levels.)

TimesTen performs deadlock detection to report and eliminate deadlock
situations. If an application is denied a lock because of a deadlock error, it should
roll back the entire transaction and retry the transaction.

An application can use the ttLockWait() procedure to control how many seconds
it is willing to wait for a lock that is in use by another connection.
50 Oracle TimesTen In-Memory Database Architectural Overview

Figure 5.1 Lock Levels

Data store-level locking
Locking at the data store level locks the entire data store when accessed by a
transaction, thus prohibiting access by other transactions. All data store-level
locks are exclusive. A transaction that requires a data store-level lock cannot start
until there are no active transactions on the data store. Once a transaction has
obtained a data store-level lock, all other transactions are blocked until the
transaction commits.

Data store-level locking restricts concurrency more than table-level locking and
is generally useful for initialization operations, such as bulkloading, when no
concurrency is necessary. Data store-level locking has better response time than
row-level or table-level locking at the cost of diminished concurrency and,
therefore, diminished throughput.

Different transactions can coexist with different levels of locking, but the
presence of even one transaction using data store-level locking leads to reduced
concurrency.

Table-level locking
Table-level locking locks a table when it is accessed by a transaction and is useful
when a statement accesses most of the rows in a table. Such statements can be
queries, updates, deletes or multiple inserts done in a single transaction. For any
SQL statement, the optimizer determines when a table lock should be used. To
optimize transactions that contain multiple statements that, when combined,
access most of the rows in the table, applications can call the ttOptSetFlag()
procedure to request that the optimizer use table locks.

As with all higher-granularity locks, table locks may reduce throughput, so they
should only be used where a substantial portion of the table needs to be locked, or
where high concurrency is not needed. In read-committed isolation, TimesTen

Row-level lock

Table-level lockData-store-level lock
Concurrent Operations 51

does not use table-level locking for read operations unless it was explicitly
requested by the application by calling ttOptSetFlag().

Row-level locking
Row-level locking only locks the rows that are accessed by a transaction. It
provides the best concurrency by allowing concurrent transactions to access rows
in the same table. Row-level locking is generally preferable when there are many
concurrent transactions, each operating on different rows of the same tables.
52 Oracle TimesTen In-Memory Database Architectural Overview

Latches
Unlike locks, which are designed to be held across application interactions,
latches are low-level concurrency tools that are designed to operate fast and are
not held across application interactions. Latches are used internally by TimesTen
to protect internal data structures from concurrent access and are transparent to
applications.

Transaction Isolation
Transaction isolation provides an application with the appearance that the system
performs one transaction at a time, even though there are concurrent connections
to the data store. Applications can use the Isolation connection attribute to set the
isolation level for a connection. Concurrent connections can use different
isolation levels.

The isolation levels are:
• Read committed isolation
• Serializable isolation

As shown in Figure 5.2, isolation level and concurrency are inversely related. A
lower isolation level enables greater concurrency, but with greater risk of data
inconsistencies. A higher isolation level provides a higher degree of data
consistency, but at the expense of concurrency.

Figure 5.2 Isolation levels and degree of concurrency

Read committed isolation
When an application uses read committed isolation, readers have a separate copy
of the data from writers, so locks are not needed. Read committed isolation is
non-blocking for queries and can work together with Read committed isolation
isolation. Writers block only other writers and Read committed isolation readers.
Read committed isolation is the default isolation level.

Most

Least
C
o
n
cu
rr
en
cy

Most

Least

Is
o
la
ti
o
n

Serializable

Read
Committed
Concurrent Operations 53

Figure 5.3 Read Committed Isolation

Read committed isolation provides increased concurrency because readers do not
block writers and writers do not block readers. This isolation level is useful for
applications that have long-running scans that may conflict with other operations
needing access to a scanned row. However, the disadvantage when using this
isolation level is that non-repeatable reads are possible within a transaction or
even a single statement (for example, the inner loop of a nested join).

When using this isolation level, DDL statements that operate on a table can block
readers and writers of that table. For example, an application cannot read a row
from a table if another application has an uncommitted DROP TABLE, DROP
INDEX, or ALTER TABLE operation on that table. In addition, blocking
checkpoints will block readers and writers.

Read committed isolation does acquire read locks as needed during materialized
view maintenance to ensure that views are consistent with their detail tables.
These locks are not held until the end of the transaction but are instead released
when maintenance has been completed (for example, when an update to the
detail tables returns success or failure).

Serializable isolation
When an application uses serializable isolation, locks are acquired within a
transaction and are held until the transaction commits or rolls back. This level of
isolation provides for repeatable reads and increased isolation within a
transaction at the expense of decreased concurrency. Transactions use
serializable isolation when data store-level locking is chosen.

ReadApplication
Committed Copy

Uncommitted Copy

ReadApplication

WriteApplication

Read
54 Oracle TimesTen In-Memory Database Architectural Overview

Figure 5.4 Serializable Isolation

Serializable isolation level is useful for transactions that require the strongest
level of isolation. Serializable isolation also reduces deadlocks. However,
concurrent applications that need to modify the data read by the transaction may
encounter lock timeouts because read locks are held until the transaction
commits.

For More Information
For more information on locks and transaction isolation, see Chapter 7,
“Transaction Management and Recovery” in the Oracle TimesTen In-Memory
Database Operations Guide.

Commit
Transaction

Read

Read Next Row

Application Fetched Row

Fetched Row
Concurrent Operations 55

56 Oracle TimesTen In-Memory Database Architectural Overview

6
Query Optimization

TimesTen has a cost-based query optimizer that speeds up data access by
automatically choosing the optimal way to answer queries. Optimization is
performed in the third stage of the compilation process. The four stages of
compilation are shown in Figure 6.1.

Figure 6.1 Compilation stages

The role of the optimizer is to determine the lowest cost plan for executing
queries. By “lowest cost plan” we mean an access path to the data that will take
the least amount of time. The optimizer determines the cost of a plan based on:
• Table and column statistics
• Metadata information (referential integrity, primary key, etc.)
• Index choices (including automatic creation of temporary indexes)
• Scan methods (full table scan, Rowid lookup, hash or T-tree index scan)
• Join algorithm choice (nested loop joins, nested loop joins with indexes, or

merge join)

Parser

Semantic
Analyzer

Optimizer

Code
Generator

SQL Query

Executable Code
 57

The main topics in this chapter are:
• Optimization Time and Memory Usage
• Statistics
• Optimizer Hints
• Indexing Techniques
• Scan Methods
• Join Methods
• Optimizer Plan

Optimization Time and Memory Usage
The TimesTen optimizer is designed to generate the best possible plan within
reasonable time and memory constraints. However, unlike many other
components of TimesTen, the speed of optimization is not an overriding factor in
the optimizer’s design. We assume that most commands will be pre-compiled
and that compilation will not be done during time-critical periods. On the other
hand, in order to provide TimesTen applications with optimum throughput, the
quality of the optimized plans is critical. For these reasons, the optimizer is
designed to give precedence to execution time over optimization time.

Furthermore, the plans generated by the optimizer emphasize performance over
memory usage. The optimizer may designate the use of significant amounts of
temporary memory space in order to speed up execution time. In memory
constrained environments, applications can use the optimizer hints described in
“Optimizer Hints” on page 59 to disable the use of temporary indexes and tables
in order to create plans that trade maximum performance for less memory usage.

Statistics
When determining the optimum execution path for a query, the optimizer
examines statistics about the data referenced by the query, such as the number of
rows in the tables, the minimum and maximum values and the number of unique
values in interval statistics of columns used in predicates, the existence of
primary keys within a table, the size and configuration of any existing indexes.
These statistics are stored in the “SYS.TBL_STATS” and “SYS.COL_STATS”
tables, which are populated by TimesTen when an applications calls the
ttOptUpdateStats() procedure.
58 Oracle TimesTen In-Memory Database Architectural Overview

The optimizer uses the statistics for each table to calculate the selectivity of
predicates, such as T1.A = 4, or a combination of predicates, such as T1.A = 4
AND T1.B < 10. Selectivity is a measurement of the number of rows in a table,
index, view, or the result from a join or GROUP BY operation that are expected
to pass the predicate test. If a predicate selects a small percentage of rows, it is
said to have high selectivity, while a predicate that selects a large percentage of
rows has low selectivity.

Optimizer Hints
The optimizer allows applications to provide hints to adjust the way that plans
are generated. For example, applications can use the ttOptSetFlag() procedure to
provide the TimesTen optimizer with hints about how to best optimize any
particular query. This takes the form of directives that restrict the use of
particular join algorithms, use of temporary indexes and types of index (T-tree or
hash), use of locks, whether to optimize for all the rows or only the first ‘n’
number of rows in a table, and whether to materialize intermediate results. The
existing hints set for a data store can be viewed using the ttOptGetFlag()
procedure.

Applications can also use the ttOptSetOrder() procedure to specify the order in
which tables are to be joined by the optimizer, as well as the ttOptUseIndex()
procedure to specify which indexes should be considered for each correlation in a
query.

Indexing Techniques
The TimesTen query optimizer uses indexes to speed up the execution of a query.
The optimizer uses existing indexes or, if necessary, creates temporary indexes to
generate an optimal execution plan when preparing a SELECT, INSERT
SELECT, UPDATE, or DELETE statement.

An index is a map of keys to row locations in a table. Strategic use of indexes is
essential in order to obtain maximum performance from a TimesTen system.

TimesTen uses two types of indexing technologies:
• Hash indexes
• T-tree indexes

Hash indexes are created automatically when a primary key is defined on a table
to provide fast lookup for equality searches. T-tree indexes are created by the
CREATE INDEX statement and are used for lookups involving equality and
ranges (greater than/equal to, less than/equal to, and so on). Indexes are
automatically created to enforce unique column constraints and foreign key
constraints. In some situations, the optimizer may create temporary indexes for
tables to enable them to be joined more efficiently.
Query Optimization 59

In general, hash indexes are faster than T-tree indexes for exact match lookups
and equijoins. However, hash indexes cannot be used for lookups involving
ranges or the prefix of a key and require more space than T-tree indexes.

All hash indexes are unique, which means that each row in the table has a unique
value for the indexed column or columns. T-tree indexes can be designated as
unique. Unlike hash indexes, where all component columns cannot be nullable,
unique T-tree indexes can be created over nullable columns. In conformance with
the SQL standard, multiple NULL values are permitted in a unique T-tree index.

Hash indexes
A hash index is created automatically by TimesTen when a table is created by a
CREATE TABLE statement with a PRIMARY KEY or UNIQUE HASH option
specified on one or more columns. Primary key columns cannot be NULL and
there can be only one hash index for each table.

The PAGES parameter in the CREATE TABLE statement specifies how many
buckets are to be allocated for the table’s hash index. Fewer buckets in the hash
index result in more hash collisions. More buckets reduce collisions but can
waste memory. Hash key comparison is a fast operation, so a small number of
hash collisions does not significantly impact performance.

T-tree indexes
Main memory data management systems are designed to reduce memory
requirements, as well as to shrink code path and footprint. A typical disk-based
RDBMS uses B+-tree indexes to reduce the amount of disk I/O needed to
accomplish indexed look-up of data files. TimesTen uses T-tree indexes, which
are optimized for main memory access. T-tree indexes are more economical than
B-trees in that they require less memory space and fewer CPU cycles.

T-trees reduce space requirements by holding only the value of the left-most key
in each index node. Other values can be accessed by accessing the data rows
themselves. T-trees have no disk I/O because the index tree structures are all
memory-resident. They shrink the complexity of code and reduce code path
length by removing unnecessary computations and taking advantage of pointer
traversal where possible.

Use the CREATE INDEX statement to create a T-tree index for a table. A T-tree
index can be created either before or after the rows are inserted in the table. Each
CREATE INDEX statement describes at least one column to be used as the index
key. If multiple columns are described, the first column in the list has the highest
precedence in the sort order of index keys.

TimesTen creates T-tree indexes to enforce unique column constraints for foreign
key constraints.
60 Oracle TimesTen In-Memory Database Architectural Overview

Figure 6.2 shows the search path used to locate a range of rows that contain the
value ‘58’ in the column designated as the index key. (This column could be
either the only index key or the first in a sort order.)

Figure 6.2 T-Tree Nodes

As shown in Figure 6.2, a T-tree consists of a group of T-tree nodes. Each node
consists of a group of 64 index keys, each of which points to a separate table row.
T-tree nodes start with a root node, which is the first node in the search path. The
other nodes are distributed in a “balanced” manner from the root node, so that the
higher half of the values are in nodes off the right branch and the lower half of
the values in nodes off the left branch. In this way, the T-tree search algorithm
knows with just two comparisons whether the value it is searching for is on the
current node or elsewhere in memory. With every new index node pointer
indirection, its search area is cut in half.

......

......

T-Tree Root Node

< 50 > 55

......

50

61

55

30 33 76

56 6058 58 58 58

< 61
> 76> 33< 30

1 64

1 64 1 64

1 64
Query Optimization 61

Scan Methods
The optimizer can select from multiple types of scan methods, the most common
of which are:
• Full Table Scan
• Rowid Lookup
• Hash Index Scan (on either a permanent or temporary index)
• T-tree Index Scan (on either a permanent or temporary index)

TimesTen performs high-performance exact matches through hash indexes and
rowid lookups, and performs range matches through in-memory optimized T-tree
indexes.

A full table scan involves a complete scan of a table. When a full scan is
executed, a cursor is opened on a table, each row is examined as the cursor is
advanced, and at the end the cursor is closed. The full scan is considered only if
no hash scan or range scan is applicable. If the ttOptSetFlag flag scan is false,
other types of scans take precedence over a full scan.

TimesTen assigns a unique id, called ROWID, to each row stored in a table. A
Rowid lookup is applicable if, for example, an application has previously selected
a ROWID and then uses a ‘WHERE ROWID =’ clause to fetch that same row.
RowID lookups are faster than either type of index scan. If the ttOptSetFlag flag
Rowid is false, then Rowid lookups are not considered applicable.

A hash index scan involves using a hash index to access a table. Such a scan is
applicable if the table has a hash index containing a key that can be completely
matched by the predicate. The term “scan” implies that the optimizer looks at
more than one row, so a hash index scan is really more of a “lookup,” like Rowid
lookup, because it returns at most one row. If the ttOptSetFlag flag hash is false,
then hash scans are not considered applicable.

A T-tree index scan involves using a T-tree index to access a table. Such a scan is
applicable as long as the table has one or more T-tree indexes. The optimizer
attempts to match as long a prefix of the key columns as possible. If no match is
found for a particular key column, then the index scan returns all of the values in
that column. If the predicate specifies a single value (such as T1.A = 2) for each
key column and if the T-tree index is unique, the optimizer locates the row by
means of a lookup, rather than a scan. If the ttOptSetFlag flag Ttree is false, then
T-tree scans are not considered applicable.
62 Oracle TimesTen In-Memory Database Architectural Overview

Join Methods
The optimizer can select from multiple types of join methods. When the rows
from two tables are joined, one table is designated the outer table and the other
the inner table. During a join, the optimizer scans the rows in the outer and inner
tables to locate the rows that match the join condition.

The optimizer analyzes the statistics for each table and, for example, might
identify the smallest table or the table with the best selectivity for the query as
outer table. If indexes exist for one or more of the tables to be joined, the
optimizer will take them into account when selecting the outer and inner tables.

If more than two tables are to be joined, the optimizer analyzes the various
combinations of joins on table pairs to determine which pair to join first, which
table to join with the result of the join, and so on for the optimum sequence of
joins.

The cost of a join is largely influenced by the method in which the inner and
outer tables are accessed to locate the rows that match the join condition. The
optimizer can select from two join methods:
• Nested Loop Join
• Merge Join
Query Optimization 63

Nested Loop Join
In a nested loop join with no indexes, a row in the outer table is selected one at a
time and matched against every row in the inner table. All of the rows in the inner
table are scanned as many times as the number of rows in the outer table. If the
inner table has an index on the join column, that index is used to select the rows
that meet the join condition. The rows from each table that satisfy the join
condition are returned. Indexes may be created on the fly for inner tables in
nested loops, and the results from inner scans may be materialized before the
join.

Figure 6.3 Nested Loop Join

T2

7 21 13.69
9 62 12.19
9 20 23.09
8 21 23.12
1 20 43.59
7 33 61.79
7 30 55.54

A B C

Inner Table

Join Condition: WHERE T1.A = T2.A

T1
A B C

Outer Table

Sc
an

7 50 43.54 21 13.69
7 50 43.54 33 61.79
7 50 43.54 30 55.54
1 20 23.09 20 43.59

4 32 72.89
7 50 43.54
5 42 53.22
3 70 33.94
6 50 42.74
3 50 43.54
1 20 23.09

Results

Original Tables
64 Oracle TimesTen In-Memory Database Architectural Overview

Merge Join
Merge-join is used only when the join columns are sorted by T-tree indexes. In a
merge join, a cursor advances through each index one row at a time. Because the
rows are already sorted on the join columns in each index, a simple formula is
applied to efficiently advance the cursors through each row in a single scan. The
formula looks something like:
• If Inner.JoinColumn < Outer.JoinColumn -- advance inner cursor
• If Inner.JoinColumn = Outer.JoinColumn -- read match
• If Inner.JoinColumn > Outer.JoinColumn -- advance outer cursor

Unlike a nested loop join, there is no need to scan the entire inner table for each
row in the outer table. A merge join can be used when T-tree indexes have been
created for the tables by means of CREATE INDEX statements prior to
preparing the query. If no T-tree indexes exist for the tables being joined prior to
preparing the query, the optimizer may in some situations create temporary T-tree
indexes in order to use merge join.

Figure 6.4 Merge Join

X1

1 20 23.09
3 50 43.54
3 70 33.94
4 32 72.89
5 42 53.22
6 50 42.74
7 50 43.54

A B C

X2

1 20 43.59
7 21 13.69
7 33 61.79
7 30 55.54
8 21 23.12
9 62 12.19
9 20 23.09

A B C

Join Condition: WHERE T1.A = T2.A

A B C

Outer Table

A B C

Inner Table

Sorted Indexes

Original Tables

T1 T2

Sc
an

1 20 23.09 20 43.59
7 50 43.54 21 13.69
7 50 43.54 33 61.79
7 50 43.54 30 55.54

4 32 72.89
7 50 43.54
5 42 53.22
3 70 33.94
6 50 42.74
3 50 43.54
1 20 23.09

7 21 13.69
9 62 12.19
9 20 23.09
8 21 23.12
1 20 43.59
7 33 61.79
7 30 55.54

Results
Query Optimization 65

Optimizer Plan
Like most database optimizers, the TimesTen query optimizer stores the details
on how to most efficiently perform SQL operations in an execution plan, which
can be examined and customized by application developers and administrators.

The execution plan data is stored in the TimesTen “SYS.PLAN” table and
includes information on which tables are to be accessed and in what order, which
tables are to be joined, and which indexes are to be used. Users can direct the
TimesTen query optimizer to enable or disable the creation of an execution plan
in the “SYS.PLAN” table by setting the GenPlan optimizer flag in the
ttOptSetFlag() procedure.

The execution plan designates a separate step for each database operation to be
performed to execute the query. The steps in the plan are organized into levels
that designate which steps must be completed to generate the results required by
the step or steps at the next level.

For example, the optimizer prepares an execution plan for the following query:
SELECT COUNT(*)
FROM T1, T2, T3
WHERE T3.B/T1.B > 1
AND T2.B <> 0
AND T1.A = -T2.A
AND T2.A = T3.A

In this example, the optimizer dissects the query into its individual operations
and generates a 5-step execution plan to be performed at three levels, as shown in
Figure 6.5.

Figure 6.5 Example Execution Plan
Step 5

After join, return the rows
that match: T3.B / T1.B > 1

Merge results from Steps 1
and 2 and join the rows
that match: T1.A = -T2.A

Step 3 Step 4

Step 1

Scan Table T2 and sort using
a temporary T-tree index

Step 2

After scan, return the rows
that match: T2.B <> 0

Scan Table T1 and sort
using a temporary
T-tree index

Merge results from Steps 3
and 4 and join the rows
that match: T2.A = T3.A

Scan Table T3 and sort
using a temporary
T-tree index

Level 1

Level 2

Level 3
66 Oracle TimesTen In-Memory Database Architectural Overview

For More Information
For more information on the query optimizer, see Chapter 9, “The TimesTen
Query Optimizer” in the Oracle TimesTen In-Memory Database Operations
Guide.

For more information on indexing, see the “Understanding indexes” and
“Working with indexes” in Chapter 6, “Working with Data in a TimesTen Data
Store” in the Oracle TimesTen In-Memory Database Operations Guide. Also see
descriptions for the CREATE TABLE and CREATE INDEX statements in the
Oracle TimesTen In-Memory Database API and SQL Reference Guide.
Query Optimization 67

68 Oracle TimesTen In-Memory Database Architectural Overview

7
Data Availability and Integrity

Although TimesTen data stores are maintained in memory, they are not transient,
temporary objects. TimesTen ensures the availability, durability, and integrity of
data through the use of three mechanisms:
• Logging
• Checkpointing
• Replication

Consistency and concurrency are guaranteed through locking, which is described
in “Locks” on page 50.
 69

Logging
As described in “Logging” on page 13, the TimesTen log is used to redo
transactions should a system failure occur, undo transactions that are rolled back,
replicate changes to other TimesTen data stores, replicate changes to an Oracle
database, and allow applications to monitor changes to tables (through the XLA
interface described in “Transaction Log API” on page 85).

As shown in Figure 7.1, TimesTen enables logging at two levels:
• An in-memory transaction log buffer
• On-disk log files

Figure 7.1 Two-tiered logging

Logging options
TimesTen provides a Logging configuration attribute that allows users to fine-
tune the logging behavior of a data store to obtain the best compromise between
performance and durability.

The logging options are:
• Disk-based logging
• Logging disabled

Note: The logging option selected for a data store becomes a fixed property of
that data store when it is loaded into memory. You cannot have different
connections concurrently use different logging options.

Logging disabled
Disabling logging provides the best performance. However, with logging
disabled, transactions cannot be rolled back or recovered, and only data store-

Applications

O
racle

C
o

n
n

ect

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

Re
p

lic
at

io
n

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver

Log Files
DSName.log2

DSName.log1
DSName.log0

Transaction Log Buffer

(If logging to disk is enabled)

Checkpoint
Files
70 Oracle TimesTen In-Memory Database Architectural Overview

level locking is allowed. Logging should be disabled only during operations that
can be restarted from the beginning if a failure occurs, such as bulk-loading a
data store.

Disk-based logging
Applications can obtain data durability by periodically writing the contents of the
log buffer to disk-based log files. Users can configure TimesTen to do this write-
to-disk operation automatically at commit time or the application can do it
manually using the ttDurableCommit() built-in procedure call, as described in
“Durable and non-durable commits” on page 72. When the log buffer becomes
full, TimesTen automatically writes its contents to a log file on disk.

With disk-based logging enabled, TimesTen records a copy of the data store
changes to disk as part of completing (committing) the transaction. Transactions
saved in log files can be rolled back. In addition, you can use the contents of the
log files to recover data stores to the most recently committed state. However,
due to the relative slowness of disk access, disk-based logging can impact the
response time of the transaction and the throughput of the total system.

Log files are either generated in the same directory as the data store files or in the
directory specified by the LogDir attribute in the DSN. Users can use the
LogBuffSize attribute to configure the size of the in-memory log buffer and the
LogFileSize attribute to configure the size of log files. When a log file becomes
full, TimesTen creates a new log file. Log files are named DataStoreName.logn
where n is an integer starting at 0 and incremented each time a new log file is
created.

Logging disabled
Disabling logging provides better performance. However, when logging is
disabled, transactions cannot be rolled back or recovered, and only data store-
level locking is allowed. Logging should be disabled only during operations that
can be restarted from the beginning if a failure occurs, such as bulk-loading a
data store.

Autocommits
ODBC provides an autocommit mode that forces a commit after each statement.
By default, autocommit is enabled so that an implicit commit is issued
immediately after a statement executes successfully. Also, an implicit rollback is
issued immediately after a statement fails to execute. Regardless of whether a
statement has been executed successfully or unsuccessfully, if the connection has
open cursors, the automatic commit or rollback is issued only after all its cursors
have been closed. If applications require transactions that contain more than one
statement, autocommit must be disabled and commits must be explicitly issued.
Data Availability and Integrity 71

Different commit frequencies need to be tested to determine optimal
performance. For example, if DurableCommits is enabled, the cost of
performing frequent commits is decreased performance due to increased disk
writes. On the other hand, the cost of performing infrequent commits is decreased
concurrency because locks are held for a longer period of time and it takes longer
to rollback transactions.

Applications can call the ODBC SQLSetConnectOption function or the JDBC
Connection.setAutoCommit method to enable or disable autocommits.

Durable and non-durable commits
As described in “Disk-based logging” on page 71, when disk-based logging is
enabled, applications can control when the data in the transaction log buffer is
written to disk. TimesTen provides a DurableCommits configuration attribute
that specifies whether the log buffer is automatically written to disk at transaction
commit or is deferred until the application calls the ttDurableCommit()
procedure.

Setting DurableCommits so that the log is not automatically posted to disk at
transaction commit reduces the transaction execution time at the risk of losing
the results of some committed transactions in the event of a failure. However,
regardless of the setting of DurableCommits, the log is saved to disk when the
log buffer in memory fills up.

If logging to disk is disabled, durable commits are not possible. In this situation,
durability of data can be achieved through checkpointing, which the application
can explicitly initiate. TimesTen automatically initiates checkpointing when the
last connection to the data store exits successfully. See “Checkpointing” on page
73 for more information.
72 Oracle TimesTen In-Memory Database Architectural Overview

When are log files deleted?
Log files are deleted from disk when a checkpoint operation is done on the data
store (see “Checkpointing”). Log files are kept until TimesTen declares them to
be purgeable. A log file cannot be purged until:
• All transactions writing log records to the log file (or a previous log file) have

committed or rolled back
• All changes recorded in the log file have been written to the checkpoint files

on disk
• All changes recorded in the log file have been replicated (if replication is

used)
• All changes recorded in the log file have been propagated to Oracle (if Cache

Connect is used)
• All changes recorded in log files have been reported to the XLA applications

(if XLA is used)

Checkpointing
Checkpoints are used to post a snapshot of the data store to files on disk. In the
event of a system failure, TimesTen can use a checkpoint file together with log
files to restore a data store to its last transactionally consistent state prior to a
crash. An application can initiate a checkpoint operation by calling the ttCkpt()
or ttCkptBlocking() procedure.

TimesTen maintains two checkpoint files for each data store, named
DataStoreName.ds0 and DataStoreName.ds1. When a data store is checkpointed
to disk, TimesTen overwrites the oldest of the two checkpoint files.

Only the data that has changed since the last checkpoint operation is rewritten to
the checkpoint file. The checkpoint operation scans the data store for blocks that
have changed since the last checkpoint. It then updates the checkpoint file with
the changes and removes any log files that are no longer needed.

If checkpoints are not performed frequently enough, log files build up on disk.
An accumulation of log files may cause the disk to run out of space, resulting in a
lengthy recovery operation should the system crash. On the other hand,
checkpointing too frequently may incur extra overhead that may impact the
performance of other applications using the data store.

In the event of a system failure, TimesTen can recover a data store by using the
latest consistent checkpoint file and applying the log files to create a new
checkpoint file. If disk-based logging is enabled, this new checkpoint file will
include transactions that were written to disk prior to the failure. See “Recovery
from log and checkpoint files” on page 75 for more information.
Data Availability and Integrity 73

Figure 7.2 Checkpoint operation

Blocking and non-blocking (“fuzzy”) checkpoints
Checkpoints can be blocking or non-blocking.

An application can call the ttCkptBlocking() procedure to initiate a blocking
checkpoint, which briefly requires exclusive access to the data store in order to
construct a transaction-consistent checkpoint. While a blocking checkpoint
operation is in progress, any other new transactions are put in a queue behind the
checkpointing transaction. As a result, if any transaction is long-running, it may
cause many other transactions to be held up. No log is needed to recover from a
blocking checkpoint, so this type of checkpoint does not require disk-based
logging.

When disk-based logging is enabled, an application can call the ttCkpt()
procedure to initiate a non-blocking checkpoint, which is also known as a fuzzy
checkpoint. Non-blocking checkpoints do not require any locks on the data store,
so multiple applications can asynchronously commit or roll back transactions on
the same data store while the checkpoint operation is in progress. When using
non-blocking checkpoints, should the system crash, TimesTen will use the log to
recover from the checkpoints. For this reason, non-blocking checkpoints requires
disk-based logging.

Checkpoint
Data Store

Applications

O
racle

C
o

n
n

ect

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

Re
p

lic
at

io
n

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver

Log Files

Checkpoint
Files

DSName.ds0

DSName.ds1

Checkpoints alternate
between the two files
74 Oracle TimesTen In-Memory Database Architectural Overview

Recovery from log and checkpoint files
Should a data store become invalid or corrupted by a system crash or process
failure, every connection to the data store is invalidated. When an application
reconnects to a failed data store, the subdaemon allocates a new memory segment
for the data store and recovers its data from the checkpoint and log files.

During recovery, the latest checkpoint file is read into memory and all durably
committed transactions are rolled forward from the appropriate log file(s).
Uncommitted or rolled back transactions are not recovered.

For mission-critical applications that require uninterrupted access to TimesTen
data in the event of failures, see “Replication” on page 75.

Figure 7.3 Recovering from log and checkpoint files

Replication
Replication is the process of copying data between data stores. The fundamental
motivation behind TimesTen replication is to make data highly available to
mission critical applications with minimal performance impact.

In addition to its role in failure recovery, replication is also useful for distributing
user loads across multiple data stores for maximum performance and for
facilitating online upgrades and maintenance, as described in “Upgrading
TimesTen” on page 110.

Applications

O
racle

C
o

n
n

ect

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

R
ep

lic
at

io
n

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver

Checkpoint
Files

DSName.ds0

DSName.ds1

Log Files

DSName.log2
DSName.log1

DSName.log0

Read Un-checkpointed
Data from Log Files

Read Last Data Store
Image from Checkpoint
File into Memory
Data Availability and Integrity 75

As shown in Figure 7.4, TimesTen replication copies updates made in a master
data store to a subscriber data store.

Figure 7.4 Master and subscriber data stores

To enable high efficiency and low overhead, TimesTen uses a transaction-log
based replication scheme.

As shown in Figure 7.5, replication at each master and subscriber data store is
controlled by replication agents that communicate through TCP/IP stream
sockets. The replication agent on the master data store reads the records from its
transaction log and forwards any detected changes to replicated elements to the
replication agent on the subscriber data store. The replication agent on the
subscriber then applies the updates to its data store. If the subscriber agent is not
running when the updates are forwarded by the master, the master retains the
updates in its log until they can be applied at the subscriber.

Figure 7.5 Master and Subscriber Replication Agents

Master Data Store Subscriber Data Store

Applications

Applications

O
racle

C
o

n
n

ect

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

M
as

te
r

Re
p

lic
at

io
n

A
g

en
t

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver

Su
b

scrib
er

R
ep

licatio
n

A
g

ent

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

O
ra

cl
e

C
on

n
ec

t

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver

Transaction Log Buffer

Master Subscriber
76 Oracle TimesTen In-Memory Database Architectural Overview

Replication configurations
The focus for TimesTen's data replication is high availability. To achieve this
goal, TimesTen replication can be configured in a variety of ways for the best
balance between performance and availability.

Replication is configured through SQL statements. In general, replication can be
configured to be unidirectional (“one way”) from a master to one or more
subscribers, or bidirectional (“two way”) between two or more data stores that
serve as both master and subscriber. More than two data stores configured for
bidirectional replication is often referred to as “N-way” or “update anywhere”
replication.

Figure 7.6 Example replication configuration schemes

Figure 7.7 shows how replication can be configured to provide a hot standby
backup data store or to more evenly balance user loads.

In the hot standby configuration, a single master data store is replicated to a
subscriber data store with appropriate fail-over mechanisms built into the
application itself. See “Scenario 1: Caller usage metering application” on page 19
and “Scenario 3: Online travel agent application” on page 25 for example
applications that use hot standby data stores.

Unidirectional Replication

Bi-directional ReplicationBidirectional Replication

N-way Bi-directional ReplicationN-way Bidirectional Replication

Application

Application

Application Application

Application

Application Application

Unidirectional Replication
to Multiple Subscribers

Application

= Master

= Subscriber (or Master/Subscriber)
Data Availability and Integrity 77

In the load-balanced pair configuration, the workload can be split between two
bidirectionally replicated data stores. As shown in Figure 7.7, there are two basic
types of load-balance configurations:
• Split workload where each data store bidirectionally replicates a portion of its

data to the other data store.
• Distributed workload where user access is distributed across duplicate

application/data store combinations that bidirectionally replicate updates.

Figure 7.7 Hot standby and load balancing configurations

In a distributed workload configuration, the application has the responsibility to
divide the work between the two systems so that replication collisions do not
occur. In the event that collisions do occur, TimesTen has a timestamp-based
collision detection and resolution capability.

Replication can also be used to propagate updates from one or more data stores to
many data stores. This can be useful when maintaining duplicate data stores over
lower-bandwidth connections and for distributing (or fanning out) replication
loads in configurations in which a master data store must replicate to a large
number of subscribers.

Copy

Hot Standby Split Workload

Copy

Users

Distributed Workload

Users

Copy

Application

Users

Application Application Application Application Application

Load-Balance Configurations

= Master

= Subscriber (or Master/Subscriber)
78 Oracle TimesTen In-Memory Database Architectural Overview

Figure 7.8 Propagation configuration

Active standby pair
Figure 7.9 shows an active standby pair.

Figure 7.9 Active standby pair

An active standby pair is created by the CREATE ACTIVE STANDBY PAIR
SQL statement. The CREATE ACTIVE STANDBY PAIR specifies a active

Application

Master

Propagators

Subscribers

Applications

Read-only subscribers

Replication

Propagation

Standby
master
data store

Active
master
data store
Data Availability and Integrity 79

master data store, a standby master data store, subscriber data stores, and the
tables and cache groups that comprise the data stores.

Note: The other replication schemes in this chapter are created by using the
CREATE REPLICATION statement.

In an active standby pair, two data stores are defined as masters. One is an active
master data store, and the other is a standby master data store. The active master
data store is updated directly. The standby master data store cannot be updated
directly. It receives the updates from the active master data store and propagates
the changes to as many as 62 read-only subscriber data stores. This arrangement
ensures that the standby master data store is always ahead of the subscriber data
stores and enables rapid failover to the standby data store if the active master data
store fails.

Only one of the master data stores can function as an active master data store at a
specific time. The active role is specified through the ttRepStateSet procedure.
If the active master data store fails, then the user can use the ttRepStateSet
procedure to change the role of the standby master data store to active before
recovering the failed data store as a standby data store. The replication agent
must be started on the new standby master data store.

If the standby master data store fails, the active master data store can replicate
changes directly to the subscribers. After the standby master data store has
recovered, it contacts the active standby data store to receive any updates that
have been sent to the subscribers while the standby was down or was recovering.
When the active and the standby master data stores have been synchronized, then
the standby resumes propagating changes to the subscribers.

Asynchronous and return service replication
TimesTen replication is by default an asynchronous mechanism. When using
asynchronous replication, an application updates a master data store and
continues working without waiting for the updates to be received by the
subscribers. The master and subscriber data stores have internal mechanisms to
confirm that the updates have been successfully received and committed by the
subscriber. These mechanisms ensure that updates are applied at a subscriber
only once, but they are completely invisible to the application.

Asynchronous replication provides maximum performance, but the application is
completely decoupled from the receipt process of the replicated elements on the
subscriber. TimesTen also provides two return service options for more
“pessimistic” applications that need higher levels of confidence that the
replicated data is consistent between the master and subscriber data stores:
• The return receipt service loosely couples or “synchronizes” the application

with the replication mechanism by blocking the application until replication
confirms that the update has been received by the subscriber replication agent.
80 Oracle TimesTen In-Memory Database Architectural Overview

• The return twosafe service enables fully synchronous replication by blocking
the application until replication confirms that the update has been both
received and committed on the subscriber.

Applications that make use of the return services trade some performance to
ensure higher levels of data integrity and consistency between the master and
subscriber data stores. In the event of a master failure, the application has a
higher degree of confidence that a transaction committed at the master persists in
the subscribing data store. Return receipt replication has less performance impact
than return twosafe at the expense of less synchronization.

Figure 7.10 Asynchronous and return service replication

Master
Data Store

MasterDSN
Replication

Agent

Subscriber
Data Store

SubscriberDSN
Replication

Agent

Application

Commit
Transaction

Forward
Update

Master
Data Store

MasterDSN
Replication

Agent

Subscriber
Data Store

SubscriberDSN
Replication

Agent

Application

3) Forward
Update

1) Block
 application

4) Acknowledge
Receipt

5) Unblock
 application

Asynchronous Replication

Return Receipt Replication

Applications

4) Acknowledge
commit

6) Unblock
 application

1) Block
 application

MasterDSN
Replication

Agent

SubscriberDSN
Replication

Agent

2) Forward
Update

Master
Data Store

Subscriber
Data Store

Return Twosafe Replication

Pe
rf

or
m

an
ce

Sy
nc

hr
on

ou
sn

es
s

5) Commit transaction
 on the master

3) Commit transaction
 on the subscriber

2) Commit transaction
 on the master
Data Availability and Integrity 81

Replication failover and recovery
In order for replication to make data highly available to mission critical
applications with minimal performance impact, there must be a means to shift
users from the failed data store to its surviving backup in as seamless a manner as
possible.

Management of failover and recovery operations are outside the scope of
TimesTen. Instead, TimesTen replication has been designed and tested to operate
in conjunction with both custom and third-party cluster managers that detect
failures, redirect users or applications from the failed data store to one of its
subscribers, and manage recovery of the failed data store. The cluster manager or
administrator can use the TimesTen ttRepAdmin -duplicate utility or
ttRepDuplicateEx() C function to duplicate the surviving data store and recover
the failed data store.

Subscriber failures generally have no impact on the applications connected to the
master data stores and can be recovered without disrupting user service. On the
other hand, should a failure occur on a master data store, the cluster manager
must redirect the application load to a subscriber in order to continue service with
no or minimal interruption.

Failover and recovery are more efficient when the data stores are configured in a
bi-directional general-workload scheme, such as the hot standby scheme shown
in Figure 7.11 and the distributed workload scheme shown in Figure 7.12.

In the hot-standby scheme, should the master data store fail, the cluster manager
need only shift the user load to the “hot standby” application on the subscriber
data store. Upon recovering the failed data store, replication can be resumed with
minimal interruption to service by reversing the roles of the master and
subscriber data stores.

Figure 7.11 Failover scenario for hot standby scheme

 Data Store A Data Store B

Applications Applications

Copy

Users

 Data Store A Data Store B

Applications

Users

FAILED

 Data Store A Data Store B

Applications

Copy

Users

Normal Operation Failure of Master Recovered Master

Hot Standby Scheme

Applications Applications
82 Oracle TimesTen In-Memory Database Architectural Overview

The failover procedure for data stores configured using a distributed workload
scheme is similar to that used for the hot standby, only failover involves shifting
the users affected by the failed data store to join the other users of an application
on a surviving data store. Upon recovery, the workload can be redistributed to the
application on the recovered data store.

Figure 7.12 Failover scenario for distributed workload scheme

For More Information
For more information on logging and checkpointing, see Chapter 7, “Transaction
Management and Recovery” in the Oracle TimesTen In-Memory Database
Operations Guide.

For more information on replication, see the TimesTen to TimesTen Replication
Guide.

 Data Store A Data Store B

Copy

Users

 Data Store A Data Store B

ApplicationsApplications

Users

 Data Store A Data Store B

Applications

Copy

Users

FAILED

Distributed Workload Scheme

Normal Operation Failure of Master Recovered Master

ApplicationsApplications Applications Applications

= Master

= Subscriber (or Master/Subscriber)
Data Availability and Integrity 83

84 Oracle TimesTen In-Memory Database Architectural Overview

8
Event Notification

TimesTen event notification is done through the “Transaction Log API” (XLA),
which provides functions to detect updates to data stores. TimesTen provides
XLA as an alternative to triggers.

The primary purpose of XLA is to monitor log records, each of which describes
an update to a row in a table or a DDL operation. XLA can be used in
conjunction with “Materialized Views” to better focus the scope of notification to
detect updates made only to select rows across multiple tables. See “Materialized
Views and XLA” on page 90 for more information.

TimesTen can also use “SNMP Traps” to send asynchronous alerts of critical
events. See “SNMP Traps” on page 91 for more information.

Transaction Log API
TimesTen provides a Transaction Log API (XLA) that enables applications to
monitor the transaction log of a local data store to detect updates made by other
applications. XLA also provides functions that enable XLA applications to apply
the detected changes to another data store. XLA is a C language API. However,
TimesTen provides a C++ wrapper interface for XLA as part of the TTClasses
product, as well as a separate Java wrapper interface.

Applications primarily use XLA to implement a change notification scheme. In
this scheme, XLA applications can monitor a data store for changes and then
possibly take actions based on those changes. For example, a TimesTen data
store in a stock trading environment might be constantly updated from a data
stream of stock quotes. Automated trading applications might use XLA to
“watch” the data store for updates on certain stock prices and use that
information to determine whether to execute orders. See “Scenario 2: Real-time
quote service application” on page 23 for a complete example.

XLA might also be used to build a custom data replication solution in place of
the TimesTen replication service described in the TimesTen Replication Guide.
Such XLA-enabled replication solutions might include replication with a non-
TimesTen database or pushing updates to another TimesTen data store.
 85

How XLA works
XLA operates in one of two modes:
• Persistent Mode
• Non-persistent Mode

In persistent mode, XLA obtains update records for transactions directly from the
transaction log buffer. If the records are not present in the buffer, XLA obtains
the update records from the log files on disk, as shown in Figure 8.1.

Figure 8.1 XLA in Persistent Mode

In non-persistent mode, XLA obtains update records from the transaction log and
stages them in an XLA staging buffer, as shown in Figure 8.2.

Figure 8.2 XLA in Non-persistent Mode

Each mode has its tradeoffs. For example, non-persistent mode is generally faster
than persistent mode. However, the staging buffer can only be accessed by one

Log Files DSName.log2
DSName.log1

DSName.log0

Applications

Commit
Transaction

....

XLA Application

XLA Interface

Read Update RecordsR p R s
for a Transactiona

First Transaction
Update Record

Transaction
Commit Record

....
Transaction
Log Buffer

If no record is found
in the log buffer

....

XLA Application

XLA Interface

Read Update RecordsR p R s
for a Transactiona

First Transaction
Update Record

Transaction
Commit Record

....

XLA Staging Buffer

Applications

Commit
Transaction

Transaction
Log Buffer
86 Oracle TimesTen In-Memory Database Architectural Overview

reader at a time and, once records are read from the buffer, they are removed and
no longer available. In addition, all of the update records in the buffer are lost
when the data store is shut down. In contrast, when using persistent mode,
multiple readers can simultaneously read transaction log updates and the log
records are available for as long as the log files are available.

When working in persistent mode, readers make use of bookmarks to maintain
their position in the log update stream. Bookmarks are stored in the data store, so
they are persistent across data store connections, shutdowns, and crashes. An
XLA application can use the ttXlaGetLSN function to obtain the location of its
bookmark and the ttXlaSetLSN function to reset the bookmark location to reread
a set of update records.

Log update records
Update records are available to be read from the log as soon as the transaction
that created them commits. A “log sniffer” application can then use the XLA
ttXlaNextUpdate function to obtain groups of update records written to the log.

Each returned record contains a fixed-length update header
(ttXlaUpdateDesc_t) and one or two rows of data stored in an internal format.
The update header describes the table to which the updated row applies; whether
the record is the first or last (commit) record in the transaction; the type of
transaction it represents; the length of the returned row data; and which columns
in the row were updated, if any.

For records reflecting data updates, two rows are returned to report the row data
before and after the update. For each row, the first portion of the data is the fixed-
length data, which is followed by any variable-length data. Applications can call
the ttXlaGetColumnInfo function to obtain the offset and size of the columns
for a particular table. When XLA returns a record for that table, the columns in
the fixed length portion of the returned row are located at those offsets returned
by ttXlaGetColumnInfo. In the case of variable length data, the data located at
the offsets in the fixed-length portion of the row is an address used to calculate
the location of actual data in the variable-length portion of the row, as shown in
Figure 8.3.
Event Notification 87

Figure 8.3 Contents of an update record

The row data in a record is in an internal TimesTen format. Once an application
locates the address of a column, it can directly cast the value at that address to a
corresponding ODBC C type. Complex data types, such as date, time, and
decimal values, can be converted by applications to their corresponding ODBC C
value using the XLA conversion functions described in ““Converting complex
data types”” in Chapter 3, “XLA and TimesTen Event Management” of the
Oracle TimesTen In-Memory Database C Developer’s and Reference Guide.

....

First Transaction
Update Record

Transaction
Commit Record

....

Update Header

Variable Length Data

Column Offsets

Row Data
Address used to locate
variable-length data

Fixed Length Data
88 Oracle TimesTen In-Memory Database Architectural Overview

Materialized Views
A materialized view is a read-only table that maintains a summary of data
selected from one or more TimesTen tables. The summary data in a materialized
view is called a result set and the TimesTen tables that are queried to make up the
result set are called detail tables.

By maintaining a result set extracted from the detail tables, materialized views
provide applications with faster access to frequently used data. This is because
the expensive joins and aggregate operations needed to gather the data from the
separate detail tables are done once when the materialized view is created and do
not need to be repeated for subsequent application queries.

Figure 8.4 Materialized View

After a materialized view is created, changes made to the data in the detail tables
are immediately reflected in the materialized view. The only way to update a
materialized view is by changing the underlying detail tables. A materialized
view is a read-only table that cannot be updated directly. This means a
materialized view cannot be updated by an INSERT, DELETE, or UPDATE
statement, by replication, by XLA (using the ttXlaApply function), or by the
Cache Connect agent (it cannot be part of a cache group).

Data Store

Materialized View

Detail Tables

Updates Selects

Application
Event Notification 89

Materialized Views and XLA
In most database systems, materialized views are used to simplify and enhance
the performance of SELECT queries that involve multiple tables. Though they
offer this same capability in TimesTen, another purpose of materialized views in
TimesTen is their role in conjunction with XLA applications as a means to keep
track of select rows and columns in multiple tables.

When a materialized view is present, an XLA application only needs to monitor
update records that are of interest from a single materialized view table. Without
a materialized view, the XLA application would have to monitor all of the update
records from all of the detail tables, including records reflecting updates to rows
and columns of no interest to the application.

For example, Figure 8.5 shows an update made to a column in a detail table that
is part of the materialized view result set. The XLA application monitoring
updates to the materialized view captures the updated record. Updates to other
columns and rows in the same detail table that are not part of the materialized
view result set are not seen by the XLA application.

Figure 8.5 Using XLA to detect updates on a materialized view table

See “Scenario 2: Real-time quote service application” on page 23 for an example
of a trading application that makes use of XLA and a materialized view to detect
updates to select stocks.

Materialized View

Detail Tables

....

XLA Application

XLA Interface

Read Update
Record

....Transaction
Log Buffer

Update row
Application
90 Oracle TimesTen In-Memory Database Architectural Overview

The TimesTen implementation of materialized views emphasizes performance
and their function in detecting updates across multiple tables. Readers familiar
with other implementations of materialized views should note that the following
tradeoffs were made:
• Materialized views must be explicitly created by the application. The

TimesTen query optimizer has no facility to automatically create materialized
views.

• The TimesTen query optimizer does not rewrite queries on the detail tables to
reference materialized views. Application queries must directly reference
views, if they are to be used.

• There is no deferred maintenance option for materialized views. A
materialized view is refreshed automatically when changes are made to its
detail tables and there is no facility for manually refreshing a view.

• There are some restrictions to the SQL used to create materialized views. See
CREATE MATERIALIZED VIEW in the TimesTen SQL Reference Guide for
details.

SNMP Traps
Simple Network Management Protocol (SNMP) is a protocol for network
management services. Network management software typically uses SNMP to
query or control the state of network devices like routers and switches. These
devices sometimes also generate asynchronous alerts in the form of UDP/IP
packets, called SNMP traps, to inform the management systems of problems.

TimesTen cannot be queried or controlled through SNMP. However, TimesTen
sends SNMP traps for certain critical events to facilitate user recovery
mechanisms. TimesTen sends traps for the following events:
• Cache Connect to Oracle autorefresh transaction failure
• Data store out of space
• Replicated transaction failure
• Death of daemons
• Data store invalidation
• Assertion failure

These events also cause log entries to be written by the TimesTen daemon, but
exposing them through SNMP traps allows properly configured network
management software to take immediate action.
Event Notification 91

For More Information
For more information on XLA, see Chapter 7, “XLA Reference” in the Oracle
TimesTen In-Memory Database API and SQL Reference Guide.

For more information on Materialized Views, see ““Understanding materialized
views”” in Chapter 6, “Working with Data in a TimesTen Data Store of the
Oracle TimesTen In-Memory Database Operations Guide. Also see CREATE
MATERIALIZED VIEW in Chapter 13, “SQL Statements” of the Oracle
TimesTen In-Memory Database API and SQL Reference Guide.

For more information on SNMP traps, see “Chapter 7, “Diagnostics through
SNMP Traps” in the Oracle TimesTen In-Memory Database API and SQL
Reference Guide.
92 Oracle TimesTen In-Memory Database Architectural Overview

9
Cache Connect to Oracle

The Cache Connect to Oracle feature allows TimesTen to cache data stored in
one or more tables in an Oracle database.

The main topics in this chapter are:
• Cache Groups
• Loading and Updating Cache Groups
• System-Managed Cache Groups
• User-Managed Cache Groups
• Replicating Cache Groups
 93

Cache Groups
Cache Connect allows you to cache Oracle data by creating a cache group in a
TimesTen data store. A cache group can be created to cache a single Oracle table
or a set of related Oracle tables. The Oracle data cached on TimesTen can consist
of all of the rows and columns or a subset of the rows and columns in the Oracle
tables.

Cache Connect supports the following features:
• Applications can both read from and write to cache groups
• Cache groups can be refreshed (bring Oracle data into the cache group)

automatically or manually
• Cache updates can be sent to the Oracle database automatically or manually

The Oracle tables cached in a TimesTen cache group are referred to as base
tables. The TimesTen Data Manager interacts with Oracle to perform all of the
synchronous cache group operations, such as create a cache group and propagate
updates between the cache group and the Oracle database. A TimesTen process
called the cache agent performs asynchronous cache operations, such as loading
data into the cache group, manual refreshing of the data from the Oracle database
to the cache group, cache aging, and autorefreshing of the data from the Oracle
database to the cache group.

Figure 9.1 Cache Connect cache group

Cache groups can be created and modified by the browser-based Cache
Administrator or by SQL statements, as described in the TimesTen Cache
Connect to Oracle Guide.

Oracle DB

Cache Group

Applications

O
racle

A
g

en
t

JDBCUtili
tie

s

TimesTenDaemon

Sub-

daemons

Re
pl

ic
at

io
n

Se
rv

er
Pr

ox
ie

s

O
DBC Direct Driver

 Data Store
94 Oracle TimesTen In-Memory Database Architectural Overview

Loading and Updating Cache Groups
The data from Oracle is initially loaded into TimesTen to populate the cache
group. After loading the cache group, the cached data can be updated in either the
TimesTen cache group or the Oracle database. Cache Connect can automatically
propagate updates from the cache group to Oracle, as well as refresh from Oracle
to the cache group.

Figure 9.2 Loading data and propagating/refreshing updates

Oracle-to-TimesTen updates (refresh)
The following mechanisms are available to keep the TimesTen cache group up to
date with the Oracle base tables:
• Full Autorefresh – This is specified by the AUTOREFRESH MODE FULL

clause in the CREATE CACHE GROUP statement, which includes an
optional INTERVAL value that indicates how frequently refreshes ought to
take place. With autorefresh enabled, TimesTen automatically refreshes the
entire cache group or cache instances at the specified time intervals.

• Incremental Autorefresh – This is specified by the AUTOREFRESH MODE
INCREMENTAL clause in the CREATE CACHE GROUP statement. Unlike
full autorefresh, an incremental autorefresh updates only the records that have
been modified in Oracle since the last refresh. As with full autorefresh, the
application can specify an INTERVAL to indicate the frequency in which
TimesTen automatically performs the incremental refresh. (Incremental
autorefresh is the default behavior for READONLY cache groups, as
described in “System-Managed Cache Groups” on page 98.)

Load

Oracle DB

Propagate Refresh

Oracle DB

Populating the cache group
with Oracle data

Propagating updated data between
the cache group and Oracle

TimesTen
Cache Group

TimesTen
Cache Group
Cache Connect to Oracle 95

• Manual Refresh – This is specified by an application issuing an explicit
REFRESH CACHE GROUP statement to refresh either an entire cache group
or specific cache instances. It is equivalent to an UNLOAD CACHE GROUP
operation followed by a LOAD CACHE GROUP operation.

Each refresh mechanism has its advantages and tradeoffs. Incremental
Autorefresh refreshes only changed rows, but requires the use of triggers on
Oracle to keep track of the updates. This adds overhead and slows down updates.
Full Autorefresh does not require Oracle to keep track of the updates, but updates
everything in the cache at once. Manual Refresh is a refresh controlled by the
application and the logic needed to determine when to refresh adds overhead to
the application.

These three refresh mechanisms are useful under different circumstances. For
example, a full autorefresh may be the best choice if the Oracle table is updated
only once a day and many rows are changed. An incremental autorefresh would
be the best choice if the Oracle table is updated often, but only a few rows are
changed with each update. A manual refresh would be the best choice if the
application logic knows when the refresh should happen.

TimesTen-to-Oracle updates (propagate)
For data that is updated in a TimesTen cache group, the following mechanisms
are available to keep the Oracle database up to date with the cache group:
• Propagate – This is specified by one of the following methods:

– Specifying the PROPAGATE option in the CREATE USERMANAGED
CACHE GROUP statement.

– Creating a synchronous writethrough (SWT) cache group with the
CREATE SYNCHRONOUS WRITETHROUGH CACHE GROUP
statement.

– Creating an asynchronous writethrough (AWT) cache group with the
CREATE ASYNCHRONOUS WRITETHROUGH CACHE GROUP
statement.

With the PROPAGATE option enabled, all modifications to a cache group are
automatically propagated to the Oracle database. When the application
completes a transaction that has modified one or more cache groups that have
the PROPAGATE option enabled or are SWT cache groups, TimesTen first
commits the transaction in Oracle and then in TimesTen. This technique
allows Oracle to apply any required logic related to the data before it is
committed in TimesTen, so that Oracle always reflects the latest image of the
data. Use the PROPAGATE option or SWT cache groups when the cache and
Oracle must be synchronized at all times.

Modifications to an AWT cache group are committed without waiting for the
changes to be applied to Oracle. AWT cache groups provide better response
96 Oracle TimesTen In-Memory Database Architectural Overview

times and performance, but the cache and Oracle do not always contain the
same data because changes are applied to Oracle asynchronously.

• Flush – This is specified by an application issuing an explicit FLUSH
CACHE GROUP statement. A flush operation can be used to manually
propagate updates from the TimesTen cache groups to Oracle. Flush
operations are useful when frequent updates occur for a limited period of time
over a set of records. Rather than propagate the updates of each transaction
individually, the updates are batched all at once with the flush operation. Flush
operations require that the PROPAGATE option in the CREATE CACHE
GROUP statement be disabled (NOT PROPAGATE). Flush operations do not
propagate deletes.

Passthrough Feature
TimesTen applications can send SQL statements to either a TimesTen cache
group or to the Oracle database through a single connection to a TimesTen data
store. This single-connection capability is enabled by a passthrough feature that
checks if the SQL statement can be handled locally by the cached tables in
TimesTen or if it must be redirected to Oracle, as shown in Figure 9.3. The
passthrough feature provides settings that specify what types of statements are to
be passed through and under what circumstances.

Figure 9.3 TimesTen Passthrough feature

The specific behavior of the passthrough feature is controlled by the data store
attribute, PassThrough, and can be reset programmatically by calling the
ttOptSetFlag procedure with the PassThrough flag.

Oracle DB

Cache Group

Application

Statements that can
be handled in cache

Statements that cannot
be handled in cache are
passed through to Oracle

PassThrough Logic

TimesTen
Cache Connect to Oracle 97

System-Managed Cache Groups
System-managed cache groups are predefined frameworks for caching Oracle
data in TimesTen. When using a system-managed cache group, operations such
as propagating data are managed automatically by the cache agent.

As shown in Figure 9.4, there are two basic types of system-managed cache
groups:
• READONLY cache groups hold read-only data, so updates on the tables in the

cache group are not allowed. Updates must be done on Oracle. These updates
can either be done directly in Oracle or in TimesTen using the passthrough
feature described in “Passthrough Feature” on page 97. By default, a
READONLY cache group is automatically refreshed from Oracle.

• WRITETHROUGH cache groups load the cached table data from Oracle once
when created. Thereafter, all updates to the cache group are automatically
propagated to Oracle. Writethrough cache groups can be either asynchronous
(AWT) or synchronous (SWT). SWT cache groups wait for a commit on
Oracle before committing in the cache. AWT cache groups commit changes in
the cache without waiting for a commit on Oracle.

Figure 9.4 Read-only and writethrough cache groups

Oracle DB

TimesTen

Autorefresh
updates on
Oracle

READONLY
Cache Group

Oracle DB

TimesTen

Automatically
propagate
updates to

cached tables

WRITETHROUGH
Cache Group

Passthrough
 UPDATE statements

to cached tables*

Passthrough SQL for
uncached tables

Load upon
request

* Depends on the PassThrough attribute setting

ApplicationApplication
98 Oracle TimesTen In-Memory Database Architectural Overview

User-Managed Cache Groups
User-managed cache groups allow users to select from a full range of attributes
and SQL statements to define customized caching behaviors. Users have full
control over how and when the cached data is loaded, propagated, and removed
from the cache group.

Figure 9.5 User-managed cache group

Cache Instances
In contrast to system-managed cache groups, in which changes are propagated
between Oracle and the cache group at table-level granularity, user-managed
cache groups can propagate load, refresh, and flush operations for rows of data
collectively referred to as cache instances.

As shown in Figure 9.6, each cache group has a root table that contains the
primary key for the cache group. Rows in the root table may have one-to-many
relationships with rows in child tables, each of which may have one-to-many
relationships with rows in other child tables.

A cache instance is the set of rows that are associated by foreign key
relationships with a particular row in the cache group root table. Each primary
key value in the root table specifies a cache instance. Cache instances form the
unit of cache loading and cache aging, as described in “Cache Loading
Techniques” on page 101. Exactly one of the rows in a cache instance must be

Oracle DB

TimesTen

Manual Load
Manual Refresh

USERMANAGED
Cache Group

Autorefresh

Application

 Manual Flush**

Automatically
propagate
all updates

Passthrough SQL for
noncached tables*

* Depends on the Passthrough attribute setting
** Can flush only if PROPAGATE is not enabled
Cache Connect to Oracle 99

from the root table. No table in the cache group can be a child to more than one
parent in the cache group. These constraints ensure that each TimesTen record
belongs to only one cache instance and has only one parent in its cache group.
This disambiguates the aging of cache instances. The foreign key constraints
prevent the creation of dangling child records through updates or deletes to the
parent or through inserts of child records that have no parent.

In the example shown in Figure 9.6, all records in the Customer, Orders, and
Interests tables that belong to a given customer id (CustId) are related to each
other through foreign key constraints, so they belong to the same cache instance.
Because CustId uniquely identifies the cache instance, it is referred to as the
cache instance key.

Figure 9.6 TargetCustomers cache group

Oracle DB

Customer

Orders

Interests

OrderDetails

Customer (Root Table)

OrderId CustId PurchaseDate Amount
Orders

OrderId ItemId Quantity

OrderDetails

Interests
CustId Interest

StreetAddress State ZipCode AreaCode PhoneNo NameCustId

Cache Group: "TargetCustomers"

Town

TimesTen

122
342
663

Jim Johnston
Jane Stone
Mary J. Warren

231 Main
4223 Cowper
673 State

CA
CA
WI

92363
94302
53787

760
650
608

534-4765
324-7656
767-6453

Needles
Palo Alto
Madison

122
122
663

44325
65432
76543

10/7/99
8/24/00
4/2/01

$103.32
$302.42
$54.01

122
342
342

Cameras
Audio
Video

44325
44325
65432
76543 SD07 2

SD07
TR3A
FT094

1
5
1

Cache Instance Key

Child
Tables
100 Oracle TimesTen In-Memory Database Architectural Overview

Cache Loading Techniques
When using a user-managed cache group, an application can select from the
following techniques to load the cache group data from the Oracle database into
TimesTen:
• Load the entire cache group at once. This is a suitable technique to use if the

content of the entire cache group can fit in memory. TimesTen also provides
the ability to unload an entire cache group.

• Load cache instances by their cache instance key. In this case, the records that
make up a cache instance are brought into TimesTen on demand. If the cache
instance is already loaded in TimesTen, then the request is ignored. This
technique is useful if the capacity of the cache is not large enough to hold all
the data described by the cache group. TimesTen also provides the ability to
unload cache instances by their cache instance key.

• Load cache instances by WHERE clause. This technique is similar to loading
a cache instance by its cache instance key, but in this case, the cache instances
are described by a WHERE clause rather than by ID. TimesTen also provides
the ability to unload cache instances by WHERE clause.

Note: You can also load and refresh data with or without logging enabled. See
“Logging options” on page 70.

Cache Instance Aging
When cache instances are loaded into TimesTen, they can be automatically aged
out of TimesTen when its caching capacity reaches a specified threshold.
TimesTen provides applications with a number of cache-aging options to set up
different aging durations for different cache instances, as well as to specify that
certain cache instances should never be aged out. For example, the application
may want to keep catalog information in the cache all the time, but may want to
load user profiles only when users connect to the application and to automatically
age out profiles sometime after users disconnect.

Replicating Cache Groups
TimesTen replication can be configured to replicate a cache group from one data
store to a cache group in another data store. Only cache groups of the same type
can be replicated. For example, a SYNCHRONOUS WRITETHROUGH cache
group can be bidirectionally replicated with other SYNCHRONOUS
WRITETHROUGH cache groups, and a READONLY cache group can be
bidirectionally replicated with other READONLY cache groups.

You can also replicate a table in a cache group to a regular TimesTen table.

When TimesTen cache groups are replicated to another TimesTen data store, only
updates to the cache group from the application connected to the data store are
Cache Connect to Oracle 101

propagated to Oracle. Updates to a cache group that are replicated from a cache
group on another data store are not propagated to Oracle.
102 Oracle TimesTen In-Memory Database Architectural Overview

For More Information
For more information on Cache Connect, see the TimesTen Cache Connect to
Oracle Guide.
Cache Connect to Oracle 103

104 Oracle TimesTen In-Memory Database Architectural Overview

10
TimesTen Administration

TimesTen provides tools to perform a variety of administrative tasks, such as:
• Installing TimesTen
• TimesTen Access Control
• Command Line Administration
• SQL Administration
• Browser-Based Administration
• Upgrading TimesTen

Installing TimesTen
TimesTen software is easily installed in minutes. On UNIX systems, TimesTen is
installed by a simple set-up script. On Windows, TimesTen is installed by
running InstallShield®. The installation can include the TimesTen client, server,
and data manager components, or just the TimesTen client or data manager by
themselves.

TimesTen can be installed with Access Control enabled or disabled, as described
next in “TimesTen Access Control”.

See the Oracle TimesTen In-Memory Database Installation Guide for details.
 105

TimesTen Access Control
TimesTen can be installed with Access Control enabled to allow only users with
specific privileges to access particular TimesTen features.

TimesTen Access Control uses standard SQL operations, such as CREATE
USER, DROP USER, GRANT, and REVOKE, to establish TimesTen user
accounts with specific privilege levels. However, in TimesTen, privileges are
granted for the entire TimesTen instance, rather than for specific tables. Each
user’s privileges apply to all data stores in a TimesTen instance or installation.

If Access Control is to be enabled, installation must be performed by the instance
administrator for the data store. The instance administrator owns all files in the
installation directory tree and is the only user with the privileges to start and stop
the TimesTen daemon and other TimesTen processes, such as the replication and
cache agents.

To enable client connections to an access-controlled data store, you must enable
the Authenticate attribute and the client must specify the correct user name and
password in the client DSN or when connecting to TimesTen.

See Chapter 1, “Access Control and non-root installations” in the Oracle
TimesTen In-Memory Database Installation Guide for more information.

The Access Control feature of TimesTen provides an environment of basic
control for applications that use the defined privileges. Access Control does not
provide definitive security for all processes that might be able to access the data
store. For example, this feature does not protect the data store from user
processes that may have sufficient privileges to attach to the data store when in
memory or that can access files on disk that are associated with the data store,
such as log files and checkpoint files.
106 Oracle TimesTen In-Memory Database Architectural Overview

Command Line Administration
Most TimesTen administration tasks are done through command line utilities,
which include:

Name Description

ttAdmin A general utility for managing TimesTen data stores. Used to
specify policies to automatically or manually load and unload
data stores from RAM, as well as to start and stop TimesTen
cache agents and replication agents.

ttBackup and
ttRestore

Used to create a backup copy of a data store and restore it at a
later time.

ttBulkCp Used to transfer data between TimesTen tables and ASCII files.

ttIsql Used to run SQL interactively from the command line. Also
provides a number of administrative commands to reconfigure
and monitor data stores.

ttMigrate Used to save and restore TimesTen tables and cache group
definitions to and from a binary data file.

ttRepAdmin Used to monitor replication status. Previous versions of
TimesTen used this utility to configure replication schemes and
initiate many replication maintenance operations. However,
ttRepAdmin capabilities other than those related to monitoring
replication are being deprecated in favor of the SQL interface
described in the TimesTen to TimesTen Replication Guide.

ttSize Used to estimate the amount of space to allocate for a table in
the data store.

ttStatus Used to display information that describes the current state of
TimesTen.

ttTail Used to obtain the TimesTen internal trace information from a
data store and display to stdout.

ttTraceMon Used to enable and disable the TimesTen internal tracing
facilities.

ttXactAdmin Used to list ownership, status, log and lock information for
each outstanding transaction. The ttXactAdmin utility also
allows users to heuristically commit, abort or forget an XA
transaction branch.
TimesTen Administration 107

SQL Administration
TimesTen provides SQL statements for administrative activities, such as:
• creating and dropping indexes
• creating and managing tables
• creating and managing replication schemes
• creating and managing cache groups
• creating and managing materialized views

The metadata for each TimesTen data store is stored in a group of system tables.
Applications can use SQL SELECT queries on these tables to monitor the current
state of a data store. See Chapter 4, “System and Replication Tables” in the
TimesTen Reference Guide for details on the TimesTen tables.

Administrators can use the ttIsql utility for casual SQL interaction with a data
store. For example, there are several built-in ttIsql commands that display
information on data store structures. These commands include:
• monitor to display a summary of the current state of the data store (contents

of the SYS.MONITOR table).
• describe to display information on tables, prepared statements, and

procedures.
• tables to display information on tables.
• indexes to display information on table indexes.
• cachegroup to display the attributes of cache groups.
• dssize to report the current sizes of the permanent and temporary data store

partitions.
108 Oracle TimesTen In-Memory Database Architectural Overview

Browser-Based Administration
TimesTen provides a Web browser-based tool, called the Cache Administrator,
that can be used by any machine within the intranet to create and manage Cache
Connect cache groups. The Cache Administrator can be used to create a cache
group directly or to generate a SQL file that defines a cache group.

The Cache Administrator enables users to set up one or more cache groups by
navigating through the Oracle schema with a Web browser. Users can use the
administrator to selectively load and unload tables and indexes to and from the
Cache Connect data store.

See the TimesTen Cache Connect to Oracle Guide for more information.
TimesTen Administration 109

Upgrading TimesTen
TimesTen provides the facilities to perform three types of upgrades:
• In-place upgrades
• Offline upgrades
• Online upgrades

These upgrade options are summarized below. The detailed procedures are
described in Chapter 3, “Data Store Upgrades” of the Oracle TimesTen In-
Memory Database Installation Guide.

In-place upgrades
In-place upgrades are typically used to move to a new patch release (or “dot-dot
release”) of TimesTen.

In-place upgrades can be done without destroying the existing data stores.
However, all applications must first disconnect from the data stores and the data
stores must be unloaded from shared memory. After uninstalling the old release
of TimesTen and installing the new release, applications can reconnect to the
data stores and resume operation.

Offline upgrades
Offline upgrades involve using the ttMigrate utility to export the data store into
an external file and to restore the data store with the desired changes.

Offline upgrades are used to:
• move to a new major TimesTen release or a dot release
• move to a different directory or machine
• reduce data store size

During an offline upgrade, the data store is not available to applications. Offline
upgrades usually require enough disk space for an extra copy of the upgraded
data store.
110 Oracle TimesTen In-Memory Database Architectural Overview

Online upgrades
TimesTen replication enables online upgrades, which can be performed online by
the ttMigrate and ttRepAdmin utilities while the data store and its applications
remain operational and available to users. Online upgrades are useful for
applications where continuous availability of the data store is critical.

Online upgrades are used to:
• move to a new major release (or “dot release”) of TimesTen and retain

continuous availability to the data store
• increase or reduce the data store size
• move the data store to a new location or machine

Updates made to the data store during the upgrade are transmitted to the
upgraded data store at the end of the upgrade process. Because an online upgrade
requires that the data store be replicated to another data store, it can require more
memory and disk space than offline upgrades.

For More Information
For more information on installing and upgrading TimesTen, see the Oracle
TimesTen In-Memory Database Installation Guide.

For more information on general administration of TimesTen, see Chapter 2,
“Creating TimesTen Data Stores” and Chapter 6, “Working with Data in a
TimesTen Data Store” in the Oracle TimesTen In-Memory Database Operations
Guide.

For more information on administration of Cache Connect, see the TimesTen
Cache Connect to Oracle Guide.

For more information on administration of TimesTen replication, see the
TimesTen Replication Guide.

For a complete list of SQL statements, see Chapter 13, “SQL Statements” in the
Oracle TimesTen In-Memory Database API and SQL Reference Guide.

For a complete list of TimesTen command-line utilities, see Chapter 2, “Utilities”
in the Oracle TimesTen In-Memory Database API and SQL Reference Guide.
TimesTen Administration 111

112 Oracle TimesTen In-Memory Database Architectural Overview

Index
A
Access Control

security 12, 106
active standby pair 79
administration of TimesTen 16, 105
application scenarios 19
asynchronous writethrough cache groups 98
autocommit mode 71
AWT cache groups 98

B
B-tree index 60
background reading 5
buffer pool management 10

C
C language functions See Utility Library.
Cache Administrator 94, 109
cache agent 38
Cache Connect 15

described 93
propagating changes 95
see also "cache group" and "cache

instance"
use of 25, 30

cache group
described 94
loading 101
use of 25, 26

cache groups
asynchronous writethrough 98
AWT 98
SWT 98
synchronous writethrough 98

cache instance
aging of 101
described 99
use of 26

checkpoints 14
"fuzzy" 74
blocking 74

described 73
non-blocking 74
recovering from 75

client/server connection 13, 46
cluster manager, role of 82
code font 1
command line utilities 107
commits, durable vs. non-durable 72
concurrency 16
connections

client/server 46
direct driver 44
driver manager 47
handle to 43
types of 43

CREATE INDEX statement 59, 60, 65
CREATE TABLE statement 60

D
data store

described 33, 34
recovery of 75, 82

DDL 40
detail table 89
direct driver connection 13, 44
disk-based logging 71
distributed transaction processing 12, 40
distributed workload replication 78

recovery issues 83
DML 40
driver manager connection 13, 47
DSN

described 35
system 35
user 35

DTP, see "distributed transaction processing"
durable commits 72
DurableCommits attribute 72

F
failover and recovery 82
Index 113

first ’n’ rows optimization
use of 21

full table scan 62

G
global transactions 41

H
hash index 60
hash index scan 62
hot-standby replication

recovery issues 82
use of 21, 23

I
in-place upgrade 110
indexing techniques 59
inner table 63
installing TimesTen 105
italic font 1

J
Java Transaction API 12, 40
JDBC connection object 43
JDBC library 33
join methods 63
JTA, see "Java Transaction API"

L
latches 53
LockLevel attribute 50
locks 50

data-store level 51
row level 52
table level 51

log files
about 71
deleting 73

LogBuffSize attribute 71
LogDir attribute 71
LogFileSize attribute 71
logging 13, 70

disabled 70, 71
disk-based 71

M
master data store 76
Materialized Views

and XLA 90
described 89
use of 24

merge-join 65
multi-threaded applications 43
multi-threaded data stores 43

N
nested loop join 64
non-durable commits 72

O
ODBC connection handle 43
ODBC direct driver 33, 36
ODBC direct driver connection 44

use of 20
off-line upgrade 110
optimizer hints 59
optimizer plan 66
outer table 63

P
processes and threads 43

Q
query optimizer 15, 57

R
Read Committed isolation 53
reading, background 5
recovering a data store 75, 82
replication 14

configuration 77
described 75
failover and recovery 82
return receipt 80
return twosafe 80

replication agent
defined 38, 76

resource manager, TimesTen as 41
return receipt replication 80
return twosafe replication 80
114 Oracle TimesTen In-Memory Database Architectural Overview

Rowid lookup 62

S
scan methods 62
security

Access Control 12, 106
selectivity, defined 59
Serializable isolation 54
server child process 33, 38
SNMP traps 91
split workload replication 78
SQL administration 108
SQL-92 support 12
subscriber data store 76
SWT cache groups 98
synchronous writethrough cache groups 98
SYS.COL_STATS table 58
SYS.PLAN table 66
SYS.TBL_STATS table 58
system DSN 35

T
T-tree index 60
T-tree index scan 62
T-tree nodes 61
TimesTen administration 105
TimesTen applications 17
TimesTen daemon 36
TimesTen Data Manager 36
TimesTen defined 9
TimesTen processes 36
TimesTen resource manager 40
TimesTen server daemon 38
TimesTen subdaemons 37
TimesTen uses 18

transaction branch 41
transaction isolation levels 16, 53
Transaction Log API, see "XLA"
transaction manager 41
ttCkpt procedure 73
ttCkptBlocking procedure 73
ttDurableCommit procedure 72
ttLockLevel procedure 50
ttLockWait procedure 50
ttOptGetFlag procedure 59
ttOptSetFlag procedure 50, 51, 59, 66
ttOptSetOrder procedure 59
ttOptUpdateStats procedure 58
ttOptUseIndex procedure 59
ttXlaApply function 89
ttXlaGetColumnInfo function 87
ttXlaNextUpdate function 87
typographical conventions 1

U
upgrade modes

in-place upgrade 110
off-line upgrade 110

upgrading TimesTen 110
user DSN 35

X
X/Open DTP model 40, 41
XA interface 12, 40
XLA

and Materialized Views 90
described 14, 85
modes 86
use of 24
Index 115

116 Oracle TimesTen In-Memory Database Architectural Overview

	Contents
	About this Guide
	Conventions used in this guide
	TimesTen documentation
	Background reading
	Technical Support

	What is TimesTen?
	Why is TimesTen Faster Than a Conventional Database?
	Comparing TimesTen to a Conventional Database
	Standard ODBC/JDBC interfaces
	SQL
	Access Control
	Distributed transactions
	Database connectivity
	Logging
	Transaction log monitoring and materialized views
	Checkpoints
	Replication
	Oracle data caching
	Query optimization
	Concurrency
	Administration and utilities

	How is TimesTen Used?
	General Uses for TimesTen
	TimesTen Application Scenarios
	Scenario 1: Caller usage metering application
	Scenario 2: Real-time quote service application
	Scenario 3: Online travel agent application

	Application Design Considerations
	Alternative 1
	Alternative 2
	Alternative 3
	Architectural tradeoffs
	Summary of design options
	Connection to TimesTen
	Operation with a disk-based RDBMS
	Data partitioning
	Data availability

	Anatomy of a TimesTen System
	TimesTen Data Stores
	User and system DSNs

	TimesTen Data Manager
	TimesTen processes
	TimesTen Daemon
	TimesTen Subdaemons
	TimesTen Server Daemon and Server Child Processes
	Cache agents
	Replication Agents

	TimesTen ODBC and JDBC APIs
	SQL-92 standard
	TimesTen built-in procedures
	Distributed Transaction Processing (DTP) APIs
	Transaction Log API

	For More Information

	How Applications Connect to Data Stores
	Direct Driver Connection
	Shared data stores

	Client/Server Connection
	Driver Manager Connection
	For More Information

	Concurrent Operations
	Locks
	Data store-level locking
	Table-level locking
	Row-level locking

	Latches
	Transaction Isolation
	Read committed isolation
	Serializable isolation

	For More Information

	Query Optimization
	Optimization Time and Memory Usage
	Statistics
	Optimizer Hints
	Indexing Techniques
	Hash indexes
	T-tree indexes

	Scan Methods
	Join Methods
	Nested Loop Join
	Merge Join

	Optimizer Plan
	For More Information

	Data Availability and Integrity
	Logging
	Logging options
	Logging disabled
	Disk-based logging
	Logging disabled

	Autocommits
	Durable and non-durable commits
	When are log files deleted?

	Checkpointing
	Blocking and non-blocking (“fuzzy”) checkpoints
	Recovery from log and checkpoint files

	Replication
	Replication configurations
	Active standby pair
	Asynchronous and return service replication
	Replication failover and recovery

	For More Information

	Event Notification
	Transaction Log API
	How XLA works
	Log update records

	Materialized Views
	Materialized Views and XLA

	SNMP Traps
	For More Information

	Cache Connect to Oracle
	Cache Groups
	Loading and Updating Cache Groups
	Oracle-to-TimesTen updates (refresh)
	TimesTen-to-Oracle updates (propagate)
	Passthrough Feature

	System-Managed Cache Groups
	User-Managed Cache Groups
	Cache Instances
	Cache Loading Techniques
	Cache Instance Aging

	Replicating Cache Groups
	For More Information

	TimesTen Administration
	Installing TimesTen
	TimesTen Access Control
	Command Line Administration
	SQL Administration
	Browser-Based Administration
	Upgrading TimesTen
	In-place upgrades
	Offline upgrades
	Online upgrades

	For More Information

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

