

Oracle® TimesTen In-Memory Database
Java Developer's Guide

11g Release 2 (11.2.2)

E21638-09

December 2014

Oracle TimesTen In-Memory Database Java Developer's Guide, 11g Release 2 (11.2.2)

E21638-09

Copyright © 1996, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Related documents... vii
Conventions ... viii
Documentation Accessibility ... ix

What's New.. xi

New features in Release 11.2.2.0.0 .. xi

1 Java Development Environment

Installing TimesTen and the JDK ... 1-1
Setting the environment for Java development ... 1-1
Compiling Java applications .. 1-2
About the TimesTen Java demos .. 1-2

2 Working with TimesTen Databases in JDBC

Key JDBC classes and interfaces ... 2-1
Package imports ... 2-2
Support for interfaces in the java.sql package ... 2-2
Support for classes in the java.sql package .. 2-4
Support for interfaces and classes in the javax.sql package... 2-4
TimesTen JDBC extensions... 2-4
Additional TimesTen classes and interfaces .. 2-6

Managing TimesTen database connections .. 2-6
Create a connection URL for the database and specify connection attributes 2-7
Connect to the database .. 2-8
Disconnect from the database .. 2-8
Open and close a direct connection... 2-9
Check database validity .. 2-9
Access control for connections ... 2-9

Managing TimesTen data .. 2-10
Executing simple SQL statements .. 2-10
Working with TimesTen result sets: hints and restrictions .. 2-11
Fetching multiple rows of data ... 2-12
Binding parameters and executing statements... 2-13

iv

Preparing SQL statements and setting input parameters .. 2-13
Working with output and input/output parameters... 2-17
Binding duplicate parameters in SQL statements... 2-18
Binding duplicate parameters in PL/SQL ... 2-20
Binding associative arrays .. 2-20

Working with REF CURSORs ... 2-24
Working with DML returning (RETURNING INTO clause) ... 2-25
Working with rowids ... 2-27
Working with LOBs .. 2-28

About LOBs... 2-28
LOB objects in JDBC .. 2-28
Differences between TimesTen LOBs and Oracle Database LOBs 2-29
LOB factory methods... 2-30
LOB getter and setter methods .. 2-30
TimesTen LOB interface methods ... 2-31
LOB prefetching ... 2-32
Passthrough LOBs.. 2-33

Committing or rolling back changes to the database .. 2-33
Setting autocommit.. 2-33
Manually committing or rolling back changes.. 2-33
Using COMMIT and ROLLBACK SQL statements .. 2-34

Managing multiple threads ... 2-34
Java escape syntax and SQL functions... 2-34

Using additional TimesTen data management features.. 2-35
Using CALL to execute procedures and functions .. 2-35
Setting a timeout or threshold for executing SQL statements .. 2-37

Setting a timeout duration for SQL statements ... 2-37
Setting a threshold duration for SQL statements .. 2-37

Features for use with TimesTen Cache .. 2-38
Setting temporary passthrough level with the ttOptSetFlag built-in procedure 2-38
Managing cache groups .. 2-39

Features for use with replication .. 2-39
Considering TimesTen features for access control... 2-39
Handling errors.. 2-40

About fatal errors, non-fatal errors, and warnings .. 2-41
Handling fatal errors ... 2-41
Handling non-fatal errors ... 2-41
About warnings.. 2-41
Abnormal termination... 2-42

Reporting errors and warnings ... 2-42
Catching and responding to specific errors .. 2-43
Rolling back failed transactions .. 2-43

JDBC support for automatic client failover ... 2-44
Features and functionality of JDBC support for automatic client failover 2-45

General Client Failover Features ... 2-45
Client failover features for pooled connections... 2-46

Configuration of automatic client failover .. 2-46

v

Synchronous detection of automatic client failover... 2-46
Asynchronous detection of automatic client failover .. 2-46

Implement a client failover event listener .. 2-47
Register the client failover listener instance... 2-48
Remove the client failover listener instance... 2-49

3 Using JMS/XLA for Event Management

JMS/XLA concepts.. 3-1
How XLA reads records from the transaction log .. 3-2
XLA and materialized views .. 3-3
XLA bookmarks.. 3-4

How bookmarks work ... 3-4
Replicated bookmarks.. 3-5
XLA bookmarks and transaction log holds... 3-5

JMS/XLA configuration file and topics .. 3-6
XLA updates ... 3-7
XLA acknowledgment modes .. 3-8

Prefetching updates .. 3-8
Acknowledging updates.. 3-9

Access control impact on XLA ... 3-9
XLA limitations .. 3-9

JMS/XLA and Oracle GDK dependency.. 3-9
Connecting to XLA .. 3-10
Monitoring tables for updates .. 3-10
Receiving and processing updates... 3-11
Terminating a JMS/XLA application ... 3-14

Closing the connection ... 3-14
Deleting bookmarks.. 3-14
Unsubscribing from a table.. 3-14

Using JMS/XLA as a replication mechanism ... 3-15
Applying JMS/XLA messages to a target database... 3-15
TargetDataStore error recovery .. 3-16

4 Distributed Transaction Processing: JTA

Overview of JTA... 4-1
X/Open DTP model... 4-2
Two-phase commit... 4-2

Using JTA in TimesTen .. 4-3
TimesTen database requirements for XA ... 4-3
Global transaction recovery in TimesTen... 4-3
XA error handling in TimesTen ... 4-4

Using the JTA API.. 4-4
Required packages ... 4-4
Creating a TimesTen XAConnection object ... 4-4
Creating XAResource and Connection objects .. 4-6

vi

5 Java Application Tuning

Tuning JDBC applications ... 5-1
Use prepared statement pooling.. 5-1
Use arrays of parameters for batch execution.. 5-2
Bulk fetch rows of TimesTen data ... 5-3
Use the ResultSet method getString() sparingly.. 5-3
Avoid data type conversions.. 5-4
Close connections, statements, and result sets .. 5-4

Tuning JMS/XLA applications .. 5-5
Configure xlaPrefetch parameter... 5-5
Reduce frequency of update acknowledgments ... 5-5
Handling high event rates .. 5-5

6 JMS/XLA Reference

JMS/XLA MapMessage contents ... 6-1
XLA update types .. 6-1
XLA flags ... 6-2

DML event data formats ... 6-4
Table data .. 6-4
Row data.. 6-4
Context information... 6-4

DDL event data formats .. 6-4
CREATE_TABLE.. 6-5
DROP_TABLE .. 6-5
CREATE_INDEX.. 6-6
DROP_INDEX .. 6-6
ADD_COLUMNS... 6-6
DROP_COLUMNS... 6-7
CREATE_VIEW .. 6-8
DROP_VIEW... 6-8
CREATE_SEQ ... 6-8
DROP_SEQ.. 6-9
CREATE_SYNONYM.. 6-9
DROP_SYNONYM .. 6-9
TRUNCATE ... 6-10

Data type support .. 6-10
Data type mapping ... 6-10
Data types character set.. 6-12

JMS classes for event handling .. 6-12
JMS/XLA replication API... 6-13

TargetDataStore interface .. 6-13
TargetDataStoreImpl class ... 6-13

JMS message header fields.. 6-13

Index

vii

Preface

Oracle TimesTen In-Memory Database (TimesTen) is a relational database that is
memory-optimized for fast response and throughput. The database resides entirely in
memory at runtime and is persisted to disk storage for the ability to recover and
restart. Replication features allow high availability. TimesTen supports standard
application interfaces JDBC, ODBC, and ODP.NET, in addition to Oracle interfaces
PL/SQL, OCI, and Pro*C/C++. TimesTen is available separately or as a cache for
Oracle Database.

This document covers TimesTen support for JDBC.

The following topics are discussed in the preface:

■ Audience

■ Related documents

■ Conventions

■ Documentation Accessibility

Audience
This guide is for anyone developing or supporting applications that use TimesTen
through JDBC.

In addition to familiarity with JDBC, you should be familiar with TimesTen, SQL
(Structured Query Language), and database operations.

Related documents
TimesTen documentation is available on the product distribution media and on the
Oracle Technology Network:

http://www.oracle.com/technetwork/database/database-technologies/timesten/documentation/index.html

Javadoc for standard JDBC (Java SE) classes and interfaces in the java.sql package is
available at the following locations (the first for Java 6, the second for Java 5.0):

http://docs.oracle.com/javase/6/docs/api/java/sql/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/sql/package-summary.html

Javadoc for standard Java EE classes and interfaces is available at the following
locations (the first for Java 6, the second for Java 5.0):

http://docs.oracle.com/javaee/6/api/
http://docs.oracle.com/javaee/5/api/

viii

Oracle Database documentation is also available on the Oracle Technology network.
This may be especially useful for Oracle Database features that TimesTen supports but
does not attempt to fully document:

http://www.oracle.com/pls/db112/homepage

In particular, the following Oracle Database documents may be of interest.

■ Oracle Database SQL Language Reference

■ Oracle Database JDBC Developer's Guide

Conventions
TimesTen supports multiple platforms. Unless otherwise indicated, the information in
this guide applies to all supported platforms. The term Windows applies to all
supported Windows platforms. The term UNIX applies to all supported UNIX and
Linux platforms. Refer to the "Platforms" section in Oracle TimesTen In-Memory
Database Release Notes for specific platform versions supported by TimesTen.

This document uses the following text conventions:

TimesTen documentation uses the following variables to identify path, file and user
names:

Note: In TimesTen documentation, the terms "data store" and
"database" are equivalent. Both terms refer to the TimesTen database.

Convention Meaning

italic Italic type indicates terms defined in text, book titles, or emphasis.

monospace Monospace type indicates code, commands, URLs, class names,
interface names, method names, function names, attribute names,
directory names, file names, text that appears on the screen, or text that
you enter.

italic monospace Italic monospace type indicates a placeholder or a variable in a code
example for which you specify or use a particular value. For example:

Driver=install_dir/lib/libtten.sl

Replace install_dir with the path of your TimesTen installation
directory.

[] Square brackets indicate that an item in a command line is optional.

{ } Curly braces indicated that you must choose one of the items separated
by a vertical bar (|) in a command line.

| A vertical bar (or pipe) separates alternative arguments.

. . . An ellipsis (. . .) after an argument indicates that you may use more
than one argument on a single command line. An ellipsis in a code
example indicates that what is shown is only a partial example.

% The percent sign indicates the UNIX shell prompt.

Convention Meaning

install_dir The path that represents the directory where TimesTen is installed.

ix

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

TTinstance The instance name for your specific installation of TimesTen. Each
installation of TimesTen must be identified at install time with a unique
instance name. This name appears in the install path.

bits or bb Two digits, either 32 or 64, that represent either the 32-bit or 64-bit
operating system.

release or rr The first three parts in a release number, with or without dots. The first
three parts of a release number represent a major TimesTen release. For
example, 1122 or 11.2.2 represents TimesTen 11g Release 2 (11.2.2).

jdk_ver One or two digits that represent the version number of a major JDK
release. For example, 14 is for JDK 1.4 and 5 is for JDK 5.0.

DSN TimesTen data source name (for the TimesTen database).

Convention Meaning

x

xi

What's New

This section summarizes the new features and functionality of Oracle TimesTen
In-Memory Database 11g Release 2 (11.2.2) that are documented in this guide,
providing links into the guide for more information.

New features in Release 11.2.2.0.0
■ LOB support

TimesTen supports LOBs (large objects). This includes CLOBs (character LOBs),
NCLOBs (national character LOBs), and BLOBs (binary LOBs).

For details of support in JDBC, refer to "Working with LOBs" on page 2-28.

■ Associative array binding

TimesTen JDBC supports associative arrays, formerly known as index-by tables or
PL/SQL tables, as IN, OUT, or IN OUT bind parameters to TimesTen PL/SQL.
Associative arrays enable arrays of data to be passed efficiently between an
application and the database.

See "Binding associative arrays" on page 2-20.

xii

1

Java Development Environment 1-1

1Java Development Environment

This chapter provides information about the Java development environment and
related considerations. It includes the following topics:

■ Installing TimesTen and the JDK

■ Setting the environment for Java development

■ Compiling Java applications

■ About the TimesTen Java demos

Installing TimesTen and the JDK
Install and configure TimesTen for your environment, as described in Oracle TimesTen
In-Memory Database Installation Guide, and the Java JDK, as described in your Java
installation documentation. As you set up a Java development environment, the topics
of particular interest in Oracle TimesTen In-Memory Database Installation Guide include
the following:

■ "Java environment variables"

■ "Environment variables"

After you have installed and configured TimesTen, create a database DSN as
described in "Managing TimesTen Databases" in Oracle TimesTen In-Memory Database
Operations Guide. The topics of particular interest include the following:

■ "Connecting using the TimesTen JDBC driver and driver manager"

■ "Overview of user and system DSNs"

■ "Defining DSNs for direct or client/server connections"

■ "Thread programming with TimesTen"

■ "Creating a Data Manager DSN on UNIX" or "Creating a Data Manager DSN on
Windows"

Setting the environment for Java development
Before you begin developing Java applications for TimesTen, you must set your
environment appropriately. This includes setting the environment variables
appropriately. See "Java environment variables" in Oracle TimesTen In-Memory Database
Installation Guide for more information about environment variables for Java, including
discussion of the PATH, CLASSPATH, THREAD_FLAGS, and shared library path
environment variables.

Compiling Java applications

1-2 Oracle TimesTen In-Memory Database Java Developer's Guide

Environment variables and runtime access to the Instant Client are configured through
the appropriate ttenv script in the install_dir/bin directory: ttenv.sh and
ttenv.csh for UNIX platforms (where which you use depends on your shell) and
ttenv.bat for Windows platforms. See "Environment variables" in the Oracle TimesTen
In-Memory Database Installation Guide for additional information.

Compiling Java applications
"Java environment variables" in Oracle TimesTen In-Memory Database Installation Guide
discusses the CLASSPATH setting for compiling Java applications in TimesTen.

Compiling any Java application requires the JAR file appropriate for your JDK to be in
your classpath. In TimesTen, the following are for JDK 5.0 and JDK 6, respectively:

install_dir/lib/ttjdbc5.jar
install_dir/lib/ttjdbc6.jar

In addition, compiling any JMS/XLA application requires the following to be in your
classpath:

install_dir/lib/timestenjmsxla.jar
install_dir/3rdparty/jms1.1/lib/jms.jar
install_dir/lib/orai18n.jar

About the TimesTen Java demos
After you have configured your Java environment, you can confirm that everything is
set up correctly by compiling and running the TimesTen Quick Start demo
applications. Refer to the Quick Start welcome page at install_dir/quickstart.html,
especially the links under SAMPLE PROGRAMS, for information about the following:

■ Demo schema and setup: The build_sampledb script (.sh or UNIX or .bat on
Windows) creates a sample database and demo schema. You must use this before
you start using the demos.

■ Demo environment and setup: The ttquickstartenv script (.sh or .csh on UNIX
or .bat on Windows), a superset of the ttenv script generally used for TimesTen
setup, sets up the demo environment. You must use this each time you enter a
session where you want to compile or run any of the demos.

■ Demos and setup: TimesTen provides demos for JDBC and JMS/XLA under the
quickstart/sample_code directory. For instructions on compiling and running
the demos, see the README file or files in the subdirectories.

■ What the demos do: A synopsis of each demo is provided when you click JDBC
(Java) under SAMPLE PROGRAMS. The TimesTen basic Java demos are named
level1, level2, level3, and level4. Data files for the level demos are in the
jdbc/datfiles directory.

Note: TimesTen includes Oracle Instant Client, which is required for
certain JDBC features and operations.

Note: All of the level demos support both direct and client/server
connections to the database.

2

Working with TimesTen Databases in JDBC 2-1

2Working with TimesTen Databases in JDBC

This chapter describes the basic procedures for writing a Java application to access
data. Before attempting to write a TimesTen application, be sure you have completed
the following prerequisite tasks:

After you have successfully executed the TimesTen Java demos, your development
environment is set up correctly and ready for you to create applications that access a
database.

The following topics are covered in this chapter:

■ Key JDBC classes and interfaces

■ Managing TimesTen database connections

■ Managing TimesTen data

■ Using additional TimesTen data management features

■ Considering TimesTen features for access control

■ Handling errors

■ JDBC support for automatic client failover

Key JDBC classes and interfaces
This section discusses important standard and TimesTen-specific JDBC packages,
classes, and interfaces. The following topics are covered:

■ Package imports

■ Support for interfaces in the java.sql package

■ Support for classes in the java.sql package

■ Support for interfaces and classes in the javax.sql package

Prerequisite task What you do

Create a database. Follow the procedures described in "Managing
TimesTen Databases" in Oracle TimesTen
In-Memory Database Operations Guide.

Configure the Java environment. Follow the procedures described in "Setting the
environment for Java development" on
page 1-1.

Compile and execute the TimesTen Java
demos.

Follow the procedures described in "About the
TimesTen Java demos" on page 1-2.

Key JDBC classes and interfaces

2-2 Oracle TimesTen In-Memory Database Java Developer's Guide

■ TimesTen JDBC extensions

■ Additional TimesTen classes and interfaces

For reference information on standard JDBC, see the following for information about
the java.sql package (the first for Java 6, the second for Java 5.0):

http://docs.oracle.com/javase/6/docs/api/java/sql/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/sql/package-summary.html

For reference information on TimesTen JDBC extensions, refer to Oracle TimesTen
In-Memory Database JDBC Extensions Java API Reference.

Package imports
You must import the standard JDBC package in any Java program that uses JDBC:

import java.sql.*;

If you are going to use data sources or pooled connections, you must also import the
standard extended JDBC package:

import javax.sql.*;

You must import the TimesTen JDBC package:

import com.timesten.jdbc.*;

To use XA data sources for JTA, you must also import the following TimesTen
package:

import com.timesten.jdbc.xa.*;

Support for interfaces in the java.sql package
TimesTen supports the java.sql interfaces as indicated in Table 2–1, with
TimesTen-specific support and restrictions noted.

Also see "TimesTen JDBC extensions" on page 2-4.

Note: It is recommended that you use Java 6 with TimesTen. Java 6
is a more capable API, especially for handling LOBs.

Table 2–1 Supported java.sql interfaces

Interface in java.sql Remarks on TimesTen support

Blob ■ The position() method, which returns the position where a
specified byte pattern or BLOB pattern begins, is not supported.

■ Java 5.0 does not support free() or
getBinaryStream(pos,length), but TimesTen provides them as
extensions. They are standard in Java 6.

CallableStatement ■ You must pass parameters to CallableStatement by position, not
by name.

■ You cannot use SQL escape syntax.

■ There is no support for Array, Struct, or Ref.

■ There is no support for Calendar for setDate(), getDate(),
setTime(), or getTime().

Key JDBC classes and interfaces

Working with TimesTen Databases in JDBC 2-3

Clob ■ The position() method, which returns the position where a
specified character pattern or CLOB pattern begins, is not
supported.

■ Java 5.0 does not support free() or
getCharacterStream(pos,length), but TimesTen provides them
as extensions. They are standard in Java 6.

Connection ■ There is no support for savepoints.

DatabaseMetaData ■ There are no restrictions.

NClob ■ NClob support applies only for Java 6 (ttjdbc6.jar).

■ The position() method, which returns the position where a
specified character pattern or NCLOB pattern begins, is not
supported.

ParameterMetaData ■ The JDBC driver cannot determine whether a column is nullable
and always returns parameterNullableUnknown from calls to
isNullable().

■ The getScale() method returns 1 for VARCHAR, NVARCHAR, and
VARBINARY data types if they are INLINE. (Scale is of no
significance to these data types.)

PreparedStatement ■ There is no support for getMetaData() in PreparedStatement.

■ There is no support for Array, Struct, or Ref.

■ There is no support for the Calendar type in setDate(),
getDate(), setTime(), or getTime().

ResultSet ■ There is support for getMetaData() in ResultSet.

■ You cannot have multiple open ResultSet objects per statement.

■ You cannot specify the holdability of a result set, so a cursor
cannot remain open after it has been committed.

■ There is no support for scrollable or updatable result sets.

■ There is no support for Array, Struct, or Ref.

■ There is no support for the Calendar type in setDate(),
getDate(), setTime(), or getTime().

■ See "Working with TimesTen result sets: hints and restrictions"
on page 2-11.

ResultSetMetaData ■ The getPrecision() method returns 0 for undefined precision.

■ The getScale() method returns -127 for undefined scale.

RowId ■ RowId support applies only for Java 6 (ttjdbc6.jar).

■ The ROWID data type can be accessed using the RowId interface.

■ Output and input/output rowids can be registered as
Types.ROWID.

■ Metadata methods return Types.ROWID and RowId as applicable.

Statement ■ There are no restrictions.

■ In TimesTen, the cancel() method delegates to the ODBC
function SQLCancel. For details about the TimesTen
implementation of that function, see "Supported ODBC
functions" in Oracle TimesTen In-Memory Database C Developer's
Guide.

■ See "Managing cache groups" on page 2-39 for special TimesTen
functionality of the getUpdateCount() method with cache
groups.

Table 2–1 (Cont.) Supported java.sql interfaces

Interface in java.sql Remarks on TimesTen support

Key JDBC classes and interfaces

2-4 Oracle TimesTen In-Memory Database Java Developer's Guide

Support for classes in the java.sql package
TimesTen supports the following java.sql classes.

■ DataTruncation

■ Date

■ DriverManager

■ DriverPropertyInfo

■ Time

■ Timestamp

■ Types

■ SQLException

■ SQLWarning

Support for interfaces and classes in the javax.sql package
TimesTen supports the following javax.sql interfaces:

■ DataSource is implemented by TimesTenDataSource.

■ PooledConnection is implemented by ObservableConnection.

■ ConnectionPoolDataSource is implemented by ObservableConnectionDS.

■ XADataSource is implemented by TimesTenXADataSource (in package
com.timesten.jdbc.xa).

TimesTen supports the following javax.sql event and listener:

■ When using a PooledConnection instance, you can register a
ConnectionEventListener instance to listen for ConnectionEvent occurrences.

TimesTen JDBC extensions
For most scenarios, you can use standard JDBC functionality as supported by
TimesTen.

TimesTen also provides the following extensions in the com.timesten.jdbc package
for TimesTen-specific features.

Important: The TimesTen JDBC driver itself does not implement a
database connection pool. The ObservableConnection and
ObservableConnectionDS classes simply implement standard Java EE
interfaces, facilitating the creation and management of database
connection pools according to the Java EE standard.

A sample TimesTen connection pool package is shipped as part of the
Quick Start demos. This is located in the following directory:

install_dir/quickstart/sample_code/jdbc/connectionpool

Note: You can register a StatementEventListener instance in
TimesTen; however, StatementEvent instances are not supported.

Key JDBC classes and interfaces

Working with TimesTen Databases in JDBC 2-5

Table 2–2 TimesTen JDBC extensions

Interface Extends Remarks

TimesTenBlob Blob You can cast Blob instances to
TimesTenBlob. This includes
features to indicate whether a
LOB is an Oracle Database
passthrough LOB, free LOB
resources (absent in Java 5.0), and
get a binary stream with position
and length specifications (a
signature absent in Java 5.0).

See "Working with LOBs" on
page 2-28.

TimesTenCallableStatement CallableStatement Supports PL/SQL REF
CURSORs. See "Working with
REF CURSORs" on page 2-24.

Supports associative array binds
with methods to set input
parameters and to register and
get output parameters. See
"Binding associative arrays" on
page 2-20.

TimesTenClob Clob You can cast Clob instances to
TimesTenClob. This includes
features to indicate whether a
LOB is an Oracle Database
passthrough LOB, free LOB
resources (absent in Java 5.0), and
get a character stream with
position and length specifications
(a signature absent in Java 5.0).

See "Working with LOBs" on
page 2-28.

TimesTenConnection Connection Provides capabilities such as
prefetching rows to improve
performance, listening to events
for automatic client failover,
setting the track number for
parallel replication schemes
where you specify replication
tracks, and checking database
validity.

See "Fetching multiple rows of
data" on page 2-12, "General
Client Failover Features" on
page 2-45, "Features for use with
replication" on page 2-39, and
"Check database validity" on
page 2-9.

Supplies factory methods
createBLOB() and createCLOB()
for Java 5.0. (LOB factory
methods are absent in Java 5.0.)
See "Working with LOBs" on
page 2-28.

Managing TimesTen database connections

2-6 Oracle TimesTen In-Memory Database Java Developer's Guide

Additional TimesTen classes and interfaces
In addition to implementations discussed previously, TimesTen provides the
following classes and interfaces in the com.timesten.jdbc package. Features
supported by these classes and interfaces are discussed later in this chapter.

Additional TimesTen Interfaces
■ Use TimesTenTypes for TimesTen type extensions (for REF CURSORs).

■ Use ClientFailoverEventListener (and also the ClientFailoverEvent class
below) for automatic client failover features. See "JDBC support for automatic
client failover" on page 2-44.

■ Use TimesTenVendorCode for vendor codes used in SQL exceptions.

Additional TimesTen Classes
■ Use ClientFailoverEvent (and also the ClientFailoverEventListener interface

above) for automatic client failover features.

Managing TimesTen database connections
The type of DSN you create depends on whether your application connects directly to
the database or connects by a client. If you intend to connect directly to the database,
create a DSN as described in "Creating a Data Manager DSN on UNIX" or "Creating a
Data Manager DSN on Windows" in Oracle TimesTen In-Memory Database Operations
Guide. If you intend to create a client connection to the database, create a DSN as
described in "Creating and configuring client DSNs on Windows" or "Creating and
configuring client DSNs on UNIX" in Oracle TimesTen In-Memory Database Operations
Guide.

After you have created a DSN, your application can connect to the database. This
section describes how to create a JDBC connection to a database using either the JDBC
direct driver or the JDBC client driver.

TimesTenNClob NClob You can cast NClob instances to
TimesTenNClob (Java 6 only). This
includes features to indicate
whether a LOB is an Oracle
Database passthrough LOB.

See "Working with LOBs" on
page 2-28.

TimesTenPreparedStatement PreparedStatement Supports DML returning. See
"Working with DML returning
(RETURNING INTO clause)" on
page 2-25.

Supports associative array binds
with a method to set input
parameters. See "Binding
associative arrays" on page 2-20.

TimesTenStatement Statement Provides capabilities for
specifying a query threshold. See
"Setting a threshold duration for
SQL statements" on page 2-37.

Table 2–2 (Cont.) TimesTen JDBC extensions

Interface Extends Remarks

Managing TimesTen database connections

Working with TimesTen Databases in JDBC 2-7

The operations described in this section are based on the level1 demo. Refer to
"About the TimesTen Java demos" on page 1-2.

This following topics are covered here:

■ Create a connection URL for the database and specify connection attributes

■ Connect to the database

■ Disconnect from the database

■ Open and close a direct connection

■ Access control for connections

Create a connection URL for the database and specify connection attributes
To create a JDBC connection, you must specify a TimesTen connection URL for the
database. The format of a TimesTen connection URL is as follows:

jdbc:timesten:{direct|client}:dsn=DSNname;[DSNattributes;]

The default is direct.

For example, the following creates a direct connection to the sample database:

String URL = "jdbc:timesten:direct:dsn=sampledb_1122";

You can programmatically set or override the connection attributes in the DSN
description by specifying attributes in the connection URL.

Refer to "Connection attributes for Data Manager DSNs or server DSNs" in Oracle
TimesTen In-Memory Database Operations Guide for introductory information about
connection attributes. General connection attributes require no special privilege. First
connection attributes are set when the database is first loaded, and persist for all
connections. Only the instance administrator can load a database with changes to first
connection attribute settings. Refer to "Connection Attributes" in Oracle TimesTen

Note: Loading the TimesTen driver (Java 5.0):

It is recommended that you use Java 6 with TimesTen. If you use Java
5.0, however, you must explicitly load the TimesTen driver so that it is
available for making database connections (otherwise TimesTen
returns an error when the application attempts to connect). This step
is not required with Java 6.

The following are the TimesTen JDBC drivers (for direct and
client/server connections, respectively):

com.timesten.jdbc.TimesTenDriver
com.timesten.jdbc.TimesTenClientDriver

If you are using the DriverManager interface to connect to TimesTen
with Java 5.0, call the Class.forName() method to load the TimesTen
JDBC driver. This method creates an instance of the TimesTen driver
and registers it with the driver manager. If you are using the
TimesTenDataSource interface, you are not required to call
Class.forName().

To identify and load the TimesTen direct driver, for example:

Class.forName("com.timesten.jdbc.TimesTenDriver");

Managing TimesTen database connections

2-8 Oracle TimesTen In-Memory Database Java Developer's Guide

In-Memory Database Reference for specific information about any particular connection
attribute, including required privilege.

For example, to set the LockLevel general connection attribute to 1, create a URL as
follows:

String URL = "jdbc:timesten:direct:dsn=sampledb_1122;LockLevel=1";

Connect to the database
After you have defined a URL, you can use the getConnection() method of either
DriverManager or TimesTenDataSource to connect to the database.

If you use the DriverManager.getConnection() method, specify the driver URL to
connect to the database.

import java.sql.*;
...
Connection conn = DriverManager.getConnection(URL);

To use the TimesTenDataSource method getConnection(), first create a data source.
Then use the TimesTenDataSource method setUrl() to set the URL and
getConnection() to connect:

import com.timesten.jdbc.TimesTenDataSource;
import java.sql.*;
...

TimesTenDataSource ds = new TimesTenDataSource();
ds.setUrl("jdbc:timesten:direct:<dsn>");
Connection conn = ds.getConnection();

The TimesTen user name and password can be set in the DSN within the URL in the
setUrl() call, but there are also TimesTenDataSource methods to set them separately,
as well as to set the Oracle Database password (as applicable):

TimesTenDataSource ds = new TimesTenDataSource();
ds.setUser(myttusername); // User name to log in to TimesTen
ds.setPassword(myttpwd); // Password to log in to TimesTen
ds.setUrl("jdbc:timesten:direct:<dsn>");
ds.setOraclePassword(myorapwd); // Password to log in to Oracle DB
Connection conn = ds.getConnection();

Either the DriverManager.getConnection() method or the ds.getConnection()
method returns a Connection object (conn in this example) that you can use as a
handle to the database. See the level1 demo for an example on how to use the
DriverManager method getConnection(), and the level2 and level3 demos for
examples of using the TimesTenDataSource method getConnection(). Refer to "About
the TimesTen Java demos" on page 1-2.

Disconnect from the database
When you are finished accessing the database, call the Connection method close() to
close the connection to the database.

If an error has occurred, you may want to roll back the transaction before
disconnecting from the database. See "Handling non-fatal errors" on page 2-41 and
"Rolling back failed transactions" on page 2-43 for more information.

Managing TimesTen database connections

Working with TimesTen Databases in JDBC 2-9

Open and close a direct connection
Example 2–1 shows the general framework for an application that uses the
DriverManager class to create a direct connection to the sample database, execute some
SQL, and then close the connection. See the level1 demo for a working example. (See
"About the TimesTen Java demos" on page 1-2 regarding the demos.)

Example 2–1 Connecting, executing SQL, and disconnecting

String URL = "jdbc:timesten:dsn=sampledb_1122";
Connection conn = null;

try {
 Class.forName("com.timesten.jdbc.TimesTenDriver");
} catch (ClassNotFoundException ex) {
 // See "Handling errors" on page 2-40
}

try {
 // Open a connection to TimesTen
 conn = DriverManager.getConnection(URL);

 // Report any SQLWarnings on the connection
 // See "Reporting errors and warnings" on page 2-42

 // Do SQL operations
 // See "Managing TimesTen data" below

 // Close the connection to TimesTen
 conn.close();

// Handle any errors
} catch (SQLException ex) {
 // See "Handling errors" on page 2-40
}

Check database validity
Applications can call the following TimesTenConnection method to detect whether the
database is valid:

boolean isDataStoreValid() throws java.sql.SQLException

It returns true if the database is valid, or false if the database is in an invalid state,
such as due to system or application failure.

Access control for connections
In order for any user (other than the instance administrator) to connect to a database,
the CREATE SESSION privilege must be granted. This is a system privilege so must be
granted to the user by the instance administrator or someone with ADMIN privilege,
either directly or through the PUBLIC role. Refer to "Managing Access Control" in
Oracle TimesTen In-Memory Database Operations Guide for additional information and
examples.

To create a JMS/XLA connection and execute JMS/XLA functionality, a user must be
granted the XLA privilege, discussed in "Access control impact on XLA" on page 3-9, in
addition to the CREATE SESSION privilege.

Managing TimesTen data

2-10 Oracle TimesTen In-Memory Database Java Developer's Guide

Managing TimesTen data
This section provides detailed information on working with data in a TimesTen
database. It includes the following topics:

■ Executing simple SQL statements

■ Working with TimesTen result sets: hints and restrictions

■ Fetching multiple rows of data

■ Binding parameters and executing statements

■ Working with REF CURSORs

■ Working with DML returning (RETURNING INTO clause)

■ Working with rowids

■ Working with LOBs

■ Committing or rolling back changes to the database

■ Managing multiple threads

■ Java escape syntax and SQL functions

Executing simple SQL statements
"Working with Data in a TimesTen Database" in Oracle TimesTen In-Memory Database
Operations Guide describes how to use SQL to manage data. This section describes how
to use the createStatement() method of a Connection instance, and the
executeUpdate() or executeQuery() method of a Statement instance, to execute a
SQL statement within a Java application.

Unless statements are prepared in advance, use the execution methods of a Statement
object, such as execute(), executeUpdate() or executeQuery(), depending on the
nature of the SQL statement and any returned result set.

For SQL statements that are prepared in advance, use the same execution methods of a
PreparedStatement object.

The execute() method returns true if there is a result set (for example, on a SELECT)
or false if there is no result set (for example, on an INSERT, UPDATE, or DELETE). The
executeUpdate() method returns the number of rows affected. For example, when
executing an INSERT statement, the executeUpdate() method returns the number of
rows inserted. The executeQuery() method returns a result set, so it should only be
called when a result set is expected (for example, when executing a SELECT statement).

Notes:

■ See "Working with TimesTen result sets: hints and restrictions" on
page 2-11 for details about what you should know when working
with result sets generated by TimesTen.

■ Access control privileges are checked both when SQL is prepared
and when it is executed in the database. Refer to "Considering
TimesTen features for access control" on page 2-39 for related
information.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-11

Example 2–2 Executing an update

This example uses the executeUpdate() method on the Statement object to execute an
INSERT statement to insert data into the customer table in the current schema. The
connection must have been opened, which is not shown.

Connection conn = null;
Statement stmt = null;
...
// [Code to open connection. See "Connect to the database" on page 2-8...]
...
try {
 stmt = conn.createStatement();
 int numRows = stmt.executeUpdate("insert into customer values"
 + "(40, 'West', 'Big Dish', '123 Signal St.')");
}
catch (SQLException ex) {
 ...
}

Example 2–3 Executing a query

This example uses an executeQuery() call on the Statement object to execute a SELECT
statement on the customer table in the current schema and display the returned
java.sql.ResultSet instance:

Statement stmt = null;
.
try {
 ResultSet rs = stmt.executeQuery("select cust_num, region, " +
 "name, address from customer");
 System.out.println("Fetching result set...");
 while (rs.next()) {
 System.out.println("\n Customer number: " + rs.getInt(1));
 System.out.println(" Region: " + rs.getString(2));
 System.out.println(" Name: " + rs.getString(3));
 System.out.println(" Address: " + rs.getString(4));
 }
 }
catch (SQLException ex) {
 ex.printStackTrace();
}

Working with TimesTen result sets: hints and restrictions
Use ResultSet objects to process query results. In addition, some methods and built-in
procedures return TimesTen data in the form of a ResultSet object. This section
describes what you should know when using ResultSet objects from TimesTen.

■ TimesTen does not support multiple open ResultSet objects per statement.
TimesTen cannot return multiple ResultSet objects from a single Statement object
without first closing the current result set.

Important: In TimesTen, any operation that ends your transaction,
such as a commit or rollback, closes all cursors associated with the
connection.

Managing TimesTen data

2-12 Oracle TimesTen In-Memory Database Java Developer's Guide

■ TimesTen does not support holdable cursors. You cannot specify the holdability of
a result set, essentially whether a cursor can remain open after it has been
committed.

■ ResultSet objects are not scrollable or updatable, so you cannot specify
ResultSet.TYPE_SCROLL_SENSITIVE or ResultSet.CONCUR_UPDATABLE.

■ Use the ResultSet method close() to close a result set as soon as you are done
with it. For performance reasons, this is especially important for result sets used
for both read and update operations and for result sets used in pooled
connections.

■ Calling the ResultSet method getString() is more costly in terms of performance
if the underlying data type is not a string. Because Java strings are immutable,
getString() must allocate space for a new string each time it is called. Do not use
getString() to retrieve primitive numeric types, like byte or int, unless it is
absolutely necessary. For example, it is much faster to call getInt() on an integer
column. Also see "Use the ResultSet method getString() sparingly" on page 5-3.

In addition, for dates and timestamps, the ResultSet native methods getDate()
and getTimestamp() have better performance than getString().

■ Application performance is affected by the choice of getXXX() calls and by any
required data transformations after invocation.

■ JDBC ignores the setting for the ConnectionCharacterSet attribute. It returns data
in UTF-16 encoding.

Fetching multiple rows of data
Fetching multiple rows of data can increase the performance of a client/server
application that connects to a database set with Read Committed isolation level.

You can specify the number of rows to be prefetched as follows.

■ Call the Statement or ResultSet method setFetchSize(). These are the standard
JDBC calls, but the limitation is that they only affect one statement at a time.

■ Call the TimesTenConnection method setTtPrefetchCount(). This enables a
TimesTen extension that establishes prefetch at the connection level so that all of
the statements on the connection use the same prefetch setting.

This section describes the connection-level prefetch implemented in TimesTen.

When you set the prefetch count to 0, TimesTen uses a default prefetch count
according to the isolation level you have set for the database, and sets the prefetch
count to that value. With Read Committed isolation level, the default prefetch value is
5. With Serializable isolation level, the default is 128. The default prefetch value is a
good setting for most applications. Generally, a higher value may result in better
performance for larger result sets, at the expense of slightly higher resource use.

To disable prefetch, set the prefetch count to 1.

Call the TimesTenConnection method getTtPrefetchCount() to check the current
prefetch value.

Note: The TimesTen prefetch count extension provides no benefit for
an application using a direct connection to the database.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-13

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information.

Example 2–4 Setting a prefetch count

The following code uses a setTtPrefetchCount() call to set the prefetch count to 10,
then uses a getTtPrefetchCount() call to return the prefetch count in the count
variable.

TimesTenConnection conn =
 (TimesTenConnection) DriverManager.getConnection(url);

// set prefetch count to 10 for this connection
conn.setTtPrefetchCount(10);

// Return the prefetch count to the 'count' variable.
int count = conn.getTtPrefetchCount();

Binding parameters and executing statements
This sections discusses how to bind input or output parameters for SQL statements.
The following topics are covered.

■ Preparing SQL statements and setting input parameters

■ Working with output and input/output parameters

■ Binding duplicate parameters in SQL statements

■ Binding duplicate parameters in PL/SQL

■ Binding associative arrays

Preparing SQL statements and setting input parameters
SQL statements that are to be executed more than once should be prepared in advance
by calling the Connection method prepareStatement(). For maximum performance,
prepare parameterized statements.

Be aware of the following:

■ The TimesTen binding mechanism (early binding) differs from that of Oracle
Database (late binding). TimesTen requires the data types before preparing
queries. As a result, there will be an error if the data type of each bind parameter is
not specified or cannot be inferred from the SQL statement. This would apply, for
example, to the following statement:

SELECT 'x' FROM DUAL WHERE ? = ?;

You could address the issue as follows, for example.

SELECT 'x' from DUAL WHERE CAST(? as VARCHAR2(10)) = CAST(? as VARCHAR2(10));

Notes:

■ Use the Statement, PreparedStatement, or CallableStatement
method close() to close a statement you have finished using it.

■ The term "bind parameter" as used in TimesTen developer guides
(in keeping with ODBC terminology) is equivalent to the term
"bind variable" as used in TimesTen PL/SQL documents (in
keeping with Oracle Database PL/SQL terminology).

Managing TimesTen data

2-14 Oracle TimesTen In-Memory Database Java Developer's Guide

■ By default (when connection attribute PrivateCommands=0), TimesTen shares
prepared statements between connections, so subsequent prepares of the same
statement on different connections execute very quickly.

■ Application performance is influenced by the choice of setXXX() calls and by any
required data transformations before invocation. For example, for time, dates, and
timestamps, the PreparedStatement native methods setTime(), setDate() and
setTimestamp() have better performance than setString().

■ Access control privileges are checked both when SQL is prepared and when it is
executed in the database. Refer to "Considering TimesTen features for access
control" on page 2-39 for related information.

■ For TT_TINYINT columns, use setShort() or setInt() instead of setByte() to
utilize the full range of TT_TINYINT (0-255).

Example 2–5 Prepared statement for querying

This example shows the basics of an executeQuery() call on a PreparedStatement
object. It executes a prepared SELECT statement and displays the returned result set.

PreparedStatement pSel = conn.prepareStatement("select cust_num, " +
 "region, name, address " +
 "from customer" +
 "where region = ?");
pSel.setInt(1,1);

try {
 ResultSet rs = pSel.executeQuery();

 while (rs.next()) {
 System.out.println("\n Customer number: " + rs.getInt(1));
 System.out.println(" Region: " + rs.getString(2));
 System.out.println(" Name: " + rs.getString(3));
 System.out.println(" Address: " + rs.getString(4));
 }
}
catch (SQLException ex) {
 ex.printStackTrace();
}

Example 2–6 Prepared statement for updating

This example shows how a single parameterized statement can be substituted for four
separate statements.

Rather than execute a similar INSERT statement with different values:

Statement.execute("insert into t1 values (1, 2)");
Statement.execute("insert into t1 values (3, 4)");
Statement.execute("insert into t1 values (5, 6)");
Statement.execute("insert into t1 values (7, 8)");

It is much more efficient to prepare a single parameterized INSERT statement and use
PreparedStatement methods setXXX() to set the row values before each execute.

PreparedStatement pIns = conn.PreparedStatement("insert into t1 values (?,?)");

pIns.setInt(1, 1);
pIns.setInt(2, 2);
pIns.executeUpdate();

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-15

pIns.setInt(1, 3);
pIns.setInt(2, 4);
pIns.executeUpdate();

pIns.setInt(1, 5);
pIns.setInt(2, 6);
pIns.executeUpdate();

pIns.setInt(1, 7);
pIns.setInt(2, 8);
pIns.executeUpdate();

conn.commit();
pIns.close();

TimesTen shares prepared statements automatically after they have been committed.
For example, if two or more separate connections to the database each prepare the
same statement, then the second, third, ... , nth prepared statements return very
quickly because TimesTen remembers the first prepared statement.

Example 2–7 Prepared statements for updating and querying

This example prepares INSERT and SELECT statements, executes the INSERT twice,
executes the SELECT, and prints the returned result set. For a working example, see the
level1 demo. (Refer to "About the TimesTen Java demos" on page 1-2 regarding the
demos.)

Connection conn = null;
...
// [Code to open connection. See "Connect to the database" on page 2-8...]
...

// Disable auto-commit
conn.setAutoCommit(false);

 // Report any SQLWarnings on the connection
 // See "Reporting errors and warnings" on page 2-42

// Prepare a parameterized INSERT and a SELECT Statement
PreparedStatement pIns =
 conn.prepareStatement("insert into customer values (?,?,?,?)");

PreparedStatement pSel = conn.prepareStatement
 ("select cust_num, region, name, " +
 "address from customer");

// Data for first INSERT statement
pIns.setInt(1, 100);
pIns.setString(2, "N");
pIns.setString(3, "Fiberifics");
pIns.setString(4, "123 any street");

// Execute the INSERT statement
pIns.executeUpdate();

// Data for second INSERT statement
pIns.setInt(1, 101);
pIns.setString(2, "N");
pIns.setString(3, "Natural Foods Co.");

Managing TimesTen data

2-16 Oracle TimesTen In-Memory Database Java Developer's Guide

pIns.setString(4, "5150 Johnson Rd");

// Execute the INSERT statement
pIns.executeUpdate();

// Commit the inserts
conn.commit();

// Done with INSERTs, so close the prepared statement
pIns.close();

// Report any SQLWarnings on the connection.
reportSQLWarnings(conn.getWarnings());

// Execute the prepared SELECT statement
ResultSet rs = pSel.executeQuery();

System.out.println("Fetching result set...");
while (rs.next()) {
 System.out.println("\n Customer number: " + rs.getInt(1));
 System.out.println(" Region: " + rs.getString(2));
 System.out.println(" Name: " + rs.getString(3));
 System.out.println(" Address: " + rs.getString(4));
}

// Close the result set.
rs.close();

// Commit the select - yes selects must be committed too
conn.commit();

// Close the select statement - we're done with it
pSel.close();

Example 2–8 Prepared statements for multiple connections

This example, prepares three identical parameterized INSERT statements for three
separate connections. The first prepared INSERT for connection conn1 is shared (inside
the TimesTen internal prepared statement cache) with the conn2 and conn3
connections, speeding up the prepare operations for pIns2 and pIns3:

Connection conn1 = null;
Connection conn2 = null;
Connection conn3 = null;
.....
PreparedStatement pIns1 = conn1.prepareStatement
 ("insert into t1 values (?,?)");

PreparedStatement pIns2 = conn2.prepareStatement
 ("insert into t1 values (?,?)");

PreparedStatement pIns3 = conn3.prepareStatement
 ("insert into t1 values (?,?)");

Note: All optimizer hints, such as join ordering, indexes and locks,
must match for the statement to be shared in the internal TimesTen
prepared statement cache. Also, if the prepared statement references a
temp table, it is only shared within a single connection.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-17

Working with output and input/output parameters
"Preparing SQL statements and setting input parameters" on page 2-13 shows how to
prepare a statement and set input parameters using PreparedStatement methods.
TimesTen also supports output and input/output parameters, for which you use
java.sql.CallableStatement instead of PreparedStatement, as follows.

1. Use the method registerOutParameter() to register an output or input/output
parameter, specifying the parameter position (position in the statement) and data
type.

This is the standard method as specified in the CallableStatement interface:

void registerOutParameter(int parameterIndex, int sqlType, int scale)

Be aware, however, that if you use this standard version for CHAR, VARCHAR, NCHAR,
NVARCHAR, BINARY, or VARBINARY data, TimesTen allocates memory to hold the
largest possible value. In many cases this is wasteful.

Instead, you can use the TimesTen extended interface
TimesTenCallableStatement, which has a registerOutParameter() signature that
enables you to specify the maximum data length. For CHAR, VARCHAR, NCHAR, and
NVARCHAR, the unit of length is number of characters. For BINARY and VARBINARY, it
is bytes.

void registerOutParameter(int paramIndex,
 int sqlType,
 int ignore, //This parameter is ignored by TimesTen.
 int maxLength)

2. Use the appropriate CallableStatement method setXXX(), where XXX indicates
the data type, to set the input value of an input/output parameter. Specify the
parameter position and data value.

3. Use the appropriate CallableStatement method getXXX() to get the output value
of an output or input/output parameter, specifying the parameter position.

Example 2–9 Using an output parameter in a callable statement

This example shows how to use a callable statement with an output parameter. In the
TimesTenCallableStatement instance, a PL/SQL block calls a function RAISE_SALARY
that calculates a new salary and returns it as an integer. Assume a Connection instance

Important: Check for SQL warnings before processing output
parameters. In the event of a warning, output parameters are
undefined. See "Handling errors" on page 2-40 for general information
about errors and warnings.

Notes: In TimesTen:

■ You cannot pass parameters to a CallableStatement object by
name. You must set parameters by position. You cannot use the
SQL escape syntax.

■ The registerOutParameter() signatures specifying the parameter
by name are not supported. You must specify the parameter by
position.

■ SQL structured types are not supported.

Managing TimesTen data

2-18 Oracle TimesTen In-Memory Database Java Developer's Guide

conn. (Refer to Oracle TimesTen In-Memory Database PL/SQL Developer's Guide for
information about PL/SQL.)

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.Types;
import com.timesten.jdbc.TimesTenCallableStatement;
...
// Prepare to call a PL/SQL stored procedure RAISE_SALARY
CallableStatement cstmt = conn.prepareCall
 ("BEGIN :newSalary := RAISE_SALARY(:name, :inc); end;");

// Declare that the first param (newSalary) is a return (output) value of type int
cstmt.registerOutParameter(1, Types.INTEGER);

// Raise Leslie's salary by $2000 (she wanted $3000 but we held firm)
cstmt.setString(2, "LESLIE"); // name argument (type String) is the second param
cstmt.setInt(3, 2000); // raise argument (type int) is the third param

// Do the raise
cstmt.execute();

// Check warnings. If there are warnings, output parameter values are undefined.
SQLWarning wn;
boolean warningFlag = false;
if ((wn = cstmt.getWarnings()) != null) {
 do {
 warningFlag = true;
 System.out.println(wn);
 wn = wn.getNextWarning();
 } while(wn != null);
}

// Get the new salary back
if (!warningFlag) {
 int new_salary = cstmt.getInt(1);
 System.out.println("The new salary is: " + new_salary);
}

// Close the statement and connection
cstmt.close();
conn.close();
...

Binding duplicate parameters in SQL statements
TimesTen supports two distinct modes for binding duplicate parameters in a SQL
statement:

■ Oracle mode: Multiple occurrences of the same parameter name are considered to
be distinct parameters.

■ Traditional TimesTen mode, as in earlier releases: Multiple occurrences of the
same parameter name are considered to be multiple occurrences of the same
parameter.

You can choose the desired mode through the DuplicateBindMode TimesTen general
connection attribute. DuplicateBindMode=0 (the default) is for the Oracle mode, and
DuplicateBindMode=1 is for the TimesTen mode. Because this is a general connection
attribute, different connections to the same database can use different values. Refer to

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-19

"DuplicateBindMode" in Oracle TimesTen In-Memory Database Reference for additional
information about this attribute.

The rest of this section provides details for each mode, considering the following
query:

SELECT * FROM employees
 WHERE employee_id < :a AND manager_id > :a AND salary < :b;

Oracle mode for duplicate parameters In the Oracle mode, where DuplicateBindMode=0,
multiple occurrences of the same parameter name in a SQL statement are considered
to be different parameters. When parameter position numbers are assigned, a number
is given to each parameter occurrence without regard to name duplication. The
application must, at a minimum, bind a value for the first occurrence of each
parameter name. For any subsequent occurrence of a given parameter name, the
application has the following choices.

■ It can bind a different value for the occurrence.

■ It can leave the parameter occurrence unbound, in which case it takes the same
value as the first occurrence.

In either case, each occurrence still has a distinct parameter position number.

To use a different value for the second occurrence of a in the SQL statement above:

pstmt.setXXX(1, ...); /* first occurrence of :a */
pstmt.setXXX(2, ...); /* second occurrence of :a */
pstmt.setXXX(3, ...); /* occurrence of :b */

To use the same value for both occurrences of a:

pstmt.setXXX(1, ...); /* both occurrences of :a */
pstmt.setXXX(3, ...); /* occurrence of :b */

Parameter b is considered to be in position 3 regardless.

TimesTen mode for duplicate parameters In the TimesTen mode, where
DuplicateBindMode=1, SQL statements containing duplicate parameters are parsed
such that only distinct parameter names are considered as separate parameters. The
application binds a value only for each unique parameter, and no unique parameter
can be left unbound.

Binding is based on the position of the first occurrence of a parameter name.
Subsequent occurrences of the parameter name are bound to the same value, and are
not given parameter position numbers.

For the SQL statement above, the two occurrences of a are considered to be a single
parameter, so cannot be bound separately:

pstmt.setXXX(1, ...); /* both occurrences of :a */
pstmt.setXXX(2, ...); /* occurrence of :b */

Note that in the TimesTen mode, parameter b is considered to be in position 2, not
position 3.

Note: This discussion applies only to SQL statements issued directly
from JDBC (not through PL/SQL, for example).

Managing TimesTen data

2-20 Oracle TimesTen In-Memory Database Java Developer's Guide

Binding duplicate parameters in PL/SQL
The preceding discussion does not apply to PL/SQL, which has its own semantics. In
PL/SQL, you bind a value for each unique parameter name. An application executing
the following block, for example, would bind only one parameter, corresponding to
:a.

DECLARE
 x NUMBER;
 y NUMBER;
BEGIN
 x:=:a;
 y:=:a;
END;

An application executing the following block would also bind only one parameter:

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);
END

And the same for the following CALL statement:

...CALL proc(:a, :a)...

An application executing the following block would bind two parameters, with :a as
parameter #1 and :b as parameter #2. The second parameter in each INSERT statement
would take the same value as the first parameter in the first INSERT statement, as
follows.

BEGIN
 INSERT INTO tab1 VALUES(:a, :a);
 INSERT INTO tab1 VALUES(:b, :a);
END

Binding associative arrays
TimesTen JDBC supports associative arrays, formerly known as index-by tables or
PL/SQL tables, as IN, OUT, or IN OUT bind parameters to TimesTen PL/SQL.
Associative arrays enable arrays of data to be passed efficiently between a JDBC
application and the database.

An associative array is a set of key-value pairs. In TimesTen, for associative array
binding (but not for use of associative arrays only within PL/SQL), the keys, or
indexes, must be integers (BINARY_INTEGER or PLS_INTEGER). The values must be
simple scalar values of the same data type. For example, there could be an array of
department managers indexed by department numbers. Indexes are stored in sort
order, not creation order.

You can declare an associative array type and then an associative array from PL/SQL
as in the following example (note the INDEX BY):

declare
 TYPE VARCHARARRTYP IS TABLE OF VARCHAR2(30) INDEX BY BINARY_INTEGER;
 x VARCHARARRTYP;
 ...

Also see "Using associative arrays from applications" in Oracle TimesTen In-Memory
Database PL/SQL Developer's Guide.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-21

When you bind an associative array in Java, match the Java type as closely as possible
with the array type for optimal performance. TimesTen does, however, support some
simple input conversions:

■ Strings can be converted to integers or floating point numbers.

■ Strings can be converted to DATE data if the strings are in TimesTen DATE format
(YYYY-MM-DD HH:MI:SS).

TimesTen provides extensions, described below, through the interfaces
TimesTenPreparedStatement and TimesTenCallableStatement to support associative
array binds. Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API
Reference for additional information about any of the methods described here.

For an associative array that is a PL/SQL IN or IN OUT parameter, TimesTen provides
the setPlsqlIndexTable() method in the TimesTenPreparedStatement interface (for
an IN parameter) and in the TimesTenCallableStatement interface (for an IN OUT
parameter) to set the input associative array.

■ void setPlsqlIndexTable(int paramIndex, java.lang.Object arrayData, int
maxLen, int curLen, int elemSqlType, int elemMaxLen)

Specify the following:

– paramIndex: Parameter position within the PL/SQL statement (starting with 1)

– arrayData: Array of values to be bound (which can be an array of primitive
types such as int[] or an array of object types such as BigDecimal[])

– maxLen: Maximum number of elements in the associative array (in TimesTen
must be same as curLen)

– curLen: Actual current number of elements in the associative array (in
TimesTen must be same as maxLen)

– elemSqlType: Type of the associative array elements according to
java.sql.Types (such as Types.DOUBLE)

– elemMaxLen: For CHAR, VARCHAR, BINARY, or VARBINARY associative arrays, the
maximum length of each element (in characters for CHAR or VARCHAR
associative arrays, or in bytes for BINARY or VARBINARY associative arrays)

For example (assuming a TimesTenPreparedStatement instance pstmt):

int maxLen = 3;
int curLen = 3;
// Numeric field can be set with int, float, double types.

Notes: Note the following restrictions in TimesTen:

■ The following types are not supported in binding associative
arrays: LOBs, REF CURSORs, TIMESTAMP, ROWID.

■ Associative array binding is not allowed in passthrough
statements.

■ General bulk binding of arrays is not supported in TimesTen
JDBC. Varrays and nested tables are not supported as bind
parameters.

■ Associative array parameters are not supported with JDBC batch
execution. (See "Use arrays of parameters for batch execution" on
page 5-2.)

Managing TimesTen data

2-22 Oracle TimesTen In-Memory Database Java Developer's Guide

// elemMaxLen is set to 0 for numeric types and is ignored.
// elemMaxLen is specified for VARCHAR types.
pstmt.setPlsqlIndexTable
 (1, new int[]{4, 5, 6}, maxLen, curLen, Types.NUMERIC, 0);
pstmt.setPlsqlIndexTable
 (2, new String[]{"Batch1234567890", "2", "3"}, maxLen, curLen,
 Types.VARCHAR, 15);
pstmt.execute();

For an associative array that is a PL/SQL OUT or IN OUT parameter, TimesTen provides
two methods in the TimesTenCallableStatement interface:
registerIndexTableOutParameter() to register an output associative array, and
getPlsqlIndexTable() to retrieve an output associative array. There are two
signatures for getPlsqlIndexTable(), one to use the JDBC default Java object type
given the associative array element SQL type, and one to specify the type.

■ void registerIndexTableOutParameter(int paramIndex, int maxLen, int
elemSqlType, int elemMaxLen)

Specify the following:

– paramIndex: Parameter position within the PL/SQL statement (starting with 1)

– maxLen: Maximum possible number of elements in the associative array

– elemSqlType: Type of the associative array elements according to
java.sql.Types (such as Types.DOUBLE)

– elemMaxLen: For CHAR, VARCHAR, BINARY, or VARBINARY associative arrays, the
maximum length of each element (in characters for CHAR or VARCHAR
associative arrays, or in bytes for BINARY or VARBINARY associative arrays)

■ java.lang.Object getPlsqlIndexTable(int paramIndex)

With this method signature, the type of the returned associative array is the JDBC
default mapping for the SQL type of the data retrieved. Specify the parameter
position within the PL/SQL statement (starting with 1). See Table 2–3 for the
default mappings.

■ java.lang.Object getPlsqlIndexTable(int paramIndex, java.lang.Class
primitiveType)

Notes:

■ The elemMaxLen parameter is ignored for types other than CHAR,
VARCHAR, BINARY, or VARBINARY. For any of those types, you can
use a value of 0 to instruct the driver to set the maximum length
of each element based on the actual length of data that is bound. If
elemMaxLen is set to a positive value, then wherever the actual
data length is greater than elemMaxLen, the data is truncated to a
length of elemMaxLen.

■ If curLen is smaller than the actual number of elements in the
associative array, only curLen elements are bound.

Note: If elemMaxLen has a value of 0 or less, the maximum length for
the data type is used.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-23

With this method signature, in addition to specifying the parameter position,
specify the desired type of the returned associative array according to
java.sql.Types (such as Types.DOUBLE). It must be a primitive type.

The following code fragment illustrates how to set, register, and retrieve the contents
of an IN OUT parameter (assuming a connection conn and
TimesTenCallableStatement instance cstmt):

int maxLen = 3;
int curLen = 3;
anonBlock = "begin AssocArrayEx_inoutproc(:o1); end;";
cstmt = (TimesTenCallableStatement) conn.prepareCall(anonBlock);
cstmt.setPlsqlIndexTable
 (1, new Integer[] {1,2,3}, maxLen, curLen, Types.NUMERIC, 0);
cstmt.registerIndexTableOutParameter(1, maxLen, Types.NUMERIC, 0);
cstmt.execute();

int[] ret = (int [])cstmt.getPlsqlIndexTable(1, Integer.TYPE);
cstmt.execute();

Example 2–10 Binding an associative array

This is a more complete example showing the mechanism for binding an associative
array.

 TimesTenCallableStatement cstmt = null;
 try {
 // Prepare procedure with associative array in parameter
 cstmt = (TimesTenCallableStatement)
 conn.prepareCall("begin AssociativeArray_proc(:name, :inc); end;");

 // Set up input array and length
 String[] name = {"George", "John", "Thomas", "James", "Bill"};
 Integer[] salaryInc = {10000, null, 5000, 8000, 9007};
 int currentLen = name.length;
 int maxLen = currentLen;

 // Use elemMaxLen for variable length data types such as
 // Types.VARCHAR, Types.CHAR.
 int elemMaxLen = 32;

 // set input parameter, name as a VARCHAR
 cstmt.setPlsqlIndexTable
 (1, name, maxLen, currentLen, Types.VARCHAR, elemMaxLen);
 // set input parameter, salaryInc as a number

Table 2–3 JDBC default mappings for associative array elements

Return type SQL type

Integer[] TINYINT, SMALLINT, TT_INTEGER

Long[] BIGINT

BigDecimal[] NUMBER

Float[] BINARY_FLOAT

Double[] BINARY_DOUBLE

String[] CHAR, VARCHAR, NCHAR, NVARCHAR

Timestamp[] DATE

Managing TimesTen data

2-24 Oracle TimesTen In-Memory Database Java Developer's Guide

 cstmt.setPlsqlIndexTable
 (2, salaryInc, maxLen, currentLen, Types.NUMERIC, 0);

Working with REF CURSORs
REF CURSOR is a PL/SQL concept, a handle to a cursor over a SQL result set that can
be passed between PL/SQL and an application. In TimesTen, the cursor can be opened
in PL/SQL, then the REF CURSOR can be passed to the application for processing of
the result set.

An application can receive a REF CURSOR OUT parameter as follows:

1. Register the REF CURSOR OUT parameter as type TimesTenTypes.CURSOR (a
TimesTen type extension), also specifying the parameter position of the REF
CURSOR (position in the statement).

2. Retrieve the REF CURSOR using the getCursor() method defined by the
TimesTenCallableStatement interface (a TimesTen JDBC extension), specifying
the parameter position of the REF CURSOR. The getCursor() method is used like
other getXXX() methods and returns a ResultSet instance.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information about these APIs. See "PL/SQL REF CURSORs" in Oracle
TimesTen In-Memory Database PL/SQL Developer's Guide for additional information
about REF CURSORs.

The following example demonstrates this usage.

Example 2–11 Using a REF CURSOR

This example shows how to use a callable statement with a REF CURSOR. In the
CallableStatement instance, a PL/SQL block opens a cursor and executes a query.
The TimesTenCallableStatement method getCursor() is used to return the cursor,
which is registered as TimesTenTypes.CURSOR.

import java.sql.CallableStatement;
import java.sql.Connection;
import java.sql.ResultSet;
import com.timesten.jdbc.TimesTenCallableStatement;
import com.timesten.jdbc.TimesTenTypes;
...
Connection conn = null;
CallableStatement cstmt = null;
ResultSet cursor;
...
// Use a PL/SQL block to open the cursor.
cstmt = conn.prepareCall
 (" begin open :x for select tblname,tblowner from tables; end;");
cstmt.registerOutParameter(1, TimesTenTypes.CURSOR);
cstmt.execute();
cursor = ((TimesTenCallableStatement)cstmt).getCursor(1);

// Use the cursor as you would any other ResultSet object.
while(cursor.next()){

Important: For passing REF CURSORs between PL/SQL and an
application, TimesTen supports only OUT REF CURSORs, from
PL/SQL to the application, and supports a statement returning only a
single REF CURSOR.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-25

 System.out.println(cursor.getString(1));
}

// Close the cursor, statement, and connection.
cursor.close();
cstmt.close();
conn.close();
...

Working with DML returning (RETURNING INTO clause)
You can use a RETURNING INTO clause, referred to as DML returning, with an
INSERT, UPDATE, or DELETE statement to return specified items from a row that was
affected by the action. This eliminates the need for a subsequent SELECT statement and
separate round trip, in case, for example, you want to confirm what was affected by
the action.

With TimesTen, DML returning is limited to returning items from a single-row
operation. The clause returns the items into a list of output parameters.

TimesTenPreparedStatement, an extension of the standard PreparedStatement
interface, supports DML returning. Use the TimesTenPreparedStatement method
registerReturnParameter() to register the return parameters.

void registerReturnParameter(int paramIndex, int sqlType)

As with the registerOutParameter() method discussed in "Working with output and
input/output parameters" on page 2-17, this method has a signature that enables you
to optionally specify a maximum size for CHAR, VARCHAR, NCHAR, NVARCHAR, BINARY, or
VARBINARY data. This avoids possible inefficiency where TimesTen would otherwise
allocate memory to hold the largest possible value. For CHAR, VARCHAR, NCHAR, and
NVARCHAR, the unit of size is number of characters. For BINARY and VARBINARY, it is
bytes.

void registerReturnParameter(int paramIndex, int sqlType, int maxSize)

Use the TimesTenPreparedStatement method getReturnResultSet() to retrieve the
return parameters, returning a ResultSet instance.

Be aware of the following restrictions when using RETURNING INTO in TimesTen JDBC.

■ The getReturnResultSet() method must not be invoked more than once.
Otherwise, the behavior is indeterminate.

■ ResultSetMetaData is not supported for the result set returned by
getReturnResultSet().

■ Streaming methods such as getCharacterStream() are not supported for the
result set returned by getReturnResultSet().

■ There is no batch support for DML returning.

Note: If you are evaluating the callable statement with different
parameter values in a loop, close the cursor each time at the end of the
loop. The typical use case is to prepare the statement, then, in the
loop, set parameters, execute the statement, process the cursor, and
close the cursor.

Managing TimesTen data

2-26 Oracle TimesTen In-Memory Database Java Developer's Guide

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information about the TimesTen JDBC classes, interfaces, and methods
discussed here.

SQL syntax and restrictions for the RETURNING INTO clause in TimesTen are
documented as part of the "INSERT", "UPDATE", and "DELETE" documentation in
Oracle TimesTen In-Memory Database SQL Reference.

Refer to "RETURNING INTO Clause" in Oracle Database PL/SQL Language Reference for
general information about DML returning.

Example 2–12 DML returning

This example shows how to use DML returning with a TimesTenPreparedStatement
instance, returning the name and age for a row that is inserted.

 import java.sql.ResultSet;
 import java.sql.SQLException;
 import java.sql.SQLWarning;
 import java.sql.Types;
 import com.timesten.jdbc.TimesTenPreparedStatement;

 Connection conn = null;
 ...

 // Insert into a table and return results
 TimesTenPreparedStatement pstmt =
 (TimesTenPreparedStatement)conn.prepareStatement
 ("insert into tab1 values(?,?) returning name, age into ?,?");

 // Populate table
 pstmt.setString(1,"John Doe");
 pstmt.setInt(2, 65);

 /* register returned parameter
 * in this case the maximum size of name is 100 chars
 */
 pstmt.registerReturnParameter(3, Types.VARCHAR, 100);
 pstmt.registerReturnParameter(4, Types.INTEGER);

 // process the DML returning statement
 int count = pstmt.executeUpdate();

 /* Check warnings; if there are warnings, values of DML RETURNING INTO
 parameters are undefined. */
 SQLWarning wn;
 boolean warningFlag = false;
 if ((wn = pstmt.getWarnings()) != null) {
 do {
 warningFlag = true;
 System.out.println(wn);
 wn = wn.getNextWarning();
 } while(wn != null);
 }

Important: Check for SQL warnings after executing the TimesTen
prepared statement. In the event of a warning, output parameters are
undefined. See "Handling errors" on page 2-40 for general information
about errors and warnings.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-27

 if (!warningFlag) {
 if (count>0)
 {
 ResultSet rset = pstmt.getReturnResultSet(); //rset not null, not empty
 while(rset.next())
 {
 String name = rset.getString(1);
 int age = rset.getInt(2);
 System.out.println("Name " + name + " age " + age);
 }
 }
 }

Working with rowids
Each row in a table has a unique identifier known as its rowid. An application can
retrieve the rowid of a row from the ROWID pseudocolumn. A rowid value can be
represented in either binary or character format, with the binary format taking 12
bytes and the character format 18 bytes.

For Java 6, TimesTen supports the java.sql.RowId interface and Types.ROWID type.

You can use any of the following ResultSet methods to retrieve a rowid:

■ byte[] getBytes(int columnIndex)

■ String getString(int columnIndex)

■ Object getObject(int columnIndex)

Returns a String object in Java 5.0. Returns a RowId object in Java 6.

You can use any of the following PreparedStatement methods to set a rowid:

■ setBytes(int parameterIndex, byte[] x)

■ setString(int parameterIndex, String x)

■ setRowId(int parameterIndex, RowId x) (Java 6 only)

■ setObject(int parameterIndex, Object x)

Takes a String object in Java 5.0. Takes a String or RowId object in Java 6.

An application can specify literal rowid values in SQL statements, such as in WHERE
clauses, as CHAR constants enclosed in single quotes.

Refer to "ROWID data type" and "ROWID" in Oracle TimesTen In-Memory Database SQL
Reference for additional information about rowids and the ROWID data type, including
usage and lifecycle.

Note: You cannot use getBytes() or setBytes() for ROWID
parameters that are PL/SQL parameters or passthrough parameters
(parameters passed to Oracle Database when using the TimesTen
Application-Tier Database Cache). Use getString() and setString(),
or use getObject() and setObject() with a RowId object (Java 6 only)
or String object.

Note: TimesTen does not support the PL/SQL type UROWID.

Managing TimesTen data

2-28 Oracle TimesTen In-Memory Database Java Developer's Guide

Working with LOBs
TimesTen supports LOBs (large objects), specifically CLOBs (character LOBs),
NCLOBs (national character LOBs, Java 6 only), and BLOBs (binary LOBs).

This section provides a brief overview of LOBs and discusses their use in JDBC,
covering the following topics:

■ About LOBs

■ LOB objects in JDBC

■ Differences between TimesTen LOBs and Oracle Database LOBs

■ LOB factory methods

■ LOB getter and setter methods

■ TimesTen LOB interface methods

■ LOB prefetching

■ Passthrough LOBs

You can also refer to the following.

■ "LOB data types" in Oracle TimesTen In-Memory Database SQL Reference for
additional information about LOBs in TimesTen

■ Oracle Database SecureFiles and Large Objects Developer's Guide for general
information about programming with LOBs (but not specific to TimesTen
functionality)

About LOBs
A LOB is a large binary object (BLOB) or character object (CLOB or NCLOB). In
TimesTen, a BLOB can be up to 16 MB in size and a CLOB or NCLOB up to 4 MB.
LOBs in TimesTen have essentially the same functionality as in Oracle Database,
except as noted otherwise. (See "Differences between TimesTen LOBs and Oracle
Database LOBs" on page 2-29.)

LOBs may be either persistent or temporary. A persistent LOB exists in a LOB column
in the database. A temporary LOB exists only within an application. There are also
circumstances where a temporary LOB is created implicitly by TimesTen. For example,
if a SELECT statement selects a LOB concatenated with an additional string of
characters, TimesTen creates a temporary LOB to contain the concatenated data.

LOB objects in JDBC
In JDBC, a LOB object—Blob, Clob, or NClob instance—is implemented using a SQL
LOB locator (BLOB, CLOB, or NCLOB), which means that a LOB object contains a logical
pointer to the LOB data rather than the data itself.

Notes:

■ TimesTen does not support CLOBs if the database character set is
TIMESTEN8.

■ This section discusses LOB support in both Java 5.0 and Java 6. It
is recommended, however, that you use Java 6 with TimesTen.
This is a more standard and complete implementation. In
particular, Java 5.0 does not support NCLOBs.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-29

An application can use the JDBC API to instantiate a temporary LOB explicitly, for use
within the application, then to free the LOB when done with it. Temporary LOBs are
stored in the TimesTen temporary data region.

To update a persistent LOB, your transaction must have an exclusive lock on the row
containing the LOB. You can accomplish this by selecting the LOB with a SELECT ...
FOR UPDATE statement. This results in a writable locator. With a simple SELECT
statement, the locator is read-only. Read-only and writable locators behave as follows:

■ A read-only locator is read consistent, meaning that throughout its lifetime, it sees
only the contents of the LOB as of the time it was selected. Note that this would
include any uncommitted updates made to the LOB within the same transaction
prior to when the LOB was selected.

■ A writable locator is updated with the latest data from the database each time a
write is made through the locator. So each write is made to the most current data
of the LOB, including updates that have been made through other locators.

The following example details behavior for two writable locators for the same LOB.

1. The LOB column contains "XY".

2. Select locator L1 for update.

3. Select locator L2 for update.

4. Write "Z" through L1 at offset 1.

5. Read through locator L1. This would return "ZY".

6. Read through locator L2. This would return "XY", because L2 remains
read-consistent until it is used for a write.

7. Write "W" through L2 at offset 2.

8. Read through locator L2. This would return "ZW". Prior to the write in the
preceding step, the locator was updated with the latest data ("ZY").

Differences between TimesTen LOBs and Oracle Database LOBs
Be aware of the following:

■ A key difference between the TimesTen LOB implementation and the Oracle
Database implementation is that in TimesTen, LOB objects do not remain valid
past the end of the transaction. All LOB objects are invalidated after a commit or
rollback, whether explicit or implicit. This includes after any autocommit, or after
any DDL statement if TimesTen DDLCommitBehavior is set to 0 (the default), for
Oracle Database behavior.

Important:

■ Because LOB objects do not remain valid past the end of the
transaction in TimesTen, it is not feasible to use them with
autocommit enabled. You would receive errors about LOBs being
invalidated.

■ LOB manipulations through APIs that use LOB locators result in
usage of TimesTen temporary space. Any significant number of
such manipulations may necessitate a size increase for the
TimesTen temporary data region. See "TempSize" in Oracle
TimesTen In-Memory Database Reference.

Managing TimesTen data

2-30 Oracle TimesTen In-Memory Database Java Developer's Guide

■ TimesTen does not support BFILEs, SecureFiles, reads and writes for arrays of
LOBs, or callback functions for LOBs.

■ TimesTen does not support binding associative arrays of LOBs.

■ TimesTen does not support batch processing of LOBs.

■ Relevant to BLOBs, there are differences in the usage of hexadecimal literals in
TimesTen. see the description of HexadecimalLiteral in "Constants" in Oracle
TimesTen In-Memory Database SQL Reference.

LOB factory methods
TimesTen supports the standard Java 6 Connection methods createBlob(),
createClob(), and createNClob().

For a Java 5.0 environment (not recommended), where there are no standard LOB
factory methods, the following are specified by the TimesTen extension
TimesTenConnection interface.

■ createBLOB()

■ createCLOB()

Java 5.0 does not support NCLOBs.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information.

LOB getter and setter methods
You can access LOBs through getter and setter methods that are defined by the
standard java.sql.ResultSet, PreparedStatement, and CallableStatement
interfaces, just as they are for other data types. Use the appropriate getXXX() method
to retrieve a LOB result or output parameter or setXXX() method to bind a LOB input
parameter:

■ ResultSet getter methods: There are getBlob() methods, getClob() methods,
and getNClob() methods (Java 6 only) where you can specify the LOB to retrieve
according to either column name or column index.

You can also use getObject() to retrieve a Blob, Clob, or NClob (Java 6 only)
object.

■ PreparedStatement setter methods: There is a setBlob() method, setClob()
method, and setNClob() method (Java 6 only) where you can input the Blob,
Clob, or NClob instance and the parameter index to bind an input parameter.

You can also use setObject() to bind a Blob, Clob, or NClob input parameter.

There are also setBlob() methods where instead of a Blob instance, you specify
an InputStream instance, or an InputStream instance and length.

There are setClob() and setNClob() methods where instead of a Clob or NClob
instance, you specify a Reader instance, or a Reader instance and length.

■ CallableStatement getter methods: There are getBlob() methods, getClob()
methods, and getNClob() methods (Java 6 only) where you can retrieve the LOB
output parameter according to either parameter name or parameter index.

Important: In TimesTen, creation of a LOB object results in creation
of a database transaction if one is not already in progress. You must
execute a commit or rollback to close the transaction.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-31

You can also use getObject() to retrieve a Blob, Clob, or NClob (Java 6 only)
output parameter.

You must also register an output parameter from a CallableStatement object. The
registerOutParameter() method takes the parameter index along with the SQL
type: Types.BLOB, Types.CLOB, or Types.NCLOB.

■ CallableStatement setter methods: These are identical to (inherited from)
PreparedStatement setter methods.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information.

TimesTen LOB interface methods
You can cast a Blob instance to com.timesten.jdbc.TimesTenBlob, a Clob instance to
com.timesten.jdbc.TimesTenClob, and an NClob instance to
com.timesten.jdbc.TimesTenNClob. These interfaces support methods specified by
the java.sql.Blob, Clob, and NClob interfaces.

The following list summarizes Blob features.

■ The isPassthrough() method, a TimesTen extension, indicates whether the BLOB
is a passthrough LOB from Oracle Database.

■ Free Blob resources when the application is done with it.

Note: The free() method does not exist in Java 5.0 but is provided as a TimesTen
extension. It is standard in Java 6.

■ Retrieve the BLOB value as a binary stream. There are methods to retrieve it in
whole or in part.

Note: The getBinaryStream(pos,length) signature does not exist in Java 5.0 but
is provided as a TimesTen extension. It is standard in Java 6.

■ Retrieve all or part of the BLOB value as a byte array.

■ Return the number of bytes in the BLOB.

■ Retrieve a stream to be used to write binary data to the BLOB, beginning at the
specified position. This overwrites existing data.

■ Specify an array of bytes to write to the BLOB, beginning at the specified position,
and return the number of bytes written. This overwrites existing data. There are
methods to write either all or part of the array.

■ Truncate the BLOB to the specified length.

The following list summarizes Clob and NClob (Java 6 only) features.

■ The isPassthrough() method, a TimesTen extension, indicates whether the CLOB
or NCLOB is a passthrough LOB from Oracle Database.

■ Free Clob or NClob resources when the application is done with it.

Note: The free() method does not exist in Java 5.0 but is provided as a TimesTen
extension. It is standard in Java 6.

■ Retrieve the CLOB or NCLOB as an ASCII stream.

Note: The getCharacterStream(pos,length) signature does not exist in Java 5.0
but is provided as a TimesTen extension. It is standard in Java 6.

■ Retrieve the CLOB or NCLOB as a java.io.Reader object (or as a stream of
characters). There are methods to retrieve it in whole or in part.

Managing TimesTen data

2-32 Oracle TimesTen In-Memory Database Java Developer's Guide

■ Retrieve a copy of the specified substring in the CLOB or NCLOB, beginning at the
specified position for up to the specified length.

■ Return the number of characters in the CLOB or NCLOB.

■ Retrieve a stream to be used to write ASCII characters to the CLOB or NCLOB,
beginning at the specified position. This overwrites existing data.

■ Specify a Java String value to write to the CLOB or NCLOB, beginning at the
specified position. This overwrites existing data. There are methods to write either
all or part of the String value.

■ Truncate the CLOB or NCLOB to the specified length.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information.

LOB prefetching
To reduce round trips to the server in client/server connections, LOB prefetching is
enabled by default when you fetch a LOB from the database. The default prefetch size
is 4000 bytes for BLOBs or 4000 characters for CLOBs or NCLOBs.

You can use the TimesTenConnection property
CONNECTION_PROPERTY_DEFAULT_LOB_PREFETCH_SIZE to set a different default value
that applies to any statement in the connection. Use a value of -1 to disable LOB
prefetching by default for the connection, 0 (zero) to enable LOB prefetching for only
metadata by default, or any value greater than 0 to specify the number of bytes for
BLOBs or characters for CLOBs and NCLOBs to be prefetched by default along with
the LOB locator during fetch operations.

Notes:

■ For methods that write data to a LOB, the size of the LOB does not
change other than in the circumstance where from the specified
position there is less space available in the LOB than there is data
to write. In that case, the LOB size increases enough to
accommodate the data.

■ If the value specified for the position at which to write to a LOB is
greater than LOB length + 1, the behavior is undefined.

■ The read() method of an InputStream or Reader object returns 0
(zero) if the length of the buffer used in the method call is 0,
regardless of the amount of data in the InputStream or Reader
object. Therefore, usage such as the following is problematic if the
CLOB length may be 0, such as if it were populated using the SQL
EMPTY_CLOB() function:

java.io.Reader r = myclob.getCharacterStream();
char[] buf = new char[myclob.length()]; //buf for r.read() call

Normally when you call read(), -1 is returned if the end of the
stream is reached. But in the preceding case, -1 is never returned.
Be aware of this when you use streams returned by the BLOB
getBinaryStream() method, which returns InputStream, the
CLOB getAsciiStream() method, which returns InputStream, or
the CLOB getCharacterStream() method, which returns Reader.

Managing TimesTen data

Working with TimesTen Databases in JDBC 2-33

At the statement level, you can use the following TimesTenStatement methods to
manipulate the prefetch size and override the default value from the connection:

■ setLobPrefetchSize(int): Set a new LOB prefetch value for the statement.

■ int getLobPrefetchSize(): Return the current LOB prefetch value that applies to
the statement (either a value set in the statement itself or the default value from
the connection, as applicable).

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information.

Passthrough LOBs
Passthrough LOBs, which are LOBs in Oracle Database accessed through TimesTen,
are exposed as TimesTen LOBs and are supported by TimesTen in much the same way
that any TimesTen LOB is supported, but note the following:

■ As noted in "TimesTen LOB interface methods" on page 2-31, the TimesTenBlob,
TimesTenClob, and TimesTenNClob interfaces specify the following method to
indicate whether the LOB is a passthrough LOB:

boolean isPassthrough()

■ TimesTen LOB size limitations do not apply to storage of LOBs in the Oracle
database through passthrough.

■ As with TimesTen local LOBs, a passthrough LOB object does not remain valid
past the end of the transaction.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information.

Committing or rolling back changes to the database
This section discusses autocommit and manual commits or rollbacks, assuming a
JDBC Connection object myconn and Statement object mystmt.

You can refer to "Transaction overview" in Oracle TimesTen In-Memory Database
Operations Guide for additional information about transactions.

Setting autocommit
A TimesTen connection has autocommit enabled by default, but for performance
reasons it is recommended that you disable it. You can use the Connection method
setAutoCommit() to enable or disable autocommit.

Disable autocommit as follows:

myconn.setAutoCommit(false);
// Report any SQLWarnings on the connection.
// See "Reporting errors and warnings" on page 2-42.

Manually committing or rolling back changes
If autocommit is disabled, you must use the Connection method commit() to manually
commit transactions, or the rollback() method to roll back changes. Consider the
following example.

Note: All open cursors on the connection are closed upon transaction
commit or rollback in TimesTen.

Managing TimesTen data

2-34 Oracle TimesTen In-Memory Database Java Developer's Guide

myconn.commit();

Or:

myconn.rollback();

Using COMMIT and ROLLBACK SQL statements
You can prepare and execute COMMIT and ROLLBACK SQL statements the same way as
other SQL statements. Using COMMIT and ROLLBACK statements has the same effect as
using the Connection methods commit() and rollback(). For example:

mystmt.execute("COMMIT");

Managing multiple threads

The level4 demo demonstrates the use of multiple threads. Refer to "About the
TimesTen Java demos" on page 1-2.

When your application has a direct connection to the database, TimesTen functions
share stack space with your application. In multithreaded environments it is important
to avoid overrunning the stack allocated to each thread, as this can cause a program to
crash in unpredictable ways that are difficult to debug. The amount of stack space
consumed by TimesTen calls varies depending on the SQL functionality used. Most
applications should set thread stack space to at least 16 KB on 32-bit systems and
between 34 KB to 72 KB on 64-bit systems.

The amount of stack space allocated for each thread is specified by the operating
system when threads are created. On Windows, you can use the TimesTen debug
driver and link your application against the Visual C++ debug C library to enable
stack probes that raise an identifiable exception if a thread attempts to grow its stack
beyond the amount allocated.

Java escape syntax and SQL functions
When using SQL in JDBC, pay special attention to Java escape syntax. SQL functions
such as UNISTR use the backslash (\) character. You should escape the backslash
character. For example, using the following SQL syntax in a Java application may not
produce the intended results:

INSERT INTO table1 SELECT UNISTR('\00E4') FROM dual;

Escape the backslash character as follows:

INSERT INTO table1 SELECT UNISTR('\\00E4') FROM dual;

Note: On some UNIX platforms it is necessary to set THREADS_FLAG,
as described in "Set the THREADS_FLAG variable (UNIX only)" in
Oracle TimesTen In-Memory Database Installation Guide.

Note: In multithreaded applications, a thread that issues requests on
different connection handles to the same database may encounter lock
conflicts with itself. TimesTen returns lock timeout and deadlock
errors in this situation.

Using additional TimesTen data management features

Working with TimesTen Databases in JDBC 2-35

Using additional TimesTen data management features
Preceding sections discussed key features for managing TimesTen data. This section
covers the following additional features:

■ Using CALL to execute procedures and functions

■ Setting a timeout or threshold for executing SQL statements

■ Features for use with TimesTen Cache

■ Features for use with replication

Using CALL to execute procedures and functions
TimesTen supports each of the following syntax formats from any of its programming
interfaces to call PL/SQL procedures (procname) or PL/SQL functions (funcname) that
are standalone or part of a package, or to call TimesTen built-in procedures
(procname):

CALL procname[(argumentlist)]

CALL funcname[(argumentlist)] INTO :returnparam

CALL funcname[(argumentlist)] INTO ?

TimesTen JDBC also supports each of the following syntax formats:

{ CALL procname[(argumentlist)] }

{ ? = [CALL] funcname[(argumentlist)] }

{ :returnparam = [CALL] funcname[(argumentlist)] }

You can execute procedures and functions through the CallableStatement interface,
with a prepare step first when appropriate (such as when a result set is returned).

The following example calls the TimesTen built-in procedure ttCkpt. (Also see
Example 2–13 below for a more complete example with JDBC syntax.)

CallableStatement.execute("call ttCkpt")

The following example calls the TimesTen built-in procedure ttDataStoreStatus. A
prepare call is used because this procedure produces a result set. (Also see
Example 2–14 below for a more complete example with JDBC syntax.)

CallableStatement cStmt = null;
cStmt = conn.prepareCall("call ttDataStoreStatus");
cStmt.execute();

The following examples call a PL/SQL procedure myproc with two parameters.

cStmt.execute("{ call myproc(:param1, :param2) }");

cStmt.execute("{ call myproc(?, ?) }");

The following shows several ways to call a PL/SQL function myfunc.

cStmt.execute("CALL myfunc() INTO :retparam");

cStmt.execute("CALL myfunc() INTO ?");

cStmt.execute("{ :retparam = myfunc() }");

Using additional TimesTen data management features

2-36 Oracle TimesTen In-Memory Database Java Developer's Guide

cStmt.execute("{ ? = myfunc() }");

See "CALL" in Oracle TimesTen In-Memory Database SQL Reference for details about CALL
syntax.

Example 2–13 Executing a ttCkpt call

This example calls the ttCkpt procedure to initiate a fuzzy checkpoint.

Connection conn = null;
CallableStatement cStmt = null;
.......
cStmt = conn.prepareCall("{ Call ttCkpt }");
cStmt.execute();
conn.commit(); // commit the transaction

Be aware that the ttCkpt built-in procedure requires ADMIN privilege. Refer to "ttCkpt"
in Oracle TimesTen In-Memory Database Reference for additional information.

Example 2–14 Executing a ttDataStoreStatus call

This example calls the ttDataStoreStatus procedure and prints out the returned
result set.

For built-in procedures that return results, you can use the getXXX() methods of the
ResultSet interface to retrieve the data, as shown.

Contrary to the advice given in "Working with TimesTen result sets: hints and
restrictions" on page 2-11, this example uses a getString() call on the ResultSet
object to retrieve the Context field, which is a binary. This is because the output is
printed, rather than used for processing. If you do not want to print the Context value,
you can achieve better performance by using the getBytes() method instead.

ResultSet rs;

CallableStatement cStmt = conn.prepareCall("{ Call ttDataStoreStatus }");

if (cStmt.execute() == true) {
 rs = cStmt.getResultSet();
 System.out.println("Fetching result set...");
 while (rs.next()) {
 System.out.println("\n Database: " + rs.getString(1));
 System.out.println(" PID: " + rs.getInt(2));
 System.out.println(" Context: " + rs.getString(3));
 System.out.println(" ConType: " + rs.getString(4));
 System.out.println(" memoryID: " + rs.getString(5));
 }
 rs.close();
 }
cStmt.close();

Note: A user's own procedure takes precedence over a TimesTen
built-in procedure with the same name, but it is best to avoid such
naming conflicts.

Using additional TimesTen data management features

Working with TimesTen Databases in JDBC 2-37

Setting a timeout or threshold for executing SQL statements
TimesTen offers two ways to limit the time for SQL statements to execute, applying to
any execute(), executeBatch(), executeQuery(), executeUpdate(), or next() call.

■ Setting a timeout duration for SQL statements

■ Setting a threshold duration for SQL statements

The former is to set a timeout, where if the timeout duration is reached, the statement
stops executing and an error is thrown. The latter is to set a threshold, where if the
threshold is reached, an SNMP trap is thrown but execution continues.

Setting a timeout duration for SQL statements
In TimesTen you can set the SqlQueryTimeout general connection attribute to specify
the timeout period (in seconds) for the connection, and therefore any statement on the
connection. (Also see "SqlQueryTimeout" in Oracle TimesTen In-Memory Database
Reference.) A value of 0 indicates no timeout. Despite the name, this timeout value
applies to any executable SQL statement, not just queries.

For a particular statement, you can override the SqlQueryTimeout setting by calling
the Statement method setQueryTimeout().

The query timeout limit has effect only when the SQL statement is actively executing.
A timeout does not occur during the commit or rollback phase of an operation. For
those transactions that update, insert or delete a large number of rows, the commit or
rollback phases may take a long time to complete. During that time the timeout value
is ignored.

Setting a threshold duration for SQL statements
You can configure TimesTen to write a warning to the support log and throw an
SNMP trap when the execution of a SQL statement exceeds a specified time duration,
in seconds. Execution continues and is not affected by the threshold.

The name of the SNMP trap is ttQueryThresholdWarnTrap. See Oracle TimesTen
In-Memory Database Error Messages and SNMP Traps for information about configuring
SNMP traps.

Despite the name, this threshold applies to any JDBC call executing a SQL statement,
not just queries.

By default, the application obtains the threshold value from the QueryThreshold
general connection attribute setting. You can override the threshold for a JDBC
Connection object by including the QueryThreshold attribute in the connection URL
for the database. For example, to set QueryThreshold to a value of 5 seconds for the
myDSN database:

jdbc:timesten:direct:dsn=myDSN;QueryThreshold=5

Note: If both a lock timeout value and a SQL query timeout value
are specified, the lesser of the two values causes a timeout first.
Regarding lock timeouts, you can refer to "ttLockWait" (built-in
procedure) or "LockWait" (general connection attribute) in Oracle
TimesTen In-Memory Database Reference, or to "Check for deadlocks and
timeouts" in Oracle TimesTen In-Memory Database Troubleshooting Guide.

Using additional TimesTen data management features

2-38 Oracle TimesTen In-Memory Database Java Developer's Guide

You can also use the setQueryTimeThreshold() method of a TimesTenStatement
object to set the threshold. This overrides the connection attribute setting and the
Connection object setting.

You can retrieve the current threshold value by using the getQueryTimeThreshold()
method of the TimesTenStatement object.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information.

Features for use with TimesTen Cache
This section discusses features related to the use of TimesTen Application-Tier
Database Cache (TimesTen Cache):

■ Setting temporary passthrough level with the ttOptSetFlag built-in procedure

■ Managing cache groups

Setting temporary passthrough level with the ttOptSetFlag built-in procedure
TimesTen provides the ttOptSetFlag built-in procedure for setting various flags,
including the PassThrough flag to temporarily set the passthrough level. You can use
ttOptSetFlag to set PassThrough in a JDBC application as in the following sample
statement, which sets the passthrough level to 1. The setting affects all statements that
are prepared until the end of the transaction.

pstmt = conn.prepareStatement("call ttoptsetflag('PassThrough', 1)");

The example that follows has samples of code that accomplish these steps:

1. Create a prepared statement (a PreparedStatement instance
thePassThroughStatement) that calls ttOptSetFlag using a bind parameter for
passthrough level.

2. Define a method setPassthrough() that takes a specified passthrough setting,
binds it to the prepared statement, then executes the prepared statement to call
ttOptSetFlag to set the passthrough level.

 thePassThroughStatement =
 theConnection.prepareStatement("call ttoptsetflag('PassThrough', ?)");
 ...
 private void setPassthrough(int level) throws SQLException{
 thePassThroughStatement.setInt(1, level);
 thePassThroughStatement.execute();
 }

See "ttOptSetFlag" in Oracle TimesTen In-Memory Database Reference for more
information about this built-in procedure.

See "PassThrough" in Oracle TimesTen In-Memory Database Reference for information
about that general connection attribute. See "Setting a passthrough level" in Oracle
TimesTen Application-Tier Database Cache User's Guide for information about
passthrough settings.

Note: The OraclePassword attribute maps to the Oracle Database
password. You can use the TimesTenDataSource method
setOraclePassword() to set the Oracle Database password. See
"Connect to the database" on page 2-8 for an example.

Considering TimesTen features for access control

Working with TimesTen Databases in JDBC 2-39

Managing cache groups
In TimesTen, following the execution of a FLUSH CACHE GROUP, LOAD CACHE GROUP,
REFRESH CACHE GROUP, or UNLOAD CACHE GROUP statement, the Statement method
getUpdateCount() returns the number of cache instances that were flushed, loaded,
refreshed, or unloaded.

For related information, see "Determining the number of cache instances affected by
an operation" in Oracle TimesTen Application-Tier Database Cache User's Guide.

Features for use with replication
For applications that employ replication, you can improve performance by using
parallel replication, which uses multiple threads acting in parallel to replicate and apply
transactional changes to nodes in a replication scheme. TimesTen supports the
following types of parallel replication:

■ Automatic parallel replication (ReplicationApplyOrdering=0): Parallel replication
over multiple threads that automatically enforces transactional dependencies and
all changes applied in commit order. This is the default.

■ Automatic parallel replication with disabled commit dependencies
(ReplicationApplyOrdering=2): Parallel replication over multiple threads that
automatically enforces transactional dependencies, but does not enforce
transactions to be committed in the same order on the subscriber database as on
the master database. In this mode, you can optionally specify replication tracks.

■ User-defined parallel replication (ReplicationApplyOrdering=1): For applications
that use a classic replication scheme, have very predictable transactional
dependencies, and do not require that the commit order on the receiver is the
same as that on the originating database. You can specify the number of
transaction tracks and apply specific transactions to each track. All tracks are read,
transmitted and applied in parallel.

See "Configuring parallel replication" in Oracle TimesTen In-Memory Database
Replication Guide for additional information and usage scenarios.

For JDBC applications that use parallel replication and specify replication tracks, you
can specify the track number for transactions on a connection through the following
TimesTenConnection method. (Alternatively, use the general connection attribute
ReplicationTrack or the ALTER SESSION parameter REPLICATION_TRACK.)

■ void setReplicationTrack(int track)

TimesTenConnection also has the corresponding getter method:

■ int getReplicationTrack()

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information.

Considering TimesTen features for access control
TimesTen has features to control database access with object-level resolution for
database objects such as tables, views, materialized views, sequences, and synonyms.

Note: User-defined parallel replication is generally not advisable,
because special care must be taken to avoid data divergence between
replication nodes.

Handling errors

2-40 Oracle TimesTen In-Memory Database Java Developer's Guide

You can refer to "Managing Access Control" in Oracle TimesTen In-Memory Database
Operations Guide for introductory information about TimesTen access control.

This section introduces access control as it relates to SQL operations, database
connections, and JMS/XLA.

For any query or SQL DML or DDL statement discussed in this document or used in
an example, it is assumed that the user has appropriate privileges to execute the
statement. For example, a SELECT statement on a table requires ownership of the table,
SELECT privilege granted for the table, or the SELECT ANY TABLE system privilege.
Similarly, any DML statement requires table ownership, the applicable DML privilege
(such as UPDATE) granted for the table, or the applicable ANY TABLE privilege (such as
UPDATE ANY TABLE).

For DDL statements, CREATE TABLE requires the CREATE TABLE privilege in the user's
schema, or CREATE ANY TABLE in any other schema. ALTER TABLE requires ownership
or the ALTER ANY TABLE system privilege. DROP TABLE requires ownership or the DROP
ANY TABLE system privilege. There are no object-level ALTER or DROP privileges.

Refer to "SQL Statements" in Oracle TimesTen In-Memory Database SQL Reference for a
list of access control privileges and the privilege required for any given SQL statement.

Privileges are granted through the SQL statement GRANT and revoked through the
statement REVOKE. Some privileges are automatically granted to all users through the
PUBLIC role, of which all users are a member. Refer to "The PUBLIC role" in Oracle
TimesTen In-Memory Database SQL Reference for information about this role.

In addition, access control affects the following topics covered in this document:

■ Connecting to a database: Refer to "Access control for connections" on page 2-9.

■ Setting connection attributes: Refer to "Create a connection URL for the database
and specify connection attributes" on page 2-7.

■ Configuring and managing JMS/XLA. Refer to "Access control impact on XLA" on
page 3-9.

Handling errors
This section discusses how to check for, identify, and handle errors in a TimesTen Java
application.

For a list of the errors that TimesTen returns and what to do if the error is
encountered, see "Warnings and Errors" in Oracle TimesTen In-Memory Database Error
Messages and SNMP Traps.

This section includes the following topics.

■ About fatal errors, non-fatal errors, and warnings

■ Reporting errors and warnings

■ Catching and responding to specific errors

■ Rolling back failed transactions

Notes:

■ Access control cannot be disabled.

■ Access control privileges are checked both when SQL is prepared
and when it is executed in the database, with most of the
performance cost coming at prepare time.

Handling errors

Working with TimesTen Databases in JDBC 2-41

About fatal errors, non-fatal errors, and warnings
When operations are not completely successful, TimesTen can return a fatal error, a
non-fatal error, or a warning.

Handling fatal errors
Fatal errors make the database inaccessible until it can be recovered. When a fatal error
occurs, all database connections are required to disconnect. No further operations may
complete. Fatal errors are indicated by TimesTen error codes 846 and 994. Error
handling for these errors should be different from standard error handling. In
particular, the code should roll back the current transaction and, to avoid
out-of-memory conditions in the server, disconnect from the database. Shared memory
from the old TimesTen instance is not freed until all connections that were active at the
time of the error have disconnected. Inactive applications still connected to the old
TimesTen instance may have to be manually terminated.

When fatal errors occur, TimesTen performs the full cleanup and recovery procedure:

■ Every connection to the database is invalidated, a new memory segment is
allocated and applications are required to disconnect.

■ The database is recovered from the checkpoint and transaction log files upon the
first subsequent initial connection.

– The recovered database reflects the state of all durably committed transactions
and possibly some transactions that were committed non-durably.

– No uncommitted or rolled back transactions are reflected.

Handling non-fatal errors
Non-fatal errors include simple errors such as an INSERT statement that violates
unique constraints. This category also includes some classes of application and process
failures.

TimesTen returns non-fatal errors through the normal error-handling process.
Application should check for errors and appropriately handle them.

When a database is affected by a non-fatal error, an error may be returned and the
application should take appropriate action.

An application can handle non-fatal errors by modifying its actions or, in some cases,
by rolling back one or more offending transactions, as described in "Rolling back failed
transactions" on page 2-43.

Also see "Reporting errors and warnings", which follows shortly.

About warnings
TimesTen returns warnings when something unexpected occurs. Here are some
examples of events that cause TimesTen to issue a warning:

■ A checkpoint failure

■ Use of a deprecated TimesTen feature

■ Truncation of some data

Note: If a ResultSet, Statement, PreparedStatement,
CallableStatement or Connection operation results in a database
error, it is a good practice to call the close() method for that object.

Handling errors

2-42 Oracle TimesTen In-Memory Database Java Developer's Guide

■ Execution of a recovery process upon connect

■ Replication return receipt timeout

You should always have code that checks for warnings, as they can indicate
application problems.

Also see "Reporting errors and warnings" immediately below.

Abnormal termination
In some cases, such as with a process failure, an error cannot be returned, so TimesTen
automatically rolls back the transactions of the failed process.

Reporting errors and warnings
You should check for and report all errors and warnings that can be returned on every
call. This saves considerable time and effort during development and debugging. A
SQLException object is generated if there are one or more database access errors and a
SQLWarning object is generated if there are one or more warning messages. A single
call may return multiple errors or warnings or both, so your application should report
all errors or warnings in the returned SQLException or SQLWarning objects.

Multiple errors or warnings are returned in linked chains of SQLException or
SQLWarning objects. Example 2–15 and Example 2–16 demonstrate how you might
iterate through the lists of returned SQLException and SQLWarning objects to report all
of the errors and warnings, respectively.

Example 2–15 Printing exceptions

The following method prints out the content of all exceptions in the linked
SQLException objects.

static int reportSQLExceptions(SQLException ex)
 {
 int errCount = 0;
 if (ex != null) {
 errStream.println("\n--- SQLException caught ---");
 ex.printStackTrace();

 while (ex != null) {
 errStream.println("SQL State: " + ex.getSQLState());
 errStream.println("Message: " + ex.getMessage());
 errStream.println("Error Code: " + ex.getErrorCode());
 errCount ++;
 ex = ex.getNextException();
 errStream.println();
 }
 }

 return errCount;
}

Example 2–16 Printing warnings

This method prints out the content of all warning in the linked SQLWarning objects.

static int reportSQLWarnings(SQLWarning wn)
{
 int warnCount = 0;

 while (wn != null) {

Handling errors

Working with TimesTen Databases in JDBC 2-43

 errStream.println("\n--- SQL Warning ---");
 errStream.println("SQL State: " + wn.getSQLState());
 errStream.println("Message: " + wn.getMessage());
 errStream.println("Error Code: " + wn.getErrorCode());

 // is this a SQLWarning object or a DataTruncation object?
 if (wn instanceof DataTruncation) {
 DataTruncation trn = (DataTruncation) wn;
 errStream.println("Truncation error in column: " +
 trn.getIndex());
 }
 warnCount++;
 wn = wn.getNextWarning();
 errStream.println();
 }
 return warnCount;
}

Catching and responding to specific errors
In some situations it may be desirable to respond to a specific SQL state or TimesTen
error code. You can use the SQLException method getSQLState() to return the SQL
state and the getErrorCode() method to return TimesTen error codes, as shown in
Example 2–17.

Also refer to the entry for TimesTenVendorCode in Oracle TimesTen In-Memory Database
JDBC Extensions Java API Reference for error information.

Example 2–17 Catching an error

The TimesTen demos require that you load the demo schema before they are executed.
The following catch statement alerts the user that appuser has not been loaded or has
not been refreshed by detecting ODBC error S0002 and TimesTen error 907:

catch (SQLException ex) {
 if (ex.getSQLState().equalsIgnoreCase("S0002")) {
 errStream.println("\nError: The table appuser.customer " +
 "does not exist.\n\t Please reinitialize the database.");
 } else if (ex.getErrorCode() == 907) {
 errStream.println("\nError: Attempting to insert a row " +
 "with a duplicate primary key.\n\tPlease reinitialize the database.");
}

You can use the TimesTenVendorCode interface to detect the errors by their name,
rather than their number.

Consider this example:

ex.getErrorCode() == com.timesten.jdbc.TimesTenVendorCode.TT_ERR_KEYEXISTS

The following is equivalent:

ex.getErrorCode() == 907

Rolling back failed transactions
In some situations, such as recovering from a deadlock or lock timeout, you should
explicitly roll back the transaction using the Connection method rollback(), as in the
following example.

JDBC support for automatic client failover

2-44 Oracle TimesTen In-Memory Database Java Developer's Guide

Example 2–18 Rolling back a transaction

try {
 if (conn != null && !conn.isClosed()) {
 // Rollback any transactions in case of errors
 if (retcode != 0) {
 try {
 System.out.println("\nEncountered error. Rolling back transaction");
 conn.rollback();
 } catch (SQLException ex) {
 reportSQLExceptions(ex);
 }
 }
 }

 System.out.println("\nClosing the connection\n");
 conn.close();
} catch (SQLException ex) {

 reportSQLExceptions(ex);
}

The XACT_ROLLBACKS column of the SYS.MONITOR table indicates the number of
transactions that were rolled back. Refer to "SYS.MONITOR" in Oracle TimesTen
In-Memory Database System Tables and Views Reference for additional information.

A transaction rollback consumes resources and the entire transaction is in effect
wasted. To avoid unnecessary rollbacks, design your application to avoid contention
and check the application or input data for potential errors before submitting it.

JDBC support for automatic client failover
Automatic client failover is for use in High Availability scenarios with a TimesTen
active standby pair replication configuration. If there is a failure of the active node,
failover (transfer) to the new active (original standby) node occurs, and applications
are automatically reconnected to the new active node. TimesTen provides features that
allow applications to be alerted when this happens, so they can take any appropriate
action.

This section discusses TimesTen JDBC extensions related to automatic client failover,
covering the following topics:

■ Features and functionality of JDBC support for automatic client failover

■ Configuration of automatic client failover

■ Synchronous detection of automatic client failover

■ Asynchronous detection of automatic client failover

Note: If your application aborts, crashes, or disconnects in the
middle of an active transaction, TimesTen automatically rolls back the
transaction.

Note: Automatic client failover applies only to client/server
connections. The functionality described here does not apply to a
direct connection.

JDBC support for automatic client failover

Working with TimesTen Databases in JDBC 2-45

Automatic client failover is complementary to Oracle Clusterware in situations where
Oracle Clusterware is used, though the two features are not dependent on each other.

See "Using automatic client failover" in Oracle TimesTen In-Memory Database Operations
Guide for general information about automatic client failover, and "Using automatic
client failover in your application" in Oracle TimesTen In-Memory Database C Developer's
Guide for related information for developers.

You can also refer to "Using Oracle Clusterware to Manage Active Standby Pairs" in
Oracle TimesTen In-Memory Database Replication Guide for information about Oracle
Clusterware.

Features and functionality of JDBC support for automatic client failover
This section discusses general TimesTen JDBC features related to client failover, and
functionality relating specifically to pooled connections.

Refer to Oracle TimesTen In-Memory Database JDBC Extensions Java API Reference for
additional information about the TimesTen JDBC classes, interfaces, and methods
discussed here.

General Client Failover Features
TimesTen JDBC support for automatic client failover provides two mechanisms for
detecting a failover:

■ Synchronous detection, through a SQL exception: After an automatic client failover,
JDBC objects created on the failed connection—such as statements, prepared
statements, callable statements, and result sets—can no longer be used. A Java
SQL exception is thrown if an application attempts to access any such object. By
examining the SQL state and error code of the exception, you can determine
whether the exception is the result of a failover situation.

■ Asynchronous detection, through an event listener: An application can register a
user-defined client failover event listener, which is notified of each event that
occurs during the process of a failover.

TimesTen JDBC provides the following features, in package com.timesten.jdbc, to
support automatic client failover.

■ ClientFailoverEvent class

This class is used to represent events that occur during a client failover: begin, end,
abort, or retry.

■ ClientFailoverEventListener interface

An application interested in client failover events must have a class that
implements this interface, which is the mechanism to listen for client failover
events. At runtime, the application must register ClientFailoverEventListener
instances through the TimesTen connection (see immediately below).

You can use a listener to proactively react to failure detection, such as by
refreshing connection pool statement caches, for example.

■ New methods in the TimesTenConnection interface

This interface specifies the methods addConnectionEventListener() and
removeConnectionEventListener() to register or remove, respectively, a client
failover event listener.

■ A new constant, TT_ERR_FAILOVERINVALIDATION, in the TimesTenVendorCode
interface

JDBC support for automatic client failover

2-46 Oracle TimesTen In-Memory Database Java Developer's Guide

This enables you to identify an event as a failover event.

Client failover features for pooled connections
TimesTen recommends that applications using pooled connections
(javax.sql.PooledConnection) or connection pool data sources
(javax.sql.ConnectionPoolDataSource) use the synchronous mechanism noted
previously to handle stale objects on the failed connection. Java EE application servers
manage pooled connections, so applications are not able to listen for events on pooled
connections. And application servers do not implement and register an instance of
ClientFailoverEventListener, because this is a TimesTen extension.

Configuration of automatic client failover
Refer to "Configuring automatic client failover" in Oracle TimesTen In-Memory Database
Operations Guide for information.

Synchronous detection of automatic client failover
If, in a failover situation, an application attempts to use objects created on the failed
connection, then JDBC throws a SQL exception. The vendor-specific exception code is
set to TimesTenVendorCode.TT_ERR_FAILOVERINVALIDATION.

Detecting a failover through this mechanism is referred to as synchronous detection.
The following example demonstrates this.

Example 2–19 Synchronous detection of automatic client failover

try {
 // ...
 // Execute a query on a previously prepared statement.
 ResultSet theResultSet = theStatement.executeQuery("select * from dual");
 // ...

} catch (SQLException sqlex) {
 sqlex.printStackTrace();
 if (sqlex.getErrorCode() == TimesTenVendorCode.TT_ERR_FAILOVERINVALIDATION) {
 // Automatic client failover has taken place; discontinue use of this object.
 }
}

Asynchronous detection of automatic client failover
Asynchronous failover detection requires an application to implement a client failover
event listener and register an instance of it on the TimesTen connection. This section
describes the steps involved:

1. Implement a client failover event listener.

Note: Setting any of TTC_Server2, TTC_Server_DSN2, or TCP_Port2
implies the following:

■ You intend to use automatic client failover.

■ You understand that a new thread is created for your application
to support the failover mechanism.

■ You have linked your application with a thread library (pthreads
on UNIX systems).

JDBC support for automatic client failover

Working with TimesTen Databases in JDBC 2-47

2. Register the client failover listener instance.

3. Remove the client failover listener instance.

Implement a client failover event listener
TimesTen JDBC provides the com.timesten.jdbc.ClientFailoverEventListener
interface for use in listening for events, highlighted by the following method:

■ void notify(ClientFailoverEvent event)

To use asynchronous failover detection, you must create a class that implements this
interface, then register an instance of the class at runtime on the TimesTen connection
(discussed shortly).

When a failover event occurs, TimesTen calls the notify() method of the listener
instance you registered, providing a ClientFailoverEvent instance that you can then
examine for information about the event.

The following example shows the basic form of a ClientFailoverEventListener
implementation.

Example 2–20 Asynchronous detection of automatic client failover

 private class MyCFListener implements ClientFailoverEventListener {
 /* Applications can build state system to track states during failover.
 You may want to add methods that talks about readiness of this Connection
 for processing.
 */
 public void notify(ClientFailoverEvent event) {

 /* Process connection failover type */
 switch(event.getTheFailoverType()) {
 case TT_FO_CONNECTION:
 /* Process session fail over */
 System.out.println("This should be a connection failover type " +
 event.getTheFailoverType());
 break;

 default:
 break;
 }
 /* Process connection failover events */
 switch(event.getTheFailoverEvent()) {
 case BEGIN:
 System.out.println("This should be a BEGIN event " +
 event.getTheFailoverEvent());
 /* Applications cannot use Statement, PreparedStatement, ResultSet,
 etc. created on the failed Connection any longer.
 */
 break;

 case END:
 System.out.println("This should be an END event " +
 event.getTheFailoverEvent());

 /* Applications may want to re-create Statement and PreparedStatement
 objects at this point as needed.
 */
 break;

 case ABORT:

JDBC support for automatic client failover

2-48 Oracle TimesTen In-Memory Database Java Developer's Guide

 System.out.println("This should be an ABORT event " +
 event.getTheFailoverEvent());
 break;

 case ERROR:
 System.out.println("This should be an ERROR event " +
 event.getTheFailoverEvent());
 break;

 default:
 break;
 }
 }
 }

The event.getTheFailoverType() call returns an instance of the nested class
ClientFailoverEvent.FailoverType, which is an enumeration type. In TimesTen, the
only supported value is TT_FO_CONNECTION, indicating a connection failover.

The event.getTheFailoverEvent() call returns an instance of the nested class
ClientFailoverEvent.FailoverEvent, which is an enumeration type where the value
can be one of the following:

■ BEGIN, if the client failover has begun

■ END, if the client failover has completed successfully

■ ERROR, if the client failover failed but will be retried

■ ABORT, if the client failover has aborted

Register the client failover listener instance
At runtime you must register an instance of your failover event listener class with the
TimesTen connection object, so that TimesTen is able to call the notify() method of
the listener class as needed for failover events.

TimesTenConnection provides the following method for this.

■ void addConnectionEventListener
 (ClientFailoverEventListener listener)

Create an instance of your listener class, then register it using this method. The
following example establishes the connection and registers the listener. Assume
theDsn is the JDBC URL for a TimesTen Client/Server database and theCFListener is
an instance of your failover event listener class.

Example 2–21 Registering the client failover listener

 try {
 /* Assume this is a client/server conn; register for conn failover. */
 Class.forName("com.timesten.jdbc.TimesTenClientDriver");
 String url = "jdbc:timesten:client:" + theDsn;
 theConnection = (TimesTenConnection)DriverManager.getConnection(url);
 theConnection.addConnectionEventListener(theCFListener);
 /* Additional logic goes here; connection failover listener is
 called if there is a fail over.
 */
 }
 catch (ClassNotFoundException cnfex) {
 cnfex.printStackTrace();
 }

JDBC support for automatic client failover

Working with TimesTen Databases in JDBC 2-49

 catch (SQLException sqlex) {
 sqlex.printStackTrace();
 }

Remove the client failover listener instance
The TimesTenConnection interface defines the following method to deregister a
failover event listener:

■ void removeConnectionEventListener
 (ClientFailoverEventListener listener)

Use this method to deregister a listener instance.

JDBC support for automatic client failover

2-50 Oracle TimesTen In-Memory Database Java Developer's Guide

3

Using JMS/XLA for Event Management 3-1

3Using JMS/XLA for Event Management

You can use the TimesTen JMS/XLA API to monitor TimesTen for changes to
specified tables in a local database and receive real-time notification of these changes.
The primary purpose of JMS/XLA is as a high-performance, asynchronous alternative
to triggers.

JMS/XLA implements Java Message Service (JMS) interfaces to make the functionality
of the TimesTen Transaction Log API (XLA) available to Java applications. JMS
information and resources are available at the following location:

http://www.oracle.com/technetwork/java/jms/index.html

In addition, the standard JMS API documentation is installed with the TimesTen at the
following location:

install_dir/3rdparty/jms1.1/doc/api/index.html

For information about tuning TimesTen JMS/XLA applications for improved
performance, see "Tuning JMS/XLA applications" on page 5-5.

This chapter includes the following topics:

■ JMS/XLA concepts

■ JMS/XLA and Oracle GDK dependency

■ Connecting to XLA

■ Monitoring tables for updates

■ Receiving and processing updates

■ Terminating a JMS/XLA application

■ Using JMS/XLA as a replication mechanism

JMS/XLA concepts
Java applications can use the JMS/XLA API to receive event notifications from
TimesTen. JMS/XLA uses the JMS publish-subscribe interface to provide access to
XLA updates.

Note: In the unlikely event that the TimesTen replication solutions
described in Oracle TimesTen In-Memory Database Replication Guide do
not meet your needs, it is possible to use JMS/XLA to build a custom
data replication solution.

JMS/XLA concepts

3-2 Oracle TimesTen In-Memory Database Java Developer's Guide

Subscribe to updates by establishing a JMS Session instance that provides a
connection to XLA and then creating a durable subscriber (TopicSubscriber). You can
receive and process messages synchronously through the subscriber, or you can
implement a listener (MessageListener) to process the updates asynchronously.

JMS/XLA is designed for applications that want to monitor a local database. TimesTen
and the application receiving the notifications must reside on the same system.

This section includes the following topics:

■ How XLA reads records from the transaction log

■ XLA and materialized views

■ XLA bookmarks

■ JMS/XLA configuration file and topics

■ XLA updates

■ XLA acknowledgment modes

■ Access control impact on XLA

■ XLA limitations

How XLA reads records from the transaction log
As applications modify a database, TimesTen generates transaction log records that
describe the changes made to the data and other events such as transaction commits.

New transaction log records are always written to the end of the transaction log buffer
as they are generated. Transaction log records are periodically flushed in batches from
the log buffer in memory to transaction log files on disk.

Applications can use XLA to monitor the transaction log for changes to the database.
XLA reads through the transaction log, filters the log records, and delivers XLA
applications with a list of transaction records that contain the changes to the tables and
columns of interest.

XLA sorts the records into discrete transactions. If multiple applications are updating
the database simultaneously, transaction log records from the different applications
are interleaved in the transaction log.

XLA transparently extracts all transaction log records associated with a particular
transaction and delivers them in a contiguous list to the application.

Only the records for committed transactions are returned. They are returned in the
order in which their final commit record appears in the transaction log. XLA filters out
records associated with changes to the database that have not yet committed.

If a change is made but then rolled back, XLA does not deliver the records for the
aborted transaction to the application.

Note: The JMS/XLA API is a wrapper for XLA. XLA obtains update
records directly from the transaction log buffer or transaction log files,
so the records are available until they are read. XLA also allows
multiple readers to access transaction log updates simultaneously.

See "XLA and TimesTen Event Management" in Oracle TimesTen
In-Memory Database C Developer's Guide for information about XLA.

JMS/XLA concepts

Using JMS/XLA for Event Management 3-3

Consider the example transaction log illustrated in Figure 3–1 and Example 3–1 that
follow, which illustrate most of these basic XLA concepts.

Figure 3–1 Records extracted from the transaction log

Example 3–1 Reading transaction log records

In this example, the transaction log contains the following records:

CT1 - Application C updates row 1 of table W with value 7.7.
BT1 - Application B updates row 3 of table X with value 2.
CT2 - Application C updates row 9 of table W with value 5.6.
BT2 - Application B updates row 2 of table Y with value "XYZ".
AT1 - Application A updates row 1 of table Z with value 3.
AT2 - Application A updates row 3 of table Z with value 4.
BT3 - Application B commits its transaction.
AT3 - Application A rolls back its transaction.
CT3 - Application C commits its transaction.

An XLA application that is set up to detect changes to tables W, Y, and Z would see the
following:

BT2 and BT3 - Update row 2 of table Y with value "XYZ" and commit.
CT1 - Update row 1 of table W with value 7.7.
CT2 and CT3 - Update row 9 of table W with value 5.6 and commit.

This example demonstrates the following:

■ Transaction records for application B and application C all appear.

■ Though the records for application C begin to appear in the transaction log before
those for application B, the commit for application B (BT3) appears in the
transaction log before the commit for application C (CT3). As a result, the records
for application B are returned to the XLA application ahead of those for
application C.

■ The application B update to table X (BT1) is not presented because XLA is not set
up to detect changes to table X.

■ The application A updates to table Z (AT1 and AT2) are never presented because it
did not commit and was rolled back (AT3).

XLA and materialized views
You can use XLA to track changes to both tables and materialized views. A
materialized view provides a single source from which you can track changes to
selected rows and columns in multiple detail tables. Without a materialized view, the
XLA application would have to monitor and filter the update records from all of the
detail tables, including records reflecting updates to rows and columns of no interest
to the application.

..........................
Transaction Log

Oldest NewestCT1 BT2 AT2 CT3CT2 AT1 AT3

BT2 BT3 CT2CT1 CT3

XLA Application

BT1 BT3

JMS/XLA concepts

3-4 Oracle TimesTen In-Memory Database Java Developer's Guide

In general, there are no operational differences between the XLA mechanisms used to
track changes to a table or a materialized view. However, for asynchronous
materialized views, be aware that the order of XLA notifications for an asynchronous
view is not necessarily the same as it would be for the associated detail tables, or the
same as it would be for a synchronous view. For example, if there are two inserts to a
detail table, they may be done in the opposite order in the asynchronous materialized
view. Furthermore, updates may be reported by XLA as a delete followed by an insert,
and multiple operations (such as multiple inserts or multiple deletes) may be
combined into a single operation. Applications that depend on precise ordering
should not use asynchronous materialized views.

For more information about materialized views, see the following:

■ "CREATE MATERIALIZED VIEW" in Oracle TimesTen In-Memory Database SQL
Reference

■ "Understanding materialized views" in Oracle TimesTen In-Memory Database
Operations Guide

XLA bookmarks
An XLA bookmark marks the read position of an XLA subscriber application in the
transaction log. Bookmarks facilitate durable subscriptions, enabling an application to
disconnect from a topic and then reconnect to continue receiving updates where it left
off.

The rest of this section covers the following:

■ How bookmarks work

■ Replicated bookmarks

■ XLA bookmarks and transaction log holds

How bookmarks work
When you create a message consumer for XLA, you always use a durable
TopicSubscriber. The subscription identifier you specify when you create the
subscriber is used as the XLA bookmark name. When you use the ttXlaSubscribe and
ttXlaUnsubscribe built-in procedures through JDBC to start and stop the XLA
subscription for a table, you explicitly specify the name of the bookmark to be used.

Bookmarks are reset to the last read position whenever an acknowledgment is
received. For more information about how update messages are acknowledged, see
the "XLA acknowledgment modes" on page 3-8.

You can remove a durable subscription by calling unsubscribe() on the JMS Session
object. This deletes the corresponding XLA bookmark and forces a new subscription to
be created when you reconnect. For more information see "Deleting bookmarks" on
page 3-14.

A bookmark subscription cannot be altered when it is in use. To alter a subscription,
you must close the message consumer, alter the subscription using ttXlaSubscribe
and ttXlaUnsubscribe, and open the message consumer.

Note: You can also use the ttXlaBookmarkCreate TimesTen built-in
procedure to create bookmarks. See "ttXlaBookmarkCreate" in Oracle
TimesTen In-Memory Database Reference for information about that
function.

JMS/XLA concepts

Using JMS/XLA for Event Management 3-5

Replicated bookmarks
If you are using an active standby pair replication scheme, you have the option of
using replicated bookmarks, according to the replicatedBookmark attribute of the
<topic> element in the jmsxla.xml file as discussed in "JMS/XLA configuration file
and topics" on page 3-6. For a replicated bookmark, operations on the bookmark are
replicated to the standby database as appropriate, assuming there is suitable write
privilege for the standby. This allows more efficient recovery of your bookmark
positions if a failover occurs.

When you use replicated bookmarks, steps must be taken in the following order:

1. Create the active standby pair replication scheme. (This is accomplished by the
create active standby pair operation, or by the ttCWAdmin -create command
in a Clusterware-managed environment.)

2. Create the bookmarks.

3. Subscribe the bookmarks.

4. Start the active standby pair, at which time duplication to the standby occurs and
replication begins. (This is accomplished by the ttRepAdmin -duplicate
command, or by the ttCWAdmin -start command in a Clusterware-managed
environment.)

Be aware of the following usage notes:

■ The position of the bookmark in the standby database is very close to that of the
bookmark in the active database; however, because the replication of acknowledge
operations is asynchronous, you may see a small window of duplicate updates
when there is a failover, depending on how often acknowledge operations are
performed.

■ It is permissible to drop the active standby pair scheme while replicated
bookmarks exist. The bookmarks of course cease to be replicated at that point, but
are not deleted. If you subsequently re-enable the active standby pair scheme,
these bookmarks are automatically added to the scheme.

■ You cannot delete replicated bookmarks while the replication agent is running.

■ You can only read and acknowledge a replicated bookmark in the active database.
Each time you acknowledge a replicated bookmark, the acknowledge operation is
asynchronously replicated to the standby database.

XLA bookmarks and transaction log holds
You should be aware that when XLA is in use, there is a hold on TimesTen transaction
log files until the XLA bookmark advances. The hold prevents transaction log files
from being purged until XLA can confirm it no longer needs them. If a bookmark
becomes stuck, which can occur if an XLA application terminates unexpectedly or

Notes:

■ Alternatively, if you use ttXlaBookmarkCreate to create a
bookmark, that function has a parameter for specifying a
replicated bookmark.

■ If you specify replicated bookmarks in the JMS/XLA
configuration file, JMS/XLA will create and subscribe to the
bookmarks when the application is started. (Also see "JMS/XLA
configuration file and topics" on page 3-6.)

JMS/XLA concepts

3-6 Oracle TimesTen In-Memory Database Java Developer's Guide

disconnects without first deleting its bookmark or disabling change tracking, the log
hold persists and there may be an excessive accumulation of transaction log files. This
accumulation may result in disk space being filled.

For information about monitoring and addressing this situation, see "Monitoring
accumulation of transaction log files" in Oracle TimesTen In-Memory Database Operations
Guide.

JMS/XLA configuration file and topics
To connect to XLA, establish a connection to a JMS Topic object that corresponds to a
particular database. The JMS/XLA configuration file provides the mapping between
topic names and databases.

You can specify a replicated bookmark by setting replicatedBookmark="yes" in the
<topic> element when you specify the topic. The default setting is "no". Also see
"XLA bookmarks" on page 3-4.

By default, JMS/XLA looks for a configuration file named jmsxla.xml in the current
working directory. If you want to use another name or location for the file, you must
specify it as part of the environment variable in the InitialContext class and add the
location to the classpath.

Example 3–2 Specifying the JMS/XLA configuration file

The following code specifies the configuration file as part of the environment variable
in the InitialContext class.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.timesten.dataserver.jmsxla.SimpleInitialContextFactory");
env.put(XlaConstants.CONFIG_FILE_NAME, "/newlocation.xml");
InitialContext ic = new InitialContext(env);

The JMS/XLA API uses the class loader to locate the JMS/XLA configuration file if
XlaConstants.CONFIG_FILE_NAME is set. In this example, the JMS/XLA API searches
for the newlocation.xml file in the top directory in both the location specified in the
CLASSPATH environment variable and in the JAR files specified in the CLASSPATH
variable.

The JMS/XLA configuration file can also be located in subdirectories, as follows:

env.put(XlaConstants.CONFIG_FILE_NAME,
"/com/mycompany/myapplication/deepinside.xml");

In this case, the JMS/XLA API searches for the deepinside.xml file in the
com/mycompany/myapplication subdirectory in both the location specified in the
CLASSPATH environment variable and in the JAR files specified in the CLASSPATH
variable.

The JMS/XLA API uses the first configuration file that it finds.

Example 3–3 Defining a topic in the configuration file

A topic definition in the configuration file consists of a name, a connection string, and
a prefetch value that specifies how many updates to retrieve at a time.

For example, this configuration maps the DemoDataStore topic to the TestDB DSN:

<xlaconfig>
 <topics>
 <topic name="DemoDataStore"

JMS/XLA concepts

Using JMS/XLA for Event Management 3-7

 connectionString="DSN=TestDB"
 xlaPrefetch="100" />
 </topics>
</xlaconfig>

Example 3–4 Defining a topic to use replicated bookmarks

A topic definition can also specify whether a replicated bookmark should be used. The
following repeats the preceding example, but with a replicated bookmark.

<xlaconfig>
 <topics>
 <topic name="DemoDataStore"
 connectionString="DSN=TestDB"
 xlaPrefetch="100" replicatedBookmark="yes" />
 </topics>
</xlaconfig>

XLA updates
Applications receive XLA updates as JMS MapMessage objects. A MapMessage object
contains a set of typed name and value pairs that correspond to the fields in an XLA
update header.

You can access the message fields using the MapMessage getter methods. The
getMapNames() method returns an Enumeration object that contains the names of all of
the fields in the message. You can retrieve individual fields from the message by
name. All reserved field names begin with two underscores, for example __TYPE.

All update messages have a __TYPE field that indicates what type of update the
message contains. The types are specified as integer values. As a convenience, you can
use the constants defined in com.timesten.dataserver.jmsxla.XlaConstants to
compare against the integer types. The supported types are described in Table 3–1.

Table 3–1 XLA update types

Update type Description

INSERT A row has been added.

UPDATE A row has been modified.

DELETE A row has been removed.

COMMIT_ONLY A transaction has been committed.

CREATE_TABLE A table has been created.

DROP_TABLE A table has been dropped.

CREATE_INDEX An index has been created.

DROP_INDEX An index has been dropped.

ADD_COLUMNS New columns have been added to the table.

DROP_COLUMNS Columns have been removed from the table.

CREATE_VIEW A materialized view has been created.

DROP_VIEW A materialized view has been dropped.

CREATE_SEQ A sequence has been created.

DROP_SEQ A sequence has been dropped.

CREATE_SYNONYM A synonym has been created.

JMS/XLA concepts

3-8 Oracle TimesTen In-Memory Database Java Developer's Guide

For more information about the contents of an XLA update message, see "JMS/XLA
MapMessage contents" on page 6-1.

XLA acknowledgment modes
The XLA acknowledgment mechanism is designed to ensure that an application has
not only received a message, but has successfully processed it. Acknowledging an
update permanently resets the application XLA bookmark to the last record that was
read. This prevents previously returned records from being reread, ensuring that an
application receives only new batches of records if the bookmark is reused when an
application reconnects to XLA.

JMS/XLA can automatically acknowledge XLA update messages, or applications can
choose to acknowledge messages explicitly. You specify how updates are to be
acknowledged when you create the Session object.

JMS/XLA supports three acknowledgment modes:

■ AUTO_ACKNOWLEDGE: In this mode, updates are automatically acknowledged as you
receive them. Each message is delivered only once. Duplicate messages are not
sent, so messages might be lost if there is an application failure. Messages are
always delivered and acknowledged individually, so JMS/XLA does not prefetch
multiple records. The xlaprefetch attribute in the topic is ignored.

■ DUPS_OK_ACKNOWLEDGE: In this mode, updates are automatically acknowledged, but
duplicate messages might be delivered when there is an application failure.
JMS/XLA prefetches records according to the xlaprefetch attribute specified for
the topic and sends an acknowledgment when the last record in a prefetched block
is read. If the application fails before reading all of the prefetched records, all of
the records in the block are presented to the application it restarts.

See "JMS/XLA configuration file and topics" on page 3-6 for examples setting
xlaprefetch.

■ CLIENT_ACKNOWLEDGE: In this mode, applications are responsible for
acknowledging receipt of update messages by calling acknowledge() on the
MapMessage instance. JMS/XLA prefetches records according to the xlaprefetch
attribute specified for the topic.

The following example sets the acknowledgment mode:

Session session = connection.createSession (false, Session.CLIENT_ACKNOWLEDGE);

Also see "Reduce frequency of update acknowledgments" on page 5-5.

Prefetching updates
Prefetching multiple update records at a time is more efficient than obtaining each
update record from XLA individually. Because updates are not prefetched when you
use AUTO_ACKNOWLEDGE mode, it can be slower than the other modes. If possible, you
should design your application to tolerate duplicate updates so you can use DUPS_OK_
ACKNOWLEDGE, or explicitly acknowledge updates. Explicitly acknowledging updates

DROP_SYNONYM A synonym has been dropped.

TRUNCATE All rows in the table have been deleted.

Table 3–1 (Cont.) XLA update types

Update type Description

JMS/XLA and Oracle GDK dependency

Using JMS/XLA for Event Management 3-9

usually yields the best performance, as long as you can avoid acknowledging each
message individually.

Acknowledging updates
To explicitly acknowledge an XLA update, call acknowledge() on the update message.
Acknowledging a message implicitly acknowledges all previous messages. Typically,
you receive and process multiple update messages between acknowledgments. If you
are using the CLIENT_ACKNOWLEDGE mode and intend to reuse a durable subscription in
the future, you should call acknowledge() to reset the bookmark to the last-read
position before exiting.

Access control impact on XLA
"Considering TimesTen features for access control" on page 2-39 provides a brief
overview of how TimesTen access control affects operations in the database. Access
control impacts XLA, as follows:

■ Any XLA functionality requires the system privilege XLA. This includes connecting
to TimesTen (which also requires the CREATE SESSION privilege) as an XLA reader
and executing the TimesTen XLA built-in procedures ttXlaBookmarkCreate,
ttXlaBookmarkDelete, ttXlaSubscribe, and ttXlaUnsubscribe, all of which are
documented in "Built-In Procedures" in Oracle TimesTen In-Memory Database
Reference.

■ A user with the XLA privilege has capabilities equivalent to the SELECT ANY TABLE,
SELECT ANY VIEW, and SELECT ANY SEQUENCE system privileges.

XLA limitations
Be aware of the following XLA limitations when you use TimesTen JMS/XLA:

■ JMS/XLA is available on all platforms supported by TimesTen. However, XLA
does not support data transfer between different platforms or between 32-bit and
64-bit versions of the same platform.

■ JMS/XLA support for LOBs is limited. See "Monitoring tables for updates" on
page 3-10 for information.

■ JMS/XLA does not support applications linked with a driver manager library or
the client/server library.

■ An XLA reader cannot subscribe to a table that uses in-memory columnar
compression.

■ For autorefresh cache groups, the change-tracking trigger on Oracle Database does
not have column-level resolution. (To have that would be very expensive.)
Therefore the autorefresh feature updates all the columns in the row, and XLA can
only report that all the columns have changed, even if data did not actually change
in all columns.

JMS/XLA and Oracle GDK dependency
The JMS/XLA API uses orai18n.jar, part of the Oracle Globalization Development
Kit (GDK) for translating from the database character set specified by the
DatabaseCharacterSet attribute to UTF-16 encoding. The JMS/XLA API supports a
specific version of the GDK with each TimesTen release. If JMS/XLA finds other
versions of the GDK loaded in the JVM, it displays a severe warning and continues

Connecting to XLA

3-10 Oracle TimesTen In-Memory Database Java Developer's Guide

processing. You can find out the GDK version supported by JMS/XLA by entering the
following commands:

$ cd install_dir/lib
$ java -cp ./orai18n.jar oracle.i18n.util.GDKOracleMetaData -version

Also see "Compiling Java applications" on page 1-2.

Connecting to XLA
To connect to XLA so you can receive updates, use a JMS connection factory to create a
connection. Then use the connection to establish a session. When you are ready to start
processing updates, call start() on the connection to enable message dispatching.
This is shown in Example 3–5 that follows, from the syncJMS Quick Start demo.

Example 3–5 Connecting to XLA

/* JMS connection */
private javax.jms.TopicConnection connection;
/* JMS session */
private TopicSession session;
...
// get Connection
Context messaging = new InitialContext();
TopicConnectionFactory connectionFactory =
 (TopicConnectionFactory)messaging.lookup("TopicConnectionFactory");
connection = connectionFactory.createTopicConnection();
connection.start();
...
// get Session
session = connection.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);

Monitoring tables for updates
Before you can start receiving updates, you must inform XLA which tables you want
to monitor for changes.

To subscribe to changes and turn on XLA publishing for a table, call the
ttXlaSubscribe built-in procedure through JDBC.

When you use ttXlaSubscribe to enable XLA publishing for a table, you must specify
parameters for the name of the table and the name of the bookmark that are used to
track the table:

ttXlaSubscribe(user.table, mybookmark)

For example, call ttXlaSubscribe by the JDBC CallableStatement interface:

Connection con;

CallableStatement cStmt;
...
cStmt = con.prepareCall("{call ttXlaSubscribe(user.table, mybookmark)}");
cStmt.execute();

Use ttXlaUnsubscribe to unsubscribe from the table during shutdown. For more
information, see "Unsubscribing from a table" on page 3-14.

The application can verify table subscriptions by checking the SYS.XLASUBSCRIPTIONS
system table.

Receiving and processing updates

Using JMS/XLA for Event Management 3-11

For more information about using TimesTen built-in procedures in a Java application,
see "Using CALL to execute procedures and functions" on page 2-35.

Receiving and processing updates
You can receive XLA updates either synchronously or asynchronously.

To receive and process updates for a topic synchronously, perform the following tasks.

1. Create a durable TopicSubscriber instance to subscribe to a topic.

2. Call receive() or receiveNoWait() on your subscriber to get the next available
update.

3. Process the returned MapMessage instance.

To receive and process updates for a topic asynchronously, perform the following
tasks.

1. Create a MessageListener instance to process the updates.

2. Create a durable TopicSubscriber instance to subscribe to a topic.

3. Register the MessageListener with the TopicSubscriber.

4. Start the connection.

5. Wait for messages to arrive. You can call the Object method wait() to wait for
messages if your application does not have to do anything else in its main thread.

When an update is published, the MessageListener method onMessage() is called and
the message is passed in as a MapMessage instance.

The application can verify table subscriptions by checking the SYS.XLASUBSCRIPTIONS
system table.

Note: LOB support in JMS/XLA is limited, as follows:

■ You can subscribe to tables containing LOB columns, but
information about the LOB value itself is unavailable.

■ Columns containing LOBs are reported as empty (zero length) or
null (if the value is actually NULL). In this way, you can tell the
difference between a null column and a non-null column.

See the next section, "Receiving and processing updates", for
additional notes.

Note: You may miss messages if you do not register the
MessageListener before you start the connection. If the connection is
already started, stop the connection, register the MessageListener,
then start the connection.

Note: LOB support in XLA is limited. You can access LOB fields in
update messages using the MapMessage method getBytes() for BLOB
fields or getString() for CLOB or NCLOB fields; however, these
fields contain zero-length data (or null data if the value is actually
NULL).

Receiving and processing updates

3-12 Oracle TimesTen In-Memory Database Java Developer's Guide

Example 3–6, from the asyncJMS Quick Start demo, uses a listener to process updates
asynchronously.

Example 3–6 Using a listener to process updates asynchronously

MyListener myListener = new MyListener(outStream);

outStream.println("Creating consumer for topic " + topic);
Topic xlaTopic = session.createTopic(topic);
bookmark = "bookmark";
TopicSubscriber subscriber = session.createDurableSubscriber(xlaTopic, bookmark);

// After setMessageListener() has been called, myListener's onMessage
// method is called for each message received.
subscriber.setMessageListener(myListener);

Note that bookmark must already exist. You can use JDBC and the
ttXlaBookmarkCreate built-in procedure to create a bookmark. Also, the
TopicSubscriber must be a durable subscriber. XLA connections are designed to be
durable. XLA bookmarks make it possible to disconnect from a topic and then
reconnect to start receiving updates where you left off. The string you pass in as the
subscription identifier when you create a durable subscriber is used as the XLA
bookmark name.

You can call unsubscribe() on the JMS TopicSession to delete the XLA bookmark
used by the subscriber when the application shuts down. This causes a new bookmark
to be created when the application is restarted.

When you receive an update, you can use the MapMessage getter methods to extract
information from the message and then perform whatever processing your application
requires. The TimesTen XlaConstants class defines constants for the update types and
special message fields for use in processing XLA update messages.

The first step is typically to determine what type of update the message contains. You
can use the MapMessage method getInt() to get the contents of the __TYPE field, and
compare the value against the numeric constants defined in the XlaConstants class.

In Example 3–7, from the asyncJMS Quick Start demo, the method onMessage()
extracts the update type from the MapMessage object and displays the action that the
update signifies.

Example 3–7 Determining the update type

public void onMessage(Message message)
{
 MapMessage mapMessage = (MapMessage)message;
 String messageType = null;
 /* Standard output stream */
 private static PrintStream outStream = System.out;

 if (message == null)
 {
 errStream.println("MyListener: update message is null");
 return ;
 }

 try
 {
 outStream.println();
 outStream.println("onMessage: got a " + mapMessage.getJMSType() + " message");

Receiving and processing updates

Using JMS/XLA for Event Management 3-13

 // Get the type of event (insert, update, delete, drop table, etc.).
 int type = mapMessage.getInt(XlaConstants.TYPE_FIELD);
 if (type == XlaConstants.INSERT)
 {
 outStream.println("A row was inserted.");
 }
 else if (type == XlaConstants.UPDATE)
 {
 outStream.println("A row was updated.");
 }
 else if (type == XlaConstants.DELETE)
 {
 outStream.println("A row was deleted.");
 }
 else
 {

 // Messages are also received for DDL events such as CREATE TABLE.
 // This program processes INSERT, UPDATE, and DELETE events,
 // and ignores the DDL events.
 return ;
 }
 ...
 }
...
}

When you know what type of message you have received, you can process the
message according to the application's needs. To get a list of all of the fields in a
message, you can call the MapMessage method getMapNames(). You can retrieve
individual fields from the message by name.

Example 3–8, from the asyncJMS Quick Start demo, extracts the column values from
insert, update, and delete messages using the column names.

Example 3–8 Extracting column values

/* Standard output stream */
private static PrintStream outStream = System.out;
...
if (type == XlaConstants.INSERT
 || type == XlaConstants.UPDATE
 || type == XlaConstants.DELETE)
{

 // Get the column values from the message.
 int cust_num = mapMessage.getInt("cust_num");
 String region = mapMessage.getString("region");
 String name = mapMessage.getString("name");
 String address = mapMessage.getString("address");

 outStream.println("New Column Values:");
 outStream.println("cust_num=" + cust_num);
 outStream.println("region=" + region);
 outStream.println("name=" + name);
 outStream.println("address=" + address);
}

Terminating a JMS/XLA application

3-14 Oracle TimesTen In-Memory Database Java Developer's Guide

For detailed information about the contents of XLA update messages, see "JMS/XLA
MapMessage contents" on page 6-1. For information about how TimesTen column
types map to JMS data types and the getter methods used to retrieve the column
values, see "Data type support" on page 6-10.

Terminating a JMS/XLA application
When the XLA application has finished reading from the transaction log, it should
gracefully exit by closing the XLA connection, deleting any unneeded bookmarks, and
unsubscribing from any tables to which you explicitly subscribed.

Closing the connection
To close the connection to XLA, call close() on the Connection object.

After a connection has been closed, any attempt to use it, its sessions, or its subscribers
results in an IllegalStateException error. You can continue to use messages
received through the connection, but you cannot call the acknowledge() method on
the received message after the connection is closed.

Deleting bookmarks
Deleting XLA bookmarks during shutdown is optional. Deleting a bookmark enables
the disk space associated with any unread update records in the transaction log to be
freed.

If you do not delete the bookmark, it can be reused by a durable subscriber. If the
bookmark is available when a durable subscriber reconnects, the subscriber receives
all unacknowledged updates published since the previous connection was terminated.
Keep in mind that when a bookmark exists with no application reading from it, the
transaction log continues to grow and the amount of disk space consumed by your
database increases.

To delete a bookmark, you can simply call unsubscribe() on the JMS Session, which
invokes the ttXlaBookmarkDelete built-in procedure to remove the XLA bookmark.

Unsubscribing from a table
To turn off XLA publishing for a table, use the ttXlaUnsubscribe built-in procedure. If
you use ttXlaSubscribe to enable XLA publishing for a table, use ttXlaUnsubscribe
to unsubscribe from the table when shutting down your application.

When you unsubscribe from a table, specify the name of the table and the name of the
bookmark used to track the table:

ttXlaUnsubscribe(user.table, mybookmark)

The following example calls ttXlaUnSubscribe through a CallableStatement object.

Note: You cannot delete replicated bookmarks while the replication
agent is running.

Note: If you want to drop a table, you must unsubscribe from it first.

Using JMS/XLA as a replication mechanism

Using JMS/XLA for Event Management 3-15

Example 3–9 Unsubscribing from a table

Connection con;
CallableStatement cStmt;
...
cStmt = con.prepareCall("{call ttXlaUnSubscribe(user.table, mybookmark)}");
cStmt.execute();

For more information about using TimesTen built-in procedures in a Java application,
see "Using CALL to execute procedures and functions" on page 2-35.

Using JMS/XLA as a replication mechanism
TimesTen replication as described in Oracle TimesTen In-Memory Database Replication
Guide is sufficient for most customer needs; however, it is also possible to use
JMS/XLA to replicate updates from one database to another. Implementing your own
replication scheme on top of JMS/XLA in this way is fairly complicated, but can be
considered if TimesTen replication is not feasible for some reason.

Applying JMS/XLA messages to a target database
The source database generates JMS/XLA messages. To apply the messages to a target
database, you must extract the XLA descriptor from them. Use the MapMessage
interface to extract the update descriptor:

MapMessage message;
/*
 *...other code
 */
try {
 byte[]updateMessage=
 mapMessage.getBytes(XlaConstants.UPDATE_DESCRIPTOR_FIELD);
}
catch (JMSException jex){
/*
 *...other code
 */
}

The target database may reside on a different system from the source database. The
update descriptor is returned as a byte array and can be serialized for network
transmission.

You must create a target database object that represents the target database so you can
apply the objects from the source database. You can create a target database object
named myTargetDataStore as an instance of the TargetDataStoreImpl class. For
example:

TargetDataStore myTargetDataStore=
 new TargetDataStoreImpl("DSN=sampleDSN");

Apply messages to myTargetDataStore by using the TargetDataStore method
apply(). For example:

myTargetDataStore.apply(updateDescriptor);

By default, TimesTen checks for conflicts on the target database before applying the
update. If the target database has information that is later than the update,
TargetDataStore throws an exception. If you do not want TimesTen to check for

Using JMS/XLA as a replication mechanism

3-16 Oracle TimesTen In-Memory Database Java Developer's Guide

conflicts, use the TargetDataStore method setUpdateConflictCheckFlag() to change
the behavior.

By default, TimesTen commits the update to the database based on commit flags and
transaction boundaries contained in the update descriptor. If you want the application
to perform manual commits instead, use the setAutoCommitFlag() method to change
the autocommit flag. To perform a manual commit on myTargetDataStore, use the
following command:

myTargetDataStore.commit();

You can perform a rollback if errors occur during the application of the update. Use
the following command for myTargetDataStore:

myTargetDataStore.rollback();

Close myTargetDataStore by using the following command:

myTargetDataStore.close();

See "JMS/XLA replication API" on page 6-13 for more information about the
TargetDataStore interface.

TargetDataStore error recovery
Invoking TargetDataStore can yield transient and permanent errors.

TargetDataStore methods return a nonzero value when transient errors occur. The
application can retry the operation and is responsible for monitoring update
descriptors that must be reapplied. For more information about transient XLA errors,
see "Handling XLA errors" in Oracle TimesTen In-Memory Database C Developer's Guide.

TargetDataStore methods return a JMSException object for permanent errors. If the
application receives a permanent error, it should verify that the database is valid. If the
database is invalid, the target database object should be closed and a new one should
be created. Other types of permanent errors may require manual intervention.

The following example shows how to recover errors from a TargetDataStore object.

Example 3–10 Recovering errors

TargetDataStore theTargetDataStore;
byte[] updateDescriptor;
int rc;

// Other code
try {
 ...
 if ((rc = theTargetDataStore.apply(updateDescriptor)) == 0) {
 // Apply successful.
 }
 else {
 // Transient error. Retry later.
 }
 }
catch (JMSException jex) {
 if (theTargetDataStore.isDataStoreValid()) {
 // Database valid; permanent error that may need Administrator intervention.
 }
 else {
 try {

Using JMS/XLA as a replication mechanism

Using JMS/XLA for Event Management 3-17

 theTargetDataStore.close();
 }
 catch (JMSException closeEx) {
 // Close errors are not usual. This may need Administrator intervention.
 }
}

Using JMS/XLA as a replication mechanism

3-18 Oracle TimesTen In-Memory Database Java Developer's Guide

4

Distributed Transaction Processing: JTA 4-1

4Distributed Transaction Processing: JTA

This chapter describes the TimesTen implementation of the Java Transaction API
(JTA).

The TimesTen implementation of the Java JTA interfaces is intended to enable Java
applications, application servers, and transaction managers to use TimesTen resource
managers in distributed transaction processing (DTP) environments. The TimesTen
implementation is supported for use by the Oracle WebLogic Server.

The purpose of this chapter is to provide information specific to the TimesTen
implementation of JTA and is intended to be used with the following documents:

■ The JTA and JDBC documentation available from the following locations:

http://www.oracle.com/technetwork/java/javaee/tech/

http://www.oracle.com/technetwork/java/javase/tech/

■ WebLogic documentation, available through the following location:

http://www.oracle.com/technetwork/middleware/weblogic/documentation

As TimesTen JTA is built on top of the TimesTen implementation of the X/Open XA
standard, much of the discussion here is in terms of underlying XA features. You can
also refer to "Distributed Transaction Processing: XA" in Oracle TimesTen In-Memory
Database C Developer's Guide.

This chapter includes the following topics:

■ Overview of JTA

■ Using JTA in TimesTen

■ Using the JTA API

Overview of JTA
This section provides a brief overview of the following XA concepts.

Important:

■ The TimesTen XA implementation does not work with the
TimesTen Application-Tier Database Cache (TimesTen Cache).
The start of any XA transaction fails if the cache agent is running.

■ You cannot execute an XA transaction if replication is enabled.

■ Do not execute DDL statements within an XA transaction.

Overview of JTA

4-2 Oracle TimesTen In-Memory Database Java Developer's Guide

■ X/Open DTP model

■ Two-phase commit

X/Open DTP model
Figure 4–1 illustrates the interfaces defined by the X/Open DTP model.

Figure 4–1 Distributed transaction processing model

The TX interface is what applications use to communicate with a transaction manager.
The figure shows an application communicating global transactions to the transaction
manager. In the DTP model, the transaction manager breaks each global transaction
down into multiple branches and distributes them to separate resource managers for
service. It uses the JTA interface to coordinate each transaction branch with the
appropriate resource manager.

In the context of TimesTen JTA, the resource managers can be a collection of TimesTen
databases, or databases in combination with other commercial databases that support
JTA.

Global transaction control provided by the TX and JTA interfaces is distinct from local
transaction control provided by the native JDBC interface. It is generally best to
maintain separate connections for local and global transactions. Applications can
obtain a connection handle to a TimesTen resource manager to initiate both local and
global transactions over the same connection.

Two-phase commit
In a JTA implementation, the transaction manager commits the distributed branches of
a global transaction by using a two-phase commit protocol.

1. In phase 1, the transaction manager directs each resource manager to prepare to
commit, which is to verify and guarantee it can commit its respective branch of the
global transaction. If a resource manager cannot commit its branch, the transaction
manager rolls back the entire transaction in phase 2.

2. In phase 2, the transaction manager either directs each resource manager to
commit its branch or, if a resource manager reported it was unable to commit in
phase 1, rolls back the global transaction.

Note the following optimizations.

Application Program (AP)

Transaction
Manager (TM)

Resource
Managers (RMs)

XA Interface

TX or proprietary
transaction interface

Native Interface
(e.g. ODBC)

XA or JTA Interface

Global
Transactions

Native Interface
(ODBC or JDBC)

Transaction
Branches

Using JTA in TimesTen

Distributed Transaction Processing: JTA 4-3

■ If a global transaction is determined by the transaction manager to have involved
only one branch, it skips phase 1 and commits the transaction in phase 2.

■ If a global transaction branch is read-only, where it does not generate any
transaction log records, the transaction manager commits the branch in phase 1
and skips phase 2 for that branch.

Using JTA in TimesTen
This section discusses the following considerations for using JTA in TimesTen:

■ TimesTen database requirements for XA

■ Global transaction recovery in TimesTen

■ XA error handling in TimesTen

TimesTen database requirements for XA
To guarantee global transaction consistency, TimesTen XA transaction branches must
be durable. The TimesTen implementation of the xa_prepare(), xa_rollback(), and
xa_commit() functions log their actions to disk, regardless of the value set in the
DurableCommits general connection attribute or by the ttDurableCommit built-in
procedure. If you must recover from a failure, both the resource manager and the
TimesTen transaction manager have a consistent view of which transaction branches
were active in a prepared state at the time of failure.

Global transaction recovery in TimesTen
When a database is loaded from disk to recover after a failure or unexpected
termination, any global transactions that were prepared but not committed are left
pending, or in doubt. Normal processing is not enabled until the disposition of all
in-doubt transactions has been resolved.

After connection and recovery are complete, TimesTen checks for in-doubt
transactions. If there are no in-doubt transactions, operation proceeds as normal. If
there are in-doubt transactions, other connections may be created, but virtually all
operations are prohibited on those connections until the in-doubt transactions are
resolved. Any other JDBC calls result in the following error:

Error 11035 - "In-doubt transactions awaiting resolution in recovery must be
resolved first"

The list of in-doubt transactions can be retrieved through the XA implementation of
xa_recover(), then dealt with through the XA call xa_commit(), xa_rollback(), or
xa_forget(), as appropriate. After all the in-doubt transactions are cleared, operations
proceed normally.

This scheme should be adequate for systems that operate strictly under control of the
transaction manager, since the first thing the transaction manager should do after
connect is to call xa_recover().

If the transaction manager is unavailable or cannot resolve an in-doubt transaction,
you can use the ttXactAdmin utility -HCommit or -HAbort option to independently
commit or abort the individual transaction branches. Be aware, however, that these

Note: The transaction manager considers the global transaction
committed if and only if all branches successfully commit.

Using the JTA API

4-4 Oracle TimesTen In-Memory Database Java Developer's Guide

ttXactAdmin options require ADMIN privilege. See "ttXactAdmin" in Oracle TimesTen
In-Memory Database Reference.

XA error handling in TimesTen
The XA specification has a limited, strictly defined set of errors that can be returned
from XA interface calls. The ODBC SQLError mechanism returns XA defined errors,
along with any additional information.

The TimesTen XA related errors begin at number 11000. Errors 11002 through 11020
correspond to the errors defined by the XA standard.

See "Warnings and Errors" in Oracle TimesTen In-Memory Database Error Messages and
SNMP Traps for the complete list of errors.

Using the JTA API
The TimesTen implementation of JTA provides an API consistent with that specified
in the JTA specification. TimesTen JTA operates on JDK 1.4 and above.

This section covers the following topics for using the JTA API:

■ Required packages

■ Creating a TimesTen XAConnection object

■ Creating XAResource and Connection objects

Regarding how to register a TimesTen DSN with WebLogic, information on
configuring TimesTen for application servers and object-relational mapping
frameworks is available in the TimesTen Quick Start. Click Java EE and OR Mapping
under Configuration and Setup.

Required packages
The TimesTen JDBC and XA implementations are available in the following packages:

com.timesten.jdbc.*;
com.timesten.jdbc.xa.*;

Your application should also import these standard packages:

import java.sql.*;
import javax.sql.*;
import javax.transaction.xa.*;

Creating a TimesTen XAConnection object
Connections to XA data sources are established through XADataSource objects. You
can create an XAConnection object for your database by using the
TimesTenXADataSource instance as a connection factory. TimesTenXADataSource
implements the javax.sql.XADataSource interface.

After creating a new TimesTenXADataSource instance, use the setUrl() method to
specify a database.

The URL should look similar to the following.

■ For a direct connection: jdbc:timesten:direct:DSNname

■ For a client connection: jdbc:timesten:client:DSNname

Using the JTA API

Distributed Transaction Processing: JTA 4-5

You can also optionally use the setUser() and setPassword() methods to set the ID
and password for a specific user.

Example 4–1 Creating a TimesTen XA data source object

In this example, the TimesTenXADataSource object is used as a factory to create a new
TimesTen XA data source object. Then the URL that identifies the TimesTen DSN
(dsn1), the user name (myName), and the password (myPasswd) are set for this
TimesTenXADataSource instance. Then the getXAConnection() method is used to
return a connection to the object, xaConn.

TimesTenXADataSource xads = new TimesTenXADataSource();

xads.setUrl("jdbc:timesten:direct:dsn1");
xads.setUser("myName");
xads.setPassword("myPassword");

XAConnection xaConn = null;
try {
 xaConn = xads.getXAConnection();
}
catch (SQLException e){
 e.printStackTrace();
 return;
}

You can create multiple connections to an XA data source object. This example creates
a second connection, xaConn2:

XAConnection xaConn = null;
XAConnection xaConn2 = null;

try {
 xaConn = xads.getXAConnection();
 xaConn2 = xads.getXAConnection();
}

Example 4–2 Creating multiple TimesTen XA data source objects

This example creates two instances of TimesTenXADataSource for the databases named
dsn1 and dsn2. It then creates a connection for dsn1 and two connections for dsn2.

TimesTenXADataSource xads = new TimesTenXADataSource();

xads.setUrl("jdbc:timesten:direct:dsn1");
xads.setUser("myName");
xads.setPassword("myPassword");

XAConnection xaConn1 = null;
XAConnection xaConn2 = null;
XAConnection xaConn3 = null;

try {
 xaConn1 = xads.getXAConnection(); // connect to dsn1
}
catch (SQLException e){
 e.printStackTrace();

Note: Privilege must be granted to connect to a database. Refer to
"Access control for connections" on page 2-9.

Using the JTA API

4-6 Oracle TimesTen In-Memory Database Java Developer's Guide

 return;
}

xads.setUrl("jdbc:timesten:direct:dsn2");
xads.setUser("myName");
xads.setPassword("myPassword");

try {
 xaConn2 = xads.getXAConnection(); // connect to dsn2
 xaConn3 = xads.getXAConnection(); // connect to dsn2
}
catch (SQLException e){
 e.printStackTrace();
 return;
}

Creating XAResource and Connection objects
After using getXAConnection() to obtain an XAConnection object, you can use the
XAConnection method getXAResource() to obtain an XAResource object, then the
XAConnection method getConnection() to obtain a Connection object for the
underlying connection.

Example 4–3 Getting an XA resource object and a connection

//get an XAResource
XAResource xaRes = null;
try {
 xaRes = xaConn.getXAResource();
}
catch (SQLException e){
 e.printStackTrace();
 return;
}

//get an underlying physical Connection
Connection conn = null;
try {
 conn = xaConn.getConnection();
}
catch (SQLException e){
 e.printStackTrace();
 return;
}

From this point, you can use the same connection, conn, for both local and global
transactions. Be aware of the following, however.

■ You must commit or roll back an active local transaction before starting a global
transaction. Otherwise you get the XAException exception XAER_OUTSIDE.

■ You must end an active global transaction before initiating a local transaction,
otherwise you get a SQLException, "Illegal combination of local transaction and
global (XA) transaction."

Note: Once an XAConnection is established, autocommit is turned
off.

5

Java Application Tuning 5-1

5Java Application Tuning

This chapter provides tips on how to tune a Java application to run optimally on a
TimesTen database. See "TimesTen Database Performance Tuning" in Oracle TimesTen
In-Memory Database Operations Guide for more general tuning tips.

This chapter is organized as follows:

■ Tuning JDBC applications

■ Tuning JMS/XLA applications

Tuning JDBC applications
This section describes general principles to consider when tuning JDBC applications
for TimesTen. It includes the following topics:

■ Use prepared statement pooling

■ Use arrays of parameters for batch execution

■ Bulk fetch rows of TimesTen data

■ Use the ResultSet method getString() sparingly

■ Avoid data type conversions

■ Close connections, statements, and result sets

Use prepared statement pooling
TimesTen supports prepared statement pooling for pooled connections, as discussed
in the JDBC 3.0 specification, through the TimesTen ObservableConnectionDS class.
This is the TimesTen implementation of ConnectionPoolDataSource. Note that
statement pooling is transparent to an application. Use of the PreparedStatement
object, including preparing and closing the statement, is no different.

Enable prepared statement pooling and specify the maximum number of statements in
the pool by calling the ObservableConnectionDS method setMaxStatements(). A
value of 0, the default, disables prepared statement pooling. Any integer value greater
than 0 enables prepared statement pooling with the value taken as the maximum
number of statements. Once set, this value should not be changed.

Note: Also see "Working with TimesTen result sets: hints and
restrictions" on page 2-11 and the notes in "Binding parameters and
executing statements" on page 2-13.

Tuning JDBC applications

5-2 Oracle TimesTen In-Memory Database Java Developer's Guide

Prepared statements or callable statements are pooled at the time of creation if the
pool has not reached its capacity. In Java 6, you can remove a prepared statement or
callable statement from the pool by calling setPoolable(false) on the statement
object. After the statement is closed, it is removed from the pool.

Use arrays of parameters for batch execution
You can improve performance by using groups, referred to as batches, of statement
executions, calling the addBatch() and executeBatch() methods for Statement or
PreparedStatement objects.

A batch can consist of a set of INSERT, UPDATE, DELETE, or MERGE statements. Statements
that return result sets, such as SELECT statements, are not allowed in a batch. A SQL
statement is added to a batch by calling addBatch() on the statement object. The set of
SQL statements associated with a batch are executed through the executeBatch()
method.

For PreparedStatement objects, the batch consists of repeated executions of a
statement using different input parameter values. For each set of input values, create
the batch by using appropriate setXXX() calls followed by the addBatch() call. The
batch is executed by the executeBatch() method.

TimesTen recommends the following batch sizes for TimesTen 11g Release 2 (11.2.2):

■ 256 for INSERT statements

■ 31 for UPDATE statements

■ 31 for DELETE statements

■ 31 for MERGE statements

Example 5–1 Batching statements

// turn off autocommit
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();
stmt.addBatch("INSERT INTO employees VALUES (1000, 'Joe Jones')");
stmt.addBatch("INSERT INTO departments VALUES (260, 'Shoe')");
stmt.addBatch("INSERT INTO emp_dept VALUES (1000, 260)");

// submit a batch of update commands for execution
int[] updateCounts = stmt.executeBatch();
conn.commit ();

Example 5–2 Batching prepared statements

// turn off autocommit
conn.setAutoCommit(false);
// prepare the statement

Important: With prepared statement pooling, JDBC considers two
statements to be identical if their SQL (including comments) is
identical, regardless of other considerations such as optimizer settings.
Do not use prepared statement pooling in a scenario where different
optimizer hints may be applied to statements that are otherwise
identical. In this scenario, a statement execution may result in the use
of an identical statement from the pool with an unpredictable
optimizer setting.

Tuning JDBC applications

Java Application Tuning 5-3

PreparedStatement stmt = conn.prepareStatement
 ("INSERT INTO employees VALUES (?, ?)");

// first set of parameters
stmt.setInt(1, 2000);
stmt.setString(2, "Kelly Kaufmann");
stmt.addBatch();

// second set of parameters
stmt.setInt(1, 3000);
stmt.setString(2, "Bill Barnes");
stmt.addBatch();

// submit the batch for execution. Check update counts
int[] updateCounts = stmt.executeBatch();
conn.commit ();

For either a Statement or PreparedStatement object, the executeBatch() method
returns an array of update counts (updateCounts[] in Example 5–1 and Example 5–2
above), with one element in the array for each statement execution. The value of each
element can be any of the following:

■ A number indicating how many rows in the database were affected by the
corresponding statement execution

■ SUCCESS_NO_INFO, indicating the corresponding statement execution was
successful, but the number of affected rows is unknown

■ EXECUTE_FAILED, indicating the corresponding statement execution failed

Once there is a statement execution with EXECUTE_FAILED status, no further
statement executions are attempted.

For more information about using the JDBC batch update facility, refer to the Javadoc
for the java.sql.Statement interface, particularly information about the
executeBatch() method, at the following locations (the first for Java 6, the second for
Java 5.0):

http://docs.oracle.com/javase/6/docs/api/java/sql/package-summary.html
http://docs.oracle.com/javase/1.5.0/docs/api/java/sql/package-summary.html

Bulk fetch rows of TimesTen data
TimesTen provides an extension that allows an application to fetch multiple rows of
data. For applications that retrieve large amounts of TimesTen data, fetching multiple
rows can increase performance greatly. However, when using Read Committed
isolation level, locks are held on all rows being retrieved until the application has
received all the data, decreasing concurrency. For more information on this feature,
see "Fetching multiple rows of data" on page 2-12.

Use the ResultSet method getString() sparingly
Because Java strings are immutable, the ResultSet method getString() must allocate
space for a new string in addition to translating the underlying C string to a Unicode
string, making it a costly call.

Note: Associative array parameters are not supported with JDBC
batch execution. (See "Binding associative arrays" on page 2-20.)

Tuning JDBC applications

5-4 Oracle TimesTen In-Memory Database Java Developer's Guide

In addition, you should not call getString() on primitive numeric types, like byte or
int, unless it is absolutely necessary. It is much faster to call getInt() on an integer
column, for example.

Avoid data type conversions
TimesTen instruction paths are so short that even small delays due to data conversion
can cause a relatively large percentage increase in transaction time.

Use the appropriate getXXX() method on a ResultSet object for the data type of the
data in the underlying database. For example, if the data type of the data is DOUBLE, to
avoid data conversion in the JDBC driver you should call getDouble(). Similarly, use
the appropriate setXXX() method on the PreparedStatement object for the input
parameter in an SQL statement. For example, if you are inserting data into a CHAR
column using a PreparedStatement, you should use setString().

Close connections, statements, and result sets
For better performance, always close JDBC objects such as connection, statement, and
result set instances when finished using them. Example 5–3 shows typical usage.

Example 5–3 Closing connection, statement, and result set

 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 try {
 // create connections, execute statements, etc.
 // Handle any errors
 } catch (SQLException ex) {
 // See "Handling errors" on page 2-40.
 }
 finally {
 // Close JDBC objects such as connections, statements, result sets, etc.
 if (rs != null) {
 try {
 rs.close();
 }
 catch(SQLException finalex) {
 // See "Handling errors" on page 2-40.
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 }
 catch(SQLException finalex) {
 // See "Handling errors" on page 2-40.
 }
 }
 // Always, close the connection to TimesTen
 if (conn != null) {
 try {
 conn.close();
 }
 catch(SQLException finalex) {
 // See "Handling errors" on page 2-40.
 }
 }

Tuning JMS/XLA applications

Java Application Tuning 5-5

Tuning JMS/XLA applications
This section contains specific performance tuning tips for applications that use the
JMS/XLA API. JMS/XLA has some overhead that makes it slower than using the C
XLA API. In the C API, records are returned to the user in a batch. In the JMS model
an object is instantiated and each record is presented one at a time in a callback to the
MessageListener method onMessage(). High performance applications can use some
tuning to overcome some of this overhead.

This section includes the following topics:

■ Configure xlaPrefetch parameter

■ Reduce frequency of update acknowledgments

■ Handling high event rates

Configure xlaPrefetch parameter
The code underlying the JMS layer that reads the transaction log is more efficient if it
can fetch as many rows as possible before presenting the object/rows to the user. The
amount of prefetching is controlled in the jmsxla.xml configuration file with the
xlaPrefetch parameter. Set the prefetch count to a large value like 100 or 1000.

Reduce frequency of update acknowledgments
In JMS/XLA, acknowledging updates moves the bookmark and results in updates to
system tables. You can typically improve application performance by waiting until
several updates have been detected before issuing the acknowledgment. You can
control the acknowledgment frequency in either of the following modes. (See "XLA
acknowledgment modes" on page 3-8 for related information.)

■ DUPS_OK_ACKNOWLEDGE, where JMS/XLA prefetches records according to the
xlaprefetch setting, and an acknowledgment is automatically sent when the last
record in the prefetched block is read.

■ CLIENT_ACKNOWLEDGE, where you manually call the acknowledge() method on the
MapMessage instance as desired.

The appropriate choice for acknowledgment frequency depends on your application
logic. Acknowledging after every 100 updates, for example, has been used
successfully. Be aware, however, that there is a trade-off. Acknowledgments affect
XLA log holds, and acknowledging too infrequently may result in undesirable log file
accumulation. (Also see "XLA bookmarks and transaction log holds" on page 3-5.)

Handling high event rates
The synchronous interface is suitable only for applications with low event rates and
for which AUTO_ACKNOWLEDGE or DUPS_OK_ACKNOWLEDGE acknowledgment modes are
acceptable. Applications that require CLIENT_ACKNOWLEDGE acknowledgment mode and

Note: See "Access control impact on XLA" on page 3-9 for access
control considerations relevant to JMS/XLA.

Note: In DUPS_OK_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE mode, the
reader application must have some tolerance for seeing the same set of
records more than once.

Tuning JMS/XLA applications

5-6 Oracle TimesTen In-Memory Database Java Developer's Guide

applications with high event rates should use the asynchronous interface for receiving
updates. They should acknowledge the messages on the callback thread itself if they
are using CLIENT_ACKNOWLEDGE as acknowledgment mode. See "Receiving and
processing updates" on page 3-11.

6

JMS/XLA Reference 6-1

6JMS/XLA Reference

This chapter provides reference information for the JMS/XLA API. It includes the
following topics:

■ JMS/XLA MapMessage contents

■ DML event data formats

■ DDL event data formats

■ Data type support

■ JMS classes for event handling

■ JMS/XLA replication API

■ JMS message header fields

JMS/XLA MapMessage contents
A javax.jms.MapMessage contains a set of typed name and value pairs that
correspond to the fields in an XLA update header, which is published as the C
structure ttXlaUpdateDesc_t. The fields contained in a MapMessage instance depend
on what type of update it is.

XLA update types
Each MapMessage returned by the JMS/XLA API contains at least one name and value
pair, __TYPE (with 2 underscores), that identifies the type of update described in the
message as an integer value. The types are specified as integer values. As a
convenience, you can use the constants defined in
com.timesten.dataserver.jmsxla.XlaConstants to compare against the integer
types. Table 6–1 shows the supported types.

Note: "Access control impact on XLA" on page 3-9 introduces the
effects of TimesTen access control features on XLA functionality.

Table 6–1 XLA update types

Type Description

ADD_COLUMNS Indicates that columns have been added.

COMMIT_FIELD This is the name of the field in a message that contains a
commit.

COMMIT_ONLY Indicates that a commit has occurred.

JMS/XLA MapMessage contents

6-2 Oracle TimesTen In-Memory Database Java Developer's Guide

XLA flags
For all update types, the MapMessage contains name and value pairs that indicate the
following.

CONTEXT_FIELD This is the name of the field in a message that contains the
context value passed to the ttApplicationContext
procedure as a byte array.

CREATE_INDEX Indicates that an index has been created.

CREATE_SEQ Indicates that a sequence has been created.

CREATE_SYNONYM Indicates that a synonym has been created.

CREATE_TABLE Indicates that a table has been created.

CREATE_VIEW Indicates that a view has been created.

DELETE Indicates that a row has been deleted.

DROP_COLUMNS Indicates that columns have been dropped.

DROP_INDEX Indicates that an index has been dropped.

DROP_SEQ Indicates that a sequence has been dropped.

DROP_SYNONYM Indicates that a synonym has been dropped.

DROP_TABLE Indicates that a table has been dropped.

DROP_VIEW Indicates that a view has been dropped.

FIRST_FIELD This is the name of the field that contains the flag that
indicates the first record in a transaction.

INSERT Indicates that a row has been inserted.

MTYP_FIELD This is the name of the field in a message that contains type
information.

MVER_FIELD This is the name of the field in a message that contains the
transaction log file number of the XLA record.

NULLS_FIELD This is the name of the field in a message that contains the list
of fields that have null values.

REPL_FIELD This is the name of the field in a message that contains the
flag that indicates that the update was applied by replication.

TBLNAME_FIELD This is the name of the field in a message that contains the
table name.

TBLOWNER_FIELD This is the name of the field in a message that specifies the
table owner.

TRUNCATE Indicates that a table has been truncated.

TYPE_FIELD This is the name of the field in a message that specifies the
message type.

UPDATE Indicates that a row has been updated.

UPDATE_DESCRIPTOR_FIELD This is the name of the field that returns a ttXlaUpdateDesc_
t structure as a byte array.

UPDATED_COLUMNS_FIELD This is the name of the field in a message that contains the list
of updated columns.

Table 6–1 (Cont.) XLA update types

Type Description

JMS/XLA MapMessage contents

JMS/XLA Reference 6-3

■ Whether this is the first record of a transaction

■ Whether this is the last record of a transaction

■ Whether the update was performed by replication

■ Which table was updated

■ The owner of the updated table

The name and value pairs that contain these XLA flags are described in Table 6–2.
Each name is preceded by two underscores.

Table 6–2 JMS/XLA flags

Name Description
Corresponding
ttXlaUpdateDesc_t flag

__AGING_DELETE Indicates that a delete was due to
aging. The flag is present only if the
XLA update record is due to an aging
delete. The XlaConstants constant
AGING_DELETE_FIELD represents this
flag.

TT_AGING

__CASCADING_DELETE Indicates that a delete was due to a
cascading delete. The flag is present
only if the XLA update record is due
to a cascading delete. The
XlaConstants constant CASCADING_
DELETE_FIELD represents this flag.

TT_CASCDEL

__COMMIT Indicates that this is the last record in
a transaction and that a commit was
performed after this operation. This is
in the MapMessage if TT_UPDCOMMIT is
on. The XlaConstants constant
COMMIT_FIELD represents this flag.

TT_UPDCOMMIT

__FIRST Indicates that this is the first record in
a new transaction. This is in the
MapMessage if TT_UPDFIRST is on. The
XlaConstants constant FIRST_FIELD
represents this flag.

TT_UPDFIRST

__REPL Indicates that this change was applied
to the database through replication.
This is in the MapMessage if TT_
UPDREPL is on. The XlaConstants
constant REPL_FIELD represents this
flag.

TT_UPDREPL

__UPDCOLS This is only used for UPDATETUP
records, indicating that the XLA
update descriptor contains a list of
columns that were actually modified
by the operation. It is specified as a
string that contains a
semicolon-delimited list of column
names and is in the MapMessage only if
TT_UPDCOLS is on. The XlaConstants
constant UPDATE_COLUMNS_FIELD
represents this flag.

TT_UPDCOLS

Note: The XlaConstants interface is in the
com.timesten.dataserver.jmsxla package.

DML event data formats

6-4 Oracle TimesTen In-Memory Database Java Developer's Guide

Applications can use the MapMessage method itemExists() to determine whether a
flag is present, and getBoolean() to determine whether a flag is set. As input, specify
the XlaConstants constant that corresponds to the flag, such as XlaConstants.AGING_
DELETE_FIELD.

Example 6–1 Check for commit

Equivalent to using TT_UPDCOMMIT in XLA, you can use the following test in JMS/XLA
to see whether this is the last record in a transaction and that a commit was performed
after the operation.

if (MapMessage.getBoolean(XlaConstants.COMMIT_FIELD)) { // Field is set
 ...
}

DML event data formats
Many DML operations generate XLA updates that can be monitored by XLA event
handlers. This section describes the contents of the MapMessage objects that are
generated for these operations.

Table data
For INSERT, UPDATE and DELETE operations, MapMessage contains two name and value
pairs, __TBLOWNER and __TBLNAME. These fields describe the name and owner of the
table that is being updated. For example, for a table SCOTT.EMPLOYEES, any related
MapMessage contains a field __TBLOWNER with the string value "SCOTT" and a field __
TBLNAME with the string value "EMPLOYEES".

Row data
For INSERT and DELETE operations, a complete image of the inserted or deleted row is
included in the message and all column values are available.

For UPDATE operations, the complete "before" and "after" images of the row are
available, along with a list of column numbers indicating which columns were
modified. Access the column values using the names of the columns. The column
names in the "before" image all begin with a single underscore. For example,
columnname contains the new value and _columnname contains the old value.

If the value of a column is NULL, it is omitted from the column list. The __NULLS name
and value pair contains a semicolon-delimited list of the columns that contain NULL
values.

Context information
If the ttApplicationContext built-in procedure was used to encode context
information in an XLA record, that information is in the __CONTEXT name and value
pair in the MapMessage. If no context information is provided, the __CONTEXT value is
not in the MapMessage.

DDL event data formats
Many data definition language (DDL) operations generate XLA updates that can be
monitored by XLA event handlers. This section describes the contents of the
MapMessage objects that are generated for these operations.

DDL event data formats

JMS/XLA Reference 6-5

CREATE_TABLE
Messages with __TYPE=1 (XlaConstants.CREATE_TABLE) indicate that a table has been
created. Table 6–3 shows the name and value pairs that are in a MapMessage generated
for a CREATE_TABLE operation.

DROP_TABLE
Messages with __TYPE=2 (XlaConstants.DROP_TABLE) indicate that a table has been
dropped. Table 6–4 shows the name and value pairs that are in a MapMessage
generated for a DROP_TABLE operation.

Table 6–3 CREATE_TABLE data provided in update messages

Name Value

OWNER String value of the owner of the created table

NAME String value of the name of the created table

PK_COLUMNS String value containing the names of the columns in the
primary key for this table

If the table has no primary key, the PK_COLUMNS value is not
specified.

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

COLUMNS String value containing the names of the columns in the
table

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

Note: For each column in the table, additional name and
value pairs that describe the column are in the MapMessage.

_column_name_TYPE Integer value representing the data type of this column
(from java.sql.Types)

_column_name_PRECISION Integer value containing the precision of this column (for
NUMERIC or DECIMAL)

_column_name_SCALE Integer value containing the scale of this column (for
NUMERIC or DECIMAL)

_column_name_SIZE Integer value indicating the maximum size of this column
(for CHAR, VARCHAR, BINARY, or VARBINARY)

_column_name_NULLABLE Boolean value indicating whether this column can have a
NULL value

_column_name_OUTOFLINE Boolean value indicating whether this column is stored in
the inline or out-of-line part of the tuple

_column_name_INPRIMARYKEY Boolean value indicating whether this column is part of the
primary key of the table

Table 6–4 DROP_TABLE data provided in update messages

Name Value

OWNER String value of the owner of the sequence

NAME String value of the name of the dropped sequence

DDL event data formats

6-6 Oracle TimesTen In-Memory Database Java Developer's Guide

CREATE_INDEX
Messages with __TYPE=3 (XlaConstants.CREATE_INDEX) indicate that an index has
been created. Table 6–5 shows the name and value pairs that are in a MapMessage
generated for a CREATE_INDEX operation.

DROP_INDEX
Messages with __TYPE=4 (XlaConstants.DROP_INDEX) indicate that an index has been
dropped. Table 6–6 shows the name and value pairs that are in a MapMessage
generated for a DROP_INDEX operation.

ADD_COLUMNS
Messages with __TYPE=5 (XlaConstants.ADD_COLUMNS) indicate that a table has been
altered by adding new columns. Table 6–7 shows the name and value pairs that are in
a MapMessage generated for a ADD_COLUMNS operation.

Table 6–5 CREATE_INDEX data provided in update messages

Name Value

TBLOWNER String value of the owner of the table on which the index was created

TBLNAME String value of the name of the table on which the index was created

IXNAME String value of the name of the created index

INDEX_TYPE String value representing the index type: "P" (primary key), "F" (foreign
key), or "R" (regular)

INDEX_METHOD String value representing the index method: "H" (hash), "T" (range), or
"B" (bit map)

UNIQUE Boolean value indicating whether the index is unique

HASH_PAGES Integer value representing the number of pages in a hash index (not
specified for range indexes)

COLUMNS String value describing the columns in the index

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

Table 6–6 DROP_INDEX data provided In update messages

Name Value

OWNER String value of the owner of the table on which the index was dropped

TABLE_NAME String value of the name of the table on which the index was dropped

INDEX_NAME String value of the name of the dropped index

Table 6–7 ADD_COLUMNS data provided in update messages

Name Value

OWNER String value of the owner of the altered table

NAME String value of the name of the altered table

DDL event data formats

JMS/XLA Reference 6-7

DROP_COLUMNS
Messages with __TYPE=6 (XlaConstants.DROP_COLUMNS) indicate that a table has been
altered by dropping existing columns. Table 6–8 shows the name and value pairs that
are in a MapMessage generated for a DROP_COLUMNS operation.

PK_COLUMNS String value containing the names of the columns in the
primary key for this table

If the table has no primary key, the PK_COLUMNS value is
not specified.

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

COLUMNS String value containing the names of the columns added
to the table

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

Note: For each added column, additional name and value
pairs that describe the column are in the MapMessage.

_column_name_TYPE Integer value representing the data type of this column
(from java.sql.Types)

_column_name_PRECISION Integer value containing the precision of this column (for
NUMERIC or DECIMAL)

_column_name_SCALE Integer value containing the scale of this column (for
NUMERIC or DECIMAL)

_column_name_SIZE Integer value indicating the maximum size of this column
(for CHAR, VARCHAR, BINARY, or VARBINARY)

_column_name_NULLABLE Boolean value indicating whether this column can have a
NULL value

_column_name_OUTOFLINE Boolean value indicating whether this column is stored in
the inline or out-of-line part of the tuple

_column_name_INPRIMARYKEY Boolean value indicating whether this column is part of
the primary key of the table

Table 6–8 DROP_COLUMNS data provided in update message

Name Value

OWNER String value of the owner of the altered table

NAME String value of the name of the altered table

COLUMNS String value containing the names of the columns dropped
from the table

Format:

<col1name>[;<col2name> [;<col3name>[;...]]]

Note: For each dropped column, additional name and
value pairs that describe the column are in the MapMessage.

_column_name_TYPE Integer value representing the data type of this column
(from java.sql.Types)

Table 6–7 (Cont.) ADD_COLUMNS data provided in update messages

Name Value

DDL event data formats

6-8 Oracle TimesTen In-Memory Database Java Developer's Guide

CREATE_VIEW
Messages with __TYPE=14 (XlaConstants.CREATE_VIEW) indicate that a materialized
view has been created. Table 6–9 shows the name and value pairs that are in a
MapMessage generated for a CREATE_VIEW operation.

DROP_VIEW
Messages with __TYPE=15 (XlaConstants.DROP_VIEW) indicate that a materialized
view has been dropped. Table 6–10 shows the name and value pairs that are in a
MapMessage generated for a DROP_VIEW operation.

CREATE_SEQ
Messages with __TYPE=16 (XlaConstants.CREATE_SEQ) indicate that a sequence has
been created. Table 6–11 shows the name and value pairs that are in a MapMessage
generated for a CREATE_SEQ operation.

_column_name_PRECISION Integer value containing the precision of this column (for
NUMERIC or DECIMAL)

_column_name_SCALE Integer value containing the scale of this column (for
NUMERIC or DECIMAL)

_column_name_SIZE Integer value indicating the maximum size of this column
(for CHAR, VARCHAR, BINARY, or VARBINARY)

_column_name_NULLABLE Boolean value indicating whether this column can have a
NULL value

_column_name_OUTOFLINE Boolean value indicating whether this column is stored in
the inline or out-of-line part of the tuple

_column_name_INPRIMARYKEY Boolean value indicating whether this column is part of the
primary key of the table

Table 6–9 CREATE_VIEW data provided in update messages

Name Value

OWNER String value of the owner of the created view

NAME String value of the name of the created view

Table 6–10 DROP_VIEW data provided in update messages

Name Value

OWNER String value of the owner of the dropped view

NAME String value of the name of the dropped view

Table 6–11 CREATE_SEQ data provided in update messages

Name Value

OWNER String value of the owner of the created sequence

NAME String value of the name of the created sequence

CYCLE Boolean value indicating whether the CYCLE option was specified on the
new sequence

Table 6–8 (Cont.) DROP_COLUMNS data provided in update message

Name Value

DDL event data formats

JMS/XLA Reference 6-9

DROP_SEQ
Messages with __TYPE=17 (XlaConstants.DROP_SEQ) indicate that a sequence has
been dropped. Table 6–12 shows the name and value pairs that are in a MapMessage
generated for a DROP_SEQ operation.

CREATE_SYNONYM
Messages with __TYPE=19 (XlaConstants.CREATE_SYNONYM) indicate that a synonym
has been created. Table 6–13 shows the name and value pairs that are in a MapMessage
generated for a CREATE_SYNONYM operation.

DROP_SYNONYM
Messages with __TYPE=20 (XlaConstants.DROP_SYNONYM) indicate that a synonym has
been dropped. Table 6–14 shows the name and value pairs that are in a MapMessage
generated for a DROP_SYNONYM operation.

INCREMENT A long value indicating the INCREMENT BY option specified for the new
sequence

MIN_VALUE A long value indicating the MINVALUE option specified for the new
sequence

MAX_VALUE A long value indicating the MAXVALUE option specified for the new
sequence

Table 6–12 DROP_SEQ data provided in update messages

Name Value

OWNER String value of the owner of the dropped table

NAME String value of the name of the dropped table

Table 6–13 CREATE_SYNONYM data provided in update messages

Name Value

OWNER String value of the owner of the created synonym

NAME String value of the name of the created synonym

OBJECT_OWNER String value of the schema of the object for which you are creating a
synonym

OBJECT_NAME String value of the name of the object for which you are creating a
synonym

IS_PUBLIC Boolean value indicating whether the synonym is public

IS_REPLACE Boolean value indicating whether the synonym was created using
CREATE OR REPLACE

Table 6–14 DROP_SYNONYM data provided in update messages

Name Value

OWNER String value of the owner of the dropped synonym

NAME String value of the name of the dropped synonym

IS_PUBLIC Boolean value indicating whether the synonym was public

Table 6–11 (Cont.) CREATE_SEQ data provided in update messages

Name Value

Data type support

6-10 Oracle TimesTen In-Memory Database Java Developer's Guide

TRUNCATE
Messages with __TYPE=18 (XlaConstants.TRUNCATE) indicate that a table has been
truncated. All rows in the table have been deleted. Table 6–15 shows the name and
value pairs that are in a MapMessage generated for a TRUNCATE operation.

Data type support
This section covers data type considerations for JMS/XLA.

Data type mapping
Table 6–16 lists access methods for the data types supported by TimesTen. For more
information about data types, see "Data Types" in Oracle TimesTen In-Memory Database
SQL Reference.

Table 6–15 TRUNCATE data provided in update messages

Name Value

OWNER String value of the owner of the truncated table

NAME String value of the name of the truncated table

Table 6–16 Data type mapping

TimesTen column type Read with MapMessage method...

CHAR(n) getString()

VARCHAR(n) getString()

NCHAR(n) getString()

NVARCHAR(n) getString()

NVARCHAR2(n) getString()

DOUBLE getString()

Can be converted to BigDecimal or to Double by the application.

FLOAT getString()

Can be converted to BigDecimal or to Double by the application.

DECIMAL(p,s) getString()

Can be converted to BigDecimal or to Double by the application.

NUMERIC(p,s) getString()

Can be converted to BigDecimal or to Double by the application.

INTEGER getInt()

SMALLINT getShort()

TINYINT getShort()

BINARY(n) getBytes()

VARBINARY(n) getBytes()

DATE getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

Can be converted to Date or Calendar by the application.

Data type support

JMS/XLA Reference 6-11

TIME getString()

Can be converted to Date or Calendar by the application.

TIMESTAMP getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970). It truncates nanoseconds. Use
getString() if you require nanosecond precision.

Can be converted to Date or Calendar by the application.

TT_CHAR getString()

TT_VARCHAR getString()

TT_NCHAR getString()

TT_NVARCHAR getString()

ORA_CHAR getString()

ORA_VARCHAR2 getString()

ORA_NCHAR getString()

ORA_NVARCHAR2 getString()

VARCHAR2 getString()

TT_TINYINT getShort()

TT_SMALLINT getShort()

TT_INTEGER getInt()

TT_BIGINT getLong()

BINARY_FLOAT getFloat()

BINARY_DOUBLE getDouble()

REAL getFloat()

NUMBER getString()

ORA_NUMBER getString()

TT_DECIMAL getString()

TT_TIME getString()

TT_DATE getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

TT_TIMESTAMP getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

ORA_DATE getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970).

ORA_TIMESTAMP getLong(), getString()

The getLong() method returns microseconds since epoch
(00:00:00 UTC, January 1, 1970). It truncates nanoseconds. Use
getString() if you require nanosecond precision.

TT_BINARY getBytes()

Table 6–16 (Cont.) Data type mapping

TimesTen column type Read with MapMessage method...

JMS classes for event handling

6-12 Oracle TimesTen In-Memory Database Java Developer's Guide

Data types character set
JMS/XLA uses a UTF-16 character set for the following data types:

■ TT_CHAR

■ TT_VARCHAR

■ ORA_CHAR

■ ORA_VARCHAR2

■ TT_NCHAR

■ TT_NVARCHAR

■ ORA_NCHAR

■ ORA_NVARCHAR2

■ NCHAR

■ NVARCHAR

■ NVARCHAR2

JMS classes for event handling
The following JMS classes are available for JMS/XLA applications. Note that the
JMS/XLA API supports only publish/subscribe messaging.

■ Message (parent class only)

■ TopicConnectionFactory

■ Topic

■ TopicSubscriber

■ Connection

■ Session

■ ConnectionMetaData

■ MapMessage

■ TopicConnection

■ TopicSession

TT_VARBINARY getBytes()

ROWID getBytes(), getString()

BLOB getBytes()

Note: Information about the LOB value itself is unavailable. LOB
fields contain zero-length data or null data (if the value is actually
NULL).

CLOB, NCLOB getString()

Note: Information about the LOB value itself is unavailable. LOB
fields contain zero-length data or null data (if the value is actually
NULL).

Table 6–16 (Cont.) Data type mapping

TimesTen column type Read with MapMessage method...

JMS message header fields

JMS/XLA Reference 6-13

■ ConnectionFactory

■ Destination

■ MessageConsumer

■ ExceptionListener

See the following Java EE locations (the first for Java 6, the second for Java 5.0) for
documentation of these classes:

http://docs.oracle.com/javaee/6/api/
http://docs.oracle.com/javaee/5/api/

JMS/XLA replication API
The TimesTen com.timesten.dataserver.jmsxla package includes the
TargetDataStore interface and the TargetDataStoreImpl class.

See Oracle TimesTen In-Memory Database JMS/XLA Java API Reference for information.

TargetDataStore interface
This interface is used to apply XLA update records from a source database to a target
database. The source and target database schema must be identical for the affected
tables.

This interface defines the methods shown in Table 6–17.

TargetDataStoreImpl class
This class creates connections and XLA handles for a target database. It implements
the TargetDataStore interface.

JMS message header fields
Table 6–18 shows the JMS message header fields provided by JMS/XLA.

Table 6–17 TargetDataStore methods

Method Description

apply() Applies XLA update descriptor to the target database.

close() Closes the connections to the database and releases the
resources.

commit() Performs a manual commit.

getAutoCommitFlag() Returns the value of the autocommit flag.

getConnectString() Returns the database connection string.

getUpdateConflictCheckFlag() Returns the value of the flag for checking update
conflicts.

isClosed() Checks whether the object is closed.

isDataStoreValid() Checks whether the database is valid.

rollback() Rolls back the last transaction.

setAutoCommitFlag() Sets the flag for autocommit during apply.

setUpdateConflictCheckFlag() Sets the flag for checking update conflicts during
apply.

JMS message header fields

6-14 Oracle TimesTen In-Memory Database Java Developer's Guide

Table 6–18 JMS/XLA header fields

Header Contents

JMSMessageId Transaction log file number of the XLA record

JMSType String representation of the __TYPE field

Index-1

Index

A
access control

connection attributes, 2-7
for connections, 2-9
impact in JMS/XLA, 3-9
overview of impact, 2-39

acknowledgments, JMS/XLA, 3-8
ADD_COLUMNS, JMS/XLA, 6-6
array binds--see associative array binding
associative array binding, 2-20
asynchronous detection, automatic client

failover, 2-46
asynchronous updates, JMS/XLA, 3-11
autocommit mode, 2-33
automatic client failover

asynchronous detection, 2-46
configuration, 2-46
overview, features, 2-45
synchronous detection, 2-46

B
batching SQL statements, 5-2
bind variable--see binding parameters
binding parameters

associative arrays, 2-20
duplicate parameters in PL/SQL, 2-20
duplicate parameters in SQL, 2-18
how to bind, 2-13
output and input/output, 2-17

Blob interface support, 2-2
bookmarks--see XLA bookmarks
built-in procedures

calling TimesTen built-ins, 2-35
ttApplicationContext, 6-2
ttCkpt, 2-36
ttDataStoreStatus, 2-36
ttDurableCommit, 4-3
ttXlaBookMarkCreate, 3-12
ttXlaBookmarkDelete, 3-14
ttXlaSubscribe, 3-10
ttXlaUnsubscribe, 3-14

bulk fetch rows, 5-3
bulk insert, update, delete (batching), 5-2

C
cache

autorefresh cache groups and XLA, 3-9
cache groups, cache instances affected, 2-39
Oracle password, 2-38
set passthrough level, 2-38

CALL
PL/SQL procedures and functions, 2-35
TimesTen built-in procedures, 2-35

CallableStatement interface support, 2-2
cancel statement, 2-3
catching errors, 2-43
character set for data types, JMS/XLA, 6-12
client failover--see automatic client failover
ClientFailoverEvent class, TimesTen, 2-6
ClientFailoverEventListener interface, TimesTen, 2-6
Clob interface support, 2-3
commit

autocommit mode, 2-33
commit() method, 2-33
committing changes, 2-33
manual commit, 2-33
SQL COMMIT statement, 2-34

configuration file, JMS/XLA, 3-6
connecting

connection URL, creating, 2-7
opening and closing direct connection, 2-9
TimesTenXADataSource, JTA, 4-4
to TimesTen, 2-6
to XLA, 3-10
user name and passwords, 2-8
XAConnection, JTA, 4-4
XAResource and Connection, JTA, 4-6

connection attributes
first connection attributes, 2-7
general connection attributes, 2-7
setting programmatically, 2-7

connection events, ConnectionEvent support, 2-4
Connection interface support, 2-3
connection pool, 2-4
ConnectionPoolDataSource interface support, 2-4
CREATE_INDEX, JMS/XLA, 6-6
CREATE_SEQ, JMS/XLA, 6-8
CREATE_SYNONYM, JMS/XLA, 6-9
CREATE_TABLE, JMS/XLA, 6-5

Index-2

CREATE_VIEW, JMS/XLA, 6-8
cursors

closed upon commit, 2-33
REF CURSORs, 2-24
result set hints and restrictions, 2-11

D
data source, JTA, 4-4
data types

character set, JMS/XLA, 6-12
conversions and performance, 5-4
mapping, JMS/XLA, 6-10

DatabaseMetaData interface support, 2-3
DataSource interface support, 2-4
demo applications, Quick Start, 1-2
direct connection, opening and closing, 2-9
disconnecting, from TimesTen, 2-8
distributed transaction processing--see JTA
DML returning, 2-25
driver (JDBC), loading (Java 5), 2-7
DriverManager class, using, 2-9
DROP_COLUMNS, JMS/XLA, 6-7
DROP_INDEX, JMS/XLA, 6-6
DROP_SEQ, JMS/XLA, 6-9
DROP_SYNONYM, JMS/XLA, 6-9
DROP_TABLE, JMS/XLA, 6-5
DROP_VIEW, JMS/XLA, 6-8
dropping a table, JMS/XLA, requirements, 3-14
DuplicateBindMode general connection

attribute, 2-18
Durable commits, with JTA, 4-3

E
environment variables, 1-1
errors

catching and responding, 2-43
error levels, 2-41
fatal errors, 2-41
handling, 2-40
non-fatal errors, 2-41
reporting, 2-42
rolling back failed transactions, 2-43
warnings, 2-41
XA/JTA error handling, 4-4

escape syntax in SQL functions, 2-34
event data formats, JMS/XLA

DDL events, 6-4
DML events, 6-4

event handling, JMS classes, 6-12
exceptions--see errors
executing SQL statements, 2-10, 2-13
extensions, JDBC, supported by TimesTen, 2-4

F
failover--see automatic client failover
fatal errors, handling, 2-41
fetching

multiple rows, 2-12

results, simple example, 2-11
first connection attributes, 2-7
flags, XLA, 6-2

G
GDK, JMS/XLA dependency, JMS/XLA, 3-9
general connection attributes, 2-7
getString() method, performance, 5-3
global transactions, recovery, JTA, 4-3
globalization, GDK dependency, JMS/XLA, 3-9

H
header fields, message, JMS/XLA, 6-13

I
input/output parameters, 2-17
installing TimesTen and JDK, 1-1
Instant Client, 1-2
isDataStoreValid() method, 2-9

J
JAR files for Java 5 and Java 6, 1-2
Java 5 JAR file, 1-2
Java 6

JAR file, 1-2
RowId interface support, 2-3, 2-27
ROWID type, 2-27

Java environment variables, 1-1
Java Transaction API--see JTA
java.sql

supported classes, 2-4
supported interfaces, 2-2

javax.sql, supported interfaces and classes, 2-4
JDBC driver, loading (Java 5), 2-7
JDBC support

additional TimesTen interfaces and classes, 2-6
java.sql supported classes, 2-4
java.sql supported interfaces, 2-2
key classes and interfaces, 2-1
package imports, 2-2
TimesTen extensions, 2-4

JDK, installing, 1-1
JMS/XLA

access control impact, 3-9
asynchronous updates, 3-11
bookmarks--see XLA bookmarks
character set for data types, 6-12
closing the connection, 3-14
concepts, 3-1
configuration file, 3-6
connecting to XLA, 3-10
data type mapping, 6-10
dropping a table, 3-14
event data formats, DDL, 6-4
event data formats, DML, 6-4
event handling, JMS classes, 6-12
flags, 6-2

Index-3

GDK dependency, 3-9
high event rates, 5-5
LOB support, 3-11
MapMessage contents, 6-1
MapMessage objects, XLA updates, 3-7
materialized views and XLA, 3-3
message header fields, 6-13
monitoring tables, 3-10
performance tuning, 5-5
receiving and processing updates, 3-11
replication API, 6-13
replication using JMS/XLA, 3-15
synchronous updates, 3-11
table subscriptions, verifying, 3-10
terminating a JMS/XLA application, 3-14
topics, 3-6
unsubscribe from a table, 3-14
update types, 6-1
XLA acknowledge and performance, 5-5
XLA acknowledgments, 3-8
XLA updates, 3-7

JTA
API, 4-4
durable commits, 4-3
error handling, XA, 4-4
global transactions, recover, 4-3
overview, 4-1
packages, required, 4-4
requirements, database, 4-3
resource manager, 4-2
TimesTenXADataSource, 4-4
transaction manager, 4-2
two-phase commit, 4-2
XAConnection, 4-4
XAResource, 4-6
X/Open DTP model, 4-2

L
loading JDBC driver (Java 5), 2-7
LOBs

JDBC, 2-28
JMS/XLA support, 3-11
overview, 2-28

M
MapMessage

contents, 6-1
Map Message objects, XLA updates, 3-7

materialized views and XLA, 3-3
message header fields, JMS/XLA, 6-13
monitoring tables, JMS/XLA, 3-10
multithreaded environments, 2-34

N
NClob interface support, 2-3

O
ObservableConnection, 2-4
ObservableConnectionDS, 2-4
Oracle Globalization Development Kit, supported

version, JMS/XLA, 3-9
Oracle Instant Client, 1-2
Oracle password, for cache, 2-38
orai18n.jar version, JMS/XLA, 3-9
output parameters, 2-17

P
package imports, JDBC, 2-2
packages, required, JTA, 4-4
parallel replication, user-defined, setup and JDBC

support, 2-39
ParameterMetaData interface support, 2-3
parameters

associative arrays, 2-20
binding, 2-13
duplicate parameters in PL/SQL, 2-20
duplicate parameters in SQL, 2-18
output and input/output, 2-17

passthrough, set level with ttOptSetFlag, 2-38
passwords for connection, 2-8
performance

batch execution, 5-2
bulk fetch rows, 5-3
data type conversions, 5-4
getString() method, 5-3
high event rates, JMS/XLA, 5-5
JDBC application tuning, 5-1
JMS/XLA application tuning, 5-5
prepared statement pooling, 5-1
XLA acknowledge, 5-5

PL/SQL procedures and functions, calling, 2-35
pooled connections, client failover, 2-46
PooledConnection interface support, 2-4
pooling prepared statements, 5-1
prefetching

and performance, 5-5
fetching multiple rows, 2-12
xlaPrefetch parameter, 5-5

prepared statement
pooling, 5-1
sharing, 2-15

PreparedStatement interface support, 2-3
preparing SQL statements, 2-13
privileges--see access control

Q
query threshold (or for any SQL), 2-37
query timeout (or for any SQL), 2-37
query, executing, 2-11
Quick Start demo applications and tutorials, 1-2

R
recovery, global transactions, JTA, 4-3

Index-4

REF CURSORs, 2-24
replicated bookmarks, JMS/XLA, 3-5
replication

JMS/XLA replication API, 6-13
using JMS/XLA, 3-15

resource manager, JTA, 4-2
result sets, hints and restrictions, 2-11
ResultSet interface support, 2-3
ResultSetMetaData interface support, 2-3
RETURNING INTO clause, 2-25
rollback

rollback() method, 2-33
rolling back failed transactions, 2-43
SQL ROLLBACK, 2-34

rowids
RowId interface support, 2-3, 2-27
rowid support, 2-27
ROWID type, 2-27

S
security--see access control
Statement interface support, 2-3
statements

canceling, 2-3
executing, 2-10, 2-13
preparing, 2-13

subscriptions (JMS/XLA), table, verifying, 3-10
synchronous detection, automatic client

failover, 2-46
synchronous updates, JMS/XLA, 3-11

T
table subscriptions (JMS/XLA), verifying, 3-10
target database

applying messages, 3-15
checking conflicts, 3-15
creating, 3-15
manual commit, 3-16
rollback, 3-16

TargetDataStore interface, JMS/XLA
error recovery, 3-16
methods, 6-13

TargetDataStoreImpl class, JMS/XLA, 6-13
terminating a JMS/XLA application, 3-14
threads, multithreaded environments, 2-34
threshold for SQL statements, 2-37
timeout for SQL statements, 2-37
TimesTen Cache--see cache
TimesTenBlob interface, 2-5
TimesTenCallableStatement interface, 2-5
TimesTenClob interface, 2-5
TimesTenConnection interface, 2-5
TimesTenPreparedStatement interface, 2-5, 2-6
TimesTenStatement interface, 2-5, 2-6
TimesTenTypes interface, 2-6
TimesTenVendorCode interface, 2-6, 2-43
TimesTenXADataSource, JTA, 4-4
topics, JMS/XLA, 3-6

transaction manager, JTA, 4-2
TRUNCATE, JMS/XLA, 6-10
ttApplicationContext built-in procedure, 6-2
ttCkpt built-in procedure, 2-36
ttDataStoreStatus built-in procedure, 2-36
ttXlaBookmarkCreate built-in procedure, 3-12
ttXlaBookmarkDelete built-in procedure, 3-14
ttXlaSubscribe built-in procedure, 3-10
ttXlaUnsubscribe built-in procedure, 3-14
tuning

JDBC applications (performance), 5-1
JMS/XLA applications (performance), 5-5

two-phase commit, JTA, 4-2

U
unsubscribe from a table, JMS/XLA, 3-14
update types, XLA, 6-1
update, executing, 2-11
updates, receiving and processing, JMS/XLA, 3-11
URL for connection, 2-7
user name for connection, 2-8
UTF-16 character set for data types, JMS/XLA, 6-12

V
validity, database, checking, 2-9

W
warnings, 2-41

X
XAConnection, JTA, 4-4
XADataSource interface support, 2-4
XAResource and Connection, JTA, 4-6
XA--see JTA
XLA bookmarks

deleting, 3-14
overview, 3-4
replicated bookmarks, 3-5

xlaPrefetch parameter, 5-5
XLA--see JMS/XLA
X/Open DTP model, 4-2

	Contents
	Preface
	Audience
	Related documents
	Conventions
	Documentation Accessibility

	What's New
	New features in Release 11.2.2.0.0

	1 Java Development Environment
	Installing TimesTen and the JDK
	Setting the environment for Java development
	Compiling Java applications
	About the TimesTen Java demos

	2 Working with TimesTen Databases in JDBC
	Key JDBC classes and interfaces
	Package imports
	Support for interfaces in the java.sql package
	Support for classes in the java.sql package
	Support for interfaces and classes in the javax.sql package
	TimesTen JDBC extensions
	Additional TimesTen classes and interfaces

	Managing TimesTen database connections
	Create a connection URL for the database and specify connection attributes
	Connect to the database
	Disconnect from the database
	Open and close a direct connection
	Check database validity
	Access control for connections

	Managing TimesTen data
	Executing simple SQL statements
	Working with TimesTen result sets: hints and restrictions
	Fetching multiple rows of data
	Binding parameters and executing statements
	Preparing SQL statements and setting input parameters
	Working with output and input/output parameters
	Binding duplicate parameters in SQL statements
	Binding duplicate parameters in PL/SQL
	Binding associative arrays

	Working with REF CURSORs
	Working with DML returning (RETURNING INTO clause)
	Working with rowids
	Working with LOBs
	About LOBs
	LOB objects in JDBC
	Differences between TimesTen LOBs and Oracle Database LOBs
	LOB factory methods
	LOB getter and setter methods
	TimesTen LOB interface methods
	LOB prefetching
	Passthrough LOBs

	Committing or rolling back changes to the database
	Setting autocommit
	Manually committing or rolling back changes
	Using COMMIT and ROLLBACK SQL statements

	Managing multiple threads
	Java escape syntax and SQL functions

	Using additional TimesTen data management features
	Using CALL to execute procedures and functions
	Setting a timeout or threshold for executing SQL statements
	Setting a timeout duration for SQL statements
	Setting a threshold duration for SQL statements

	Features for use with TimesTen Cache
	Setting temporary passthrough level with the ttOptSetFlag built-in procedure
	Managing cache groups

	Features for use with replication

	Considering TimesTen features for access control
	Handling errors
	About fatal errors, non-fatal errors, and warnings
	Handling fatal errors
	Handling non-fatal errors
	About warnings
	Abnormal termination

	Reporting errors and warnings
	Catching and responding to specific errors
	Rolling back failed transactions

	JDBC support for automatic client failover
	Features and functionality of JDBC support for automatic client failover
	General Client Failover Features
	Client failover features for pooled connections

	Configuration of automatic client failover
	Synchronous detection of automatic client failover
	Asynchronous detection of automatic client failover
	Implement a client failover event listener
	Register the client failover listener instance
	Remove the client failover listener instance

	3 Using JMS/XLA for Event Management
	JMS/XLA concepts
	How XLA reads records from the transaction log
	XLA and materialized views
	XLA bookmarks
	How bookmarks work
	Replicated bookmarks
	XLA bookmarks and transaction log holds

	JMS/XLA configuration file and topics
	XLA updates
	XLA acknowledgment modes
	Prefetching updates
	Acknowledging updates

	Access control impact on XLA
	XLA limitations

	JMS/XLA and Oracle GDK dependency
	Connecting to XLA
	Monitoring tables for updates
	Receiving and processing updates
	Terminating a JMS/XLA application
	Closing the connection
	Deleting bookmarks
	Unsubscribing from a table

	Using JMS/XLA as a replication mechanism
	Applying JMS/XLA messages to a target database
	TargetDataStore error recovery

	4 Distributed Transaction Processing: JTA
	Overview of JTA
	X/Open DTP model
	Two-phase commit

	Using JTA in TimesTen
	TimesTen database requirements for XA
	Global transaction recovery in TimesTen
	XA error handling in TimesTen

	Using the JTA API
	Required packages
	Creating a TimesTen XAConnection object
	Creating XAResource and Connection objects

	5 Java Application Tuning
	Tuning JDBC applications
	Use prepared statement pooling
	Use arrays of parameters for batch execution
	Bulk fetch rows of TimesTen data
	Use the ResultSet method getString() sparingly
	Avoid data type conversions
	Close connections, statements, and result sets

	Tuning JMS/XLA applications
	Configure xlaPrefetch parameter
	Reduce frequency of update acknowledgments
	Handling high event rates

	6 JMS/XLA Reference
	JMS/XLA MapMessage contents
	XLA update types
	XLA flags

	DML event data formats
	Table data
	Row data
	Context information

	DDL event data formats
	CREATE_TABLE
	DROP_TABLE
	CREATE_INDEX
	DROP_INDEX
	ADD_COLUMNS
	DROP_COLUMNS
	CREATE_VIEW
	DROP_VIEW
	CREATE_SEQ
	DROP_SEQ
	CREATE_SYNONYM
	DROP_SYNONYM
	TRUNCATE

	Data type support
	Data type mapping
	Data types character set

	JMS classes for event handling
	JMS/XLA replication API
	TargetDataStore interface
	TargetDataStoreImpl class

	JMS message header fields

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

