
Oracle Rdb7™

Guide to SQL Programming

Release 7.0

Part No. A42867-1

®

Guide to SQL Programming

Release 7.0

Part No. A42867-1

Copyright © 1994, 1996, Oracle Corporation. All rights reserved.

This software contains proprietary information of Oracle Corporation; it is provided under
a license agreement containing restrictions on use and disclosure and is also protected by
copyright law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find
any problems in the documentation, please report them to us in writing. Oracle Corporation
does not warrant that this document is error free.

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are
’ commercial computer software’ and use, duplication and disclosure of the programs shall
be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, programs delivered subject to the Federal Acquisition Regulations are ’ restricted
computer software’ and use, duplication and disclosure of the programs shall be subject to
the restrictions in FAR 52.227-14, Rights in Data—General, including Alternate III (June
1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The programs are not intended for use in any nuclear, aviation, mass transit,
medical, or other inherently dangerous applications. It shall be the licensee’s
responsibility to take all appropriate fail-safe, back up, redundancy and other
measures to ensure the safe use of such applications if the programs are used for
such purposes, and Oracle disclaims liability for any damages caused by such use
of the programs.

Oracle is a registered trademark of Oracle Corporation, Redwood City, California. Oracle
CDD/Repository, Oracle Rally, Oracle Rdb, and Rdb7 are trademarks of Oracle Corporation,
Redwood City, California.

All other company or product names are used for identification purposes only and may be
trademarks of their respective owners.

Contents

Send Us Your Comments . xix

Preface . xxi

Technical Changes and New Features . xxv

Part I SQL Programming Overview

1 Introduction to SQL Programming

1.1 What Are the Two SQL Programming Interfaces? 1–1
1.1.1 SQL Module Processor . 1–2
1.1.2 SQL Precompiler . 1–3
1.2 Choosing a Programming Interface . 1–3
1.3 Finding Online Program Examples . 1–5

Part II Developing Application Programs That Use SQL

2 SQL Program Development Cycle

2.1 Overview of the Application Program Development Cycle 2–1
2.2 Understanding End-User Requirements . 2–2
2.3 Investigating Metadata and Data . 2–3
2.4 Developing a Prototype . 2–4
2.5 Converting the Prototype to an Application Program 2–5
2.6 Developing an Application Program . 2–6

iii

3 Introduction to SQL Module Language

3.1 Developing SQL Module Language Application Programs: Basic
Steps . 3–1

3.2 Creating an SQL Module Source File . 3–3
3.2.1 Including Blank Lines and Comments in an SQL Module 3–6
3.2.2 Naming a Module . 3–6
3.2.3 Specifying the Dialect . 3–7
3.2.4 Specifying Character Sets for a Session . 3–8
3.2.5 Identifying the Host Language That Calls Module Procedures 3–8
3.2.6 Specifying the Catalog . 3–9
3.2.7 Specifying the Schema . 3–10
3.2.8 Specifying an Authorization Identifier . 3–10
3.2.9 Specifying the Alias . 3–11
3.2.10 Specifying That Parameters Must Include Colons 3–11
3.2.11 Specifying DECLARE Statements in Modules 3–12
3.3 Calling SQL Module Procedures from a Host Language Program 3–13
3.4 Writing Portable Applications Using the SQL Module Processor 3–15
3.5 Finding More Information About the SQL Module Processor 3–15

4 Writing Module SQL Procedures

4.1 Introducing SQL Module Procedures . 4–1
4.2 Specifying the Common Elements of SQL Module Procedures 4–3
4.2.1 Naming a Procedure . 4–3
4.2.2 Declaring Procedure Parameters . 4–4
4.2.3 Parameters Required for Different Kinds of Procedures 4–5
4.2.4 Associating Procedure Parameters and Actual Parameters 4–9
4.2.5 Specifying Parameter Data Types . 4–11
4.2.6 Effect of the LANGUAGE Clause on the Parameter Data Type 4–12
4.2.7 Effect of the LANGUAGE Clause on the Parameter-Passing

Mechanism . 4–13
4.2.8 Overriding the Default Passing Mechanism for a Procedure

Parameter . 4–15
4.2.9 Requesting a Run-Time Check of Parameters Used by the Calling

Module . 4–15
4.3 Using Single SQL Statements in Procedures . 4–16
4.4 Using Compound Statements in Multistatement Procedures 4–16
4.5 Understanding the Restrictions of the SQL Module Language 4–18

iv

5 Processing SQL Modules and Host Language Files

5.1 Invoking the SQL Module Processor . 5–1
5.2 Processing SQL and Host Language Modules . 5–2
5.3 Bypassing Parameter Checking for Faster Compilation 5–4
5.4 Improving SQL Module Processor Performance for Remote

Databases . 5–4
5.5 Using Context Files with SQL Module Language 5–5
5.6 Deciding on the Scope of an SQL Module . 5–6

6 Using Precompiled SQL

6.1 Understanding the Precompiler Process . 6–1
6.2 Embedding SQL Statements in Host Programs . 6–4
6.3 Invoking the Precompiler . 6–7
6.4 Finding Precompile-Time and Compile-Time Errors 6–11
6.5 Improving Precompiler Performance for Remote Databases 6–12
6.6 Specifying Compile-Time and Run-Time Options 6–12
6.6.1 Using the DECLARE MODULE Statement . 6–13
6.6.2 Including Declarations in an SQL Context File 6–14
6.7 Language-Specific Guidelines for Using the SQL Precompiler 6–15
6.7.1 Embedding SQL Statements in Ada Source Files 6–15
6.7.2 Precompiling Ada Programs . 6–16
6.7.3 Embedding SQL Statements in C Source Files 6–18
6.7.4 Embedding SQL Statements in COBOL Source Files 6–19
6.7.5 Embedding SQL Statements in FORTRAN Source Files 6–22
6.7.6 Embedding SQL Statements in Pascal Source Files 6–25
6.7.7 Embedding SQL Statements in PL/I Source Files 6–26

7 Creating Images for Program Execution

7.1 Understanding Executable and Shareable Images 7–2
7.2 Using the OpenVMS Linker . 7–2
7.2.1 Linking Programs Compiled with the Digital C Compiler on

OpenVMS VAX Systems . 7–3
7.2.2 Creating an Executable Image That Links with a Shareable

Image . 7–4
7.2.3 Linking Ada Objects . 7–4
7.3 Creating Shareable Images . 7–6
7.3.1 Creating Executable and Shareable Images Not Sharing Database

Attaches . 7–7
7.3.2 Creating Executable and Shareable Images Sharing Database

Attaches . 7–8

v

7.4 Installing Shareable Images . 7–11
7.5 Linking Modules on Digital UNIX . 7–12
7.5.1 Building Applications with Multiple Modules 7–13
7.6 Inserting Precompiled SQL Modules in Object Libraries and

Archives . 7–13
7.7 Running a Program . 7–14
7.8 Debugging SQL Statements and Program Code . 7–14

8 Declaring and Using Parameters

8.1 Overview of Declaring and Using Parameters . 8–1
8.2 Understanding Terminology . 8–3
8.3 Understanding Parameter Function and Declaration Options 8–3
8.4 Declaring the Data Types of Parameters . 8–6
8.5 Copying Parameter Declarations from a Source Outside Your

Program . 8–9
8.6 Using the SQL INCLUDE Statement . 8–9
8.6.1 Using the SQL INCLUDE FROM DICTIONARY Statement 8–10
8.6.2 Using the INCLUDE SQLCA Statement . 8–11
8.6.3 Using the INCLUDE SQLDA or SQLDA2 Statement 8–12
8.6.4 Using the INCLUDE File Statement . 8–12
8.7 Using the SQL Module Language FROM path-name Clause 8–13
8.8 Using Host Language COPY or INCLUDE Statements 8–13
8.9 Declaring and Using Main Parameters . 8–14
8.9.1 Declaring Main Parameters . 8–15
8.9.2 Using Main Parameters . 8–16
8.10 Declaring and Using Indicator Parameters . 8–20
8.10.1 Declaring Indicator Parameters . 8–20
8.10.2 Using Indicator Parameters . 8–22
8.10.3 Using Indicator Parameters When Retrieving Values 8–23
8.10.4 Using Indicator Parameters When Storing Values 8–25
8.11 Avoiding Mistakes When Declaring and Using Parameters 8–26
8.11.1 Avoiding Mistakes When Using Embedded SQL 8–29
8.11.2 Avoiding Mistakes When Using SQL Modules 8–29
8.12 Declaring and Using Parameters in Specific Languages 8–30
8.12.1 Declaring and Using Parameters in Ada Source Files 8–30
8.12.2 Declaring and Using Parameters in C Source Files 8–31
8.12.3 Declaring and Using Parameters in COBOL Source Files 8–34
8.12.4 Declaring and Using Parameters in FORTRAN Source Files 8–34
8.12.5 Declaring and Using Parameters in Pascal Source Files 8–34
8.12.6 Declaring and Using Parameters in PL/I Source Files 8–34
8.12.7 Declaring and Using Parameters in SQL Modules and Calling

Programs . 8–34

vi

9 Using Date-Time Data Types

9.1 Storing Data in Date-Time Data Types . 9–2
9.2 Using Date-Time Data Types in Programs . 9–3
9.2.1 Converting Date-Time Data Types for Program Development 9–4
9.2.2 Using Date-Time Data Types with the SQL Precompiler 9–6
9.2.3 Using Date-Time Data Types with the SQL Module Language 9–9
9.3 Improving Portability When Using Date-Time Data Types 9–14
9.4 Converting Applications and Databases . 9–15
9.5 Handling DATE VMS Data Types in Applications 9–16
9.5.1 Using DATE VMS with Applications Specific to OpenVMS 9–17
9.5.2 Porting Applications That Contain DATE VMS Data Types 9–17
9.6 Using Date-Time Data Types with Dynamic SQL 9–20
9.6.1 Using CAST with Parameter Markers . 9–20
9.6.2 Passing Dates as Text Strings to Dynamic SQL Statements 9–21

Part III Run-Time Processing

10 Handling Run-Time Errors

10.1 Overview of SQL Error Handling . 10–1
10.2 Monitoring Execution of SQL Statements for Errors 10–4
10.2.1 Using SQLSTATE . 10–5
10.2.2 Using SQLCODE . 10–6
10.2.3 Using the WHENEVER Statement . 10–11
10.2.4 Using the sql_get_message_vector Routine and

RDB$LU_STATUS . 10–14
10.2.5 Using the SQL Error-Handling Routines . 10–20
10.3 Displaying Error Messages . 10–30
10.3.1 Calling sql_signal . 10–31
10.3.2 Calling sql_get_error_text . 10–32
10.3.3 Displaying User-Supplied Error Messages . 10–33
10.3.4 Declaring SQL Routines Using an Include File 10–34
10.4 Handling Duplicate Value Errors and Constraint Violations 10–34
10.4.1 Status Values for Constraint Violations and Duplicate Value

Errors . 10–35
10.4.2 Controlling Constraint Evaluation . 10–36
10.5 Handling Lock Conflicts and Deadlocks . 10–36
10.5.1 Handling Lock-Conflict Errors . 10–37
10.5.2 Handling Deadlock Errors . 10–38
10.6 Handling Errors Caused by Failure to Attach to a Database or Start a

Transaction . 10–39

vii

10.7 Improving Program Portability When Handling Errors and
Constraints . 10–40

11 Using Dynamic SQL

11.1 Introducing Dynamic SQL . 11–1
11.1.1 Categories of Statements That Can Be Dynamically Executed 11–2
11.1.2 Using Dynamic SQL Statements to Process Other SQL

Statements . 11–4
11.1.3 Processing SQL Statements in Dynamic SQL 11–5
11.2 Executing Non-SELECT Statements Without Parameter Markers 11–6
11.3 Handling Parameter Markers and Select List Items 11–9
11.3.1 Using the SQLDA and SQLDA2 Structures . 11–10
11.3.2 Declaring SQLDA and SQLDA2 Structures . 11–12
11.4 Executing Non-SELECT Statements with Parameter Markers 11–15
11.5 Testing Whether or Not a Statement Is a SELECT Statement 11–20
11.6 Processing SELECT Statements . 11–21
11.6.1 Executing SELECT Statements Without Parameter Markers:

Declaring Dynamic and Extended Dynamic Cursors 11–22
11.6.2 Executing SELECT Statements That Contain Parameter

Markers . 11–26
11.6.3 Using SQLDA2 and SQLERRD Structures to Test for Parameter

Markers and SELECT Statements . 11–33
11.7 Processing Sets of Dynamically Generated Statements 11–37
11.7.1 Storing Statement Identifiers and Cursor Names 11–38
11.7.2 Executing Multiple Non-SELECT Statements 11–39
11.7.3 Executing Multiple SELECT Statements . 11–41
11.8 Finding the Sample Programs Used in This Chapter 11–45

Part IV Programmatic Structures

12 Using Compound Statements in SQL

12.1 Introducing Compound Statements . 12–1
12.2 Using Compound Statements to Increase Performance 12–2
12.3 Writing a Compound Statement . 12–3
12.3.1 Declaring and Assigning Variables . 12–4
12.3.2 Using the IF Statement . 12–7
12.3.3 Using the CASE Statement . 12–9
12.3.4 Using the LOOP Statement . 12–10
12.3.5 Using the FOR Statement . 12–11
12.3.6 Using Labels in Compound Statements . 12–13

viii

12.3.7 Using the LEAVE Statement . 12–14
12.3.8 Invoking Stored or External Procedures . 12–15
12.4 Controlling the Atomicity of Compound Statements 12–16
12.5 Controlling Transactions in Compound Statements 12–19
12.6 Processing Compound Statements Dynamically . 12–20
12.7 Debugging Compound Statements . 12–21
12.8 Retrieving Information About Compound Statements 12–23
12.9 Handling Exception and Completion Conditions 12–25
12.9.1 Retrieving Exception Conditions . 12–25
12.9.2 Retrieving Completion Conditions . 12–26

13 Using Stored Routines

13.1 What Are Stored Routines? . 13–1
13.2 Understanding the Benefits of Storing Routines in a Database 13–2
13.3 Creating Stored Modules . 13–3
13.3.1 Creating Stored Procedures . 13–5
13.3.2 Creating Stored Functions . 13–8
13.3.3 Creating a Stored Function to Generate New Sequence Numbers . . . 13–10
13.4 Invoking Stored Procedures . 13–11
13.5 Invoking Stored Functions . 13–13
13.6 Deleting Stored Routines . 13–13
13.7 Tracking Stored Routine Dependencies . 13–14
13.7.1 Procedure Dependency Type . 13–16
13.7.2 Language Semantic Dependency Type . 13–17
13.7.3 Transaction Dependency Types . 13–18
13.8 Invalidating Stored Routines . 13–20
13.9 Revalidating Stored Routines . 13–22
13.9.1 Revalidating Invalidated Stored Routines . 13–22
13.9.2 Re-Creating Invalidated Stored Routines with Language Semantic

Dependencies . 13–24

14 Using External Routines

14.1 Introducing External Routines . 14–2
14.2 Developing External Routines . 14–3
14.3 Creating External Routine Definitions . 14–4
14.3.1 Creating External Function Definitions . 14–5
14.3.2 Creating External Procedure Definitions . 14–7
14.4 Modifying and Deleting External Routine Definitions 14–10
14.5 Creating External Routines . 14–10
14.5.1 Creating External Routines Based on Existing Routines 14–11
14.5.2 Writing User-Defined External Routines . 14–14

ix

14.5.3 Writing External Routines That Call into the Database 14–19
14.5.4 Writing Jacket Routines to Invoke External Routines 14–27
14.6 Creating Shareable Images for External Routines 14–30
14.6.1 Creating Shareable Images for External Routines on OpenVMS

VAX . 14–31
14.6.2 Creating Shareable Images for External Routines on OpenVMS

Alpha . 14–32
14.7 Creating Shared Objects on Digital UNIX . 14–33
14.8 Invoking External Routines . 14–34
14.8.1 Invoking External Functions . 14–34
14.8.2 Invoking an External Function Within a Trigger 14–35
14.8.3 Invoking External Procedures . 14–37
14.9 Specifying Execution Characteristics of Routines 14–37
14.10 Understanding Routine Activation and Deactivation 14–39
14.11 Declaring and Passing Parameters and Return Values 14–41
14.12 Language-Specific Guidelines for Coding External Routines 14–43
14.12.1 Using External Routines with Ada . 14–44
14.12.2 Using External Routines with C . 14–45
14.12.3 Using External Routines with COBOL . 14–46
14.12.4 Using External Routines with FORTRAN . 14–46
14.12.5 Using External Routines with Pascal . 14–47
14.13 Using Notify Routines . 14–47
14.14 Handling Exceptions in External Routines . 14–49
14.15 Understanding the Limitations of External Routines 14–49
14.16 Troubleshooting External Routines . 14–50
14.17 Improving Portability and Efficiency of External Routines 14–52

Part V Your Program’s Context

15 Attaching to Databases

15.1 Specifying and Attaching to a Database . 15–1
15.1.1 Specifying File or Repository Access for Database Attachment 15–1
15.1.2 Specifying the Database Name . 15–2
15.1.3 Specifying Different Databases for Compile Time and Run Time 15–3
15.2 Specifying a Database on a Remote Node . 15–5
15.2.1 Using the USER and USING Clauses for Remote User

Authentication . 15–7
15.2.2 Using Command Line Qualifiers for Remote User Authentication . . . 15–8
15.2.3 Using Configuration Files for Remote User Authentication 15–8
15.2.4 Using a Proxy Account As the Remote Server Account 15–9

x

15.2.5 Using the RDB$REMOTE Account As the Remote Server
Account . 15–10

15.2.6 Using an Alternate UCX or Internet Service 15–11
15.3 Avoiding Asynchronous System Traps . 15–11
15.4 Attaching to Databases in a Distributed Transaction 15–12
15.4.1 Avoiding Undetected Deadlock with Distributed Transactions 15–12
15.4.2 Avoiding Privilege Errors on Distributed Transactions 15–12
15.5 Using Aliases for Multiple Attaches . 15–13
15.6 Detaching from a Database . 15–16

16 Managing Transaction Context

16.1 Understanding Transactions . 16–1
16.1.1 Understanding Transaction Characteristics . 16–2
16.1.2 Deciding When to Modify Transaction Characteristics 16–4
16.2 Specifying Transaction Characteristics in SQL Programs 16–5
16.2.1 Using Read-Only Transactions . 16–7
16.2.2 Using Read/Write Transactions . 16–8
16.2.3 Using Batch-Update Transactions . 16–9
16.2.4 Using the RESERVING Clause . 16–10
16.2.5 Choosing Whether to Wait for Locks to Be Obtained 16–13
16.2.6 Choosing an Isolation Level . 16–15
16.2.6.1 Using a Serializable Transaction . 16–17
16.2.6.2 Using a Repeatable Read Transaction . 16–17
16.2.6.3 Using a Read Committed Transaction . 16–18
16.2.7 Benefits of Using Various Isolation Levels . 16–20
16.2.8 Using Aliases to Access More Than One Database in a Single

Transaction . 16–22
16.3 Understanding the Scope of a Transaction . 16–23
16.4 Using Distributed Transactions . 16–26
16.5 Locking Database Resources . 16–27
16.5.1 Locking Strategies . 16–28
16.5.2 Intent Locks . 16–28
16.5.3 Lock Conflicts . 16–30
16.5.4 Read-Only Transactions and the Snapshot File 16–33
16.5.5 Encountering Lock-Conflict Errors with Read-Only Transactions . . . 16–34
16.5.6 Improving Concurrent Access . 16–35
16.6 Designing Transactions so They Do Not Span Terminal I/O

Operations . 16–37
16.7 Deciding When to Evaluate Constraints . 16–44
16.7.1 Specifying Constraint Evaluation Time . 16–44
16.7.2 Recommendations for When to Evaluate Constraints 16–46
16.8 Committing or Rolling Back a Transaction . 16–47

xi

17 Managing Multiple Connections in Programs

17.1 Introducing Connections . 17–1
17.1.1 Defining a Session . 17–2
17.1.2 Defining a Database Environment . 17–3
17.1.3 Defining a Connection . 17–4
17.2 Creating, Switching Between, and Ending Connections 17–5
17.2.1 Creating Connections . 17–6
17.2.2 Duplicating the Default Database Environment 17–6
17.2.3 Specifying Different Databases for the Same Aliases 17–8
17.2.4 Specifying an Additional Run-Time Attach . 17–9
17.2.5 Switching Between Connections . 17–10
17.2.6 Ending Connections . 17–11
17.3 Using Transactions with Connections . 17–12
17.4 Enabling and Disabling Connections in Programs 17–12
17.4.1 Enabling and Disabling Connections for Module Programming 17–12
17.4.2 Enabling and Disabling Connections for Precompiled Programs 17–12
17.5 Using Connections in an Application . 17–13

Part VI Data Manipulation in Programs

18 Using Cursors

18.1 Introduction to Cursors . 18–1
18.1.1 How Cursors Work . 18–2
18.1.2 Comparing Cursors and Views . 18–6
18.1.3 Deciding When a Cursor Is Needed . 18–7
18.2 Understanding the Different Categories of Cursors 18–8
18.3 Controlling the Opening and Closing of Cursors 18–10
18.4 Using Table Cursors . 18–10
18.5 Using Holdable Cursors . 18–14
18.6 Using List Cursors . 18–15
18.7 Using Scrollable List Cursors . 18–17
18.8 Using Dynamic Cursors . 18–20
18.9 Using Extended Dynamic Cursors . 18–21

xii

19 Inserting, Updating, and Deleting Data

19.1 Loading a Database . 19–1
19.2 Inserting Rows . 19–2
19.2.1 Using the INSERT . . . VALUES Statement 19–2
19.2.2 Using the INSERT . . . SELECT Statement 19–3
19.3 Using List Cursors to Insert Large Data Structures 19–4
19.4 Updating Rows . 19–5
19.4.1 Selecting Data in the UPDATE Statement . 19–6
19.4.2 Using the UPDATE Statement with a Cursor 19–6
19.4.3 Using the UPDATE . . . RETURNING Statement 19–8
19.5 Deleting Rows . 19–9
19.6 Deleting List Data . 19–10
19.7 Using Triggers with Insert, Update, and Delete Operations 19–10

20 Using the Multiple Schema Option

20.1 Understanding Multischema Databases . 20–2
20.2 Using Multischema Databases with the SQL Module Processor 20–3
20.2.1 Setting Defaults for SQL Modules . 20–3
20.2.2 Using Multischema Naming in an SQL Module File and C

Program . 20–5
20.3 Using Multischema Databases with the SQL Precompiler 20–8
20.3.1 Default Settings for the SQL Precompiler . 20–8
20.3.2 Using Multischema Naming in a Precompiled Program 20–10

A Using SQL International Options

A.1 Controlling Input and Display Formats . A–1
A.1.1 Using Locale Settings on Digital UNIX . A–2
A.2 Specifying Collating Sequences . A–2
A.3 Using Collating Sequences . A–3
A.4 Collating Order for Oracle Rdb Character Sets . A–4

Index

xiii

Examples

3–1 Parts of an SQL Module . 3–4
3–2 Host Language That Calls an SQL Module . 3–13
4–1 Writing SQL Modules to Accept the Database Name at Run Time . . 4–6
4–2 Passing the Database Name to an SQL Module 4–7
4–3 Using Parameters with Cursors . 4–8
6–1 Changing Compile-Time and Run-Time Settings with the DECLARE

MODULE Statement . 6–13
6–2 Context File for Precompiled SQL Compilation 6–14
6–3 Precompiling Ada Files . 6–18
7–1 Using an Options File to Link with a Shareable Image 7–4
7–2 Linking to Create a Shareable Image . 7–7
7–3 Linking Shareable Images That Share Handles on OpenVMS

VAX . 7–9
7–4 Linking Shareable Images That Share Handles on OpenVMS

Alpha . 7–9
7–5 Linking an Executable Image That Uses a Shareable Image 7–11
9–1 Inserting Data-Time Data . 9–2
9–2 SQL Module Segment for Converting Date-Time Data Types 9–4
9–3 C Program for Converting Date-Time Data Types 9–5
9–4 SQL Precompiler Program Using Date-Time Data Types 9–6
9–5 C Program Using Date-Time Data Types with the SQL

Precompiler . 9–8
9–6 SQL Module Using Date-Time Data Types . 9–10
9–7 C Program Using Date-Time Arithmetic . 9–12
9–8 Casting Parameter Markers in Dynamic SQL Programs 9–20
10–1 Monitoring SQLCODE in SQL Module Language 10–9
10–2 Monitoring SQLCODE and Stopping on Error 10–10
10–3 Using SQLCODE Values to Take Recovery Action 10–10
10–4 Using the sql_get_message_vector Routine . 10–16
10–5 Using RDB$LU_STATUS to Trap Constraint Violations 10–19
10–6 Using SQL Error-Handling Routines . 10–23
11–1 Executing Non-SELECT Statements Using the EXECUTE

IMMEDIATE Statement . 11–6
11–2 Declaring SQLDA2 Structures . 11–14
11–3 Executing Non-SELECT Statements with Parameter Markers 11–15
11–4 Testing SQLERRD to Identify Non-SELECT Statements 11–21

xiv

11–5 Executing SELECT Statements Without Parameter Markers in an
SQL Module . 11–23

11–6 Executing SELECT Statements Without Parameter Markers in a
Host Language Program . 11–24

11–7 Executing SELECT Statements with Parameter Markers in an SQL
Precompiled Program . 11–27

11–8 Testing Whether a Statement Is a SELECT Statement 11–34
11–9 Storing Statement Identifiers and Cursor Names in Arrays 11–38
11–10 Executing More Than One Non-SELECT Statement 11–39
11–11 Executing More Than One SELECT Statement 11–42
13–1 Creating a Stored Module . 13–4
13–2 Creating a Stored Procedure . 13–5
13–3 Creating a Stored Function . 13–8
13–4 Calling a Stored Procedure . 13–12
13–5 Invoking a Stored Function . 13–13
13–6 Deleting a Stored Module . 13–14
13–7 Examining Procedure Dependency Type . 13–16
13–8 Examining Transaction Dependency Type . 13–19
13–9 Stored Module Definition with Procedure Dependency Type 13–22
14–1 Defining an External Function with the CREATE FUNCTION

Statement . 14–5
14–2 Defining an External Procedure with the CREATE PROCEDURE

Statement . 14–7
14–3 Defining an External Function for an Existing Function on

OpenVMS VAX . 14–11
14–4 Defining an External Function for an Existing Function on

OpenVMS Alpha . 14–11
14–5 Defining an External Function for an Existing Function on

Digital UNIX . 14–13
14–6 Invoking a Predefined External Function Using an SQL Module 14–13
14–7 Invoking a Predefined Function with a C Program 14–13
14–8 Writing a User-Defined External Function in C 14–15
14–9 Compiling and Linking a User-Defined External Function 14–15
14–10 Defining an External Function for a User-Defined Function 14–16
14–11 Invoking a User-Defined External Function from an SQL Module . . . 14–16
14–12 Invoking a User-Defined External Function with a C Program 14–17
14–13 Writing an External Routine to Call into a Database 14–20
14–14 Calling into a Database from an SQL Module 14–22

xv

14–15 Defining an External Routine That Calls into the Database 14–23
14–16 Writing a Jacket Routine in C . 14–28
14–17 Compiling and Linking a Jacket Routine . 14–28
14–18 Defining an External Function That Calls a Jacket Routine 14–28
14–19 Invoking a Jacket Routine from an SQL Module 14–29
14–20 Invoking a Jacket Routine from a C Program 14–29
14–21 Invoking External Functions in SQL Statements 14–35
14–22 Invoking External Functions Within a Trigger Definition 14–36
14–23 Tracking Database Activity with External Functions 14–36
14–24 Using Triggers and External Functions to Track Database

Activity . 14–37
14–25 Invoking External Procedures . 14–37
14–26 Securing an External Function Definition . 14–40
15–1 Qualifying Table References with an Alias . 15–14
15–2 Using Aliases . 15–14
15–3 Working with More Than One Database . 15–15
16–1 Updating a Row in a Multiuser Environment 16–38
16–2 Updating a Table Containing Constraints . 16–40
17–1 Declaring Databases for the Default Database Environment in

Embedded SQL . 17–4
17–2 SQL Module Using Connections . 17–13
17–3 C Program Using Connections . 17–15
18–1 Using Table Cursors . 18–11
18–2 Using Holdable Table Cursors . 18–14
18–3 Using List Cursors . 18–16
18–4 Using Scrollable List Cursors . 18–18
18–5 Using Dynamic Cursors . 18–20
18–6 Using Extended Dynamic Cursors . 18–21
19–1 Loading a Table from a Data File in a Precompiled C Program 19–2
19–2 Updating Rows in a Precompiled C Program 19–7
19–3 Deleting List Data From a Row . 19–10
20–1 Using Multischema Names in an SQL Module File 20–5
20–2 Using Multischema Names in a Precompiled C Program 20–10

xvi

Figures

1–1 Using the SQL Module Processor in Program Development 1–2
1–2 Using the SQL Precompiler in Program Development 1–3
2–1 Stages of the Application Development Cycle 2–2
2–2 Using Interactive SQL as a Prototyping Tool 2–5
3–1 Developing Applications with the SQL Module Processor 3–3
4–1 Correspondence Between Actual Parameters, Procedure Parameters,

and Columns . 4–10
6–1 Application Program Development with the SQL Precompiler 6–2
6–2 Scope of SQLCODE Declaration (COBOL) . 6–21
6–3 Scope in Which SQL Statements Are Allowed (COBOL) 6–22
6–4 Scope in Which SQL Statements Are Allowed (FORTRAN) 6–25
6–5 Scope of SQLCODE Declaration (PL/I) . 6–27
6–6 Scope in Which SQL Statements Are Allowed (PL/I) 6–27
16–1 Share Mode and Lock Type Options for Read/Write Transactions . . . 16–12
16–2 Transaction Scope with a SET TRANSACTION Statement 16–24
16–3 Transaction Scope with a DECLARE TRANSACTION Statement . . . 16–25
16–4 Transaction Scope with SET and DECLARE TRANSACTION

Statements . 16–26
16–5 Chart of Database Access Conflicts . 16–32
16–6 Transaction Recovery-Unit Journal (.ruj) File During an Update

Transaction . 16–48
17–1 Components of an SQL Connection . 17–2
17–2 Default Connection . 17–5
17–3 Duplicating the Default Connection . 17–8
17–4 Specifying Different Databases for the Same Aliases 17–9
17–5 Specifying an Additional Run-Time Attach . 17–10
18–1 How Cursors and Related Statements Work Together 18–3
20–1 Structure of a Multischema SQL Database . 20–3

xvii

Tables

6–1 Ending SQL Statements in Precompiled Host Language Source
Files . 6–6

6–2 Language Identifiers and Default File Extensions Used in
Precompiling Programs . 6–8

6–3 Files Related to Precompiling Ada Source Modules 6–17
10–1 Types of Run-Time Errors . 10–2
10–2 SQL Techniques for Handling Errors . 10–3
10–3 Declaring Symbolic Error Codes in Embedded Host Languages 10–18
13–1 Dependency Tracking Table . 13–15
13–2 Statements Causing Stored Routine Invalidation 13–20
14–1 Components for Building a User-Defined External Function 14–14
14–2 Components for Building a Jacket Routine to Invoke an External

Function . 14–27
15–1 Options for Remote Access . 15–6
16–1 Phenomena Permitted at Each Isolation Level 16–16
16–2 Intent Locks . 16–29
17–1 SQL Statements Affecting Connections . 17–6
20–1 Module Defaults for Multischema SQL . 20–4
20–2 SQL Defaults for Compiler Attributes in Precompiled Programs 20–8
A–1 Collating Order for Oracle Rdb Character Sets A–4

xviii

Send Us Your Comments

Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

You can send comments to us in the following ways:

• Electronic mail — nedc_doc@us.oracle.com

• FAX — 603-897-3334 Attn: Oracle Rdb Documentation

• Postal service

Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062
USA

If you like, you can use the following questionnaire to give us feedback. (Edit
the online release notes file, extract a copy of this questionnaire, and send it to
us.)

Name Title

Company Department

Mailing Address Telephone Number

Book Title Version Number

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

xix

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please
indicate the chapter, section, and page number (if available).

xx

Preface

About This Manual
This manual describes how to design and develop host language application
programs that use SQL (structured query language) to store, modify, and
retrieve data from Oracle Rdb databases.

Most businesses need to carefully manage information to remain viable. They
must find a way to collect, store, and process the information essential to their
businesses. They must ensure a way to keep data secure, consistent, and up-to-
date. These days, more and more companies are turning to industry-standard
database software tools, such as SQL, to provide such support.

Intended Audience
This manual is intended for programmers who write and maintain database
applications. To profit fully from this manual, you should already understand
the following:

• Programming in one or more host languages

• SQL language syntax

• Basic concepts and terminology of relational database management systems

If you are unfamiliar with SQL, you should begin by reading the Oracle Rdb7
Introduction to SQL before proceeding. That companion manual introduces you
to the SQL interface.

How This Manual Is Organized
In this manual, chapters are grouped by category to make accessing
information easier. Brief descriptions of each chapter are shown in the
following table:

xxi

SQL Programming Overview

Chapter 1 Introduces the SQL programming interfaces.

Developing Application Programs That Use SQL

Chapter 2 Provides general information about developing host language
programs and describes methods for including SQL statements in
programs.

Chapter 3 Introduces the SQL module processor.

Chapter 4 Describes the common elements in writing a procedure in SQL
module language and explains how to write single-statement and
multistatement SQL module procedures.

Chapter 5 Describes how to process SQL modules and host language files to
create an executable image.

Chapter 6 Describes how to embed SQL statements in host language source files
and how to process those files using the SQL precompiler.

Chapter 7 Describes how to create an executable image by linking object modules
and how to debug and run your program.

Chapter 8 Provides information on declaring and using parameters in host
language source files.

Chapter 9 Describes how to use date-time data types in programs.

Run-Time Processing

Chapter 10 Describes how to detect run-time errors, retrieve error messages, and
either recover from errors or roll back a transaction.

Chapter 11 Describes how to use dynamic SQL.

Programmatic Structures

Chapter 12 Describes how to use compound statements.

Chapter 13 Describes how to create and use stored procedures and functions.

Chapter 14 Describes how to create and use external procedures and functions.

Your Program’s Context

Chapter 15 Describes how to attach to and detach from databases, including
databases that reside on remote nodes.

Chapter 16 Describes how to specify and start a transaction and discusses options
for data access.

Chapter 17 Introduces the concept of SQL connections for use in querying, testing,
and prototyping programs.

xxii

Data Manipulation in Programs

Chapter 18 Describes table and list cursors and how to use cursors to retrieve
data.

Chapter 19 Describes how to insert, update, and delete data in a database.

Chapter 20 Describes how to write programs for multischema databases.

Appendix A Describes the SQL options for handling international data that is not
in English and provides information about collating sequences used by
Oracle Rdb.

Related Manuals
For more information on Oracle Rdb, see the other manuals in the
documentation set, especially the following:

• Oracle Rdb7 Introduction to SQL

• Oracle Rdb7 SQL Reference Manual

Refer to the Oracle Rdb7 Release Notes for descriptions of all manuals in the
Oracle Rdb documentation set.

SQL Standards
SQL is both a data definition (DDL) and data manipulation (DML) language
for relational databases. Using the SQL interface, you can create a database,
load it with data, and read and update both data and data definitions. The
SQL interface to Oracle Rdb conforms to the entry-level of the SQL standard
ANSI X3.135-1992, ISO 9075:1992, commonly referred to as the ANSI/ISO
SQL standard or SQL92.

Conventions
In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS and Oracle Rdb
for Digital UNIX software. Version 7.0 of Oracle Rdb software is often referred
to as V7.0.

Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

OpenVMS means both the OpenVMS Alpha and OpenVMS VAX operating
system.

This manual uses icons to identify information that is specific to an operating
system or platform. Where material pertains to more than one platform or
operating system, combination icons or generic icons are used. For example:

xxiii

Digital UNIX This icon denotes the beginning of information specific to the
Digital UNIX operating system.

OpenVMS
VAX

OpenVMS
Alpha

This icon combination denotes the beginning of information
specific to both the OpenVMS VAX and OpenVMS Alpha
operating systems.

The diamond symbol denotes the end of a section of
information specific to an operating system or platform.

In examples, an implied carriage return occurs at the end of each line. You
must press the Return key at the end of a line of input.

Examples do not always include prompts. Generally, prompts are shown when
depicting interactive sequences exactly; otherwise, they are omitted.

The following conventions are also used in this manual:

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements mean that parts of the
statement not directly related to the example have been omitted.

boldface
text

Boldface type in text indicates a term defined in the text.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the DIGITAL Command Language prompt in
OpenVMS and the Bourne shell prompt in Digital UNIX.

xxiv

Technical Changes and New Features

This section identifies the new and updated portions of this manual since it
was last released with Oracle Rdb Version 6.0.

The major V7.0 new features and technical changes described in this manual
include the following:

• Holding cursors open across transactions

SQL cursors can now remain open across transaction boundaries. The
WITH HOLD clause of the DECLARE CURSOR statement indicates that
the cursor will remain open after the transaction ends. A cursor that has
been held open retains its position when a new SQL transaction begins.
For more information, see Section 18.5.

• Creating stored functions

In addition to defining stored procedures, you can now define stored
functions. A stored function is a set of operations performed on an
Oracle Rdb database by one or more SQL statements. It accepts a set of
input parameters and returns a single result. You invoke a stored function
by using the function name in a value expression. For more information,
see Chapter 13.

• Returning the value of a stored function

SQL provides the RETURN statement, which returns the result of a stored
function. For more information, see Section 13.3.2.

• Using the CALL statement in a compound statement

You can now use the CALL statement within a compound statement. As
a result, you can use it in a stored procedure or function to call another
stored procedure. You can also use the CALL statement to invoke external
procedures. For more information, see Section 12.3.8.

• Using the SIGNAL statement in a compound statement

xxv

SQL now provides the SIGNAL statement for use within a compound
statement. SIGNAL accepts a single character value expression that is
used as the SQLSTATE. The current routine and all calling routines are
terminated and the signaled SQLSTATE is passed to the application. For
more information, see Section 12.9.

• Using external procedures and calling into the database with external
routines

SQL now provides external procedures and it also allows external routines
to contain SQL statements, letting you bind to new schema instances
and perform database operations from the external routine. External
routines are external functions or external procedures written in a 3GL
language such as C or FORTRAN, linked into a shareable image or shared
module, and registered in a database schema. For more information, see
Chapter 14.

• Cascading delete for modules

DROP MODULE CASCADE lets you drop a module and any objects that
refer to it. For more information, see Section 13.6.

• Dropping functions and procedures

You can now drop external procedures and stored functions and procedures.
For more information, see Section 13.6 and Section 14.4.

• Specifying the DEFAULT, CONSTANT, and UPDATABLE clauses when
declaring variables within compound statements

You can specify the default value of a variable to be any value expression
including subqueries, conditional, character, date-time, and numeric
expressions. Additionally, the variable can now inherit the default from the
named domain. For more information, see Section 12.3.1.

• Using a header file to eliminate Digital C informational messages

SQL provides a header file that eliminates informational messages
by providing prototypes for explicitly called SQL routines. For more
information, see Section 6.7.3.

• Using the sql_sqlda.h header file with C programs

You can now use the sql_sqlda.h header file in C language programs to
obtain definitions of the SQLDA and SQLDA2 structures. Previously,
you could only obtain definitions of these structures by using the SQL
precompiler statement EXEC SQL INCLUDE SQLDA or EXEC SQL
INCLUDE SQLDA2. For more information, see Section 11.3.2.

• Declaring external references to the SQLCA structure

xxvi

You can now declare an external reference to the SQLCA structure when
you use the SQL precompiler with the C language; use the optional
EXTERNAL keyword at the end of your EXEC SQL INCLUDE SQLCA
statement. For more information, see Section 8.6.2.

• Setting debug flags using SQL

SQL supports a new SET FLAGS statement for interactive and dynamic
SQL. The SET FLAGS statement lets you enable and disable the database
system’s debug flags during execution, including letting you monitor the
contents of variables in compound statements. For more information, see
Section 12.7.

• Using the SQL_ALTERNATE_SERVICE_NAME configuration parameter

The configuration parameter SQL_ALTERNATE_SERVICE_NAME lets
you specify an alternate TCP/IP service. This is especially useful for
accessing different versions of OpenVMS databases through TCP/IP
from an OpenVMS or Digital UNIX client. For more information, see
Section 15.2.6.

The major V6.1 new features and technical changes described in this manual
include the following:

• Using SQL on a Digital UNIX system

Information about using SQL on a Digital UNIX system, including
compiling and linking on Digital UNIX, is now described in this manual.

• Authenticating users for remote access

Oracle Rdb lets you explicitly provide user name and password information
in SQL statements that attach to the database. In addition, it lets you pass
the information to an SQL module language or precompiled SQL program
by using a parameter and new command line qualifiers. You can also pass
the information to Oracle Rdb using configuration parameters. For more
information, see Chapter 15.

• Modifying the INTEGER data type for SQL module language

The SQL module language syntax has been extended to allow specification
of precise INTEGER module parameters in the number of bytes. See
Section 8.12.2 for more information.

• Using portable SQL routines

SQL provides the following routines for use on both OpenVMS and
Digital UNIX operating systems:

sql_get_error_text

xxvii

This routine passes error text with formatted output to programs for
processing. It is similar to the SQL$GET_ERROR_TEXT routine,
which is available only on OpenVMS systems. For more information,
see Section 10.3.2.

sql_get_message_vector

This routine retrieves information from the message vector about
the status of the last SQL statement. For more information, see
Section 10.2.4.

sql_get_error_handler, sql_register_error_handler, and sql_deregister_
error_handler

These routines now work on Digital UNIX, but otherwise have not
changed from previous versions of Oracle Rdb. For more information,
see Section 10.2.5.

sql_signal

This routine signals that an error has occurred during the execution
of an SQL statement. It is equivalent to the SQL$SIGNAL routine,
which is available only on OpenVMS systems. For more information,
see Section 10.3.1.

In addition to the Oracle Rdb technical changes and new features reflected in
this manual, modifications were made to clarify or correct the documentation.

xxviii

Part I
SQL Programming Overview

This part presents a high-level view of how to use SQL in your application
programs.

1
Introduction to SQL Programming

This chapter introduces you to programming with the SQL interface to Oracle
Rdb. In the sections that follow, you will become familiar with:

• The programming interfaces that are available

• The advantages of SQL module language over precompiled SQL

• How to find sample programs that illustrate the main features of each SQL
interface

To support complex database demands, Oracle Rdb provides two programming
interfaces, the SQL module processor and the SQL precompiler. With these
programming interfaces, you can develop application programs that write
formatted reports, perform complex calculations, or update data.

1.1 What Are the Two SQL Programming Interfaces?
There are two ways to combine SQL with host language programs. You can
create a separate module for SQL language statements or you can enter them
directly in the host language program:

• SQL module processor compiles a module file containing SQL statements
to create an object file. You link the module object file with a host language
program object file to produce an executable image.

• SQL precompiler converts SQL statements that you embed in host
language programs along with the program code into a form host language
program compilers can process.

Introduction to SQL Programming 1–1

1.1.1 SQL Module Processor
For any supported host language, you can use SQL module language to create
an SQL module file of SQL procedures. In your host language source file,
you can specify calls to these SQL procedures. The steps you take to create a
program that uses SQL module language are illustrated in Figure 1–1.

Figure 1–1 Using the SQL Module Processor in Program Development

SQL
Module

Processor

SQL
Module

File

Host
Language
Source

Host
Language
Compiler

NU−2314A−RA

Linker

Language
Object File

Module
Object File

Executable
Image

In this process, you create both a host language source file and an SQL module
file and process them in parallel. You compile the host program with the host
compiler and the SQL module file with the SQL module processor. The host
language compilation produces a host language object file, and the SQL module
compilation generates an SQL object file. You link the two object files together
to produce an executable image.

SQL module files contain one or more SQL procedures; each procedure can
contain one or more SQL statements. The SQL module processor checks the
syntax and semantics of the SQL module file source code and compiles the SQL
single-statement and multistatement procedures.

With the SQL module processor, you can perform additional tasks, including:

• Defining various module characteristics, such as the module name, the user
authorization id, and the module’s level of optimization

• Controlling output information, such as creating a listing file for error
messages

• Flagging deprecated or nonstandard SQL syntax

1–2 Introduction to SQL Programming

1.1.2 SQL Precompiler
If your host language is supported by the SQL precompiler, you can embed
SQL statements directly in a host language source file. Figure 1–2 shows how
to use the SQL precompiler to generate programs that use SQL statements.

Figure 1–2 Using the SQL Precompiler in Program Development

Host
Language
Compiler

SQL
Precompiler

Host Language
Source with

Embedded SQL
Statements

NU−2317A−RA

LinkerIntermediate
Object File

Executable
Image

You process your program embedded with SQL statements by running the
SQL precompiler. The SQL precompiler checks the syntax and semantics of
the embedded SQL statements, compiles the SQL syntax and invokes the host
language compiler to create an object module. You link the object module to
create an executable image.

With the SQL precompiler, you can perform additional tasks, including:

• Controlling output information, such as creating a listing file for error
messages

• Flagging deprecated or nonstandard SQL syntax

• Specifying whether the SQL precompiler assigns a G-floating or a D-
floating interpretation to the DOUBLE data type.

1.2 Choosing a Programming Interface
Oracle Rdb recommends that you use the SQL module processor instead of the
SQL precompiler to develop your application programs. Oracle Rdb provides
the SQL precompiler for compatibility with existing applications and for
programming environments that require the use of a precompiler.

The SQL module processor is more powerful, flexible, and efficient and has
many other advantages including:

• Cleaner abstraction of languages

Introduction to SQL Programming 1–3

The host language source program contains only host language statements
because the SQL statements are isolated in separate modules.

• Programs written in languages for which there is an ANSI/ISO standard
can avoid embedding code that does not conform to the standard by
isolating SQL statements in SQL modules. 1

• Improved modularity and shareability

Because the SQL module language is isolated in separate modules, you
can use different host language programs to call the SQL procedures,
improving the flexibility and maintenance of application programs.

For example, you can use one module that performs a complex database
transaction in different application programs. Or, you can call the
procedures in this module from different application programs written in
different host languages.

• Better integration with CASE tools

The SQL module processor integrates better with computer-aided software
engineering (CASE) tools. Generally, it is easier to store, maintain, and
share source and object code created by the SQL module processor.

In contrast, the SQL precompiler modifies the host language source code
so you cannot fully exploit, for example, a language-sensitive editor or a
symbolic debugger.

• Better target for application generators

It is much easier for application generators (programs that automatically
create SQL code) to generate code for the SQL module processor that can
be compiled directly, instead of also generating correct host language code
for the SQL precompiler.

• Available from any host language

Module language allows procedures that contain SQL statements to be
called from any host language. The SQL precompiler only supports specific
languages.

• More language features available

SQL module language does not restrict the use of host language features
not supported by the precompiler (such as pointer variables in C, block
structure, macros, user-defined data types, and references to array
elements).

1 Note that the SQL precompiler creates a rewritten host language source file that
replaces the embedded statements with external procedure calls and, therefore, this
file can conform to an ANSI/ISO standard.

1–4 Introduction to SQL Programming

Programs that support pointer variables can take full advantage of
dynamic SQL and use the SQL Descriptor Area (SQLDA) or the Extended
SQL Descriptor Area (SQLDA2) with the SQL module language.

1.3 Finding Online Program Examples
SQL provides sample databases and programs that you can use to become
more familiar with SQL programming.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, the samples directory is defined by the logical name
SQL$SAMPLE. ♦

Digital UNIX On Digital UNIX, the samples directory is located in the following directory:

/usr/lib/dbs/sql/vnn/examples

The subdirectory vnn signifies the version of Oracle Rdb, for example, v70 . ♦

The samples directory includes source programs that both define and query
sample personnel databases. You can create an executable image of any source
program for which your system has language support and then run the image
to see how the program works. You can also print program sources and use
them as references when you create your own applications.

Introduction to SQL Programming 1–5

Part II
Developing Application Programs That Use

SQL

This part explains how to develop application programs using SQL. It presents
information on the following topics:

• Understanding the application development cycle

• Using SQL module language

• Using precompiled SQL

• Linking, running, and debugging your program

• Specifying the parameters your program uses to exchange information with
SQL

• Using SQL’s date-time data types

2
SQL Program Development Cycle

Designing SQL application programs follows the same steps as those used
in designing any host language program; however, their design does involve
additional considerations. For example, the SQL statement syntax and the
way you include SQL statements in your host language program (embedded or
module) influence SQL application program design.

This chapter provides a summary of the stages in the application program
development cycle. It describes the following:

• Understanding the application program development cycle

• Understanding end-user requirements

• Investigating metadata and data

• Developing a prototype for the application

• Converting the prototype to an application program

• Developing an application program

2.1 Overview of the Application Program Development Cycle
Figure 2–1 shows each stage of the application program development cycle and
how they interact.

SQL Program Development Cycle 2–1

Figure 2–1 Stages of the Application Development Cycle

Understanding the
End−User Request

Developing a
Prototype

Converting
the Prototype

Investigating Metadata
and Data

Developing an
Application Program

Stage 1

Stage 5

Stage 4 Stage 3

Stage 2

NU−2539A−RA

Legend

Process Flow
Feedback

Like most processes, the application program development cycle has a well-
defined flow of control through each stage, but timely feedback and iteration
through the stages improve effectiveness and efficiency.

2.2 Understanding End-User Requirements
The first stage is to understand what the end users require from the database
system, so you can translate this request into SQL. Your overall goal is to
ensure that the final application program satisfies the users’ requirements.

Too often, users are not fully satisfied with the completed application. ‘‘I know
what I said, but that is not what I meant’’ is a familiar complaint. To avoid
this problem, make sure you and the users understand the requirements and
that your understandings are the same.

Sometimes, users do not completely understand the database system and how
they can use it. You may need to teach them about the database system and
what it can and cannot do, to help them make more precise requirements.
As a result, the requirements may change. The original requirements also
evolve over time as users think about and use the application. Occasionally,
the conditions that originally inspired the user requirements change, and
therefore the program requirements change. Oracle Rdb helps accommodate

2–2 SQL Program Development Cycle

these changing conditions with a variety of interfaces and a flexible distributed
environment.

Periodically confirm your understanding of the end-user requirements. If
you regularly communicate with your users throughout the application
development cycle, especially to verify the prototype, the users are more likely
to be satisfied with the final application program.

2.3 Investigating Metadata and Data
To create a query or to construct any SQL statement that correctly satisfies
end-user requirements, you need to investigate both the metadata and the data
available in the database system.

In general, ask yourself the following questions:

• What tables, views, columns, functions, and procedures currently exist in
the database that can help satisfy the requirements?

• Do I need to modify or create metadata (tables, views, columns, indexes, or
constraints)? Do I need to modify the data to satisfy the requirements?

• What indexes or constraints are defined on these columns? Do I need to
add or subtract indexes or constraints?

• What is the quantity and quality of the data in the database system? Is
it sufficient to satisfy the requirements? Is the data accurate, valid, and
up-to-date? Is the data complete, or at least comprehensive enough to
satisfy the requirements?

• Will this query be executed only this one time, or will users want to ask the
same question many times? If the query will be asked frequently, should it
be stored and reused, or included in a program?

• What privileges are required to access the data?

You can use either the interactive user interface or the programming interface
at this stage to help you answer these questions. For example, you can use
the interactive SQL SHOW statement to investigate the metadata and the
SELECT statement to investigate system tables.

SQL Program Development Cycle 2–3

2.4 Developing a Prototype
In the next stage, you develop a prototype to help satisfy the requirements of
the end user. Developing a prototype often requires you to return to the users
several times before the prototype is correct.

You can develop your prototype using either interactive SQL or programmatic
SQL. If you create and test interactive SQL statements before including them
in a module or embedding them in a host language program, debugging your
application program is easier and you shorten the program development cycle.

Interactively developing prototypes lets you:

• Find and correct syntax and semantic errors

Interactive SQL can help you eliminate syntax errors in SQL statements.
You can use the EDIT statement to to correct syntax errors.

• Evaluate the effectiveness of your queries

You can refine queries so that they are more efficient. For example, you
can try alternative approaches to a query (such as comparing a join to a
subquery) to see which performs most efficiently. Or, you can add an index
to improve performance.

• Understand the types of data validation your program must handle

Using interactive SQL, you can test input and output values so that your
application program handles them properly. You can also determine if you
need additional validity checking for your input operations beyond the
current table or column constraints.

• Anticipate run-time errors

Interactive SQL can give you a clear idea of the run-time errors your
program may encounter. You can test the conditions—such as invalid input,
a constraint violation, or a lock conflict caused by resource contention—that
produce a specific run-time error.

Once you develop a correct prototype (one that is both syntactically correct
and satisfies the original end-user requirements), you can save it in a script
for easy re-execution or in a file for easy conversion to a program. Figure 2–2
illustrates this process.

If the requirements involve queries that will be executed only once, you may
not need to develop an application program. You can save the output in a data
file. Consider converting queries to views if you expect users to execute them
frequently.

2–4 SQL Program Development Cycle

Figure 2–2 Using Interactive SQL as a Prototyping Tool

NU−2406A−RA

SQL

Put tested SQL statement in . . .

Oracle Rdb Oracle Rdb
Database

Test interactive SQL statements

.

.

.

SQL Module Application Program

Process with SQL
precompiler

.

.

.

SELECT... EXEC SQL SELECT...

.

.

.
SQL> SELECT...

Process with SQL
module processor

.

.

.

.

.

.

2.5 Converting the Prototype to an Application Program
Convert the SQL statement or statements developed interactively to the syntax
used in your chosen programming interface. Some SQL statements have
a slightly different syntax when used interactively than when used with a
programming interface. Also, you need to use variables, instead of literals, to
express values.

Important questions to ask yourself are:

• What values do I need to communicate between my application program
and the SQL statements?

You need to define main parameters for the module processor or host
variables for the precompiler.

• What columns (whether for data retrieval or storage) may contain null
values?

You may need to declare indicator parameters for any main parameters
associated with these columns.

• How will I handle both anticipated and unanticipated errors when I
execute my application program?

SQL Program Development Cycle 2–5

At a minimum, you need to define execution status parameters. Usually,
you want to handle errors to avoid problems in your application program
or to provide additional control of your application program while it is
executing.

See Chapter 8 for more information on using main and indicator
parameters. Chapter 10 explains how to use execution status parameters.

• What are the SQL data types of each of the parameters? What comparable
data types will I use in my application program?

You need to correctly map data types between the host language program
and the procedure.

• What data validation code may be needed in my application program?

You may want to perform data validation in your application program
in addition to the validation performed by current constraints. You may
even decide to validate data entered by end users before inserting it into
the database instead of using database constraints. Validating data in
your application program minimizes locking because the validation is done
outside the scope of a database transaction.

• What SQL keywords and user-defined names (such as columns and tables)
may conflict with host language program keywords?

In an established database system, it is not easy to change column names.
However, you can create a view with names that your host language
supports. You can then declare parameters that correspond to each column
of the view.

See the Oracle Rdb7 SQL Reference Manual for a list of keywords.

2.6 Developing an Application Program
The final stage is to develop the application program. This stage involves
several steps and varies depending on which programming interface you use.

The basic steps are:

1. Edit the module and host language source code.

2. Compile the module and host language source code, and, if necessary,
correct syntax and semantic errors.

3. Link object files and libraries into an executable image.

4. Run the executable image to verify results, and, if necessary, debug the
image.

2–6 SQL Program Development Cycle

See Chapter 3 through Chapter 5 for more information on the steps you follow
to develop an application program using the SQL module processor.

See Chapter 6 for more information on the steps you follow to develop an
application program using the SQL precompiler.

SQL Program Development Cycle 2–7

3
Introduction to SQL Module Language

This chapter provides information about using the SQL module processor (SQL
module language) to create applications that use SQL statements for database
access. In the sections that follow, you will become familiar with how to:

• Develop an application using SQL module language

• Create SQL module source files

• Call SQL module procedures from a host language program

• Write portable code

• Find additional information about the SQL module processor

3.1 Developing SQL Module Language Application Programs:
Basic Steps

Using SQL module language, you can create an SQL module file, which
contains one or more procedures. Each procedure contains one or more SQL
statements.

You call the procedures in the SQL module from programs written in
traditional third-generation languages (3GLs) or from an Oracle Rally
external link.

You can develop an SQL module language application program using the
following steps, which are illustrated by the numbered callouts in Figure 3–1:

! Create the SQL module file.

The SQL module processor provides an SQL module language for creating
an SQL module file. The module contains one or more procedures, each
containing parameter declarations and one or more SQL statements. The
host language program calls a particular SQL module procedure and
supplies a sequence of actual parameters that correspond in number and in
data type to the parameter declarations in the procedure of the module file.

" Use the SQL module processor to compile the SQL module source code file.

Introduction to SQL Module Language 3–1

Compile the SQL module file by invoking the SQL module processor
executable image and specifying the SQL module file name and a number
of optional qualifiers on the same command line.

See the Oracle Rdb7 SQL Reference Manual for a complete description of
each qualifier and examples.

Edit the SQL module source code, if necessary.

After creating the SQL module file or after compiling it, check the module
file carefully to correct any errors that you or the SQL module processor
has found.

$ Create the host language source code.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, you can use the SQL module processor with any host
programming language that supports the OpenVMS Calling Standard. ♦

Digital UNIX On Digital UNIX, you can use the SQL module processor with Digital C,
Digital UNIX C, Digital COBOL, Digital FORTRAN, and Digital Pascal. ♦

% Compile the host language source code.

Use the host language compiler to create an object module. If the
compilation is successful, the compilation process creates a host language
object file.

& Edit the host language source code, if necessary.

If the host language program generated errors when you compiled it, edit
the host language source code to correct the errors.

' Link the object modules from the host language and SQL module processor
compilations to create an executable image.

(Run the executable image to verify its results.

) If you discover any run-time errors, debug the executable image.

After discovering the source of the errors, edit the host language program,
the module file, or both files, and recompile one or more files as necessary
until valid object files are created.

3–2 Introduction to SQL Module Language

Figure 3–1 Developing Applications with the SQL Module Processor

6

4

2

1

NU−2542A−RA

Yes

7

8

9

5

Create module
source file

Create host language
source code

Compile host language
source code

Edit host language
source code3

Start

No

Compile module
source code

Edit module
source code

Syntax
or semantic

errors?

Syntax
or semantic

errors?

YesNo

Yes

No

Link object files
and libraries

Debug executable
image

Run executable
image

Run−time
errors?

STOP

YesDebug executable
image9

3.2 Creating an SQL Module Source File
When you create an SQL module file, you create a source file written in SQL
module language, a language that includes only SQL statements, procedures,
and some special SQL keywords. An SQL module file contains the following
components:

• Comments (optional)

Introduction to SQL Module Language 3–3

• Module header information, which includes the following:

MODULE name clause

DIALECT clause (optional)

CHARACTER SET clauses (optional)

LANGUAGE clause

CATALOG name clause (optional)

SCHEMA name clause (optional)

AUTHORIZATION identifier clause (optional)

ALIAS clause (optional)

Other optional clauses, such as clauses to set character length,
date format, how keywords are treated, how quotation marks are
interpreted, privilege checking on execution, view update rules, and
whether or not parameters are preceded by colons

• DECLARE statements section (optional)

• One or more procedures, each of which can contain a single SQL statement
or one or more SQL statements in a compound statement, and the
parameters to be used by those statements.

A procedure that contains a compound statement is called a
multistatement procedure.

Section 3.2.1 through Section 3.2.11 provide details about creating an SQL
module. Chapter 4 provides information on writing SQL module procedures.

Example 3–1 shows an SQL module file with a set of numbered callouts that
identify module components. Each callout is explained in a numbered list
following the example.

Example 3–1 Parts of an SQL Module

-- The procedures in this SQL module are called by the C program !
-- sql_intro_load_empl_h.c.
--

-- Header Information Section

"
MODULE INTRO_LOAD_EMPL_C -- Module name

(continued on next page)

3–4 Introduction to SQL Module Language

Example 3–1 (Cont.) Parts of an SQL Module
DIALECT SQL92
LANGUAGE C -- Language of calling program
AUTHORIZATION SAMPLE_USER -- Authorization ID
ALIAS RDB$DBHANDLE -- Default alias
PARAMETER COLONS -- Parameters are prefixed by colons

-- DECLARE Statements Section

-- Declare the alias using the file name.
DECLARE ALIAS FOR FILENAME intro_personnel #

-- Procedure Section
-- In every procedure, declare SQLCODE, a parameter that stores a value
-- that represents the execution status of SQL statements.

-- This procedure uses the executable statement, SET TRANSACTION, to start
-- a transaction. The EMPLOYEES, JOB_HISTORY, and DEPARTMENTS tables are
-- reserved because they are used in constraint checking.

PROCEDURE SET_TRANS $
(SQLCODE);

SET TRANSACTION READ WRITE RESERVING
EMPLOYEES FOR EXCLUSIVE WRITE,
JOB_HISTORY FOR SHARED READ,
DEPARTMENTS FOR SHARED READ;

-- This procedure inserts the employee data into the EMPLOYEES table.

PROCEDURE INSERT_DATA $
(SQLCODE

-- Declare the parameters by which the values are passed between the SQL
-- module and the host language.

:EMPLOYEE_RECORD RECORD
P_EMPLOYEE_ID CHAR(5),
P_LAST_NAME CHAR(14),
P_FIRST_NAME CHAR(10),
P_MIDDLE_INITIAL CHAR(1),
P_ADDRESS_DATA CHAR(25),
P_CITY CHAR(20),
P_STATE CHAR(2),
P_POSTAL_CODE CHAR(5),
P_BIRTHDAY CHAR(10),
P_SEX CHAR(1)

END RECORD);

-- The list of names that follows the INSERT clause identifies the columns
-- in the table that are to be used for the insert operation.
-- The list of names in the VALUES clause corresponds to the variables
-- declared in the procedure.

(continued on next page)

Introduction to SQL Module Language 3–5

Example 3–1 (Cont.) Parts of an SQL Module

INSERT INTO EMPLOYEES
(EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL,
ADDRESS_DATA, CITY, STATE, POSTAL_CODE, BIRTHDAY, SEX)

VALUES
(:EMPLOYEE_RECORD.P_EMPLOYEE_ID, :EMPLOYEE_RECORD.P_LAST_NAME,

:EMPLOYEE_RECORD.P_FIRST_NAME, :EMPLOYEE_RECORD.P_MIDDLE_INITIAL,
:EMPLOYEE_RECORD.P_ADDRESS_DATA, :EMPLOYEE_RECORD.P_CITY,
:EMPLOYEE_RECORD.P_STATE, :EMPLOYEE_RECORD.P_POSTAL_CODE,
CAST(:EMPLOYEE_RECORD.P_BIRTHDAY AS DATE ANSI),
:EMPLOYEE_RECORD.P_SEX);

.

.

.

The callouts in Example 3–1 refer to the following:

! Comment

" Module header

Declare statement

$ Procedure

Section 3.3 explains how to call an SQL module procedure from a host
language program, and shows a program that calls the SQL module sql_intro_
load_empl_c.sqlmod, shown in Example 3–1.

3.2.1 Including Blank Lines and Comments in an SQL Module
Double hyphens (--) specify that all remaining text on a line is a comment. The
SQL module processor ignores any text to the right of double hyphens when it
processes source files. As Example 3–1 shows, you can specify comments and
leave lines blank when you need to make your SQL module source file easier to
read and understand.

3.2.2 Naming a Module
To name a module, you must specify the MODULE clause and optionally
include a module name in the first line (excluding comment lines and blank
lines) of a module. The following module segment assigns MSDB_MOD as the
module name:

MODULE MSDB_MOD -- Module name

When you omit the module name, SQL uses the name SQL_MODULE by
default. Although the module name is not required, the MODULE keyword is.

3–6 Introduction to SQL Module Language

If you plan to combine multiple program modules in one executable or
shareable image, the names of all modules, including stored modules, must
be unique. For example, an SQL module cannot have the same name as host
language modules or other SQL modules with which it may later be linked.
Module names that are not unique cause an error regarding ambiguous global
symbols when you link object files into an image.

There is no relationship between the actual file name of the module and the
name of the module in the module header.

3.2.3 Specifying the Dialect
The DIALECT clause controls many settings for the session, including the
following:

• Whether the length of character string literals, columns, and domains are
interpreted as characters or octets

• Whether double quotes (") are interpreted as string literals or delimited
identifiers

• Whether or not identifiers can be keywords

• Which views are read-only

• Whether columns with the DATE or CURRENT_TIMESTAMP data type
are interpreted as VMS or ANSI/ISO format

• Whether parameter names begin with a colon

• Whether the session character sets change depending on the dialect
specified

The following example shows how to specify the dialect setting as SQL92:

DIALECT SQL92 -- Set the dialect.

The DIALECT clause lets you specify the settings for the module with one
clause, instead of specifying each setting individually. The dialect settings
include SQL92, SQL89, MIA, and SQLV40. The SQLV40 setting is the default.
Set the dialect to SQL92 or MIA unless you need to maintain compatibility
with an earlier dialect. For information on the particular settings for each
dialect, see the description of the SET DIALECT statement in the Oracle Rdb7
SQL Reference Manual.

Because the module processor processes the module clauses sequentially, the
DIALECT clause can override the settings of clauses specified before it, or be
overridden by clauses specified after it in an SQL module file.

Introduction to SQL Module Language 3–7

3.2.4 Specifying Character Sets for a Session
You can specify the following character sets for an SQL session or module:

• Default character set

The default character set determines the character set for database
columns with a character data type that is not qualified by a character set
or national character set.

• Identifier character set

The identifier character set determines the character set for user-supplied
database object names such as table names, domain names, and column
names. The character set must contain ASCII.

• National character set

The national character set determines the character set for all columns
with the data type NCHAR or NCHAR VARYING, and for character string
literals qualified by the national character set.

• Literal character set

The literal character set determines the character set for literals that are
not qualified by a character set or national character set.

The Oracle Rdb7 SQL Reference Manual provides a set of tables listing the
character sets that you can use for the default character set, the identifier
character set, the national character set, and the literal character set. The
following example sets the default character set to KANJI:

DEFAULT CHARACTER SET KANJI -- Set the default character set

SQL uses DEC_MCS for the default, identifier, national, and literal character
sets if you specify these character sets using the SET command and if you do
not set the dialect of the session to MIA. However, if you change the dialect
after setting it to MIA, the character sets do not change. Only the rules
associated with the new dialect are changed.

3.2.5 Identifying the Host Language That Calls Module Procedures
After naming the module, you must specify the LANGUAGE clause and one of
the following keywords to identify the language used by calling host language
programs: ADA, BASIC, C, COBOL, FORTRAN, PASCAL, PLI (for PL/I), or
GENERAL. For example:

LANGUAGE C -- Language of calling program

3–8 Introduction to SQL Module Language

The language identifier determines both the kinds of data types that the SQL
module processor considers valid when you later declare procedure parameters,
and the mechanism that SQL expects the calling module to use for passing
parameter values at run time.

Specify the GENERAL keyword for languages that do not have a corresponding
keyword in the LANGUAGE clause.

3.2.6 Specifying the Catalog
The optional CATALOG clause lets you specify a catalog name in the module
header. SQL uses this name by default when you name schema objects within
a multischema database and do not explicitly include the catalog name. SQL
uses RDB$CATALOG as the default if you omit the CATALOG clause in your
module file.

Specifying a default catalog name, and thus overriding the RDB$CATALOG
default, enables you to name schemas and schema objects within that catalog
without the need to include the catalog name. Omitting the catalog name
saves you the task of typing the name each time that you name an object in a
module.

Suppose that you do not want to specify the ADMINISTRATION catalog name
in every schema object that you plan to identify in an SQL module. Change
the default catalog for the module by including the following CATALOG clause:

CATALOG ADMINISTRATION

Then, you can name a schema object such as the EMPLOYEES table within
the PERSONNEL schema by entering the following unique multischema name:

SELECT * FROM PERSONNEL.EMPLOYEES;

As Section 3.2.7 shows, you can also omit the schema name if you change the
default schema with the SCHEMA clause.

If you have multischema databases that contain schemas with objects that
have the same names, you can duplicate SQL modules for use with a variety of
schemas by not explicitly specifying the catalog and schema name in the SQL
statements, but instead changing the default catalog and schema name in the
module header.

The CATALOG clause affects only those module procedures that use databases
enabled with the optional multischema attribute.

Introduction to SQL Module Language 3–9

3.2.7 Specifying the Schema
The optional SCHEMA clause lets you specify a schema name in the module
header. SQL uses this name by default if you do not explicitly include the
schema name when naming schema objects within a multischema database.
If you do not explicitly name a schema in the SCHEMA clause, SQL uses
the implicit authorization identifier, which is the user name of the person
compiling the module, as the default schema. If the authorization identifier is
explicitly named in the AUTHORIZATION clause, SQL uses that name as the
default schema.

Specifying a schema name in the SCHEMA clause overrides the schema
default and enables you to name schema objects within that schema and
catalog without having to include the schema name. Omitting the schema
name saves you the task of typing the complete name of schema objects in a
module.

Suppose that you do not want to specify either the ADMINISTRATION catalog
name or the PERSONNEL schema for the schema objects you that plan to
identify in an SQL module. Change the default catalog and schema for the
module by including the following module clauses:

CATALOG ADMINISTRATION
SCHEMA PERSONNEL

Then, you can name a schema object such as the EMPLOYEES table within
the PERSONNEL schema in the ADMINISTRATION catalog by entering just
the table name:

SELECT * FROM EMPLOYEES;

The SCHEMA clause affects only those module procedures that use
multischema databases.

3.2.8 Specifying an Authorization Identifier
The optional AUTHORIZATION clause specifies the authorization identifier for
the module. If you omit the authorization identifier, SQL selects the user name
of the user compiling the module as the default authorization. Thus, if you use
the RIGHTS clause in the module header, SQL compares the user name of the
person who executes a module with the authorization identifier with which the
module was compiled and prevents any user other than the one who compiled
the module from invoking it. When you use the RIGHTS clause, SQL bases
privilege checking on the default authorization identifier (in compliance with
the ANSI/ISO standard). By default, SQL does not perform privilege checking
using the authorization identifier; it uses the privileges of the invoker.

3–10 Introduction to SQL Module Language

The following example sets the authorization identifier:

AUTHORIZATION SAMPLE_USER -- Authorization ID

When you do not explicitly name a schema in the SCHEMA clause or an alias
in the ALIAS clause, the authorization identifier for the module becomes the
default schema and default alias. Thus, in this case, the default schema,
default authorization identifier, and default alias have the same name.

3.2.9 Specifying the Alias
The optional ALIAS clause specifies the default database alias for the module.
If you omit the alias in the module header, SQL uses the authorization
identifier explicitly named in the AUTHORIZATION clause as the default
alias. SQL uses RDB$DBHANDLE as the default alias when you do not
explicitly name an authorization identifier in the module header. Use the
ALIAS clause when you must reference more than one database within a
module.

The following example specifies the default alias;

ALIAS RDB$DBHANDLE -- Default alias

Oracle Rdb suggests that you use the same alias for the default database in all
modules linked to create an executable image if the application needs to refer
to only one database across multiple modules.

If the image will include modules processed with the SQL precompiler, you
should specify RDB$DBHANDLE in the AUTHORIZATION clause of all SQL
modules in the image. The alias RDB$DBHANDLE is always designated as
the default database in precompiled SQL programs.

3.2.10 Specifying That Parameters Must Include Colons
You can specify that parameters in module procedures be preceded by colons (:)
by using the PARAMETER COLONS clause in the SQL module header, as
shown in the following example:

PARAMETER COLONS -- Parameters are prefixed by colons

Currently, the default behavior of the SQL module processor does not allow
colons. However, because the use of colons is required by the ANSI/ISO SQL
standard, Oracle Rdb recommends that you specify the PARAMETER COLONS
clause and use colons with parameters. If you specify the dialect as SQL92,
SQL enforces the use of colons even if you do not specify the PARAMETER
COLONS clause.

Introduction to SQL Module Language 3–11

3.2.11 Specifying DECLARE Statements in Modules
You can specify DECLARE statements, such as the following, in the SQL
module header:

• DECLARE ALIAS statements

This statement specifies that name and source of the database to be used
by the module. If you are working with only one database and do not
need repository access while attached to that database, you may prefer
to omit a DECLARE ALIAS statement from the module and assign a
file specification to the logical name SQL$DATABASE or configuration
parameter SQL_DATABASE. Otherwise, include a DECLARE ALIAS
statement in the module for each database that you intend to access.

See Section 15.1 for more information about database attachment options.

• DECLARE CURSOR statements or dynamic DECLARE CURSOR
statements

This statement declares a cursor. You must include a DECLARE CURSOR
statement for each cursor to which statements in a module procedure refer.
See Chapter 18 for information about statements that declare and use
cursors.

• DECLARE STATEMENT statements

This statement documents a statement name that is used later in dynamic
SQL. See Chapter 11 for more information on dynamic SQL.

• DECLARE TABLE statements

These statements specify table and view definitions in a source file. At
compile time, the SQL module processor does not have to attach to a
database or access the repository if an SQL source file contains definitions
for the tables and views that are accessed by the program at run time. The
DECLARE TABLE statement is useful when you want to compile an SQL
module that refers to a table or view that does not yet exist, or when you
want to eliminate at compile time the resource overhead that is associated
with database attachment.

• DECLARE TRANSACTION statement

This statement establishes default characteristics for all transactions
started implicitly by the program. You do not need to specify a DECLARE
TRANSACTION statement if you want SQL defaults for transactions or if
you plan to explicitly start transactions by calling a procedure for a SET
TRANSACTION statement. See Chapter 16 for complete information about
transactions.

3–12 Introduction to SQL Module Language

Do not use a semicolon (;) to end DECLARE statements in SQL modules. The
semicolon is valid only in module procedures.

3.3 Calling SQL Module Procedures from a Host Language
Program

The format for calling SQL module procedures from a host language program
is specific to the host language. Consult your host language documentation for
the format that you should use. The host language documentation also details
how to override a passing mechanism default.

Example 3–2 shows excerpts from the C host language program, sql_intro_
load_empl_h.c, which calls SQL procedures in sql_intro_load_empl_c.sqlmod, as
shown in Example 3–1.

Example 3–2 Host Language That Calls an SQL Module
.
.
.

/*
This structure represents the record to be inserted into the database.
Character strings are one character longer to hold the null value that
terminates the string. */

struct Employee_struct {
char employee_id[6];
char last_name[15];
char first_name[11];
char middle_initial[2];
char address_data[26];
char city[21];
char state[3];
char postal_code[6];
char ascii_birthdate[11];
char sex[2];
};

/* This structure represents the format of each record in the stream file. */
struct Employee_struct_buf {

char employee_id[5];
char last_name[14];
char first_name[10];

(continued on next page)

Introduction to SQL Module Language 3–13

Example 3–2 (Cont.) Host Language That Calls an SQL Module
char middle_initial[1];
char address_data[25];
char city[20];
char state[2];
char postal_code[5];
char ascii_birthdate[10];
char sex[1];
char linefeed[1];
};

/* Return status and SQLCODE variables for error handling. */

int return_status;
long sqlcode;

/* Function prototypes */

void SET_TRANS (long *sqlcode);
void INSERT_DATA (long *sqlcode, struct Employee_struct *employee_rec_prt);
void COMMIT_TRANS (long *sqlcode);

.

.

.
/* Start the transaction by calling the SQL module language procedure

SET_TRANS in sql_intro_empl_h.sqlmod. If the call to SET_TRANS returns
a value other than 0, use sql_signal to display the error. */

SET_TRANS(&sqlcode);
if (sqlcode != 0)
{
printf("\nStart transaction failed.\n");
sql_signal();
}

.

.

.
/* Invoke the INSERT_DATA procedure to insert a row in the EMPLOYEES table.

The date is converted from text to binary by the CAST function in the SQL
procedure. If the call to INSERT_DATA returns a value other than 0,
use sql_signal to display the error. */

INSERT_DATA (&sqlcode, &employee_rec);
if (sqlcode != 0) sql_signal();

}

(continued on next page)

3–14 Introduction to SQL Module Language

Example 3–2 (Cont.) Host Language That Calls an SQL Module

/* Commit the transaction by calling the SQL module language procedure.
COMMIT_TRANS. */

COMMIT_TRANS(&sqlcode);
.
.
.

3.4 Writing Portable Applications Using the SQL Module
Processor

You might need to write applications that require little or no editing from
one SQL implementation to another. SQL module language is included in the
ANSI/ISO standard for SQL and thus offers a way to write standard-compliant
programs. To identify the Oracle Rdb extensions to the ANSI/ISO standard
in an SQL module, use the FLAG_NONSTANDARD or –std command line
qualifier when compiling a module file.

Module language support is not implemented in many vendor implementations
of SQL. You should determine what level of module language support a
particular implementation offers before writing SQL module language
procedures that you may want to port to that implementation.

3.5 Finding More Information About the SQL Module Processor
The following sources provide more information about using the SQL module
processor:

• Chapter 4 discusses how to write SQL module procedures, including
procedures that include single SQL statements and compound statements
in multistatement procedures.

• Chapter 5 discusses how to compile and link SQL modules and host
language programs, and how to use context files to improve portability.

• Chapter 7 discusses how to link SQL and host language object modules
into images.

• The samples directory provides online examples of SQL modules and their
associated calling host language programs. For more information about
the sample programs, see the online file, about_sql_examples.txt, in the
samples directory.

Introduction to SQL Module Language 3–15

• The Oracle Rdb7 SQL Reference Manual provides reference information on
SQL module language.

3–16 Introduction to SQL Module Language

4
Writing Module SQL Procedures

This chapter discusses how to write SQL module procedures. Refer to
Chapter 3 for introductory information about the SQL module language and for
a discussion of how to create SQL modules and the module header information.
The sections that follow explain:

• The components of SQL module procedures and the different types of
procedures

• How to specify the common elements of SQL module procedures, such as
procedure names and parameters and their data types,

• How to specify a single SQL statement in a procedure

• How to specify compound statements in a procedure

• The restrictions of the SQL module language

4.1 Introducing SQL Module Procedures
A procedure in an SQL module is a mechanism for executing a set of SQL
statements through a call from a host language module.

An SQL module procedure consists of a set of common procedure elements that
include the following:

• The keyword PROCEDURE to introduce the procedure

• The procedure name

• A status parameter for error handling

• One or more parameter declarations

• A single SQL statement or one or more SQL statements in a compound
statement.

Section 4.2 describes the common procedure elements.

Writing Module SQL Procedures 4–1

You can define two types of procedures:

• Simple statement procedure

A simple statement procedure consists of the common procedure
elements and a single executable SQL statement only. The following
simple statement procedure starts a read/write transaction when the
SET_TRANS procedure is executed:

PROCEDURE SET_TRANS
(SQLSTATE);

SET TRANSACTION READ WRITE;

Section 4.3 describes how to write simple statement procedures.

• Multistatement procedure

A multistatement procedure consists of the common procedure elements
and a compound statement that includes one or more SQL statements. You
can use flow-control statements, such as the SQL IF and FOR statements,
in compound statements.

The following multistatement procedure contains two INSERT statements:

PROCEDURE INSERT_DATA
-- Declare the parameters by which the values are passed between the SQL
-- module and the host language.

(SQLSTATE,
:P_EMPLOYEE_ID CHAR(5),
:P_LAST_NAME CHAR(14),
:P_FIRST_NAME CHAR(10),
:P_JOB_CODE CHAR(4),
:P_DEPARTMENT_CODE CHAR(4));

BEGIN

INSERT INTO EMPLOYEES
(EMPLOYEE_ID, LAST_NAME, FIRST_NAME)
VALUES
(:P_EMPLOYEE_ID, :P_LAST_NAME, :P_FIRST_NAME);

INSERT INTO JOB_HISTORY
(EMPLOYEE_ID, JOB_CODE, JOB_START, DEPARTMENT_CODE)
VALUES
(:P_EMPLOYEE_ID, :P_JOB_CODE, CURRENT_TIMESTAMP, :P_DEPARTMENT_CODE);

END;

Section 4.4 describes how to write multistatement procedures and
Chapter 12 provides tutorial information on writing compound statements.

4–2 Writing Module SQL Procedures

4.2 Specifying the Common Elements of SQL Module Procedures
Whether you use a simple statement procedure or a multistatement procedure,
a procedure definition:

• Starts with the word PROCEDURE

• Specifies a procedure name

• Declares parameters by which values are exchanged between the SQL
module and the calling host language module

• Specifies that the parameter is passed by descriptor (optional)

• Specifies that SQL return a run-time error if the calling module is not
passing a parameter by descriptor (optional for parameter declarations that
include a BY DESCRIPTOR clause)

4.2.1 Naming a Procedure
An SQL module procedure must begin with the PROCEDURE keyword and be
followed by a name for the procedure. Procedure names within an executable
image must be unique. If they are not unique within an SQL module, you
encounter a compile-time error from the SQL module processor.

Furthermore, if you combine multiple SQL modules in one executable or
shareable image, the names of procedures must be unique within the image.
In this case, procedure names that are not unique cause an error regarding
ambiguous global symbols when you link object files into an image.

Avoid choosing names that are used by other procedures linked with the
applications, including system procedures and procedures in any library used
by the application.

Digital UNIX Because the Digital UNIX environment is case sensitive, and because
on Digital UNIX the SQL module processor converts procedure names to
uppercase by default, you need to take care in using module procedure names.

For example, if you write calls to SQL module language procedures from a C
program and invoke those procedures using lowercase characters, you get an
error when you link the object files. The C language retains the lowercase
characters while SQL converts the names to uppercase.

To eliminate this problem, use one of the following methods:

• From the host language, invoke the SQL procedures using uppercase
names.

Writing Module SQL Procedures 4–3

• Use the –lc_proc command line qualifier to force the names of the module
language procedures to lowercase. ♦

4.2.2 Declaring Procedure Parameters
You declare a parameter for every value that the SQL module and host
language module exchange when the SQL statement in the procedure executes.
Parameter declarations are required for the following kinds of values:

• A value to indicate execution status of the procedure

You must specify one of the following status parameters in every
procedure:

SQLCODE

SQLCA

SQLSTATE

Oracle Rdb recommends that you use the SQLSTATE status parameter
for any new application. SQLSTATE supports more standard status codes
than SQLCODE and is the preferred mechanism in the ANSI/ISO SQL
standard. The SQLCA status parameter is an extension to the ANSI/ISO
SQL standard.

When you declare a status parameter, you do not specify a data type
because the data type is implicit.

See Chapter 10 for a discussion of these parameters.

• Any values on which table searches are based

These parameters are required to evaluate most WHERE or HAVING
clauses that you specify in the executable statement of the procedure. They
are also required in the declaration of a cursor.

• Any column value being retrieved or stored by the procedure

The data types of parameters for column values are discussed in
Section 4.2.5.

• Indicator values for handling null values, if any, in columns

See Section 8.10 for information about handling column values and nulls.

• The keyword SQLDA

The SQLDA (SQL Descriptor Area) is a data structure that provides
information about dynamic SQL statements. You must declare the SQLDA
in host language modules for use with dynamic SQL statements whose
select list parameters and parameter markers are not known until run
time. See Chapter 11 for more information about the SQLDA.

4–4 Writing Module SQL Procedures

• The keyword SQLDA2

The SQLDA2 (SQL Descriptor Area 2) is an extended version of the
SQLDA structure. The SQLDA2 data structure provides additional field
and field size information about dynamic SQL statements. You should
declare the SQLDA2 instead of the SQLDA when any of the following apply
to the parameter markers or select list items:

The length of the column name is greater than 30 octets (8 bits).

The data type of the column is a date-time data type.

The data type is CHAR, CHAR VARYING, CHARACTER,
CHARACTER VARYING, VARCHAR, or LONG VARCHAR, and
either or both of the following is true: the character set is not the
default 8-bit character set or the maximum length in octets exceeds
65,535.

You declare the SQLDA2 in host language modules for use with dynamic
SQL statements whose select list parameters and parameter markers are
not known until run time.

See Chapter 11 for more information about the SQLDA2.

When you declare the parameters supplied by SQL (SQLSTATE, SQLCODE,
SQLCA, SQLDA, and SQLDA2), do not declare a data type; however, when
you declare a user-defined parameter, you must declare a data type for the
parameter.

To comply with the ANSI/ISO standard for SQL and to improve readability and
avoid ambiguity, Oracle Rdb recommends that you prefix each parameter with
a colon (:), separate parameters with a comma (,), enclose all parameters with
one set of parentheses, and terminate the list of parameter declarations with a
single semicolon (;).

4.2.3 Parameters Required for Different Kinds of Procedures
You need to declare certain kinds of parameters in all module procedures. The
parameters that you declare depend upon the SQL statement executed by the
procedure, as follows:

• If the SQL module contains a DECLARE ALIAS statement that includes
a program parameter for the database specification, you must declare that
parameter in every procedure in the SQL module. In addition, you must
specify that parameter in every host language call to the procedures in
the SQL module. The DECLARE ALIAS statement contains a program
parameter whenever the host language module accepts a file name or
repository path name value at run time to identify the location of the
database.

Writing Module SQL Procedures 4–5

Example 4–1 shows how the sql_insert_degrees_module.sqlmod module file
is modified to enable the host language module, or a user, to enter a file
specification for the database at run time.

Example 4–1 Writing SQL Modules to Accept the Database Name at Run
Time

-- This SQL module accepts the database name at run time.
--
-- Header Information Section
--
MODULE sql_insert_degrees_mod_param -- Module name
LANGUAGE COBOL -- Language of calling program
AUTHORIZATION RDB$DBHANDLE -- Authorization identifier
PARAMETER COLONS -- Use colons

-- DECLARE statement section

DECLARE ALIAS FOR COMPILETIME FILENAME personnel

RUNTIME FILENAME :DB_NAME

-- PROCEDURE SECTION

PROCEDURE INSERT_DEGREES

(:DB_NAME CHAR(80),
SQLCODE,

:P_EMPLOYEE_ID CHAR(5),
:P_COLLEGE_CODE CHAR(4),
:P_YEAR_GIVEN SMALLINT,
:P_DEGREE CHAR(3),
:P_DEGREE_FIELD CHAR(15));

INSERT INTO DEGREES
(EMPLOYEE_ID, COLLEGE_CODE, YEAR_GIVEN,

DEGREE, DEGREE_FIELD)
VALUES

(:P_EMPLOYEE_ID, :P_COLLEGE_CODE, :P_YEAR_GIVEN,
:P_DEGREE, :P_DEGREE_FIELD);

PROCEDURE START_TRANS
(:DB_NAME CHAR(80),
SQLCODE);

SET TRANSACTION READ WRITE;

(continued on next page)

4–6 Writing Module SQL Procedures

Example 4–1 (Cont.) Writing SQL Modules to Accept the Database Name at
Run Time

PROCEDURE COMMIT
(:DB_NAME CHAR(80),

SQLCODE);

COMMIT;

You must modify the host language program to pass the database name to
all the procedures in the SQL module. Example 4–2 shows an excerpt from
the sql_insert_degrees_program.cob program, modified to pass the database
name to all the procedures in the SQL module.

Example 4–2 Passing the Database Name to an SQL Module
.
.
.

* Declare the database name.
01 P_DB_NAME PIC X(80).

.

.

.
GET_DATABASE.

DISPLAY " Enter the database name".
ACCEPT P_DB_NAME.

.

.

.
CALL "START_TRANS" USING P_DB_NAME, SQLCODE.
CALL "INSERT_DEGREES" USING P_DB_NAME, SQLCODE, P_EMPLOYEE_ID,

P_COLLEGE_CODE, P_YEAR_GIVEN, P_DEGREE, P_DEGREE_FIELD.
CALL "COMMIT" USING P_DB_NAME, SQLCODE.

• For data definition, COMMIT, and ROLLBACK statements, you need to
declare only those parameters required for all procedures. If the DECLARE
ALIAS statement contains no parameters, you need to specify only
SQLCODE, SQLCA, or SQLSTATE, as shown in the following example:

PROCEDURE COMMIT_TRANSACTION
(SQLCODE);

COMMIT;

Writing Module SQL Procedures 4–7

• If a DECLARE CURSOR statement contains parameters, pass the
parameters to it by declaring them in the procedure that contains the
OPEN statement. In addition, you must specify the parameter in the host
language call to the procedure that contains the OPEN statement. Because
the DECLARE CURSOR statement appears in the declaration section of an
SQL module, not a procedure, you cannot pass the parameters directly to
the DECLARE CURSOR statement.

See Example 4–3 for an example of using parameters with cursors.

• For an OPEN statement, declare all parameters required for all procedures
in addition to the parameters included in the DECLARE CURSOR
statement that correspond to the cursor that you are opening. Example 4–3
shows how to declare and use parameters in a cursor.

Example 4–3 Using Parameters with Cursors

DECLARE ID_AND_NAME CURSOR FOR
SELECT EMPLOYEE_ID, FIRST_NAME, MIDDLE_INITIAL, LAST_NAME

FROM EMPLOYEES
WHERE EMPLOYEE_ID = :INPUT_ID

PROCEDURE OPEN_ID_AND_NAME
(SQLCODE,
:INPUT_ID CHAR(5));

OPEN ID_AND_NAME;

Example 4–3 shows a parameter only in a WHERE clause. You can
include parameters in other clauses of the DECLARE CURSOR statement;
however, if you do, you must also declare those parameters in the procedure
that opens the cursor.

You can specify only one OPEN statement procedure for each DECLARE
CURSOR statement in an SQL module.

• For a FETCH statement, declare all parameters specified for the INTO
clause in addition to the parameters required for all procedures. For
example:

PROCEDURE FETCH_ID_AND_NAME
(SQLCODE,
:ID_VAR CHAR(5),
:FIRST_NAME_VAR CHAR(10),
:MIDDLE_INIT_VAR CHAR(1),
:MIDDLE_INIT_IND SMALLINT),
:LAST_NAME_VAR CHAR(14);

4–8 Writing Module SQL Procedures

FETCH EMP_ROW_CURSOR INTO
:ID_VAR,
:FIRST_NAME_VAR,
:MIDDLE_INIT_VAR :MIDDLE_INIT_IND,
:LAST_NAME_VAR;

• For the data manipulation statements INSERT, UPDATE, or DELETE,
you must declare parameters needed for all procedures. In addition, you
declare parameters that store column values or indicator values, or that
are used in value comparisons. For example:

PROCEDURE UPDATE_JH
(SQLSTATE,

:JOB_END_DATE_BIN DATE,
:INPUT_EMP_ID CHAR(5));

UPDATE JOB_HISTORY
SET JOB_END = :JOB_END_DATE_BIN
WHERE EMPLOYEE_ID = :INPUT_EMP_ID;

PROCEDURE DELETE_JH
(:INPUT_ID CHAR(5),

:INPUT_DB_FILE CHAR(20),
SQLSTATE);

DELETE FROM JOB_HISTORY
WHERE EMPLOYEE_ID = :INPUT_ID;

The sql_all_datatypes_ada.sqlmod module in the samples directory shows how
to declare parameters for FETCH and UPDATE statements.

4.2.4 Associating Procedure Parameters and Actual Parameters
Each procedure parameter, a formal parameter in an SQL module
procedure, corresponds to an actual parameter, which you declare in a
host language module and then specify in the host language call to the
procedure in the SQL module. For some host languages, the parameter in an
SQL module also corresponds to a formal parameter identified in a declaration
of an external procedure, routine, or function.

The correspondence between parameters in the SQL module and actual
parameters in the host language module is established by order of specification.
The first parameter declared in the SQL module procedure corresponds to the
first parameter specified in the host language call, the second parameter
declared in the SQL module procedure corresponds to the second parameter
specified in the host language call, and so forth.

Writing Module SQL Procedures 4–9

Figure 4–1 illustrates the correspondence between SQL module procedure
parameters, actual parameters, host language declarations, and the database.
In the figure, C is the language used in the calling module; however, the
correspondence principles are the same for all languages.

Figure 4–1 Correspondence Between Actual Parameters, Procedure
Parameters, and Columns

DATE_COL DATE

 &integ_var, :P_INTEGER INTEGER,
 date_var :P_DATE_CHAR CHAR(10)
););

 UPDATE TAB_A SET
 CHAR_COL = :P_CHAR,
 REAL_COL = :P_REAL_INT
 INDICATOR :P_IND,
 INTEGER_COL = :P_INTEGER,
 DATE_COL = CAST(:P_DATE_CHAR AS DATE)
 WHERE CURRENT OF CURSOR_A;

NU−3164A−RA

SQL Module

Database

C Module

char char_var[11];
float real_var;
short int real_ind; CHAR_COL CHAR(10)
int integ_var; REAL_COL REAL
char date_var[11]; INTEGER_COL INTEGER

update_data PROCEDURE UPDATE_DATA

(&SQLCODE, (SQLCODE,
 char_var, :P_CHAR CHAR(10),
 &real_var, :P_REAL_INT REAL,
 &real_ind, :P_IND SMALLINT,

long SQLCODE;

Note that, in Figure 4–1, char_var and date_var are declared to be one
character longer than their corresponding procedure parameters. This
difference in size is only when you use the C language (see Section 4.5 for
more information.)

Consistent order is significant only in the correspondence between procedure
parameters in the SQL module and actual parameters in the host language
module. (In Figure 4–1, the parallel specification of column definitions and
column references exists only to keep correspondence lines neat enough to
follow.)

4–10 Writing Module SQL Procedures

Furthermore, it is not important that the names of corresponding actual
and procedure parameters match or that you specify one kind of parameter
(for example, column) in a certain order with respect to another kind of
parameter (for example, indicator). However, if you use similar names for
corresponding procedure and actual parameters, and if you use a consistent
ordering strategy from one procedure to the next, you are less likely to make
parameter correspondence mistakes.

When you specify actual parameters in a different order than you specify
procedure parameters (or specify a different number of actual parameters as
compared to the procedure), you cause run-time errors that may be difficult
to debug. The BY DESCRIPTOR CHECK clause can help detect this kind of
error. See Section 4.2.8 for more information on the BY DESCRIPTOR CHECK
clause.

4.2.5 Specifying Parameter Data Types
You can choose from a number of data types for procedure parameters in an
SQL module. For a detailed description of these data types, read the section
in the Oracle Rdb7 SQL Reference Manual on data types in the chapter about
language and syntax elements. You can also specify the name of a domain
definition in place of a data type keyword.

The following excerpt shows how to declare three parameters:

(SQLSTATE, -- Status parameter. No data type specified.
:LAST_NAME_VAR CHAR(14), -- Character data type.
:EMP_ID ID_DOM) -- Data type based on the domain ID_DOM.

When deciding on parameter data types, you must consider data type
correspondence for all of the following:

• Column definition

• Parameter declaration in the SQL module

• Parameter declaration in the host language module

In most cases, it is possible to maintain consistency of data storage formats
between the database and programs. However, if either of the following
conditions is true, you must declare parameters in the SQL module and host
language module to be of a data type that is different from the one specified in
the column definition:

• The language in which you write the calling module does not support the
data storage format specified in the table column definition, and your
program must work with values stored in that column.

Writing Module SQL Procedures 4–11

• Your program writes to a database from a file (or writes to a file from
the database) and the record field associated with the column value has a
different storage format than the column.

Usually, you can solve either problem by instructing SQL to convert between
data storage formats. This strategy for converting between a character data
type and the Oracle Rdb data type DATE is illustrated in Figure 4–1. This
figure also shows the declarations of date_var and P_DATE_CHAR and the
column definition of DATE_COL.

Alternatively, your host programming language may support the conversion
that you want between data storage formats. Consult the documentation
for the host language that you are using to determine what capabilities are
available in your host language for data type conversions.

Reference Reading

The Oracle Rdb7 SQL Reference Manual has a section about data type
declarations supported for various host languages in the chapter on the
SQL module language.

4.2.6 Effect of the LANGUAGE Clause on the Parameter Data Type
The procedures you include in an SQL module contain declarations of
parameters whose data types must normally correspond to data types of
actual parameters declared in the calling module. See Section 4.2.2 for more
information about procedure parameters.

If you specify a data type for a procedure parameter that is unsupported by
the language compiler that you identify in the LANGUAGE clause of the SQL
module header, the SQL module processor returns a compile-time warning. For
example, SQL supports the BIGINT data type but the PL/I language compiler
does not. By returning this warning, the module processor assumes that you
intend to store a value in a calling module parameter that your programming
language will not allow you to declare. (In most cases, procedure parameters
and actual parameters should have the same data type.)

You may choose to ignore this compile-time warning in certain cases. For
example:

• Suppose a column is defined as BIGINT, a data type that your
programming language does not support. However, this data type is
supported by a forms product that you intend to call from your program to
interpret the value. In this case, you may choose to define an 8-byte actual
parameter any way your programming language allows you to (perhaps as

4–12 Writing Module SQL Procedures

an 8-character text string) and define both the procedure parameter in the
SQL module and the associated form field as BIGINT. At run time, SQL
and the forms product correctly retrieve and store the BIGINT value stored
in the 8-byte storage area. The run-time routines of the programming
language never process the value.

• Suppose that your programming language allows you to create a user-
defined data type that matches a data type for which the run-time routines
of the language provide no support. In this case, you can ignore the
compile-time warning if you plan to create your own routines to correctly
interpret and process a value in a particular storage area.

In other cases, however, you should declare parameters in an SQL module
using a data type that is supported by the programming language that
calls that procedure. Therefore, for the majority of cases, the SQL module
processor warning that a programming language does not support a data type
indicates either that something is wrong with the declaration of your procedure
parameter, or that you specified the wrong language in the LANGUAGE
clause. See Chapter 8 for more information about data type declarations and
conversions supported for various languages. In addition, see the tables in the
Oracle Rdb7 SQL Reference Manual that show the correspondence between
SQL data types and data types of host languages.

If you specify GENERAL as a language identifier, the SQL module processor
allows any data type considered valid by SQL. In this case, you receive no
warnings at compile time that you are declaring parameters in a way that may
cause run-time errors or unexpected results. This is a disadvantage if you do
not fully understand the capabilities and restrictions of the host language you
are using.

4.2.7 Effect of the LANGUAGE Clause on the Parameter-Passing Mechanism
The language identifier implicitly specifies the mechanism SQL expects for
passing parameter values to and from the host language module at run
time. For all language identifiers except GENERAL, SQL expects parameters
to be passed from the calling module using the defaults for that language.
When you specify GENERAL, SQL expects all parameters to be passed by
reference from the calling module. The advantage of identifying the language
that will call procedures in the SQL module is that, for the most part, the
programmer writing a calling module does not have to worry about identifying
the parameter-passing mechanism expected by the called module.

Writing Module SQL Procedures 4–13

Usually, default passing mechanisms for most languages vary from one data
type to another. Your host language documentation for an external procedure
call contains information about default passing mechanisms. You need to study
this information if either of the following statements is true:

• In the LANGUAGE clause of the SQL module being called, you specify a
language other than the one in which the calling module is written, or you
specify GENERAL.

• Your call to a procedure in an SQL module specifies host language
parameters that use language-specific subtypes of a generic data type,
and SQL supports only the generic data type.

Note

Some languages include subtypes for a given data type and may assign
different default passing mechanisms to each subtype. When host
language parameter declarations specify these subtypes, you may need
to override default passing mechanisms for those subtypes in either the
SQL or host language module.

To illustrate the point in the preceding note, when you use the text string data
type, Ada allows you to declare strings that include the number of characters
(for which the default passing mechanism is by reference) as well as strings
that do not include the number of characters (for which the default passing
mechanism is by descriptor).

In SQL modules, however, you cannot declare text string data types without
specifying the number of characters. Therefore, when you specify LANGUAGE
ADA in an SQL module, SQL expects text string parameters to be passed
always by reference. This means that if you declare a formal parameter as a
string in your Ada declaration of the SQL procedure, and you do not specify the
number of characters for that string, you must override the passing mechanism
default for the parameter either in your Ada module or in your SQL module.

SQL does not support the by-value passing mechanism. When calling
procedures in an SQL module, you must pass parameters either by reference or
by descriptor.

See Section 4.2.8 for more information about parameter-passing mechanisms.

4–14 Writing Module SQL Procedures

4.2.8 Overriding the Default Passing Mechanism for a Procedure Parameter
If you want a parameter value to be passed by descriptor, you can specify the
BY DESCRIPTOR clause as part of a procedure parameter declaration in an
SQL module. For example:

SIZE_PARAMETER INTEGER BY DESCRIPTOR

If you do not specify the BY DESCRIPTOR clause, the passing mechanism for
a parameter depends on the language specified in the LANGUAGE clause of
the module. If the LANGUAGE clause identifies the calling language, passing
mechanism defaults are the same for the calling host language module and the
called SQL module.

Note the following reasons to specify the BY DESCRIPTOR clause in a
procedure parameter declaration in an SQL module:

• You plan to override a by-reference default when you specify an actual
parameter in the host language module. In this case, you must explicitly
specify a by-descriptor passing mechanism for the corresponding parameter
in the SQL module as well.

• You want to specify the CHECK keyword in a declaration of a procedure
parameter to ensure that the calling module is passing a parameter as
expected by the SQL module. Section 4.2.9 discusses run-time checking of
parameter-passing mechanisms.

• SQL syntax has an exact counterpart of only one subtype of a generic
data type (such as text string), and you declare a formal parameter using
a subtype whose default passing mechanism is different from the one
that you can match in SQL syntax. In this case, you must override the
default passing mechanism for the parameter in either the SQL or the host
language module. (If the SQL default is by descriptor, you can change the
passing mechanism default only in the host language module.)

4.2.9 Requesting a Run-Time Check of Parameters Used by the Calling
Module

When the host language module declares actual parameters that do not
match the data type and size of the corresponding procedure parameters in
an SQL module, run-time results are undefined. When you are debugging
your program, it is useful to receive a run-time error to inform you when the
procedure and actual parameters do not agree.

Writing Module SQL Procedures 4–15

To enable return of this run-time error, specify the BY DESCRIPTOR CHECK
clause in the parameter declaration in the SQL module whose corresponding
host language parameter you want SQL to check. You must include the BY
DESCRIPTOR CHECK clause even if the default passing mechanism is by
descriptor. For example:

SIZE_PARAMETER INTEGER BY DESCRIPTOR CHECK

If the by-descriptor mechanism is not the default passing mechanism, specify
the by-descriptor passing mechanism for the parameter in the host language
module as well.

4.3 Using Single SQL Statements in Procedures
An SQL module procedure that includes only one executable SQL statement
is called a simple statement procedure. In a simple statement procedure, you
enter a semicolon (;) twice: the first occurrence follows the last parameter
declaration and the second occurrence is at the end of the executable SQL
statement. The following example of a simple statement procedure fetches
data from an open cursor:

PROCEDURE FETCH_REPORT_RECORD -- Procedure name
(-- Beginning parenthesis
SQLSTATE, -- Status parameter with no data type
:P_EMPLOYEE_ID CHAR(5), -- Parameters prefixed by colons
:P_LAST_NAME CHAR(14), -- and separated by commas
:P_FIRST_NAME CHAR(10),
:P_JOB_CODE CHAR(4),
:P_DEPARTMENT_CODE CHAR(4),
:P_SALARY_AMOUNT REAL
); -- Ending parenthesis and semicolon

FETCH REPORT_CURSOR INTO -- Simple statement
:P_EMPLOYEE_ID, :P_LAST_NAME,
:P_FIRST_NAME, :P_JOB_CODE,
:P_DEPARTMENT_CODE, :P_SALARY_AMOUNT; -- Ending semicolon

4.4 Using Compound Statements in Multistatement Procedures
An SQL module procedure that includes one or more SQL statements in a
compound statement is called a multistatement procedure.

Simple statement procedures restrict database access to a single statement
at a time. By using a multistatement procedure and only one host language
program call, you can perform comprehensive business transactions, complex
program control, and structured error handling all within the database
environment. In many cases, you can achieve function abstraction, which is
when one physical module performs one logical database function.

4–16 Writing Module SQL Procedures

In a multistatement procedure, you enter a semicolon (;) following the last
parameter declaration, at the end of each SQL statement contained in the
compound statement, and at the end of the compound statement itself.

The following example shows a multistatement procedure that contains a FOR
loop with a nested IF statement. The procedure increases the minimum salary
for some jobs and then, if the maximum salary is less than the minimum
salary, it increases the maximum salary. In addition, it counts the number of
rows updated for each category.

PROCEDURE salary_inc -- Procedure name
(-- Beginning parenthesis

SQLSTATE, -- Status parameter with no data type
:inc REAL, -- Parameters prefixed by colons
:min_count SMALLINT, -- and separated by commas
:max_count SMALLINT
); -- Ending parenthesis and semicolon

BEGIN -- Beginning of compound statement

SET :min_count = 0; -- Assignment statements
SET :max_count = 0;

-- FOR statement.
-- The :jobrec variable represents a record that holds columns from the
-- selected row.

FOR :jobrec
AS EACH ROW OF TABLE CURSOR JOB_CURSOR FOR

-- The select expression.
SELECT MINIMUM_SALARY, MAXIMUM_SALARY FROM JOBS

WHERE MINIMUM_SALARY < 20000
DO

-- Update the current row in the JOB_CURSOR
UPDATE JOBS

SET MINIMUM_SALARY = MINIMUM_SALARY + (MINIMUM_SALARY * :inc)
WHERE CURRENT OF JOB_CURSOR;

SET :min_count = :min_count +1;

-- Nested IF statement.
-- If the minimum salary is now greater than the maximum salary, increase the
-- maximum salary.

IF :jobrec.MINIMUM_SALARY > :jobrec.MAXIMUM_SALARY
THEN

UPDATE JOBS
SET MAXIMUM_SALARY = MAXIMUM_SALARY * :inc
WHERE CURRENT OF JOB_CURSOR;

SET :max_count = :max_count +1;

END IF; -- End of IF statement, terminated by semicolon

END FOR; -- End of FOR statement, terminated by semicolon

END; -- End of compound statement, terminated by
-- semicolon

For information about writing compound statements, see Chapter 12.

Writing Module SQL Procedures 4–17

4.5 Understanding the Restrictions of the SQL Module Language
When you use SQL module language, SQL enforces the following restrictions:

• You cannot continue a keyword, user-defined name, or literal (such as a
quoted string) from one line to the next. You must enter them in their
entirety on one line of your SQL module file.

• You cannot specify a WHENEVER statement. Furthermore, you cannot
specify the WHENEVER statement in a host language source file and
expect it to apply to your calls to procedures in SQL modules. The
WHENEVER statement is supported only by the SQL precompiler, which
can identify only SQL statements embedded in a host language source file.
The SQL precompiler does not recognize user-defined procedure calls as
being related to SQL operations.

Handle errors returned by a call to a procedure in an SQL module in the
calling host language module. Use a host language conditional statement
to evaluate the SQL status parameter, such as SQLSTATE or SQLCODE,
immediately following the call.

• If the module contains a CREATE DATABASE statement, it should appear
lexically before any DECLARE TABLE statement. If the DECLARE
TABLE statement appears before the CREATE DATABASE statement,
SQL tries to attach to the default database (such as SQL$DATABASE).

• Data definition statements cannot refer to database objects that do not
precede the data definition statement or are not defined in the compile time
database. For example, because a CREATE STORAGE MAP statement
refers to a table, the table must exist in the compile-time database or
the SQL module must create it in a statement that lexically precedes the
CREATE STORAGE MAP statement.

• You cannot use the SQL INCLUDE statement to copy host language
declarations from the repository or text source file. However, you can use
the FROM path-name clause in an SQL module procedure to copy record
definitions from the repository, and you can use a host language INCLUDE
or COPY statement to copy host language definitions into a host language
source file.

• When you specify the language as C in the LANGUAGE clause, SQL
translates all C character strings as null-terminated strings. This means
that when SQL passes these character strings from the database to the
program, it reserves space at the end of the string for the null character.
When a program passes a character string to the database for input, SQL
looks for the null character to determine how many characters to store

4–18 Writing Module SQL Procedures

in the database. SQL stores only those characters that precede the null
character; it does not store the null character itself.

Because of the way SQL translates C character strings, you may encounter
problems with applications that pass binary data in C character strings
to and from the database. The binary data, for example, might contain
null characters that would cause SQL to prematurely truncate the data.
To avoid problems of this type when you use the SQL module language
with a C host language program, you might want to consider specifying the
module language as GENERAL. In most cases, however, you do not need to
use GENERAL in place of C as the module language.

Some of these restrictions are also discussed in Section 8.6, Section 8.12.2, and
Section 10.2.

Writing Module SQL Procedures 4–19

5
Processing SQL Modules and Host Language

Files

This chapter describes how to process SQL modules and host language files. In
the sections that follow, you will become familiar with how to:

• Invoke the SQL module processor

• Process SQL modules and host language modules

• Bypass parameter checking for faster compilation

• Improve the performance of the SQL module processor when you access
remote databases

• Use context files with SQL module language

• Decide on the scope of an SQL module

5.1 Invoking the SQL Module Processor
The SQL module processor is an executable image that checks and processes
statements in an SQL module source file. If the module processor encounters
no fatal errors, it produces an object file. To use the module processor, you
invoke the module processor and specify the SQL module source file as the
input filename. The default file extension for the SQL module source file is
.sqlmod.

Digital UNIX On Digital UNIX, invoke the module processor using the sqlmod command
and specify the input filename. For example, to process the SQL module file
my_program.sqlmod, use the following command:

$ sqlmod my_program.sqlmod

By default, the SQL module processor produces an object file with the file
extension .o as input to the linker. ♦

Processing SQL Modules and Host Language Files 5–1

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, run the SQL module processor by defining the following symbol
in your login command file or at the DCL command level:

$ SQLMOD :== SQLMOD

When you define SQLMOD as the symbol shown in the preceding example,
you can specify the input file on the command line or have the SQL module
processor prompt you for it. For example:

$ SQLMOD my_program.sqlmod

$ SQLMOD
INPUT FILE> my_program

The SQL module processor produces an object file with the file extension .obj
as input to the OpenVMS Linker utility. ♦

In addition to the input filename, you can specify an optional context file on
the SQL module processor command line. (See Section 5.5 for information
about context files.)

The SQL module processor command line can also include a number of
qualifiers, all of which are described fully in the Oracle Rdb7 SQL Reference
Manual.

Digital UNIX The following example shows how to use the –o qualifier to specify the name
of the resulting object file and the –list qualifier to specify the name of the
listing file on a Digital UNIX system:

$ sqlmod -list my_program.lis -o my_mod_program.obj ♦

If the SQL module processor encounters a fatal error, the compilation stops. To
find multiple fatal errors, you must perform multiple compilations.

OpenVMS
Alpha

When an SQL module language program compiles with errors on OpenVMS
Alpha, the .obj files are not deleted, as they are on OpenVMS VAX and
Digital UNIX. ♦

5.2 Processing SQL and Host Language Modules
Processing a program that calls procedures in SQL modules involves four steps:

1. Processing (compiling) the SQL module file into an object file

Use the SQL module processor to compile SQL source files, as described in
Section 5.1.

2. Processing (compiling) the host language source file into an object file

Use the appropriate host language compiler to compile host language
source files.

5–2 Processing SQL Modules and Host Language Files

3. Linking object files to create an executable or shareable image

Link the object files by processing them with the linker, which is called by
the host language compiler. You must link the object files with the SQL
libraries.

4. Running the executable image or (if necessary) installing the shareable
image

Digital UNIX The following example creates an executable image on Digital UNIX, using the
Bourne shell:

$ # Invoke the SQL module processor.
$ sqlmod my_sql_module
$
$ # Define a global symbol for the SQL libraries.
$ SQLLIBS=’-lrdbsql -lrdbshr -lcosi -lots’
$ export SQLLIBS
$
$ # Invoke the Digital C compiler and link together the SQL module object
$ # file, the host language object file, and the SQL libraries.
$ cc -o my_calling_module my_calling_module.c my_sql_module ${SQLLIBS}
$ # Run the application.
$ my_calling_module ♦

OpenVMS
VAX

OpenVMS
Alpha

The following example creates an executable image on OpenVMS:

$! Define a symbol to invoke the module processor.
$ SQLMOD :== SQLMOD
$! Invoke the SQL module processor.
$ SQLMOD my_sql_module
$! Invoke the Pascal compiler.
$ PASCAL my_calling_module
$! Link the files.
$ LINK my_calling_module, my_sql_module
$! Run the application.
$ RUN my_calling_module

The preceding example assumes you have defined the logical name
LNK$LIBRARY to be SQL$USER.OLB. ♦

The following sections discuss compiling SQL source files. See your host
language documentation for instructions on compiling host language source
files. Note that Ada source files are not compiled in the way that the preceding
example indicates. See the Ada documentation set for information about
compiling Ada source files.

See Chapter 7 for information about the final phases of program development.

Processing SQL Modules and Host Language Files 5–3

5.3 Bypassing Parameter Checking for Faster Compilation
OpenVMS
VAX

OpenVMS
Alpha

The [NO]PARAMETER_CHECK qualifier determines whether or not the SQL
module processor compares the number of formal parameters declared for a
procedure with the number of parameters specified in the SQL statement of
the procedure during compilation. The qualifiers are as follows:

• PARAMETER_CHECK (default)

Checks that parameter counts match and generates an error at run time
(not compile time) when they do not.

• NOPARAMETER_CHECK

Suspends checking of parameters to improve module compilation time.
Consider using the NOPARAMETER_CHECK qualifier after you have
debugged your SQL module. ♦

5.4 Improving SQL Module Processor Performance for Remote
Databases

The SQL module processor must access the definitions of tables and views
to which you refer in programs. By default, the module processor accesses
database system tables to retrieve table and view definitions. When a database
is remote, compiling the SQL module may require more time and additional
resources to retrieve definitions than when a database is local.

When accessing a remote database, you have three options for improving the
performance of the SQL module processor. Read Section 15.1.3 for a complete
discussion of the first two options. The third option is discussed here.

• Use the COMPILETIME option of the DECLARE ALIAS statement to
specify a path name of a node created in a local repository for the database.

• Use the COMPILETIME option of the DECLARE ALIAS statement to
specify a local Oracle Rdb database file.

• Use DECLARE TABLE statements in your programs to specify definitions
for the tables and views that you name in SQL statements.

The SQL module processor does not access the database for table
definitions that you declare in this way. If your DECLARE TABLE
statements include constraints that refer to other tables, be sure to declare
those tables as well. In addition to being an option for improving compile-
time performance, DECLARE TABLE statements provide a way to compile
programs that will access tables not yet created.

5–4 Processing SQL Modules and Host Language Files

Reference Reading

For detailed information about the DECLARE TABLE statement, see
the DECLARE TABLE section of the chapter on SQL statements in the
Oracle Rdb7 SQL Reference Manual.

For a discussion of the compile-time options for database attachment,
see the DECLARE ALIAS section of the chapter on SQL statements in
the Oracle Rdb7 SQL Reference Manual.

5.5 Using Context Files with SQL Module Language
You can use SQL context files with SQL module language. A context file is
an SQL command procedure containing DECLARE statements that you want
to apply when your program compiles and executes. Context files can help you
improve the portability of compiled source files.

With one exception, the format of a context file used with SQL module
language is the same as that used for precompiled SQL. It is not necessary to
end the DECLARE statements with a semicolon (;) when you use a context file
with SQL module language. However, if you include the semicolon (;), you can
use the context file with both SQL module language and precompiled SQL.

Assume that an application contains a module that must be compiled using
different SQL dialects. Rather than having two copies of the module and the
problem of maintaining them in parallel, you can have one module and two
context files. The module contains all of the code and each context file contains
the dialect declaration statement.

For example, the module test must be compiled using the dialects SQL92 and
MIA. The context file test-sql92 contains the following DECLARE MODULE
statement:

DECLARE MODULE
DIALECT SQL92

The context file test-mia contains the following DECLARE MODULE
statement:

DECLARE MODULE
DIALECT MIA

Processing SQL Modules and Host Language Files 5–5

The dialect is controlled by compiling the module test with the appropriate
context file. For the module test to use the SQL92 semantics, compile the
module test using the test-sql92 context file. Specify the context file as the
second parameter, as shown in the following example:

$ SQLMOD
INPUT FILE> test test-sql92

For the module test to use the MIA semantics, compile it using the test-mia
context file, as shown in the following example:

$ SQLMOD
INPUT FILE> test test-mia

5.6 Deciding on the Scope of an SQL Module
An executable or shareable image can be assembled from more than one host
language module and more than one SQL language module. You can organize
SQL operations into SQL source files in the following ways:

• You can associate SQL modules with executable images.

In this case, you create one SQL source module to be called by any of the
host language source modules that contribute to the image. This strategy
is easiest for a single application. However, if calling modules are written
in a variety of programming languages, the strategy has the disadvantage
of establishing SQL passing mechanisms for one, several, or all data types
that may not be the same as the calling module defaults.

If the default passing mechanism for a given data type in a calling module
is different from the default passing mechanism expected by the SQL
module, you must override the default in one of those modules. (See
Section 3.2.5, Section 4.2.7, and Section 4.2.8 for information on controlling
how parameters are passed between modules.)

• You can associate each SQL module with only one kind of task.

For example, you might want to associate only one SQL module with
the update of a set of columns contained in one table or in several tables
that are related by a constraint. In this case, if the task in question also
defines the scope of a single calling host language source file, both the
SQL module and the host language module that calls it have a one-to-one
correspondence with a specific kind of task. As the number of database
applications increases, this strategy makes it easier to keep track of how
modules relate to one another and simplifies program maintenance.

5–6 Processing SQL Modules and Host Language Files

6
Using Precompiled SQL

This chapter describes both general and language-specific guidelines for
embedding SQL statements in host language source files. You will become
familiar with:

• The process you follow when writing programs that contain SQL
statements

• Writing a host language program that contains embedded SQL statements

• Invoking the SQL precompiler

• Finding compilation errors

• Improving performance for remote databases

• Specifying compile-time and run-time characteristics

• Embedding SQL statements in each language supported by the SQL
precompiler

6.1 Understanding the Precompiler Process
The SQL precompiler lets you embed SQL statements in host language
programs. The flowchart in Figure 6–1 illustrates the steps you follow in
creating a program with precompiled SQL statements. The callouts are
explained in the list following the figure.

Using Precompiled SQL 6–1

Figure 6–1 Application Program Development with the SQL Precompiler

No

Yes

No

2

1

4

5

6

Syntax
or semantic

errors?

Start

Yes
3language source code

Edit embedded host

host language program
Compile embedded

Create host language source code
and embed SQL statements

2

Link object files
and libraries

Debug executable
image

Run executable
image

Run−time
errors?

STOP
NU−2733A−RA

The callouts contained in Figure 6–1 are described as follows:

! Create the host language program and embed SQL statements in the code,
prefixing each SQL statement with the EXEC SQL flag.

" Invoke the SQL precompiler to process the precompiled SQL statements
and the host language program.

If compilation errors occur, edit the source code. You return to this step if
errors occur (step &) from the run phase. After editing the source code,
return to the compilation phase (step ").

6–2 Using Precompiled SQL

$ Link the object files and libraries to create an executable image or a
shareable image or shared module. (You link shareable images or shared
modules with other programs.) Chapter 7 explains both options.

% Test the executable image created from the link phase (step $) to verify
that the program works properly. You may need to install the shareable
image or link with other modules.

& If you discover any run-time errors, debug the executable image and return
to the edit phase (step #) to correct the host language source code or the
embedded SQL statements.

Digital UNIX The following example creates an executable image, using the C language
source file called my_program.sc, on Digital UNIX using the Bourne shell:

$ # Invoke the SQL precompiler and specify the language as C.
$ sqlpre -l cc my_program.sc
$
$ # Define a global symbol for linking.
$ SQLLIBS=’-lrdbsql -lrdbshr -lcosi -lots’
$ export SQLLIBS
$
$ # Invoke the DEC C compiler and link the object file.
$ cc -o my_program my_program.o ${SQLLIBS}
$ # Run the application.
$ my_program ♦

OpenVMS
VAX

OpenVMS
Alpha

The following example creates an executable image, using the C language
source file called my_program.sc, on OpenVMS:

$! Invoke the SQL precompiler and specify the language as C.
$ SQLPRE
INPUT FILE> my_program /CC
$! Link the file.
$ LINK my_program
$! Run the application.
$ RUN my_program

On OpenVMS, the logical name LNK$LIBRARY must be defined as
SQL$USER before you invoke the linker. ♦

Reference Reading

For information about linking object modules into images and running
executable images, see Chapter 7.

Using Precompiled SQL 6–3

6.2 Embedding SQL Statements in Host Programs
The SQL precompiler allows you to embed both simple SQL statements and
compound statements in your host language program:

• Simple SQL statements

A simple SQL statement consists of a single SQL statement. You embed
a simple SQL statement by preceding the statement with the EXEC SQL
flag and terminating it with the language-specific termination character, as
shown in the following excerpt from a C precompiled program:

EXEC SQL UPDATE DEPARTMENTS
SET MANAGER_ID = :mgrid
WHERE DEPARTMENT_CODE = ’SALE’;

• Compound statements

A compound statement consists of one or more SQL statements delineated
with the keywords BEGIN and END. You can include flow-control
statements, such as the SQL IF and FOR statements, in compound
statements. As you do with simple SQL statements, you embed a
compound statement by preceding the statement with the EXEC SQL flag
and terminating the entire compound statement with the language-specific
termination character. In addition, you end each SQL statement within the
compound statement with a semicolon (;).

Chapter 12 explains how to use compound statements with the SQL
precompiler.

The SQL precompiler processes programming language source files and
imposes certain rules on how to include SQL statements in those files. These
rules apply to any precompiled file:

• Begin each SQL statement with the EXEC SQL flag.

The EXEC SQL flag identifies the beginning of SQL statements to the
SQL precompiler. The EXEC SQL flag can occur only at the beginning of
the first line of a multiline SQL statement. (The need for host language
continuation characters for multiline SQL statements is a language-specific
need. Follow the rules of the programming language you are using to
continue SQL statements from one line to the next.)

• The EXEC SQL flag can occur on the same line as other host language
elements. For example, an SQL statement might come before a label for a
section in your program. The EXEC SQL flag can also follow a language
statement (an IF statement, for example) on the same line.

• To continue multiline literals in SQL statements from one line to another,
follow the host language rules for continuation of literals.

6–4 Using Precompiled SQL

• Specify INCLUDE statements that copy executable host language
statements, executable SQL statements, or both, in a part of your program
that allows executable statements. The INCLUDE SQLCA, INCLUDE
FROM repository, and INCLUDE statements that copy host language
declarations must appear in a part of your program that allows variable
declarations.

Within a variable declaration, you cannot specify INCLUDE statements
that copy partial host language declarations. For example, assume that
FILE.DAT contains the following lines:

05 FIELD1 PIC X(10).
05 FIELD2 PIC X(10).

In this situation, the precompiler does not accept the INCLUDE statement
contained in the following section of a COBOL program:

WORKING-STORAGE SECTION.
01 DEPT_REC PIC X(24).
01 COMMAREA
EXEC SQL INCLUDE ’FILE.DAT’ END-EXEC.

• You can embed DECLARE statements in any part of your program.
However, the DECLARE ALIAS, DECLARE TABLE, and DECLARE
TRANSACTION statements must come before statements that depend
on the information those DECLARE statements contain. For example, if
you explicitly declare databases and specify a transaction in your source
file, a DECLARE ALIAS or DECLARE TABLE statement must precede
a DECLARE (or SET) TRANSACTION statement, which must precede
an OPEN statement in a source file. A DECLARE CURSOR statement,
however, does not have to precede an associated OPEN statement in a
source file.

• You must embed any CREATE DATABASE statements so that they appear
lexically before a DECLARE TABLE statement. If the DECLARE TABLE
statement appears before the CREATE DATABASE statement, SQL tries
to attach to the default database (such as SQL$DATABASE).

• Data definition statements cannot refer to database objects that are not
defined in the compile-time database or do not precede the data definition
statement. For example, because a CREATE STORAGE MAP statement
refers to a table, the table must exist in the compile-time database or
the embedded SQL program must create it in a statement that lexically
precedes the CREATE STORAGE MAP statement.

Using Precompiled SQL 6–5

• The SQL precompiler follows language-specific rules for processing
parameter names. For example, when processing C source files, the
SQL precompiler treats uppercase and lowercase characters as different
characters in C parameter names.

However, the SQL precompiler always applies SQL rules to names of
database entities and to SQL keywords other than those that name
parameters.

Therefore, regardless of the rules you apply to parameter names, you:

Must specify underscores (_) rather than hyphens when entering SQL
keywords and names of database entities

The END-EXEC flag used in COBOL is an exception to this rule. To
comply with the ANSI/ISO SQL standard, specify the END-EXEC flag.
The END_EXEC flag compiles but is not compliant with the standard.

Can specify either uppercase or lowercase letters when entering SQL
keywords and names of database entities.

However, SQLCODE, SQLSTATE, SQLCA, SQLDA, and SQLDA2 are
keywords that refer to parameters processed by the host language
as well as by SQL. If you are writing in a language, such as C, that
applies case-sensitive rules to parameters, then you must specify
SQLCODE, SQLSTATE, SQLCA, SQLDA, and SQLDA2 in uppercase
characters.

• End each statement as required by your host language. Table 6–1 lists the
rules for ending SQL statements in each host language.

Table 6–1 Ending SQL Statements in Precompiled Host Language Source
Files

Language Ending SQL Statements

Ada End SQL statements with a semicolon (;).

C End SQL statements with a semicolon (;).

COBOL End SQL statements with the END-EXEC flag1. You can insert at least
one space and then the END-EXEC flag after the last word in the SQL
statement, or you can place the END-EXEC flag as the only word on
the line immediately following the SQL statement.

1 Depending on where the SQL statement occurs in the program structure, you may need to add a
period (.) immediately following the END-EXEC flag. Add a period if a COBOL statement in the
same position would require one.

(continued on next page)

6–6 Using Precompiled SQL

Table 6–1 (Cont.) Ending SQL Statements in Precompiled Host Language
Source Files

Language Ending SQL Statements

FORTRAN End SQL statements as you would FORTRAN statements. In other
words, SQL statements end at a line terminator unless you specify a
continuation character on the following line.

Pascal End SQL statements with a semicolon (;), even those within a
Pascal IF-THEN-ELSE statement. For example, if you embed an
SQL statement before the ELSE clause, you must surround the SQL
statement with a BEGIN-END block and the SQL statement ends with
a semicolon (;).

PL/I End SQL statements with a semicolon (;).

Section 6.7 provides additional rules and guidelines for each language
supported by the SQL precompiler.

6.3 Invoking the Precompiler
To use the SQL precompiler, you invoke the precompiler and specify the input
file name and the host language in which the source file is written.

Digital UNIX On Digital UNIX, invoke the precompiler using the sqlpre command. In
addition, specify the input file name, the -l qualifier and a language-specific
qualifier. For example, to process a C host language source file, you specify
the -l qualifier, along with the cc language-specific qualifier, as shown in the
following example:

$ sqlpre -l cc my_program.sc

You can pass strings to the host language compiler by enclosing the string in
quotes (’), as shown in the following example:

-l fortran=’-extend_source’

SQL does not check that the string you pass is valid. ♦

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, to invoke the SQL precompiler, define a symbol in your login
command procedure or at the DCL command level. You can define the
following symbol to invoke the SQL precompiler:

$ SQLPRE :== SQLPRE

Using Precompiled SQL 6–7

To invoke the SQL precompiler for processing a C language source file, specify
a file name and the /CC language-specific qualifier with the SQLPRE symbol,
as the following example shows:

$ SQLPRE
INPUT_FILE> my_program.sc /CC ♦

Table 6–2 shows the default input file types and language identification
qualifiers you can use when you precompile a program. The figure also shows
the default file types used by the precompiler when it passes the program to a
host language compiler.

Table 6–2 Language Identifiers and Default File Extensions Used in
Precompiling Programs

SQL Precompiler Host Language Compiler

Host
Language

Input
File

OpenVMS
Qualifier

Digital UNIX
Qualifier

Output
File

Input
File

OpenVMS
Output File

Digital UNIX
Output File

Ada .sqlada /ADA n/a .ada .ada .obj n/a

C .sc /CC -l cc .c .c .obj .o

COBOL .sco /COBOL -l cobol .cob .cob .obj .o

FORTRAN .sfo /FORTRAN -l fortran .for .for .obj .o

Pascal .spa /PASCAL -l pascal .pas .pas .obj .o

PL/I .spl /PLI n/a .pli .pli .obj n/a

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, you can also define the symbol that invokes the precompiler
to be language-specific. In this case, the symbol definition also includes the
language qualifier. The following example shows a sample symbol definition
for the SQL precompiler and the COBOL language:

$ SCOB :== SQLPRE/COB

SQL invokes the language compiler with any symbol you define for that
compiler, provided that the symbols do not execute command procedures. The
symbol COBOL is supported, for example, if it means COBOL/DEBUG, but is
not supported if it means @cob_proc.

(Ada programs require that you create and enable an Ada library before you
precompile them. See Section 6.7.2.)

6–8 Using Precompiled SQL

You cannot pass the [NO]OBJECT or [NO]G_FLOAT qualifiers through a
symbol you define to invoke the language compiler. These qualifiers must be
specified at precompile time. For instance, if you use the following symbol
definitions, the precompiler will not recognize the G_FLOAT qualifier:

$ MYC :== CC /GFLOAT
$ MYSQL :== SQLPRE/CC
$ MYSQL FILE_A

Either specify the [NO]OBJECT and [NO]G_FLOAT qualifiers as part of the
definition of the symbol you use to invoke the SQL precompiler or include them
on the command line when you use a symbol to invoke the SQL precompiler. ♦

Digital UNIX On Digital UNIX, the SQL precompiler does not pass the following qualifiers to
the host language compilers:

• -list

• -match

• -form ansi

You must explicitly specify the appropriate qualifier in the compiler switch list.
For example, for the COBOL host language compiler, you must specify -ansi
in order to use the -form ansi qualifier:

$ sqlpre -l cobol="-ansi" -form ansi

See your compiler documentation for information about the appropriate
qualifiers to use in the compiler switch list. ♦

The command you enter to invoke the SQL precompiler can include two
parameters:

• The file specification for a host language source file (required)

The host language file must contain both host language code and
precompiled SQL statements. The default file type for the source file
depends on the host language specified in the language qualifier, as shown
in Table 6–2.

• The file specification of an SQL context file (optional)

SQL defines a context file as a special-purpose command procedure
containing declarations that you want to apply when your program
precompiles and executes. You need to use context files only if you
are creating precompiled source files that you expect to port from one
implementation of SQL to another. For a discussion of context files, refer
to Section 6.6.2.

Using Precompiled SQL 6–9

The SQL precompiler command line includes both precompiler and host
language compiler qualifiers:

• SQL precompiler qualifiers

You must include a precompiler qualifier to specify the host language in
which the source is written. In addition to the language identification
qualifier, you can specify a number of other qualifiers on the SQL
precompiler command line. These qualifiers are documented fully in the
SQL precompiler chapter of the Oracle Rdb7 SQL Reference Manual.

• Host language compiler qualifiers

You can specify language compiler qualifiers that you want the precompiler
to use when it submits a preprocessed source file to the language compiler.
Refer to your host language documentation for a description of the
language compiler qualifiers you can use on the precompiler command line.

The precompiler command line cannot exceed 255 characters.

Caution

Do not edit the language source module created by the SQL precompiler
and then use the host language compiler to compile that source module.
This rule applies even if you want to make source changes that do
not affect SQL statements, because the next time you precompile the
source file, the original precompiled SQL module will write over any
changes that you made to the temporary language source module
generated by the precompiler.

OpenVMS
VAX

On OpenVMS VAX, the precompiler:

1. Creates two source files from the file you submit to it:

A macro module (file type .mar) that translates SQL statements into
macro procedures.

A host language module that a language compiler can process. In this
host language module, the precompiler replaces the SQL statements
with calls to the external procedures in the macro module.

2. Invokes the macro assembler to create an object file (file type .mob) for the
macro module and submits the preprocessed language source file to the
appropriate language compiler.

6–10 Using Precompiled SQL

3. Combines into one file both the object file output by the language compiler
and the object file for the macro module. The precompiler then deletes the
.mar and .mob files. (The precompiler does not perform this concatenation
of object files when it processes Ada programs. See Section 6.7.2 for
information about precompiling Ada programs.) ♦

OpenVMS
Alpha

On OpenVMS Alpha, the precompiler creates a single output file, which it
submits to the appropriate language compiler. The precompiler does not create
a macro module on OpenVMS Alpha. ♦

Digital UNIX On Digital UNIX, the precompiler creates a single output file, which it submits
to the appropriate language compiler. The precompiler does not create a macro
module on Digital UNIX. ♦

6.4 Finding Precompile-Time and Compile-Time Errors
If the SQL precompiler finds an error while it is processing your program,
it displays the error on your terminal or in a log file and writes the error to
the host language source file. Refer to the error message appendix in the
Oracle Rdb7 SQL Reference Manual for ways you can access supplementary
information for error messages.

If the host language compiler finds an error, the compiler writes the error to a
location that the SQL precompiler can access. The SQL precompiler retrieves
the error message, displays it on your terminal or in the log file, and writes
it to a log file named sqlerr.log. If you specify the LIST or -list qualifier, the
host language compiler also writes the error message to the listing file.

Note

The SQL precompiler produces the file sqlerr.log only after it submits
precompiled source code to the host language compiler. Depending on
the errors it encounters, the precompiler may not submit source code
to the host language compiler, and therefore, may not produce the file
sqlerr.log.

When the precompiler does not produce an sqlerr.log file, it produces a
host language source file that you can display or edit to review errors.
For example, if you submit a file named myprog.sfo to the precompiler,
you can type or edit the file myprog.for to review precompile-time
errors.

Consult your host language documentation for supplementary information
about compile-time errors.

Using Precompiled SQL 6–11

6.5 Improving Precompiler Performance for Remote Databases
The SQL precompiler must access definitions of the tables and views your
program will access at run time. By default, the precompiler accesses system
tables in a database file to retrieve table and view definitions. When a
database is remote, precompiling may take longer and use more resources to
retrieve definitions than when a database is local.

When accessing a remote database, you have three options for improving
precompiler performance. Read Section 15.1.3 for a complete discussion of the
first two options. The third option is discussed here.

• Use the COMPILETIME option of the DECLARE ALIAS statement to
specify a a path name of a node created in a local repository for the
database.

• Use the COMPILETIME option of the DECLARE ALIAS statement to
specify a local Oracle Rdb database file.

• Use the DECLARE TABLE statement in your programs to specify
definitions for the tables and views you name in SQL statements.

Because the definitions are included as part of the program, the SQL
precompiler does not need to access the database. To reduce maintenance
of multiple source files when using DECLARE TABLE statements, specify
those statements in one text file. Use the SQL INCLUDE file-spec
statement to copy that text file into your programs.

If your DECLARE TABLE statements include constraint definitions that
refer to other tables, be sure to declare those tables as well.

Reference Reading

For detailed information about the DECLARE TABLE and DECLARE
ALIAS statements, see the chapter on SQL statements in the Oracle
Rdb7 SQL Reference Manual.

6.6 Specifying Compile-Time and Run-Time Options
SQL allows you to control many settings through precompiler qualifiers and
the DECLARE MODULE statement. These settings affect characteristics
such as the character set of the data you will be processing and whether the
precompiler should flag syntax that does not conform to the ANSI/ISO SQL
standard.

6–12 Using Precompiled SQL

Refer to the Oracle Rdb7 SQL Reference Manual for a complete list of
precompiler qualifiers and the rules for their use. The following sections
describe some of the ways you can use these settings.

6.6.1 Using the DECLARE MODULE Statement
You can affect a variety of compile-time and run-time SQL settings for
precompiled programs by including a DECLARE MODULE statement
directly in a host language program or in a context file. Example 6–1 shows
a DECLARE MODULE statement that can be included in a host language
program.

Example 6–1 Changing Compile-Time and Run-Time Settings with the
DECLARE MODULE Statement

EXEC SQL DECLARE MODULE employee_module
DIALECT SQL92
NAMES ARE DEC_KANJI
NATIONAL CHARACTER SET KANJI
CATALOG ADMINISTRATION
SCHEMA ACCOUNTING
DEFAULT CHARACTER SET DEC_KANJI
AUTHORIZATION RDB$DBHANDLE
CHARACTER LENGTH OCTETS
ALIAS RDB$DBHANDLE;

You can specify the following categories of options with the DECLARE
MODULE statement:

• Dialect options

The DIALECT clause controls in one clause the settings for several other
clauses, similar to throwing a single electrical switch to control a bank of
lights. Refer to the Oracle Rdb7 SQL Reference Manual for a listing of the
settings that the DIALECT clause affects.

• Character set options

Character set options control the default, identifier, national, and literal
character sets for a module.

• Module language options

Module language options consist of a number of clauses, such as ALIAS
and RIGHTS, several of which can be set with the DIALECT clause.

• Authorization identifier and multischema options

Using Precompiled SQL 6–13

These options specify the default authorization identifier, schema, and
catalog.

The Oracle Rdb7 SQL Reference Manual describes the DECLARE MODULE
statement in detail and the clauses you can specify with it.

6.6.2 Including Declarations in an SQL Context File
Context files can make it easier to move your precompiled SQL programs to
other platforms. A context file is an SQL command procedure containing
DECLARE statements that you want to apply when your program compiles
and executes.

For example, on OpenVMS to precompile a COBOL source file named test.sco
and apply to it DECLARE statements in the test_declares.sql file, use the
following command:

$ SQLPRE/COBOL test test_declares

Example 6–2 shows the context file test_declares.sql, which contains
declarations for precompiling a source file.

Example 6–2 Context File for Precompiled SQL Compilation

DECLARE ALIAS FILENAME pers;

DECLARE TRANSACTION READ WRITE
RESERVING EMPLOYEES FOR PROTECTED WRITE,

JOB_HISTORY FOR PROTECTED WRITE,
DEPARTMENTS FOR SHARED READ,
JOBS FOR SHARED READ;

DECLARE MODULE employee_module
DIALECT SQL92
NAMES ARE DEC_KANJI
NATIONAL CHARACTER SET KANJI
CATALOG ADMINISTRATION
SCHEMA ACCOUNTING
DEFAULT CHARACTER SET DEC_KANJI
AUTHORIZATION RDB$DBHANDLE
CHARACTER LENGTH OCTETS
ALIAS RDB$DBHANDLE;

You can use the same context file with more than one source file, or you can
use different context files for each source file, or you can use different context
files with one source file.

6–14 Using Precompiled SQL

Assume that an application contains a module that must be compiled using
different SQL dialects. Rather than having two copies of the module and the
problem of maintaining them in parallel, you can have one module and two
context files. The module contains all of the code and each context file contains
the dialect declaration statement.

The dialect is controlled by compiling the module test with the appropriate
context file.

The format of a context file is the same as any SQL command procedure;
DECLARE statements in the file are not preceded by the EXEC SQL flag (as
they are in SQL statements embedded in a source file) and they always end
with a semicolon (;).

You can include other DECLARE statements, such as DECLARE TABLE and
DECLARE STATEMENT, in a context file to improve program portability.

If you use a context file, you should note in your host language source file that
DECLARE statements needed for precompiling the program are included in a
context file.

6.7 Language-Specific Guidelines for Using the SQL Precompiler
This section contains language-specific guidelines for the languages supported
by the SQL precompiler. Those languages are Ada, C, COBOL, FORTRAN,
Pascal, and PL/I.

6.7.1 Embedding SQL Statements in Ada Source Files
This section contains information that applies only to Ada programs. Note that
Ada programs require special considerations for precompiling and linking (see
Section 6.7.2 and Section 7.2.3). Refer also to Section 8.12.1 for information
about declaring and using parameters specific to the Ada language.

Limiting the Length of File Names
Limit the length of the file name of an Ada precompiler file to 27 characters.
The Ada compiler limits file names to 31 characters; however, the SQL
precompiler adds the prefix ‘‘SQL_’’ to the file name to create a package name.

Named Literals or Ranges
The Ada precompiler does not support the use of named literals or ranges. To
avoid this restriction, use the SQL module language.

Using Precompiled SQL 6–15

Embedding SQL Statements in Ada Files That Contain Multiple Procedures
The SQL precompiler supports block structure in Ada programs. As a result,
you can declare parameters to which SQL statements refer, such as SQLCODE,
in multiple procedures in the same Ada source file, and the precompiler will
recognize them as independent parameters.

Overloading of Subprograms
The SQL Ada precompiler does not support the overloading of subprograms. It
treats all of the overloaded programs as a single name space.

One workaround is to make sure that all names used in SQL statements are
unique in all the overloaded procedures. To conform to the ANSI/ISO standard,
the names of all host language variables must be unique in the entire program.

6.7.2 Precompiling Ada Programs
Because of differences between the Ada compiler and other host language
compilers supported by the SQL precompiler, there are differences both in how
the precompiler handles Ada source files and in how you precompile them.
Refer to Table 6–3 for a summary of the files associated with the processing of
Ada source files.

The differences between the Ada compiler and other compilers supported by
the SQL precompiler follow:

You Must Create and Enable an Ada Library
Before you can precompile an Ada program that includes SQL statements,
you must first create and enable an Ada library. To do this, use the DEC
Ada program library manager ACS commands CREATE LIBRARY and SET
LIBRARY.

See the Ada documentation set for more information on ACS.

The SQL Precompiler Generates a Second .ada File
When it processes an Ada program, the precompiler generates a second .ada
file that is an Ada package specification for the SQL statement procedures.
The file name for the package specification file is the name of the input file
preceded by the acronym SQL and an underscore (_), and the file type is
.ada. The Ada compiler uses the package specification, which is the package
definition created by the precompiler.

6–16 Using Precompiled SQL

You Must Copy an Intermediate File to the Ada Library
For languages other than Ada, the precompiler concatenates the object file it
creates from processing SQL statements with the object file generated by the
host language compiler, and then deletes the intermediate object files.

For Ada programs, however, the precompiler does not concatenate or delete
the object files. The file name for the object file that the precompiler creates
from processing embedded SQL statements is the name of the input file
preceded by the acronym SQL and an underscore (SQL_). The file extension
is .obj. However, the precompiler replaces hyphens (-) or dollar signs ($)
with underscores (_) and reduces two or more underscores in a row to one
underscore. You must copy that file to the Ada library with the ACS COPY
FOREIGN command before you link the program, or explicitly name the file in
the ACS LINK command.

Table 6–3 summarizes the files used by and created during the processing of
Ada source modules.

Table 6–3 Files Related to Precompiling Ada Source Modules

File Name Purpose

filename.sqlada The source Ada language file that contains embedded SQL
statements submitted to the SQL precompiler.

filename.ada An intermediate Ada source file created by the precompiler
and submitted to the Ada compiler.

filename.obj The object file created by the Ada compiler from
filename.ada. This file resides in the Ada library directory,
not in the same directory as the .sqlada file.

sql_filename.mar1 An intermediate macro source file created by the SQL
precompiler containing procedures that implement the SQL
statements embedded in the .sqlada file. The precompiler
submits the file to the macro processor and then deletes
it unless the logical name SQL$KEEP_PREP_FILES is
defined.

sql_filename.obj The object file created by the macro processor from the
.mar file. Unlike corresponding object files for other host
languages, the precompiler does not concatenate this file
with filename.obj and delete it. You must copy this file to
the Ada library before linking, or else explicitly specify it in
the ACS LINK command.

1On OpenVMS VAX only.

(continued on next page)

Using Precompiled SQL 6–17

Table 6–3 (Cont.) Files Related to Precompiling Ada Source Modules

File Name Purpose

sql_filename.ada An Ada package specification created by the precompiler for
the SQL statement procedures implemented in the .mar file.

Example 6–3 shows the steps in precompiling an Ada file called my_
program.sqlada.

Example 6–3 Precompiling Ada Files

$! Create an Ada library:
$ ACS CREATE LIBRARY [.ADALIB]
$! Enable the library:
$ ACS SET LIBRARY [.ADALIB]
%ACS-I-CL_LIBIS, Current program library is DVD15:[PROGRAMS.ADALIB]
$! Invoke the SQL precompiler:
$ SQLPRE
INPUT FILE> my_program.sqlada/ADA

See Section 7.2.3 for an example of linking Ada programs.

6.7.3 Embedding SQL Statements in C Source Files
This section contains information that applies only to C programs. Refer also
to Section 8.12.2 for information about declaring and using parameters specific
to the C language.

Using Character Strings in C
When you use the SQL C precompiler, SQL translates all C character strings
as null-terminated strings. This means that when SQL passes these character
strings from the database to the program, it reserves space at the end of the
string for the null character. When a program passes a character string to the
database for input, SQL looks for the null character to determine how many
characters to store in the database. SQL stores only those characters that
precede the null character; it does not store the null character itself.

Because of the way SQL translates C character strings, you may encounter
problems with applications that pass binary data to and from the database.
To avoid these problems when you use the SQL C precompiler, use the $SQL_
VARCHAR data type that SQL provides. Declaring the $SQL_VARCHAR data
type lets you store and pass binary data.

6–18 Using Precompiled SQL

Embedding SQL Statements in C Files That Contain Multiple Procedures
The SQL precompiler supports block structure in C programs. As a result, you
can declare parameters to which SQL statements refer, such as SQLCODE, in
multiple procedures in the same C source file, and the precompiler recognizes
them as independent parameters.

Floating-Point Data in C

OpenVMS
VAX

OpenVMS
Alpha

If your C program uses the D-floating format for floating-point data, you should
compile with the NOG_FLOAT qualifier. This forces SQL to convert the double-
precision data in the database from the G-floating format used by Oracle Rdb
to the D-floating format used by C, and vice versa. ♦

OpenVMS
VAX

On OpenVMS VAX, callable images must be linked against VAXCRTLG. ♦

Using C Pointers
The SQL precompiler for C does not support the use of pointers in passing
parameters in SQL statements.

Declaring SQL Routines Using an Include File
When you call certain SQL routines in C programs, the programs can generate
compilation informational messages. Oracle Rdb provides an include file, sql_
rdb_headers.h, that eliminates the messages by explicitly providing prototypes
for explicitly called SQL functions. For more information, see Section 10.3.4.

VAX C Extensions
Digital UNIX On Digital UNIX, to compile programs that contain VAX C extensions, use the

following option to the sqlpre command line:

-l cc="migrate -vaxc" ♦

6.7.4 Embedding SQL Statements in COBOL Source Files
This section provides information that applies only to COBOL programs.

Continuing Multiline Literals
For statements embedded in COBOL programs, SQL lets you continue
multiline literals in two ways:

– To comply with the ANSI/ISO SQL standard, use a single quotation
mark (’) as the starting quotation mark character, put a hyphen (-) in
the indicator area, and use a double quotation mark (") as the continuation
character.

– If your program does not need to comply with the ANSI/ISO SQL standard,
you can use the COBOL rule, which requires that the continuation
character match the quotation mark character that started the literal.

Using Precompiled SQL 6–19

Ensuring That COBOL Source Files Are in the Correct Format
The SQL precompiler lets you specify whether COBOL source files are in
terminal format or ANSI/ISO format on the command line. The default
is terminal format. If your source file is in ANSI/ISO format, specify the
ANSI_FORMAT or –form ansi qualifier on the command line.

Embedding SQL Statements in COBOL Files That Contain Multiple Programs
If your precompiled COBOL source file contains multiple programs, all your
SQL statements must execute within the scope of one of those programs.

Because the SQL precompiler does not support block structure in COBOL
programs, you can specify only one SQLCODE declaration in a precompiled
source file, even when the source file contains multiple programs. Either
declare SQLCODE directly in one working-storage section of the source
file or declare it indirectly by specifying the INCLUDE SQLCA statement
in one working-storage section of the file. Whether you declare SQLCODE
directly or indirectly, the location of the SQLCODE parameter determines the
program that the SQL precompiler will process. At run time, SQL updates
the SQLCODE parameter to reflect the execution status of SQL statements.
Therefore, executable SQL statements must be in the same program where
the SQLCODE parameter is declared. The precompiler assumes that all SQL
statements are in the same program.

In Figure 6–2, the asterisk (*) marks the location of the SQLCODE
declaration. Matched pairs of uppercase letters delimit each program in
the file. The arrows note the section of the file where SQL statements can be
specified. Precompiled SQL statements that occur after the END PROGRAM
statement for program B generate host language compiler errors.

6–20 Using Precompiled SQL

Figure 6–2 Scope of SQLCODE Declaration (COBOL)

NU−2722A−RA

C

Multiple COBOLSQLCODE declaration in
working−storage section program run units

B CA BA

Scope in which SQL
statements are allowed

*

Because contained programs are nested, SQL statements may span programs
contained by the program in which the SQLCODE declaration occurs.
For example, in Figure 6–3, program A contains programs B and C. The
SQLCODE declaration located in the working-storage section of program A
therefore allows SQL statements to be included in programs A, B, and C.
SQL statements that occur in program D generate host language compiler
errors because the statements occur after the END PROGRAM statement for
program A.

Using Precompiled SQL 6–21

Figure 6–3 Scope in Which SQL Statements Are Allowed (COBOL)

A DB

NU−2723A−RA

D

Multiple COBOL

C

program run units

B CA *

SQLCODE declaration in
working−storage section of program A

Scope in which SQL
statements are allowed

If your executable program image contains several COBOL programs that
are not nested, and you want to execute SQL statements in more than one
program, organize those programs into separate source files.

Declaring Structures
In COBOL, a structure defined as a word followed by a string is treated as
a single variable. The type equates to VARCHAR(n) in SQL. The following
example shows a structure that is treated as a single variable:

VARCHAR(32) 01 STRUCTURE.
49 STRUCT_LENGTH PIC S9(4) COMP.
49 STRUCT_STRING PIC X(32).

6.7.5 Embedding SQL Statements in FORTRAN Source Files
This section provides information that applies only to precompiled FORTRAN
programs.

Limiting the Number of Characters Per Line
In precompiled FORTRAN programs, the SQL precompiler adheres to a
restriction of 72 characters per line, unless you use the FORTRAN option
EXTEND_SOURCE or –extend_source . When you do, the source code can
contain up to 132 characters per line. If a statement is longer than the
maximum, enter a continuation character in column 6 and continue the
statement on the next line.

6–22 Using Precompiled SQL

Digital UNIX On Digital UNIX, you must use not only the –extend_source qualifier, but you
must also specify it as a compiler option, as shown in the following example:

sqlpre -l fortran=’-extend_source’ -extend_source test.sfo ♦

Limiting the Number of Continuation Lines

OpenVMS
VAX

The VAX FORTRAN compiler lets you specify a maximum number of
continuation lines (up to 99) in a statement if you use the CONTINUATIONS
qualifier. The default number of continuation lines is 19. The default for the
DEC FORTRAN compiler is 99.

If a program uses a record definition, the SQL precompiler unpacks the record
into individual elements and places each one on a separate line. If the number
of elements in the record is greater than the maximum number of continuation
lines, the FORTRAN compiler generates an error.

If this happens, increase the number of continuation lines by using the
CONTINUATIONS qualifier to the FORTRAN command line. If the record
contains more elements than the maximum allowed by FORTRAN (99
elements), you can edit the intermediate file (.for) to place more than one
element on a line. ♦

Limiting the Length of FORTRAN Field Names Beginning with SQL
In precompiled FORTRAN programs, the SQL precompiler adheres to a
6-character restriction on the length of parameter names beginning with
SQL that SQL declares as the result of an INCLUDE SQLCA statement.
For example, the SQL precompiler automatically declares the SQLCODE
parameter as SQLCOD rather than SQLCODE and SQLERR rather than
SQLERRD.

This manual uses the complete name for fields in the SQLCA. However, use
only the first 6 characters of the SQLCA names that begin with SQL when you
specify them in FORTRAN statements. Note that parameter names for the
RDB$MESSAGE_VECTOR and the fields it contains are not affected by this
restriction and must be specified in their entirety.

If you substitute an explicit parameter declaration for the INCLUDE SQLCA
statement, the parameter name must be SQLCOD in precompiled FORTRAN
programs.

Embedding SQL Statements in FORTRAN IF Statements
Embed SQL statements only in block IF (IF . . . THEN . . . END_IF) and
arithmetic IF statements in FORTRAN. Do not embed SQL statements in
logical IF statements (IF <condition> <statement>). When SQL statements
are embedded in logical IF statements, you may not be able to evaluate the
execution status of the SQL statement.

Using Precompiled SQL 6–23

Embedding SQL Statements in FORTRAN DO Loops
An SQL statement cannot be a labeled statement that ends a FORTRAN
DO loop. The precompiler converts SQL WHENEVER statements to one or
more host language IF statements that follow each executable SQL statement.
IF statements cannot end a FORTRAN DO loop. (If you are not using SQL
WHENEVER statements to monitor the execution status of SQL statements,
you should be entering these final IF statements yourself to handle conditions
and errors.)

If an SQL statement performs the last operation in a DO loop, end the loop
either with an END DO statement or with a label and the CONTINUE
statement.

Embedding SQL Statements in FORTRAN Files That Contain Multiple END
Statements
If your FORTRAN source file contains multiple program units (a main program
and called subroutines), all your SQL statements must execute within the
scope of one of those program units.

The SQL precompiler does not support block structure in FORTRAN programs.
This means you can specify only one SQLCOD declaration in a source file.
Either declare SQLCOD directly in one program unit of the source file, or
declare it indirectly by specifying the INCLUDE SQLCA statement in one
program unit of the source file. Whether you declare SQLCOD directly or
indirectly, the location of the SQLCOD parameter determines the program
unit that the SQL precompiler will process. At run time, SQL updates
the SQLCOD parameter to reflect the execution status of SQL statements.
Therefore, executable SQL statements must be in the program unit where
the SQLCOD parameter is declared. The precompiler assumes that all SQL
statements are in the same unit.

In Figure 6–4, the asterisk (*) marks the location of the SQLCOD declaration.
Matched pairs of uppercase letters delimit each program unit in the file. The
arrows note the section of the file where SQL statements can be specified. In
this file, precompiled SQL statements that occur after the END statement for
program unit B generates errors in the host language compiler.

6–24 Using Precompiled SQL

Figure 6–4 Scope in Which SQL Statements Are Allowed (FORTRAN)

NU−2724A−RA

CB C

SQLCOD declaration in

A B

program B

A

Scope in which SQL
statements are allowed

*

Multiple FORTRAN
program units

To include SQL statements in more than one unit of a program, organize the
units into separate source files.

Declaring Structures
In FORTRAN, a structure defined as a word followed by a string is treated
as a single variable. The type equates to VARCHAR(n) in SQL. The following
example shows a structure that is treated as a single variable:

STRUCTURE /struct_name
INTEGER*2 length
CHARACTER*32 string

END STRUCTURE

6.7.6 Embedding SQL Statements in Pascal Source Files
This section contains information that applies only to Pascal programs.

Including Data from Dictionary
The precompiler does not support the use of the INCLUDE FROM
DICTIONARY statement.

Embedding SQL Statements in Pascal Files That Contain Multiple Procedures
The SQL precompiler supports block structure in Pascal programs. As a
result, you can declare parameters to which SQL statements refer, such as
SQLCODE, in multiple procedures in the same Pascal source file, and the
precompiler recognizes them as independent parameters.

Using Precompiled SQL 6–25

Modifying Pascal Source Files to Meet SQL Restrictions
The SQL precompiler recognizes most Pascal rules and statements. However,
you should be aware of the following restrictions:

• The SQL precompiler recognizes only the HIDDEN attribute for Pascal
host variables.

• The SQL precompiler supports only one level of pointers.

• Because the SQL precompiler reads lines of code sequentially, the order
of statements in your program is important. For example, a variable
declaration must precede an assignment to that variable.

6.7.7 Embedding SQL Statements in PL/I Source Files
This section contains information that applies only to PL/I programs.

Embedding SQL Statements in PL/I Files That Contain Multiple Procedures
If your precompiled PL/I source file contains more than one procedure or
function, your SQL statements must execute within the scope of the SQLCODE
declaration.

The SQL precompiler does not support block structure in PL/I programs. As a
result, you can specify only one SQLCODE declaration (or INCLUDE SQLCA
statement) in a precompiled source file, even when the source file contains
multiple procedures. At run time, SQL updates the SQLCODE parameter to
reflect the execution status of SQL statements. Executable statements must
therefore be in the procedure where the value of SQLCODE can be returned.

In Figure 6–5, the asterisk (*) marks the location of the SQLCODE
declaration. Matched pairs of uppercase letters delimit procedures in the
file. The arrows note the section of the file where SQL statements can be
specified. Precompiled SQL statements that occur after the END statement for
program unit B generate host language compiler errors.

6–26 Using Precompiled SQL

Figure 6–5 Scope of SQLCODE Declaration (PL/I)

NU−2725A−RA

CB CA BA *

SQLCODE declaration
in procedure B

Multiple PL/I
procedures

Scope in which SQL
statements are allowed

If procedures are nested, SQL statements may span procedures contained
by the procedure in which the SQLCODE declaration occurs. For example,
in Figure 6–6, procedure A contains procedures B and C. The SQLCODE
declaration in procedure A therefore allows SQL statements in procedures A,
B, and C. However, the SQL precompiler does not process SQL statements
that occur in procedure D because these occur after the END statement for
procedure A.

Figure 6–6 Scope in Which SQL Statements Are Allowed (PL/I)

A DB

NU−2726A−RA

DCB CA *

Scope in which SQL
statements are allowed

SQLCODE declaration
in procedure A

Multiple PL/I
procedures

Using Precompiled SQL 6–27

7
Creating Images for Program Execution

After completing the compile phase of the application development process,
you link one or more object modules into an executable image. Only after
you create an executable image with the linker does the operating system
let you run an application program. When the linker binds one or more
object modules, it often must link with other necessary information, such as
shareable images.

This chapter describes:

• The concepts of executable images, shareable images, and shared objects

• Linking object modules on OpenVMS

• Creating a shareable image file on OpenVMS to conserve system resources
and improve program performance

• Installing a shareable image

• Linking object modules on Digital UNIX

• Inserting precompiled SQL modules in object libraries and archives

• Running the executable image created during the link phase

• Debugging the host language, SQL code, or both if the executable image
produces run-time errors

Reference Reading

See the operating system and compiler documentation for additional
information about linking object modules and creating shareable
images or shared objects, running an executable image, and debugging
programs.

Creating Images for Program Execution 7–1

7.1 Understanding Executable and Shareable Images
After you generate object modules for each source file, you link them together
to create an executable image or a shareable image or shared object.

An executable image is an image that runs in a process. When run, an
executable image is read from a file for execution in a process.

A shareable image is a collection of procedures that are called by executable
images or other shareable images. A shareable image cannot be executed
directly, but it can be linked with one or more other images to produce
executable images.

If you recompile one module with a different version of Oracle Rdb, recompile
all modules before you link them together.

7.2 Using the OpenVMS Linker
OpenVMS
VAX

OpenVMS
Alpha

Ada Language Note

If you are creating an executable image from objects generated by
the Ada compiler, you must follow procedures different from those
described in this section. See Section 7.2.3 for details about linking
Ada object modules.

To link object modules that include SQL statements, you specify:

• All the object files that your program image requires

• The SQL$USER library file

You can include the specifications directly in a command line or indirectly, in
an options file. The command line to link a program without using an options
file looks something like this:

$ LINK main_sql_mod, SQL$USER/LIBRARY

The /LIBRARY qualifier tells the linker that the file is a library file.

Make sure you link with the SQL$USER logical name, not with
SYS$SHARE:SQL$USER.OLB.

Your system manager may have defined SQL$USER as a user default library
by defining the LNK$LIBRARY logical name (or appropriate follow-on logical
name such as LNK$LIBRARY_1) after installing Oracle Rdb. If SQL$USER is
defined as a user default library, you do not need to specify the SQL library in
your LINK command.

7–2 Creating Images for Program Execution

This example links one object module when SQL$USER is defined:

$ LINK my_program

This example links three object modules to form a single executable image,
named my_main_program.exe:

$ LINK my_main_program, my_called_program, prog_messages

Reference Reading

The host language you use with SQL may require linking with
language-specific support libraries or images. Refer to the section
on linking programs in your host language documentation to see if
your program must be linked with files that are specific to your host
language.

See the OpenVMS Linker utility documentation for detailed
information about image creation.

♦

7.2.1 Linking Programs Compiled with the Digital C Compiler on OpenVMS
VAX Systems

OpenVMS
VAX

When you link programs compiled with the Digital C compiler on an OpenVMS
VAX system, you may need to set up some program section (PSECT) attributes.
This restriction applies to both the SQL precompiler and SQL module
processor. If you do not, you may receive a LINK-W-MULPSC, conflicting
attributes error.

To avoid these errors, include the PSECT_ATTR on the link command as
shown:

$ LINK/EXE=SQL$IVPC -
SQL$IVPC, -
SQL$USER/LIB, -
SYS$INPUT/OPT
PSECT_ATTR = RDB$MESSAGE_VECTOR,NOSHR,NOPIC ♦

Creating Images for Program Execution 7–3

7.2.2 Creating an Executable Image That Links with a Shareable Image

OpenVMS
VAX

OpenVMS
Alpha

To identify as input a shareable image that is not in a library, you must
use an options file. The /SHAREABLE positional qualifier, which is used to
identify an input file as a shareable image file, can be used only in an options
file; otherwise, the linker interprets it as a command qualifier rather than a
positional qualifier. Example 7–1 shows a file named project3.opt containing
both input file specifications and link options.

Example 7–1 Using an Options File to Link with a Shareable Image

MOD1,MOD7,LIB3/LIBRARY,-
LIB4/LIBRARY/INCLUDE=(MODX,MODY,MODZ),-
MOD12/SELECTIVE_SEARCH
STACK=75
SYMBOL=JOBCODE,5

$ LINK/MAP/CROSS_REFERENCE PROGA, PROGB, PROGC, project3/OPTIONS

If you want the LINK command to be in a command procedure, and you want
to specify an options file in the LINK command, specify SYS$INPUT: as the
options file. The DCL command interpreter interprets the lines following the
LINK command as lines in the options file. For example, a command procedure
linkprog.com might contain the following lines:

$ LINK, MAIN, SUB1, SUB2, SYS$INPUT:/OPTIONS
MYPROG/SHAREABLE
SYS$LIBRARY:APPLPCKGE/SHAREABLE
STACK=75 ♦

7.2.3 Linking Ada Objects

OpenVMS
VAX

OpenVMS
Alpha

The process for creating an executable image from objects generated by the
Ada compiler is different from that for other languages. (Section 7.2 describes
how to link object modules in host language programs other than Ada.) This
section details those differences:

• With Ada, you use the ACS LINK command instead of the DCL LINK
command.

• You do not specify the file name of the .obj file created by the Ada compiler
as a parameter to the ACS LINK command. Instead, you specify the name
of the main procedure in the Ada module as the first parameter to the ACS
LINK command.

7–4 Creating Images for Program Execution

• If the object files are created by precompiling Ada source modules with
embedded SQL statements, you must specify to the Ada program library
manager that the SQL_filename.obj file (created at precompile time) is
the package definition that corresponds to the package specification in the
SQL_filename.ada file. There are two ways to do this:

Use the ACS COPY FOREIGN command to copy the object file into the
Ada library:

$ ACS SET LIBRARY [.ADALIB]
%ACS-I-CL_LIBIS, Current program library is DVD15:[PROGRAMS.ADALIB]
$ ACS COPY FOREIGN SQL_filename.obj

Explicitly specify the .obj file as the second parameter in the ACS LINK
command:

$ ACS LINK main_procedure_name SQL_filename.obj

If the logical name LNK$LIBRARY (or the appropriate follow-on logical name)
is not defined for SQL$USER, and if the object files are created by precompiling
Ada source modules with embedded SQL statements, then you must specify
the SQL library in your LINK command as follows:

$ ACS LINK main_procedure_name SQL_filename.obj, SQL$USER

The following example links a precompiled Ada program sql_my_program.obj
that has a main procedure called MY_PROGRAM. The example does not
specify the ACS COPY command; instead, it specifies the .obj file created at
precompile time along with the main procedure name:

$! This LINK command requires that the logical name
$! LNK$LIBRARY is defined as SQL$USER.OLB
$!
$! The name MY_PROGRAM, immediately following the word LINK,
$! is a procedure name, not a file name.
$!
$ ACS LINK MY_PROGRAM sql_my_program.obj

The ACS LINK command invokes the OpenVMS Linker utility. Other than the
differences outlined in this section, the information in other sections of this
chapter applies to linking Ada objects as well. ♦

Creating Images for Program Execution 7–5

7.3 Creating Shareable Images
OpenVMS
VAX

OpenVMS
Alpha

The OpenVMS Linker utility can create shareable images. You might consider
making part of your application a shareable image for the following reasons:

• You save disk space because many executable images can be linked with a
single disk-resident copy of the shareable image.

• Shareable images simplify the implementation of applications where
response times are so critical that control variables and data readings must
remain in main memory.

• By carefully organizing a shareable image and by using universal symbols
(in a transfer vector on OpenVMS VAX or a symbol vector on OpenVMS
Alpha) and position-independent coding techniques, you can make
significant changes and enhancements to the shareable image without
relinking all the images bound to it.

A shareable image is not complete by itself and is therefore not directly
executable. To execute a shareable image, you must include it as input in a
linking operation that produces an executable image.

To produce a shareable image, specify the /SHAREABLE qualifier on the
command line. Like executable images, shareable images must be linked with
the SQL$USER library file.

Building a shareable image requires that you specify additional information
about how the linker is to treat the program sections (PSECTs). A program
section represents an area of memory. It has a name, a length, and a set of
attributes describing the intended and permitted uses of that part of memory.
For instance, certain declarations may be set to disallow writing to that part of
memory.

When the linker builds an image from the object file, it combines program
sections that have similar attributes to form image sections. Image sections
specify the size and attributes of a part of system memory. The image activator
uses that information to determine the characteristics of physical memory
pages—for instance, the nowrite program section mentioned in the previous
paragraph would be part of a nowrite image section, and that image section
would be mapped to a part of physical memory that did not allow writing.

Section 7.3.1 describes how to create a shareable image when the shareable
image and the executable images that link with it do not share database
attaches and transactions, or when the shareable image contains SQL modules
but the executable image does not. Neither image contains modules compiled
with the CONNECT qualifier.

7–6 Creating Images for Program Execution

Section 7.3.2 describes how to create a shareable image when the shareable
image and the executable images that link with it share database attaches and
transactions, or the images use connections (that is, the SQL modules were
compiled using the CONNECT qualifier).

Do not attempt to create images where both the executable image and the
shareable image contain SQL modules and use connections, but do not share
database and transaction handles. This combination is not supported and may
not work as expected. If the images share database and transaction handles,
there is no problem. ♦

7.3.1 Creating Executable and Shareable Images Not Sharing Database
Attaches

OpenVMS
VAX

OpenVMS
Alpha

This section describes how to create images that do not share database
attaches. This is the simplest way to create shareable images that contain
SQL modules. All that is necessary to create this type of image is to ensure
that the program section definitions in the shareable image are properly
defined. Example 7–2 shows the proper definitions.

Example 7–2 Linking to Create a Shareable Image

$ LINK/SHAREABLE=MYSHARE.EXE MYVECTORS, MYSHARE, SQL$USER/LIB, SYS$INPUT/OPTIONS
PSECT_ATTR=RDB$DBHANDLE, NOSHR,LCL
PSECT_ATTR=MYALIAS, NOSHR,LCL
PSECT_ATTR=RDB$MESSAGE_VECTOR, NOSHR,LCL
PSECT_ATTR=RDB$TRANSACTION_HANDLE, NOSHR,LCL
PSECT_ATTR=SQLCA, NOSHR,LCL
PSECT_ATTR=SQLDA, NOSHR,LCL
PSECT_ATTR=SQL$CALLER_PC, NOSHR,LCL
$

Every alias declared in your programs must be set to NOSHR,LCL. NOSHR
means these data structures are not shared; that is, your program uses
a different part of memory than the shareable image does. If both the
shareable image and the executable image attach to a database and start
a transaction, you have two database attachments and two separate (and
potentially competing) transactions.

If one transaction encounters a lock conflict with the other, you receive a
deadlock error. ♦

Creating Images for Program Execution 7–7

7.3.2 Creating Executable and Shareable Images Sharing Database Attaches

OpenVMS
VAX

OpenVMS
Alpha

When images must share database attachments, the executable image needs
to write to SQL data structures that reside within the shareable image. For
this to happen correctly, the data structures to be written must reside at a
fixed offset within that image and they must not move if the image is later
relinked. Positioning the SQL data structures within the shareable image is
similar in concept to placing the transfer vector for the shareable image. (See
the OpenVMS Linker documentation for more information on transfer vectors.)

This section describes how to direct the linker to properly place the affected
SQL program sections (PSECT) within a shareable image and how to initialize
aliases so that modules can share the aliases.

When you share aliases across multiple images, you must have one and only
one definition of each shared alias. To define a shared alias, use the GLOBAL
keyword in the DECLARE ALIAS statement, as shown in the following
example:

DECLARE MYALIAS GLOBAL ALIAS FOR FILENAME mf_personnel

In other modules, you can have many references to the defined alias, but you
must declare the alias using the EXTERNAL keyword.

Compile the module containing the defining DECLARE ALIAS statement with
the NOEXTERNAL_GLOBAL or SQLOPTIONS=NOEXTERNAL_GLOBAL
command line qualifier. These qualifiers specify that those aliases defined as
GLOBAL be treated as GLOBAL and those defined as EXTERNAL be treated
as external.

The image into which you link this module cannot be linked against any other
image that defines this alias.

For example, suppose you want to create a shareable image named
myshare.exe. The myshare.sc file is an SQL precompiled program that
contains SQL routines and the DECLARE ALIAS statement that defines
MYALIAS using the GLOBAL keyword. Compile the SQL module using the
NOEXTERNAL_GLOBAL qualifier. The resulting object module is named
myshare.obj. ♦

7–8 Creating Images for Program Execution

OpenVMS
VAX

On OpenVMS VAX, you must create an object module containing the transfer
vector, such as myvectors.obj. Then, create the shareable image by using the
command in Example 7–3.

Example 7–3 Linking Shareable Images That Share Handles on OpenVMS
VAX

$ LINK/SHAREABLE=myshare.exe MYSHARE, SQL$USER/LIB, SYS$INPUT/OPTIONS
CLUSTER=TRANSFER_VECTOR,,,MYVECTORS
CLUSTER=SQL_PSECTS
COLLECT=SQL_PSECTS, RDB$DBHANDLE, MYALIAS, RDB$MESSAGE_VECTOR,-

RDB$TRANSACTION_HANDLE, SQL$CALLER_PC, SQL$TRANSACTION_PTR,-
SQLCA, SQLDA

PSECT_ATTR=RDB$DBHANDLE, NOSHR,GBL
PSECT_ATTR=MYALIAS, NOSHR,GBL
PSECT_ATTR=RDB$MESSAGE_VECTOR, NOSHR,GBL
PSECT_ATTR=RDB$TRANSACTION_HANDLE, NOSHR,GBL
PSECT_ATTR=SQL$CALLER_PC, NOSHR,GBL
PSECT_ATTR=SQL$TRANSACTION_PTR, NOSHR,GBL
PSECT_ATTR=SQLCA, NOSHR,GBL
PSECT_ATTR=SQLDA, NOSHR,GBL
$ ♦

OpenVMS
Alpha

On OpenVMS Alpha, create the shareable image by using the command in
Example 7–4. This command includes the symbol vector.

Example 7–4 Linking Shareable Images That Share Handles on OpenVMS
Alpha

$ LINK/SHAREABLE=myshare.exe MYSHARE, SQL$USER/LIB, SYS$INPUT/OPTIONS
CLUSTER=SQL_PSECTS
COLLECT=SQL_PSECTS, RDB$DBHANDLE, MYALIAS, RDB$MESSAGE_VECTOR,-

RDB$TRANSACTION_HANDLE, SQL$CALLER_PC, SQL$TRANSACTION_PTR,-
SQLCA, SQLDA

PSECT_ATTR=RDB$DBHANDLE, NOSHR,GBL
PSECT_ATTR=MYALIAS, NOSHR,GBL
PSECT_ATTR=RDB$MESSAGE_VECTOR, NOSHR,GBL
PSECT_ATTR=RDB$TRANSACTION_HANDLE, NOSHR,GBL
PSECT_ATTR=SQL$CALLER_PC, NOSHR,GBL
PSECT_ATTR=SQL$TRANSACTION_PTR. NOSHR,GBL
PSECT_ATTR=SQLCA, NOSHR,GBL
PSECT_ATTR=SQLDA, NOSHR,GBL

(continued on next page)

Creating Images for Program Execution 7–9

Example 7–4 (Cont.) Linking Shareable Images That Share Handles on
OpenVMS Alpha

SYMBOL_VECTOR = (-
RDB$DBHANDLE=PSECT, -
MYALIAS=PSECT, -
RDB$MESSAGE_VECTOR=PSECT, -
RDB$TRANSACTION_HANDLE=PSECT, -
SQLCA=PSECT, -
SQLDA=PSECT, -
MYSHAREDPROC=PROCEDURE -

) ♦

OpenVMS
VAX

OpenVMS
Alpha

If you relink the shareable image and the data structures move, then you
must relink any executable and shareable images linked against the shareable
image that changed. Be careful that the lengths of the program sections
collected in the SQL_PSECTS cluster do not change. For example, if your
program contains an SQLDA but does not use an SQLCA, and you later add
one, the offset for the SQLDA program section changes. Similarly, if you later
add another database alias to your shareable image, you need to relink the
executable images.

Similarly, if the length of your transfer vector’s or symbol vector’s program
section changes, then you may need to relink your executable image. It is
advisable to allocate space in your transfer vector or symbol vector for future
use so that you do not need to relink all executable images if you add entries
to the transfer vector or symbol vector.

If you use database aliases, the alias names must be collected in the
SQL_PSECT, and the program section attributes must be set to NOSHR
GBL. ♦

OpenVMS
VAX

For example, if you declare a database with the alias ANOTHER_DB, you need
to add ANOTHER_DB to the COLLECT=SQL_PSECTS command, and you
need to add the following line to the linker options:

PSECT_ATTR=ANOTHER_DB, NOSHR,GBL ♦

7–10 Creating Images for Program Execution

OpenVMS
Alpha

On OpenVMS Alpha, you must also add the following line to the symbol vector:

ANOTHER_DB=PSECT ♦

After you create the shareable image, create the executable images that use
the shareable image. For the executable image to work properly, you must:

• Declare the aliases as EXTERNAL if they refer to the shared alias.

Remember that the shared alias is the alias declared as GLOBAL in the
shareable image. As mentioned previously, you can have only one definition
of each shared alias. However, you can have any number of references to
the shared alias, but those references must be declared as EXTERNAL.

• Compile the SQL modules using the NOEXTERNAL_GLOBAL option.

• Define the program section attributes to match the program section
attributes in the shareable image.

For example, you compile an embedded SQL and COBOL program as shown in
the following example:

$ SQLPRE
INPUT_FILE> mymain.sco /COB /SQLOPTIONS=(NOEXTERNAL_GLOBAL)

Then, you link mymain using the commands shown in Example 7–5.

Example 7–5 Linking an Executable Image That Uses a Shareable Image

$ LINK mymain, SQL$USER/LIB, SYS$INPUT/OPTIONS
PSECT_ATTR=RDB$DBHANDLE, NOSHR,GBL
PSECT_ATTR=MYALIAS, NOSHR,GBL
PSECT_ATTR=RDB$MESSAGE_VECTOR, NOSHR,GBL
PSECT_ATTR=RDB$TRANSACTION_HANDLE, NOSHR,GBL
PSECT_ATTR=SQLCA, NOSHR,GBL
PSECT_ATTR=SQLDA, NOSHR,GBL
MYSHARE/SHARE
$ ♦

7.4 Installing Shareable Images
OpenVMS
VAX

OpenVMS
Alpha

In order for shareable images to be used by multiple processes, they often must
be installed to make them known to the system. To have all processes share
the same copy of a shareable image in memory, thus conserving main physical
memory, install the image using the INSTALL command of the OpenVMS
Install utility, and modify the file specification of the shareable image with the
/SHARE qualifier.

Creating Images for Program Execution 7–11

For information about installing shareable images, see the OpenVMS Install
utility documentation. For information about the shared images that Oracle
Rdb installs and those that your system manager must install manually, refer
to the Oracle Rdb7 Installation and Configuration Guide. ♦

7.5 Linking Modules on Digital UNIX
Digital UNIX On Digital UNIX, you link the object files by processing them with the host

language compiler. To link object modules that include SQL statements,
specify:

• All the object files that your program requires, such as the SQL module
language object file and host language object file, or the SQL precompiler
object file

• The SQL libraries, which are located in the SQL directory tree

To simplify linking, define a global symbol, SQLLIBS, to translate to the SQL
libraries. Define the symbol to equate to the following:

-lrdbsql -lrdbshr -lcosi -lots

For example in the Bourne shell, enter the following commands:

$ SQLLIBS=’-lrdbsql -lrdbshr -lcosi -lots’
$ export SQLLIBS

When you link an SQL module language program, you must first process
the SQL module with the SQL module processor. Then, in one step, you can
compile the host language module and link object files of the host language
module and the SQL module with the SQL libraries.

The following example shows how to link the SQL module object file test_mod.o
with the C language program test_h.c:

$ cc -o test_h test_h.c test_mod.o ${SQLLIBS}

For more information on compiling SQL module language programs, see
Section 5.2.

When you link a precompiled SQL program, you must first process the program
with the SQL precompiler. Then, you use the host language compiler to link
the object file with the SQL libraries.

The following example shows how to link the object file, test.o, from a
precompiled SQL program written in the C language:

$ cc -o test test.o ${SQLLIBS}

For more information on compiling SQL precompiled programs, see Section 6.3.

7–12 Creating Images for Program Execution

Oracle Rdb provides a file, /usr/lib/sqllibs.make , that you can include
in your makefile to define SQLLIBS. The sqllibs.make file contains the four
required shared object libraries, but you may find it necessary to add libraries
to resolve the additional symbols your application is using. ♦

7.5.1 Building Applications with Multiple Modules
Digital UNIX There are a number of internal variables, such as aliases, that SQL generates

in the object files it creates. These variables must be properly initialized
to ensure proper statement execution. By default, SQL generates code to
initialize these variables.

When linking two or more SQL object files in an application, the Digital UNIX
linker requires that only one module initialize the variable and that all other
modules generate references to that variable.

If more than one module initializes these variables, the Digital UNIX linker
generates an error indicating that the symbols are multiply defined. If no
module initializes these variables, the SQL statement behaves erratically,
generates Oracle Rdb errors about bad handles, or both.

You must choose one module for each of these objects to act as the definer for
these variables. For example, you must have one and only one definition of
each shared alias. To define a shared alias, use the GLOBAL keyword in the
DECLARE ALIAS statement, as shown in the following example:

DECLARE MYALIAS GLOBAL ALIAS FOR FILENAME mf_personnel

In other modules, you can have many references to the defined alias, but you
must declare the alias using the EXTERNAL keyword.

Compile all modules with the –noextern or –s’ –noextern ’ option (the default).

This option specifies that those aliases defined as GLOBAL be treated as
GLOBAL and those defined as EXTERNAL be treated as external. ♦

7.6 Inserting Precompiled SQL Modules in Object Libraries and
Archives

You can insert SQL precompiler object files into OpenVMS object libraries
or Digital UNIX archives. Note that SQL precompiler object files contain
two distinct modules. One module is the host language program and the
other is the generated SQL module. The generated SQL module is named
RDB$<module> where <module> is either the name declared in the SQL
DECLARE MODULE statement or the name of the host module (the default).

Creating Images for Program Execution 7–13

7.7 Running a Program
OpenVMS
VAX

OpenVMS
Alpha

To execute a program on OpenVMS, enter the RUN command and the program
name at the DCL prompt:

$ RUN MYPROGRAM ♦

Digital UNIX To execute a program on Digital UNIX, enter the program name at the
command line prompt:

$ myprogram ♦

When you run the program to test input and output, you may encounter
error conditions that your program does not handle correctly or at all. For
information about handling errors in programs, see Chapter 10.

Reference Reading

For information about error messages, refer to the Oracle Rdb7 SQL
Reference Manual. The error message appendix in the reference
manual supplies the online location of files with explanations and user
actions for messages from relational database facilities.

7.8 Debugging SQL Statements and Program Code
To debug a program, you often need to look at your SQL statements and host
language code, as follows:

• SQL code debugging

Use interactive SQL to find and eliminate syntax errors in SQL statements
that are in an SQL module file or in an embedded program.

• Host language code debugging

If you cannot readily solve a problem, debugger utilities provide ways for
you to monitor the execution of your program at run time.

With many debugger utilities, you can:

• Step through the program one statement at a time

• Examine and modify statements and data values

• Stop program execution at specified points

• Display messages at specified points

7–14 Creating Images for Program Execution

OpenVMS
VAX

OpenVMS
Alpha

To use the OpenVMS Debugger, include the /DEBUG qualifier when you
compile and link program files.

Use the /NOOPTIMIZE compile qualifier with the /DEBUG qualifier for
FORTRAN, Pascal, and Ada programs. By default, FORTRAN, Pascal, and
Ada include optimizations in programs. Optimized code can make program
errors difficult to find.

Debugging global routines in a shareable image requires commands (SET
IMAGE, for example) that you do not need to use when debugging similar
routines in an executable image. If you are debugging routines in a shareable
image, be sure to read about these commands in the OpenVMS Debugger
utility documentation. ♦

Note

When you include SQL statements in precompiled programs, you
should enter all changes, including changes to host language
statements, in the source file processed by the SQL precompiler,
not the host language file.

Creating Images for Program Execution 7–15

8
Declaring and Using Parameters

This chapter discusses the topic of ensuring data type compatibility when
transferring column values to and from a program. For the most part, the
discussion applies to your program regardless of the SQL processor you are
using at compile time.

This chapter describes the following:

• The differences between how the module processor and the SQL
precompiler handle parameters

• The terminology used to describe parameters

• The function of parameters and options in declaring them

• Declaring the data types of parameters

• Copying parameter declarations from an outside source

• Declaring and using main parameters

• Declaring and using indicator parameters

• Avoiding common mistakes when declaring and using parameters

• Declaring and using parameters with specific host languages

For information on declaring parameters for stored routines, see Chapter 13.

8.1 Overview of Declaring and Using Parameters
The approach you take in declaring and using parameters differs between the
SQL precompiler and the SQL module processor:

• Specifying host language variables with the SQL precompiler

If you use the SQL precompiler, you embed SQL statements in a host
language source file and include direct references to host language
variables in the SQL statements. At compile time, the SQL precompiler
replaces the SQL statements in the host language source file with calls
to procedures implemented by the processor. The host language variables

Declaring and Using Parameters 8–1

originally specified in SQL statements by the programmer are specified as
parameters in host language calls.

• Specifying module parameters with the SQL module processor

When you are working with the SQL module processor you create the
source file that contains the procedures to execute SQL operations.
These procedures contain both SQL statements and the declarations of
parameters to which the statements refer. Then, in the host language
source file, you declare an additional set of parameters and specify them in
calls to the external procedures.

Figure 4–1 illustrates the correspondence between actual parameters
declared using host language syntax and procedure parameters declared
using SQL syntax.

Whether you use the SQL precompiler or the SQL module processor, you can
use parameters in value expressions in data manipulation statements, but you
cannot use them in data definition statements.

Your options for declaring parameters in your host language source file:

• Depend on the function of the parameter

• Are affected by the method you use to specify and process SQL statements
in programs

• Are limited by the types of parameter declarations that SQL supports in
your host language

Reference Reading

For detailed information about parameter declarations, refer to the
chapter on language and syntax elements in the Oracle Rdb7 SQL
Reference Manual. That chapter has sections on the following topics:
main parameters and indicator parameters, structures and indicator
arrays, data types, supported host language parameter declarations,
and data type conversions.

In addition, the chapter on language and syntax elements contains
rules for entering SQL keywords and user-defined names. Information
related to the interpretation of letter case, hyphens (-), and
underscores (_) is particularly important in the programming
environment.

8–2 Declaring and Using Parameters

8.2 Understanding Terminology
This chapter contains terminology that you must understand to declare and
use parameters effectively. These terms include the following:

• Variable and parameter

Because of the need to address both SQL precompiler users and SQL
module processor users, the term parameter, rather than the term variable,
is used most often to describe a program declaration to which an SQL
statement refers. Parameter is a term appropriate in the context of calls
and procedures.

If you are using the SQL module processor, parameter refers to the formal
parameters that you specify in SQL module language procedures.

If you are using the SQL precompiler, parameter refers to the declared
host language variables that you include in embedded SQL statements. If
you use the SQL precompiler, and therefore do not directly implement SQL
operations as procedures, you may prefer to substitute the term field or
variable for the term parameter.

The term variable refers to local variables, such as those found in
compound statements.

• Structure and record

The term structure refers to a parameter that contains other fields.
(Unlike the case of repeating items that make up one dimension in an
array, the basic elements in a structure do not need to be identically
defined.) In some host languages, the term record and the term structure
refer to the same declaration. In other languages, such as FORTRAN, you
declare structures and records separately. If the language you are using
declares records separately from structures, you should specify record
names in precompiled SQL statements. In this case, the fields listed or
implied by the record declaration constitute the structure to SQL.

8.3 Understanding Parameter Function and Declaration Options
You have different options for declaring parameters depending upon the
function of the parameters. The following list describes your options for
declaring parameters used in SQL statements. Unless specifically noted
otherwise, you can use the described options with either the SQL precompiler
or SQL module processor.

Declaring and Using Parameters 8–3

• Main parameters, which are parameters that contain values for selecting,
manipulating, or storing columns, can be declared in the following ways:

Directly, by using host language statements in programs

Indirectly, by using the SQL INCLUDE statement to copy parameter
definitions from the repository or from a text file into your host
language source file (SQL precompiler only)

Indirectly, by using the FROM path-name clause in an SQL module
procedure to copy record definitions from the repository

Indirectly, by using a host language INCLUDE or COPY statement to
copy parameter definitions from another source into your host language
source file

• Individually declared indicator parameters and indicator arrays, both
of which are parameters to handle null values, can be declared in the
following ways:

Directly, by entering declarations in your host language source file

Indirectly, by using the SQL INCLUDE statement to copy a set of
declarations for indicator parameters from the repository or a text file
into your host language source file (SQL precompiler only)

Indirectly, by using a host language COPY or INCLUDE statement to
copy a set of declarations for indicator parameters from another source
into your host language source file

• Parameters for storing the execution status of SQL statements can be
declared in the following ways:

Directly, by entering declarations in your host language source file to
define the SQLSTATE parameter

See Chapter 10 and the appendix on SQLSTATE in the Oracle Rdb7
SQL Reference Manual for information on the SQLSTATE parameter.

Directly, by entering declarations in your host language source file to
define the SQLCODE parameter (SQLCOD in FORTRAN programs)
and perhaps other fields that you want to use

Indirectly, by using the INCLUDE SQLCA statement in a section of
your host language source file where parameter declarations are valid
(SQL precompiler only)

This statement includes a set of parameter declarations. Among the
defined parameters are SQLCODE and other parameters useful in
error-handling procedures.

8–4 Declaring and Using Parameters

Indirectly, by using a host language COPY or INCLUDE statement to
copy declarations from another source into your host language source
file (SQL module processor only)

The appendix on the SQL Communications Area (SQLCA) in the Oracle
Rdb7 SQL Reference Manual includes language-specific declarations of
SQLCODE and other fields that make up the SQLCA. This appendix shows
the declarations SQL automatically makes if you use the INCLUDE
SQLCA statement. If you use host language statements to define
parameters needed for error handling, the declarations provide a useful
reference.

For more information about declaring and using parameters associated
with error handling, see Section 8.6 and Chapter 10.

• Parameters that describe the number and data types of input and output
values in dynamically executed SQL statements can be declared in the
following ways:

Directly, by entering declarations in your host language source file

Indirectly, by using the INCLUDE SQLDA or INCLUDE SQLDA2
statement in a section of your host language source file where
parameter declarations are valid (SQL precompiler only)

Indirectly, by using host language COPY or INCLUDE statements to
copy declarations from another source into your host language source
file (SQL module processor only)

Indirectly, by using the SQL_SQLDA2.H header file in C programs. For
more information on using this header file, see Section 11.3.2.

Among these parameters are fields representing keywords, and table and
column names in SQL statements that are unknown until run time.

Reference Reading

Chapter 11 describes when to declare parameters to process dynamic
SQL statements, and provides examples. In addition, the Oracle Rdb7
SQL Reference Manual contains an appendix on the SQL Descriptor
Areas (SQLDA and SQLDA2) that describes parameters you may
need to supply if you cannot use the INCLUDE SQLDA or INCLUDE
SQLDA2 statement.

Read Section 8.6 for more details about using the SQL INCLUDE
statement or equivalent host language statements.

Declaring and Using Parameters 8–5

Your options for declaring parameters used in SQL statements are limited
to the types of declarations that SQL supports in your host language. For
example, in host language programs you can specify a structure (record) or
array element only in the places where you specify a parameter name in SQL
statements. In addition, the SQL precompiler does not support all constructs
that are specific to a host language (implicit declarations in FORTRAN, for
example).

When you declare parameters, make sure that you use data types that are
compatible with SQL data types.

8.4 Declaring the Data Types of Parameters
Whether you use the SQL precompiler or the SQL module processor to process
SQL statements, a parameter declaration in SQL statements is invalid when
both the following conditions are true:

• The data type in the parameter declaration is not equivalent to an SQL
data type.

• SQL cannot convert the parameter’s value:

To the data type defined for the column (for transfer of data to or from
a column)

To the data type for the value expression to which the host parameter
or associated parameter is compared (for evaluation of a condition)

Data type support issues are not limited to whether the language or the
database system supports general types of storage formats (packed decimal,
date, floating-point, text, or fixed-point binary, for example). For numeric
data, there may be issues related to support for signed or unsigned data, scale
computations, size, and interpretation of double-precision floating-point values
(D-Floating or G-Floating).

In some cases, you may need to define intermediate host language variables
that are related to an input or output operation.

You may need additional variables, for example, to contain values input from
the terminal or data file when those values require intermediate processing
by the program before they can be used in UPDATE or INSERT statements.
Conversely, you may need additional variables when values returned by
a FETCH or SELECT statement require processing by the host language
before output to a terminal or data file. The kinds of values most likely to
require additional variables for temporary program storage are: dates, times,
timestamps, intervals (assuming the source or target column is defined using

8–6 Declaring and Using Parameters

the date-time data types), and text strings (usually to convert strings to all
uppercase or mixed case, as appropriate).

One of the main advantages of precompiler support for your host language is
that the precompiler generates errors or warnings to alert you to declarations
that SQL considers invalid. Therefore, the precompiler prevents many of the
run-time errors and unexpected results that unsupported or inappropriate
declarations can cause when data is transferred between a program and the
database. However, you cannot detect at precompile time all the run-time
results that you may consider a problem when you transfer data between your
program and a database.

Oracle Rdb considers truncation of character values and rounding of numeric
values to be appropriate operations in certain situations. Oracle Rdb also
considers some conversions among unlike data types to be valid because
these operations are sometimes appropriate and useful to the programmer.
Therefore, it is possible for you to declare a parameter that is the wrong data
type or the incorrect size for what you want to do, but not discover the problem
until run time.

In addition, the SQL precompiler does not check declarations of parameters
used only for internal program processing (parameters not specified in SQL
statements). These parameters are checked only by the host language compiler
after it receives processed source code from the SQL precompiler.

Note

The preceding paragraph does not apply to all parameters in
precompiled programs. If you declare any parameters as double-
precision floating-point (even if those parameters are not used in
precompiled SQL statements), read the information about the SQL
precompiler qualifiers for G-Floating and D-Floating numbers in the
Oracle Rdb7 SQL Reference Manual.

The SQL module processor does not check declarations of parameters
in the host language module at all. Therefore, when you create a host
language module that calls procedures in an SQL language module, it is
your responsibility to ensure that parameters in the host language file are
correctly declared when you intend to use them in a call to an SQL procedure.
Specifically, it is your responsibility to make sure that the storage format and
specification order of the actual parameter in your host language source file
exactly match the storage format and specification order of the corresponding
procedure parameter in an SQL source file. Also, you must be careful to match

Declaring and Using Parameters 8–7

the passing mechanism (by reference or by descriptor) of corresponding values
in the called and calling modules.

Note

In SQL modules, when the storage format of a host language parameter
cannot match the storage format of a column, the storage format of an
associated procedure parameter should match that of the host language
parameter rather than the column.

There is one exception to the previous rule. When you want to transfer DATE
VMS values in binary format between a host language program and the
database, always define the associated procedure parameter as a DATE data
type even though most host languages do not support this data type. For
binary interpretation of DATE values, SQL expects an 8-byte host language
parameter (into which it stores a quadword value) and is not particular about
the data type or passing mechanism you define for that parameter in the
host language program. On the other hand, the conversion of DATE values
from or to character-string format does follow the general rule about matching
procedure parameters with their counterpart host language parameters. For
character-string interpretation of DATE values, both host language parameters
and procedure parameters are defined as 8- to 16-byte character fields.

See Chapter 9 for more information about date-time data types.

SQL module language provides the run-time CHECK option to help you
determine if procedure and actual parameters correctly match with respect
to the passing mechanism. See Section 4.2.4 for more information about the
correct correspondence between actual parameters in a host language program
and procedure parameters in SQL.

See Section 4.2.2 through Section 4.2.9 for more information about declaring
parameters in SQL module procedures.

Language-specific sections presented later in this chapter provide more
information about parameter use. Note, however, that the Oracle Rdb7 SQL
Reference Manual is the only place where you will find a complete list of the
data conversion rules applied by Oracle Rdb.

8–8 Declaring and Using Parameters

8.5 Copying Parameter Declarations from a Source Outside Your
Program

Depending on whether SQL statements are processed by the SQL precompiler
or the SQL module processor, you can use the SQL INCLUDE statement, a
comparable host language statement, or the FROM path-name clause in a
procedure declaration. These statements and clauses allow you to develop and
use standard sets of declarations that programmers at your site can copy into
applications. Maintaining one set of standard declarations at your site reduces:

• The number of programmer errors due to incorrectly typing declarations in
source files

• Program development time

• The amount of editing that source files may require if table, column, or
view definitions change after a program is in use

8.6 Using the SQL INCLUDE Statement
You can use the SQL INCLUDE statement only when you embed SQL
statements in a host language source file. The SQL precompiler must access
declarations of all parameters you specify in SQL statements and does not
process host language COPY or INCLUDE statements.

However, you cannot use the SQL INCLUDE statement in SQL modules.
Declarations for host language program parameters must be copied into host
language source files. Unlike the SQL precompiler, the SQL module processor
does not process your host language source files. Your host language compiler,
which does process these files, recognizes only the host language COPY or
INCLUDE statement.

The SQL INCLUDE statement has the following variations:

OpenVMS
VAX

OpenVMS
Alpha

• The SQL INCLUDE FROM DICTIONARY statement copies the definition
for a table, view, or record from a repository node. ♦

• The INCLUDE file-spec statement copies code from text files that contain
language source code to be shared by programs.

• The INCLUDE SQLCA statement declares parameters for error handling.

• The INCLUDE SQLDA or INCLUDE SQLDA2 statement declares
parameters used in dynamic SQL statements.

Declaring and Using Parameters 8–9

OpenVMS
VAX

OpenVMS
Alpha

The SQL INCLUDE statement does not support files created by the OpenVMS
Librarian utility. Therefore, you cannot copy from library files into your
program when these files contain parameter declarations used in embedded
SQL statements. ♦

Reference Reading

The chapter on SQL statements in the Oracle Rdb7 SQL Reference
Manual contains a section on the INCLUDE statement. The section
provides additional discussion of statement variations and a complete
program example.

8.6.1 Using the SQL INCLUDE FROM DICTIONARY Statement

OpenVMS
VAX

OpenVMS
Alpha

Use the INCLUDE FROM DICTIONARY statement in SQL precompiled
programs to copy the definition of:

• A table or view from the repository node created and maintained for a
database by the CREATE DATABASE or INTEGRATE statements

• A record from a repository node other than the one created or maintained
for the database

If the host language you are using with SQL supports all data types defined
for columns in a table, a quick way to define program parameters that will
match columns in the tables or views you use is to include definitions from the
repository node that stores a database.

For example, to include column definitions for the DEPARTMENTS table from
the repository node that was created in directory WARREN for the personnel
database, use the following statement, making sure to enclose the repository
path name in single quotation marks (’):

EXEC SQL INCLUDE FROM DICTIONARY
’DISK3:[DEPT32.CDD]WARREN.PERSONNEL.RDB$RELATIONS.DEPARTMENTS’

The preceding example illustrates that you specify RDB$RELATIONS as part
of the path name for a table when the repository node from which you are
copying definitions was created by the CREATE DATABASE or INTEGRATE
statements.

For tables that contain data types not supported by a host language, you may
create and maintain repository record definitions with data types that are
compatible with the ones in the database. You can use the INCLUDE FROM
DICTIONARY statement to copy these as well. To include a repository record
definition that is not generated and stored by database operations, use the

8–10 Declaring and Using Parameters

following statement, making sure to enclose the path name in single quotation
marks (’):

EXEC SQL INCLUDE FROM DICTIONARY
’DISK3:[DEPT32.CDD]WARREN.PERSONNEL.DEPARTMENTS’

When you use the SQL precompiler for the C language, SQL translates
character string fields in the record as null-terminated strings. See
Section 8.12.2 for more information about how SQL handles character strings
in the C language. ♦

8.6.2 Using the INCLUDE SQLCA Statement
The INCLUDE SQLCA statement provides declarations that are coded into
the SQL precompiler. This statement declares parameters for error handling.
In addition to declarations of SQLCODE and the RDB$MESSAGE_VECTOR
array, the INCLUDE SQLCA statement declares the SQLERRD array.

Declare the SQLCA as shown in the following example;

EXEC SQL INCLUDE SQLCA

In SQL precompiled C programs, if you have multiple modules that use the
INCLUDE SQLCA statement, you can add the EXTERNAL keyword to all but
one of them.

The INCLUDE SQLCA statement defines a globally visible instance of the
SQLCA structure; the EXTERNAL keyword lets you declare an external
reference to the SQLCA structure. On OpenVMS, if your application shares
the SQLCA among multiple images, one image must define the SQLCA while
all other images must reference the SQLCA. Use the INCLUDE SQLCA
EXTERNAL statement to reference the SQLCA. On Digital UNIX, you must
have at most one definition of the SQLCA, regardless of whether or not your
application uses multiple images.

The second and third elements of the SQLERRD array are of most interest to
programmers.

The second element of the SQLERRD array returns information about
whether or not a dynamic SQL statement is a SELECT statement. To use
the information from the SQLERRD array in dynamic SQL, you must refer to
the SQLCA in both the PREPARE statement and in the EXECUTE statement.

The third element of the SQLERRD array is updated after execution of every
FETCH, INSERT, UPDATE, and DELETE statement to contain the count of
rows processed by the statement or, in the case of the FETCH statement, the
ordinal position of the fetched row in a cursor. You may want to display or log
the information in this parameter as part of your program.

Declaring and Using Parameters 8–11

If you do not plan to use the row count value, you may prefer not to include
the SQLERRD declaration in your program. In this case, you can substitute an
explicit declaration of SQLCODE in place of the INCLUDE SQLCA statement.

If you do not specify the INCLUDE SQLCA statement and plan to refer to
the RDB$MESSAGE_VECTOR array, you must also explicitly declare the
RDB$MESSAGE_VECTOR array.

See Chapter 10 for more information about the INCLUDE SQLCA statement
and declaring and using SQLCODE and RDB$MESSAGE_VECTOR.

8.6.3 Using the INCLUDE SQLDA or SQLDA2 Statement
The INCLUDE SQLDA and INCLUDE SQLDA2 statements declare
parameters that are coded into the SQL precompiler and are used in dynamic
SQL.

Declare the SQLDA or SQLDA2 structure as shown in the following example:

EXEC SQL INCLUDE SQLDA
EXEC SQL INCLUDE SQLDA2

For more information on declaring and using the SQLDA or SQLDA2, see the
Section 11.3.2.

8.6.4 Using the INCLUDE File Statement
If you maintain text files that contain language source code shared by programs
for database access, you can use the INCLUDE file-spec statement to copy that
code. The text file may contain SQL statements, declarations of parameters,
or both. Some host languages, such as COBOL, require that declarations and
executable statements be separated into different program sections. If your
programming language has this requirement, specify more than one INCLUDE
statement to copy in the declarations and executable statements separately. In
one section of your program, you can copy a text file that contains declarations
(and perhaps nonexecutable SQL statements). In another section of your
program, you can copy a text file that contains executable SQL and host
language statements.

To include a text file of declarations, use a statement such as the following:

EXEC SQL INCLUDE dcls_for_depts_table.cob

8–12 Declaring and Using Parameters

8.7 Using the SQL Module Language FROM path-name Clause
OpenVMS
VAX

OpenVMS
Alpha

When you use the SQL module language, you can specify the FROM path-
name clause to copy a record definition from the repository to procedures in
an SQL module. The FROM path-name clause lets you create and maintain
repository record definitions using data types compatible with the ones in the
database. It lets you quickly define parameters for a procedure, ensuring that
the parameters match columns in tables or views.

The following example shows how to declare a record in an SQL module
procedure and copy the record from the repository:

PROCEDURE store_proc
(SQLCODE,

emp_rec RECORD
FROM cddplus.records.employees END RECORD);

If you use the FROM path-name clause in the SQL module, you make it
easier to ensure that the parameters you declare in the SQL module match
the parameters in the host language program that copies its parameters from
the repository. Section 8.8 describes how to use a host language COPY or
INCLUDE statement in the host language program.

Note

When you use the SQL module processor and specify the module
language as C, SQL translates character string fields in the record as
null-terminated strings. See Section 8.12.2 for more information about
how SQL handles character strings in the C language. ♦

8.8 Using Host Language COPY or INCLUDE Statements
When you use the SQL module language, you can specify a host language
COPY or INCLUDE statement in your host language program to add
parameter declarations of used in calls to procedures in an SQL module.

You cannot specify a host language COPY or INCLUDE statement to add
parameter declarations used in SQL statements that are embedded in a host
language source file. Unlike the SQL module processor, the SQL precompiler
must access definitions of parameters to which SQL statements refer. The
precompiler does not recognize a host language COPY or INCLUDE statement.

See your host language documentation for information about using host
language COPY or INCLUDE statements.

Declaring and Using Parameters 8–13

8.9 Declaring and Using Main Parameters
In a precompiled program, usually you substitute names of host language
parameters for the literals (constants) or other value expressions that you use
with interactive SQL. You must precede all parameter names in precompiled
SQL statements with a colon (:).

In an SQL module, rather than specifying host language parameters in SQL
statements, you specify procedure parameters whose data types match those of
the host language parameters used to call the procedure. When you write SQL
statements in SQL modules, the use of colons in parameter names is optional.
However, note the following implications:

• Using colons

Oracle Rdb recommends that you precede each parameter name with
a colon (:), although the use of colons is optional. When you use the
PARAMETER COLONS clause in the module header, SQL requires that
all parameters be prefixed with a colon. When prefixing parameters with
colons, use colons in parameter definitions and in all references to the
parameter. You must use the colons consistently throughout the module.
Use of colons as prefixes to parameters will become the default behavior in
a future release of Oracle Rdb.

• Not using colons

If you do not use the PARAMETER COLONS clause in the module header,
the use of colons in definitions of the parameter and in all references to
the parameter is invalid. If you omit colons as a prefix, do so consistently
throughout the module.

Main parameters are parameters you declare that contain values for
selecting, manipulating, or storing columns. In SQL statements, main
parameters usually appear:

• In the VALUES clause of the INSERT statement

• In the SET clause of the UPDATE statement

• As a WHERE clause condition value that selects rows in the:

UPDATE statement

DELETE statement

Singleton SELECT statement that retrieves one row

Column SELECT expression

8–14 Declaring and Using Parameters

SELECT expression of a cursor declaration that is later opened to
retrieve rows you plan to update or delete, one-by-one

• In the INTO clause of SELECT or FETCH statements

Main parameters usually contain values retrieved from the database, read
from a record in a file, or accepted from the terminal after the program
prompts a user for input. In some cases, parameters may contain literals or
values returned from a system routine.

8.9.1 Declaring Main Parameters
If you do not copy parameter declarations from a source outside your program,
you must declare the parameters before you use them. Your options for
declaring parameters used in SQL statements are limited to the types of
declarations supported by your host language. If your host language allows it,
you can declare main parameters individually or as structures, whether you
use the SQL precompiler or the SQL module processor.

If you use the SQL precompiler, declare main parameters in the source file as
you would any other declaration. For example, to declare the EMPLOYEE_
RECORD structure in a precompiled COBOL program, use the following code:

01 EMPLOYEE_RECORD.
05 EMP_ID_P PIC X(5).
05 L_NAME_P PIC X(15).
05 F_NAME_P PIC X(11).
05 M_INIT_P PIC X(1).
05 ADDRESS_1_P PIC X(25).
05 ADDRESS_2_P PIC X(20).
05 CITY_P PIC X(20).
05 STATE_P PIC X(2).
05 POSTAL_CODE_P PIC X(5).
05 SEX_P PIC X(1).
05 BIRTH_DATE_P PIC X(23).
05 STATUS_P PIC X(1).

If you use the SQL module processor, declare the parameters in the host
language program and in the module procedure. To declare the EMPLOYEE_
RECORD structure in the host language program, use the same code as the
preceding example. To declare the structure in the module procedure, use the
following code:

PROCEDURE fetch_record
(:emp_rec RECORD

emp_id_p char(5),
l_name_p char(15),
f_name_p char(11),
m_init_p char(1),

Declaring and Using Parameters 8–15

address_1_p char(25),
address_2_p char(20),
city_p char(20),
state_p char(2),
postal_code_p char(5),
sex_p char(1),
birth_date_p char(23),
status_p char(1)
END RECORD

SQLCODE);

You can prefix the record name with a colon, just as you can individual
parameter names.

In addition to declaring main parameters within a structure, you can declare
main parameters individually. The following example shows how to declare
main parameters in a COBOL host language program:

01 EMP_ID_P PIC S9(4) COMP.
01 L_NAME_P PIC S9(4) COMP.
01 F_NAME_P PIC S9(4) COMP.
01 M_INIT_P PIC S9(4) COMP.
01 ADDRESS_1_P PIC S9(4) COMP.
01 ADDRESS_2_P PIC S9(4) COMP.
01 CITY_P PIC S9(4) COMP.
01 STATE_P PIC S9(4) COMP.
01 POSTAL_CODE_P PIC S9(4) COMP.
01 SEX_P PIC S9(4) COMP.
01 BIRTH_DATE_P PIC S9(4) COMP.
01 STATUS_P PIC S9(4) COMP.

Refer to Section 4.2.3 for more information about declaring parameters in SQL
module procedures.

8.9.2 Using Main Parameters
This section contains examples of different ways to use parameters when you
retrieve or update data. For these examples, assume that your program has
declared the EMPLOYEE_RECORD structure as described in Section 8.9.1.
This structure contains main parameters that correspond to all columns in the
EMPLOYEES table and consists of the following fields:

8–16 Declaring and Using Parameters

EMPLOYEE_RECORD (name of structure)

EMP_ID_P (1st field)
L_NAME_P (2nd field)
F_NAME_P (3rd field)
M_INIT_P (4th field)
ADDRESS_1_P (5th field)
ADDRESS_2_P (6th field)
CITY_P (7th field)
STATE_P (8th field)
POSTAL_CODE_P (9th field)
SEX_P (10th field)
BIRTH_DATE_P (11th field)
STATUS_P (12th field)

The following examples show how to use parameters in SQL statements in
SQL module language and precompiled SQL.

In the following examples, assume that columns always store values (or,
in some cases, null values) for all rows being processed. In practice, some
statements in these examples would produce errors when used with the
sample personnel database because certain columns in the EMPLOYEES
table contain actual values in some rows and null values in other rows.
Section 8.10 discusses how to declare and use indicator parameters to allow
conditional handling of null values. The following examples show the use of
main parameters only:

• To display a row or include it in a report, the program usually fetches the
row from a cursor and stores its column values in parameters that can be
manipulated by host language statements.

In the following example, the FETCH statement specifies the EMPLOYEE_
RECORD structure:

DECLARE EMPLOYEES_CURSOR CURSOR FOR
SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL,

ADDRESS_DATA_1, ADDRESS_DATA_2, CITY, STATE,
POSTAL_CODE, SEX, BIRTHDAY, STATUS_CODE

FROM EMPLOYEES
WHERE STATUS_CODE = 1

OPEN EMPLOYEES_CURSOR

FETCH EMPLOYEES_CURSOR INTO :EMPLOYEE_RECORD

Instead of specifying the EMPLOYEE_RECORD structure, you can declare
the variables individually and then use the following FETCH statement,
which lists each parameter:

FETCH EMPLOYEES_CURSOR INTO :EMP_ID_P, :L_NAME_P, :F_NAME_P, :M_INIT_P,
:ADDRESS_1_P, :ADDRESS_2_P, :CITY_P, :STATE_P,
:POSTAL_CODE_P, :SEX_P, :BIRTH_DATE_P, :STATUS_P

Declaring and Using Parameters 8–17

See Chapter 18 for information about declaring and using cursors.

• To retrieve a single row, the program can use a singleton select statement
rather than a cursor. The singleton select statement includes both
parameters, which you might otherwise include in a cursor declaration,
and select list items, which you might otherwise include in a FETCH
statement.

In the following example, the singleton select statement specifies the
EMPLOYEE_RECORD structure:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL,
ADDRESS_DATA_1, ADDRESS_DATA_2, CITY, STATE, POSTAL_CODE,
SEX, BIRTHDAY, STATUS_CODE
INTO :EMPLOYEE_RECORD

FROM EMPLOYEES
WHERE EMPLOYEE_ID = :INPUT_ID

In the following example, the singleton select statement lists each
parameter:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL,
ADDRESS_DATA_1, ADDRESS_DATA_2, CITY, STATE, POSTAL_CODE,
SEX, BIRTHDAY, STATUS_CODE
INTO
:EMP_ID_P, :L_NAME_P, :F_NAME_P, :M_INIT_P,
:ADDRESS_1_P, :ADDRESS_2_P, :CITY_P, :STATE_P, :POSTAL_CODE_P,
:SEX_P, :BIRTH_DATE_P, :STATUS_P

FROM EMPLOYEES
WHERE EMPLOYEE_ID = :INPUT_ID

See the Oracle Rdb7 Introduction to SQL and the Oracle Rdb7 SQL
Reference Manual for information about singleton select statements.

• To insert a row, the host language puts values into parameters, and then
SQL stores the set of values as a row, as the following example shows:

INSERT INTO EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL,
ADDRESS_DATA_1, ADDRESS_DATA_2, CITY, STATE,
POSTAL_CODE, SEX, BIRTHDAY, STATUS_CODE)

VALUES
(:EMPLOYEE_RECORD)

If the program is storing values in only some columns of a row, the INSERT
statement lists only the columns and the associated parameters being used,
as the following example shows:

INSERT INTO EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL)
VALUES

(:EMP_ID_P, :L_NAME_P, :F_NAME_P, :M_INIT_P)

8–18 Declaring and Using Parameters

When you insert a row, but store values in only some of the columns of
the row, columns that are in the table but not specified in the INSERT
statement will contain null values.

• To update or delete a row, the host language puts the values on which the
row selection is based into parameters.

In the example that follows, INPUT_ID is a parameter that accepts an
employee ID number from the terminal:

DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = :INPUT_ID

• To update a row, the host language stores new values in parameters.
SQL uses these values to replace existing column values in the row. The
following example shows how to use cursors with the parameter INPUT_ID
to update a row:

DECLARE FIND_EMPLOYEE CURSOR FOR
SELECT LAST_NAME, ADDRESS_DATA_1, ADDRESS_DATA_2,

CITY, STATE, POSTAL_CODE
FROM EMPLOYEES
WHERE EMPLOYEE_ID = :INPUT_ID

OPEN FIND_EMPLOYEE

FETCH FIND_EMPLOYEE INTO :L_NAME_P, :ADDRESS_1_P, :ADDRESS_2_P,
:CITY_P, :STATE_P, :POSTAL_CODE_P

UPDATE EMPLOYEES
SET

LAST_NAME = :L_NAME_P,
ADDRESS_DATA_1 = :ADDRESS_1_P,
ADDRESS_DATA_2 = :ADDRESS_2_P,
CITY = :CITY_P,
STATE = :STATE_P,
POSTAL_CODE = :POSTAL_CODE_P

WHERE CURRENT OF FIND_EMPLOYEE

In SQL modules, in addition to using the parameter in the DECLARE
CURSOR, FETCH, and UPDATE statements, you must declare INPUT_ID
as a parameter for the procedure that opens the cursor.

Refer to Section 4.2.3 for more information about using parameters in SQL
module procedures. Section 8.10 provides examples similar to the ones in this
section, but adds indicator parameters to allow conditional handling of null
values.

Declaring and Using Parameters 8–19

8.10 Declaring and Using Indicator Parameters
An indicator parameter is a parameter whose value specifies whether or not
its associated main parameter has been assigned a null value. If you expect
that a main parameter will sometimes receive from or pass to the database null
values, you must specify an indicator parameter with the name of the main
parameter in an SQL statement. If you do not use an indicator parameter, and
a column contains a null value, SQL generates an error, aborts the execution
of the statement, and returns an error. If this happens, you cannot rely on the
values passed to any of the parameters.

An indicator parameter also specifies if a text string passed from a database
has been truncated. If the text string was truncated, SQL assigns the length
of the string in the database to the indicator parameter. SQL also returns a
warning message in SQLSTATE if you specify SQL92 as the dialect.

Remember that virtual columns usually contain null values if SQL processes
no rows when evaluating the expression that returns a value to the column.
Null results are possible when a column in a result table contains the result
of an arithmetic calculation or the functions MIN, MAX, AVG, and SUM.
Therefore, define indicator parameters for these columns.

You do not need an indicator parameter when retrieving results returned by
the COUNT function because SQL returns a zero, rather than a null value,
when it finds no rows that meet the criteria specified for processing by that
function.

8.10.1 Declaring Indicator Parameters
You can declare indicator parameters directly in your host language program
or copy declarations from a source outside your program. Although indicator
parameters are not defined in a database repository node, you can use a
repository utility to create a record at another node to define indicator
parameters for one or more tables. You can then copy that record into
programs.

In most languages, you declare an indicator parameter as a signed longword
or as some element of a signed longword array. When you refer to individually
named main parameters, always declare and refer to individually named
indicator parameters. When you use a host language structure instead of
individually named main parameters, always declare an indicator array. In
other words, when you use a structure (record) to contain main parameters,
you must use an indicator array to contain indicator parameters. For example,
if you use the EMPLOYEE_RECORD structure set up in Section 8.9.1, declare
an indicator array with 12 elements of a field named IND_ITEM. (You need

8–20 Declaring and Using Parameters

at least as many elements of an item in an array as there are fields in the
structure to which you refer.)

The following example shows how to declare an indicator array in a
precompiled COBOL program:

01 IND_ARRAY.
05 IND_ITEM OCCURS 12 TIMES

PIC S9(9) COMP.

If you use the SQL module language, not only do you declare an indicator
array in the host language program, you must declare indicator arrays in the
SQL module procedures, using code similar to the following:

PROCEDURE proc_1
(:ind_array RECORD

INDICATOR ARRAY OF 12 INTEGER
END RECORD,
SQLCODE);

Because you cannot explicitly refer to an element of an indicator array, you
must declare and refer to individually named indicator parameters when you
refer to individually named main parameters.

For example, in a precompiled COBOL program or a COBOL host language
program that calls SQL module procedures, use the following code to declare
indicator parameters to correspond to the 12 fields in the EMPLOYEE_
RECORD structure:

01 EMP_ID_IND PIC S9(9) COMP.
01 L_NAME_IND PIC S9(9) COMP.
01 F_NAME_IND PIC S9(9) COMP.
01 M_INIT_IND PIC S9(9) COMP.
01 ADDRESS_1_IND PIC S9(9) COMP.
01 ADDRESS_2_IND PIC S9(9) COMP.
01 CITY_IND PIC S9(9) COMP.
01 STATE_IND PIC S9(9) COMP.
01 POSTAL_CODE_IND PIC S9(9) COMP.
01 SEX_IND PIC S9(9) COMP.
01 BIRTH_DATE_IND PIC S9(9) COMP.
01 STATUS_IND PIC S9(9) COMP.

If you use the SQL module language, you must also declare individually named
indicator parameters in the SQL module procedures using code similar to the
following:

Declaring and Using Parameters 8–21

PROCEDURE proc_1
(:EMP_ID CHAR(5),

:EMP_ID_IND INTEGER,
:L_NAME CHAR(15),
:L_NAME_IND INTEGER,
:F_NAME CHAR(11),
:F_NAME_IND INTEGER,
:M_INIT CHAR(1),
:M_INIT_IND INTEGER,
:ADDRESS_1 CHAR(25),
:ADDRESS_1_IND INTEGER,
:ADDRESS_2 CHAR(20)
:ADDRESS_2_IND INTEGER,
:CITY CHAR(20),
:CITY_IND INTEGER,
:STATE CHAR(2),
:STATE_IND INTEGER,
:POSTAL_CODE CHAR(5),
:POSTAL_CODE_IND INTEGER,
:SEX CHAR(1),
:SEX_IND INTEGER,
:BIRTH_DATE CHAR(23),
:BIRTH_DATE_IND INTEGER,
:STATUS CHAR(1),
:STATUS_IND INTEGER);

8.10.2 Using Indicator Parameters
As Section 8.10.1 explains, always use an indicator array when you use host
language structures. Always use individually named indicator parameters
when you use individually named main parameters. In addition, note that
you cannot use indicator arrays or host language structures, only individually
named indicator parameters, in the SQL UPDATE statement or the WHERE
clause.

You append the indicator parameter name to the main parameter name, using
colons with indicator parameters just as you do with main parameters, as the
following example shows:

INSERT INTO EMPLOYEES
VALUES (:EMPLOYEE_RECORD INDICATOR :IND_ITEM);

You cannot explicitly refer to an element of an indicator array.

Using the example of EMPLOYEE_RECORD, which contains fields that
correspond with each of the columns in the EMPLOYEES table, you declare
and refer to an indicator parameter whenever you refer to a field that may
sometimes receive or transfer a null value.

8–22 Declaring and Using Parameters

For example, the MIDDLE_INITIAL column of the EMPLOYEES table is
likely to contain a null value in some rows because some employees do not
have middle names. A reference to M_INIT_P (in EMPLOYEE_RECORD)
requires a reference to an indicator parameter as well.

If you declare an indicator parameter named M_INIT_IND, append the
indicator parameter name to the main parameter name, as the following
example shows:

UPDATE EMPLOYEES
SET MIDDLE_INITIAL = :M_INIT_P INDICATOR :M_INIT_IND

In the preceding example, the indicator parameter M_INIT_IND could
correspond either to a host language actual parameter that is individually
declared as a signed longword or to some element of a signed longword array.
The array element for an actual parameter that stores an indicator parameter
value is not mapped to any record by an SQL processor. Therefore, you can
declare an indicator array for use with a host language structure to contain
only as many elements as there are columns that can contain null values,
and you decide how elements in the array should correspond to indicator
parameters in the SQL statement.

In the previous examples, the parameter M_INIT_P, and other parameters that
correspond to columns in the EMPLOYEES table, store a value being retrieved
from or moved to the database. The indicator parameter M_INIT_IND or
an occurrence of IND_ITEM contains a number that tells the program (or
SQL) if it should access the value in M_INIT_P. If the indicator parameter
contains a 0 or any positive integer, then the program (or SQL) knows that the
main parameter M_INIT_P has a value. If the indicator parameter contains a
negative integer, then the program (or SQL) knows that M_INIT_P has a null
value.

How the program uses indicator parameters depends on whether it is using
parameters to retrieve from or write to the database.

8.10.3 Using Indicator Parameters When Retrieving Values
When the program retrieves values from the database, it performs the
following operations:

1. The program fetches or selects a row into individually named parameters
and corresponding indicator parameters, or into a host language structure
and indicator array.

Declaring and Using Parameters 8–23

For example, the following statement could appear in precompiled
programs or in SQL module procedures:

FETCH EMPLOYEES_CURSOR INTO :EMP_ID_P :EMP_ID_IND,
:L_NAME_P :L_NAME_IND,
:F_NAME_P :F_NAME_IND,
:M_INIT_P :M_INIT_IND,
:ADDRESS_1_P :ADDRESS_1_IND,
:ADDRESS_2_P :ADDRESS_2_IND,
:CITY_P :CITY_IND,
:STATE_P :STATE_IND,
:POSTAL_CODE_P :POSTAL_CODE_IND,
:SEX_P :SEX_IND,
:BIRTH_DATE_P :BIRTH_DATE_IND,
:STATUS_P :STATUS_IND

The following example could appear in precompiled programs or in SQL
module procedures:

FETCH EMPLOYEES_CURSOR
INTO :EMPLOYEE_RECORD :IND_ITEM

2. The program checks the values of each indicator parameter or array
element to determine which, if any, columns have null values.

In a FETCH or SELECT statement, SQL sets the value of indicator
parameters corresponding to each column in the row being fetched. SQL
sets the value of an indicator parameter to –1 if the column has a null
value, or to 0 or a positive integer if the column contains a value.

If the column contains a truncated text string, SQL sets the value of the
indicator parameter to the length of the source string. However, if another
data type was converted to a text string and that string was truncated,
SQL sets the indicator parameter to the full length of the converted text
string, not the original length. For example, if you assign a date field to a
character host language variable, SQL converts the date to text. Because
a full text representation of a date is 16 characters, if the host language
variable is less than 16 characters, SQL sets the value of the indicator
parameter to 16.

If the column contains a value other than a truncated text string, SQL sets
the value of the indicator parameter to 0.

3. The program uses values only from host language parameters whose
corresponding indicator parameters store 0 or a positive integer.

If the program displays or writes values from parameters whose indicator
parameters store –1, the program is working with values belonging to a
previously fetched row rather than the current row.

8–24 Declaring and Using Parameters

8.10.4 Using Indicator Parameters When Storing Values
When the program uses a parameter to transfer values to the database, it:

1. Initializes host language indicator parameters or array elements to 0 (for
stored value default)

2. Moves values to main parameters to assign values that are not null

3. Moves –1 (for null) to the indicator parameter or indicator array element
associated with any main parameter to which the program has not moved
a value

4. Executes an UPDATE or INSERT statement to process the row

The following INSERT statement assumes the following:

• The fourth column, MIDDLE_INITIAL, varies between storing null and
actual values. As a result, it uses an indicator parameter for this column.

• All other columns store actual values. As a result, the statement lists all
other columns without indicator parameters.

• The sixth column, ADDRESS_DATA_2, always has a null value because
the INSERT statement does not specify ADDRESS_DATA_2 in the list of
main parameters.

INSERT INTO EMPLOYEES
(
EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL,
ADDRESS_DATA_1, CITY, STATE, POSTAL_CODE,
SEX, BIRTHDAY, STATUS_CODE
)

VALUES
(
:EMPLOYEE_ID_P, :LAST_NAME_P, :FIRST_NAME_P,
:MIDDLE_INITIAL_P :INDICATOR :MIDDLE_INITIAL_IND,
:ADDRESS_1_P, :CITY_P, :STATE_P, :POSTAL_CODE_P,
:SEX_P, :BIRTH_DATE_P, :STATUS_P
)

The INSERT statement can also use a structure to store parameters. In this
case, the host language program initializes all indicator parameters in the
indicator array IND_ITEM, except the sixth, to 0 (for stored value), initializes
the sixth indicator array element to –1 (for null), and depending on whether
the value of MIDDLE_INITIAL_P is an actual value or a null value, sets the
fourth element of the structure to 0 or –1.

Declaring and Using Parameters 8–25

The following SQL precompiler example uses the EMPLOYEE_RECORD
structure to store parameters:

INSERT INTO EMPLOYEES
(
EMPLOYEE_ID, LAST_NAME, FIRST_NAME,
MIDDLE_INITIAL, ADDRESS_DATA_1,
ADDRESS_DATA_2, CITY, STATE,
POSTAL_CODE, SEX, BIRTHDAY, STATUS_CODE
)

VALUES
(:EMPLOYEE_RECORD:IND_ITEM)

In precompiled programs, SQL stores values only from main parameters whose
associated indicator parameters or indicator array elements are set to 0 or a
positive integer. If any indicator parameter is set to a negative integer, SQL
does not store a value from the associated main parameter whether or not the
program moved a value to that parameter.

In SQL modules, SQL stores values only from main parameters whose
associated indicator parameters are set to 0 or to a positive integer in the
calling host language module. If any indicator parameter is set to a negative
integer in the calling host language module, SQL does not store a value from
the procedure parameter for the column value whether or not the program
moved a value to the main parameter that matches the column.

Note

Indicator parameters in Boolean expressions may not behave as you
expect. For example, A=NULL is never true even if A is, in fact, NULL.

8.11 Avoiding Mistakes When Declaring and Using Parameters
This section summarizes some points made in preceding sections of this
chapter about declaring and using parameters to which SQL statements refer.

Whether you are using the SQL precompiler or the SQL module processor,
remember the following rules:

• Do not declare parameters using declaration methods or data types that
SQL does not support.

• Do not forget how SQL expands structures when associating columns with
main parameters.

8–26 Declaring and Using Parameters

Suppose you include in your program a structure definition that contains
a field (ADDRESS_2_P) for the ADDRESS_DATA_2 column in the
EMPLOYEES table. Assume you want this column to always have a null
value. In this case, you cannot omit the ADDRESS_DATA_2 column from
the list of columns in your SQL statement and still refer to the structure
name when you insert or fetch rows.

If you omit the ADDRESS_DATA_2 column from the columns that you list,
but use the structure definition (with ADDRESS_2_P included), the SQL
precompiler and SQL module processor incorrectly associate columns with
fields in the structure. In other words, they assume that you want the
value in the ADDRESS_2_P field stored in the column CITY, the value in
the CITY_P field stored in the column STATE, and so forth.

When you specify a structure name, compile-time errors are generated by:

An invalid conversion between the storage format defined for a column
and the storage format defined for the associated field in the structure

A structure that contains more fields than the number of columns
specified by the SQL statement

A structure that contains fewer fields than the number of columns
specified by the SQL statement

However, inadvertently mismatching a column list with a structure does
not always produce a compile-time error. The mistake may produce only a
warning (perhaps a warning about truncation of character strings) or no
indication at compile time that anything is wrong. This situation might
arise if you substitute another column name for the one you intend and
both columns have compatible definitions. It can arise also if someone
deletes and then redefines a table (containing columns with similar data
types) to rearrange the columns, and your SQL statement uses the asterisk
(*) to specify columns rather than listing the names of all columns. You
should explicitly use column names rather than asterisks.

• When you use an indicator array, make sure that you have sufficient array
elements for the number of fields in the structure.

If you have more fields in a structure than there are elements in the
indicator array, SQL returns a warning.

• Use individually named indicator parameters and indicator arrays
appropriately.

Declaring and Using Parameters 8–27

If your SQL statement refers to an individually named main parameter
associated with a column, you must update, evaluate, and refer to an
individually named indicator parameter. If your SQL statement refers to
a structure, you must update, evaluate, and refer to an indicator array
element.

If you confuse the two types of indicator parameters in an SQL statement,
you encounter a compile-time error. If you confuse the two types of
indicator parameters in host language statements that evaluate or update
the indicator parameters (assuming you are using both types of indicator
parameters in the same program), your program will not recognize or store
actual and null values correctly at run time.

• Do not forget how SQL associates columns with fields when a structure
contains subordinate structures.

SQL expands all structures to a list of elementary fields in the structure,
and this list includes elementary fields for any subordinate structures.
Then SQL associates a column with each elementary field in the structure.
This means that, in some situations, you create a structure with more
elementary fields than there are columns.

For example, suppose you define a structure that contains the elementary
fields YEAR_P, MONTH_P, and DAY_P, and you refer to the structure
using the name DATE_GROUP. Even though DATE_GROUP may be
logically associated with only one column in a table, DATE_GROUP is a
structure that contributes three elementary fields to the record. Therefore,
SQL assumes that the three fields in DATE_GROUP are associated with
three different columns.

If you forget this information, you can encounter various unexpected
run-time problems for which solutions are not intuitively obvious.

There is an easy solution to this problem if your host language lets you
redefine the same storage area. The solution is possible because SQL
expands structures based on the first definition of a given storage area in
the structure. Therefore, if you are mapping multiple field names to an
area that should be associated with only one column, make sure that your
first definition of the area specifies an elementary field. Your second (and
any subsequent) definitions of the same area can specify a group of fields.

You can find examples of this solution in the sample programs in the
samples directory. The sample programs do not nest structures in records.
However, the programs do illustrate the general principle of first defining
a given storage area as one elementary field before defining that area as
multiple fields. The principle applies whenever you are associating more

8–28 Declaring and Using Parameters

than one field with a column, including those times when you want to do
this within a record that applies to a row.

For more information, check the sample programs for your host language in
the samples directory and read information about supported declarations and
data types in the Oracle Rdb7 SQL Reference Manual.

8.11.1 Avoiding Mistakes When Using Embedded SQL
Remember the rules listed in Section 8.11 when you use embedded SQL.
In addition, do not declare SQLCODE and also specify the INCLUDE
SQLCA statement in the same source file. This results in two declarations
of SQLCODE, and SQL uses only the SQLCA. Therefore, if you specify the
INCLUDE SQLCA statement, do not declare SQLCODE separately.

8.11.2 Avoiding Mistakes When Using SQL Modules
The most important rule for you to remember when using SQL modules is that
the data type, size, and passing mechanism for an actual parameter should
be identical to the data type, size, and passing mechanism for a parameter
in the SQL module procedure being called. Therefore, for both procedure and
actual parameters, you are limited to the set of data types that both your
host language and SQL support. In some cases, you may want to convert
between data types. If so, data conversion is always performed within one of
the modules and never when a value is passed between modules.

In addition, remember that SQL implements support for any SQL data type
keyword in one of two ways:

• For both a column definition and a parameter declaration

• For a parameter declaration only

For example, CHAR(n) always specifies a character-string storage format of n
characters whether you are declaring a parameter in an SQL module or you
are defining a table column. However, DECIMAL(n) defines a packed decimal
field of n digits only for a parameter declared in an SQL module procedure.
For columns, DECIMAL(n) defines either a fixed-point binary or floating-point
binary storage format, depending on the value of n. (Oracle Rdb does not
implement the packed decimal storage format.) Therefore, if you define a
procedure parameter in an SQL module using DECIMAL, SQL converts the
data stored in a column corresponding to the procedure parameter to packed
decimal before transfer to the host language module. See the Oracle Rdb7 SQL
Reference Manual for more information about SQL data types.

Declaring and Using Parameters 8–29

The following are additional considerations for declaring and specifying
parameters when you use SQL module language:

• Oracle Rdb recommends that you use the colon (:) before parameter names
in SQL statements, although the use of colons is optional by default. If you
use colons, use the PARAMETER COLONS clause in the module header.

• In an SQL statement, if you specify a parameter and a column that have
the same name, you must qualify the column name using a table name if
the parameter does not use colons. If you use the PARAMETER COLONS
clause in the module header, SQL recognizes the column as a column
because the parameter must be prefixed by a colon for the SQL statement
to be valid.

8.12 Declaring and Using Parameters in Specific Languages
This section provides information about using parameters with particular host
languages.

The sql_all_datatypes sample program in the samples directory illustrates
most of the declarations and operations discussed in this chapter. This
example is available in all languages supported by the SQL precompiler and
in SQL module language. In the precompiled programs, the comments in
these programs refer to main variables and indicator variables instead of main
parameters and indicator parameters.

8.12.1 Declaring and Using Parameters in Ada Source Files
This section describes specific guidelines for declaring and using parameters in
Ada language programs. See Section 6.7.1 for additional rules.

Using Ada Packages
SQL lets you declare host language variables either directly or by calling the
Ada package SQL_STANDARD. See the Oracle Rdb7 SQL Reference Manual
for more information about using SQL with Ada packages.

Dollar Signs Not Allowed
Ada does not permit the dollar sign ($) in names you specify in programs.
In Ada programs, when you refer to names of parameters and calls that this
manual specifies as beginning with SQL$ or RDB$, substitute an underscore
(_) for the dollar sign ($). For example, specify RDB_LU_STATUS for
RDB$LU_STATUS.

8–30 Declaring and Using Parameters

8.12.2 Declaring and Using Parameters in C Source Files
This section describes specific guidelines for declaring and using parameters in
C language programs. See Section 6.7.3 for additional rules.

Case Sensitivity of SQLCODE and SQLSTATE
If you are using the SQL precompiler, note that you must use uppercase
to declare and refer to the SQLCODE or SQLSTATE parameter. The SQL
precompiler converts SQL statements to host language calls. It specifies
SQLCODE and SQLSTATE in uppercase when listing parameters on each of
these host language calls.

Declaring SQLCODE
When you declare SQLCODE independently, declare it as a signed longword.
Note that when you use the C language, the actual length (32 bits or 64
bits) depends on how the host language compiler interprets a longword. SQL
supports both 32-bit and 64-bit longwords.

When you use the SQL precompiler, the support is automatic because the
precompiler sees the definition of SQLCODE.

When you use the SQL module language, declare SQLCODE as a longword in
your host language program and compile the SQL module using the -lsqlcode
or LONG_SQLCODE switches.

Aligning Data

OpenVMS
Alpha

When you use an SQL module called by a C program and the LANGUAGE
clause specified in the module header is C, use the ALIGN_RECORDS qualifier.

In particular, you should use this qualifier when you use C and compile the
host language program with the FLOAT=D_FLOAT qualifier. ♦

Declaring SQLCA and Alignment

OpenVMS
Alpha

On OpenVMS Alpha, when you use the SQL module processor and specify C in
the module header language clause or when you use the SQL precompiler for
C, SQL aligns fields in structures by default. However, you should not allow
member alignment of the SQLCA.

If you explicitly define the SQLCA structure, surround the structure definitions
with the C preprocessor directive #pragma nomember_alignment to prevent
alignment of the structures.

If you use the SQL INCLUDE statement, you do not need to use the
preprocessor directive. ♦

Declaring and Using Parameters 8–31

Character Strings
When you use the SQL C precompiler or the SQL module processor and specify
C as the module language, SQL translates all C character strings as null-
terminated strings. This means that when SQL passes these character strings
from the database to the program, it reserves space at the end of the string for
the null character. When a program passes a character string to the database
for input, SQL looks for the null character to determine how many characters
to store in the database. SQL stores only those characters that precede the
null character; it does not store the null character itself.

Because of the way SQL translates C character strings, you may encounter
problems with applications that pass binary data to and from the database.
To avoid these problems when you use the SQL C precompiler, use the $SQL_
VARCHAR data type that SQL provides. To avoid these problems when you
use the SQL module language with a C language host program, specify the
module language as GENERAL.

In addition, the way SQL translates C character strings will affect programs
that use the SQL INCLUDE or the SQL FROM DICTIONARY clause to copy
record definitions from a repository.

Integer Data Types on Digital UNIX
Digital UNIX On Digital UNIX, there is a distinction between integer and longword variables

that does not exist on OpenVMS. The following table shows the three integer
data types for C compilers on Digital UNIX:

Data Type Size of Data Type

short (int) 16-bits

int 32-bits

long (int) 64-bits

Applications written in C must use the proper declarations when calling SQL
module language programs. The ANSI/ISO standard states that the calling
program must pass a pointer to a longword. This applies to the mapping of
SQL module language formal parameters of type INTEGER and their C actual
parameter.

SQL assumes that INTEGER parameters are called with pointers to C ‘‘long’’.
If you use the –int32 command line option, SQL assumes that the parameters
are called with pointers to C ‘‘int’’.

8–32 Declaring and Using Parameters

To override the size specified by the –int command line options, specify that an
INTEGER parameter is 4 or 8 bytes, as the following example shows:

salary_amount INTEGER is 4 BYTES

The SQL precompiler interprets the sizes of these data types correctly. ♦

Using the SMALLINT Data Type

OpenVMS
VAX

Because VAX C does not support scaled exact numerics, if a column in a table
uses the SMALLINT(2) data type, you must have SQL convert the data for you.
For example, if you are using a cursor to fetch three columns from a table, use
an SQL module language declaration and procedure similar to the following:

DECLARE my_cursor CURSOR FOR
SELECT X, Y, Z
FROM MYTABLE
WHERE W = IN_DATA

.

.

.

PROCEDURE FETCH_EM
SQLCODE
A CHAR(5)
B CHAR(10)
C REAL; -- Corresponds to column Z of type SMALLINT(2)

FETCH my_cursor INTO A, B, C;

The C language host program calls the procedure FETCH_EM as shown in the
following example:

.

.

.
static char in[5] = "0001";
static char out_a[6];
static char out_b[11];
static float out_c;

.

.

.
FETCH_EM(&sqlcode, out_a, out_b, &out_c);
if (sqlcode == 100)

break;
if (sqlcode < 0)

.

.

.

Note that the parameter of data type REAL is mapped to a float host language
variable. ♦

Declaring and Using Parameters 8–33

8.12.3 Declaring and Using Parameters in COBOL Source Files
If you are using the SQL precompiler, see Section 6.7.4, which covers general
rules that apply to embedding SQL statements in COBOL source files.

8.12.4 Declaring and Using Parameters in FORTRAN Source Files
If you are using the SQL precompiler, see Section 6.7.5, which covers general
rules that apply to embedding SQL statements in FORTRAN source files.

8.12.5 Declaring and Using Parameters in Pascal Source Files
If you are using the SQL precompiler, see Section 6.7.6, which covers general
rules that apply to embedding SQL statements in Pascal source files.

8.12.6 Declaring and Using Parameters in PL/I Source Files
If you are using the SQL precompiler, see Section 6.7.7, which covers general
rules that apply to embedding SQL statements in PL/I source files.

8.12.7 Declaring and Using Parameters in SQL Modules and Calling
Programs

For more information about declaring and using parameters in SQL module
language, see Chapter 4. Section 4.2.4 discusses the association of parameters
in called and calling programs.

The sql_all_datatypes_ada.sqlmod module file in the samples directory
illustrates how to use parameters in an SQL module. The sql_all_
datatypes.ada Ada source program in the samples directory calls procedures in
the sql_all_datatypes_ada.sqlmod module.

8–34 Declaring and Using Parameters

9
Using Date-Time Data Types

Oracle Rdb provides a set of date-time data types and value functions
that adhere to the rules prescribed in the ANSI/ISO SQL standard. These
date-time data types and value functions allow programmers and database
administrators greater control over date, time, and interval data.

The following sections explain how to:

• Store data in data-time data types

• Use date-time data types in programs

• Plan for portability of date-time data types

• Convert applications and databases to use a different date-time data type

• Handle DATE VMS data types

• Port applications that contain DATE VMS data types

• Use date-time data types with dynamic SQL

This chapter includes a series of examples to help you program with date-time
data types and value functions. The examples use the corporate_data sample
database.

Reference Reading

If you are not familiar with the date-time data types, refer to the
Oracle Rdb7 Introduction to SQL. For information about creating
tables and domains using these data types, see the Oracle Rdb7 Guide
to Database Design and Definition.

Refer to the Oracle Rdb7 SQL Reference Manual for information such
as date-time data type formats, data type conversion rules, date-time
literals, value functions, valid operators, and language-specific
date-time data type declarations.

Using Date-Time Data Types 9–1

9.1 Storing Data in Date-Time Data Types
When you store data in columns with a date-time data type, you must consider
the following two points:

• When you use date-time literals and default values, the leading and
fractional seconds precision of the default value must match exactly those
of the column. They must also use the same interval qualifiers.

• The literal itself does not need leading zeros to match the precision, as long
as the leading precision and fractional seconds precision specified is greater
than or equal to the value of the literal. For example, the following two
interval literal expressions are equivalent and valid:

INTERVAL ’12:30’ HOUR(4) TO MINUTE
INTERVAL ’0012:30’ HOUR(4) TO MINUTE

Example 9–1 shows how to insert date-time data into the DAILY_HOURS table
in the corporate_data database.

Example 9–1 Inserting Data-Time Data

SQL> INSERT INTO ADMINISTRATION.ACCOUNTING.DAILY_HOURS
cont> (EMPLOYEE_ID, START_TIME, END_TIME)
cont> VALUES (’00415’,
cont> TIMESTAMP ’1995-07-15 07:30:45.33’,
cont> TIMESTAMP ’1995-07-15 17:15:22.18’);
1 row inserted
SQL>
SQL> SELECT * FROM ADMINISTRATION.ACCOUNTING.DAILY_HOURS;

EMPLOYEE_ID START_TIME END_TIME
00415 1995-07-15 07:30:45.33 1995-07-15 17:15:22.18

1 row selected
SQL>

The following examples show how to store date-time data in your database.
Suppose, for example, that you create the following table using date-time data
types:

SQL> CREATE TABLE DATE_TABLE
cont> (CHAR_VAR CHAR(20),
cont> COL_DATE TIMESTAMP(0)
cont> CHECK (COL_DATE BETWEEN TIMESTAMP ’1995-1-1 00:00:00’
cont> AND TIMESTAMP ’1996-1-1 00:00:00’) NOT DEFERRABLE,
cont> COL_YEAR_TO_MONTH INTERVAL YEAR TO MONTH
cont> CHECK (COL_YEAR_TO_MONTH >= INTERVAL ’00-00’ YEAR TO MONTH)
cont> NOT DEFERRABLE,
cont> COL_DAY_TIME INTERVAL HOUR TO SECOND);

9–2 Using Date-Time Data Types

When you use the INSERT statement to store date-time data, you must pay
special attention to leading and fractional precision. If you try inserting literal
timestamp data of precision TIMESTAMP(2) into the COL_DATE column
defined as precision TIMESTAMP(0), SQL issues an error message:

SQL> INSERT INTO DATE_TABLE (COL_DATE)
cont> VALUES (TIMESTAMP ’1995-6-12 16:12:32.05’);
%SQL-F-UNSDATASS, Unsupported date/time assignment from <Source> to COL_DATE
-SQL-F-DATESCANEQ, Date/time expressions with different fractional seconds

precision are not comparable

The following example fails because the leading precision for the YEAR TO
MONTH interval is too small:

SQL> INSERT INTO DATE_TABLE (COL_YEAR_TO_MONTH)
cont> VALUES (INTERVAL ’26512-10’ YEAR(4) TO MONTH);
%SQL-F-DATCONERR, Data conversion error for string ’26512-10’
-COSI-F-IVTIME, invalid date or time

The following example succeeds because the precisions are greater than or
equal to the literal representations. This example succeeds with both the
original domain definition and the altered domain definitions. As long as the
literal is of the same interval type, SQL converts the data to the domain’s
declared data type.

SQL> INSERT INTO DATE_TABLE
cont> VALUES (’STRING’,
cont> TIMESTAMP ’1995-6-12 16:12:32’,
cont> INTERVAL ’265-10’ YEAR(3) TO MONTH,
cont> INTERVAL ’73:23:34’ HOUR(4) TO SECOND);

9.2 Using Date-Time Data Types in Programs
The SQL module language and the SQL precompiler handle date-time data
types in different ways. This section provides examples of using date-time data
types in programs using either processor. It shows how to convert a date-time
character string to the date-time format understood by Oracle Rdb and how
to convert it back to a character string. Data type conversion of this type is
critical to programming successfully with date-time data types.

When you assign a character string literal or variable to a DATE ANSI column,
you use the following format where yyyy is the four digits representing the
year, nn is the two digits representing the month, and dd is the two digits
representing the date.

yyyy-nn-dd

See the Oracle Rdb7 SQL Reference Manual for information about the format
of other date-time data types.

Using Date-Time Data Types 9–3

To establish an ANSI/ISO environment for the DATE data type and the
CURRENT_TIMESTAMP value function, use the DEFAULT DATE FORMAT
clause in a DECLARE MODULE statement or the module header.

Note that the CURRENT_TIMESTAMP value function behaves differently
depending on the default date format. See the Oracle Rdb7 SQL Reference
Manual for more information.

9.2.1 Converting Date-Time Data Types for Program Development
In some cases, you need to convert date-time character strings to the date-time
format accepted by Oracle Rdb to enable the correct processing of date-time
data types. For example, to store complete rows using record structures
containing date-time data types, convert these data types to the Oracle Rdb
date-time format. Likewise, convert the date-time format back to a character
string for displaying in a program.

Example 9–2 shows SQL module procedures that convert character strings
to and from the date-time format required by Oracle Rdb. When using SQL
module language, host language variables used for binary representation
should be declared as quadwords or the language equivalent of quadword.

Example 9–2 SQL Module Segment for Converting Date-Time Data Types

-- This procedure converts a character string to the DATE ANSI format.
PROCEDURE CVT_TO_DATETIME

(SQLCODE,
:CHAR_VAR CHAR(23),
:DT_VAR DATE ANSI);

BEGIN
SET :DT_VAR = CAST(:CHAR_VAR AS DATE ANSI); !

END;

-- This procedure converts a character string to the INTERVAL format.
PROCEDURE CVT_TO_INTERVAL

(SQLCODE,
:CHAR_VAR CHAR(23),
:DT_VAR INTERVAL DAY(6) TO SECOND);

BEGIN
SET :DT_VAR = CAST(:CHAR_VAR AS INTERVAL DAY(6) TO SECOND);"

END;

(continued on next page)

9–4 Using Date-Time Data Types

Example 9–2 (Cont.) SQL Module Segment for Converting Date-Time Data
Types

-- This procedure converts a binary value to a character string.
PROCEDURE CVT_INTERVAL_TO_CHAR

(SQLCODE,
:CHAR_VAR CHAR(23),
:DT_VAR INTERVAL DAY(6) TO SECOND);

BEGIN
SET :CHAR_VAR = CAST (:DT_VAR AS VARCHAR(23)); #

END;

The following callout descriptions are keyed to numbered items in
Example 9–2:

! The CAST function converts a character string to a data type of DATE
ANSI and returns it as an 8-byte binary value.

" The CAST function converts a character string to a binary data type of
interval DAY TO SECOND.

The CAST function converts an interval DAY TO SECOND to a character
string.

You must declare all date-time data types as quadwords (char[8]) in C, as
Example 9–3 demonstrates.

Example 9–3 C Program for Converting Date-Time Data Types

char int_ds_string[24],
date_ansi_string[24];

int sql_return_status;

struct {
char employee_id[6];
char last_name[21];
char q_date_ansi[8];
char q_date_vms[8];
char q_time[8];
char q_timestamp[8];
char q_int_ym[8];
char q_int_ds[8];
}date_rec;

(continued on next page)

Using Date-Time Data Types 9–5

Example 9–3 (Cont.) C Program for Converting Date-Time Data Types

main()
{

strcpy(date_ansi_string,"1995-9-12\0");
cvt_to_datetime(&sql_return_status,date_ansi_string,date_rec.q_date_ansi);

strcpy(int_ds_string,"-12:10:35:59.05\0");
cvt_to_interval(&sql_return_status,int_ds_string,date_rec.q_int_ds);

}

9.2.2 Using Date-Time Data Types with the SQL Precompiler
When you use the SQL precompiler, you can use special SQL-defined data
types for variables representing date-time data types.

SQL allows you to fetch DATE, TIME, TIMESTAMP, and INTERVAL data
types into binary host language variables, but the internal format in many
cases is understood only by Oracle Rdb. You should only use the binary host
language variables to receive data from queries, and then to pass that data
back to SQL as input to other queries.

To facilitate the definition of host language variables, SQL defines a set of
date-time data types for use with the SQL precompiler. For example, in a
COBOL program, you can declare variables using the following data types:

01 P_DATE SQL_DATE.
01 P_DATE_V SQL_DATE_VMS.
01 P_TIME SQL_TIME(0).
01 P_TIMESTAMP SQL_TIMESTAMP(2).
01 P_INTER_1 SQL_INTERVAL (YEAR TO MONTH).
01 P_INTER_2 SQL_INTERVAL (DAY TO HOUR).

Example 9–4 uses the SQL precompiler data types to declare date-time host
variables.

Example 9–4 SQL Precompiler Program Using Date-Time Data Types

#include <string.h>

main()
{

char str_var[24];
long SQLCODE;

(continued on next page)

9–6 Using Date-Time Data Types

Example 9–4 (Cont.) SQL Precompiler Program Using Date-Time Data Types
struct {

char employee_id[6];
char last_name[21];
SQL_DATE_ANSI my_date_ansi;
SQL_DATE_VMS my_date_vms; !
SQL_TIME my_time;
SQL_TIMESTAMP(1) my_timestamp;
SQL_INTERVAL(YEAR(3) TO MONTH) my_int_yr32mo;
SQL_INTERVAL(DAY(4) TO SECOND (2)) my_int_d42s2;

}date_rec;

strcpy(str_var,"33-4\0");

EXEC SQL DECLARE ALIAS FILENAME personnel;

/* Conversion from a string to a date-time format. */
EXEC SQL BEGIN

SET :date_rec.my_int_yr32mo = CAST(:str_var AS INTERVAL YEAR TO MONTH);
END;

/* Conversion from date-time format to a string. */
EXEC SQL BEGIN

SET :str_var = CAST(:date_rec.my_int_yr32mo AS CHAR(24)); "
END;

}

The following callout descriptions are keyed to numbered items in
Example 9–4:

! Use SQL precompiler data types when binary format is required.

" Use the CAST function to convert to character strings when you want to
display date-time data.

Refer to the Oracle Rdb7 SQL Reference Manual for a list of the special data
types you can use with the SQL precompiler. The samples directory includes a
program, sql_all_datatypes_date, that shows how to use these data types in a
variety of languages.

Example 9–5 shows a SQL precompiler C program that computes the weekly
wages from the corporate_data sample database. It is comparable to the SQL
module program shown in Section 9.2.3.

Using Date-Time Data Types 9–7

Example 9–5 C Program Using Date-Time Data Types with the SQL
Precompiler

#include <stdio.h>
#include <sql_rdb_headers.h>

/* Include the SQLCA. */
EXEC SQL INCLUDE SQLCA;

/* Declare the alias. */
EXEC SQL DECLARE ALIAS FILENAME corporate_data;

main()
{
/* Declare return status variable for error handling. */

int sql_return_status;

/* Variables for program use. */
char start_date[11],

end_date[11];
char emp_id[6],

last_name[21],
hours_worked[12];

int hours,min;
float hr_rate,wages,sec;

printf("Enter START DATE (YYYY-MM-DD):");
gets(start_date);
printf("Enter END DATE (YYYY-MM-DD):");
gets(end_date);

/* Declare a cursor. */
EXEC SQL DECLARE WEEKLY_HRS_CURSOR CURSOR FOR

SELECT E.EMPLOYEE_ID, LAST_NAME, HOURLY_RATE,
CAST(SUM(HOURS_WORKED) AS CHAR(12)),
EXTRACT(HOUR FROM SUM(HOURS_WORKED)),
EXTRACT(MINUTE FROM SUM(HOURS_WORKED)),
EXTRACT(SECOND FROM SUM(HOURS_WORKED))

FROM ADMINISTRATION.ACCOUNTING.DAILY_HOURS D,
ADMINISTRATION.PERSONNEL.HOURLY_HISTORY H,
ADMINISTRATION.PERSONNEL.EMPLOYEES E

WHERE (H.EMPLOYEE_ID = D.EMPLOYEE_ID)
AND (E.EMPLOYEE_ID = H.EMPLOYEE_ID)
AND CAST(START_TIME AS DATE ANSI)
BETWEEN CAST(’1995-07-01’ AS DATE ANSI) AND

CAST(’1995-07-19’ AS DATE ANSI)
GROUP BY E.EMPLOYEE_ID, LAST_NAME,HOURLY_RATE;

/* Open the cursor. */
EXEC SQL OPEN WEEKLY_HRS_CURSOR;

(continued on next page)

9–8 Using Date-Time Data Types

Example 9–5 (Cont.) C Program Using Date-Time Data Types with the SQL
Precompiler

printf("%20s WEEKLY PAYROLL (%s - %s)\n\n"," ",start_date,end_date);
printf("Emp Id Last Name %11s Hours %14s Rate %9s Wages\n\n",

" "," "," ");

/* Get data for employees until end of file. */

while (SQLCA.SQLCODE == 0)
{

EXEC SQL FETCH WEEKLY_HRS_CURSOR INTO
:emp_id, :last_name, :hr_rate,
:hours_worked, :hours, :min, :sec;

if (SQLCA.SQLCODE != 0 && SQLCA.SQLCODE != 100)
{

sql_signal();
EXEC SQL ROLLBACK;

}
else

if (SQLCA.SQLCODE != 100)
{

if (hours < 40)
wages = (float)hours * hr_rate +

(float)min/60 * hr_rate +
(float)sec/3600 * hr_rate;

else
wages = 40.00 * hr_rate +

(float)(hours - 40) * hr_rate * 1.5 +
(float)min/60 * hr_rate * 1.5 +
(float)sec/3600 * hr_rate * 1.5;

printf("%s %25s %10s %15.2f %15.2f\n",
emp_id,last_name,hours_worked,hr_rate,wages);

}
}
EXEC SQL ROLLBACK;

}

9.2.3 Using Date-Time Data Types with the SQL Module Language
This section illustrates how to use the CAST and EXTRACT functions to
convert date-time data types to and from the date-time format to generate a
report of weekly wages based on time and a half after 40 hours.

Using Date-Time Data Types 9–9

Example 9–6 shows the SQL module, mod_weekly_pay.sqlmod, that fetches
rows using the date-time data types.

Example 9–6 SQL Module Using Date-Time Data Types

-- The module illustrates how to use SQL module language to use a cursor to
-- fetch columns of date-time data type.

-- Header Information Section

MODULE MOD_WEEKLY_PAY -- Module name
LANGUAGE C -- Language of calling program
ALIAS RDB$DBHANDLE
PARAMETER COLONS

-- DECLARE Statements Section

DECLARE ALIAS FILENAME corporate_data -- Declaration of the database

DECLARE WEEKLY_HRS_CURSOR CURSOR FOR!
SELECT E.EMPLOYEE_ID, LAST_NAME, HOURLY_RATE,

CAST(SUM(HOURS_WORKED) AS CHAR(12)),"
EXTRACT(HOUR FROM SUM(HOURS_WORKED)),#
EXTRACT(MINUTE FROM SUM(HOURS_WORKED)),
EXTRACT(SECOND FROM SUM(HOURS_WORKED))

FROM ADMINISTRATION.ACCOUNTING.DAILY_HOURS D,
ADMINISTRATION.PERSONNEL.HOURLY_HISTORY H,
ADMINISTRATION.PERSONNEL.EMPLOYEES E

WHERE ((H.EMPLOYEE_ID = D.EMPLOYEE_ID)
AND (E.EMPLOYEE_ID = H.EMPLOYEE_ID)
AND (CAST(D.START_TIME AS DATE ANSI) $

BETWEEN CAST(:DATE1 AS DATE ANSI) AND%
CAST(:DATE2 AS DATE ANSI)))

GROUP BY E.EMPLOYEE_ID, LAST_NAME, HOURLY_RATE

-- Procedure Section

-- This procedure opens the cursor that has been declared for the
-- WEEKLY_PAY table.
PROCEDURE OPEN_CURSOR

(SQLCODE,
:DATE1 CHAR(10),
:DATE2 CHAR(10));

OPEN WEEKLY_HRS_CURSOR;

-- This procedure fetches the data from the opened cursor.

(continued on next page)

9–10 Using Date-Time Data Types

Example 9–6 (Cont.) SQL Module Using Date-Time Data Types

PROCEDURE FETCH_WEEKLY_HOURS
(SQLCODE,
:EMP_ID CHAR(5),
:LAST_NAME CHAR(20),
:HRLY_RATE REAL,
:HRS_WORKED CHAR(11),
:WEEK_HOURS INTEGER,
:WEEK_MIN INTEGER,
:WEEK_SEC REAL);

FETCH WEEKLY_HRS_CURSOR INTO :EMP_ID, :LAST_NAME, :HRLY_RATE,
:HRS_WORKED, :WEEK_HOURS,
:WEEK_MIN, :WEEK_SEC;

-- This procedure rolls back the transaction.

PROCEDURE ROLLBACK_TRANSACTION
(SQLCODE);

ROLLBACK;

The following callout descriptions are keyed to numbered items in
Example 9–6:

! Declares a cursor to create a record stream for each hourly employee’s
weekly hours.

" Uses the CAST function to convert the date from binary format to a
character string. The SUM(HOURS_WORKED) expression assumes the
data type interval DAY TO SECOND, which must be converted to a
character string before displaying.

Uses the EXTRACT function to create numeric values for HOUR, MINUTE,
and SECOND. These values are used in the algorithm for calculating
weekly wages.

$ Uses the CAST function to convert the column START_TIME from
TIMESTAMP to DATE ANSI. This example prompts the user for two
dates, the desired starting and ending dates to use in calculating wages.
Because only the date is significant, the CAST operation allows comparison
of the date portion of the START_TIME column only.

% Uses the CAST function to convert the date character string (YYYY-MM-
DD) entered by the user to DATE ANSI.

Using Date-Time Data Types 9–11

Example 9–7 shows the C language program, mod_datetime_c.c, used with the
mod_weekly_pay.sqlmod module to retrieve date-time data types in programs.

Example 9–7 C Program Using Date-Time Arithmetic

/* ABSTRACT:
This sample C program is used with mod_weekly_pay.sqlmod to demonstrate
the retrieval of date-time data types. Note the use of the CAST and
EXTRACT functions to convert to and from a date-time format.

This application prompts the user for a START_DATE and END_DATE. The
total hours worked for each employee during this time period are returned
along with the employee’s hourly rate. Weekly pay is calculated assuming
time and a half after 40 hours.

*/
#include <stdio.h>
#include <sql_rdb_headers.h>
main()
{
/* Declare return status variable for error handling. */

int sql_return_status;

/* Variables for program use. */
char start_date[11], !

end_date[11];
char emp_id[6],

last_name[21],
hours_worked[12];

int hours,
min;

float hr_rate,
wages,
sec; "

printf("Enter START DATE (YYYY-MM-DD):");
gets(start_date);
printf("Enter END DATE (YYYY-MM-DD):");
gets(end_date);

/* Open the cursor. */

open_cursor(&sql_return_status,start_date,end_date);
if (sql_return_status < 0)
{

sql_signal();
rollback_transaction(&sql_return_status);

}

(continued on next page)

9–12 Using Date-Time Data Types

Example 9–7 (Cont.) C Program Using Date-Time Arithmetic
printf("%20s WEEKLY PAYROLL (%s - %s)\n\n"," ",start_date,end_date);
printf("Emp Id Last Name %11s Hours %14s Rate %9s Wages\n\n",

" "," "," ");

/* Get data for employees until end of file. */

while (sql_return_status == 0)
{

fetch_weekly_hours(&sql_return_status,emp_id,last_name,&hr_rate,
hours_worked,&hours,&min,&sec); #

if (sql_return_status != 0 && sql_return_status != 100)
{

sql_signal();
rollback_transaction(&sql_return_status);

}
else

if (sql_return_status != 100)
{

if (hours < 40)
wages = (float)hours * hr_rate +

(float)min/60 * hr_rate +
(float)sec/3600 * hr_rate;

else
wages = 40.00 * hr_rate +

(float)(hours - 40) * hr_rate * 1.5 +
(float)min/60 * hr_rate * 1.5 +
(float)sec/3600 * hr_rate * 1.5;

printf("%s %25s %10s %15.2f %15.2f\n",
emp_id,last_name,hours_worked,hr_rate,wages);

}
}
rollback_transaction(&sql_return_status);
if (sql_return_status < 0)
{

sql_signal();
rollback_transaction(&sql_return_status);

}
}

The following callout descriptions are keyed to numbered items in
Example 9–7:

! Declares host character variables with length = length + 1 to accommodate
the null terminator.

Using Date-Time Data Types 9–13

" Declares host variable sec as float, corresponding to the module language
parameter REAL, because extracting the SECOND field from an interval
results in the SQL data type INTEGER(2), which is not supported by C.
The variable hr_rate is declared as type float for the same reason.

Fetches the data for each employee until end of stream (SQLCODE = 100)
or an unexpected error occurs.

If you compile, link, and run this program, the program displays the following
report:

Enter START DATE (YYYY-MM-DD):1995-07-15
Enter END DATE (YYYY-MM-DD):1995-07-19

WEEKLY PAYROLL (1995-07-15 - 1995-07-19)

Emp Id Last Name Hours Rate Wages

00415 Mistretta 51:18:16.7 12.50 711.96
00416 Ames 48:34:16.7 12.50 660.71

9.3 Improving Portability When Using Date-Time Data Types
If your applications may need to work with more than one SQL product or
you want applications that are compliant with the SQL standard, consider the
following guidelines:

• Use the EXTRACT function to retrieve separate fields from date-time data
types. For example:

SELECT EXTRACT(YEAR FROM x), EXTRACT(MONTH FROM x)
INTO :years, :months
FROM DATE_TAB;

• Use the CAST function to store separate fields into intervals or evaluate an
expression by using separate fields in intervals. For example:

UPDATE DATE_TAB
SET I_COL = CAST(:hours AS INTERVAL HOUR) +

CAST(:minutes AS INTERVAL MINUTE) +
CAST(:seconds AS INTERVAL SECOND);

SELECT ID, I_COL FROM DATE_TAB
WHERE I_COL > CAST(:hours AS INTERVAL HOUR) +

CAST(:minutes AS INTERVAL MINUTE) +
CAST(:seconds AS INTERVAL SECOND);

9–14 Using Date-Time Data Types

• The INSERT statement accepts expressions in the VALUES clause.
Therefore, you can insert host data directly into tables, as follows:

INSERT INTO x (LAST_NAME, AGE)
VALUES (:last_name, CAST(:age AS INTERVAL YEAR));

• Retrieve the date-time fields as text. For example:

SELECT CAST(BIRTHDAY AS VARCHAR(30))
FROM EMPLOYEES;

The resulting text strings conform to the layout defined for intervals and
date-time data types. The leading field for intervals occupies the number
of digits specified by the interval leading field precision. There is always
provision for a sign character (either a space for 0 or positive intervals, or
a minus sign for negative intervals).

9.4 Converting Applications and Databases
You can convert applications and databases to use the date-time data types as
follows:

• To change the data type from DATE VMS to DATE ANSI, TIME, or
TIMESTAMP, use the ALTER DOMAIN statement. Conversion of data
stored in older versions of the row is performed automatically by Oracle
Rdb.

• Because assignment of DATE ANSI literal values does not function in
exactly the same way as assignment of DATE VMS literal values, you must
specify literal values using the ANSI date-time formats, or use the CAST
function to convert from DATE VMS to the ANSI data types. For example:

CAST(CAST(:host_char AS DATE VMS) AS TIMESTAMP)

• If you use the LIKE, CONTAINS, or STARTING WITH predicates to
search a column defined as a ANSI date-time data type, the internal
representation that Oracle Rdb uses is identical to the following literal
syntax:

’199501’

Because these functions implicitly convert to text, comparisons may not
work the same as with DATE VMS data types.

Using Date-Time Data Types 9–15

9.5 Handling DATE VMS Data Types in Applications
When you use the DATE VMS data type in applications, you can assign
character strings to it as you can in interactive SQL. However, you should note
the following:

• If you assign a character string literal to a DATE VMS column, use one of
the following formats:

dd-mmm-yy hh:mm:ss:cc

The following example inserts a character string value into a DATE
VMS column:

EXEC SQL INSERT INTO TIME_SHEET (START_TIME)
VALUES (’12-NOV-1979 12:34:56.78’);

yyyymmddhhmmsscc

If you use this format, use the CAST function to convert it to DATE
VMS, as shown in the following example:

EXEC SQL INSERT INTO TIME_SHEET (START_TIME)
VALUES (CAST (’1979111212345678’ AS CHAR(16)));

• If you use a character string variable or parameter, use the format:
yyyymmddhhmmsscc

The following example assigns a character string to a host language
variable and uses the variable to insert the data into a DATE VMS column:

char st[17];
strcpy(st, "1979111212345678");

EXEC SQL INSERT INTO TIME_SHEET (START_TIME)
VALUES (:st);

The following excerpt from a precompiled C program shows how Oracle Rdb
lets you insert a character string (in the 16-character format) directly into
the colum TBL_DATE_VMS defined as DATE VMS. Oracle Rdb automatically
performs an internal conversion of the character string to the DATE VMS
format. The excerpt also shows the reverse operation—inserting the TBL_
DATE_VMS column of data type DATE VMS directly into the 16-character
string format.

main()
{

char string_date[17];

strcpy(string_date,"1989111212345678");

EXEC SQL INSERT INTO ALL_DATE_TABLE (TBL_DATE_VMS)
VALUES (:string_date);

9–16 Using Date-Time Data Types

strcpy(string_date," ");

EXEC SQL SELECT TBL_DATE_VMS INTO :string_date
FROM ALL_DATE_TABLE;

printf("Date VMS (16-character string format): %s\n",string_date);
}

9.5.1 Using DATE VMS with Applications Specific to OpenVMS
Sometimes, date-time data is derived from other applications and sources,
or is directed to other layered products and may not support the ANSI/ISO
date-time data types. In these situations, use the CAST function to convert the
data to DATE VMS format. Applications specific to OpenVMS can then use the
run-time library functions to format international dates and times.

Oracle Rdb guarantees the output from the following CAST function to be
a date format that is compatible with OpenVMS, even for future versions of
Oracle Rdb. DATE VMS is an Oracle Rdb extension to the ANSI/ISO SQL
standard.

SELECT CAST(birthday AS DATE VMS), LAST_NAME, FIRST_NAME
FROM ...;

9.5.2 Porting Applications That Contain DATE VMS Data Types
Applications that run on OpenVMS with data stored in columns of data type
DATE VMS often call OpenVMS Run-Time Library routines to format and
convert data between their character string and binary representations.

Because these services are not provided with other operating systems, you
must change applications that run on other operating systems to handle date
columns properly. The following describes two possible methods:

• Convert your database to one of the ANSI date-time types. These types are
slightly different from DATE VMS. Although this is the best method, you
may not choose to do so because of the impact on other applications.

• Use the character representation as the means of sending and receiving
dates at run time rather than using the binary representation.

Host programs often define 8-byte character variables to return the binary
date. SQL treats assignments between 8-byte character variables and DATE
VMS columns as an assignment without conversion. The binary data is placed
in the variable. Because character variables that are 16 bytes (char x[17] in C
programs) are long enough to hold the character representation, SQL assigns
the converted value to the variable.

Using Date-Time Data Types 9–17

Using the 16 character format (YYYYNNDDHHMMSSCC), code the date
January 1, 2001 at 7:25 PM as follows:

DATE VMS ’2001010119250000’

Examples in this section demonstrate the following:

• Simple storage and retrieval of DATE VMS data

• Operating on the character representation

The following program shows how to use user-written functions to replace
OpenVMS system service calls that translate the DATE VMS format into the
DATE ANSI format. The variables that hold the result are 16 bytes instead of
eight. Note that if you remove calls to the system service, you no longer need
the OpenVMS descriptor.

simple_date () {

/* Note that because these variables are treated as character strings,
* their size must include the null terminator for C.
*/

char in_date[17];
char ret_date[17];
char string_date[MAX_DATE_SIZE];
long SQLCODE;

/* Ask the user for the date. */
ReadInputDate(string_date);

/* Convert the date to SQL character format. */
ToSQLDate(string_date,in_date);

EXEC SQL INSERT INTO SALARY_HISTORY (EMPLOYEE_ID,SALARY_START)
VALUES (’09999’, :in_date);

check_sqlcode(&SQLCODE);

EXEC SQL SELECT SALARY_START INTO :ret_date
FROM SALARY_HISTORY WHERE EMPLOYEE_ID = ’09999’;

check_sqlcode(&SQLCODE);

/* Convert the date back to something that the user can read.*/
FromSQLDate(string_date,ret_date);

printf("Date: %s\n",string_date);

}

The application can write the routines ToSQLDate and FromSQLDate for
the specific operating system. Depending on how you want the application
to present dates to the user, you can make the date format either operating
system specific or consistent across all operating systems.

9–18 Using Date-Time Data Types

The following examples show how to change the size of the variables to force
SQL treat the variables as different data types. Because they are SQL module
procedures, you must change the data type of the parameter from DATE to
CHAR.

As shown in the following example, the original code uses 8-byte variables to
hold the results:

PROCEDURE INSERT_SAL_HIST
(SQLCODE,

:IN_DATE DATE VMS);

INSERT INTO SALARY_HISTORY (EMPLOYEE_ID,SALARY_START)
VALUES (’09999’, :IN_DATE);

Change the size of the variables to be 16 bytes, as shown in the following
example:

PROCEDURE INSERT_SAL_HIST
(SQLCODE,

:IN_DATE CHAR(16));

INSERT INTO SALARY_HISTORY (EMPLOYEE_ID,SALARY_START)
VALUES (’09999’, :IN_DATE);

After you convert the date format to a character string, you can operate on this
string just as you would any other character string. You can use the CAST
function to convert the data while it is in the database.

For example, to retrieve only the date portion of the SALARY_START column
use the following statement:

SELECT SUBSTRING(CAST(SALARY_START AS CHAR(16)) FROM 1 FOR 8)
FROM SALARY_HISTORY;

In this example, the CAST function converts the DATE VMS data type to
the character representation. Then, the SUBSTRING function works on the
resulting character string.

Note that you can also construct a date using the CAST function and
concatenation. The following example builds the character representation
with multiple strings concatenated together:

INSERT INTO SALARY_HISTORY (SALARY_START)
VALUES (CAST(:yr || :mm || :yy || ’00000000’ AS DATE VMS));

The string of zeros representing the hours, minutes, seconds, and hundredths
is required for proper conversion.

For more examples of using the CAST function to operate on DATE VMS data
types, see the programs whose names begin with ‘‘sql_load’’ in the samples
directory.

Using Date-Time Data Types 9–19

9.6 Using Date-Time Data Types with Dynamic SQL
As you program with dynamic SQL, keep in mind the following points about
using date-time data types with dynamic SQL:

• Dynamic SQL inherits the DATE ANSI data type setting from the module
in which it is prepared and executed.

• You must use the SQLDA2 structure with the date-time data types.

• SQL processes expressions of the form CAST(? AS INTEGER) differently
than other expressions. For more information, see Section 9.6.1.

9.6.1 Using CAST with Parameter Markers
SQL processes expressions using CAST and parameter markers differently
than other expressions. SQL cannot derive the data type from the context
for expressions of this type. Thus, SQL interprets the parameter marker (?)
as having the same data type as the one specified by the CAST function, in
this case INTEGER. This means you may need to use two CAST functions, as
shown in the following example:

CAST(CAST(? AS CHAR(10)) AS INTEGER)

The sql_dynamic.c program in the samples directory shows how to define date-
time data types and the SQLDA2 structure in dynamic SQL. It demonstrates
how to convert date-time data types to character strings before processing with
the PREPARE and EXECUTE dynamic statements, thereby eliminating the
need to use the two CAST functions with date-time data types.

Example 9–8 shows a portion of an interactive dialogue using the sql_dynamic
program located in the samples directory. The example demonstrates that you
must cast the parameter marker (?) in the SELECT statement to the proper
date-time data type, in this case interval HOUR, before SQL can successfully
perform the Boolean greater than (>) operation.

Example 9–8 Casting Parameter Markers in Dynamic SQL Programs

DynamicSQL> SELECT * FROM ADMINISTRATION.ACCOUNTING.DAILY_HOURS
cont> WHERE HOURS_WORKED > ?;

The SQL statement to be executed dynamically is:
SELECT * FROM ADMINISTRATION.ACCOUNTING.DAILY_HOURS WHERE HOURS_WORKED > ?;

Enter value for parameter ’HOURS_WORKED’ Interval Hour (2) To Second (2): 10

Error -304 returned from open_cursor

(continued on next page)

9–20 Using Date-Time Data Types

Example 9–8 (Cont.) Casting Parameter Markers in Dynamic SQL Programs
Error message:
%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-SQL-F-DATCONERR, Data conversion error for string ’10’
-COSI-F-IVTIME, invalid date or time

Error returned from sql_dynamic()

Enter the SQL statement to process on the following line(s), terminating your
statement with a semicolon <;> literal>(<)<CR> or <CTL-Z> to exit>:

DynamicSQL> SELECT * FROM ACCOUNTING.DAILY_HOURS
cont> WHERE HOURS_WORKED > CAST(? AS INTERVAL HOUR);

The SQL statement to be executed dynamically is:
SELECT * FROM ADMINISTRATION.ACCOUNTING.DAILY_HOURS WHERE

HOURS_WORKED > CAST(? AS INTERVAL HOUR);

Enter value for parameter ’’Interval Hour (2): 10
--
Field EMPLOYEE_ID:00415
Field START_TIME:[Timestamp (2)] 1995-07-17 07:15:06.62
Field END_TIME:[Timestamp (2)] 1995-07-17 17:45:24.19
Field HOURS_WORKED:[Interval Hour (2) To Second (2)] 10:30:17.57

No more records found.
.
.
.

9.6.2 Passing Dates as Text Strings to Dynamic SQL Statements
Digital UNIX Dynamic SQL contains a restriction when date strings of the format

YYYYNNDDHHMMSSCC are stored into a DATE VMS column on
Digital UNIX. When a user passes a date as a text string to a dynamic
SQL EXECUTE statement (SQL/Services always passes dates as text), the
string is improperly converted to a binary date. Do not use a statement such
as the following:

INSERT INTO TBL (DATE_COL) VALUES (?)

Instead, specifically query the database system for the date by using the
following statement:

INSERT INTO TBL (DATE_COL) VALUES (CAST(? AS CHAR(16)))

This statement is also more efficient than the previous. This restriction may
be lifted in a future release. ♦

Using Date-Time Data Types 9–21

Part III
Run-Time Processing

This part discusses how to handle:

• Completion conditions, expected errors, and unexpected errors

• Run-time processing of SQL statements through dynamic SQL

10
Handling Run-Time Errors

This chapter describes how to detect run-time errors, retrieve accompanying
error messages, and either recover from the error or roll back the transaction.
The chapter describes the following:

• The options SQL provides for error handling

• Monitoring the execution of SQL statements for errors

• Displaying error messages

• Handling errors associated with database integrity and setting constraint
evaluation time

• Handling lock conflict and deadlock errors

• Handling errors caused by failure to attach to a database or start a
transaction

• Improving program portability when handling errors

Reference Reading

This chapter describes only errors returned from SQL and the
underlying database system. Refer to your programming language
documentation for information on handling host language or system
run-time errors.

10.1 Overview of SQL Error Handling
All programs are subject to run-time errors, both expected and unexpected.
Table 10–1 describes these two types of errors.

Handling Run-Time Errors 10–1

Table 10–1 Types of Run-Time Errors

Error Type Description

Expected Expected errors fall into two categories:

• Completion conditions, such as the ‘‘no next row’’ (‘‘no data’’)
condition, that your program checks to determine when to
continue or stop execution of a loop. These conditions are not
errors in the true sense, but conditions that control a normal
execution cycle.

• Exception conditions, such as deadlock, lock conflict, database
integrity, and duplicate value errors, that may occur from time
to time, but are unpredictable. Often, you want your program to
recover and continue execution when one of these errors occurs.

Unexpected Errors from which your program typically cannot recover, for
example: arithmetic exceptions, declaring the wrong database,
using obsolete metadata (data definitions), or a corrupt database.

When your program encounters an unexpected error, it needs to
handle it by displaying information about the error, rolling back any
changes, and stopping execution.

SQL does not call system routines to stop your program when an exception
condition or error returns. Therefore, your program may continue in ways you
do not expect, often encountering additional errors that are caused by the first
error. For this reason, you should always check for completion and exception
conditions on SQL statements.

To handle a completion or exception condition or error, you must:

• Declare a parameter to store a value that represents the execution status
of an SQL statement

• Check the value contained by that parameter after execution of each SQL
statement

• Specify actions to take based on that value

For example, roll back the transaction or exit the program.

Table 10–2 summarizes the techniques that SQL provides for handling errors.

10–2 Handling Run-Time Errors

Table 10–2 SQL Techniques for Handling Errors

Error-Handling
Technique

Standards
Compliant? Description

SQLSTATE
parameter

Yes Stores a 5-character string value representing the
execution status of an SQL statement. The ANSI/ISO
SQL standard requires an SQLSTATE or an SQLCODE (or
both) declaration in your program. The SQL interface to
Oracle Rdb enforces this rule.

SQLSTATE is the recommended status parameter. Use
SQLSTATE in all new application development.

SQLCODE
parameter

Yes1 Stores an integer value representing the execution status
of SQL statements. The ANSI/ISO SQL standard requires
an SQLCODE or an SQLSTATE (or both) declaration in
your program. The SQL interface to Oracle Rdb enforces
this rule.

GET DIAGNOSTICS
statement

Yes Extracts diagnostic information about the execution of the
previous statement in a compound statement.

SIGNAL statement Yes Provides information about exception conditions in
compound statements.

WHENEVER
statement

Yes1 Provides error handling for all SQL statements that follow
it. Its use is restricted to embedded SQL.

RDB$MESSAGE_
VECTOR address
array

No Stores information about the execution status of SQL
statements. The ANSI/ISO SQL standard does not include
the RDB$MESSAGE_VECTOR array. In addition, because
this array is an Oracle Rdb internal data structure, the
values returned may change from version to version of
Oracle Rdb.

The RDB$MESSAGE_VECTOR array provides more
detail about the type of error than the SQLCODE or
SQLSTATE parameters. Consider using it only if you
cannot retrieve needed information by the using the
recommended methods.

sql_get_message_
vector routine

No Retrieves information from the RDB$MESSAGE_VECTOR
array about the status of the last SQL statement.

sql_signal routine No Signals a condition using error information returned
through the RDB$MESSAGE_VECTOR array. The sql_
signal routine, depending upon your program condition
handler, can display messages for primary and follow-on
errors and continue or stop the program.

1 SQLCODE complies with the SQL89 ANSI/ISO SQL standard but has been deprecated in the
SQL92 ANSI/ISO SQL standard. The WHENEVER statement uses SQLCODE.

(continued on next page)

Handling Run-Time Errors 10–3

Table 10–2 (Cont.) SQL Techniques for Handling Errors

Error-Handling
Technique

Standards
Compliant? Description

sql_get_error_text
routine

No Returns error text to your program for processing. It uses
error information returned through the RDB$MESSAGE_
VECTOR array.

SQL error-handling
routines

Yes Three routines let you use user-written error handlers in
SQL programs:

• sql_register_error_handler (establish error handler)

• sql_get_error_handler (invoke error handler)

• sql_deregister_error_handler (remove error handler)

These routines let you set up any number of error-handling
routines that can override or enhance the error-handling
options provided by SQL.

You can inspect the sample programs in the samples directory to find different
techniques to handle errors. The sql_terminate program contains varied
error-handling techniques and more explanatory comments than other
programs.

10.2 Monitoring Execution of SQL Statements for Errors
This section describes how to use the SQLSTATE status parameter, the
SQLCODE status parameter, the WHENEVER statement for precompiled
SQL, the RDB$MESSAGE_VECTOR array, and SQL error-handling routines
to detect errors, including completion and exception conditions.

The following list summarizes some guidelines that apply no matter which
status parameter you use to monitor for errors:

• The ANSI/ISO SQL standard requires your program to declare SQLSTATE,
SQLCODE, or both. The SQL interface to Oracle Rdb enforces this
rule. If you are writing a program that adheres to the ANSI/ISO SQL
standard, your program should check the value stored in the SQLSTATE
or SQLCODE parameter after execution of each simple and compound
statement.

Because statements that are not executable do not return values to status
parameters, do not check the value of the status parameter after non-
executable statements. For example, do not check the value of the status
parameter after a DECLARE CURSOR statement.

10–4 Handling Run-Time Errors

• Often, error handling routines roll back transactions. However, the roll
back operation succeeds only if a transaction has been started, which may
not always be true. In addition, either success or failure of the ROLLBACK
statement affects the value of SQLSTATE or SQLCODE. Therefore, your
program should display the messages associated with the original error
before it executes any further SQL statements. See Section 10.6 for
additional information on handling errors associated with rolling back.

Reference Reading

The Oracle Rdb7 SQL Reference Manual contains an appendix that
describes the SQL Communications Area (SQLCA), SQLSTATE and
SQLCODE status parameters, and the RDB$MESSAGE_VECTOR
array.

In addition, the reference manual chapter on SQL statements contains
a section on the WHENEVER statement.

10.2.1 Using SQLSTATE
The SQLSTATE status parameter reflects the execution status of each SQL
statement. The SQLSTATE status parameter is compliant with the ANSI/ISO
SQL standard. It attempts to make status codes more portable among SQL
implementations. The SQLSTATE status parameter provides many more
standard-defined status values than SQLCODE, while still leaving room for
implementor-defined status values.

New applications should use SQLSTATE rather than SQLCODE. You must set
the dialect to SQL92 to use SQLSTATE to monitor completion codes, but errors
are visible in SQLSTATE no matter what the dialect. Your program should
check the value stored in the SQLSTATE parameter after execution of each
simple and compound statement.

Declare the SQLSTATE status parameter as a 5-character string. The first
two characters hold a class code; the last three characters contain a subclass
code. For example, a status value of five zeros (meaning a 00 class code and
a 000 subclass code) identifies the successful completion of an SQL statement.
The status parameter can consist of uppercase letters A through Z and digits 0
through 9. Status parameter values fall into two categories:

• Standards-defined status parameter values

The letters A through H and the digits 0 through 4 start status values
defined by the ANSI/ISO SQL standard.

• Implementor-defined status parameter values

Handling Run-Time Errors 10–5

The letters I through Z and the digits 5 through 9 begin status values that
are implementor defined. Oracle Rdb and SQL use codes beginning with R
and S.

An appendix in the Oracle Rdb7 SQL Reference Manual lists SQLSTATE
status parameter values and their corresponding exception conditions. At a
minimum, your program should check for the following conditions:

• If the SQLSTATE value equals ’ 00000’ , the SQL statement executed
successfully.

• If the SQLSTATE value equals ’ 01000’ , the SQL statement generated a
warning.

• If the SQLSTATE value equals ’ 02000’ , the SQL statement cannot return
any more data.

• If the SQLSTATE value begins with a value other than ’ 00’ , ’ 01’ , or ’ 02’ ,
the SQL statement encountered an error. An error indicates a nonfatal
exception condition that must be handled or corrected.

In most programs, you should check for and handle specific conditions, such as
deadlock, lock conflict, attach failure, and, on rollback, no active transaction to
roll back.

For compound statements, you can use the GET DIAGNOSTICS statement
to return the value of SQLSTATE for the previous SQL statement. Refer to
Section 12.9 for more information.

10.2.2 Using SQLCODE
The SQLCODE status parameter reflects the execution status of each SQL
statement. The ANSI/ISO SQL standard defines only three values for
SQLCODE: 0 (success), 100 (no data), and negative values (error). The
SQL interface to Oracle Rdb provides SQLCODE values in addition to these.
See the Oracle Rdb7 SQL Reference Manual for a complete list of SQLCODE
values.

Your program should check the value of SQLCODE after execution of each SQL
statement. For compound statements, you can use the GET DIAGNOSTICS
statement to return the value of SQLCODE for the previous SQL statement.
Refer to Section 12.9 for more information.

You can declare the SQLCODE parameter either independently or as part of
a structure called the SQLCA. When you declare SQLCODE independently,
you declare it as a signed longword. (See Section 8.12.2 for information about
declaring SQLCODE in C host language programs that call SQL modules and
in precompiled C programs.)

10–6 Handling Run-Time Errors

The SQLCA (SQL Communications Area) is a data structure that provides
information about the execution of SQL statements to application programs.
The SQLCA shows whether a statement was successful. For some errors,
it also shows the particular error when a statement is not successful. The
SQLCA is not part of the ANSI/ISO SQL standard.

The following fields of the SQLCA are of interest to SQL users in handling
errors:

• The SQLCODE field

• The third element of an array named SQLERRD

This array element stores a count of the rows processed by an SQL
statement or, for a FETCH statement, a count of the current row position
within a cursor. Note that you cannot declare the SQLERRD array
independently of the entire SQLCA structure.

Your options for declaring SQLCODE as part of the SQLCA depend on whether
you are using the SQL precompiler or the SQL module processor.

• In precompiled programs, specify the INCLUDE SQLCA statement. You
are limited to one independent SQLCODE declaration or one INCLUDE
SQLCA statement per source file for those languages where SQL does not
support block structure.

• If you are using the SQL module language, declare a field for SQLCODE
either independently or within a host language structure that represents
the entire SQLCA. (The appendix on the SQLCA in the Oracle Rdb7 SQL
Reference Manual has examples that guide you in explicitly defining a
structure for the SQLCA.)

To update all the fields in the SQLCA when an SQL statement is processed,
specify the record name of your host language structure as a parameter in
your call to a procedure in an SQL module. The record name you specify
in your call corresponds to the keyword SQLCA, which you specify in the
parameter list of the procedure being called in the SQL module. You may
prefer to specify in some calls only the field that represents SQLCODE if
you do not want to use the row count value in the SQLERRD array. In this
case, specify SQLCODE rather than SQLCA as the corresponding keyword
in the parameter list of the procedure you are calling.

When a program calls procedures in an SQL module, you can choose a
name other than SQLCODE for the host language declaration of the SQL
status parameter. However, naming your status parameter SQLCODE
makes its function clear to anyone else who might look at your source code.
If you decide to work with different SQL status parameter declarations
for different calls (not possible in precompiled programs for languages

Handling Run-Time Errors 10–7

where SQL does not support block structure), you must give each status
parameter a different name. In this case, appending a digit or the name of
an associated procedure to SQLCODE might be a reasonable convention to
follow.

See Section 8.12.2 for information about declaring SQLCA in C host language
programs that call SQL modules and in precompiled C programs.)

The appendix on the SQLCA in the Oracle Rdb7 SQL Reference Manual lists
all possible numeric and literal values the SQLCODE field can contain and
describes what each of these numeric and literal values means. In general, the
values have the following meanings:

• A numeric value of 0 or a literal value of SQLCODE_SUCCESS indicates
that a statement executed successfully.

• Positive integers represent completion codes—the statement executed
to completion but something out of the ordinary occurred. The most
important literal of these is the numeric value 100 or its literal value
equivalent SQLCODE_EOS, which indicates that no row was found.

• Negative integer values or their literal value equivalents represent errors
that prevent the statement from executing to completion.

Your program typically checks for the following kinds of conditions and
operations. These may be expressed using a variety of host language
statements.

• As long as a particular SQL statement executes successfully (SQLCODE =
0 or SQLCODE_SUCCESS), execute a set of statements to process data.

• Until no row is retrieved by a particular SQL statement (SQLCODE = 100
or SQLCODE_EOS), execute a set of statements to process data.

• If any error is encountered during execution of a particular SQL statement
(SQLCODE is less than 0), execute a set of error-handling statements.

A host language statement may include several of these conditions, each
of which is associated with a different kind of expected error and program
recovery procedure, and then end with an ‘‘else’’ condition associated with a
set of error-handling statements for unexpected errors.

Example 10–1 to Example 10–3 show several ways of using SQLCODE to
handle errors.

The syntactic host language construct implied by the examples is a nested
IF statement block that is common to most languages. The examples do not
attempt to adhere to format and syntax requirements for any host language IF
statements. Your particular programming language may also offer statements,

10–8 Handling Run-Time Errors

such as EVALUATE (COBOL) or SWITCH (C), that implement conditional
control of program flow more efficiently than an IF statement.

Example 10–1 shows how to to monitor the value of SQLCODE to determine
when to end a FETCH loop. It uses a host language and calls to an SQL
module.

Example 10–1 Monitoring SQLCODE in SQL Module Language

Execute the following statements until SQLCODE equals 100:
Host language statements to initialize indicator parameters
Call to name-of-fetch-procedure passing SQLCODE and

a list of main parameters and indicator parameters
as call parameters

If SQLCODE is less than 0
then branch to error-handling-section

else
Host language statements to evaluate indicator array

items and manipulate fields in record

End of execution block

The error-handling-section to which Example 10–1 refers should evaluate
SQLCODE to determine which error occurred and then execute the appropriate
actions. If the error is one from which the program cannot recover, the
program performs cleanup operations such as logging the error to a file,
displaying messages for the primary and all follow-on errors, rolling back a
transaction if one is in progress, and stopping. Monitoring for negative values
in the SQLCODE field or a failure status in your host language status field
lets you determine when a FETCH statement generates a fatal error. At that
point, your program should exit the loop.

If you monitor the status of SQL statements using only host language
conditional statements, you must include such a conditional statement in
your host language program following each SQL statement or, if you are
using the SQL module processor, following each call to a procedure in an SQL
module.

Example 10–2 illustrates the simple solution of ‘‘clean up and stop the
program’’ no matter which fatal error occurs.

Handling Run-Time Errors 10–9

Example 10–2 Monitoring SQLCODE and Stopping on Error

Precompiled SQL statement or SQL module procedure call
IF SQLCODE is less than 0

branch to error-handler-1
End of IF block

.

.

.
error-handler-1

Display SQLCODE value and error messages
Roll back transaction
IF SQLCODE is less than 0

Display messages and continue
End of IF block
Close any files
Stop program execution

Many database conditions do not require your program to stop. Often you can
simply restart the transaction or take other corrective action. For example, if
an attach failed because the database does not exist, you might be able to ask
the user to enter a new database name. Example 10–3 performs more than one
evaluation of SQLCODE, and then either executes recovery actions or stops the
program as a result of those evaluations.

Example 10–3 Using SQLCODE Values to Take Recovery Action

Precompiled SQL statement or SQL module procedure call
IF SQLCODE is less than 0

branch to error-handler-1
End of IF block

.

.

.
error-handler-1

IF SQLCODE equals -1003 or -913 (lock conflict or deadlock error)
Display or log messages about error
Execute actions for locking problems

else
IF SQLCODE equals -803 (duplicate value in unique index error)

Display or log messages about error
Execute actions for duplicate value violations

else
IF SQLCODE equals -1002 or -1001 (violation of constraint)

Display or log messages about error
Execute actions for validation and integrity violations

(continued on next page)

10–10 Handling Run-Time Errors

Example 10–3 (Cont.) Using SQLCODE Values to Take Recovery Action

else
Display or log message about unexpected error
Execute orderly termination of transaction and program

End of IF block

See Section 10.4 and Section 10.5 for more information about errors from which
you may want your program to recover.

10.2.3 Using the WHENEVER Statement
In precompiled programs, you can specify SQL WHENEVER statements to
provide error handling for all SQL statements that follow each WHENEVER
statement. You cannot use the WHENEVER statement with SQL module
language. The WHENEVER statement handles categories of errors, not
individual SQL statements, as shown in the following example:

EXEC SQL WHENEVER SQLERROR GOTO label-of-section-handling-errors

EXEC SQL WHENEVER NOTFOUND GOTO label-of-section-handling-condition

EXEC SQL WHENEVER SQLWARNING GOTO label-of-section-handling-warnings

When the SQL precompiler processes a WHENEVER statement, it inserts
the same host language conditional statement after every SQL statement it
processes until it comes to the end of your source file or encounters another
WHENEVER statement of the same type. For example, for a WHENEVER
SQLERROR statement, the precompiler inserts after each executable SQL
statement the host language equivalent of the following IF statement:

If SQLCODE is less than 0, GOTO same-section-for-handling-errors

Therefore, you must specify your own host language conditional statements for
error or condition handling that is statement-specific. You usually want
conditional error control for exception conditions and you may want to
use it for other kinds of errors as well. In particular, you should provide
statement-specific error handling for SELECT and FETCH statements and for
statements that might cause the database system to evaluate constraints. (See
Section 10.4 for information about how to handle constraint violations.)

In the SQL WHENEVER statement, you specify the name of a section of a
precompiled program. That section handles a particular set of errors.

The WHENEVER statement can detect three types of completion or exception
conditions or errors:

• No next row (NOT FOUND)

Handling Run-Time Errors 10–11

This is equivalent to the condition SQLCODE = 100, SQLCODE_EOS, or
SQLSTATE = ’ 02000’ , also called ‘‘no data’’.

• Warnings (SQLWARNING)

This is equivalent to SQLCODE containing a value that is greater than 0
or SQLSTATE containing a value that starts with ’ 01’ . However, it does
not include the case where SQLCODE = 100 or SQLCODE_EOS, or where
SQLSTATE = ’ 02000’ .

• Fatal errors (SQLERROR)

This is equivalent to the condition SQLCODE containing a value that is
less than 0, an SQLSTATE value beginning with a value other than ’ 00’ ,
’ 01’ , or ’ 02’ , and local host language methods for determining execution
failure of statements.

In the following example, one WHENEVER SQLERROR statement handles
errors for SQL statements A, B, and C. Another WHENEVER SQLERROR
statement handles errors for SQL statements after statement-C. Each
WHENEVER statement specifies the label of a section of the program that
handles errors. Statements in those sections might display field values and
messages on the terminal and then stop the program in an orderly manner, or
they might execute recovery actions. When the program runs, if statement-D
encounters an error, error-handler-2 takes action. If statement-B encounters
the error, error-handler-1 takes action.

EXEC SQL WHENEVER SQLERROR GOTO label-of-error-handler-1

EXEC SQL statement-A
EXEC SQL statement-B
EXEC SQL statement-C

EXEC SQL WHENEVER SQLERROR GOTO label-of-error-handler-2

EXEC SQL statement-D
EXEC SQL statement-E
EXEC SQL statement-F

The WHENEVER statement is not an executable statement. The SQL
statements whose executions are monitored by a WHENEVER statement
are determined at precompile time, not at run time. Not-found condition,
warning, or error detection by a WHENEVER statement applies to all SQL
statements that follow that WHENEVER statement in source code until the
next WHENEVER statement that monitors for the same kind of condition is
encountered.

10–12 Handling Run-Time Errors

At run time, program flow might cause statement-E in the previous example
to execute before statement-B. But errors for statement-B are always handled
by error-handler-1 and errors for statement-E are always handled by error-
handler-2.

If you want a host language conditional statement to handle an error for a
particular SQL statement, but that SQL statement is already preceded by
a WHENEVER statement handling the same kind of condition or error, you
need to turn off the WHENEVER statement control for the SQL statement
in question. Do this by specifying another WHENEVER statement with the
action CONTINUE. For example, assume that you want an IF statement to
monitor errors for SQL statement-C, but want to resume error monitoring with
WHENEVER for SQL statements that occur after SQL statement-C:

EXEC SQL WHENEVER SQLERROR GOTO ERROR-HANDLER-1
EXEC SQL statement-A
EXEC SQL statement-B
EXEC SQL WHENEVER SQLERROR CONTINUE
EXEC SQL statement-C

IF SQLCODE < 0 . . .

EXEC SQL WHENEVER SQLERROR GOTO ERROR-HANDLER-1

If your program includes an SQL statement in the error handler named in the
GOTO clause of a WHENEVER statement, that SQL statement is itself subject
to error conditions. (Typically, this is a ROLLBACK statement.) In this case,
you do not want errors for the SQL statement in the section handling errors
to be monitored by the WHENEVER statement that specifies the section. An
SQL statement error in that section would then cause infinite looping between
the WHENEVER statement and the section that handles errors. Specify a
WHENEVER statement with the action CONTINUE to prevent this sort of
loop. For example:

EXEC SQL WHENEVER SQLERROR GOTO ERROR-HANDLER-1
.
.
.

ERROR-HANDLER-1
Display messages
EXEC SQL WHENEVER SQLERROR CONTINUE
EXEC SQL ROLLBACK
If SQLCODE < 0...

You can use host language conditional statements to provide the same condition
and error monitoring that WHENEVER statements provide. WHENEVER
statements can monitor execution status of more than one SQL statement,
but work independently of program flow at execution time. Host language
conditional statements are executable and allow conditional branching for

Handling Run-Time Errors 10–13

error handling at run time. However, a host language conditional statement
can monitor execution status of only one SQL statement, while WHENEVER
statements can monitor many statements.

If you include WHENEVER statements in your source program, check the
source lines before precompiling the program. This is particularly important if
a program is long or you change an existing program to add or delete source
lines. For each SQL statement (regardless of whether the program includes
a host language conditional statement to monitor conditions or errors), ask
yourself the following questions:

1. Does a WHENEVER SQLERROR statement occur before this SQL
statement?

2. Does a WHENEVER SQLWARNING statement occur before this SQL
statement?

3. Does a WHENEVER NOT FOUND statement occur before this SQL
statement?

If the answer to any of these questions is yes, determine whether the
actions in the section referred to in the GOTO clause are appropriate for
the SQL statement under consideration. If the error-handling actions are
not appropriate, specify another WHENEVER statement of the same type to
prevent inappropriate error handling or to specify alternative error handling.
Use the CONTINUE option for this WHENEVER statement to handle errors
using host language statements.

To reestablish the error handling that was in effect before you started making
the preceding changes, specify the original WHENEVER statement of that type
again after the SQL statement whose error handling you have changed.

Before you precompile a program, also check the program section named in
the WHENEVER statement to see whether the section includes any executable
SQL statements. If it does, make sure that you have handled conditions or
errors specifically for those SQL statements to prevent looping between the
section and the WHENEVER statement that refers to it.

10.2.4 Using the sql_get_message_vector Routine and RDB$LU_STATUS
You can use the sql_get_message_vector routine to retrieve information from
the RDB$MESSAGE_VECTOR array. Because the sql_get_message_vector
routine is portable to other platforms, you can use it to simplify porting of
applications from one Oracle Rdb platform to another. However, the routine is
not compliant with the ANSI/ISO SQL standard.

10–14 Handling Run-Time Errors

The RDB$MESSAGE_VECTOR array provides information about the execution
status of SQL statements. The second element of the RDB$MESSAGE_
VECTOR array, RDB$LU_STATUS, is a field whose function is comparable
to the SQLCODE status parameter. You can use the sql_get_message_vector
routine to monitor this field to determine success or failure of SQL statements.

Note

The RDB$MESSAGE_VECTOR array is an Oracle Rdb internal data
structure. Because of this, the values returned may change from
version to version. Consider using the RDB$LU_STATUS field only
if you cannot retrieve needed information using the SQLCODE or
SQLSTATE status parameters.

The ANSI/ISO SQL standard does not include the array
RDB$MESSAGE_VECTOR or the field RDB$LU_STATUS.

The RDB$MESSAGE_VECTOR array lets you access messages for both the
primary error and all follow-on errors that may be returned by either the
database system or other facilities on your system. These messages provide
supplementary information that your program can display or process to more
precisely identify the problem that caused the execution of an SQL statement
to fail.

Using the sql_get_message_vector Routine
The sql_get_message_vector routine retrieves information from the array
RDB$MESSAGE_VECTOR, without requiring you to explicitly declare the
array in your program.

The routine takes two arguments: the address of the variable that receives
the vector element and the index value of the vector element that you want
returned. The following table shows the index values and the information
contained in each vector element:

Index
Value Information Returned

1 Number of arguments in the vector

2 Primary status code of the last SQL statement

3 Number of FAO arguments to primary message

4–20 Return status for follow-on messages, if any

Handling Run-Time Errors 10–15

Oracle Rdb maps the indexes returned by sql_get_message_vector to fields
in the RDB$MESSAGE_VECTOR array. It maps Index 2 to the RDB$LU_
STATUS field. For more information on the mapping, see the Oracle Rdb7
SQL Reference Manual.

Example 10–4 shows an excerpt of a C program that calls an SQL module and
uses the sql_get_message_vector to return the status of the SQL statement.

Example 10–4 Using the sql_get_message_vector Routine
.
.
.

/* Error handler, using sql_get_message_vector. */

get_msgvec()

{
int index;
int status_code;
int arg_cnt;

/* Declare the literal for constraint violation status. */
int RDB$_INTEG_FAIL;

/* Get the message vector argument count. */

index = 1;
sql_get_message_vector(&arg_cnt, index);

/* Get the status code. */

index = 2;
sql_get_message_vector(&status_code, index);

if (status_code == RDB$_INTEG_FAIL)
printf("Constraint violation. ");
printf("You are trying to insert a department code\n");
printf("that already exists in the table.");
exit(1);

/* You can also check for follow-on arguments, if the arg_cnt is greater
* than 1.
*/
}

main()
{

.

.

.

(continued on next page)

10–16 Handling Run-Time Errors

Example 10–4 (Cont.) Using the sql_get_message_vector Routine

insert_data (&SQLCODE, department_code, department_name, manager_id);
if (SQLCODE != 0)

get_msgvec();

}

As Example 10–4 shows, when you check the value of Index 2, you check for
symbolic code values rather than numeric values.

To declare prototypes for the sql_get_message_vector routine, as well as other
SQL routines, in C programs, you can use the include file sql_rdb_headers.h.
For more information, see Section 10.3.4.

Using RDB$LU_STATUS Field
Although it is not recommended, you can use the RDB$LU_STATUS field
directly. To do so, declare the RDB$MESSAGE_VECTOR array.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, if you use the SQL precompiler and specify the INCLUDE
SQLCA statement, the precompiler automatically declares the array
RDB$MESSAGE_VECTOR. ♦

Digital UNIX On Digital UNIX, you can use the -s ’msgvec’ switch to specify that
precompiler automatically declare the RDB$MESSAGE_VECTOR array. You
can use this switch with language compilers that support the dollar sign ($)
special character. ♦

You can explicitly declare the RDB$MESSAGE_VECTOR array in your
program. The appendix on the SQLCA and the message vector in the
Oracle Rdb7 SQL Reference Manual shows how you can declare the array
RDB$MESSAGE_VECTOR.

Even if your program does not use SQLCODE or SQLSTATE, you must
still declare one of them and pass the field as a parameter when you call a
procedure in an SQL module.

To use the RDB$LU_STATUS field, you usually declare the values as symbolic
codes. When you check the value of RDB$LU_STATUS after execution of an
SQL statement, you check for symbolic code values rather than numbers.
For example, you might check for the value RDB$_NO_DUP to monitor for
constraint violations.

Handling Run-Time Errors 10–17

Your program compares the value in RDB$LU_STATUS to a symbolic error
code that is associated with an error from the Oracle Rdb or SQL facilities.
You must explicitly declare a symbolic error code for each error or condition
you want to check. You declare the symbolic error codes as unsigned longwords
and external values. Table 10–3 shows how to declare the symbolic error codes
in the languages supported by the SQL precompiler.

Table 10–3 Declaring Symbolic Error Codes in Embedded Host Languages

Language Declaration

Ada ---Declare the system package.

with system;

-- Declare the symbolic error code.
lock_conflict : system.unsigned_longword :=
system.import_value("RDB$_LOCK_CONFLICT");

C globalvalue RDB$_LOCK_CONFLICT;

COBOL 05 RDB$_LOCK_CONFLICT PIC S9(9) COMP
VALUE IS EXTERNAL RDB$_LOCK_CONFLICT.

FORTRAN INTEGER*4 RDB$_LOCK_CONFLICT
EXTERNAL RDB$_LOCK_CONFLICT

Pascal RDB$_LOCK_CONFLICT : [value,external]INTEGER;

PL/I DECLARE RDB$_LOCK_CONFLICT GLOBALREF FIXED BINARY (31);

Depending on how you want to use symbolic error codes in your program, you
can declare them as variables or constants. You can test them directly using
host program language constructs.

If you want to check for all fatal errors, you can monitor the execution of
SQL statements using the same status field you declare in your program to
monitor the execution of host language statements. In this case, the error-
handling section to which your program transfers control can execute one set
of statements.

Monitoring the value of RDB$LU_STATUS is useful when you anticipate
constraint violations and want to return information that is not available
through the SQLCODE or SQLSTATE status parameters. Example 10–5
evaluates the RDB$LU_STATUS field and then executes recovery actions when
it encounters a constraint violation or a duplicate value error.

10–18 Handling Run-Time Errors

Example 10–5 Using RDB$LU_STATUS to Trap Constraint Violations

Declaration of ret-status
Declaration of RDB$MESSAGE_VECTOR ! The INCLUDE SQLCA statement can

! replace an explicit declaration
! of RDB$MESSAGE_VECTOR in
! precompiled programs.

Declaration of RDB$_NO_DUP
Declaration of RDB$_INTEG_FAIL

.

.

.
Precompiled SQL statement (or a call to a procedure in an SQL module)
Assignment of RDB$LU_STATUS to ret-status
IF ret-status does not equal success

Branch to error-handler-1
End of IF block

.

.

.
error-handler-1

Evaluate RDB$LU_STATUS
When RDB$_NO_DUP

Display or log messages about error
Execute actions for duplicate value violations

When RDB$_INTEG_FAIL
Display or log messages about error
Execute actions for validation and integrity violations

When other values
Display or log message about error
Execute appropriate actions

End of evaluate block

See Section 10.4 and Section 10.5 for more information about errors from which
you may want your program to recover.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, you can call the OpenVMS Run-Time Library routine
LIB$MATCH_COND to evaluate the returned value. The RDB$LU_STATUS
field and the declared symbolic error codes are passed by reference as call
parameters. Following the call, a host language conditional statement
evaluates which, if any, symbolic error code matches the error code returned by
execution of the SQL statement and then directs program flow accordingly.

Because the LIB$MATCH_COND routine masks the severity levels of the error
codes, you do not have to be concerned that the severity level of a symbolic
error code may change in a future software release.

Handling Run-Time Errors 10–19

The following example, an excerpt from a Pascal program, shows how to use
LIB$MATCH_COND to evaluate the returned status value.

[EXTERNAL] FUNCTION LIB$MATCH_COND
(ret_status:INTEGER; sym_name:[LIST]INTEGER):INTEGER;EXTERNAL;

begin

(* Use LIB$MATCH_COND to determine which error has occurred. *)

error := LIB$MATCH_COND (RDB$MESSAGE_VECTOR[2],
RDB$_DEADLOCK, {1}
RDB$_LOCK_CONFLICT, {2}
RDB$_NO_DUP, {3}
RDB$_NOT_VALID, {4}
RDB$_INTEG_FAIL, {5}
RDB$_STREAM_EOF, {6}
RDB$_NO_RECORD {7}
);

The OpenVMS system routines documentation describes the LIB$MATCH_
COND run-time library routine. ♦

Language-specific versions of the online program sql_terminate in the samples
directory contain comments about declaring and using symbolic error codes
for the RDB$LU_STATUS field. For more information about using your host
language to monitor execution status of statements, see your host language
documentation.

Note

Ada does not allow the dollar sign ($) in names. Substitute an
underscore (_) for the dollar sign in any name or symbolic code starting
with RDB$. For example, declare and refer to the RDB$MESSAGE_
VECTOR array as RDB_MESSAGE_VECTOR.

10.2.5 Using the SQL Error-Handling Routines
SQL provides three routines to make it easier to pass control back to the
application when SQL encounters an error. These SQL routines let you set
up any number of error-handling routines that override or enhance the error
handling provided by SQL. In addition, with these SQL routines, you can pass
context-specific data to your error-handling routines.

SQL provides the following routines for SQL precompiled and module language
programs:

• sql_register_error_handler

10–20 Handling Run-Time Errors

Registers the address of the application’s error-handling routine and the
address of the context-specific data.

• sql_get_error_handler

Gets the address of the currently registered error-handling routine and the
address of the context-specific data.

• sql_deregister_error_handler

Deregisters the current error-handling routine.

You use these SQL routines to register your own error handler, which can
handle errors differently than SQL does. For example, you can create a routine
to display a different message than that returned by SQL when you violate
a constraint, and you can pass information from the main program to that
routine.

Because the SQL routines can pass context-specific data from your main
program to your error-handling routine, you can use a single, common error-
handling routine to handle a variety of errors. The common error-handling
routine evaluates the data passed to it and, based on the data, may print out
an error message, roll back the transaction, or take some other action.

To use the SQL error-handling routines, you must:

• Call the sql_register_error_handler routine, passing the name of your error
handler and the address of the context-specific data as arguments. The
following example shows how to call the sql_register_error_handler routine
in a C language program:

sql_register_error_handler (appl_error_handler,&user_data)

See the Calling the SQL Error-Handling Routines subsection (within this
section) for information on how to call the sql_register_error_handler
routine in other languages.

• Declare error-handling routines so that they pass four parameters. The
first three parameters, RDB$MESSAGE_VECTOR, SQLCODE, and
SQLSTATE, are passed by reference. The fourth parameter, the address of
the context-specific data, is passed by value. The following example shows
how to declare an error-handling routine in a C language program:

static
void appl_error_handler(

RDB$MESSAGE_VECTOR *msgvec,
int *sqlcode,
char *sqlstate,
void *user_info)

Handling Run-Time Errors 10–21

See the Declaring User-Written Error-Handling Routines section (within
this section) for information on how to declare error-handling routines in
other languages.

When your application executes an SQL statement that returns an error,
SQL executes the currently registered error-handling routine. The routine
can display a message, take some action (including changing the value of
SQLCODE), or exit the application.

Note

Do not signal an exception from within your error-handling routine
because doing so creates an infinite loop. When you use the SQL
error-handling routines, SQL intercepts any exception signals and calls
the user-written error handler. The user-written error handler, in turn,
signals the exception, which is intercepted by SQL. This cycle repeats
in an infinite loop.

If the error-handling routine changes the value of SQLCODE to 0, indicating
success, the program returns control to SQL.

If the error-handling routine does not change the value of SQLCODE to
0, or if no error-handling routines are registered, SQL evaluates any SQL
WHENEVER statements contained in the program. The program then returns
control to SQL.

If you do not want the program to pass control back to SQL, take the following
steps in the error-handling routine:

1. Deregister the error-handling routine so that the subsequent ROLLBACK
statement does not call the error-handling routine. The following example
shows how to deregister the routine:

sql_deregister_error_handler ();

2. Roll back the transaction. The following statement rolls back a transaction
in a precompiled C program:

EXEC SQL ROLLBACK;

3. Exit the image. When you do so, the SQL and Oracle Rdb exit handlers
execute. In a C program, use the following statement:

exit;

10–22 Handling Run-Time Errors

The routine sql_get_error_handler facilitates the use of more than one error-
handling routine in an application. For example, if your program contains
a subroutine that uses a different error-handling routine than that of the
main program, the subroutine calls sql_get_error_handler to get the address
of the currently registered routine and the context-specific data. Then,
the subroutine stores these addresses in variables and registers its own
error-handling routine. Before it returns control to the main program, the
subroutine registers the main program’s routine and data again by using the
values in the variables.

To declare prototypes for the SQL error handling routines, as well as other
SQL routines, in C programs, you can use the include file sql_rdb_headers.h.
For more information, see Section 10.3.4.

Example 10–6 shows how to use the SQL error-handling routines in a
precompiled C program.

Example 10–6 Using SQL Error-Handling Routines

/* This program demonstrates the use of the SQL error-handling routines,
* sql_register_error_handler, sql_deregister_error_handler, and
* sql_get_error_handler. Although the use of the sql_get_error_handler
* routine is not necessary in this simple program, it is included here
* to demonstrate how to use the routine and how to store the address of the
* currently registered routine and the address of user data in variables.
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sql_literals.h>
#include <sql_rdb_headers.h>

/* Definition of rdb$message_vector. */
typedef struct {

int RDB$LU_NUM_ARGUMENTS;
int RDB$LU_STATUS;
int RDB$LU_ARGUMENTS[18];
} RDB$MESSAGE_VECTOR;

/* Definition of structure to hold user data. */

typedef struct {
char sql_proc_name[31];
char sql_col_value[31];

} err_struct;

(continued on next page)

Handling Run-Time Errors 10–23

Example 10–6 (Cont.) Using SQL Error-Handling Routines
/* Error-handling routine for constraint violations. This routine traps
* constraint violations and prints out an error message. */

static
void dupl_error_handler(

RDB$MESSAGE_VECTOR *msgvec,
int *sqlcode,
char *sqlstate,
void *user_info)

{

err_struct *my_info;
my_info = (err_struct *)user_info;

if ((*sqlcode == SQLCODE_INTEG_FAIL) &&
((strcmp(my_info->sql_proc_name, "INSERT_JOBS")) == 0))

{
printf(" The Job Code %s is already in use.\n", my_info->sql_col_value);
}

/* You can add more conditional statements to this error-handling procedure
* to handle errors from several SQL statements. */

}

/* Error-handling routine for errors that occur when you start a transaction.
* This routine prints out an error message. */

static
void txn_error_handler(

RDB$MESSAGE_VECTOR *msgvec,
int *sqlcode,
char *sqlstate,
void *user_info1)

{

if ((*sqlcode == SQLCODE_DEADLOCK) || (*sqlcode == SQLCODE_BAD_TXN_STATE)
|| (*sqlcode == SQLCODE_LOCK_CONFLICT))

printf("Unable to start a transaction. \n");

}

main()

{

/* Variables used by the main program. */

void (*rtn_ptr)();
err_struct *err_struct_ptr = 0;
char j_code[5];
char w_class[2];
char j_title[21];
char release_screen;

(continued on next page)

10–24 Handling Run-Time Errors

Example 10–6 (Cont.) Using SQL Error-Handling Routines
/* Define the SQLCA. */

EXEC SQL INCLUDE SQLCA;

/* Initialize user-defined information. */
err_struct err_s = {" ", " "};

/* Declare the database. */
EXEC SQL DECLARE ALIAS FILENAME ’PERSONNEL’;

/* Register the first error-handling routine. */
sql_register_error_handler(txn_error_handler,0);

/* Store the address of the currently registered pointer in a variable. */
sql_get_error_handler(&rtn_ptr, &err_struct_ptr);

printf("Please enter the Job Code (or EXIT):\n");
scanf(" %s", j_code);
release_screen = getchar();

while (((strcmp(j_code,"exit")) != 0) &&
((strcmp(j_code,"EXIT")) != 0))

{

printf("Enter the Wage Class: ", w_class);
scanf(" %s", w_class);
release_screen = getchar();

while (((strcmp(w_class,"1")) !=0) &&
((strcmp(w_class,"2")) !=0) &&
((strcmp(w_class,"3")) !=0) &&
((strcmp(w_class,"4")) !=0))

{
printf("Please enter one of the following values for Wage Class:\n");
printf(" 1 2 3 4\n");
scanf(" %s", w_class);
release_screen = getchar();

}

printf("Please enter the Job Title: \n");
scanf(" %s", j_title);
release_screen = getchar();

/* Start a transaction. */

EXEC SQL SET TRANSACTION READ WRITE NOWAIT
EVALUATING JOB_CODE_PRIMARY AT VERB TIME
RESERVING JOBS FOR EXCLUSIVE WRITE;

(continued on next page)

Handling Run-Time Errors 10–25

Example 10–6 (Cont.) Using SQL Error-Handling Routines
/* Register the second error-handling routine. */

sql_register_error_handler(dupl_error_handler, &err_s);

/* Store information in a structure for use by the error-handling routine. */
strcpy(err_s.sql_proc_name, "INSERT_JOBS");
strcpy(err_s.sql_col_value, j_code);

EXEC SQL INSERT INTO JOBS
(JOB_CODE, WAGE_CLASS, JOB_TITLE)
VALUES
(:j_code, :w_class, :j_title);

if (SQLCA.SQLCODE == SQLCODE_SUCCESS)
EXEC SQL COMMIT;

else
EXEC SQL ROLLBACK;

/* Deregister the error-handling routine. */
sql_deregister_error_handler();

printf("Please enter the Job Code (or EXIT):\n");
scanf(" %s", j_code);
release_screen = getchar();

/* Register the txn_error_handler routine again. Use the address stored in
* rtn_ptr. */

sql_register_error_handler(rtn_ptr, 0);

}

return;

}

If you invoke the sql_register_error_handler routine from a shareable image,
you must link the shareable image with a jacket routine that calls the sql_
register_error_handler routine. The following example shows a C language
jacket routine:

extern void call_sql_regis_err_hand (void (*user_error_handler) (),
context_block_t *context_block)

{
sql_register_error_handler(user_error_handler, context_block);
return;

}

When you build multiple shareable images, you must register the error handler
for each image, although all images can share the same error handler.

10–26 Handling Run-Time Errors

Calling the SQL Error-Handling Routines
This section shows how to call the error-handling routines in host languages
supported by SQL.

• Ada

In Ada, you must declare the SQL error-handling routines as procedures
before you call them. The following example shows how to declare the
procedures:

procedure sql_deregister_error_handler; -- no arguments
pragma interface(external, sql_deregister_error_handler);
pragma IMPORT_PROCEDURE (

INTERNAL => sql_deregister_error_handler);

procedure sql_get_error_handler(
handler : out system.address;
context : out system.address);

pragma interface(external, sql_get_error_handler);
pragma IMPORT_PROCEDURE (

INTERNAL => sql_get_error_handler,
PARAMETER_TYPES => (system.address, system.address),
MECHANISM => (REFERENCE,REFERENCE));

procedure sql_register_error_handler(
handler : in system.address;
context : in system.address);

pragma interface(external, sql_register_error_handler);
pragma IMPORT_PROCEDURE (

INTERNAL => sql_register_error_handler,
PARAMETER_TYPES => (system.address, system.address),
MECHANISM => (VALUE,VALUE));

The following example shows how to call the procedures:

pkg_handler.sql_deregister_error_handler;

pkg_handler.sql_get_error_handler(rtn_ptr, foo_ptr);

pkg_handler.sql_register_error_handler(
pkg_other.my_error_handler’ADDRESS,
foo’ADDRESS);

• BASIC

EXTERNAL LONG FUNCTION BASIC_ERRHND

CALL sql_deregister_error_handler
CALL sql_get_error_handler BY REF (ERR_HAND_ADDR, ERR_USER_CONTEXT))
CALL sql_register_error_handler &

(LOC(BASIC_ERRHND) BY VALUE, REGISTERED_CONTEXT BY REF)

BASIC is supported by SQL module language only.

Handling Run-Time Errors 10–27

• C

sql_deregister_error_handler();
sql_get_error_handler(&appl_error_handler_ptr,&user_data_ptr);
sql_register_error_handler(&appl_error_handler,&user_data);

• COBOL

01 appl_error_handler USAGE POINTER VALUE EXTERNAL MY_ERROR_HANDLER.
01 appl_error_handler_ptr USAGE POINTER VALUE 1.
01 user_data_ptr USAGE POINTER VALUE 1.

CALL "sql_deregister_error_handler".
CALL "sql_get_error_handler" USING BY REFERENCE appl_error_handler_ptr,

BY REFERENCE user_data_ptr.
CALL "sql_register_error_handler" USING BY VALUE appl_error_handler,

BY REFERENCE user_data.

• FORTRAN

CALL sql_deregister_error_handler()
CALL sql_get_error_handler(%ref(rtn_ptr),%ref(ctx_ptr))
CALL sql_register_error_handler(%ref(my_error_handler),%ref(reg_ctx)))

• Pascal

In Pascal, you must declare the error-handling routines as external
procedures before you call them. The following example shows how to
declare the procedures:

PROCEDURE sql_deregister_error_handler; EXTERNAL;

PROCEDURE sql_get_error_handler(
var routine : integer;
var data : integer
); EXTERNAL;

PROCEDURE sql_register_error_handler(
procedure err_hand (

var msgvec : RDB$MESSAGE_VECTOR_REC;
var sqlcode : integer;
var sqlstate : sqlstate_type;
var data_addr : user_data_type);

var data: user_data_type
); EXTERNAL;

The following example shows how to call the procedures:

sql_deregister_error_handler;

sql_get_error_handler(routine_addr, data_addr);

sql_register_error_handler(%immed my_error_handler,user_data);

• PL/I

10–28 Handling Run-Time Errors

In PL/I, you must declare the error-handling routines as external
procedures before you call them.

Declaring User-Written Error-Handling Routines
To declare user-written error-handling routines using the SQL precompiler and
host language programs, use the following formats:

• Ada

procedure my_error_handler (
msgvec : in pkg_handler.rdb_message_vector;
sqlcode : in out integer;
sqlstate : in integer;
user_info : in pkg_handler.foo_t);)

• BASIC

SUB BASIC_ERRHND BY REF (INTEGER MSG_VECTOR, &
SQLCODE_VALUE, &
SQLSTATE_VALUE, &

CTX_REC USER_CTX)

RECORD CTX_REC
STRING VALUE1 = 9
STRING VALUE2 = 10
INTEGER VALUE3

END RECORD CTX_REC

DECLARE INTEGER SQLCODE

SQLCODE = SQLCODE_VALUE)

BASIC is supported by SQL module language only.

• C

static
void appl_error_handler (

RDB$MESSAGE_VECTOR *msgvec,
int *sqlcode,
char *sqlstate,
void *user_info)

• COBOL

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SQLCODE PIC S9(9) COMP.

LINKAGE SECTION.
01 MSG_VECTOR USAGE POINTER.
01 SQLCODE_VALUE USAGE POINTER.
01 SQLSTATE_VALUE USAGE POINTER.

Handling Run-Time Errors 10–29

01 USER_CTX.
02 VALUE1 PIC X(9).
02 VALUE2 PIC X(10).
02 VALUE3 PIC 9(9) USAGE COMP.

PROCEDURE DIVISION USING MSG_VECTOR, SQLCODE_VALUE, SQLSTATE_VALUE, USER_CTX.
HANDLE_ERROR.

MOVE SQLCODE_VALUE TO SQLCODE.

• FORTRAN

subroutine my_error_handler (msgvec,sqlcode,sqlstate,usrctx)
integer*4 msgvec
integer*4 sqlcode
integer*4 sqlstate
structure /user_ctx/

character*10 value1
character*10 value2
integer*4 value3

end structure
record /user_ctx/ usrctx)

• Pascal

procedure my_error_handler(
var msgvec : RDB$MESSAGE_VECTOR_REC;
var sqlcode : integer;
var sqlstate : sqlstate_type;
var data : user_data_type);)

10.3 Displaying Error Messages
Displaying messages is one of the most common actions in error handling. SQL
provides the following methods:

• Call the sql_signal routine to display messages from all facilities and
(optionally) terminate your program.

• Call the sql_get_error_text routine to pass error text of messages from all
facilities to your program for processing

In addition, you can use host language routines or system service calls to
display messages from all facilities and continue program execution or display
messages from a message file created for your program.

Source programs in the samples directory include examples using different
techniques to display error messages.

10–30 Handling Run-Time Errors

10.3.1 Calling sql_signal
The sql_signal routine displays error messages returned through the
RDB$MESSAGE_VECTOR array. It signals to your program condition handler
an error that occurs on the execution of an SQL statement. The fact that
sql_signal signals an error to your program condition handler, rather than to
an operating system condition handler, is an advantage to you if:

• The language in which your program is written automatically provides a
condition handler for host language statements.

For example, DEC COBOL for OpenVMS provides a program condition
handler that should not be bypassed when an error is signaled.

• You have established your own program condition handler that you want to
assume control whenever an error is signaled.

Digital UNIX On Digital UNIX, the sql_signal routine prints an error message and exits the
program when an error occurs. ♦

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, the sql_signal routine signals to your program condition handler
an error that occurs on the execution of an SQL statement. If your program
does not contain a condition handler, the routine prints an error message and
exits the program when an error occurs.

If your program condition handler does not recognize an error with the RDB,
SQL, or repository facility codes as an error it can handle, it resignals the error
to the OpenVMS condition handler. This is likely when your program condition
handler is provided automatically for you by the programming language you
are using. The OpenVMS condition handler displays messages and either stops
your program if the error is severe or lets your program continue if the error is
not severe.

For more information about error-signaling concepts, refer to the chapter on
condition handling in the OpenVMS Run-Time Library documentation. ♦

To declare prototypes for the sql_signal routine, as well as other SQL routines,
in C programs, you can use the include file sql_rdb_headers.h. For more
information, see Section 10.3.4.

The sql_signal routine returns no value and requires no parameters. The
following example shows how to use it in a C language program:

sql_signal();

The format of the call to sql_signal is language-specific. The chapter about
routines in the Oracle Rdb7 SQL Reference Manual describes how to call the
routine from different programming languages.

Handling Run-Time Errors 10–31

10.3.2 Calling sql_get_error_text
Use the sql_get_error_text routine when you want to pass error text with
formatted ASCII output (FAO) substitutions to your program for processing.

To use the sql_get_error_text routine, you must include a buffer (field) in your
program declarations to receive the text SQL will pass to it. Declare this
field as a text string with a length sufficient to accommodate the number of
characters you expect for the message associated with the RDB$LU_STATUS
field and for all follow-on messages. As an option, you can declare the buffer
length as a separate field (defined as a signed word).

Declare the sql_get_error_text routine using three arguments:

• The buffer to receive the text

• The length of the buffer to receive the text

• The number of characters allotted for the returned error message.

The following example shows how to declare and use the sql_get_error_text
routine in a C program:

/* This function uses the sql_get_error_text routine to display the messages
returned by SQL and Rdb for unexpected error conditions. */

void display_sqlget_message()

{

char get_error_buffer[1024];
long error_msg_len;

return_status = sql_get_error_text(get_error_buffer, 1024, &error_msg_len);
get_error_buffer[error_msg_len] = ’\0’;

printf("\n\nThis condition was not expected.\n\n");
printf("%.*s\n", get_error_buffer, error_msg_len);
release_screen = getchar();
printf("\n");

return;
}

The Oracle Rdb7 SQL Reference Manual describes how to declare and use the
sql_get_error_text routine from a variety of programming languages.

Note that the sql_get_error_text routine returns a carriage return and line-feed
character to separate follow-on messages from the primary message, and to
separate follow-on messages from each other.

To declare prototypes for the sql_get_error_text routine, as well as other SQL
routines, in C programs, you can use the include file sql_rdb_headers.h. For
more information, see Section 10.3.4.

10–32 Handling Run-Time Errors

The sql_get_error_text routine inserts the characters in the buffer declared to
receive the text as delimiters between the messages. Typically, their presence
eases display of the text to the terminal screen.

However, if a program uses a forms product to display the message, the
carriage return and line-feed characters are interpreted as unprintable
characters.

The following COBOL example shows one way to handle the presence of the
carriage return and line-feed characters in the buffer:

* CRLF is a PIC XX field that contains <cr><lf>.
* MSG-TXT-RDBFEL is an array of lines to be displayed for the error message.
*

STRING CARRIAGE-RET, LINE-FEED DELIMITED BY SIZE INTO CRLF.
CALL "sql_get_error_text" USING BY REFERENCE BUFFER,

BY VALUE BUF_LEN
BY REFERENCE MSG_LEN.

UNSTRING BUFFER DELIMITED BY CRLF INTO MSG-TXT-RDBFEL(1),
MSG-TXT-RDBFEL(2), MSG-TXT-RDBFEL(3).

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, SQL also supports the SQL$GET_ERROR_TEXT routine, but
because it is not portable to other platforms, Oracle Rdb recommends that you
use the sql_get_error_text routine. ♦

10.3.3 Displaying User-Supplied Error Messages
Your program can display literals as error messages by using host language
statements that write to the terminal.

Your program can also display messages from a message file customized for its
users.

OpenVMS
VAX

OpenVMS
Alpha

For information on editing and processing such a file, refer to the manual that
describes the Message utility in the OpenVMS documentation set. ♦

For an example of a message file, refer to the sql$persmsg.msg file in the
samples directory. The sql$persmsg.msg file is associated with the program
sql_terminate.sco. The sql_terminate.sco program includes parameter
declarations and calls to retrieve messages from the image version of
sql$persmsg.

Handling Run-Time Errors 10–33

10.3.4 Declaring SQL Routines Using an Include File
When you call certain SQL routines in C programs, the programs can generate
compilation informational messages. For example, if you do not explicitly
declare sql_signal as a function, you receive the following informational
message:

sql_signal();
........^

%CC-I-IMPLICITFUNC, In this statement, the identifier "sql_signal" is
implicitly declared as a function.

Oracle Rdb provides an include file that eliminates the messages by explicitly
providing prototypes for explicitly called SQL functions.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, the include file is:

SYS$LIBRARY:SQL_RDB_HEADERS.H ♦

Digital UNIX On Digital UNIX, the include file is:

/usr/lib/dbs/sql/v<nn>/include/sql_rdb_headers.h ♦

10.4 Handling Duplicate Value Errors and Constraint Violations
The integrity of a relational database depends on valid values being stored
in columns and also on preserving meaningful relationships between rows
stored in different tables. An Oracle Rdb database enforces these requirements
through the constraints you define in table definitions. A requirement that a
column store a unique value may be enforced either by a constraint specified in
a table definition or by the UNIQUE keyword in an index definition.

This section explains:

• The errors your program can encounter for constraint violations and for
attempts to store a duplicate value in a unique index

• The options you have for controlling when constraints are evaluated during
a transaction

Example 10–5 shows a pseudocode example that checks for constraint
violations.

10–34 Handling Run-Time Errors

10.4.1 Status Values for Constraint Violations and Duplicate Value Errors
With SQL, you define all data validation requirements as constraints when you
create a table. If your program violates a constraint when updating a table, the
database system returns the value RDB$_INTEG_FAIL in RDB$LU_STATUS,
–1001 in SQLCODE, and ’ 23000’ in SQLSTATE.

However, if there is a requirement that a column contain a unique value and
if there is a unique index based on that column, the person who defines the
database frequently decides to impose the uniqueness requirement (at least
after a table is loaded and a unique index is in place) only through the index
definition. In this case, your program encounters an error only when SQL
attempts to update a unique index with a duplicate value. For this error, the
value returned is RDB$_NO_DUP in RDB$LU_STATUS, –803 in SQLCODE,
or ’ R2000’ in SQLSTATE.

If the uniqueness requirement is imposed both as a constraint and in the index
definition, whether your program encounters the constraint violation or the
duplicate value violation first can vary.

Note

Versions of SQL earlier than Version 2.0 implemented the NOT
NULL requirement through the ‘‘valid if’’ option for columns rather
than through the database constraint option. If interfaces other
than SQL define domains and tables for a database, those interfaces
may currently implement both NOT NULL and other validation
requirements for columns by using the ‘‘valid if’’ option. Violation of
a ‘‘valid if’’ requirement returns a different error than violation of
a comparable constraint. Therefore, if you are accessing a database
created by versions of Oracle Rdb earlier than Version 2.0, and you
want to determine if an integrity violation occurred, monitor for the
value –1002 in SQLCODE, for the SQLCODE_NOT_VALID literal
value, or for RDB$_NOT_VALID in RDB$LU_STATUS in addition to
error codes for constraint violations and duplicate value errors.

Uniqueness violations and violations of ‘‘valid if’’ criteria are always detected
when SQL statements such as INSERT, UPDATE, or DELETE execute.

Handling Run-Time Errors 10–35

10.4.2 Controlling Constraint Evaluation
Constraint violations may be detected either when SQL statements such
as INSERT, UPDATE, DELETE, or ALTER TABLE execute, or not until
a COMMIT statement executes. Exactly when an error is detected varies
depending on the options that were specified when the database was created
or altered and when the transaction was started. For example, Oracle Rdb
evaluates a constraint when you define it if there is data in the table. If you
add a constraint with the ALTER TABLE statement, Oracle Rdb evaluates the
constraint and returns a constraint violation if data existing in the table does
not meet the criteria defined by the constraint.

Section 16.7 discusses options for controlling constraint evaluation. This
section tells how to handle errors that arise from constraint evaluation.

As a general rule, the checking by the database system should not replace host
language or forms product routines that your program uses to validate input
from a user. Program or forms product routines let you check user input that is
used to insert or update rows and, if necessary, prompt a user for corrections,
before starting a transaction to write the changes to the database. In this
way, the time it takes a transaction to complete is minimal, and locks that the
transaction places on table rows and indexes are in place only briefly.

To efficiently handle errors associated with constraints or other requirements
on data values, you first need to become thoroughly familiar with the table,
domain, index, and constraint definitions associated with the tables your
program will update. To the extent that it is practical, you should then
write program or forms product routines that impose the same validation
requirements that are defined for the database and, if needed, some additional
requirements that may be appropriate for the data being entered. If you design
your program in this way, you can treat most integrity, ‘‘valid if,’’ and duplicate
index value errors as unexpected errors rather than expected errors.

10.5 Handling Lock Conflicts and Deadlocks
Lock conflicts and deadlock errors occur with multiuser database access. These
errors are most likely to occur in high-contention, multiuser environments,
particularly those supporting many read/write transactions that are performing
data update simultaneously with data retrieval. Lock conflicts and deadlocks
are less common in single-user databases, or databases that are accessed solely
in read/write, shared read, or read-only modes, but they can still occur and
your program should be prepared to handle them.

10–36 Handling Run-Time Errors

10.5.1 Handling Lock-Conflict Errors
A lock-conflict error typically occurs when you have specified the no-wait option
in your DECLARE TRANSACTION or SET TRANSACTION statement and
the data your program needs is locked by another user’s transaction. When the
shared share mode applies to all transactions accessing the same table, lock-
conflict errors (if any) are not usually encountered by any of those transactions
until they start to process rows in the table. However, a lock conflict error can
occur also at the following times:

• On transaction start, if you specify the no-wait option

A lock conflict error occurs on transaction start when tables that you
specified in a RESERVING clause in a DECLARE TRANSACTION or SET
TRANSACTION statement are locked by transactions that other users
have started in protected or exclusive share mode. It can occur also on
transaction start if other users are processing tables that your transaction
statement explicitly reserves in protected or exclusive mode.

• On database attachment, regardless of the transaction options you choose

In interactive SQL, if all the system tables in a Oracle Rdb database are
locked by other users, you may encounter the lock-conflict error when you
enter an ATTACH statement. (Users who are executing data definition
statements are frequently the cause of system table locking.) Oracle Rdb
must start an internal transaction using the system table at the time a
database is attached, and returns the lock-conflict error if system tables
are locked. You may encounter a lock-conflict error for the same reason in
programs with SET TRANSACTION, OPEN, SELECT, UPDATE, DELETE,
INSERT, CREATE, ALTER, or DROP statements. Any of these statements
may cause database attachment.

• During transactions declared read-only, even if you specify the WAIT option

Oracle Rdb considers the exclusive write mode to be incompatible with a
transaction declared read-only. A transaction that specifies the exclusive
write mode does not write data to the snapshot file. However, all data
committed to the database before a read-only transaction starts must
be available to that read-only transaction. It is impossible to determine
whether a transaction in exclusive write mode has written data to the
database by using the snapshot file; therefore, the read-only transaction’s
requirements can never be satisfied. In this case, Oracle Rdb disregards
the WAIT option.

Handling Run-Time Errors 10–37

For example, if a user starts a transaction using the exclusive write mode,
and your program has declared a transaction read-only with the WAIT
option, your program waits until the first transaction ends. Then, your
program encounters an error on the first executable SQL statement and
Oracle Rdb rejects the program’s WAIT option and issues a lock-conflict
error to the program.

Therefore, it is good practice to anticipate lock conflict at times other than
during a transaction, even if you specify the WAIT option for all transactions.

You can detect lock conflict by monitoring SQLCODE for the numeric value
–1003 or the literal value SQLCODE_LOCK_CONFLICT or by monitoring
SQLSTATE for a value of R1002.

If your program detects a lock-conflict error after a transaction is started, it
should roll back the transaction and do one of the following:

• Try to start the transaction again immediately

• Try to start the transaction again after a set period of time

• Start the transaction again using the WAIT option

• Display a message telling the user to run the program at another time and
then stop execution

If you decide to start the transaction again, use the SET TRANSACTION
statement and not the DECLARE TRANSACTION statement to start
the transaction in wait mode. You can specify a wait interval in the SET
TRANSACTION statement.

If you do not roll back the transaction after a lock-conflict error, subsequent
statements may produce unexpected and unexplained errors.

The sql_terminate sample program in the samples directory shows how to
detect and handle a lock-conflict error.

10.5.2 Handling Deadlock Errors
A deadlock error occurs when data you need is locked by another user and you
have locked data the other user needs. In this case, neither you nor the other
user can continue. The database system returns a deadlock error to one of the
users. The deadlocked transaction must roll back to release locks so the other
user can continue.

A deadlock error can occur over database resources other than tables. For
example, simultaneous needs to read and update the same node of an index
can cause a deadlock error. Deadlock errors are infrequent and unpredictable
on a case-by-case basis; however, the likelihood of deadlock increases with the

10–38 Handling Run-Time Errors

number of users who are simultaneously accessing a table in shared share
mode.

You can detect deadlock by monitoring SQLCODE for the numeric value –913
or the literal value SQLCODE_DEADLOCK in SQLCODE or by monitoring
SQLSTATE for a value of R1001.

Note

If you use the SQLV40 dialect, and your program encounters a
lock-conflict error on database attachment, or either a lock-conflict
or deadlock error on the transaction start itself, a COMMIT or
ROLLBACK statement fails because no transaction is started. See
Section 10.6 for the appropriate action to take in this case.

Although Oracle Rdb allows you to continue to issue updates to the database
after it detects a deadlock error, the statement that caused the deadlock is not
applied to the database.

The sql_terminate sample program in the samples directory shows how to
detect and handle a deadlock error.

10.6 Handling Errors Caused by Failure to Attach to a Database or
Start a Transaction

You may want to write an error-handling section designed to handle fatal
errors and may not be sure if a rollback operation is appropriate in all cases.
For example, if the transaction context for your program is specified using a
DECLARE TRANSACTION statement, then any database attachment and
transaction start failures occur on the first execution of statements such
as SELECT . . . INTO, OPEN, UPDATE, DELETE, or INSERT. If these
statements are specified in a loop that also contains a COMMIT statement, it
is possible that they may fail to start a new transaction during any iteration of
the loop.

Note

A FETCH statement may be included in a loop but cannot start a
transaction. If a cursor is closed, you cannot continue to fetch rows
from it.

Handling Run-Time Errors 10–39

If you use the SQLV40 dialect and a statement fails because it does not start
a transaction as it normally would, branching to an error-handling section of
your program that attempts to execute a ROLLBACK statement causes the
ROLLBACK statement to fail. The COMMIT and ROLLBACK statements fail
when there is no active transaction. Unless you handle this situation, failure
of the ROLLBACK statement may cause premature exit of the error-handling
section or your program may continue unexpectedly.

One way to test for an active transaction is to use a multistatement procedure
with the GET DIAGNOSTICS statement, as follows:

BEGIN
DECLARE :txn INTEGER;
GET DIAGNOSTICS :txn = TRANSACTION_ACTIVE;
IF :txn = 1

THEN ROLLBACK;
END IF;

END;

If you use a dialect other than SQLV40, the ROLLBACK and COMMIT
statements do not fail when a transaction is not active.

Another way to handle this problem is to explicitly start all transactions with
a SET TRANSACTION statement. Then, you can write error-handling actions
specifically for the SET TRANSACTION statement. The actions can omit the
ROLLBACK statement because you can safely assume that either database
attachment or transaction start or both failed to occur.

10.7 Improving Program Portability When Handling Errors and
Constraints

This section applies only to applications that may need to work with more
than one SQL product. The guidelines in this section supplement, rather than
replace, any information about Oracle Rdb extensions to SQL or host languages
that you may find in the Oracle Rdb7 SQL Reference Manual or host language
documentation.

You should keep in mind that not all SQL implementations include all aspects
of the standards, so even when something is standard, it might not be portable.
Consider the following guidelines:

• If your objective is to write code that requires the least amount of change
from one implementation of SQL to another, you should monitor statement
execution and display error information using only SQLSTATE or (in
precompiled programs) SQL WHENEVER statements.

10–40 Handling Run-Time Errors

• SQLSTATE values are defined to be consistent across vendors, but not all
vendors implement them.

• Not all SQLCODE values are portable. For instance, the values 0, 100,
less than 0, and greater than 0 should always have consistent meaning
from one SQL implementation to another. However, the meaning of specific
positive or negative SQLCODE values, such as –1003, often depend on
database behavior that is vendor-defined.

• The SQLCA is not included in the ANSI/ISO SQL standard.

• Do not insert operating system-specific calls, such as the OpenVMS system
service calls, directly in host language source files.

• Use portable SQL routines. For example, use the sql_get_error_text
routine, rather than the non-portable SQL$GET_ERROR_TEXT routine.

• If you do not want to sacrifice the additional error-handling flexibility and
information that can be provided only through system-specific routines,
constructs, and SQLCODE values, consider developing system-specific
modules that you can copy or include into source files before or as part
of the process of compiling programs. Using this strategy in precompiled
programs, you monitor the execution of SQL statements using either
SQLCODE or WHENEVER statements, and you copy in an error-handling
section that is system-specific. For example:

IF SQLCODE is less than 0
branch to error-section
.
.
.

error-section
IF SQLCODE equals value-list -

system-specific actions |
else IF SQLCODE equals value-list | Statements to be

system-specific actions | copied.
else |

system-specific actions |
end of IF block -

end-of-error-section

• The SQL interface to Oracle Rdb provides constraint checking at verb time
and at commit time, but the ANSI/ISO SQL standard requires constraint
checking at the end of each statement. If you want ANSI/ISO-standard
SQL compatibility, use SQL module processor and SQL precompiler
command line qualifiers to change the constraint evaluation mode for
commit-time constraints.

Handling Run-Time Errors 10–41

To evaluate commit-time constraints at the end of each statement, use the
CONSTRAINTS=immediate or -cm immediate qualifier for the SQL module
language processor or the SQLOPTIONS=(CONSTRAINTS=IMMEDIATE)
or -s ’-cm immediate’ qualifier for the SQL precompiler.

10–42 Handling Run-Time Errors

11
Using Dynamic SQL

Dynamic SQL lets programs accept or generate SQL statements at run
time. Unlike precompiled SQL or SQL module language, in which SQL
statements are known at compile time, dynamic SQL lets the user formulate
the statements at run time.

This chapter describes how to use the dynamic SQL interface. The sections
that follow explain how to:

• Use the terminology and concepts associated with dynamic execution of
SQL statements

• Write programs that dynamically execute SQL non-SELECT statements
without parameter markers

• Use parameter markers and select list items in your programs

• Write programs that dynamically execute non-SELECT statements that
contain parameter markers

• Write programs that dynamically execute SQL SELECT statements with
and without parameter markers

• Use a single set of dynamic SQL statements to concurrently process any
number of dynamically generated statements

• Use the dynamic SQL programs in the sample directory

11.1 Introducing Dynamic SQL
Precompiled SQL and SQL module language are both forms of static SQL
—when the program is compiled, it already has all necessary information
about the database, data structures, and the SQL statements it will process.
If you do not know what SQL statements need to be processed until the
program is run, you need to use dynamic SQL. Dynamic SQL lets you write
an application program even when you cannot predict the form or type of SQL
statement your program needs to process.

Using Dynamic SQL 11–1

This chapter often uses the terms dynamic SQL statements and dynamically
generated and executed SQL statements. Dynamic SQL statements are
SQL statements embedded in a program’s source code that are used to process
dynamically generated and executed SQL statements. Dynamically
generated and executed statements are not necessarily part of a program’s
source code, but can be formulated and executed while the program is running.

Reference Reading

The Oracle Rdb7 SQL Reference Manual lists in detail the SQL
statements that can be dynamically generated and executed, along with
the dynamic SQL statements used to process them.

11.1.1 Categories of Statements That Can Be Dynamically Executed
SQL statements to be dynamically executed fall into several categories that
require increasingly complex programs, depending on the kinds of SQL
statements your program processes at run time and how much information
your program has about those statements before it processes them.

SQL does not allow host language variables in SQL statements prepared
for dynamic execution. However, in places where SQL allows host language
variables embedded in an SQL statement, you can instead specify parameter
markers. Parameter markers indicate parameters in SQL statements to be
prepared for dynamic execution and are represented by question marks (?) in
the SQL statements.

When you process a SELECT statement in dynamic SQL, you must find out
information about the number of select list items in order to handle the output.

The presence of parameter markers and of select list items changes the kind
of processing an SQL statement requires. The categories of dynamic SQL
statements include:

• Statements other than SELECT statements that do not contain parameter
markers

You can use the dynamic SQL statement EXECUTE IMMEDIATE to
execute these statements. To dynamically execute the statement more
than once, use the PREPARE and EXECUTE statements, instead of the
EXECUTE IMMEDIATE statement. See Section 11.2.

• Statements other than SELECT statements that contain parameter
markers

11–2 Using Dynamic SQL

If a statement includes parameter markers, you cannot use the EXECUTE
IMMEDIATE statement. Instead, your program passes the SQL statement
to the PREPARE statement and then to the DESCRIBE . . . MARKERS
statement. SQL determines the number of parameter markers and
writes that information to the SQLDA structure. Your program uses that
information to allocate storage for the parameters, and then uses the
EXECUTE statement to execute the statement.

Your program must declare host language variables or allocate dynamic
memory corresponding to all the parameter markers specified in the
prepared non-SELECT statement.

You can use parameter markers in INSERT, UPDATE, and DELETE
statements, as well as in SELECT statements.

Section 11.3 provides general information on how to process parameter
markers, as well as select list items. Section 11.4 provides information
about processing non-SELECT statements that contain parameter markers.
Section 11.3.1 describes how to use the SQLDA structure.

• SELECT statements that do not contain parameter markers

Your program must declare a dynamic or extended dynamic cursor for the
SELECT statement to receive the values of rows in the result table created
by the SELECT statement and must include an SQLDA structure to receive
information about any select list items in the statement. Your program
uses the DESCRIBE . . . SELECT LIST statement to get information about
the select list items, and then uses that information to allocate storage for
each select list item in the SELECT statement.

After you open the cursor for the SELECT statement, issue FETCH
statements to return the values from the result table to your host
language variables values. Note that the FETCH statement itself cannot
be dynamically executed.

Section 11.6 details how to process SELECT statements. Section 11.6.1
deals specifically with SELECT statements that do not contain parameter
markers.

• SELECT statements that contain parameter markers

If the SELECT statement contains parameter markers as well as select list
items, your program must set up host language variables for the parameter
markers and assign values to them. This means you must allocate two
SQLDA structures, one to receive information about select list items and
one to receive information about parameter markers.

Using Dynamic SQL 11–3

Section 11.6 details how to process SELECT statements. Section 11.6.2
deals specifically with SELECT statements that contain parameter
markers.

• Any statement with unknown number and data type of parameter markers,
select list items, or both

Often, a program does not have any information about the number and
data type of parameters markers or select list items. These are the most
complicated statements for programs to handle in dynamic SQL.

Section 11.7 explains how to write programs that handle such situations.

SQL needs to determine the number and data type of parameter markers
and select list items and communicate that information to the program. Once
the program has the number and data types of parameters, it must allocate
memory for them and communicate the location of that memory to SQL.
Dynamic SQL uses a structure called the SQLDA (SQL Descriptor Area) to
communicate information about parameter markers or select list items (or
both) to your program.

Section 11.3.1 explains the SQLDA in more detail. Section 11.8 describes
a sample program, sql_dynamic, that illustrates many of the processing
techniques discussed in this chapter. Many of the examples in this chapter
use excerpts of the sample program in C. Versions in other languages are also
included in sample directory.

11.1.2 Using Dynamic SQL Statements to Process Other SQL Statements
To process dynamically generated and executed statements, dynamic SQL
provides the following statements:

• EXECUTE IMMEDIATE: Prepares and executes in one step any statement
(other than the SELECT statement) that has no parameter markers.

• PREPARE: Checks the SQL statement to be dynamically executed for
errors and assigns an identifier to it. That identifier is referred to in the
DESCRIBE, EXECUTE, dynamic DECLARE CURSOR, and extended
dynamic DECLARE CURSOR statements. The PREPARE statement
generates the code that will be executed.

• DESCRIBE: Checks a prepared statement for the existence of parameter
markers or select list items. If there are any, it stores information about
their number and data type in the SQL Descriptor Area (SQLDA).

• EXECUTE: Executes a previously prepared statement other than the
SELECT statement.

11–4 Using Dynamic SQL

• Dynamic DECLARE CURSOR: Declares a cursor for a prepared SELECT
statement. A dynamic DECLARE CURSOR statement specifies the cursor
name at compile time; however, it does not explicitly specify the SELECT
statement. Instead, you supply the name of a prepared statement where
you would ordinarily place the SELECT statement.

• Extended dynamic DECLARE CURSOR: Declares a cursor for which
neither the cursor name nor the SELECT statement are known until run
time. Instead, you supply parameters for the cursor name and for the
SELECT statement.

SQL treats the extended dynamic DECLARE CURSOR statement as an
executable statement, unlike how SQL treats the nonextended dynamic
DECLARE CURSOR statement.

• OPEN: Opens a cursor declared for a prepared SELECT statement.

• FETCH: Retrieves values from a cursor declared for a prepared SELECT
statement.

• RELEASE: Releases all resources used by a prepared SQL statement and
prevents the prepared SQL statement from executing again.

Note that none of these statements used to process dynamically executed
statements can themselves be dynamically executed.

Reference Reading

The Oracle Rdb7 SQL Reference Manual chapter on SQL statements
contains a section on each of the preceding statements.

A table in the Oracle Rdb7 SQL Reference Manual lists the statements
that SQL can dynamically execute, whether or not they allow
parameter markers and select list items, and the associated embedded
statements used to process them.

11.1.3 Processing SQL Statements in Dynamic SQL
Programs that accept SELECT statements or statements with parameter
markers follow these general steps to process an SQL statement at run time:

1. Accept the statement into a program variable.

2. Pass the program variable to the PREPARE statement.

3. Use the DESCRIBE . . . MARKERS statement to find out if the statement
has parameter markers and, if it does, allocate storage for those variables.

Using Dynamic SQL 11–5

4. Test whether the statement is a SELECT statement. If it is not a SELECT
statement, process it with the EXECUTE statement.

5. If it is a SELECT statement:

a. Use the DESCRIBE . . . SELECT ITEMS statement to find the select
list items in the parameter string. Allocate appropriate storage for
them.

b. Open a cursor.

c. Fetch each row in the result table using the storage allocated.

6. Release the prepared SQL statement when the program finishes.

If your program processes only non-SELECT statements that do not use
parameter markers, you can use the EXECUTE IMMEDIATE statement,
explained in Section 11.2.

11.2 Executing Non-SELECT Statements Without Parameter
Markers

When the SQL statement you want to process is not a SELECT statement and
it does not contain any parameter markers, you do not need to prepare it and
then execute it. You can combine the steps in a single EXECUTE IMMEDIATE
statement.

The EXECUTE IMMEDIATE statement is useful for any write-only or data
definition application that generates a statement string without parameter
markers.

Example 11–1 illustrates such a case. The COBOL program accepts a
statement from the terminal and processes it dynamically with an EXECUTE
IMMEDIATE statement. The program allows only non-SELECT statements for
dynamic execution. Because the statements are generated interactively, they
do not contain parameter markers.

Example 11–1 Executing Non-SELECT Statements Using the EXECUTE
IMMEDIATE Statement

IDENTIFICATION DIVISION.
PROGRAM-ID. EXECUTE_IMMEDIATE_EXAMPLE.
*
* Illustrate EXECUTE IMMEDIATE with a dynamic INSERT statement.
*

(continued on next page)

11–6 Using Dynamic SQL

Example 11–1 (Cont.) Executing Non-SELECT Statements Using the
EXECUTE IMMEDIATE Statement

DATA DIVISION.
WORKING-STORAGE SECTION.

* Variable for DECLARE ALIAS:
01 FILESPEC PIC X(20). !

* Variable to hold the command to be dynamically executed:
01 COMMAND_STRING PIC X(240). "

* Buffer for error handling:
01 GETERRVARS.

02 error-buffer-len PIC S9(9) COMP VALUE 132.
02 error-msg-len PIC S9(9) COMP.
02 error-buffer PIC X(132).

* Load definition for SQL Communications Area (SQLCA) for error handling:
EXEC SQL INCLUDE SQLCA END-EXEC.

*
* P R O C E D U R E D I V I S I O N
*

PROCEDURE DIVISION.
START-UP.

* Assign value to FILESPEC:
DISPLAY "Enter the file spec for the database you want to declare:"
ACCEPT FILESPEC. #

* Declare the database:
* (You can name any file for COMPILETIME FILENAME because no
* embedded statement in this example requires that SQL attach
* to the database.)

EXEC SQL DECLARE ALIAS$
COMPILETIME FILENAME personnel
RUNTIME FILENAME :FILESPEC

END-EXEC

DISPLAY "Enter an SQL statement (not SELECT):"
ACCEPT COMMAND_STRING.%

* Use EXECUTE IMMEDIATE to execute the statement in COMMAND_STRING:
EXEC SQL EXECUTE IMMEDIATE :COMMAND_STRING&
END-EXEC
PERFORM CHECK

EXEC SQL EXECUTE IMMEDIATE ’ROLLBACK’ END-EXEC.
PERFORM CHECK.

DISPLAY "Rolled back changes. All done.".

(continued on next page)

Using Dynamic SQL 11–7

Example 11–1 (Cont.) Executing Non-SELECT Statements Using the
EXECUTE IMMEDIATE Statement

CLEAR-IT-EXIT.
STOP RUN.

CHECK.
IF SQLCODE NOT = 100 AND SQLCODE NOT = 0'

DISPLAY "Error: SQLCODE = ", SQLCODE WITH CONVERSION
CALL "sql_get_error_text" USING BY REFERENCE error-buffer,

BY VALUE error-buffer-len,
BY REFERENCE error-msg-len

DISPLAY error-buffer
END-IF.

The following callouts are keyed to Example 11–1:

! Declares the variable FILESPEC for the file name of the database to be
declared.

" Declares the variable COMMAND_STRING for the SQL command that is
to be executed dynamically.

Accepts input from the terminal for the FILESPEC variable.

$ Declares the alias. Because the DECLARE ALIAS statement is embedded
in the source program, this program does not consider it to be a
dynamically executable statement. You pass a variable to the DECLARE
ALIAS statement in the same way you pass variables to statements in
static SQL programs.

% Accepts input from the terminal for the COMMAND_STRING variable.

& Uses the EXECUTE IMMEDIATE statement to execute the statement
entered at the terminal.

' Checks for errors. If SQL returns an error, the program displays the value
of SQLCODE and the text for the error.

If your program will dynamically execute a particular statement more than
once, it is more efficient to issue a PREPARE statement and then execute the
statement each time with the EXECUTE statement. For example, you would
modify Example 11–1 by substituting the following lines for the EXECUTE
IMMEDIATE :COMMAND_STRING statement:

11–8 Using Dynamic SQL

* Use these commands to execute one statement several times.

EXEC SQL PREPARE STMT1 FROM :COMMAND_STRING
END-EXEC

PERFORM CHECK
DISPLAY "Statement prepared."

PERFORM UNTIL RESPONSE = "NO"

EXEC SQL EXECUTE STMT1
END-EXEC
PERFORM CHECK

DISPLAY "Do you want to execute the statement again:"
ACCEPT RESPONSE

END-PERFORM.

You can also use dynamic SQL and the EXECUTE IMMEDIATE statement to
work around the common problem of trying to drop and then create again the
same schema object in one program.

For example, if a precompiled SQL program contains both a DROP INDEX
statement and a CREATE INDEX statement, the precompiler returns an error
similar to the following:

%SQL-F-IND_EXISTS, Index DEG_EMP_ID already exists in this database or schema

Because the index is not dropped during the compilation, it still exists in
the compile-time database, thus generating the error. To work around this
restriction, use the EXECUTE IMMEDIATE statement to drop and then create
the index again.

11.3 Handling Parameter Markers and Select List Items
This section explains how to handle parameter markers and select list items.
For information about processing statements that contain only parameter
markers, see Section 11.4. For more information about processing SELECT
statements, see Section 11.6.

You can use parameter markers in INSERT, UPDATE, and DELETE
statements, as well as in SELECT statements. SQL replaces parameter
markers with values in host language variables or dynamic memory when
the prepared statement is dynamically executed by a subsequent EXECUTE
statement.

If a statement includes parameter markers, the program must declare host
language variables or allocate dynamic memory corresponding to all the
parameter markers specified in the prepared non-SELECT statement.

Using Dynamic SQL 11–9

A statement with parameter markers or select list items cannot use the
EXECUTE IMMEDIATE statement. Instead, the program must prepare the
statement for dynamic execution with the PREPARE statement. In addition,
the program must declare host language variables or allocate dynamic
memory for all parameter markers and for all select list items. To execute the
statement, the program issues an embedded EXECUTE statement or calls an
SQL module language procedure that contains an EXECUTE statement.

Your program declares a data structure called the SQLDA and then uses the
DESCRIBE statement to get information about the parameter markers or
select list items.

When SQL processes a DESCRIBE statement, it writes the number and data
type of any select list items (for a DESCRIBE . . . SELECT LIST statement)
or parameter markers (for a DESCRIBE . . . MARKERS statement) of a
prepared statement into the SQLDA. Your host language program reads this
information from the SQLDA, allocates storage (host language variables or
dynamic memory) for each of the parameters, and writes the addresses for
that storage to the SQLDA. The program also supplies values that will be
substituted for parameter markers and writes those values to the storage it
allocated for parameter markers.

When you use parameter markers in SQL statements, you should not make
any assumptions about the data types of the parameters. SQL may convert the
parameter to a data type that is more appropriate to a particular operation.
For example, when you use a parameter marker as one value expression in
a LIKE predicate, SQL returns a data type of VARCHAR for that parameter,
even though the other value expression has a data type of CHAR.

Reference Reading

The Oracle Rdb7 SQL Reference Manual section on the DESCRIBE
statement discusses the MARKERS and SELECT LIST clause in more
detail.

11.3.1 Using the SQLDA and SQLDA2 Structures
SQL needs to communicate to the program information about the number of
parameter markers and select list items, if any, and their data types. Once
the program has the number and data types of parameters, it must allocate
memory for them and communicate to SQL the location of that memory.
Programs must write the number and data type of any parameter markers and
select list items into the SQL Descriptor Area. The SQL Descriptor Area
(SQLDA) is a data structure that SQL provides to hold this information.

11–10 Using Dynamic SQL

The SQLDA holds information about any parameter markers and select list
items in a prepared statement. SQL writes information about the number
and data type of parameter markers and select list items to the SQLDA when
it processes a DESCRIBE . . . SELECT LIST or DESCRIBE . . . MARKERS
statement. See Section 11.6.3 for information about using SQLDAs to test for
the presence of parameter markers and select list items and for information
about using the SQLERRD field to determine whether a statement is a
SELECT statement.

Of the languages supported by the precompiler, Ada, C, and PL/I can use
the SQLDA. Any other language that supports pointer variables can use the
SQLDA, but must call SQL module procedures that contain SQL statements
instead of embedding the SQL statements directly in the source code.

Host languages that do not support pointer variables cannot take advantage
of the full flexibility of dynamic SQL. They are limited to dynamic SQL
applications that use some other means to determine if dynamically generated
SQL statements have parameter markers and select list items, and if they do,
their number and data type.

SQL also provides the SQL Descriptor Area 2 (SQLDA2), an extended
version of the SQLDA, which supports additional fields and field sizes. You can
use either the SQLDA or SQLDA2 in any dynamic SQL programs that call for
a descriptor area; however, if you want to use any of the date-time data types,
you must use the SQLDA2. Section 11.3.2 shows how to declare this structure
in a C program. The C version of the sql_dynamic sample program shows how
to use the SQLDA2 structure in a dynamic SQL program.

Note

Remember that SQL may use a data type for the parameter marker
or select list item that is not supported by the language you are using.
The DESCRIBE statement returns information about the data type of
parameter markers and select list items to the SQLTYPE and SQLLEN
fields of the SQLDA. If necessary, your program can change the value
of the SQLTYPE and SQLLEN fields to a data type and length that
both SQL and the host language support.

Using Dynamic SQL 11–11

11.3.2 Declaring SQLDA and SQLDA2 Structures
You can declare the SQLDA and SQLDA2 by using the INCLUDE statement
or by explicitly declaring the SQLDA or SQLDA2 in programs written in host
languages that support pointer variables. In addition, for Ada precompiled
programs, you can specify the SQLDA_ACCESS type; for C precompiled
programs and C host language programs, you can use the sql_sqlda.h header
file.

The following example shows how to include the file in a C program:

#include <sql_sqlda.h>

The sql_sqlda.h header file includes typedef statements for the SQLDA
and SQLDA2 structures defining the SQL_T_SQLDA and SQL_T_SQLDA2
data types. In addition, it defines the SQL_T_SQLDA_FULL and SQL_T_
SQLDA2_FULL data types as superset definitions of the SQLDA and SQLDA2
structures. The SQL_T_SQLDA_FULL data type is identical in layout to
the SQL_T_SQLDA data type except that it contains additional unions with
additional fields that SQL uses when describing CALL statements. Likewise,
the SQL_T_SQLDA2_FULL data type is identical in layout to the SQL_T_
SQLDA2 data type except that it contains additional unions with additional
fields that SQL uses when describing CALL statements. These fields use the
same names in both the SQL_T_SQLDA_FULL and SQL_T_SQLDA2_FULL
data types, as follows:

• SQLPRCSN—length of numeric fields

• SQLSCALE—scale of numeric fields

• SQLARGPOS—ordinal position of argument

• SQLFLAGS—16 flag bits, used in the following fields:

SQLFLAGS_VALID—flags and ordinal position are valid

SQLPARAM_IN—parameter is input

SQLPARAM_OUT—parameter is output

Field reference expressions for the SQL_T_SQLDA and SQL_T_SQLDA2 data
types are the same as those generated when you use the INCLUDE SQLDA
or SQLDA2 statement. Refer to the sql_sqlda.h header file to determine the
correct field reference expression when using either the SQL_T_SQLDA_FULL
or SQL_T_SQLDA2_FULL data types.

11–12 Using Dynamic SQL

If you use the INCLUDE SQLDA statement, you cannot use the INCLUDE
SQLDA2 statement in the same program because both statements define
a globally visible data object using the same name. However, because the
sql_sqlda.h header file does not define any globally visible data definitions or
references, you can use the sql_sqlda.h header file in the same program as
either INCLUDE statement. In programs that use the header file, you can
create definitions or references using typedefs for the SQLDA, the SQLDA2, or
both.

Digital UNIX On Digital UNIX, you can use the INCLUDE SQLDA or INCLUDE SQLDA2
statement only once in your application.

On Digital UNIX, the fields in the SQLDA and SQLDA2 structures are
naturally aligned on quadword boundaries. If you define an SQLDA or
SQLDA2 structure in a host language, you must align it to make it compatible
with the SQL internal format. For example, you can use the COBOL --align
switch. ♦

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, you can use the INCLUDE SQLDA or INCLUDE SQLDA2
statement only once in your application if your application shares the globally
visible data object between multiple images. ♦

OpenVMS
Alpha

On OpenVMS Alpha, when you use the SQL module processor and specify C in
the module header language clause, or when you use the SQL precompiler for
C, SQL aligns fields in structures by default. However, you should not allow
member alignment of the SQLDA and SQLDA2. ♦

If you explicitly define the SQLDA and SQLDA2 structures, you must
surround the structure definitions with the C preprocessor directive #pragma
nomember_alignment to prevent alignment of the structures. If you use the
SQL INCLUDE statement, you do not need to use the preprocessor directive.

The sql_dynamic program described in Section 11.8 declares two separate
SQLDA2 structures, SQLDA_IN and SQLDA_OUT. Example 11–2 shows
these declarations. The SQLDA_IN structure is the target of DESCRIBE . . .
MARKERS statements and receives information about any parameter markers
in the statement string entered by the user. The SQLDA_OUT structure is
the target of PREPARE and DESCRIBE . . . SELECT LIST statements and
receives information about any select list items in the statement string.

The program explicitly declares both structures as pointer structures, so
that it can allocate memory for the structures dynamically at run time.
Example 11–2 shows the SQLDA2 declarations from sql_dynamic.c. The Oracle
Rdb7 SQL Reference Manual provides examples of SQLDA2 declarations for
other languages.

Using Dynamic SQL 11–13

Example 11–2 Declaring SQLDA2 Structures

/* Declare the SQLDA2. */

typedef
struct

{
char sqldaid[8];
int sqlabc;
short sqln;
short sqld;
struct sqlvar_struct

{
short sqltype;
long sqllen;
int sqloctet_len;
char *sqldata;
int *sqlind;
int sqlchrono_scale;
int sqlchrono_precision;
short sqlname_len;
char sqlname[IDLEN];
char sqlchar_set_name[IDLEN];
char sqlchar_set_schema[IDLEN];
char sqlchar_set_catalog[IDLEN];

} sqlvar[MAXPARAMS];
} sqlda_rec, *sqlda;

.

.

.

int sql_dynamic (psql_stmt, input_sqlda, output_sqlda, stmt_id, is_select)
char *psql_stmt;
sqlda *input_sqlda;
sqlda *output_sqlda;
long *stmt_id;
int *is_select;

{
sqlda sqlda_in, sqlda_out; /* declare the SQLDA structures */

.

.

.

Reference Reading

The Oracle Rdb7 SQL Reference Manual contains an appendix
describing the SQLDA.

11–14 Using Dynamic SQL

11.4 Executing Non-SELECT Statements with Parameter Markers
If a statement includes parameter markers, the program must declare host
language variables or allocate dynamic memory corresponding to all the
parameter markers specified in the prepared SQL statement. The program
uses the information in the SQLDA to allocate storage for parameter markers.

Example 11–3 shows a simple precompiled C program that dynamically
executes non-SELECT statements with parameter markers.

Example 11–3 Executing Non-SELECT Statements with Parameter Markers

/* This program dynamically executes non-SELECT statements that contain
* parameter markers.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sql_rdb_headers.h>

/* Maximum number of parameters or select list items is 50.*/
#define MAXPARAMS 50

#if defined (__osf__) && defined (__DECC)
#pragma member_alignment save
#pragma member_alignment
#elif defined (__DECC)
#pragma member_alignment save
#pragma nomember_alignment
#endif
#pragma nostandard

struct SQLDA_STRUCT { !
char SQLDAID[8];
int SQLDABC;
short SQLN;
short SQLD;
struct {

short SQLTYPE;
short SQLLEN;
char *SQLDATA;
int *SQLIND;
short SQLNAME_LEN;
char SQLNAME[30];

} SQLVAR[MAXPARAMS];
} *SQLDA;

(continued on next page)

Using Dynamic SQL 11–15

Example 11–3 (Cont.) Executing Non-SELECT Statements with Parameter
Markers

#if defined (__osf__) && defined (__DECC)
#pragma member_alignment restore
#elif defined (__DECC)
#pragma member_alignment restore
#endif
#pragma standard

main()

{

char command_string[256]; /* SQL statement text */
long SQLCODE;
short param;
int loop_cntr;
char column_name[31];

/* Declare pointer variables for each possible data type. The program
uses the pointers to dynamically allocate memory to hold values for
parameter markers.
*/

char *charbuf;
long *longbuf;
short *smallintbuf;
SQL_DATE_VMS my_date_vms;

/* Allocate SQLDA structures. */ "

SQLDA = malloc(534);
SQLDA->SQLN = MAXPARAMS;

/* Declare the alias. */
EXEC SQL DECLARE ALIAS FILENAME personnel;

/* Start an SQL transaction. */
EXEC SQL SET TRANSACTION READ WRITE;

if (SQLCODE != 0)
goto err;

printf("Enter any dynamically-executable SQL statement, \n"); #
printf("except SELECT. \n");

gets(command_string);
if (SQLCODE != 0)

goto err;

/* Prepare the statement from input entered at run time. */
EXEC SQL PREPARE STMT_NAME FROM :command_string; $

if (SQLCODE != 0)
goto err;

(continued on next page)

11–16 Using Dynamic SQL

Example 11–3 (Cont.) Executing Non-SELECT Statements with Parameter
Markers

/* Write information about the parameter markers into the SQLDA. */
EXEC SQL DESCRIBE STMT_NAME MARKERS INTO SQLDA; %

/* For each parameter marker, check the value of SQLDA.SQLVAR.SQLTYPE
to determine the data type of the parameter marker, and branch to
the appropriate code to prompt and store the value for that data type.
*/

param = 0;
for (param = 0; param < SQLDA->SQLD; param++) &

{

/* Handle null-terminated column name and prompt with the column name. */
strncpy (&column_name[0], &SQLDA->SQLVAR[param].SQLNAME[0],

SQLDA->SQLVAR[param].SQLNAME_LEN);
column_name[SQLDA->SQLVAR[param].SQLNAME_LEN] = ’\0’;

printf ("\nEnter value for parameter ’%s’", column_name);

switch (SQLDA->SQLVAR[param].SQLTYPE) '
{
case 453 : /* character variable */
case 449 : /* variable char variable */

printf("\n(Maximum length is %d)",SQLDA->SQLVAR[param].SQLLEN);
printf("\ndsql> ");

/* Allocate storage and get the address for the character
string. */

charbuf = (char *) malloc (SQLDA->SQLVAR[param].SQLLEN);

/* Get the string. */
gets (charbuf);

/* Assign the address to SQLDA. */
SQLDA->SQLVAR[param].SQLDATA = charbuf;

/* Change the character data type to null-terminated. */
SQLDA->SQLVAR[param].SQLTYPE = 506; (

break; /* Exit the switch block. */

case 497 : /* integer variable */

printf ("\ndsql> ");

/* Allocate storage for the character string version of
the integer to be entered.

*/
charbuf = (char *) malloc (14);

/* Get the string. */
gets(charbuf);

(continued on next page)

Using Dynamic SQL 11–17

Example 11–3 (Cont.) Executing Non-SELECT Statements with Parameter
Markers

/* Allocate storage for the integer and convert the string. */
longbuf = (long *) malloc (SQLDA->SQLVAR[param].SQLLEN);

*longbuf = atol(charbuf);

/* Assign the address to SQLDA. */
SQLDA->SQLVAR[param].SQLDATA = (char *) longbuf;

break; /* Exit the switch block. */

case 501 : /* short int variable */

printf ("\ndsql> ");

/* Allocate storage for the character string version of
the short integer to be entered. */

charbuf = (char *) malloc (5);

/* Get the string. */
gets (charbuf);

/* Allocate storage for the short int and convert the string. */
smallintbuf = (short *) malloc(SQLDA->SQLVAR[param].SQLLEN);
*smallintbuf = atoi(charbuf);

/* Assign the address to SQLDA. */
SQLDA->SQLVAR[param].SQLDATA = (char *) smallintbuf;

break; /* Exit the switch block. */

case 503 : /* Date VMS variable */

printf ("\nDate/time format is DD-MMM-YYYY HH:MM:SS.HH ");
printf ("\ndsql> ");

/* Allocate storage for the character string version of
the date and time to be entered. */

charbuf = (char *) malloc (23);

/* Get the string. */
gets (charbuf);

/* Use the CAST statement to convert the input character string
to the DATE VMS data type. */

EXEC SQL
BEGIN SELECT CAST(substring(:charbuf FROM 8 FOR 4) ||

-- Convert the month to a number.
(CASE SUBSTRING(:charbuf FROM 4 FOR 3)

WHEN ’JAN’ THEN ’01’
WHEN ’FEB’ THEN ’02’
WHEN ’MAR’ THEN ’03’
WHEN ’APR’ THEN ’04’
WHEN ’MAY’ THEN ’05’
WHEN ’JUN’ THEN ’06’
WHEN ’JUL’ THEN ’07’

(continued on next page)

11–18 Using Dynamic SQL

Example 11–3 (Cont.) Executing Non-SELECT Statements with Parameter
Markers

WHEN ’AUG’ THEN ’08’
WHEN ’SEP’ THEN ’09’
WHEN ’OCT’ THEN ’10’
WHEN ’NOV’ THEN ’11’
WHEN ’DEC’ THEN ’12’

END) ||
-- Parse the day, hour, minutes, seconds.

SUBSTRING(:charbuf FROM 1 FOR 2) ||
SUBSTRING(:charbuf FROM 13 FOR 2) ||
SUBSTRING(:charbuf FROM 16 FOR 2) ||
SUBSTRING(:charbuf FROM 19 FOR 2) ||
SUBSTRING(:charbuf FROM 22 for 2)

AS DATE VMS) into :my_date_vms
FROM rdb$database LIMIT TO 1 ROW;

END;

if (SQLCODE != 0)
goto err;

/* Assign the address to SQLDA. */
SQLDA->SQLVAR[param].SQLDATA = (char *) &my_date_vms;

break; /* Exit the switch block. */

default :

printf("\n\nError: no data type match on %d",
SQLDA->SQLVAR[param].SQLTYPE);

break;

} /* End switch. */

} /* End the for loop. */

/* Execute the statement and replace the parameter markers with the
values in the SQLDA. */

EXEC SQL EXECUTE STMT_NAME USING DESCRIPTOR SQLDA;
if (SQLCODE != 0)

goto err;

EXEC SQL COMMIT;

return;

err: printf("\n unexpected error %d", SQLCODE);
sql_signal();

}

The following callouts are keyed to Example 11–3:

! Declares the SQLDA structure.

" Allocates the SQLDA structure.

Using Dynamic SQL 11–19

Prompts the user for an SQL command to be executed.

$ Prepares the statement that the user entered. If an error is returned,
branch to an error-handling routine.

% Uses the DESCRIBE . . . MARKERS statement to write information about
parameter markers into the SQLDA structure.

& Sets up a loop that executes the same number of times as the value
stored in the SQLD field, that is, once for each parameter marker in the
statement string.

' In a case statement, tests the value of the SQLTYPE field in the SQLDA
to determine the data type of the parameter marker. Based on the
information in the SQLTYPE field, the program uses the malloc() function
to allocate storage of the right length. It prompts the user for a column
value and assigns that address to the SQLDA.

(Changes the data type of string data from character or varying character
strings to null-terminated strings.

11.5 Testing Whether or Not a Statement Is a SELECT Statement
Example 11–3 assumes that the user will not enter a SELECT statement.
Often, your program cannot make that assumption.

The second element of the SQLERRD array in the SQLCA structure (described
in Chapter 10) indicates whether the prepared statement is a SELECT
statement. If the value of the second element of the SQLERRD array is 0, the
statement string is not a SELECT statement and you can execute it directly.
If the value is 1, the statement string is a SELECT statement. Section 11.6
explains how to process SELECT statements.

Example 11–4, an excerpt from the sql_dynamic program, shows how a
C program might test the second element of the SQLERRD array. If the
statement is not a SELECT statement, the program calls an EXECUTE
statement in an SQL module language procedure.

11–20 Using Dynamic SQL

Example 11–4 Testing SQLERRD to Identify Non-SELECT Statements
.
.
.

/* Save the value of the SQLCA.SQLERRD[1] field so that the program
can determine if the statement is a SELECT statement or not.
If the value is 1, the statement is a SELECT statement.*/

*is_select = SQLCA.SQLERRD[1];
.
.
.

if (*is_select)
.
.
.

} /* end if SQLCA.SQLERRD[1] == 1) */
else

{
.
.
.

/*
** If the SQLCA.SQLERRD[1] field is not 1, then the prepared statement is not a
** SELECT statement and only needs to be executed. Call an SQL module language
** procedure to execute the statement, using information about parameter
** markers stored in sqlda_in by the local routine get_in_params:
*/
/* if (SQLCA.SQLERRD[1] != 1)*/

{
execute_stmt (&SQLCA, stmt_id, sqlda_in);
if (SQLCA.SQLCODE != sql_success)

{
printf("\n\nError %d returned from execute_stmt",SQLCA.SQLCODE);
display_error_message();
return (-1);
}

} /* end if SQLCA.SQLERRD[1] != 1 */
} /* end if SQLCA.SQLERRD[1] == 1 */

11.6 Processing SELECT Statements
To execute SELECT statements, whether or not they contain parameter
markers, programs must declare dynamic cursors or extended dynamic cursors.
The cursor receives the values of rows in the result table created by the
SELECT statement.

A dynamic cursor specifies the cursor name at compile time; however,
it does not explicitly specify the SELECT statement. Instead, you supply
the name of a prepared statement for the SELECT statement. Because
the dynamic DECLARE CURSOR statement lets your program supply the

Using Dynamic SQL 11–21

SELECT statement at run time, you can use the dynamic DECLARE CURSOR
statement to process an arbitrary number of dynamically generated SQL
statements.

An extended dynamic cursor does not specify either the cursor name or
the statement name at compile time. Instead, you supply parameters for the
cursor name and for the SELECT statement. Because the dynamic DECLARE
CURSOR statement lets your program supply this information at run time, you
can use this dynamic statement to process an arbitrary number of dynamically
generated SQL statements concurrently.

In addition to setting up and using a dynamic or extended dynamic cursor,
your program must prepare the SELECT statement (using the PREPARE
statement), then use the DESCRIBE . . . SELECT LIST statement to write the
information about the number and data type of select list items to the SQLDA.

The program uses the information in the SQLDA to allocate storage for the
select list items. See Section 11.3.1 and Section 11.6.3 for more information
about declaring and using SQLDAs.

If any parameters might return NULL values, your program also needs to
declare and use indicator parameters (explained in Chapter 8).

After your program opens the cursor for the SELECT statement, use FETCH
statements to return to host language variables the values in each row in
the SQLDA. (Note that the FETCH statement itself cannot be dynamically
executed.)

11.6.1 Executing SELECT Statements Without Parameter Markers: Declaring
Dynamic and Extended Dynamic Cursors

Example 11–5 shows an SQL module, c_mod_dyn_curs, that dynamically
executes a SELECT statement that does not contain parameter markers. The
module declares a dynamic cursor to specify the result table that holds the
values of the rows.

A host language program that calls this SQL module is shown in
Example 11–6.

11–22 Using Dynamic SQL

Example 11–5 Executing SELECT Statements Without Parameter Markers in
an SQL Module

-- This program uses dynamic cursors to fetch a row from a table.
--
MODULE C_MOD_DYN_CURS
LANGUAGE GENERAL
AUTHORIZATION RDB$DBHANDLE
PARAMETER COLONS
DECLARE ALIAS FILENAME personnel

-- Declare the dynamic cursor. Use a statement name to identify a
-- prepared SELECT statement.
DECLARE CURSOR1 CURSOR FOR STMT_NAME

-- Prepare the statement from a statement entered at run time
-- and specify that SQL write information about the number and
-- data type of select list items to the SQLDA.

PROCEDURE PREP_STMT
(SQLCODE,

:COMMAND_STRING CHAR (256));

PREPARE STMT_NAME FROM :COMMAND_STRING;

PROCEDURE DESCRIBE
(SQLCODE,

SQLDA);

DESCRIBE STMT_NAME SELECT LIST INTO SQLDA;

PROCEDURE OPEN_CURSOR
(SQLCODE);

OPEN CURSOR1;

PROCEDURE FETCH_CURSOR
(SQLCODE,

SQLDA);

FETCH CURSOR1 USING DESCRIPTOR SQLDA;

PROCEDURE CLOSE_CURSOR
(SQLCODE);

CLOSE CURSOR1;

PROCEDURE ROLLBACK
(SQLCODE);

ROLLBACK;

Example 11–6 shows the program that calls the routines in the SQL C_MOD_
DYN_CURS module. When you specify GENERAL in the language clause
as in Example 11–5, you must pad the string passed to the prepare routine
(command_string[256]) with spaces because SQL, with the GENERAL keyword
specified, does not look for the NULL terminator in character strings that are
passed as parameters. Otherwise, SQL generates an error.

Using Dynamic SQL 11–23

In contrast, if you specify C in the LANGUAGE clause of an SQL module,
no field padding is necessary because the SQL module looks for the NULL
terminator in character strings that are passed as parameters.

Example 11–6 Executing SELECT Statements Without Parameter Markers in
a Host Language Program

/* This program uses dynamic cursors to fetch a row from a table. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sql_rdb_headers.h>

/* Maximum number of parameters or select list items is 50.*/
#define MAXPARAMS 50

/* Declare the SQLDA structure. */
struct SQLDA_STRUCT {

char SQLDAID[8];
int SQLDABC;
short SQLN;
short SQLD;
struct {

short SQLTYPE;
short SQLLEN;
char *SQLDATA;
int *SQLIND;
short SQLNAME_LEN;
char SQLNAME[30];

} SQLVAR[MAXPARAMS];
} *SQLDA;

main()
{

/* General purpose local variables. */
int i;
long sqlcode;
char command_string[256];

/* Function prototypes. */
void PREP_STMT ();
void DESCRIBE ();
void OPEN_CURSOR ();
void FETCH_CURSOR ();
void CLOSE_CURSOR ();
void ROLLBACK ();

/* Allocate SQLDA structures. */
SQLDA = malloc(534);
SQLDA->SQLN = 20;

(continued on next page)

11–24 Using Dynamic SQL

Example 11–6 (Cont.) Executing SELECT Statements Without Parameter
Markers in a Host Language Program

/* Get the SELECT statement at run time. */

printf("\n Enter a select statement that retrieves only character ");
printf("\n and integer data. \n");
printf("\n Do not end the statement with a semicolon.\n");
gets(command_string);

/* Pad the string to end with spaces when using LANGUAGE keyword GENERAL
in module. */

for (i=strlen(command_string);i<=256;i++)
command_string[i] = ’ ’;

/* Prepare the SELECT statement. */
PREP_STMT(&sqlcode, &command_string);
if (sqlcode != 0)

goto err;

/* Write the information about the number and data type of the select list
items to the SQLDA. */

DESCRIBE(&sqlcode, SQLDA);
if (sqlcode != 0)

goto err;

/* Open the cursor. */
OPEN_CURSOR(&sqlcode);
if (sqlcode != 0)

goto err;

/* Allocate memory. */
for (i=0; i < SQLDA->SQLD; i++) {

SQLDA->SQLVAR[i].SQLDATA = malloc(SQLDA->SQLVAR[i].SQLLEN);
SQLDA->SQLVAR[i].SQLIND = malloc(2);

}

/* Fetch a row. */
FETCH_CURSOR(&sqlcode, SQLDA);
if (sqlcode != 0)

goto err;

/* Use the SQLDA to determine the data type of each column in the row
and print the column. For simplicity, test for only two data types. */

for (i=0; i < SQLDA->SQLD; i++) {

switch (SQLDA->SQLVAR[i].SQLTYPE) {

case 453: /* Character */
printf("%.*s ",SQLDA->SQLVAR[i].SQLLEN, SQLDA->SQLVAR[i].SQLDATA);
break;

(continued on next page)

Using Dynamic SQL 11–25

Example 11–6 (Cont.) Executing SELECT Statements Without Parameter
Markers in a Host Language Program

case 497: /* Integer */
printf("%d", *SQLDA->SQLVAR[i].SQLDATA);
break;

}
}

/* Close the cursor. */
CLOSE_CURSOR(&sqlcode);

ROLLBACK(&sqlcode);
return;

err: printf("\n unexpected error %d", sqlcode);
sql_signal();
ROLLBACK(&sqlcode);
exit (0);

}

11.6.2 Executing SELECT Statements That Contain Parameter Markers
In addition to using dynamic or extended dynamic cursors, SELECT
statements that contain parameter markers require you to declare and use two
SQLDA structures, one for the parameter markers and one for the select list
items.

You must use both the DESCRIBE . . . MARKERS statement and the
DESCRIBE . . . SELECT LIST statement. The DESCRIBE . . . MARKERS
statement writes information about parameter markers into the SQLDA; the
DESCRIBE . . . SELECT LIST statement writes information about select list
items into the SQLDA.

Your program uses the information in the SQLDA to allocate storage for the
select list items and parameter markers. The program must supply values for
parameter markers in that allocated storage. SQL substitutes these values for
the parameter markers when it dynamically executes the statement.

Example 11–7 shows a program, c_dyn_extcurs.sc, that uses precompiled
SQL to dynamically execute SELECT statements that contain parameter
markers. This program uses extended dynamic cursors to process any number
of dynamically generated SELECT statements.

11–26 Using Dynamic SQL

Example 11–7 Executing SELECT Statements with Parameter Markers in an
SQL Precompiled Program

/* This program dynamically executes SELECT statements that contain
parameter markers. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sql_rdb_headers.h>

/* Maximum number of parameters or select list items is 50.*/
#define MAXPARAMS 50

/* Declare two SQLDA structures -- one for the parameter markers and one
for the select list items. */

struct SQLDA_STRUCT {
char SQLDAID[8];
int SQLDABC;
short SQLN;
short SQLD;
struct {

short SQLTYPE;
short SQLLEN;
char *SQLDATA;
int *SQLIND;
short SQLNAME_LEN;
char SQLNAME[30];

} SQLVAR[MAXPARAMS];
} *SQLDA, *SQLDA_SL;

main()
{

long SQLCODE;
short param, *indicator_param;
int loop_cntr;
int X;
char column_name[31];
char curs_name[10]; /* Name of statement */

/* An array to hold two SQL statements. */
char command_string[2][256];
char *command_string1;

/* Declare pointer variables for each data type. The program uses
the pointers to dynamically allocate memory to hold values for
parameter markers and select list items. */

char *charbuf;
long *longbuf;
short *smallintbuf;
char *datebuf;
SQL_DATE_VMS my_date_vms;

(continued on next page)

Using Dynamic SQL 11–27

Example 11–7 (Cont.) Executing SELECT Statements with Parameter
Markers in an SQL Precompiled Program

/* Allocate SQLDA structures. */

SQLDA_SL = malloc(534);
SQLDA_SL->SQLN = 12;
SQLDA_SL = malloc(534);
SQLDA_SL->SQLN = 12;

/* Declare the alias. */
EXEC SQL DECLARE ALIAS FILENAME personnel;

/* Execute a loop to get two SELECT statements from the user. */

X=0;
while (X < 2)
{

printf("Enter any SELECT statement. \n");
printf("Do not end the statement with a semicolon. \n");

gets(&command_string[X][0]);

/* Assign a statement name to each SELECT statement. */
if (X == 0)

strcpy(curs_name, "ONE");
else

if (X == 1)
strcpy(curs_name, "TWO");

else printf("\n No such statement. \n");

X++;
}

/* Prompt the user for the name of a statement. */
printf("\n Which statement do you want to execute, \n");
printf("ONE or TWO? To quit, type EXIT.\n");

gets(curs_name);

/* Assign the correct SQL statement to the cursor name. */
if (strcpy(curs_name, "ONE"))

command_string1 = &command_string[0][0];
if (curs_name == "TWO")

command_string1 = &command_string[1][0];
if (curs_name == "EXIT")

goto end_program;

/* Start an SQL transaction. */
EXEC SQL SET TRANSACTION READ WRITE;

if (SQLCODE != 0)
goto err;

/* Prepare the statement from input entered at run time. */
EXEC SQL PREPARE stmt_id FROM :command_string1;

if (SQLCODE != 0)
goto err;

(continued on next page)

11–28 Using Dynamic SQL

Example 11–7 (Cont.) Executing SELECT Statements with Parameter
Markers in an SQL Precompiled Program

/* Write information about the parameter markers into the SQLDA. */
EXEC SQL DESCRIBE stmt_id MARKERS INTO SQLDA;

if (SQLCODE != 0)
goto err;

/* Write information about the select list items into the SQLDA. */
EXEC SQL DESCRIBE stmt_id SELECT LIST INTO SQLDA_SL;

if (SQLCODE != 0)
goto err;

/* For each parameter marker, check the value of SQLDA.SQLVAR.SQLTYPE
to determine the data type of the parameter marker, and branch to
the appropriate code to prompt and store the value for that data type. */

param = 0;
for (param = 0; param < SQLDA->SQLD; param++)

{

/* Handle a null-terminated column name and prompt with the column name. */
strncpy (&column_name[0], &SQLDA->SQLVAR[param].SQLNAME[0],

SQLDA->SQLVAR[param].SQLNAME_LEN);
column_name[SQLDA->SQLVAR[param].SQLNAME_LEN] = ’\0’;

printf ("\nEnter value for parameter ’%s’", column_name);

switch (SQLDA->SQLVAR[param].SQLTYPE)
{
case 453 : /* character variable */
case 449 : /* variable char variable */

printf("\n(Maximum length is %d)",SQLDA->SQLVAR[param].SQLLEN);
printf("\ndsql> ");
/* Allocate storage and get the address for the character

string. */
charbuf = (char *) malloc (SQLDA->SQLVAR[param].SQLLEN);

/* Get the string. */
gets (charbuf);

/* Assign the address to SQLDA. */
SQLDA->SQLVAR[param].SQLDATA = charbuf;

break; /* Exit the switch block */

case 497 : /* integer variable */

printf ("\ndsql> ");

/* Allocate storage for the character string version of
the integer to be entered. */

charbuf = (char *) malloc (14);

/* Get the string. */
gets (charbuf);

(continued on next page)

Using Dynamic SQL 11–29

Example 11–7 (Cont.) Executing SELECT Statements with Parameter
Markers in an SQL Precompiled Program

/* Allocate storage for the integer and convert the string. */
longbuf = (long *) malloc (SQLDA->SQLVAR[param].SQLLEN);
*longbuf = atol (charbuf);

/* Assign the address to SQLDA */
SQLDA->SQLVAR[param].SQLDATA = (char *) longbuf;

break; /* Exit the switch block */

case 501 : /* short int variable */

printf ("\ndsql> ");

/* Allocate storage for the character string version of
the short integer to be entered.*/

charbuf = (char *) malloc (5);
/* Get the string. */
gets (charbuf);

/* Allocate storage for the short int and convert the string. */
smallintbuf = (short *) malloc(SQLDA->SQLVAR[param].SQLLEN);
*smallintbuf = atoi (charbuf);
/* Assign the address to SQLDA. */
SQLDA->SQLVAR[param].SQLDATA = (char *) smallintbuf;

break; /* Exit the switch block */

case 503 : /* date type variable */

printf ("\nDate-time format is DD-MMM-YYYY HH:SS:MM.CC ");
printf ("\ndsql> ");

/* Allocate storage for the character string version of
the date-time. */

charbuf = (char *) malloc (23);
/* Get the string. */
gets (charbuf);

EXEC SQL SELECT
CAST(substring(:charbuf FROM 8 FOR 4) ||

-- Convert the month to a number.
(CASE SUBSTRING(:charbuf FROM 4 FOR 3)

WHEN ’JAN’ THEN ’01’
WHEN ’FEB’ THEN ’02’
WHEN ’MAR’ THEN ’03’
WHEN ’APR’ THEN ’04’
WHEN ’MAY’ THEN ’05’
WHEN ’JUN’ THEN ’06’
WHEN ’JUL’ THEN ’07’
WHEN ’AUG’ THEN ’08’

(continued on next page)

11–30 Using Dynamic SQL

Example 11–7 (Cont.) Executing SELECT Statements with Parameter
Markers in an SQL Precompiled Program

WHEN ’SEP’ THEN ’09’
WHEN ’OCT’ THEN ’10’
WHEN ’NOV’ THEN ’11’
WHEN ’DEC’ THEN ’12’

END) ||
-- Parse the day, hour, minutes, seconds.

SUBSTRING(:charbuf FROM 1 FOR 2) ||
SUBSTRING(:charbuf FROM 13 FOR 2) ||
SUBSTRING(:charbuf FROM 16 FOR 2) ||
SUBSTRING(:charbuf FROM 19 FOR 2) ||
SUBSTRING(:charbuf FROM 22 for 2)
AS DATE VMS) into :my_date_vms
FROM rdb$database LIMIT TO 1 ROW;

/* Assign the address to SQLDA. */
SQLDA->SQLVAR[param].SQLDATA = (char *) &my_date_vms;

break; /* Exit the switch block. */

default :

printf("\n\nError: no data type match on %d",
SQLDA->SQLVAR[param].SQLTYPE);

break;

} /* End switch. */

} /* End the for loop. */

/* Declare the extended dynamic cursor, using the name the user enters. */
EXEC SQL DECLARE curs_name CURSOR FOR stmt_id;
if (SQLCODE != 0)

goto err;

/* Open the cursor. */
EXEC SQL OPEN curs_name USING DESCRIPTOR SQLDA;
if (SQLCODE != 0)

goto err;

/* Allocate memory. */

for (param=0; param < SQLDA_SL->SQLD; param++) {
SQLDA_SL->SQLVAR[param].SQLDATA = malloc(SQLDA_SL->SQLVAR[param].SQLLEN);
SQLDA_SL->SQLVAR[param].SQLIND = malloc(2);

}
/* Fetch the cursor and get information about the select list items

from the SQLDA. */
EXEC SQL FETCH curs_name USING DESCRIPTOR SQLDA_SL;
if (SQLCODE != 0)

goto err;

(continued on next page)

Using Dynamic SQL 11–31

Example 11–7 (Cont.) Executing SELECT Statements with Parameter
Markers in an SQL Precompiled Program

/* Allocate storage for select list items in the statement string supplied
by the user. Also, allocate storage for indicator parameters associated
with the select list items, which indicate the occurrence of a NULL
value being returned for an item in the database. */

/* For each select list item, execute a loop. */

for (param = 0; param < SQLDA_SL->SQLD; param++)
{

/* Allocate storage for an indicator array. */
indicator_param = (short *) malloc (sizeof (short));

/* Write the address of indicator_param to SQLDA_SL.SQLVAR.SQLIND */
SQLDA_SL->SQLVAR[param].SQLIND = indicator_param;

/* Check the value of SQLDA_SL.SQLVAR.SQLTYPE to determine the data
type of the select list item and branch to the allocation block
for that data type. */

switch (SQLDA_SL->SQLVAR[param].SQLTYPE)
{
case 453 : /* character variable */
case 449 : /* variable char variable */

/* Allocate storage and get address for the character string. */
charbuf = (char *) malloc (SQLDA_SL->SQLVAR[param].SQLLEN);

charbuf = (char *) malloc(SQLDA_SL->SQLVAR[param].SQLLEN+1);

/* Copy the value to a string with a null terminator. */
strncpy (charbuf, SQLDA_SL->SQLVAR[param].SQLDATA,

SQLDA_SL->SQLVAR[param].SQLLEN);

*(charbuf + SQLDA_SL->SQLVAR[param].SQLLEN) = ’\0’;

/* Display the value in the buffer. */
printf ("%s ", charbuf);

break; /* Exit the switch block. */

case 497 : /* integer variable */

/* Allocate storage for the integer. */
longbuf = (long *) malloc (SQLDA_SL->SQLVAR[param].SQLLEN);

printf ("%ld ", (long)(*SQLDA_SL->SQLVAR[param].SQLDATA));

break; /* Exit the switch block. */

case 501 : /* short int variable */

(continued on next page)

11–32 Using Dynamic SQL

Example 11–7 (Cont.) Executing SELECT Statements with Parameter
Markers in an SQL Precompiled Program

/* Allocate storage for the short int. */
smallintbuf = (short *) malloc (SQLDA_SL->SQLVAR[param].SQLLEN);

printf ("%d ", (short)(*SQLDA_SL->SQLVAR[param].SQLDATA));

break; /* Exit the switch block. */

case 503 : /* date type variable */
memcpy(&my_date_vms,SQLDA_SL->SQLVAR[param].SQLDATA,

sizeof(SQL_DATE_VMS));

datebuf = (char *) malloc (24);
charbuf = (char *) malloc (24);

EXEC SQL
BEGIN

SET :datebuf = CAST(:my_date_vms AS CHAR(24));
END;

if (SQLCODE != 0)
goto err;

printf ("%s ", datebuf);

break; /* Exit the switch block. */

} /* End switch. */

} /* End the for loop. */

/* Close the cursor. */
EXEC SQL CLOSE curs_name;
if (SQLCODE != 0)

goto err;

EXEC SQL COMMIT;

return;

err: printf("\n unexpected error %d", SQLCODE);
sql_signal();

end_program:
return;

}

11.6.3 Using SQLDA2 and SQLERRD Structures to Test for Parameter
Markers and SELECT Statements

The sql_dynamic sample program uses the SQLDA2 and SQLERRD structures
to determine what type of processing the statement string entered by the user
requires. Example 11–8 shows the logic from the main program.

Using Dynamic SQL 11–33

Example 11–8 Testing Whether a Statement Is a SELECT Statement

/* Declare arrays for storage of original data types and allocate memory. */

mem_ptr output_save;
mem_ptr input_save;

/* If NULL sqlda was passed, then a statement is being prepared. */

if ((*input_sqlda == NULL) && (*output_sqlda == NULL))
{
new_statement = TRUE;

/* Allocate separate SQLDAs for parameter markers (SQLDA_IN) and select
list items (SQLDA_OUT). Assign value of the constant MAXPARAMS to
the SQLN field of both SQLDA structures. SQLN specifies to SQL the
maximum size of the SQLDA. */

!
if ((sqlda_in = (sqlda) calloc (1, sizeof (sqlda_rec))) == 0)

{
printf ("\n\n*** Error allocating memory for sqlda_in: Abort");
return (-1);
}

else /* Set number of possible parameters. */
sqlda_in->sqln = MAXPARAMS;

if ((sqlda_out = (sqlda) calloc (1, sizeof (sqlda_rec))) == 0)
{
printf ("\n\n*** Error allocating memory for sqlda_out: Abort");
return (-1);
}

else
/* Set number of possible select list items. */
sqlda_out->sqln = MAXPARAMS;

/* Copy name SQLDA2 to identify the SQLDA. */

strncpy(&sqlda_in->sqldaid[0],"SQLDA2 ",8);
strncpy(&sqlda_out->sqldaid[0],"SQLDA2 ",8);

/* Call the SQL module language procedures prepare_stmt and
describe_select which contain PREPARE and DESCRIBE...SELECT LIST
statements to prepare the dynamic statement and write
information about any select list items in it to sqlda_out. */

stmt_id = 0; / if <> 0 the BADPREPARE error results in the PREPARE*/

prepare_stmt (&SQLCA, stmt_id, psql_stmt); "
if (SQLCA.SQLCODE != sql_success)

{
printf ("\n\nDSQL-E-PREPARE, Error %d encountered in PREPARE",

SQLCA.SQLCODE);
display_error_message();
return (-1);
}

(continued on next page)

11–34 Using Dynamic SQL

Example 11–8 (Cont.) Testing Whether a Statement Is a SELECT Statement

describe_select (&SQLCA, stmt_id, sqlda_out); #
if (SQLCA.SQLCODE != sql_success)

{
printf ("\n\nDSQL-E-PREPARE, Error %d encountered in PREPARE",

SQLCA.SQLCODE);
display_error_message();
return (-1);
}

/* Call an SQL module language procedure, describe_parm, which contains a
DESCRIBE...MARKERS statement to write information about any parameter
markers in the dynamic statement to sqlda_in. */

describe_parm (&SQLCA, stmt_id, sqlda_in); $
if (SQLCA.SQLCODE != sql_success)

{
printf ("\n\n*** Error %d returned from describe_parm: Abort",

SQLCA.SQLCODE);
display_error_message();
return (-1);
}

/* Save the value of the SQLCA.SQLERRD[1] field so that the program
can determine if the statement is a SELECT statement or not.
If the value is 1, the statement is a SELECT statement.*/

*is_select = SQLCA.SQLERRD[1];
.
.
.

/* Check to see if the prepared dynamic statement contains any parameter
markers by looking at the SQLD field of sqlda_in. SQLD contains the
number of parameter markers in the prepared statement. If SQLD is
positive, the prepared statement contains parameter markers. The program
executes a local routine, get_in_params, that prompts the user for
values, allocates storage for those values, and updates the SQLDATA field
of sqlda_in. */

if (sqlda_in->sqld > 0) %
if ((status = get_in_params(sqlda_in,input_save)) != 0)

{
printf ("\nError returned from get_in_params. Abort");
return (-1);
}

/* Check to see if the prepared dynamic statement is a SELECT statement
by looking at the value in is_select, which stores the value of
the SQLCA.SQLERRD[1] field. If that value is equal to 1, the
the prepared statement is a SELECT statement. The program allocates
storage for rows for SQL module language procedures to open and
fetch from a cursor and displays the rows on the terminal. */

(continued on next page)

Using Dynamic SQL 11–35

Example 11–8 (Cont.) Testing Whether a Statement Is a SELECT Statement

if (*is_select) &
{
if (new_statement == TRUE) /* allocate buffers for output */

{
/* assign a unique name for the cursor */
sprintf(cursor_name,"%2d",++cursor_counter);

if ((status = allocate_buffers(sqlda_out)) != 0)
.
.
.

/* If the SQLCA.SQLERRD[1] field is not 1, the prepared statement is not a
SELECT statement and only needs to be executed. Call an SQL module language
procedure to execute the statement, using information about parameter
markers stored in sqlda_in by the local routine get_in_params. */

if (SQLCA.SQLERRD[1] != 1)
{
execute_stmt (&SQLCA, stmt_id, sqlda_in);

.

.

.

The following callouts are keyed to the Example 11–8:

! Allocates storage for the declared SQLDA_IN and SQLDA_OUT structures.

" Calls a PREPARE statement in the SQL module procedure to check the
SQL statement and assign an identifier to it.

Calls a DESCRIBE . . . SELECT LIST statement in the SQL module
procedure to write information about any select list items in the statement
string to SQLDA_OUT.

$ Calls a DESCRIBE . . . MARKERS statement in an SQL module procedure
to write information about any parameter markers in the statement string
to SQLDA_IN.

% Checks the value of SQLDA_IN.SQLD. If the value is positive, the
statement string contains parameter markers, and the program branches
to the GET_IN_PARAMS subroutine. If the value is not positive, the
statement string contains no parameter markers, and program control does
not branch.

& Checks the value of the second element of the SQLERRD array. If the
value is 1, the statement string is a SELECT statement, and the program
branches to the ALLOCATE BUFFERS subroutine. If the value is 0, the

11–36 Using Dynamic SQL

statement string is not a SELECT statement (or CALL statement), and the
program calls an EXECUTE statement to process it.

11.7 Processing Sets of Dynamically Generated Statements
You can use a single set of dynamic SQL statements, such as PREPARE,
DESCRIBE, extended dynamic DECLARE CURSOR, OPEN, and FETCH,
to concurrently process any number of dynamically generated statements by
specifying parameters for the statement and cursor names in the associated
dynamic SQL statements. By using parameters instead of explicit statement
names, a program can supply statement and cursor names at run time, instead
of at compile time, and process an arbitrary number of dynamically generated
SQL statements.

For non-SELECT statements, you can use an integer parameter as a statement
identifier instead of an explicit statement name in the PREPARE statement.
The PREPARE statement returns a value for the statement identifier that you
can pass to the EXECUTE statement.

For SELECT statements as for non-SELECT statements, you can use a
parameter as a statement identifier instead of an explicit statement name in
the PREPARE statement. You pass the prepared statement to an extended
dynamic DECLARE CURSOR statement by using the statement identifier. The
extended dynamic DECLARE CURSOR statement lets you specify a parameter
for the cursor name instead of explicitly declaring the name of the cursor in
your source code. You supply both the cursor name and SELECT statement at
run time.

To process an arbitrary number of statements at run time, you must save the
values of the parameters for the statement identifier and the cursor name so
that you can refer to a previously prepared statement or previously declared
cursor. You can set up arrays to store the values of these parameters in a
data structure. Set up one array to hold the value of the statement identifier
parameter and assign the value of the parameter to an array element after
each PREPARE or extended dynamic DECLARE CURSOR statement. If you
are processing SELECT statements, you must also store the value of the cursor
name parameter in an array. Assign the value of that parameter to an array
element after each extended dynamic DECLARE CURSOR statement.

The following sections use excerpts from the sql_multi_stmt_dyn.sqlada sample
program, which demonstrates the use of parameters for statement and cursor
names. The program constructs SQL statements from user input at run time.
Using a single set of dynamic SQL statements, the program can process many
dynamically generated statements.

Using Dynamic SQL 11–37

11.7.1 Storing Statement Identifiers and Cursor Names
Example 11–9 shows sections of code from the sql_multi_stmt_dyn.sqlada
sample program. It shows how you can declare arrays for statement identifiers
and cursor names and assign the value of the statement identifiers and cursor
name parameters to elements of the arrays. In addition, it shows arrays that
the sample program uses to keep track of each statement and its associated
parameters.

Example 11–9 Storing Statement Identifiers and Cursor Names in Arrays

-- Declare tables of procedure names, identifiers, and cursor names,
-- a counter, and an index.

-- The array PROCEDURE_NAMES holds the name that the user gives each
-- statement. You may decide to keep track of the statements in a
-- different way. The array PROCEDURE_IDS holds the statement
-- identifiers generated by the PREPARE statement. The array
-- CURSOR_NAMES holds the cursor names.

PROCEDURE_NAMES : array(1..maxprocs) of string(1..name_strlng);
PROCEDURE_IDS : array(1..maxprocs) of integer;
CURSOR_NAMES : array(1..maxprocs) of string(1..name_strlng);

-- The NUMBER_OF_PROCS procedure increments the array elements when
-- the program stores information. The STMT_INDEX procedure increments
-- the array elements when the program looks up information.

NUMBER_OF_PROCS : short_integer := 0;
STMT_INDEX : short_integer := 0;

.

.

.
-- This section of the program stores the values of the parameters for
-- statement identifiers and cursor names in arrays.

number_of_procs := number_of_procs + 1;

-- Assign information about parameter markers and select list items to
-- array elements.

sqlda_in_array(number_of_procs) := sqlda_in;
sqlda_out_array(number_of_procs) := sqlda_out;

-- Assign the user-specified statement name to an array element. Assign
-- the statement identifier returned by the PREPARE statement to an
-- array element. In addition, if the statement is a SELECT statement,
-- assign the cursor name to an array element.

(continued on next page)

11–38 Using Dynamic SQL

Example 11–9 (Cont.) Storing Statement Identifiers and Cursor Names in
Arrays

procedure_names(number_of_procs) := cur_name;
procedure_ids(number_of_procs) := cur_procid;
if cur_op(1) = ’R’ then

cursor_names(number_of_procs) := cur_cursor;
end if;

11.7.2 Executing Multiple Non-SELECT Statements
To process more than one non-SELECT statement with a single set of dynamic
SQL statements, use a parameter in place of the statement name in the
PREPARE statement. The parameter has an integer data type. The PREPARE
statement returns a statement identifier in this parameter, which you pass to
the DESCRIBE . . . MARKERS and EXECUTE statements.

Example 11–10, an excerpt from the sample sql_multi_stmt_dyn.sqlada
program, shows how you can use one set of dynamic SQL statements to process
any number of non-SELECT statements.

The PREPARE_SQL procedure contains a PREPARE statement, a
DESCRIBE . . . SELECT LIST statement, and a DESCRIBE . . . MARKERS
statement. The program uses the PREPARE_SQL procedure to prepare both
SELECT and non-SELECT statements, in contrast to the EXECUTE_SQL
procedure, which executes only non-SELECT statements. If you expect the
PREPARE statement to process only non-SELECT statements, you do not need
to include the DESCRIBE . . . SELECT LIST statement.

Example 11–10 Executing More Than One Non-SELECT Statement

-- This procedure prepares a statement for dynamic execution from the
-- string passed to it. It can prepare any number of statements because
-- the statement is passed to it as the parameter cur_stmt.

procedure PREPARE_SQL is
CUR_CURSOR : string(1..31) := (others => ’ ’);
CUR_PROCID : integer := 0;
CUR_STMT : string(1..1024) := (others => ’ ’);

(continued on next page)

Using Dynamic SQL 11–39

Example 11–10 (Cont.) Executing More Than One Non-SELECT Statement

begin
-- Allocate separate SQLDAs for parameter markers (sqlda_in) and select list
-- items (sqlda_out). Assign the value of the constant MAXPARMS (set in the
-- declarations section) to the SQLN field of both SQLDA structures. SQLN
-- specifies to SQL the maximum size of the SQLDA.

sqlda_in := new sqlda_record;
sqlda_in.sqln := maxparms;
sqlda_out := new sqlda_record;
sqlda_out.sqln := maxparms;

-- Assign the SQL statement that was constructed in the procedure
-- CONSTRUCT_SQL to the variable cur_stmt.

cur_stmt := sql_stmt;

-- Use the PREPARE statement to prepare the dynamic statement
-- for dynamic execution from the string passed to it.

EXEC SQL PREPARE :cur_procid FROM :cur_stmt;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;

-- Use the DESCRIBE ... SELECT LIST statement to write information
-- about the number and data type of any select list items in the
-- statement to an SQLDA (specifically, the sqlda_out SQLDA specified).

EXEC SQL DESCRIBE :cur_procid SELECT LIST INTO :sqlda_out;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;

-- Use the DESCRIBE...MARKERS statement to write information about any
-- parameter markers in the dynamic statement to sqlda_in. The statement
-- writes information to an SQLDA (specifically, the sqlda_in SQLDA
-- specified) about the number and data type of any parameter markers in
-- the prepared dynamic statement. SELECT statements may also have
-- parameter markers.

EXEC SQL DESCRIBE :cur_procid MARKERS INTO sqlda_in;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;
.
.
.

procedure EXECUTE_SQL is

(continued on next page)

11–40 Using Dynamic SQL

Example 11–10 (Cont.) Executing More Than One Non-SELECT Statement

begin
--
-- This procedure dynamically executes a non-SELECT statement.
-- SELECT statements are processed by DECLARE CURSOR, OPEN CURSOR,
-- and FETCH statements.
--
-- The EXECUTE statement specifies an SQLDA (specifically, the sqlda_in
-- SQLDA specified) as the source of addresses for any parameter
-- markers in the dynamic statement.
--
-- The EXECUTE statement with the USING DESCRIPTOR clause also
-- handles statement strings that contain no parameter markers.
-- If a statement string contains no parameter markers, SQL sets
-- the SQLD field of the SQLDA to zero.
--
sqlda_in := new sqlda_record;
sqlda_in := sqlda_in_array(stmt_index);
cur_procid := procedure_ids(stmt_index);

EXEC SQL EXECUTE :cur_procid USING DESCRIPTOR :sqlda_in;

end EXECUTE_SQL;

11.7.3 Executing Multiple SELECT Statements
To process more than one SELECT statement with a single set of dynamic
SQL statements, use a parameter instead of an explicit statement name in
the PREPARE statement. The PREPARE statement returns a statement
identifier in this parameter, which you pass to the DESCRIBE . . . SELECT
LIST, DESCRIBE . . . MARKERS, and extended dynamic DECLARE CURSOR
statements.

In addition, use a parameter for the name of the cursor in the extended
dynamic DECLARE CURSOR statement. You then pass the parameter
for the cursor name to the OPEN, FETCH, and CLOSE statements. The
parameter has an integer data type. The statement identifier in the PREPARE
statement also has an integer data type, which must be initialized before a
PREPARE statement. The cursor name parameter is a character string with a
31-character maximum length.

If you use an extended dynamic DECLARE CURSOR statement, you specify a
parameter rather than an explicit statement name for both the cursor name
and the statement identifier. You must also use the parameters instead of
explicit cursor and statement names in associated dynamic SQL statements
such as PREPARE, DESCRIBE, FETCH, OPEN, or CLOSE.

Using Dynamic SQL 11–41

Example 11–11, which is an excerpt from the sql_multi_stmt_dyn.sqlada
sample program, shows how you can use one set of dynamic statements to
process any number of SELECT statements. The PREPARE_SQL procedure
contains PREPARE, DESCRIBE . . . SELECT LIST, DESCRIBE . . .
MARKERS, and extended dynamic DECLARE CURSOR statements. The
main program uses the PREPARE_SQL statement to prepare both SELECT
and non-SELECT statements.

The DISPLAY_DATA procedure contains OPEN, FETCH, and CLOSE
statements that use parameters to refer to the cursor name.

Example 11–11 Executing More Than One SELECT Statement

-- This procedure prepares a statement for dynamic execution from the
-- string passed to it. It can prepare any number of statements because
-- the statement is passed to it as the parameter cur_stmt.

procedure PREPARE_SQL is
CUR_CURSOR : string(1..31) := (others => ’ ’);
CUR_PROCID : integer := 0;
CUR_STMT : string(1..1024) := (others => ’ ’);

begin

-- Allocate separate SQLDAs for parameter markers (sqlda_in) and select list
-- items (sqlda_out). Assign the value of the constant MAXPARMS (set in the
-- declarations section) to the SQLN field of both SQLDA structures. SQLN
-- specifies to SQL the maximum size of the SQLDA.

sqlda_in := new sqlda_record;
sqlda_in.sqln := maxparms;
sqlda_out := new sqlda_record;
sqlda_out.sqln := maxparms;

-- Assign the SQL statement that was constructed in the procedure
-- CONSTRUCT_SQL to the variable cur_stmt.

cur_stmt := sql_stmt;

-- Use the PREPARE statement just to prepare the dynamic statement
-- for dynamic execution from the string passed to it and not
-- to write information about select list items to an SQLDA.

EXEC SQL PREPARE :cur_procid FROM :cur_stmt;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;

-- Use the DESCRIBE ... SELECT LIST statement to write information
-- about the number and data type of any select list items in the
-- statement to an SQLDA (specifically, the sqlda_out SQLDA specified).

EXEC SQL DESCRIBE :cur_procid SELECT LIST INTO :sqlda_out;

(continued on next page)

11–42 Using Dynamic SQL

Example 11–11 (Cont.) Executing More Than One SELECT Statement
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;

-- Use the DESCRIBE...MARKERS statement to write information about any
-- parameter markers in the dynamic statement to sqlda_in. The statement
-- writes information to an SQLDA (specifically, the sqlda_in SQLDA
-- specified) about the number and data type of any parameter markers in
-- the prepared dynamic statement. SELECT statements may also have
-- parameter markers.

EXEC SQL DESCRIBE :cur_procid MARKERS INTO sqlda_in;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;

-- If the operation is ’R’ (read), create a unique name for the cursor
-- name so that the program can pass the cursor name to the extended
-- dynamic DECLARE CURSOR statement.

if cur_op(1) = ’R’ then
cur_cursor(1) := ’C’;
cur_cursor(2..name_strlng) := cur_name(1..name_strlng - 1);

-- Declare the extended dynamic cursor.

EXEC SQL DECLARE :cur_cursor CURSOR FOR :cur_procid;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;
end if;

-- This section of the program stores the values of the parameters for
-- statement identifiers and cursor names in arrays.

number_of_procs := number_of_procs + 1;

-- Assign information about parameter markers and select list items to
-- array elements.

sqlda_in_array(number_of_procs) := sqlda_in;
sqlda_out_array(number_of_procs) := sqlda_out;

-- Assign the user-specified statement name to an array element. Assign
-- the statement identifier returned by the PREPARE statement to an
-- array element. In addition, if the statement is a SELECT statement,
-- assign the cursor name to an array element.

procedure_names(number_of_procs) := cur_name;
procedure_ids(number_of_procs) := cur_procid;

(continued on next page)

Using Dynamic SQL 11–43

Example 11–11 (Cont.) Executing More Than One SELECT Statement
if cur_op(1) = ’R’ then

cursor_names(number_of_procs) := cur_cursor;
end if;

.

.

.
end PREPARE_SQL;

.

.

.
procedure DISPLAY_DATA is

.

.

.
begin -- procedure body DISPLAY_DATA

-- Before displaying any data, allocate buffers to hold the data
-- returned by SQL.
--

allocate_buffers;

-- Allocate and assign SQLDAs for the requested SQL procedure.
--
sqlda_in := new sqlda_record;
sqlda_in := sqlda_in_array(stmt_index);
sqlda_out := new sqlda_record;
sqlda_out := sqlda_out_array(stmt_index);
cur_cursor := cursor_names(stmt_index);

-- Open the previously declared cursor. The statement specifies
-- an SQLDA (specifically, sqlda_in) as the source of addresses for any
-- parameter markers in the cursor’s SELECT statement.
--
EXEC SQL OPEN :cur_cursor USING DESCRIPTOR sqlda_in;
case sqlca.sqlcode is

when sql_success => null;
when others => raise unexpected_error;

end case;

-- Fetch the first row from the result table. This statement fetches a
-- row from the opened cursor and writes it to the addresses specified
-- in an SQLDA (specifically, sqlda_out).
--

EXEC SQL FETCH :cur_cursor USING DESCRIPTOR sqlda_out;
case sqlca.sqlcode is

-- Check to see if the result table has any rows.

when sql_success => null;
when stream_eof =>

put_line("No records found.");
new_line;

when others => raise unexpected_error;
end case;

(continued on next page)

11–44 Using Dynamic SQL

Example 11–11 (Cont.) Executing More Than One SELECT Statement
-- Set up a loop to display first row, fetch and display second and
-- subsequent rows.

rowcount := 0;
while sqlca.sqlcode = 0 loop

rowcount := rowcount + 1;

-- Execute the DISPLAY_ROW procedure.
display_row;

-- To display only 5 rows, exit the loop if the loop counter
-- equals MAXROW (hardcoded as 5 in this program).

if rowcount = maxrows then exit; end if;

-- Fetch another row, exit the loop if no more rows.

EXEC SQL FETCH :cur_cursor USING DESCRIPTOR sqlda_out;
case sqlca.sqlcode is

when sql_success => null;
when stream_eof => exit;
when others => raise unexpected_error;

end case;
end loop;

-- Close the cursor.

EXEC SQL CLOSE :cur_cursor;
case sqlca.sqlcode is

when sql_success => null;
when others => raise unexpected_error;

end case;
.
.
.

end DISPLAY_DATA;

11.8 Finding the Sample Programs Used in This Chapter
The entire sql_multi_stmt_dyn.sqlada program used in Section 11.7 is available
on line in the samples directory.

The complete sql_dynamic program is also available on line. It uses the
SQL module language to illustrate the most general type of dynamic SQL
application. As does the program in Example 11–1, sql_dynamic accepts
a statement from the terminal, but handles SELECT and non-SELECT
statements with or without parameter markers. This program also uses the
SQLDA2 data structure, which allows for the storage of information necessary
for the date-time data types.

Using Dynamic SQL 11–45

The main C program, sql_dynamic, is used to illustrate two different types of
user implementation. Separate driver modules are used to illustrate each of
these. The entire application consists of the following source modules:

• The sql_dynamic_driver_i.c module accepts an SQL statement from the
user and passes it to the sql_dynamic.c module. This driver module is used
with sql_dynamic.c and sql_dynamic_c.sqlmod to simulate interactive SQL.
It also allows the user to execute SQL queries contained in a script file.

• The sql_dynamic_driver_m.c module repeatedly executes a series of
preestablished SQL queries. The sql_dynamic_driver_m.c module includes
one INSERT, one SELECT, and one UPDATE statement that execute
repeatedly until the user exits. You can modify this program to accept
queries from a file.

This example also requires that the SQL$DATABASE logical name or
SQL_DATABASE configuration parameter be defined.

• The sql_dynamic.c module processes the statement passed to it from the
driver module, displaying results on the terminal screen.

• The sql_dynamic_c.sqlmod file is an SQL module language file that
contains all the subroutines called by the host language modules.

The sql_dynamic_i program can be used both interactively and to execute
queries from a script file. To execute queries from a file, create the file, and use
the @filename.sql statement at the DynamicSQL> prompt as follows:

This program processes any valid SQL statement using dynamic SQL.

Enter the SQL statement to process on the following line(s), terminating your
statement with a semicolon <;> <<CR> or <CTRL-Z> to exit>:

DynamicSQL> @dynamic.sql;

The dynamic.sql file might look like this:

ATTACH ’FILENAME personnel’;
SELECT LAST_NAME,FIRST_NAME,EMPLOYEE_ID FROM EMPLOYEES
ORDER BY EMPLOYEE_ID;
SELECT LAST_NAME,BIRTHDAY FROM EMPLOYEES WHERE EMPLOYEE_ID > ?;

.

.

.

The following example shows the execution of sql_dynamic_i in an interactive
mode:

11–46 Using Dynamic SQL

This program processes any valid SQL statement using dynamic SQL.

Enter the SQL statement to process on the following line(s), terminating your
statement with a semicolon <;> <<CR> or <CTRL-Z> to exit>:

DynamicSQL> ATTACH ’FILENAME mf_personnel’;

The SQL statement to be executed dynamically is:
ATTACH ’FILENAME mf_personnel’;

Enter the SQL statement to process on the following line(s), terminating your
statement with a semicolon <;> <<CR> or <CTRL-Z> to exit>:

DynamicSQL> SELECT * FROM EMPLOYEES WHERE LAST_NAME = ?;

The SQL statement to be executed dynamically is:
SELECT * FROM EMPLOYEES WHERE LAST_NAME = ?;

Enter value for parameter ’LAST_NAME’
(Maximum length is 14)Nash
--
Field EMPLOYEE_ID:00168
Field LAST_NAME:Nash
Field FIRST_NAME:Norman
Field MIDDLE_INITIAL: NULL

.

.

.
DynamicSQL> Ctrl/Z

$

The sql_dynamic program accepts a statement the user types at the terminal
and passes it to a processing module. (To see the complete source code for the
module, look in the samples directory.)

To process the SQL statement string passed by the driver module, sql_dynamic
issues calls to SQL module language procedures that execute PREPARE and
DESCRIBE statements for the statement string. The program then uses
information written by the PREPARE and DESCRIBE statements to the
SQLERRD field of the SQLCA structure to test if the statement string is
a SELECT statement and to an SQLDA2 structure to test if the statement
contains parameter markers.

Depending on the results of the tests, sql_dynamic executes one or both of the
following subroutines:

• GET_IN_PARAMS if the statement string contains parameter markers

The GET_IN_PARAMS subroutine allocates storage buffers for all the
parameter markers in the statement string, writes the addresses of the
buffers to an SQLDA2 structure, prompts the user for values corresponding
to each parameter marker, and stores those values in the variables.

Using Dynamic SQL 11–47

• ALLOCATE_BUFFERS if the statement string is a SELECT statement

The ALLOCATE_BUFFERS subroutine allocates storage buffers for all the
select list items in the statement string and writes the addresses of the
buffers to an SQLDA2 structure.

For SELECT statements, sql_dynamic calls an SQL module language
procedure to open a cursor and executes a loop. For each row of the result
table created by the OPEN statement, the loop:

• Calls an SQL module language procedure to fetch the row.

• Calls another subroutine, DISPLAY_ROW, which uses the storage allocated
by the ALLOCATE_BUFFERS subroutine to hold values for the row and
displays them at the terminal.

For non-SELECT statements, sql_dynamic processes the prepared statement
with an EXECUTE statement.

If you want to see the sql_dynamic program in its entirety, copy it from the
samples directory.

11–48 Using Dynamic SQL

Part IV
Programmatic Structures

This part discusses the components SQL provides to give you more control over
your programs:

• Compound statements

• Stored routines

• External routines

12
Using Compound Statements in SQL

You can use standard programming constructs, such as flow-control statements,
in SQL. To do so, you use those constructs within compound statements.
A compound statement groups one or more SQL statements, including
flow-control statements, into the context of a single statement.

In the sections that follow, you will become familiar with:

• The concept of compound statements

• Using compound statements to increase the performance of your database
applications

• Writing compound statements

• Controlling the atomicity of compound statements

• Controlling transactions in compound statements

• Processing compound statements dynamically

• Debugging compound statements

• Retrieving information, such as row count, connection information and
transactions in a compound statement

• Handling exception and completion conditions in compound statements

12.1 Introducing Compound Statements
Compound statements allow you to use a set of standard programming
constructs, such as flow-control statements, in SQL and allow you to group
SQL statements into the context of a single statement. Procedures that contain
a compound statement are called multistatement procedures.

Compound statements allow you to control the sequence of statement execution
and to perform both simple and complex decision-making tasks within the
compound statement. Compound statements can include the following:

• SQL data manipulation statements

Using Compound Statements in SQL 12–1

• Local variables

• Flow-control statements, such as IF statements and FOR loops

• Clauses to control the atomicity of the statement

• The CALL statement, to invoke external or stored procedures

• Statements to begin or end transactions

You can use compound statements in SQL module language, embedded SQL,
and interactive SQL, and you can process compound statements with dynamic
SQL. In addition, you must use compound statements when you define stored
procedures or functions.

12.2 Using Compound Statements to Increase Performance
When you use compound statements, you can perform comprehensive business
transactions and complex program control within the database environment.

Packaging multiple SQL statements in a compound statement improves client
and server performance, particularly remote access, because it reduces the
amount of interaction between the Oracle Rdb system and the application
program accessing the database system. In addition, it improves performance
even if all interaction occurs on one node.

Compound statements, and thus multistatement procedures, provide the
following benefits. They:

• Reduce procedure calls and simplify application program logic by letting a
single request perform many operations on the database system without
requiring a return to the application program for each statement, thus
increasing the performance of your application.

• Let you achieve procedural abstraction in many cases. Procedural
abstraction means that one physical module performs one logical
database function.

• Provide a cleaner separation between database requests and access.

• Reduce network traffic by reducing the number of procedure calls in a
client/server configuration, resulting in better performance.

• Provide faster execution, especially in high-performance database
applications.

• Allow multiple operations to be processed as one (using the ATOMIC
keyword).

12–2 Using Compound Statements in SQL

• Reduce mismatching of data types between the application and the
database.

12.3 Writing a Compound Statement
When you write a compound statement, you use the BEGIN keyword to specify
the beginning of the compound statement and the END keyword to specify
the end. You can include one or more SQL statements within a compound
statement, as shown in the following interactive SQL example:

SQL> BEGIN
cont> UPDATE DEPARTMENTS
cont> SET MANAGER_ID = ’00167’
cont> WHERE DEPARTMENT_CODE = ’SALE’;
cont> UPDATE JOB_HISTORY
cont> SET JOB_END = CURRENT_TIMESTAMP
cont> WHERE EMPLOYEE_ID = ’00167’ AND JOB_END IS NULL;
cont> INSERT INTO JOB_HISTORY
cont> (EMPLOYEE_ID, DEPARTMENT_CODE, JOB_CODE, JOB_START)
cont> VALUES
cont> (’00167’, ’SALE’, ’DMGR’, CURRENT_TIMESTAMP);
cont> END;
SQL>

SQL sequentially executes the SQL statements within a compound statement.

You can include the following in a compound statement:

• Variable declarations and assignments

• SQL data manipulation statements

You can use a singleton SELECT, UPDATE, INSERT, or DELETE
statement in a compound statement. (Note that you cannot use a SELECT
statement other than a singleton SELECT.)

• CASE statement

The CASE statement executes one of a sequence of alternate statement
blocks in a compound statement.

• FOR statement

The FOR statement executes SQL statements for each row of a query
expression. The FOR statement provides the functionality of cursors in
compound statements. (You cannot use the DECLARE CURSOR, OPEN,
FETCH, and CLOSE statements in compound statements.)

• IF statement

The IF statement conditionally executes one or more SQL statements.

Using Compound Statements in SQL 12–3

• LOOP statement

The LOOP statement allows the repetitive execution of one or more SQL
statements in a compound statement until an error occurs or a LEAVE
statement is executed, or as long as a WHILE predicate clause evaluates to
TRUE.

• LEAVE statement

The LEAVE statement lets the program exit from the compound or
flow-control statement that contains it.

• TRACE statement

The TRACE statement writes values to a log file for each value expression
that the statement evaluates. Use the TRACE statement to debug
compound statements.

• CALL statement

The CALL statement lets the program call stored or external procedures.
To call external procedures, the CALL statement must be in a compound
statement.

• GET DIAGNOSTICS statement

The GET DIAGNOSTICS statement provides information about the current
environment and completion conditions for compound statements.

• SIGNAL statement

The SIGNAL statement provides information about exception conditions
for compound statements.

• Clauses to control the atomicity of the statement

• Statements to begin or end transactions

You can nest compound statements to any desired depth. Many examples in
the following sections show nested compound statements.

12.3.1 Declaring and Assigning Variables
In compound statements, you can declare variables, assign values to those
variables, and use the variables in SQL statements. In compound statements,
variable declarations must appear before any executable SQL statement.

To declare a variable, use the DECLARE variable clause of the compound
statement. To assign a value to a variable, you can use the SET statement or
the DEFAULT clause of the DECLARE variable clause.

12–4 Using Compound Statements in SQL

The following example shows how to declare the variable :mgrid, assign a value
to it, and use the variable in an UPDATE statement:

SQL> BEGIN
cont> DECLARE :mgrid CHAR(5);
cont> SET :mgrid = ’00167’;
cont> UPDATE DEPARTMENTS
cont> SET MANAGER_ID = :mgrid
cont> WHERE DEPARTMENT_CODE = ’SALE’;
cont> END;
SQL>

You can specify the data type explicitly or you can specify it implicitly by using
a domain name. However, you cannot specify or use the LIST data type in a
compound statement.

When you declare a variable, you can assign a default value to the variable by
using the DEFAULT clause, as the following example shows:

DECLARE :mgrid CHAR(5) DEFAULT ’00167’;

In place of the DEFAULT keyword, you can use an equals sign (=).

The default value can be almost any value expression, including subqueries,
conditional, character, date/time and numeric expressions. However, the
default value cannot be an aggregate function. If you do not specify a default
value, but you specify a domain name as the data type and a default value is
defined for that domain, SQL uses the domain’s default value as the variable’s
default value.

You can also specify whether or not a variable can be updated by specifying
the UPDATABLE or CONSTANT keywords. In the following example, because
:mgrid is declared as a constant, you cannot change the value of the variable:

DECLARE :mgrid CONSTANT CHAR(5) DEFAULT ’00167’ ;

If you use the CONSTANT keyword, you must specify a default value.

The UPDATABLE keyword, which is the default, lets you change the value of
a variable. If you use the variable in a SET statement, an INTO clause, or
as an OUT or INOUT procedure parameter, you must declare the variable as
updatable.

Variables in compound statements can hold null values, unlike formal
parameters in SQL module procedures or in embedded SQL statements,
which require the use of indicator parameters to handle null values. You do
not use indicator parameters with variables in compound statements.

Using Compound Statements in SQL 12–5

You can assign a null value to a variable directly by using the SET statement
or the DEFAULT clause of the DECLARE variable statement or indirectly
by using the variable in an SQL data manipulation statement. For example,
the following compound statement returns a null value into the :job_end_date
variable:

BEGIN
DECLARE :job_end_date DATE;
SELECT JOB_END INTO :job_end_date FROM JOB_HISTORY

WHERE EMPLOYEE_ID = ’00180’;
END;

When you declare a variable in a compound statement, the scope of the
variable is limited to that compound statement. That is, when the compound
statement completes executing, you can no longer use the variable without
declaring it again.

When you nest compound statements, you can declare and assign values
to the same variable name in an inner compound statement, even if you
used the variable in the outer compound statement. When you do, the
variable declaration and assignment in the inner compound statement occludes
(or hides) the variable declaration and assignment in the outer compound
statement.

The following excerpt from an SQL module shows a nested compound
statement that declares and assigns a value to the variable :inc in an outer
compound statement. Then, in the inner compound statement, it declares the
variable :inc again, but with different precision, and assigns a different value
to it.

BEGIN
-- Because :inc is declared as SMALLINT(3), SQL multiplies the salaries
-- of employees in NH by 1.055.

DECLARE :inc SMALLINT(3);
SET :inc = 1.055;

UPDATE SALARY_HISTORY
SET SALARY_AMOUNT = (SALARY_AMOUNT * :inc)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID IN (SELECT EMPLOYEE_ID FROM EMPLOYEES
WHERE STATE = ’NH’);

BEGIN
-- Because :inc is declared as INTEGER(2), SQL rounds the number to
-- two decimal places (1.07) before it multiplies the salaries
-- of employees in MA.

DECLARE :inc INTEGER(2);

12–6 Using Compound Statements in SQL

-- The SET statement assigns a new value to the variable :inc.
SET :inc = 1.066;
UPDATE SALARY_HISTORY

SET SALARY_AMOUNT = (SALARY_AMOUNT * :inc)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID IN (SELECT EMPLOYEE_ID FROM EMPLOYEES
WHERE STATE = ’MA’);

END;

-- Because the following statement is in the outer compound statement,
-- :inc is declared as SMALLINT(3) with the value 1.055. As a result,
-- SQL multiplies the salaries of employees in CT by 1.055.

UPDATE SALARY_HISTORY
SET SALARY_AMOUNT = (salary_amount * :inc)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID IN (SELECT EMPLOYEE_ID FROM EMPLOYEES
WHERE STATE = ’CT’);

END;

For more information about the SET statement and the DECLARE variable
clause, see the Oracle Rdb7 SQL Reference Manual.

12.3.2 Using the IF Statement
Use the IF statement to conditionally execute one or more SQL statements.

The following excerpt from an embedded SQL program shows how you use
an IF statement, along with host language variables and variables in the
compound statement, to control the conditional execution of an UPDATE
statement.

In the example, the host language program declares the variable :mgrid and
passes the value in the variable to the compound statement. The compound
statement retrieves the MANAGER_ID of the current manager of a department
by using a singleton SELECT statement and assigning the value to the
variable in the INTO clause. Then, it uses the IF statement to check whether
the current MANAGER_ID is different from the ID of the manager to be
assigned. If it is different, SQL executes the UPDATE statement in the
THEN clause. If the MANAGER_ID is not different, SQL does not execute the
UPDATE statement in the THEN clause.

-- Use the EXEC SQL keywords with compound statements, just as with simple
-- SQL statements.
EXEC SQL BEGIN

DECLARE :cur_mgrid CHAR(5);

SELECT MANAGER_ID INTO :cur_mgrid FROM DEPARTMENTS
WHERE DEPARTMENT_CODE = ’SALE’;

Using Compound Statements in SQL 12–7

-- You must precede host language variables with a colon when you use them
-- in compound statements.

IF :cur_mgrid <> :mgrid
THEN

UPDATE DEPARTMENTS
SET MANAGER_ID = :mgrid
WHERE DEPARTMENT_CODE = ’SALE’;

END IF;
END;

As with all flow-control statements, you can nest IF statements to any level. In
many cases, however, using the ELSEIF clause of the IF statement can make
your code easier to read. The following excerpt from an SQL module shows
examples of both nesting IF statements and using the ELSEIF clause:

BEGIN
DECLARE :state_code CHAR(2);
DECLARE :mgrid CHAR(5);
DECLARE :cur_mgrid CHAR(5);
SET :mgrid = ’00167’;

SELECT D.MANAGER_ID, E.STATE INTO :cur_mgrid, :state_code
FROM DEPARTMENTS D, EMPLOYEES E
WHERE DEPARTMENT_CODE = ’SALE’

AND D.MANAGER_ID = E.EMPLOYEE_ID;

-- Outer IF statement.
-- If the manager is a new manager, update the table.

IF :cur_mgrid <> :mgrid
THEN

UPDATE DEPARTMENTS
SET MANAGER_ID = :mgrid
WHERE DEPARTMENT_CODE = ’SALE’;

-- Nested IF statement.
-- Give the new manager a raise. The amount depends on the manager’s
-- state.

IF :state_code = ’NH’
THEN

UPDATE SALARY_HISTORY S
SET SALARY_AMOUNT = (salary_amount * 1.05)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID = :mgrid;

-- ELSEIF clause of nested IF statement.
ELSEIF :state_code = ’MA’
THEN

UPDATE SALARY_HISTORY S
SET SALARY_AMOUNT = (salary_amount * 1.07)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID = :mgrid;

12–8 Using Compound Statements in SQL

-- ELSE clause executes if the :state_code is neither NH nor MA.
ELSE

UPDATE SALARY_HISTORY S
SET SALARY_AMOUNT = (salary_amount * 1.06)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID = :mgrid;
END IF;

END IF;
END;

The preceding example increases employee salaries based on the state in which
they reside, to take tax differences into account.

12.3.3 Using the CASE Statement
The CASE statement lets you list several courses of action and choose one to
be executed at run time, depending on the value of an expression.

The following example performs the same tasks as the IF . . . ELSEIF example
in Section 12.3.2, but it uses the CASE statement instead of the nested IF
statement:

BEGIN
DECLARE :state_code CHAR(2);
DECLARE :mgrid CHAR(5);
DECLARE :cur_mgrid CHAR(5);
SET :mgrid = ’00167’;

SELECT D.MANAGER_ID, E.STATE INTO :cur_mgrid, :state_code
FROM DEPARTMENTS D, EMPLOYEES E
WHERE DEPARTMENT_CODE = ’SALE’

AND D.MANAGER_ID = E.EMPLOYEE_ID;

-- Outer IF statement.
IF :cur_mgrid <> :mgrid
THEN

UPDATE DEPARTMENTS
SET MANAGER_ID = :mgrid
WHERE DEPARTMENT_CODE = ’SALE’;

-- CASE statement. Give the new manager a raise. Because of differences in
-- state taxes, the amount varies with the state in which the manager resides.

CASE :state_code
WHEN ’NH’
THEN UPDATE SALARY_HISTORY S

SET SALARY_AMOUNT = (salary_amount * 1.05)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID = :mgrid;

Using Compound Statements in SQL 12–9

WHEN ’MA’
THEN UPDATE SALARY_HISTORY S

SET SALARY_AMOUNT = (salary_amount * 1.07)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID = :mgrid;

-- The ELSE clause executes if the :state_code is neither NH or MA.
ELSE UPDATE SALARY_HISTORY S

SET SALARY_AMOUNT = (salary_amount * 1.06)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID = :mgrid;
END CASE;

END IF;
END;

If a CASE statement does not contain an ELSE clause and the value of the
expression does not match the values in any WHEN clause, SQL generates an
exception.

12.3.4 Using the LOOP Statement
The LOOP statement allows the repetitive execution of one or more SQL
statements in a compound statement as long as a WHILE predicate clause
evaluates to TRUE, or until an error occurs or a LEAVE statement is executed.

The following example shows how to use the LOOP statement to trace the
management hierarchy in a company from the bottom up. The example begins
with one employee and finds that employee’s supervisor. Then it finds the
supervisor’s supervisor and continues looping until it finds a row where the
EMPLOYEE_ID is the same as the SUPERVISOR_ID.

-- This procedure begins with the employee with EMPLOYEE_ID 00180 and
-- finds his supervisor, tracing the hierarchy of the company.
BEGIN

DECLARE :emp_id CHAR(5);
DECLARE :sup_id CHAR(5);
DECLARE :id CHAR(5);
SET :emp_id = ’00180’;

-- Initialize :id and :sup_id to be different values, so that the LOOP
-- will execute at least once.

SET :id = ’00000’;
SET :sup_id = ’00001’;

12–10 Using Compound Statements in SQL

WHILE :id <> :sup_id
LOOP

SELECT EMPLOYEE_ID, SUPERVISOR_ID INTO :id, :sup_id
FROM JOB_HISTORY
WHERE EMPLOYEE_ID = :emp_id

AND JOB_END is NULL;
SET :emp_id = :sup_id;

END LOOP;
END;

12.3.5 Using the FOR Statement
The FOR statement lets you execute an SQL statement, including a compound
statement, for each row returned from a select expression. A FOR statement
provides features for compound statements that are similar to those provided
by cursors. The FOR statement implicitly declares and opens a cursor,
repeatedly fetches rows of values, and closes the cursor when the cursor
reaches end-of-stream.

The FOR statement evaluates a select expression that you specify in the AS
EACH ROW OF clause. For each iteration of the FOR loop, SQL stores the
value of each column that you specify in the AS EACH ROW OF clause in a
field in a record. You specify the name of the record immediately following the
FOR keyword. For example, in the following excerpt, SQL stores the columns
MINIMUM_SALARY and MAXIMUM_SALARY in the record :jobrec:

-- The :jobrec variable represents a record that holds columns from the
-- selected row.

FOR :jobrec
AS EACH ROW OF TABLE CURSOR JOB_CURSOR FOR

-- The select expression specifies that only two columns be stored in the
-- record :jobrec.

SELECT MINIMUM_SALARY, MAXIMUM_SALARY FROM JOBS
WHERE MINIMUM_SALARY < 20000

When you refer to columns stored in the record, you must qualify the column
name with the record name, as shown in the following excerpt:

IF :jobrec.MINIMUM_SALARY > :jobrec.MAXIMUM_SALARY

You can nest FOR statements to any depth.

The following example shows a simple FOR statement that selects all rows
that have a minimum salary of less than $20000.00 and, for each selected
row, increases the minimum salary. In addition, the example uses a nested
IF statement to increase the maximum salary if it is less than the minimum
salary.

Using Compound Statements in SQL 12–11

BEGIN
-- The :jobrec variable represents a record that holds columns from the
-- selected row.

FOR :jobrec
AS EACH ROW OF TABLE CURSOR JOB_CURSOR FOR

-- The select expression.
SELECT MINIMUM_SALARY, MAXIMUM_SALARY FROM JOBS

WHERE MINIMUM_SALARY < 20000
DO

-- Update the current row in the JOB_CURSOR.
UPDATE JOBS

-- No need to qualify the column names.
SET MINIMUM_SALARY = MINIMUM_SALARY * 1.10
WHERE CURRENT OF JOB_CURSOR;

-- If the minimum salary is now greater than the maximum salary, increase the
-- maximum salary.

IF :jobrec.MINIMUM_SALARY > :jobrec.MAXIMUM_SALARY
THEN

UPDATE JOBS
SET MAXIMUM_SALARY = MAXIMUM_SALARY * 1.10
WHERE CURRENT OF JOB_CURSOR;

END IF;

END FOR;
END;

As with UPDATE statements that you use with cursors, you use the WHERE
CURRENT OF clause to specify that SQL update only the row on which the
named cursor is positioned.

The following example, which nests IF statements within the FOR statement,
shows an SQL module procedure that contains a compound statement. The
procedure calculates the highest raise an employee has received. The host
language program passes the employee ID to the procedure through the
parameter :ID. The procedure returns the maximum percent raise to the host
language program in the parameter :RESULT.

PROCEDURE max_raise (SQLCODE,
:ID CHAR(5),
:RESULT REAL);

BEGIN
DECLARE :last_salary INTEGER(2) DEFAULT 0;
DECLARE :pct_raise INTEGER(2) DEFAULT 0;
SET :RESULT =0;

FOR :salhist_rec
AS EACH ROW OF
SELECT SALARY_AMOUNT FROM SALARY_HISTORY

WHERE EMPLOYEE_ID = :ID
ORDER BY SALARY_START ASC

12–12 Using Compound Statements in SQL

DO
IF :last_salary <> 0
THEN

SET :pct_raise = (:salhist_rec.salary_amount - :last_salary)
/ :last_salary;

END IF;

IF :pct_raise > :RESULT
THEN

SET :RESULT = :pct_raise;
END IF;

SET :last_salary = :salhist_rec.salary_amount;

END FOR;
END;

See Section 4.4 for more information about using compound statements in SQL
modules.

12.3.6 Using Labels in Compound Statements
You can name compound statements and FOR and LOOP statements using
a label. Labeling compound statements is particularly useful when you use
nested compound statements and FOR and LOOP statements, and you want
to specify that the program exit from a specific statement. (See Section 12.3.7
for information on using the LEAVE statement to exit from a compound
statement.)

To improve the readability of a program, specify the same label at the end of
the compound statement. The following excerpt from an SQL module specifies
the label UPD_MGRID for the compound statement:

UPD_MGRID: -- Beginning label for compound statement
BEGIN

DECLARE :mgrid CHAR(5);
SET :MGRID = ’00167’;
UPDATE DEPARTMENTS

SET MANAGER_ID = :mgrid
WHERE DEPARTMENT_CODE = ’SALE’;

END
UPD_MGRID -- Ending label for compound statement
; -- Ending semicolon for compound statement

You must append a colon (:) to the label name when you specify the beginning
label. You can use labels in the following cases:

• At the beginning and end of compound statements

Specify the beginning label before the BEGIN keyword and the ending
label after the END keyword.

Using Compound Statements in SQL 12–13

However, note the following:

In interactive SQL and precompiled SQL, you cannot use a label on
the outermost compound statement, although you can use labels on
compound statements nested in another compound statement.

In SQL module language, you can use labels on the outermost, as well
as the inner, compound statements. If you do not provide a label for
the outermost compound statement, SQL assigns the name of the SQL
module procedure to the compound statement.

• At the beginning and end of a LOOP statement

Specify the beginning label before the WHILE keyword and the ending
label after the END LOOP keywords.

• At the beginning and end of a FOR statement

Specify the beginning label before the FOR keyword and the ending label
after the END FOR keywords.

12.3.7 Using the LEAVE Statement
The LEAVE statement lets your program exit from the compound or flow-
control statement that contains it. You can use the LEAVE statement to exit
from the following program structures:

• Compound statement

• FOR statement

• LOOP statement

• SQL module procedure

To use the LEAVE statement, specify the label of the statement from which
you want your program to exit. For example, to exit from a LOOP statement
that has the label loop1, use the following statement:

LEAVE loop1;

To exit from an SQL module procedure, specify the name of the procedure as
an argument to the LEAVE statement.

The following example counts the number of employees who have been
supervisors and the number of employees who have been both supervisors and
managers. It uses the LEAVE statement to exit from the inner FOR statement
when the JOB_CODE for a given employee is ’ DMGR’ , ensuring that an
employee is not counted more than once.

12–14 Using Compound Statements in SQL

BEGIN
DECLARE :supnum INTEGER;
DECLARE :bothnum INTEGER;

SET :supnum = 0;
SET :bothnum = 0;

-- Count the number of employees who have been supervisors.
jobloop:
FOR :job_rec

AS EACH ROW OF
SELECT DISTINCT(EMPLOYEE_ID) FROM JOB_HISTORY

WHERE JOB_CODE = ’DSUP’
DO

SET :supnum = :supnum + 1;

-- Count the number of employees who have been managers, as well as
-- supervisors.

innerjobloop:
FOR :innerjob_rec

AS EACH ROW OF
SELECT EMPLOYEE_ID, JOB_CODE FROM JOB_HISTORY

WHERE EMPLOYEE_ID = :job_rec.employee_id
DO

IF :innerjob_rec.JOB_CODE = ’DMGR’
THEN

SET :bothnum = :bothnum + 1;

-- Exit from the inner FOR loop.
LEAVE innerjobloop;

END IF;
END FOR innerjobloop;

END FOR jobloop;
END;

You can exit from a compound, FOR, or LOOP statement no matter how deeply
nested it is. In the preceding example, if you specified LEAVE jobloop instead
of LEAVE innerjobloop, SQL would exit not only from the inner FOR loop, but
also from the outer FOR loop.

12.3.8 Invoking Stored or External Procedures
You can invoke stored or external procedures by using the CALL statement.
When you use a CALL statement in a compound statement, you can use almost
any value expression as an IN parameter, unlike a CALL statement in a single
statement, which is limited to host variables and numeric and string literals.
(You cannot use dbkeys or aggregate functions as parameters.)

To invoke an external procedure, the CALL statement must be within a
compound statement. To invoke a stored procedure, the CALL statement can
be a simple statement or within a compound statement.

Using Compound Statements in SQL 12–15

The following example shows a stored procedure and the compound statement
that calls it:

-- Create the module that contains the stored procedure.
CREATE MODULE DEPT_BUDG_MOD

LANGUAGE SQL
PROCEDURE DEPT_BUDG_PROC (IN :incr INTEGER (2), INOUT :new_budg INTEGER,

INOUT :cur_budg INTEGER);
BEGIN

SELECT BUDGET_PROJECTED INTO :cur_budg
FROM DEPARTMENTS
WHERE DEPARTMENT_NAME = ’Engineering’;

SET :new_budg = :cur_budg + (:cur_budg * :incr);
UPDATE DEPARTMENTS

SET BUDGET_PROJECTED = :new_budg
WHERE DEPARTMENT_NAME = ’Engineering’;

END;
END MODULE;

-- Call the DEPT_BUDG_PROC stored procedure.
BEGIN

DECLARE :cur_budg_var INTEGER;
DECLARE :new_budg_var INTEGER;
DECLARE :incr_var INTEGER (2) DEFAULT .08;

CALL DEPT_BUDG_PROC (:incr_var, :new_budg_var, :cur_budg_var);
END;

You can use the CALL statement within a stored procedure or function to
call another stored procedure. In this way, you can nest stored procedures
to any depth, limited only by your system’s resources. However, recursion is
not allowed. That is, you cannot call a stored procedure that is in use by the
current CALL statement.

12.4 Controlling the Atomicity of Compound Statements
Like an individual SQL statement, a compound statement possesses a
transaction characteristic called atomicity. Atomicity defines what happens to
a single SQL statement or a compound statement when an exception occurs.
The execution of all single SQL statements is always treated as an atomic
event. This means that the statement completes successfully, or if SQL returns
an exception, the statement is undone. However, you can control the atomicity
of compound statements; they are not atomic by default.

You specify the atomicity of a compound statement by using the ATOMIC
and NOT ATOMIC keywords following the BEGIN keyword, as the following
example shows:

12–16 Using Compound Statements in SQL

SQL> BEGIN ATOMIC
cont> UPDATE DEPARTMENTS
cont> SET MANAGER_ID = ’00167’
cont> WHERE DEPARTMENT_CODE = ’SALE’;
cont> UPDATE JOB_HISTORY
cont> SET JOB_END = CURRENT_TIMESTAMP
cont> WHERE EMPLOYEE_ID = ’00167’ AND JOB_END IS NULL;
cont> INSERT INTO JOB_HISTORY
cont> (EMPLOYEE_ID, DEPARTMENT_CODE, JOB_CODE, JOB_START)
cont> VALUES
cont> (’00167’, ’SALE’, ’DMGR’, CURRENT_TIMESTAMP);
cont> END;
SQL>

If you specify that the outer compound statement is ATOMIC, you must specify
the ATOMIC keyword for any nested compound statements.

You can nest an ATOMIC compound statement within a NOT ATOMIC
statement.

What happens when SQL encounters an exception in a compound statement
depends on whether the compound statement is defined as ATOMIC or NOT
ATOMIC. The actions are as follows:

• ATOMIC

No SQL statements within a compound statement succeed or fail as a unit.
If all SQL statements within a compound statement succeed, the compound
statement block succeeds as a whole.

When an SQL statement raises an exception, however, SQL rolls back
any changes, does not execute any statements located after the failed
statement, and terminates the compound statement at the point of failure.

SQL does not undo variable assignments as a result of a statement failure.

• NOT ATOMIC (default)

No SQL statements that complete successfully, up to the point that a
statement fails, are rolled back. Success of some statements in a NOT
ATOMIC compound statement can occur. However, SQL immediately
terminates the processing in NOT ATOMIC compound statements when an
SQL statement returns an exception. The partial work of the statement
causing a compound statement to terminate is always rolled back.

In the preceding example, because the statement is ATOMIC, all the
statements complete or none complete.

Using Compound Statements in SQL 12–17

The following example further illustrates the principles of atomicity. It
presumes that the INSERT INTO JOB_HISTORY statement generates an
exception and shows which SQL statements within a nested compound
statement complete or are undone in this circumstance.

BEGIN NOT ATOMIC

BEGIN ATOMIC
UPDATE DEPARTMENTS ... $
UPDATE JOB_HISTORY ... $

END;

BEGIN ATOMIC
INSERT INTO DEPARTMENTS ... "
INSERT INTO JOB_HISTORY ... ! "

INSERT INTO SALARY_HISTORY ... #
END;

END;

In executing the compound statement shown in the preceding example, SQL
executes the SQL statements, until an exception occurs. The following list is
keyed to the numbered callouts in this example:

! The INSERT INTO JOB_HISTORY statement generates an exception.

" Because the inner compound statement is ATOMIC, SQL rolls back the
following statements:

• INSERT INTO DEPARTMENTS

• INSERT INTO JOB_HISTORY

SQL does not execute the INSERT INTO SALARY_HISTORY statement
because the exception generated by the INSERT INTO JOB_HISTORY
statement effectively terminates the inner compound statement.

$ Because the outer compound statement is NOT ATOMIC, SQL does not
undo the UPDATE statements.

In both ATOMIC and NOT ATOMIC compound statements, SQL continues
execution of the statements when a completion condition, such as no data, is
returned.

You cannot include a SET TRANSACTION, COMMIT, or ROLLBACK
statement in an ATOMIC compound statement.

12–18 Using Compound Statements in SQL

12.5 Controlling Transactions in Compound Statements
You can include SET TRANSACTION, COMMIT, and ROLLBACK statements
in compound statements. However, you can include them only in NOT
ATOMIC compound statements, not in ATOMIC compound statements.

Beginning and ending transactions within a compound statement improves
performance because it reduces the amount of interaction between Oracle Rdb
and the application program.

Some of the ways that you can use the SET TRANSACTION, COMMIT, and
ROLLBACK statements in a compound statement include the following:

• You can begin and end a transaction within one compound statement.

• You can begin a transaction within one compound statement and end it in
another SQL procedure.

• You can begin a transaction in one SQL procedure and end it in a
compound statement, or you can begin a transaction in a compound
statement and end it outside a compound statement.

• You can use flow-control statements in compound statements to begin or
end transactions, based on certain conditions.

The following example begins a read/write transaction and updates
data if the value of the parameter is 0; otherwise, it begins a read-only
transaction:

PROCEDURE update_or_select
(SQLSTATE,

:upd_sel,
:mgrid);

BEGIN

IF :upd_sel = 0
THEN

SET TRANSACTION READ WRITE;
UPDATE DEPARTMENTS

SET MANAGER_ID = :mgrid
WHERE DEPARTMENT_CODE = ’SALE’;

ELSE
SET TRANSACTION READ ONLY;
SELECT MANAGER_ID INTO :mgrid

FROM DEPARTMENTS
WHERE DEPARTMENT_CODE = ’SALE’;

END IF;
END;

Using Compound Statements in SQL 12–19

Because you cannot refer to more than one database in a compound statement,
you cannot start a transaction, or commit or roll back a transaction that
includes more than one database. For example, if, outside a compound
statement, you start a transaction that includes more than one database, you
cannot commit or roll back that transaction within a compound statement.

The DECLARE TRANSACTION statement has the same effect on transactions
in compound statements as in single SQL statements.

You can retrieve information about transactions, such as the access mode
or status, in compound statements by using the GET DIAGNOSTICS
statement. For more information about the GET DIAGNOSTICS statement,
see Section 12.8.

For more information about transactions, see Chapter 16.

12.6 Processing Compound Statements Dynamically
You cannot include dynamic SQL statements in a compound statement.
Nonetheless, SQL lets you process and execute compound statements by using
the following dynamic SQL statements:

• PREPARE

• DESCRIBE

• EXECUTE

• EXECUTE IMMEDIATE

For example, if a host language program assigns a compound statement to
the parameter :STMT and the statement identifier to the parameter :DYN_
STMT_ID, use the following procedure to prepare the statement for dynamic
execution:

PROCEDURE prepare_stmt
(SQLSTATE,

:DYN_STMT_ID INTEGER,
:STMT CHAR(16000));

PREPARE :DYN_STMT_ID FROM :STMT;

12–20 Using Compound Statements in SQL

12.7 Debugging Compound Statements
Use extra care when writing and testing compound statements. Because you
cannot use a programming language symbolic debugger to examine compound
statement execution within Oracle Rdb, it is difficult to debug compound
statements or trace their execution flow.

However, you can use the TRACE statement to monitor the contents of
variables used in a compound statement. To enable trace logging, you must
use the SET FLAGS ’TRACE’ statement or define the RDMS$DEBUG_FLAGS
logical name or RDB_DEBUG_FLAGS configuration parameter to be ‘‘Xt’’.
The letter X must be an uppercase letter and the letter t must be a lowercase
letter, and both must be enclosed in double quotes (") as shown in the following
example:

$ DEFINE RDMS$DEBUG_FLAGS "Xt"

You can redirect the output from the TRACE statement by using the logical
name RDMS$DEBUG_FLAGS_OUTPUT or the configuration parameter
RDB_DEBUG_FLAGS_OUTPUT.

The SET FLAGS ’TRACE’ statement overrides the RDMS$DEBUG_FLAGS
logical name or RDB_DEBUG_FLAGS configuration parameter setting. You
must be connected to the database before you use the SET FLAGS ’TRACE’
statement. Note that you cannot use this statement within a compound
statement; it must appear before the compound statement.

Using the TRACE statement, you can trace the value of a value expression,
such as a literal, subquery, or a variable. The following example shows how to
use the SET FLAGS statement to enable trace logging, how to use the TRACE
statement, and shows the output from the TRACE statement:

-- Enable trace logging.
SET FLAGS ’TRACE’;

BEGIN
DECLARE :state_code CHAR(2);
DECLARE :mgrid CHAR(5);
DECLARE :cur_mgrid CHAR(5);
SET :mgrid = ’00167’;

-- Trace a built-in function.
TRACE ’Trace the current time ’, CURRENT_TIMESTAMP;

SELECT D.MANAGER_ID, E.STATE INTO :cur_mgrid, :state_code
FROM DEPARTMENTS D, EMPLOYEES E
WHERE DEPARTMENT_CODE = ’SALE’

AND D.MANAGER_ID = E.EMPLOYEE_ID;

Using Compound Statements in SQL 12–21

-- Trace variables.
TRACE ’After SELECT mgrid is ’, :mgrid;
TRACE ’After SELECT cur_mgrid is ’, :cur_mgrid;

IF :cur_mgrid <> :mgrid
THEN

UPDATE DEPARTMENTS
SET MANAGER_ID = :mgrid
WHERE DEPARTMENT_CODE = ’SALE’;

-- Trace variables.
TRACE ’After UPDATE mgrid is ’, :mgrid;

IF :state_code = ’NH’
THEN

-- Trace a literal.
TRACE ’Entering IF loop.’;

UPDATE SALARY_HISTORY S
SET SALARY_AMOUNT = (salary_amount * 1.05)
WHERE SALARY_END IS NULL

AND EMPLOYEE_ID = :mgrid;
END IF;

END IF;
END;
~Xt: Trace the current time 1994-02-16:12:32:20.46
~Xt: After SELECT mgrid is 00167
~Xt: After SELECT cur_mgrid is 00205
~Xt: After UPDATE mgrid is 00167
~Xt: Entering IF loop.

To turn off the display of the prefix ‘‘~Xt:’’, use the SET FLAGS ’NOPREFIX’
statement.

To trace the value of a column name, SQL must be able to recognize the context
for the column. For example, you can trace a column name in a FOR statement
by qualifying the column name with the record name, as the following excerpt
shows:

-- Enable trace logging and turn off display of the prefix. You can combine
-- the TRACE and NOPREFIX keywords in the same statement.
SET FLAGS ’TRACE, NOPREFIX’;

BEGIN
DECLARE :supnum INTEGER;
SET :supnum = 0;

FOR :job_rec
AS EACH ROW OF
SELECT EMPLOYEE_ID, JOB_CODE FROM JOB_HISTORY

12–22 Using Compound Statements in SQL

DO
-- Trace the values of the columns JOB_CODE and EMPLOYEE_ID.

TRACE ’Job code: ’, :job_rec.job_code;
TRACE ’Employee_id: ’, :job_rec.employee_id;

IF :job_rec.JOB_CODE = ’DSUP’
THEN

SET :supnum = :supnum + 1;
END IF;

END FOR;
END;
Job code: SPGM
Employee_id: 00164
Job code: DMGR
Employee_id: 00164

.

.

.

When you do not enable trace logging, the TRACE statements are inactive and
add no overhead to the execution of the procedure.

12.8 Retrieving Information About Compound Statements
You can use the GET DIAGNOSTICS statement to retrieve information about
the execution of the previous SQL statement in a compound statement. The
GET DIAGNOSTICS statement extracts diagnostic information about the
execution of the previous SQL statement. It captures the following diagnostic
information from an Oracle Rdb data structure called the diagnostics area:

• Status information about rows

The GET DIAGNOSTICS statement returns the number of rows affected
by an INSERT, UPDATE, or DELETE statement, or the number of rows
fetched by a FOR statement.

• Information about transactions

The GET DIAGNOSTICS statement returns information about
transactions, such as access mode, isolation level, and the number of
transactions committed or rolled back.

• The name of the current connection

• The name of the calling routine

The GET DIAGNOSTICS statement allows a routine to see the name of
the routine that called it.

The GET DIAGNOSTIC statement also returns the value of the SQLSTATE or
SQLCODE status parameters, as described in Section 12.9.

Using Compound Statements in SQL 12–23

You can use the GET DIAGNOSTICS statement only within a compound
statement.

The following example uses the GET DIAGNOSTICS statement to return the
number of rows that have been fetched by the FOR statement:

SET FLAGS ’TRACE, NOPREFIX’;
BEGIN
-- Declare a variable to hold the number of the current row.

DECLARE :currow INTEGER;

-- The :jobrec variable represents a record that holds columns from the
-- selected row.

FOR :jobrec
AS EACH ROW OF TABLE CURSOR JOB_CURSOR FOR
SELECT MINIMUM_SALARY FROM JOBS

WHERE MINIMUM_SALARY < 20000
DO

-- Update the current row in the JOB_CURSOR.
UPDATE JOBS

SET MINIMUM_SALARY = MINIMUM_SALARY * 1.10
WHERE CURRENT OF JOB_CURSOR;

-- Use the GET DIAGNOSTICS statement to retrieve the number of rows that have
-- been fetched by the FOR statement.

GET DIAGNOSTICS
:currow = CURRENT_ROW;

-- Use the TRACE statement to print out the number of the current row.
TRACE ’Current Row: ’, :currow;

END FOR;

END;
Current Row: 1
Current Row: 2
Current Row: 3
Current Row: 4
Current Row: 5
Current Row: 6

In the preceding example, the TRACE statement prints the value of the
current row to the terminal.

For more information about the GET DIAGNOSTIC statement, see Oracle
Rdb7 SQL Reference Manual.

12–24 Using Compound Statements in SQL

12.9 Handling Exception and Completion Conditions
SQL statements within a compound statement can encounter exception
conditions or completion conditions. SQL treats completion conditions
differently than it does exception conditions, as follows:

• When the execution of an SQL statement returns an exception condition,
such as a constraint violation, SQL aborts the execution of that compound
statement. You can pass information about that SQL statement to the
application by using the SIGNAL statement.

• When the execution of an SQL statement results in a completion condition,
such as no data returned, SQL continues execution of the compound
statement. You can retrieve the status of the last SQL statement that
executed by using the GET DIAGNOSTICS statement.

12.9.1 Retrieving Exception Conditions
When an SQL statement in a compound statement detects an error, you can
use the SIGNAL statement to raise an exception and return the status to the
application.

You specify, as an argument to the SIGNAL statement, a character value
expression which Oracle Rdb uses as the value of the SQLSTATE status
parameter. When Oracle Rdb encounters a SIGNAL statement, it terminates
the current compound statement or routine and all calling routines and returns
control to the application. In doing so, Oracle Rdb passes the SQLSTATE value
you specify to the application.

The contents of the character string must conform to the ANSI/ISO SQL
standard for SQLSTATE values. That is, it must contain only Latin uppercase
letters (A through Z) or digits (0 through 9). For example, to signal the
application if the numeric value is out of range, use the following statement:

SIGNAL ’22003’;

Oracle Rdb returns the SQLSTATE value of 22003 to the application. As
it does so, it maps the SQLSTATE value to an SQLCODE value. In the
previous example, the SQLSTATE value maps to an SQLCODE value of -304.
If the SQLSTATE value can map to more than one SQLCODE value or if the
SQLSTATE value is unknown, Oracle Rdb returns an SQLCODE value of
-1042.

The following example shows how to use SIGNAL when a compound statement
may attempt to calculate division by zero.

Using Compound Statements in SQL 12–25

-- Calculate the difference between two job titles and put the results in the
-- table PAY_ADJUST.

BEGIN
DECLARE :job_code1, :job_code2 CHAR (5);
DECLARE :min_sal, :min_sal2 INTEGER;
DECLARE :diff INTEGER;
-- In a stored procedure, you pass the values using parameters,
-- rather than hard coding values.
SET :job_code1 = ’PRGM’;
SET :job_code2 = ’MENG’;

SELECT MINIMUM_SALARY INTO :min_sal FROM JOBS
WHERE JOB_CODE = :job_code1;

SELECT MINIMUM_SALARY INTO :min_sal2 FROM JOBS
WHERE JOB_CODE = :job_code2;

IF :min_sal - :min_sal2 = 0
-- If condition is not trapped, it results in division by 0 in ELSE
-- clause.
THEN SIGNAL ’22012’;
-- Calculate the difference in minimum salaries and store the percentage
-- in the PAY_ADJUST table.
ELSE SET :diff = :min_sal - :min_sal2;

INSERT INTO PAY_ADJUST
(JOB_CODE1, JOB_CODE2, DIFF)

VALUES (:job_code1, :job_code2, :min_sal / :diff);
END IF;

END;
%RDB-E-SIGNAL_SQLSTATE, routine "(unnamed)" signaled SQLSTATE "22012"

In the preceding example, Oracle Rdb returns the SQLSTATE value of 22012
to indicate that division by 0 will occur.

For more information about the SIGNAL statement, see the Oracle Rdb7 SQL
Reference Manual.

12.9.2 Retrieving Completion Conditions
The GET DIAGNOSTICS statement extracts diagnostic information about the
execution of the previous SQL statement. It provides diagnostic information
from the SQLSTATE or SQLCODE status parameter.

Use the EXCEPTION . . . RETURNED_SQLSTATE clause to retrieve the
SQLSTATE status information, and the EXCEPTION . . . RETURNED_
SQLCODE clause to retrieve the SQLCODE status information.

The following example uses the EXCEPTION . . . RETURNED_SQLSTATE
clause to return the value of the SQLSTATE status parameter:

12–26 Using Compound Statements in SQL

SET FLAGS ’TRACE, NOPREFIX’;

BEGIN ATOMIC
DECLARE :mgrid CHAR(5);
DECLARE :cur_mgrid CHAR(5);
DECLARE :dept_code CHAR(4);
DECLARE :sqlstate_var CHAR(5);

SET :mgrid = ’00166’;
SET :dept_code = ’SALE’;

SELECT MANAGER_ID INTO :cur_mgrid FROM DEPARTMENTS
WHERE DEPARTMENT_CODE = :dept_code;

-- The GET DIAGNOSTICS statement returns an SQLSTATE code of 00000 because the
-- SELECT statement executes successfully.

GET DIAGNOSTICS
EXCEPTION 1 :sqlstate_var = RETURNED_SQLSTATE;

TRACE ’After SELECT, SQLSTATE is: ’, :sqlstate_var;

-- Test the value of SQLSTATE and take some action if it is 00000.
IF :sqlstate_var = ’00000’
THEN

IF :cur_mgrid <> :mgrid
THEN

UPDATE DEPARTMENTS
SET MANAGER_ID = :mgrid
WHERE DEPARTMENT_CODE = ’Ssss’;

-- Because there is no department with a DEPARTMENT_CODE ’Ssss’, the
-- GET DIAGNOSTICS statement returns an SQLSTATE code of 02000.

GET DIAGNOSTICS
EXCEPTION 1 :sqlstate_var = RETURNED_SQLSTATE;

TRACE ’After UPDATE, SQLSTATE is: ’, :sqlstate_var;
END IF;

END IF;
END;
After SELECT, SQLSTATE is: 00000
After UPDATE, SQLSTATE is: 02000

See the Oracle Rdb7 SQL Reference Manual for more information about the
GET DIAGNOSTICS statement and the possible values of the SQLSTATE
status parameter.

Using Compound Statements in SQL 12–27

13
Using Stored Routines

This chapter describes stored routines (which are stored procedures and stored
functions) and explains how to store routines in a stored module within an
Oracle Rdb database and how to call the stored routines for execution by an
application program. In the sections that follow, you will become familiar with
how to:

• Determine what a stored routine is

• Recognize the benefits of using stored routines

• Create a stored module, which contains stored routines

• Invoke a stored procedure

• Invoke a stored function

• Delete a stored routine

• Track dependencies

• Recognize when stored routines are invalidated

• Revalidate or re-create invalidated stored routines

13.1 What Are Stored Routines?
A stored routine is a stored procedure or stored function.

A stored procedure is a set of operations performed on an Oracle Rdb
database by one or more SQL statements. It accepts a set of input parameters
and returns results through output parameters.

A stored function is a set of operations performed on an Oracle Rdb database
by one or more SQL statements. It accepts a set of input parameters and
returns a single result through the RETURN statement.

Using Stored Routines 13–1

The SQL statements included as part of stored routines execute as a unit
to perform a wide variety of database operations. Stored routines use the
program-like, procedural capabilities of multistatement procedures. This
permits established operations, once solely the domain of applications, to be
shifted to the database where they can serve the programming community in
much the same way host language libraries do.

Stored routines are like 3GL application procedures. They reside within a
stored module that is the object of compilation and they encapsulate an
operation, such as an update, delete, or insert operation. Unlike application
procedures, you write stored routines in SQL, rather than in a 3GL program
language such as C or Fortran.

Stored modules reside as schema objects inside an Oracle Rdb database, like a
table or view.

In contrast, nonstored modules reside in a file outside an Oracle Rdb
database. Using nonstored modules, you can refer to more than one database,
but using stored modules, you can refer only to the database in which the
stored module resides.

In other ways, stored and nonstored modules are similar. The SQL module
language you use to create nonstored modules is similar to the SQL syntax you
use to create stored modules. Just as stored modules must contain at least one
stored routine, nonstored modules must contain one or more procedures.

Refer to Chapter 3 and Chapter 4 for information about how to create and use
modules stored in files outside an Oracle Rdb database.

13.2 Understanding the Benefits of Storing Routines in a
Database

The benefits of storing routines in a database include the following:

• Encapsulated operations

Stored routines let you place an operation (or set of operations) in the
database for use by other users. A set of stored routines acts like a library
of executable objects that can be linked together by an application. For
example, suppose ADD EMPLOYEE is an operation of the application
requiring several pieces of input information. Without knowing the
intricate inner actions of a stored routine, an application can call a single
routine to add an employee record to the database.

13–2 Using Stored Routines

Currently, programmers do this by using object libraries; however, stored
routines can relieve the user from maintaining object libraries and make
the functional pieces visible to SQL queries (unlike libraries of object
modules).

• Inherited privileges

When you define a stored routine, you must have access to base objects
(such as tables, views, and constraints) to which the stored routine refers.
If you specify an authorization identifier when you create the stored
routine, other users of the stored routine inherit the definer’s access rights.
This enables them to use the defined routine even if they do not have direct
access to the routine’s base objects. The invoker is not required to have
any database object privileges other than the EXECUTE privilege required
to invoke the stored routine. Users can perform fixed actions even though
they have no access privileges to the underlying tables.

• Client/server processing

Client systems cannot afford to be burdened with locally storing and
maintaining database requests such as those containing SQL statements.
With stored routines on the server system, client system applications can
easily access and perform complex database operations contained within
stored routines. Access occurs by attaching to the Oracle Rdb database in
which the stored routine resides, and specifying the name of the routine
and its parameters.

• Better control over metadata dependencies

When you store routines in a database and you use those routines, Oracle
Rdb tracks the metadata objects to which the routine refers.

13.3 Creating Stored Modules
You use the CREATE MODULE statement to create a stored module in an
Oracle Rdb database, just as you use the CREATE TABLE statement to create
a database table. Within the CREATE MODULE statement, you define one
or more stored routines with the SQL language. The module serves as SQL’s
mechanism for storing routines in an Oracle Rdb database.

Example 13–1 shows the definition of a stored module called DATA_UPDATE.

Using Stored Routines 13–3

Example 13–1 Creating a Stored Module

CREATE MODULE DATA_UPDATE!
LANGUAGE SQL"
AUTHORIZATION LAWLER#
DECLARE LOCAL TEMPORARY TABLE MODULE.DATA_UPDATE_TAB

(EMPLOYEE_ID ID_DOM,
SALARY INTEGER(2)) $

<routine definitions> %

END MODULE;&

When you create a stored module you use the following clauses (keyed to the
numbered callouts in Example 13–1):

! CREATE MODULE module-name

The CREATE MODULE statement creates a module, called
DATA_UPDATE, as a persistent object in an Oracle Rdb database.
Names for stored modules must be unique in an application. Applications
that access routines from both stored and nonstored modules cannot have
a nonstored module with the same name as a stored module used by the
application.

" LANGUAGE SQL clause

The SQL argument to the LANGUAGE clause indicates that the routines
in the stored module are invoked by an SQL statement.

In contrast, the argument to the LANGUAGE clause in a nonstored module
identifies the host language in which the program calling a module’s
procedures is written.

AUTHORIZATION clause

The authorization identifier, specified as LAWLER in the AUTHORIZATION
clause, enables Oracle Rdb to identify the author or definer of the module.

When you specify an authorization identifier in the definition of a stored
module, that stored module is called a definer’s rights module. This
type of module enables any user who has EXECUTE privilege on the
module to execute any of the module’s routines without privileges on any
of the underlying schema objects that the routine references. The routines
execute under the user name of the module definer, not the user name
of the person executing the routine. This ability to allow users access to
schema objects through a call to a stored routine without having direct
access to those schema objects is a key benefit.

13–4 Using Stored Routines

In contrast, when you omit the AUTHORIZATION clause in the definition
of a stored module, that stored module is called an invoker’s rights
module. In this type of module, users who have EXECUTE privilege on a
particular module must also have privileges to all of the underlying schema
objects associated with any of the routines that they want to execute.

$ Declared local temporary tables

You can use a declared local temporary table in a stored module. You can
only refer to the table from within the module in which it is declared.
The metadata and data in a declared local temporary table do not persist
outside the stored module. For more information about temporary tables,
see the Oracle Rdb7 Guide to Database Design and Definition.

% Routine definitions

The routine definition specifies the name of the routine, parameters, and
one simple statement or one compound statement.

See Section 13.3.1 for information on creating the definition for a stored
procedure. See Section 13.3.2 for information on creating the definition for
a stored function.

& END MODULE

You must identify the end of a stored module definition with the END
MODULE keywords.

13.3.1 Creating Stored Procedures
You create a stored procedure by including a stored procedure definition in a
CREATE MODULE statement.

Example 13–2 shows the definition of the NEW_SALARY_PROC stored
procedure, within the DATA_UPDATE module.

Example 13–2 Creating a Stored Procedure

CREATE MODULE DATA_UPDATE
LANGUAGE SQL
AUTHORIZATION LAWLER

DECLARE LOCAL TEMPORARY TABLE MODULE.DATA_UPDATE_TAB
(EMPLOYEE_ID ID_DOM,
SALARY INTEGER(2))

(continued on next page)

Using Stored Routines 13–5

Example 13–2 (Cont.) Creating a Stored Procedure

PROCEDURE NEW_SALARY_PROC!
(:ID CHAR (5), "

:NEW_SALARY INTEGER (2)); "

BEGIN #
UPDATE SALARY_HISTORY #

SET SALARY_END = CURRENT_TIMESTAMP
WHERE EMPLOYEE_ID = :ID AND SALARY_END IS NULL;

INSERT INTO SALARY_HISTORY (EMPLOYEE_ID, SALARY_AMOUNT,
SALARY_START, SALARY_END)
VALUES (:ID, :NEW_SALARY, CURRENT_TIMESTAMP, NULL);

INSERT INTO MODULE.DATA_UPDATE_TAB
(EMPLOYEE_ID, SALARY)
SELECT EMPLOYEE_ID, SALARY_AMOUNT FROM SALARY_HISTORY
WHERE CAST(SALARY_START AS DATE ANSI) =

CURRENT_DATE;
END; #

END MODULE;

When you create a stored procedure, you use the following clauses (keyed to
the numbered callouts in Example 13–2):

! PROCEDURE clause

The procedure clause specifies the name of the stored procedure.

Procedure names must be unique within the module definition and across
the definitions of other routines stored in modules in an Oracle Rdb
database and must also be unique from external routine names defined in
the same database.

" Parameter list

The parameter list of the procedure includes a parameter mode, a
parameter name, and an SQL data type:

• Stored procedure parameters have three parameter modes: IN, OUT,
and INOUT.

If you omit the mode from the parameter declaration, (as in
Example 13–2) SQL determines the mode of a parameter by the
parameter’s usage. To determine the parameter mode of a stored
procedure parameter, ask the question, ‘‘Do the SQL statements in the
stored procedure accept a value (IN parameter mode), do they produce
a value (OUT parameter mode), or do they perform both operations
(INOUT parameter mode)?’’

13–6 Using Stored Routines

• The name of each parameter in a stored procedure definition must be
unique within the procedure.

• You can specify any SQL data type except LIST OF BYTE VARYING
in a stored procedure. You can also specify a domain name instead
of a data type in the declaration. For example, you can declare
:ID CHAR (5) as :ID ID_DOM.

Note the following points about parameters in stored procedures:

• You cannot declare any status parameters (SQLCODE, SQLSTATE, or
SQLCA) in a stored procedure. However, you can examine the values of
SQLCODE or SQLSTATE by using the GET DIAGNOSTIC statement
in the stored procedure. Section 12.9 describes how to use the GET
DIAGNOSTIC statement to return the SQLCODE and SQLSTATE
values and to handle completion conditions. It also describes how to
use the SIGNAL statement to handle exception conditions.

When you call a stored procedure from a nonstored procedure, as
shown in Example 13–4, the nonstored procedure must declare a status
parameter, as you must for any procedure in a nonstored module.

• Stored procedures support null values. As a result, you cannot use
indicator parameters with stored procedure parameters.

Be aware, however, that if you expect the called stored procedure to
return a NULL value, you must be sure to declare, in the nonstored
procedure that calls the stored procedure, an indicator parameter to
ensure that you can process the NULL value. The indicator parameter
indicates whether or not the value stored in its corresponding main
parameter is NULL.

BEGIN . . . END block

You can use one simple statement or one compound statement in a stored
procedure. This example shows a compound statement bounded by the
BEGIN . . . END block.

See Section 13.4 for information about invoking stored procedures. Refer to the
Oracle Rdb7 SQL Reference Manual for additional information about creating
stored procedures with the CREATE MODULE statement.

Using Stored Routines 13–7

13.3.2 Creating Stored Functions
You create a stored function by including a stored function definition in a
CREATE MODULE statement.

Example 13–3 shows the definition of the CHECK_SALARY_RANGE_FUNC
stored function within the CHECK_SALARY_MOD module. The function
checks to see if an employee’s salary is within the correct range for the job
title.

Example 13–3 Creating a Stored Function

CREATE MODULE CHECK_SALARY_MOD
LANGUAGE SQL

FUNCTION CHECK_SALARY_RANGE_FUNC!
(:JOB_TITLE CHAR(20), :CUR_SALARY INTEGER(2)) "

RETURNS INTEGER; #
BEGIN $

DECLARE :min_sal, :max_sal INTEGER(2);
DECLARE :sal_check INTEGER;

SELECT MINIMUM_SALARY, MAXIMUM_SALARY INTO :min_sal, :max_sal
FROM JOBS
WHERE JOB_TITLE = :job_title;

RETURN (CASE %
WHEN(:cur_salary >= :min_sal AND :cur_salary <= :max_sal)

THEN 0
ELSE 1

END);
END; $

END MODULE;

When you create a stored function, you use the following clauses (keyed to the
numbered callouts in Example 13–2):

! FUNCTION clause

The function clause specifies the name of the stored function.

Function names must be unique within the module definition and across
the definitions of other routines stored in modules in an Oracle Rdb
database and must also be unique from external routine names defined in
the same database.

" Parameter list

13–8 Using Stored Routines

The parameter list of the function includes a parameter mode, a parameter
name, and an SQL data type:

• Stored functions allow only the IN parameter mode.

• The name of each parameter in a stored function definition must be
unique within the function.

• You can specify any SQL data type except LIST OF BYTE VARYING.
You can specify a domain name instead of a data type in the
declaration. For example, you can declare :JOB_TITLE CHAR(20)
as :JOB_TITLE JOB_TITLE_DOM.

Note the following points about parameters in stored functions:

• You cannot declare any status parameters (SQLCODE, SQLSTATE, or
SQLCA) in a stored function. However, you can examine the values of
SQLCODE or SQLSTATE by using the GET DIAGNOSTIC statement
in the stored function. Section 12.9 describes how to use the GET
DIAGNOSTIC statement to return the SQLCODE and SQLSTATE
values and to handle completion conditions. It also describes how to
use the SIGNAL statement to handle exception conditions.

When you call a stored function from a nonstored procedure, the
nonstored procedure must declare a status parameter as you must for
any procedure in a nonstored module.

• Stored functions support null values. As a result, you cannot use
indicator parameters with stored function parameters.

Be aware, however, that if you expect the called stored function to
return a NULL value, you must be sure to declare, in the nonstored
procedure that calls the stored function, an indicator parameter to
ensure that you can process the NULL value. The indicator parameter
indicates whether or not the value stored in its corresponding main
parameter is NULL.

RETURNS clause

The RETURNS clause, which is required, specifies the data type of the
value returned by the function. In this example, the function returns an
integer.

$ BEGIN . . . END block

This example shows a compound statement bounded by the BEGIN . . . END
block.

Using Stored Routines 13–9

You can use one simple statement or one compound statement in a
stored procedure. However, because stored functions return values, and
you retrieve those values with a RETURN statement, you should use a
compound statement with stored functions.

% RETURN statement

The RETURN statement returns the value of the stored function. The data
type of the value returned by the RETURN statement must be compatible
with the data type specified in the RETURNS clause.

In a stored function, you can use any statement that you can use in a
compound statement, except SET TRANSACTION, COMMIT, or ROLLBACK.
If a stored function calls a stored procedure, the procedure cannot execute any
of these statements.

See Section 13.5 for information about invoking stored functions. Refer to the
Oracle Rdb7 SQL Reference Manual for additional information about creating
stored functions with the CREATE MODULE statement.

13.3.3 Creating a Stored Function to Generate New Sequence Numbers
Application programmers are often faced with the problem of generating
unique sequence numbers for use as primary keys. One solution is to use
stored functions to maintain a unique sequence numbered table and issue the
next values.

While there are other solutions, such as using an AFTER INSERT trigger, the
main advantage to using a stored function is that the final value is inserted
and no subsequent update is required to the data row. This saves unnecessary
validation queries for the primary key field.

To implement this solution, you can use a table, NEXT_KEY_TABLE, to
maintain a list of key names and their current values. You initially load one
key value into the table. Then, each time you call the stored function, it fetches
the value from the NEXT_KEY_TABLE and returns the next value.

The following example shows the domain and table definitions and shows how
to load the first value into the table:

SQL> CREATE DOMAIN KEY_NAME
cont> CHAR(31)
cont> CHECK (VALUE IS NOT NULL)
cont> NOT DEFERRABLE;
SQL> --
SQL> CREATE TABLE NEXT_KEY_TABLE
cont> (NEXT_KEY_VAL INTEGER NOT NULL NOT DEFERRABLE,
cont> NEXT_KEY_NAME KEY_NAME UNIQUE NOT DEFERRABLE);
SQL> --

13–10 Using Stored Routines

SQL> INSERT INTO next_key_table (next_key_name, next_key_val)
cont> VALUES (’EMPLOYEE_ID’, 0);
1 row inserted

The following example shows the stored function definition:

SQL> CREATE MODULE TOOLS
cont> LANGUAGE SQL
cont> FUNCTION NEXT_KEY (IN :KEY_NAME KEY_NAME)
cont> RETURNS INTEGER;
cont> BEGIN
cont> DECLARE :rc, :new_val INTEGER DEFAULT 0;
cont> DECLARE :key_name_upper key_name DEFAULT UPPER(:KEY_NAME);
cont> DECLARE :invalid_parameter CONSTANT CHAR(5) = ’22023’;
cont>
cont> UPDATE NEXT_KEY_TABLE
cont> SET NEXT_KEY_VAL = NEXT_KEY_VAL + 1
cont> WHERE NEXT_KEY_NAME = :key_name_upper
cont> RETURNING NEXT_KEY_VAL INTO :NEW_VAL;
cont>
cont> GET DIAGNOSTICS :rc = ROW_COUNT;
cont> TRACE ’NEXT_KEY is ’, COALESCE(:new_val, ’NULL’), ’, RC is ’, ;rc;
cont>
cont> IF :rc = 0 THEN
cont> TRACE ’No entry exists for KEY_NAME: ’, :key_name_upper;
cont> SIGNAL :invalid_parameter;
cont> ELSE
cont> TRACE ’Returning new value for ’, :key_name_upper,:new_val;
cont> RETURN :new_val;
cont> END IF;
cont> END;
cont> END MODULE;

You can invoke the function by specifying it in the VALUES clause of an
INSERT statement, as shown in the following example:

SQL> INSERT INTO employee (employee_id, last_name, birthday)
cont> VALUES (next_key(’EMPLOYEE_ID’), ’Smith’, DATE’1970-1-1’);

13.4 Invoking Stored Procedures
You can invoke a stored procedure using a CALL statement from a simple or
compound statement. You can call one stored procedure from another stored
procedure or from a stored function.

Example 13–4 shows a code segment from an SQL module that contains the
nonstored procedure, CALL_NEW_SALARY, which calls the stored procedure
defined in Example 13–2.

Using Stored Routines 13–11

Example 13–4 Calling a Stored Procedure

PROCEDURE CALL_NEW_SALARY
(:ID CHAR(5), !

:ID_IND SMALLINT, "

:NEW_SALARY INTEGER (2), !

:NEW_SALARY_IND SMALLINT, "
SQLCODE); #

CALL NEW_SALARY_PROC$
(:ID INDICATOR :ID_IND, :NEW_SALARY INDICATOR :NEW_SALARY_IND); %

The following list is keyed to the numbered callouts in Example 13–4:

! The main parameters in the CALL_NEW_SALARY procedure are named
:ID and :NEW_SALARY.

" The indicator parameters are named :ID_IND and :NEW_SALARY_IND.

Because parameters in stored procedures allow null values, each main
parameter should have a corresponding indicator parameter. Otherwise,
if the stored procedure returns a null value into a main parameter, SQL
returns an error and the procedure fails. Providing an indicator parameter
solves the problem that stored procedure parameters allow null values but
nonstored parameters do not.

All nonstored procedures must contain a status parameter.

Stored and nonstored procedures differ in the requirement to declare
a status parameter. Nonstored procedures require them. In stored
procedures, status parameters are not needed and thus are not allowed.

$ The CALL statement invokes a stored procedure.

Invoke the NEW_SALARY_PROC stored procedure defined in
Example 13–2 with the CALL statement.

% The CALL statement passes the :ID and :NEW_SALARY variables as
arguments to the called stored procedure.

The data types of the two variables used in the CALL statement must
match the data types used in the NEW_SALARY_PROC procedure that it
calls.

A CALL statement in a simple statement can pass a list of literals,
parameter values (parameter markers for dynamic execution), or variables
to the called stored procedure, or the CALL statement can pass no
arguments. A CALL statement in a compound statement can pass any
value expression, except dbkeys and aggregate functions, to the called
stored procedure or the CALL statement can pass no arguments.

13–12 Using Stored Routines

Refer to the Oracle Rdb7 SQL Reference Manual for additional information
about the CALL statement and the type of arguments it can pass.

13.5 Invoking Stored Functions
You invoke a stored function by using the function name as a value expression
in an SQL statement. You can invoke a stored function from wherever a value
expression is allowed, except from a trigger.

Example 13–5 shows a compound statement that uses an IF statement to call
the stored function defined in Example 13–3. The IF statement calls the stored
function CHECK_SALARY_RANGE and passes two parameters, :salrec.JOB
and :salrec.SALARY, to the function. If the result of the function is equal
to 1, the IF statement inserts the last name of the employee into the table
SALARY_ADJUST.

Example 13–5 Invoking a Stored Function

BEGIN
DECLARE :lname char(14);

FOR :salrec
AS EACH ROW OF TABLE CURSOR SAL_CURSOR FOR
SELECT LAST_NAME, JOB, SALARY FROM CURRENT_INFO

DO
SET :lname = :salrec.LAST_NAME;

-- Call the stored function.
IF CHECK_SALARY_RANGE(:salrec.JOB, :salrec.SALARY) = 1

THEN
INSERT INTO SALARY_ADJUST VALUES (:lname);

END IF;
END FOR;

END;

13.6 Deleting Stored Routines
The DROP MODULE statement deletes a stored module and its routines from
an Oracle Rdb database. You must have the DROP privilege on a module to
delete it.

Example 13–6 shows how to delete the DATA_UPDATE module.

Using Stored Routines 13–13

Example 13–6 Deleting a Stored Module

DROP MODULE DATA_UPDATE;

To delete only a stored procedure, instead of the entire module, use the DROP
PROCEDURE statement, as shown in the following example:

DROP PROCEDURE NEW_SALARY_PROC;

To delete only a stored function, instead of the entire module, use the DROP
FUNCTION statement, as shown in the following example:

DROP FUNCTION NEW_FUNC;

When you use the RESTRICT keyword (the default), Oracle Rdb prevents the
removal of a stored routine to which other stored routines within the database
refer.

When you use the CASCADE keyword to drop a stored routine, Oracle Rdb
executes the DROP statement and invalidates any stored routines that refer to
the dropped routine.

Refer to Oracle Rdb7 Guide to Database Design and Definition for information
about the privileges required for stored procedures. Refer to the Oracle Rdb7
SQL Reference Manual for additional information about the DROP MODULE,
DROP PROCEDURE, and DROP FUNCTION statements.

13.7 Tracking Stored Routine Dependencies
To ensure that a stored routine can be compiled successfully at run time,
Oracle Rdb tracks the underlying schema objects on which a stored routine
depends. For example, Oracle Rdb might not be able to compile a stored
routine properly if one of its underlying objects, such as a table or column,
is deleted or altered in some way. The mechanism that Oracle Rdb uses to
identify the objects on which stored routine depends for execution is called
dependency tracking.

When you enter the CREATE MODULE statement, Oracle Rdb checks the
module and each of its routines to determine if they refer to a column,
constraint, domain, function, table, or view. When Oracle Rdb finds one or
more of these objects, called a referenced object, Oracle Rdb records the
dependency information in the RDB$INTERRELATIONS system table.

A stored routine, which relies on the referenced object for proper execution, is
called a dependent object.

13–14 Using Stored Routines

Table 13–1 lists the objects for which Oracle Rdb stores metadata dependency
information and the dependency type for each of these objects.

Table 13–1 Dependency Tracking Table

Information Stored in RDB$INTERRELATIONS

Referenced
Object

Object
Name

Subobject
Name

Entity
Name1

Entity
Name2 Usage

Constraint
Name

Column Table Column Module Procedure or
Function

P/F

Constraint Module Procedure or
Function

P/F Constraint

Constraint Module DE Constraint

Domain Domain Module Procedure or
Function

P/F

Function
(external)

Function Module Procedure or
Function

P/F

Function
(stored)

Module Function Module Procedure or
Function

P/F

Procedure
(external)

Function Module Procedure or
Function

P/F

Procedure
(stored)

Module Function Module Procedure or
Function

P/F

Table Table Module Procedure or
Function

P/F, LS

Table Table Module DR

View View Module Procedure or
Function

P/F, LS

View View Module DR

Key to dependency types in Usage column:

DE—Default evaluating
DR—Default reserving
LS—Language semantics
P/F—Procedure or Function

Oracle Rdb stores the dependency information in RDB$INTERRELATIONS
when a domain exists in a procedure block. In contrast, if a domain is defined
in the parameter list of a stored routine, Oracle Rdb tracks the dependency in
RDB$PARAMETERS, not in RDB$INTERRELATIONS.

Using Stored Routines 13–15

A critical element of the dependency information stored in the system table
RDB$INTERRELATIONS is the dependency type. Although the referenced
object names enable Oracle Rdb to uniquely identify a metadata dependency,
the concept of dependency type dictates how Oracle Rdb invalidates a
dependent object when underlying referenced objects are added or dropped.

An invalidated routine cannot be invoked until all referenced objects are
restored as they existed before invalidation occurred.

The following sections describe the four stored routine dependency types:
procedure, language semantics, default reserving, and default evaluating.

13.7.1 Procedure Dependency Type
Any referenced object specified in the procedure block of a compound statement
can create a procedure dependency or function dependency between
that object and the stored routine that refers to that object. In the following
example of a stored procedure, the CANDIDATES table and each of its
specified columns (LAST_NAME, FIRST_NAME, MIDDLE_INITIAL, and
CANDIDATE_STATUS) create a procedure dependency.

PROCEDURE SIMPLE_P

BEGIN
INSERT INTO CANDIDATES

(LAST_NAME,FIRST_NAME,MIDDLE_INITIAL, CANDIDATE_STATUS)
VALUES

(’test_lname’,’test_fname’,’t’,’test_status’);
END;

When you query RDB$INTERRELATIONS as shown in Example 13–7, you can
see that Oracle Rdb stores procedure dependencies for the five objects in the
CANDIDATES table to which the INSERT statement in the preceding example
refers.

Example 13–7 Examining Procedure Dependency Type

SQL> SELECT * FROM RDB$INTERRELATIONS WHERE RDB$OBJECT_NAME = ’CANDIDATES’;
RDB$OBJECT_NAME RDB$SUBOBJECT_NAME

RDB$ENTITY_NAME1 RDB$ENTITY_NAME2
RDB$USAGE RDB$FLAGS

RDB$CONSTRAINT_NAME RDB$SECURITY_CLASS
CANDIDATES!

DEPENDENCY_LIST# SIMPLE_P $
Procedure % 5

NULL

(continued on next page)

13–16 Using Stored Routines

Example 13–7 (Cont.) Examining Procedure Dependency Type

CANDIDATES! LAST_NAME"
DEPENDENCY_LIST# SIMPLE_P $

Procedure % 5
NULL

CANDIDATES! FIRST_NAME"
DEPENDENCY_LIST# SIMPLE_P $

Procedure % 5
NULL

CANDIDATES! MIDDLE_INITIAL "

DEPENDENCY_LIST# SIMPLE_P $
Procedure % 5

NULL
CANDIDATES! CANDIDATE_STATUS"

DEPENDENCY_LIST# SIMPLE_P $
Procedure % 5

NULL

The following list is keyed to the numbered callouts in Example 13–7:

! Object name: Table name

" Subobject name: Column name

Entity name1: Module name

$ Entity name2: Procedure name

% Usage: Dependency type

If the columns in the CANDIDATES table are referred to by a stored
function, this field would display ‘‘Function’’ rather than ‘‘Procedure’’.

13.7.2 Language Semantic Dependency Type
A procedure block of a stored routine that refers to a table or view but refers
to the columns implicitly creates a language semantic dependency between
the stored routine and the referenced object.

Natural join and SELECT * operations also cause language semantic
dependencies.

In the following example, because the INSERT statement does not explicitly
refer to any columns in the CANDIDATES table, Oracle Rdb sets up a language
semantic dependency.

Using Stored Routines 13–17

PROCEDURE LANG_SEMANTICS_P

BEGIN
INSERT INTO CANDIDATES VALUES

(’test_lname’,’test_fname’,’t’,’test_status’);
END;

Because the INSERT statement does not include a column list, SQL derives
the column order and names from the current table definition. The column
list omission causes Oracle Rdb to establish a language semantic dependency
between the CANDIDATES table and the LANG_SEMANTICS_P stored
procedure.

A DELETE statement does not refer to columns explicitly, only implicitly.

Because the LANG_SEMANTICS_P stored procedure depends explicitly on
the CANDIDATES table and implicitly on all of its columns, all the columns
in the CANDIDATES table are considered referenced objects. Thus, dropping
the table using the CASCADE keyword or adding a column to that table
invalidates the stored procedure. Refer to Section 13.9.2 for information
about re-creating a stored routine invalidated due to a language semantic
dependency.

13.7.3 Transaction Dependency Types
Oracle Rdb recognizes two transaction dependency types:

• Default reserving dependency

You create a default reserving dependency on the referenced table
when you specify a table in a DECLARE TRANSACTION RESERVING
statement or in a SET TRANSACTION RESERVING statement.

• Default evaluating dependency

You create a default evaluating dependency on a referenced
constraint when you specify a constraint in a DECLARE TRANSACTION
EVALUATING statement or in a SET TRANSACTION EVALUATING
statement.

In the following example, Oracle Rdb sets up a default reserving dependency
for the JOBS table and a default evaluating dependency for the JOB_CODE_
REQUIRED constraint.

CREATE MODULE DEPENDENCY_LIST LANGUAGE SQL

-- Create default reserving and default evaluating dependencies.
DECLARE TRANSACTION READ WRITE

RESERVING JOBS
FOR SHARED READ EVALUATING JOB_CODE_REQUIRED AT VERB TIME

13–18 Using Stored Routines

When you query RDB$INTERRELATIONS as shown in Example 13–8, you
can see that Oracle Rdb stores default reserving dependencies for the JOBS
table and a default evaluating dependency for the JOB_CODE_REQUIRED
constraint to which the DECLARE TRANSACTION statement refers.

Example 13–8 Examining Transaction Dependency Type

SQL> SELECT * FROM RDB$INTERRELATIONS WHERE RDB$OBJECT_NAME = ’JOBS’;
.
.
.
DEPENDENCY_LIST"

Default Txn Evaluating # 1
JOB_CODE_REQUIRED$ NULL

JOBS !
DEPENDENCY_LIST"

Default Txn Reserving # 1
NULL

The following list is keyed to the numbered callouts in Example 13–8:

! Object name: Table name

" Entity name1: Module name

Usage: Dependency type

$ Constraint name

Unlike procedure or function and language semantic dependencies, which are
procedure-based tracking mechanisms, transaction dependencies affect stored
routines at the module level. Example 13–8 shows that Oracle Rdb stores a
module name only for both transaction dependency types. It does not store any
procedure or function name because the DECLARE TRANSACTION statement
is linked to all routines in the module, not to any one in particular. This has
implications when a table or constraint is deleted or altered.

If you drop a table using the CASCADE keyword and a DECLARE
TRANSACTION statement of a stored module refers to that table, Oracle
Rdb deletes the table and invalidates all the routines in the module. Thus, if
you execute a routine that depends on the table, Oracle Rdb returns an error
and the routine fails. Because the transaction dependency types are module
based, each of the routines in the module fails whenever a stored routine in
that module is invoked.

Using Stored Routines 13–19

13.8 Invalidating Stored Routines
Invalidation of a stored routine occurs when one or more underlying schema
objects on which the stored routine relies are changed or removed. Oracle Rdb
stores the invalidation status in the system tables. Invalidation alerts you that
a stored routine might fail if the stored routine’s underlying schema objects are
not re-created.

Reference Reading

Refer to the description of the Oracle Rdb system tables in Oracle_
Rdb Help. Read the descriptions of the RDB$ROUTINES and
RDB$INTERRELATIONS system tables for information about which
flags Oracle Rdb sets during invalidation.

Table 13–2 shows the data definition statements that can cause stored routines
to be invalidated.

Table 13–2 Statements Causing Stored Routine Invalidation

Object
Type

SQL
Statement

Statement
Fails?

Routine
Invalidated?

Dependency
Type

Column ALTER TABLE DROP COLUMN Yes No P/F or LS

ALTER TABLE ADD COLUMN No Yes LS

ALTER TABLE ADD COLUMN No No P/F

Constraint ALTER TABLE DROP CONSTRAINT Yes No P/F

ALTER TABLE ADD CONSTRAINT No No P/F or DE

Domain ALTER DOMAIN (in parameter list) Yes No Does not
apply1

ALTER DOMAIN (in procedure block) No No P/F2

1Oracle Rdb stores this domain parameter list dependency in the RDB$PARAMETERS system
table, not in RDB$INTERRELATIONS.
2Oracle Rdb stores a procedure dependency in the RDB$INTERRELATIONS system table when a
domain exists in a procedure block.
Key to dependency types:

DE—Default evaluating
DR—Default reserving
LS—Language semantics
P/F—Procedure or Function

(continued on next page)

13–20 Using Stored Routines

Table 13–2 (Cont.) Statements Causing Stored Routine Invalidation

Object
Type

SQL
Statement

Statement
Fails?

Routine
Invalidated?

Dependency
Type

DROP DOMAIN Yes No P/F

Function DROP FUNCTION CASCADE No Yes P/F

DROP FUNCTION RESTRICT Yes No P/F

Module DROP MODULE CASCADE No Yes P/F

DROP MODULE RESTRICT Yes No P/F

Procedure DROP PROCEDURE CASCADE No Yes P/F

DROP PROCEDURE RESTRICT Yes No P/F

Table DROP TABLE CASCADE No Yes P/F or LS

DROP TABLE RESTRICT Yes No P/F, LS, or DR

View DROP VIEW CASCADE No Yes P/F or LS

DROP VIEW RESTRICT Yes No P/F, LS, or DR

Key to dependency types:

DE—Default evaluating
DR—Default reserving
LS—Language semantics
P/F—Procedure or Function

Any DROP statement that is restricted does not affect validation because a
statement with the RESTRICT keyword prevents the statement from deleting
any objects that have stored routine dependencies. Drop cascade operations do
execute successfully but cause invalidation.

Use the SHOW PROCEDURE or SHOW FUNCTION statement in interactive
SQL to see whether a stored procedure or function is valid or invalid. In the
following case, deleting a table on which the P1 stored procedure relied caused
Oracle Rdb to invalidate P1:

SQL> SHOW PROCEDURE P1
Procedure name is: P1
Status is INVALID

Can be revalidated

In the above example, Oracle Rdb indicates that the procedure can be
revalidated. See Section 13.9.1 for information on revalidating routines.

Stored routines that do not display a ‘‘Status is INVALID’’ message are valid
routines.

Using Stored Routines 13–21

13.9 Revalidating Stored Routines
When a routine has been invalidated, you can attempt revalidation. However,
the action to take depends on the dependency type of the invalidated stored
routine, as follows:

• You can revalidate invalidated stored routines that have the following
dependency types:

Procedure

Default evaluating

Default reserving

Section 13.9.1 describes how to revalidate the routines.

• You cannot revalidate stored routines invalidated by a language semantic
dependency. You can only re-create them by following the process described
in Section 13.9.2.

13.9.1 Revalidating Invalidated Stored Routines
In most cases, when a stored routine with the dependency type of procedure,
default evaluating, or default reserving is invalidated, you can make the
routine valid again.

You can revalidate a stored routine, such as the NEW_SALARY_PROC stored
procedure defined in Example 13–9, after invalidation because its underlying
object, the SALARY_HISTORY table, creates a procedure dependency on the
stored routine.

Example 13–9 Stored Module Definition with Procedure Dependency Type

CREATE MODULE NEW_SALARY_PROC LANGUAGE SQL
PROCEDURE NEW_SALARY_PROC

(:ID CHAR(5),
:NEW_SALARY INTEGER(2));

BEGIN
UPDATE SALARY_HISTORY

SET SALARY_END = CURRENT_TIMESTAMP
WHERE EMPLOYEE_ID = :ID;

(continued on next page)

13–22 Using Stored Routines

Example 13–9 (Cont.) Stored Module Definition with Procedure Dependency
Type

INSERT INTO SALARY_HISTORY (EMPLOYEE_ID, SALARY_AMOUNT,
SALARY_START, SALARY_END)

VALUES
(:ID, :NEW_SALARY, CURRENT_TIMESTAMP, NULL);

END;
END MODULE;

If you drop the SALARY_HISTORY table using the CASCADE option, Oracle
Rdb marks the NEW_SALARY_PROC as invalid. Oracle Rdb does so because
the stored procedure has a procedure dependency on the SALARY_HISTORY
table, upon which the stored procedure relies for proper execution.

To make a stored routine valid again, take the following steps:

1. Re-create any database objects upon which the routine is dependent. For
example, to make the NEW_SALARY_PROC procedure valid, re-create the
SALARY_HISTORY table.

2. Define the logical name RDMS$VALIDATE_ROUTINE or the configuration
parameter RDB_VALIDATE_ROUTINE to 1 to mark an invalid routine as
valid. Oracle Rdb marks each invalid routine as valid when the process
calls the stored routine within a read/write transaction.

3. Invoke interactive SQL and attach to the database.

You can use precompiled SQL and SQL module language, but these
interfaces do not support the SET NOEXECUTE statement.

4. Start a read/write transaction.

5. To avoid errors if transaction statements are used in the stored routine and
to avoid inadvertently modifying data, use the following SQL statement:

SQL> SET NOEXECUTE

6. Invoke the stored routine.

For example, the following statement calls the stored procedure NEW_
SALARY_PROC:

SQL> CALL NEW_SALARY_PROC(’00196’, 2);

Because the SET NOEXECUTE statement is used, the statements in the
routine do not execute, and the data is not stored in the database.

Using Stored Routines 13–23

If other stored routines were marked invalid and you have re-created the
database element on which they depend, you can validate these stored
routines by invoking each routine.

7. Issue the SET EXECUTE statement.

8. Issue the COMMIT statement.

13.9.2 Re-Creating Invalidated Stored Routines with Language Semantic
Dependencies

Any stored routine that has been invalidated due to a language semantic
dependency cannot be revalidated using the method described in Section 13.9.1.
Instead, you must re-create its parent module and underlying schema objects
by taking the following steps:

1. Use the RMU Extract command with the Item=Module and Output
qualifiers to extract the stored module definition into a file.

Modifying the extracted module definition is easier than reentering the
definition line-by-line. Refer to the Oracle RMU Reference Manual for
further information about the RMU Extract command.

2. Delete the stored module with the DROP MODULE statement.

3. Re-create the underlying schema object or objects that caused the language
semantic dependency invalidation.

4. Create the stored module again with the CREATE MODULE statement.

Modify the extracted file (created in step 1) and store the module definition
in the database with the CREATE MODULE statement.

Oracle Rdb does not allow you to revalidate a language semantic invalidation
because, even if you reproduce the schema objects that caused invalidation,
Oracle Rdb cannot determine whether or not the re-created objects were
created as the stored routine used them. For example, you might be able to
re-create a table with the same column names, but what happens if you change
the order of the columns? In this case, the table is re-created and Oracle Rdb
could compile and execute the stored routine. However, the routine may not
execute as expected. Because Oracle Rdb cannot guarantee that the table was
re-created as originally defined, Oracle Rdb disallows revalidation of stored
routines invalidated by a language semantic dependency.

13–24 Using Stored Routines

14
Using External Routines

This chapter describes how to create and use external routines, which are
external procedures or external functions written in a 3GL language, linked
into a shareable image or shared object, and registered in a database. In the
sections that follow, you will become familiar with:

• The concept of external routines

• Developing applications that use external routines

• Creating external routine definitions in the database

• Modifying and deleting external routine definitions from the database

• Writing external routines and writing programs to invoke the routines

• Creating OpenVMS shareable images for external routines

• Creating Digital UNIX shared objects for external routines

• Invoking external routines in SQL statements

• Specifying the execution characteristics of routines

• The concepts of routine activation and deactivation

• Declaring and passing parameters to and from external routines and
declaring return values

• Coding external routines in particular host languages

• Using notify routines for initialization and cleanup operations

• Handling exceptions that external routines can encounter

• The limitations of external routines

• Troubleshooting problems with external routines

• Writing external routines that are portable and efficient

Using External Routines 14–1

14.1 Introducing External Routines
External routines provide the procedural capabilities of programming
languages. As a result, they extend the effects of SQL statements into
the realm of tasks that can be performed through 3GL routines. External
routines can perform tasks such as computing the square root of a value or
attaching to a database and performing data manipulation operations on the
database.

SQL implements the following types of external routines:

• External functions

An external function is a 3GL program (written in a language such
as C or COBOL) that you invoke by using the function name as a
value expression in an SQL statement. For example, the following
INSERT statement invokes the OpenVMS Runtime Library (RTL)
routine MTH$SQRT to store square root values in a column of the
SQUARE_ROOTS table:

INSERT INTO SQUARE_ROOTS VALUES (P_NUM, SQRT(CAST(P_NUM AS REAL)));

Like a built-in or stored function, an external function may accept a list
of input arguments and always returns a single value that SQL uses in
its evaluation of an SQL statement. Unlike a built-in or stored function,
however, the code for external functions is stored in files external to SQL
and Oracle Rdb.

To register the name of the external function in the database, specify the
function definition using the SQL CREATE FUNCTION statement.

• External procedures

An external procedure is a 3GL program (written in a language such
as C or COBOL) that you invoke using the SQL CALL statement. Like a
stored procedure, an external procedure may accept a list of input, output,
or input/output arguments, and does not return a value. Unlike a stored
procedure, however, the code for external procedures is stored in files
external to SQL and Oracle Rdb.

The following example shows a CALL statement that invokes the external
procedure ADD_SOUNDEX_NAME:

CALL ADD_SOUNDEX_NAME (:error);

To register the name of the external procedure in the database, specify the
routine definition using the SQL CREATE PROCEDURE statement.

14–2 Using External Routines

External routines can be based on existing routines from run-time libraries,
operating system services, or other existing libraries, or you can write new
external routines. For example, you might want to create an external function
that lets you identify names in a database that sound alike; the English
pronunciation of Barns, Barnes, and Barnse is the same. The following
statement invokes the SOUNDEX user-defined external function that lets you
encode a name into a string, which you can then use to search a database for
sound-alike names:

SELECT LAST_NAME, SOUNDEX(LAST_NAME) FROM EMPLOYEES;

14.2 Developing External Routines
To develop an external routine and use it with an Oracle Rdb database, take
the following steps:

1. If the external routine does not exist, create it using a 3GL language.

2. Compile the routine.

If the routine does not contain any calls to an Oracle Rdb database,
compile the source code with a host language compiler. If the routine
contains calls to an Oracle Rdb database, compile the source code with the
SQL precompiler. If the routine refers to SQL module procedures, which
make calls to an Oracle Rdb database, compile the routine source code with
the host language compiler and the SQL module procedures with the SQL
module processor.

3. Create a shareable image or a shared object.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, you must create a shareable image to use an external
routine, unless an existing routine already resides in an existing shareable
image. ♦

Digital UNIX On Digital UNIX, you must create a shared object to use an external
routine, unless an existing routine already resides in an existing shared
object.♦

4. Test the routine

After coding, compiling, and linking an external routine, test the routine
independently to ensure that it does what you intend. This step usually
requires that you write a test program.

5. Create the routine definition in the database

Using External Routines 14–3

You create the external routine definition in an Oracle Rdb database using
the CREATE FUNCTION or CREATE PROCEDURE statement. The
external routine definition contains information about the routine, such as
the parameters that the external routine uses, the external routine name,
the location of the executable image or object containing the routine, and
the language in which the routine is coded.

6. Invoke the routine in an SQL statement

You can invoke an external function wherever a value expression is allowed
in an SQL statement. You invoke an external procedure with an SQL
CALL statement within a compound statement.

Refer to Section 14.8 for examples of where you might commonly invoke
external routines.

The active scope of an external routine is generally the scope of the
active attach on the database that invoked the external routine. In some
environments, external routines might be physically deactivated (code
removed) when you detach from the invoking database.

Note that operations performed by external routines occur outside the context
of any database transaction in effect when the routine is invoked. If an
external routine performs an operation, such as writing to a file or spawning a
process, but a rollback occurs in the database, the operation performed by the
external routine will not be undone as part of the transaction roll back.

14.3 Creating External Routine Definitions
Before you can invoke an external routine from an SQL statement, you must
register the external routine name, creating the external routine definition,
in an Oracle Rdb database. Although this step is not logically the first step
you take in creating external routines, it is useful to understand the type of
information about external routines that you store in an Oracle Rdb database.

Section 14.3.1 describes how to create an external function definition.
Section 14.3.2 describes how to create an external procedure definition. You
use many of the same clauses to create external functions and external
procedures.

14–4 Using External Routines

14.3.1 Creating External Function Definitions
The definition of an external function resides in an Oracle Rdb database
like other schema objects, such as tables or views. To create an external
function definition, use the CREATE FUNCTION statement, as shown in
Example 14–1.

Example 14–1 Defining an External Function with the CREATE FUNCTION
Statement

-- SQRT external function.
CREATE FUNCTION SQRT! (IN :PARAM1 REAL) "

RETURNS REAL;#
EXTERNAL NAME MTH$SQRT$

LOCATION ’SYS$SHARE:MTHRTL.EXE’ %
LANGUAGE GENERAL&
GENERAL PARAMETER STYLE'

NOT VARIANT(
COMMENT IS ’Square Root of an F-floating value’;)

The numbered callouts in Example 14–1 are keyed to the following list:

! CREATE FUNCTION SQRT

Creates an external function as an object in an Oracle Rdb database and
specifies the name of the external function definition.

The name must be unique among all external routine definitions and stored
routine names.

" IN :PARAM1 REAL

Specifies the parameter name and the SQL data type (REAL) for the IN
parameter used by the external function. The parameter name is optional,
but if you use it, you must precede it with a colon (:). You can use only IN
parameters for external functions.

You can specify any SQL data type, except LIST OF BYTE VARYING.
Alternatively, you can use a domain name to specify the data type.

Also, you can specify a passing mechanism for each parameter. When
you do not specify a passing mechanism, SQL passes the parameter by
REFERENCE. The passing mechanism you specify depends on the data
type of the parameter and the language of the external function.

For more information about parameters and supported passing
mechanisms, see Section 14.11 and Section 14.12.

RETURNS REAL

Describes the SQL data type for the return value of the external function.

Using External Routines 14–5

You can specify any SQL data type, except LIST OF BYTE VARYING.
Alternatively, you can use a domain name to specify the data type.

You can specify a passing mechanism for the return value. If you do not
specify a passing mechanism, SQL passes return values of numeric data
type by VALUE and return values of character data type by REFERENCE.
The passing mechanism you specify depends on the data type of the return
value and the language of the external function. For information on the
supported passing mechanisms, see Section 14.11 and Section 14.12.

$ EXTERNAL NAME MTH$SQRT

Specifies the name of the external function as it is declared in the external
routine program.

% LOCATION ’ SYS$SHARE:MTHRTL.EXE’

Specifies the file specification of the external function.

OpenVMS On OpenVMS, you can use a file specification or a logical name to identify
the image location of the external function. ♦

Digital UNIX On Digital UNIX, you can use an absolute or relative pathname to identify
the shared object location of the external function. ♦
If you do not specify a location clause, or if you specify the DEFAULT
LOCATION clause, SQL uses the name RDB$ROUTINES as the image
location.

& LANGUAGE GENERAL

Identifies the host language in which the external function is written.

You can specify the ADA, C, COBOL, FORTRAN, PASCAL, or GENERAL
keyword. The GENERAL keyword enables SQL to call an external function
written in any language, if the external function uses the data types and
parameter mechanisms supported by Oracle Rdb. Use this keyword if you
do not know the language in which the function is written or if the function
is written in a language that is not supported by SQL.

' GENERAL PARAMETER STYLE

Identifies the method used to pass arguments to and return values from
external functions. SQL currently restricts this clause to style GENERAL,
which most closely corresponds to the OpenVMS calling conventions. To
comply with the evolving SQL standard, future versions of Oracle Rdb
might implement other parameter styles.

(NOT VARIANT

14–6 Using External Routines

Specifies whether or not to invoke a function each time it occurs within
the scope of a single query. The NOT VARIANT clause can (but does not
always) result in a single evaluation of corresponding function expressions
in a single query. The resulting value is used in all occurrences of the
corresponding function expression. The final decision to evaluate an
external function only once depends on the Oracle Rdb query optimizer.

The VARIANT clause forces the evaluation of the function every time the
function is invoked.

) COMMENT IS ’ Square Root of an F-floating value’

Lets you add a descriptive comment about the external function.

For a complete description of the CREATE FUNCTION statement, its syntax
and arguments, refer to the Create Routine Statement in the Oracle Rdb7 SQL
Reference Manual.

14.3.2 Creating External Procedure Definitions
The definition of an external procedure resides in an Oracle Rdb database
like other schema objects, such as tables or views. To create an external
procedure definition, use the CREATE PROCEDURE statement, as shown in
Example 14–2.

Example 14–2 Defining an External Procedure with the CREATE
PROCEDURE Statement

CREATE PROCEDURE ADD_SOUNDEX_NAME!

(INOUT :PARAM1 INTEGER BY REFERENCE)";
EXTERNAL NAME ADD_SOUNDEX_NAME#
LOCATION ’ADD_SOUNDEX.EXE’$
LANGUAGE FORTRAN %
GENERAL PARAMETER STYLE&
BIND ON SERVER SITE '
BIND SCOPE TRANSACTION (
NOTIFY ADD_SOUNDEX_NOTIFY ON BIND, TRANSACTION;)

The numbered callouts in Example 14–2 are keyed to the following list:

! CREATE PROCEDURE ADD_SOUNDEX_NAME

Creates an external procedure as an object in an Oracle Rdb database and
specifies the name of the external procedure definition.

The name must be unique among all external routine definitions and stored
routine names.

" INOUT :PARAM1 INTEGER BY REFERENCE

Using External Routines 14–7

Specifies the parameter name, the SQL data type (INTEGER) for the
INOUT parameter used by the external procedure, and the passing
mechanism. The parameter name is optional, but if you use it, you must
precede it with a colon (:). You can use IN, INOUT, and OUT parameters
for external procedures.

You can specify any SQL data type, except LIST OF BYTE VARYING.
Alternatively, you can use a domain name to specify the data type.

You can also specify a passing mechanism for each parameter. When
you do not specify a passing mechanism, SQL passes the parameter by
REFERENCE. The passing mechanism you specify depends on the data
type of the parameter and the language of the external procedure.

For more information about parameters and supported passing
mechanisms, see Section 14.11 and Section 14.12. .

EXTERNAL NAME ADD_SOUNDEX_NAME

Specifies the name of the external procedure as it is declared in the
external routine program.

$ LOCATION ’ADD_SOUNDEX.EXE’

OpenVMS On OpenVMS, you can use a file specification or a logical name to identify
the image location of the external procedure. ♦

Digital UNIX On Digital UNIX, you can use an absolute or relative pathname to identify
the shared object location of the external procedure. ♦
If you do not specify a location clause, or if you specify the DEFAULT
LOCATION clause, SQL uses the name RDB$ROUTINES as the image
location.

% LANGUAGE GENERAL

Identifies the host language in which the external procedure is written.

You can specify the ADA, C, COBOL, FORTRAN, PASCAL, or GENERAL
keyword. The GENERAL keyword enables SQL to call an external
procedure written in any language, if the external procedure uses the
data types and parameter mechanisms supported by Oracle Rdb. Use this
keyword if you do not know the language in which the function is written
or if the function is written in a language that is not supported by SQL.

& GENERAL PARAMETER STYLE

Identifies the method used to pass arguments to and return values from an
external procedure. SQL currently restricts this clause to style GENERAL,
which most closely corresponds to the OpenVMS calling conventions. To
comply with the evolving SQL standard, future versions of Oracle Rdb
might implement other parameter styles.

14–8 Using External Routines

' BIND ON SERVER SITE

You can specify SERVER SITE or CLIENT SITE binding.

CLIENT SITE binding is available only on OpenVMS. When you specify
this binding, Oracle Rdb activates and executes the external routine in the
same process as the Oracle Rdb server.

When you specify SERVER SITE binding, Oracle Rdb activates the external
routine in a separate executor process on the same processing node as the
Oracle Rdb server.

For more information about client-site and server-site binding, see
Section 14.10.

(BIND SCOPE TRANSACTION

Specifies the scope during which an external routine is active and when
the routine is deactivated. The TRANSACTION keyword indicates that
the external routine is deactivated when a transaction is terminated.
Alternatively, you can specify the CONNECT keyword, which indicates
that the external routine is deactivated when the database that contains
the routine definition is disconnected. The default is CONNECT.

) NOTIFY ADD_SOUNDEX_NOTIFY ON BIND, TRANSACTION

Specifies the name of the entry point for a notify routine in the external
routine image or shared object and the events for which the notify routine
is invoked. The notify routine can perform initialization and cleanup
operations, such as initializing variables or attaching or detaching from a
database. It can share information about database-related events with the
body of the external routine.

The NOTIFY clause specifies the types of events that invoke the notify
routine. You can specify BIND, CONNECT, or TRANSACTION as the
events.

For more information about using the NOTIFY clause, see Section 14.13.

For a complete description of the CREATE PROCEDURE statement, its syntax
and arguments, refer to the Create Routine Statement in the Oracle Rdb7 SQL
Reference Manual.

Using External Routines 14–9

14.4 Modifying and Deleting External Routine Definitions
To modify an external routine definition, you must first delete it and then
create it again with the changes applied. SQL does not provide an ALTER
FUNCTION or ALTER PROCEDURE statement to modify external routine
definitions.

To remove an external function definition from an Oracle Rdb database, use
the DROP FUNCTION statement, as shown in the following example:

DROP FUNCTION SOUNDEX;

To remove an external procedure definition from an Oracle Rdb database, use
the DROP PROCEDURE statement, as shown in the following example:

DROP PROCEDURE CLEAR_SOUNDEX;

When you use the RESTRICT keyword (the default) Oracle Rdb prevents the
removal of an external routine definition when any other object within an
Oracle Rdb database refers to that routine.

SQL returns an exception and prevents the removal of an external routine
definition if it is referenced in:

• COMPUTED BY clause of a table definition

• Constraint definitions

• Trigger definitions

• Stored procedures

• Active requests

When you use the CASCADE keyword to drop the external routine, Oracle
Rdb executes the drop operation and invalidates any stored routines that
refer to the dropped routine. See the Oracle Rdb7 SQL Reference Manual for
more information about the effects of the CASCADE keyword with the DROP
FUNCTION and DROP PROCEDURE statement.

14.5 Creating External Routines
This section describes how to create the following types of external routines:

• An external routine based on existing routines

See Section 14.5.1.

• An external routine that you code yourself (user-defined)

See Section 14.5.2.

14–10 Using External Routines

• An external routine that makes calls into the database

See Section 14.5.3.

• An external routine that requires a jacket routine

See Section 14.5.4.

14.5.1 Creating External Routines Based on Existing Routines
This section shows you how to use an existing external function, which
calculates the square root of a series of numbers.

Because the function already exists and the executable image is a shareable
image or shared object, you only need to create the function definition in SQL
and create an SQL program or interactive SQL script to invoke the function.

OpenVMS
VAX

Example 14–3 shows how to create the function definition, which uses the
OpenVMS VAX run-time library routine MTH$SQRT to calculate the square
root of a series of numbers.

Example 14–3 Defining an External Function for an Existing Function on
OpenVMS VAX

CREATE FUNCTION SQRT (IN :PARAM1 REAL)
RETURNS REAL;
EXTERNAL NAME MTH$SQRT LOCATION ’SYS$SHARE:MTHRTL.EXE’
LANGUAGE GENERAL
GENERAL PARAMETER STYLE; ♦

OpenVMS
Alpha

Example 14–4 shows how to create the function definition, which uses the
OpenVMS Alpha run-time library routine MTH$SQRT to calculate the square
root of a series of numbers.

Example 14–4 Defining an External Function for an Existing Function on
OpenVMS Alpha

CREATE FUNCTION SQRT (IN :PARAM1 REAL)
RETURNS REAL;
EXTERNAL NAME MTH$SQRT LOCATION ’SYS$SHARE:DPML$SHR.EXE’
LANGUAGE GENERAL
GENERAL PARAMETER STYLE;

The only difference from the OpenVMS VAX example is the location of the
routine. ♦

Using External Routines 14–11

Digital UNIX On Digital UNIX, you need jacket routines to convert between F-float and
IEEE S-float data. The sqrt.c jacket routine, shown in the following example,
calls utility routines in ftof.c and uses the system-provided sqrtf routine:

#include <math.h>

extern void cvt_ff_to_fs(unsigned int *, float *);
extern void cvt_fs_to_ff(float *, unsigned int *);

extern void SQRT(unsigned int *ffout, unsigned int *ffin) {
float fsin,fsout;
cvt_ff_to_fs(ffin, &fsin);
fsout = sqrtf(fsin);
cvt_fs_to_ff(&fsout, ffout); }

The following example shows the utility routine ftof.c, which calls system-
provided floating-point conversion (cvt) routines:

#include <cvt.h>
#include <excpt.h>
static int sts;

extern void cvt_ff_to_fs(unsigned int *ff, float *fs) {
sts = cvt_ftof(ff,CVT_VAX_F, fs,CVT_IEEE_S, CVT_FORCE_ALL_SPECIAL_VALUES);
if (sts != CVT_NORMAL) exc_raise_status_exception(sts); }

extern void cvt_fg_to_ft(unsigned long *fg, double *ft) {
sts = cvt_ftof(fg,CVT_VAX_G, ft,CVT_IEEE_T, CVT_FORCE_ALL_SPECIAL_VALUES);
if (sts != CVT_NORMAL) exc_raise_status_exception(sts); }

extern void cvt_fs_to_ff(float *fs, unsigned int *ff) {
sts = cvt_ftof(fs,CVT_IEEE_S, ff,CVT_VAX_F, CVT_FORCE_ALL_SPECIAL_VALUES);
if (sts != CVT_NORMAL) exc_raise_status_exception(sts); }

extern void cvt_ft_to_fg(double *ft, unsigned long *fg) {
sts = cvt_ftof(ft,CVT_IEEE_T, fg,CVT_VAX_G, CVT_FORCE_ALL_SPECIAL_VALUES);
if (sts != CVT_NORMAL) exc_raise_status_exception(sts); }

To compile and link the jacket and utility routines to create a shared object,
use the following commands:

$ cc -c -o sqrt.o sqrt.c
$ cc -c -o ftof.o ftof.c
$ ld -shared -soname $HOME/sqrt.so -o $HOME/sqrt.so sqrt.o ftof.o -lexc -lm -lc

Example 14–5 shows how to create the function definition in SQL.

14–12 Using External Routines

Example 14–5 Defining an External Function for an Existing Function on
Digital UNIX

CREATE FUNCTION SQRT (IN :PARAM1 REAL)
RETURNS REAL BY REFERENCE;
EXTERNAL NAME SQRT LOCATION ’sqrt.so’
LANGUAGE C
GENERAL PARAMETER STYLE
BIND ON SERVER SITE; ♦

Example 14–6 shows an excerpt of the SQL module file, sql_sqrt_c.sqlmod, that
contains a procedure that invokes the external function.

Example 14–6 Invoking a Predefined External Function Using an SQL
Module

.

.

.
--
-- Procedure to invoke the SQRT external function and insert values
-- into the SQUARE_ROOTS table
--
PROCEDURE INSERT_SQUARE_ROOTS_TABLE

(SQLCODE,
:P_NUM INTEGER);

INSERT INTO SQUARE_ROOTS VALUES (:P_NUM, SQRT(CAST(:P_NUM AS REAL)));
.
.
.

Example 14–7 shows the C program, sql_sqrt_mod.c, that calls the procedure
in sql_sqrt_c.sqlmod.

Example 14–7 Invoking a Predefined Function wit h a C Program
.
.
.

/* Declarations of entry points in the SQL module. */
extern void INSERT_SQUARE_ROOTS_TABLE(int *sqlcode, int *p_num);

(continued on next page)

Using External Routines 14–13

Example 14–7 (Cont.) Invoking a Predefined Function wit h a C Program
main()
{

int sqlcode = 0;
int i, n;
float s;

.

.

.
/* Call the SQL module procedure to insert the square root values into the

database. */

for(i=0;i<10;i++)
INSERT_SQUARE_ROOTS_TABLE(&sqlcode, &i);

OPEN_E1(&sqlcode);
do {

FETCH_E1(&sqlcode, &n, &s);
if (sqlcode==0)

printf("number=%d square_root=%f\n", n, s);
} while (sqlcode==0);

.

.

.
}

14.5.2 Writing User-Defined External Routines
This section uses a set of examples to show you how to write a user-defined
external function, which is an external function based on code that you write
yourself.

Table 14–1 describes the components that you need to invoke the user-defined
SOUNDEX function.

Table 14–1 Components for Building a User-Defined External Function

Component Description

soundex_c.c The C program containing the SOUNDEX function

soundex_c.opt The options file that defines any universal symbols
or symbol vectors (OpenVMS)

sql_soundex_c.sqlmod The SQL module file containing procedures to call
user-defined SOUNDEX function

sql_soundex_mod.c The main C program that calls the associated SQL
module file

14–14 Using External Routines

Example 14–8 shows an excerpt of the user-defined external function that
generates a list of four-character codes for the last names of employees in the
mf_personnel database.

Example 14–8 Writing a User-Defined External Function in C

/* This function is an implementation of the SOUNDEX routine,
originally developed by Margaret K. Odell and Robert C. Russell
and described in Knuth’s "Sorting and Searching, Vol. 3, The
Art of Computer Programming." */

#include <stdio.h>
.
.
.

void SOUNDEX (char *out_string, char *source_str)
.
.
.

The following example shows the contents of the soundex_c.opt options file as
declared for an OpenVMS VAX system.

UNIVERSAL = SOUNDEX

The name you use in the options file must match the name given to the
external function when you define the function with the CREATE FUNCTION
statement.

You must link the object file of the program and the options file to create
a shareable image. Example 14–9 shows how to compile the program that
contains the SOUNDEX function and and how to link the program and the
options file to create a shareable image.

Example 14–9 Compiling and Linking a User-Defined External Function

$ CC/G_FLOAT SOUNDEX_C.C
$ LINK/SHAREABLE=SOUNDEX_C_IMAGE.EXE SOUNDEX_C,-
_$ SOUNDEX_C.OPT/OPT

Example 14–10 shows how to create the SOUNDEX function definition in SQL.

Using External Routines 14–15

Example 14–10 Defining an External Function for a User-Defined Function

CREATE FUNCTION SOUNDEX (IN CHAR(32)) RETURNS CHAR(4);
EXTERNAL LOCATION ’SOUNDEX_C_IMAGE.EXE’
LANGUAGE C
GENERAL PARAMETER STYLE;

Example 14–11 shows an SQL module file that contains procedures that invoke
the SOUNDEX function.

Example 14–11 Invoking a User-Defined External Function from an SQL
Module

.

.

.
--
-- Declare Statement Section
--
DECLARE E1_CURSOR CURSOR FOR SELECT LAST_NAME, SOUNDEX_LAST_NAME

FROM EMPLOYEES
DECLARE E2_CURSOR CURSOR FOR SELECT LAST_NAME, SOUNDEX_LAST_NAME

FROM EMPLOYEES WHERE SOUNDEX_LAST_NAME=SOUNDEX(’Varmelker’)
.
.
.

-- Procedure to fetch a row.

PROCEDURE FETCH_E2

(SQLCODE,
:P_LAST_NAME CHAR(32),
:P_SOUNDEX_LAST_NAME CHAR(4));

FETCH E2_CURSOR INTO :P_LAST_NAME, :P_SOUNDEX_LAST_NAME;

-- Procedure to alter table.

PROCEDURE ALTER_EMPLOYEES_TABLE

(SQLCODE);

ALTER TABLE EMPLOYEES ADD SOUNDEX_LAST_NAME CHAR(4);

(continued on next page)

14–16 Using External Routines

Example 14–11 (Cont.) Invoking a User-Defined External Function from an
SQL Module

-- Procedure to update values in employees table.

PROCEDURE UPDATE_EMPLOYEES

(SQLCODE);

UPDATE EMPLOYEES SET SOUNDEX_LAST_NAME = SOUNDEX(LAST_NAME);

Example 14–12 shows a C program that calls the SQL module procedures that
invoke the SOUNDEX function.

Example 14–12 Invoking a User-Defined External Function wit h a C Program

#include <stdio.h>
typedef char STR33[33];
typedef char STR5[5];
typedef int *sqlcode;

/* Declarations of entry points in the SQL module. */
.
.
.

extern void OPEN_E1(int *sqlcode);
extern void CLOSE_E1(int *sqlcode);
extern void FETCH_E1(int *sqlcode, STR33 last_name, STR5 soundex_last_name);
extern void ALTER_EMPLOYEES_TABLE(int *sqlcode);
extern void UPDATE_EMPLOYEES(int *sqlcode);

main()
{

char last_name[33];
char slast_name[5];
int sqlcode = 0;

.

.

.
printf("\nAltering EMPLOYEES table to add SOUNDEX_LAST_NAME column\n");
ALTER_EMPLOYEES_TABLE(&sqlcode);

printf("\nUpdating EMPLOYEES table, setting SOUNDEX_LAST_NAME equal to\n");
printf("SOUNDEX(LAST_NAME)\n");
UPDATE_EMPLOYEES(&sqlcode);

printf("\nPrint LAST_NAME and SOUNDEX_LAST_NAME\n");
printf("LAST_NAME SOUNDEX_LAST_NAME\n");

(continued on next page)

Using External Routines 14–17

Example 14–12 (Cont.) Invoking a User-Defined External Function with a C
Program

OPEN_E1(&sqlcode);
do {

FETCH_E1(&sqlcode, last_name, slast_name);
if (sqlcode==0)

printf("%s %s\n",
last_name, slast_name);

} while (sqlcode==0);

if (sqlcode!=100)
printf("SQL error code = %d\n", sqlcode);

CLOSE_E1(&sqlcode);

printf("\nPrint LAST_NAME and SOUNDEX_LAST_NAME where SOUNDEX_LAST_NAME\n");
printf(" sounds like ’Varmelker’)\n");
printf("LAST_NAME SOUNDEX_LAST_NAME\n");
OPEN_E2(&sqlcode);

do {
FETCH_E2(&sqlcode, last_name, slast_name);
if (sqlcode==0)

printf("%s %s\n",
last_name, slast_name);

} while (sqlcode==0);

if (sqlcode!=100)
printf("SQL error code = %d\n", sqlcode);

CLOSE_E2(&sqlcode);
.
.
.

}

The following example shows how to compile and link the SQL module and the
host language program that invoke the SOUNDEX function:

$ CC/G_FLOAT SQL_SOUNDEX_MOD
$ SQL$MOD SQL_SOUNDEX_C
$ LINK SQL_SOUNDEX_MOD, SQL_SOUNDEX_C
$ RUN SQL_SOUNDEX_MOD

When the SQL_SOUNDEX_MOD program executes, it displays the following
results:

Altering EMPLOYEES table to add SOUNDEX_LAST_NAME column

Updating EMPLOYEES table, setting SOUNDEX_LAST_NAME equal to
SOUNDEX(LAST_NAME)

14–18 Using External Routines

Print LAST_NAME and SOUNDEX_LAST_NAME
LAST_NAME SOUNDEX_LAST_NAME
Smith S530
O’Sullivan O024
Lasch L200

.

.

.
Keisling K245
Vormelker V654

.

.

.

Print LAST_NAME and SOUNDEX_LAST_NAME where SOUNDEX_LAST_NAME
sounds like ’Varmelker’
LAST_NAME SOUNDEX_LAST_NAME
Vormelker V654

Section 14.6 and Section 14.7 describe how to compile and link external
routines on all supported platforms.

14.5.3 Writing External Routines That Call into the Database
You can write an external routine that contains calls into an Oracle Rdb
database. That is, an external routine can contain SQL data manipulation
statements in precompiled SQL programs or SQL module procedures and can
use those statements to insert, update, and delete data in a database.

This section illustrates using an external routine that adds a document to
a database, and in doing so, indexes the document. The external routine is
created using an SQL module, sql_add_doc_mod.sqlmod, and a C language
program, sql_add_doc.c. The external routine uses a database called docdb that
contains two tables, DOC and DOC_INDEX. The following example shows the
definition of the tables:

SQL> -- Create the table DOC to hold the document.
SQL> CREATE TABLE DOC (DOC_ID INTEGER, DOC_TEXT VARCHAR (500));
SQL>
SQL> -- Create the table DOC_INDEX to hold the index and information
SQL> -- about the occurrence of the index tokens.
SQL> CREATE TABLE DOC_INDEX
cont> (DOC_ID INTEGER, TOKEN CHAR (32),
cont> TOKEN_OCC_USED INTEGER, TOKEN_OCC VARCHAR (100),
cont> PRIMARY KEY (TOKEN, DOC_ID) NOT DEFERRABLE);

Using External Routines 14–19

Example 14–13 shows the C language program sql_add_doc.c.

Example 14–13 Writing an External Routine to Call into a Database

/* External routine ADD_DOC

Given the text of a document, create tokens by breaking the document into
words, create an occurrence record for each unique token, and store a
uniformly space-delimited form of the document.

This external routine uses the SQL module, sql_add_doc_mod.sqlmod, for
database operations, including a notify routine to control the attach
and detach on routine binding and unbinding. */

#include <string.h>
#include <stdio.h>

extern int ADD_DOC(int *, char *);
int add_token(int *, char *, int);
extern void ADD_DOC_NOTIFY(int *, int *, int *, int *);

void ATTACH_DB(int *);
void DETACH_DB(int *);
void START_TRAN(int *);
void COMMIT_TRAN(int *);
void ROLLBACK_TRAN(int *);
void STORE_DOC(int *, char *, int *);

void GET_DOC_INDEX_BY_TOKEN_ID(char *, int *, int *, char *, int *);
void STORE_DOC_INDEX(int *, char *, int *, char *, int *);
void UPDATE_DOC_INDEX(int *, char *, int *, char *, int *);
void sql_signal(void);
extern int ADD_DOC(int *doc_id, char *doc_text) {

int tokoff = 0, toklen = 0, docoff = 0, ndocoff = 0, dummy = 0, status = 0;
char new_text[500+1], token[32+1];

/* Start the transaction. */
START_TRAN(&status);
if (status !=0) return status;
for (docoff =0; docoff<= strlen(doc_text); docoff++) {

/* At token break, capture token from new text and add to index. */
if (doc_text[docoff] == ’ ’ || doc_text[docoff] == ’ ’ ||

doc_text[docoff] == ’\0’) {
if (toklen > 0) {

strncpy(token, &new_text[tokoff], toklen);
token[toklen] = ’\0’;
status = add_token(doc_id, token, tokoff);
if (status != 0) break;
toklen = 0; tokoff = 0;

}

(continued on next page)

14–20 Using External Routines

Example 14–13 (Cont.) Writing an External Routine to Call into a Database
} else {

/* Move document text to uniformly delimited new doc text. */
if (ndocoff > 0 && toklen == 0)

{ new_text[ndocoff++] = ’ ’; tokoff = ndocoff; }
new_text[ndocoff++] = doc_text[docoff]; toklen++;

}
}
if (status !=0) { ROLLBACK_TRAN(&dummy); return status; }

/* Save uniformly delimited doc text. Store it in the database. */
new_text[ndocoff] = ’\0’;
STORE_DOC (doc_id, new_text, &status);
if (status !=0) { ROLLBACK_TRAN(&dummy); return status; }

/* Commit the transation. */
COMMIT_TRAN(&status);
if (status !=0) { ROLLBACK_TRAN(&dummy); return status; }

return status;
}

int add_token(int *doc_id, char *token, int tokoff) {

int used, status = 0;
char occ[100+1];

/* Insert or update token occurrence index. */
GET_DOC_INDEX_BY_TOKEN_ID(token, doc_id, &used, occ, &status);
if (status == 100) { status = 0; used = 1; }
else { if (status == 0) used++; else return status; }
sprintf(&occ[(used-1)*4], "%04d", tokoff);
if (used == 1) STORE_DOC_INDEX(doc_id, token, &used, occ, &status);
else UPDATE_DOC_INDEX(doc_id, token, &used, occ, &status);
return status;

}

extern void ADD_DOC_NOTIFY(int *func, int *u1, int *u2, int *u3) {
int status;

/* Attach to database on routine activation.
Detach on routine deactivation. */

switch (*func) {
case 1: ATTACH_DB(&status); if (status != 0) sql_signal(); break;
case 2: DETACH_DB(&status); if (status != 0) sql_signal(); break;

}
return;

}

Example 14–13 calls the SQL module procedures shown in Example 14–14.
The procedures attach to the database, control transactions, insert documents
into the database, and index the documents.

Using External Routines 14–21

Example 14–14 Calling into a Database from an SQL Module

-- This SQL module, linked together with the C language program sql_add_doc.c
-- forms an external function, ADD_DOC. The SQL module procedures perform
-- database operations, including attaching to the database,
-- controlling transactions, inserting, retrieving, and updating data.
--
-- This SQL module is also used by the C program, sql_locate_doc.c to retrieve
-- information from the docdb database.

MODULE ADDDOC
LANGUAGE C
PARAMETER COLONS

DECLARE ALIAS FOR FILENAME docdb
DECLARE FIND_DOC_INDEX_BY_TOKEN CURSOR FOR

SELECT DOC_ID FROM DOC_INDEX WHERE TOKEN = :tok

PROCEDURE ATTACH_DB
(SQLCODE);
ATTACH ’FILENAME docdb’;

PROCEDURE DETACH_DB
(SQLCODE);
DISCONNECT DEFAULT;

PROCEDURE START_READ_TRAN
(SQLCODE);
SET TRANSACTION READ ONLY;

PROCEDURE START_TRAN
(SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE COMMIT_TRAN
(SQLCODE);
COMMIT;

PROCEDURE ROLLBACK_TRAN
(SQLCODE);
ROLLBACK;

-- Insert a document into the database.
PROCEDURE STORE_DOC

(:ID INTEGER, :TEXT CHAR(500), SQLCODE);
INSERT INTO DOC VALUES (:ID, :TEXT);

(continued on next page)

14–22 Using External Routines

Example 14–14 (Cont.) Calling into a Database from an SQL Module

-- Retrieve the index to determine if the index token already exists
-- or if it is a new token.
PROCEDURE GET_DOC_INDEX_BY_TOKEN

(:TOK CHAR (32), :ID INTEGER, :USED INTEGER, :OCC CHAR (100), SQLCODE);
SELECT DOC_ID, TOKEN_OCC_USED, TOKEN_OCC INTO :ID, :USED, :OCC

FROM DOC_INDEX WHERE :TOK = TOKEN;

PROCEDURE GET_DOC_INDEX_BY_TOKEN_ID
(:TOK CHAR (32), :ID INTEGER, :USED INTEGER, :OCC CHAR (100), SQLCODE);
SELECT TOKEN_OCC_USED, TOKEN_OCC INTO :USED, :OCC

FROM DOC_INDEX WHERE :TOK = TOKEN AND :ID = DOC_ID;

-- Insert new index tokens.
PROCEDURE STORE_DOC_INDEX

(:ID INTEGER, :TOK CHAR (32), :USED INTEGER, :OCC CHAR (100), SQLCODE);
INSERT INTO DOC_INDEX VALUES (:ID, :TOK, :USED, :OCC);

-- Update the occurrence count if the index token already exists.
PROCEDURE UPDATE_DOC_INDEX

(:ID INTEGER, :TOK CHAR (32), :USED INTEGER, :OCC CHAR (100), SQLCODE);
UPDATE DOC_INDEX SET TOKEN_OCC_USED = :USED, TOKEN_OCC = :OCC

WHERE :TOK = TOKEN AND :ID = DOC_ID;

Example 14–15 shows the external routine definition as it is stored in the
database docdb.

Example 14–15 Defining an External Routine That Calls into the Database

SET QUOTING RULES ’SQL92’;
-- Define the external routine that loads the index.
CREATE FUNCTION ADD_DOC

(IN INTEGER, IN VARCHAR (500))
RETURNS INTEGER;
EXTERNAL NAME "ADD_DOC" LOCATION ’ADDDOC.EXE’
LANGUAGE C GENERAL PARAMETER STYLE
BIND ON SERVER SITE
NOTIFY "ADD_DOC_NOTIFY" ON BIND;

For information about the limitations SQL imposes when you call into a
database, see Section 14.15.

To compile and link the ADD_DOC external function, take the following steps.
(This sequence shows how to compile and link on OpenVMS VAX. Section 14.6
and Section 14.7 explain how to compile and link on all supported platforms.)

1. Compile the SQL module using the SQL module processor:

Using External Routines 14–23

$ SQLMOD
INPUT FILE> SQL_ADD_DOC_MOD

2. Compile the C host language program:

$ CC SQL_ADD_DOC

3. Create a linker options file, sql_add_doc.opt, which contains the following
lines:

UNIVERSAL = ADD_DOC
UNIVERSAL = ADD_DOC_NOTIFY
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

4. Create the shareable image:

$ LINK/SHARE=SYS$LOGIN:ADDDOC.EXE SQL_ADD_DOC.OBJ, SQL_ADD_DOC_MOD.OBJ, -
$_ SQL_ADD_DOC.OPT/OPT, -
$_ SQL$USER/LIB

The following example shows how to use the ADD_DOC external function in
interactive SQL to load text from documents into the database:

SQL> ATTACH ’FILENAME docdb’;
SQL>
SQL> -- Declare a variable to retrieve the status of the statement.
SQL> DECLARE :STATUS INTEGER;
SQL> -- Populate the database with documents and index them.
SQL> BEGIN
cont> SET :STATUS =
cont> ADD_DOC (1, ’An external function is a 3GL program that you invoke
by using the function name as a value expression in an SQL statement.’);
cont> END;
SQL> PRINT ’The SQL error code is ’, :status;

STATUS
The SQL error code is 0

SQL> BEGIN
cont> SET :STATUS =
cont> ADD_DOC (2, ’An external procedure is a 3GL program that you invoke
using the SQL CALL statement.’);
cont> END;
SQL> PRINT ’The SQL error code is ’, :status;

STATUS
The SQL error code is 0

SQL>

14–24 Using External Routines

SQL> BEGIN
cont> SET :STATUS =
cont> ADD_DOC (3, ’An external routine is an external procedure or external
function, linked into a shareable image or shared module, and registered in the
database.’);
cont> END;
SQL> PRINT ’The SQL error code is ’, :status;

STATUS
The SQL error code is 0

The following example shows an excerpt from a C language program that calls
procedures in an SQL module to search for strings in the database:

.

.

.
int main (void) {

int seaidx, toklen=0, status = 0, exitval = 0, doc_id;
char search_text[101];

/* Get the search string. */
printf("Search string: ");
scanf("%[^\n]", search_text);
printf("\n");
for (seaidx=0; seaidx<=strlen(search_text); seaidx++) {

if (search_text[seaidx] == ’ ’ || search_text[seaidx] == ’ ’ ||
search_text[seaidx] == ’\0’) {
if (toklen > 0) { token[tokcnt][toklen] = ’\0’;

toksiz[tokcnt++] = toklen; toklen = 0; }
} else { token[tokcnt][toklen++] = search_text[seaidx]; }

}
/* Search for relevant documents. */
if (tokcnt > 0) {

ATTACH_DB(&status);
if (status != 0) { exitval = 1; goto done; }
START_READ_TRAN(&status);
if (status != 0) { exitval = 1; goto det_db; }
OPEN_FIND_DOC_INDEX_BY_TOKEN((char *)&token[0][0], &status);
if (status == 100) goto rbk_db;
if (status != 0) { exitval = 1; goto rbk_db; }
while (1) {

FETCH_ID_FROM_DOC_INDEX(&doc_id, &status);
if (status == 100) break;
if (status != 0) { exitval = 1; goto rbk_db; }
status = check_doc_occ(0, doc_id, 0);
if (status != 0) { exitval = 1; goto rbk_db; }

}
.
.
.

int check_doc_occ(int tokidx, int doc_id, int curoff) {

Using External Routines 14–25

int idx, fndlen, nxtidx, nxtoff = 0, occoff = 0, status = 0, used = 0;
char occ[100+1], doc[500+1];

/* Match next token in document (with the id) using prior end offset. */
GET_DOC_INDEX_BY_TOKEN_ID((char *)&token[tokidx][0], &doc_id, &used, occ,

&status);
if (status == 100 && tokidx != 0) return 0;
if (status != 0) return status;
for (idx=0; idx<used; idx++) {

sscanf(&occ[idx*4], "%04d", &occoff);
if (tokidx == 0) begoff = occoff;
if (tokidx == 0 || curoff == occoff) {

if (tokidx < tokcnt-1) {
nxtoff = occoff + toksiz[tokidx] + 1; nxtidx = tokidx + 1;
status = check_doc_occ(nxtidx, doc_id, nxtoff);

} else {
GET_DOC_BY_ID(&doc_id, doc, & status);
if (status != 0) return status;
fndlen = occoff + toksiz[tokidx] - begoff;
printf("Found doc %d, offset %d: %*.*s\n", doc_id, begoff,

fndlen, fndlen, &doc[begoff]);
}

}
if (tokidx != 0 && occoff >= curoff) break;

The following example shows SQL module procedures, called from the previous
C program, which search for strings in the database:

PROCEDURE GET_DOC_BY_ID
(:ID INTEGER, :TEXT CHAR(500), SQLCODE);
SELECT DOC_TEXT INTO :TEXT

FROM DOC WHERE DOC_ID = :ID;

PROCEDURE GET_DOC_INDEX_BY_TOKEN_ID
(:TOK CHAR (32), :ID INTEGER, :USED INTEGER, :OCC CHAR (100), SQLCODE);
SELECT TOKEN_OCC_USED, TOKEN_OCC INTO :USED, :OCC

FROM DOC_INDEX WHERE :TOK = TOKEN AND :ID = DOC_ID;

PROCEDURE OPEN_FIND_DOC_INDEX_BY_TOKEN
(:TOK CHAR (32), SQLCODE);
OPEN FIND_DOC_INDEX_BY_TOKEN;

PROCEDURE FETCH_ID_FROM_DOC_INDEX
(:ID INTEGER, SQLCODE);
FETCH FIND_DOC_INDEX_BY_TOKEN INTO :ID;

PROCEDURE CLOSE_FIND_DOC_INDEX_BY_TOKEN
(SQLCODE);

CLOSE FIND_DOC_INDEX_BY_TOKEN;

14–26 Using External Routines

14.5.4 Writing Jacket Routines to Invoke External Routines
Some external routines require additional processing to return the information
that you want. An application program that performs such additional
processing on a subprogram (in this case, an external function) is called a
jacket routine. When you execute a jacket routine, in effect you execute
the external function indirectly, within the enveloping program. For example,
OpenVMS system services routines and some OpenVMS RTL routines must be
called from a jacket routine.

Some external routines, such as a random number routine, cannot calculate
random numbers unless a seed (or starting value) is passed to them by an
enveloping jacket routine. For example, the MYRANDOM jacket routine
passes a seed value to the OpenVMS RTL MTH$RANDOM routine, which then
calculates a series of random numbers that are inserted into the database.

The additional processing that a jacket routine performs can vary widely from
very simple to extremely complex. The MYRANDOM jacket routine shown in
this section represents the simplest case.

Table 14–2 describes the components that you need to invoke an OpenVMS
RTL routine through a jacket routine.

Table 14–2 Components for Building a Jacket Routine to Invoke an External
Function

Component Description

myrandom_c.c The C program containing the jacket routine
MYRANDOM that calls the OpenVMS RTL
MTH$RANDOM routine

myrandom_c.opt The options file that defines any universal symbols

sql_myrandom_c.sqlmod The SQL module file containing procedures to
call the OpenVMS RTL MTH$RANDOM routine
through a jacket routine

sql_myrandom_mod.c The C program that calls the associated SQL
module file

Example 14–16 shows the jacket routine, myrandom_c.c, that passes a seed
value to the MTH$RANDOM routine.

Using External Routines 14–27

Example 14–16 Writing a Jacket Routine in C

static seed = 0;
float MYRANDOM()
{

return (MTH$RANDOM(&seed));
}

The following example shows the contents of the myrandom_c.opt options file
as declared for an OpenVMS VAX system.

UNIVERSAL = MYRANDOM

The name you use in the options file must match the name given to the
external function when you define the function with the CREATE FUNCTION
statement. Example 14–17 shows how to compile and link the jacket routine
with the MTH$RANDOM routine and the options file to create a shareable
image.

Example 14–17 Compiling and Linking a Jacket Routine

$ CC/G_FLOAT myrandom_c.c
$ LINK/SHAREABLE=myrandom_c_image.exe myrandom_c,-
_$ myrandom_c.opt/OPT

Example 14–18 shows how to create the function definition in SQL.

Example 14–18 Defining an External Function That Calls a Jacket Routine

CREATE FUNCTION MYRANDOM() RETURNS REAL;
EXTERNAL LOCATION ’DB_DISK:[DB_FUNCT]MYRANDOM_C_IMAGE.EXE’
LANGUAGE C
GENERAL PARAMETER STYLE;

Example 14–19 shows an SQL module file, sql_myrandom_c.sqlmod, that
defines a set of procedures for invoking the MTH$RANDOM routine.

14–28 Using External Routines

Example 14–19 Invoking a Jacket Routine from an SQL Module
.
.
.

-- Procedure to insert random numbers

PROCEDURE INSERT_RANDOM_NUMBER

(SQLCODE);

INSERT INTO RANDOM_NUMBERS VALUES(MYRANDOM());

Example 14–20 shows the C program, sql_myrandom_mod.c, that calls the
SQL module procedure.

Example 14–20 Invoking a Jacket Routine fro m a C Program

#include <stdio.h>
typedef int *SQLCODE;

/* Declarations of entry points in the SQL module. */
extern void INSERT_RANDOM_NUMBER(int *sqlcode);

.

.

.

main()
{

int sqlcode = 0;
int i;
float r;

/* Invoke the external function. */
for(i=0;i<10;i++)

INSERT_RANDOM_NUMBER(&sqlcode);
OPEN_E1(&sqlcode);
do{

FETCH_E1(&sqlcode, &r);
if (sqlcode==0)

printf("Random number = %f\n", r);
} while (sqlcode==0);

.

.

.
}

See Section 14.5.1 for another example of using a jacket routine with external
routines.

Using External Routines 14–29

14.6 Creating Shareable Images for External Routines
OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, you must create a shareable image to use an external routine,
unless an existing routine already resides in a shareable image.

You must ensure that the location of the routine as specified in the database
is the same as the actual location of the shareable image. If you use a logical
name in the CREATE FUNCTION or CREATE PROCEDURE statement, check
to see that the logical is pointing to the correct image.

When you use server-site binding, any logical name defined for the database
must be relevant in the executor process where it will be used to access the
database.

Before you link the images to create a shareable image, compile the program
that contains the external routine.

If the routine does not contain any calls into the database, compile the host
language program. For example, the following command line shows how to
compile an external routine written in the C language:

$ CC soundex_c.c

If the routine uses embedded SQL to make calls to an Oracle Rdb database,
compile the source code with the SQL precompiler. For example, the following
command compiles a C language program, sql_test.sc, that contains embedded
SQL statements:

$ SQL$PRE
SQLPRE> sql_test/CC/SQLOPTIONS=ROLLBACK_ON_EXIT

If the routine refers to SQL module procedures, which make calls to an Oracle
Rdb database, compile the routine source code with the host language compiler
and the SQL module procedures with the SQL module processor. For example,
the following command lines show how to compile an external routine using
the SQL module processor and the C language compiler:

$ SQLMOD
INPUT FILE> sql_add_doc_mod
$
$ CC sql_add_doc

The following sections describe how to create shareable images on OpenVMS
VAX and OpenVMS Alpha systems. ♦

14–30 Using External Routines

14.6.1 Creating Shareable Images for External Routines on OpenVMS VAX

OpenVMS
VAX

On OpenVMS VAX, to link a shareable image containing an external routine
that does not refer to the database, take the following steps:

1. Create an options file that specifies the external routine name as a
universal symbol by using the following format for each external routine:

UNIVERSAL = routine-name

When you build a shareable image that contains global variables and you
do not specify any options, all program sections (PSECTS) corresponding
to global variables are created as shareable. As a result, you must install
the image. To avoid installing the image, define the global variables as
nonshareable (NOSHR).

For an external routine called SOUNDEX, the options file, called
SOUNDEX_C.OPT, contains the following line:

UNIVERSAL = SOUNDEX

2. Link the object file of the program and the options file to create a shareable
image:

$ LINK/SHAREABLE=soundex_c_image.exe soundex_c,-
_$ soundex_c.opt/OPT

To link a shareable image containing an external routine that calls into the
database, take the following steps:

1. Create an options file that specifies the external routine name as a
universal symbol by using the following format for each external routine;

UNIVERSAL = routine-name

If the external routine contains notify routines, add a universal symbol for
each notify routine contained in the external routine:

UNIVERSAL = notify-routine-name

When you build a shareable image that contains global variables and you
do not specify any options, all program sections (PSECTS) corresponding
to global variables are created as shareable. As a result, you must install
the image. To avoid installing the image, define the global variables as
nonshareable (NOSHR).

Because the ADDDOC external routine contains a notify routine called
ADD_DOC_NOTIFY, the options file, sql_add_doc.opt, contains a universal
symbol for it as well as for the routine. The options file contains the
following lines:

Using External Routines 14–31

UNIVERSAL = ADD_DOC
UNIVERSAL = ADD_DOC_NOTIFY
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

2. Link the object files of the program and the options file to create a
shareable image:

$ LINK/SHARE=sys$login:adddoc.exe sql_add_doc.obj, sql_add_doc_mod.obj, -
$_ sql_add_doc.opt/OPT, -
$_ SQL$USER/LIB ♦

14.6.2 Creating Shareable Images for External Routines on OpenVMS Alpha

OpenVMS
Alpha

On OpenVMS Alpha, to link a shareable image containing an external routine
that does not refer to the database, take the following steps:

1. Create an options file that specifies the external routine name as a symbol
vector by using the following format for each external routine:

SYMBOL_VECTOR = (routine-name = PROCEDURE)

When you build a shareable image that contains global variables and you
do not specify any options, all program sections (PSECTS) corresponding
to global variables are created as shareable. As a result, you must install
the image. To avoid installing the image, define the global variables as
nonshareable (NOSHR).

For an external routine called SOUNDEX, the options file, called
SOUNDEX_C.OPT, contains the following line:

SYMBOL_VECTOR = (SOUNDEX = PROCEDURE)

2. Link the object file of the program and the options file to create a shareable
image:

$ LINK/SHAREABLE=soundex_c_image.exe soundex_c,-
_$ soundex_c.opt/OPT

To link a shareable image containing an external routine that calls into the
database, take the following steps:

1. Create an options file that specifies the external routine name as a symbol
vector by using the following format for each external routine:

SYMBOL_VECTOR = (routine-name = PROCEDURE)

If the external routine contains notify routines, add a symbol vector for
each notify routine contained in the external routine:

SYMBOL_VECTOR = (notify-routine-name = PROCEDURE)

14–32 Using External Routines

When you build a shareable image that contains global variables and you
do not specify any options, all program sections (PSECTS) corresponding
to global variables are created as shareable. As a result, you must install
the image. To avoid installing the image, define the global variables as
nonshareable (NOSHR).

Because the ADDDOC external routine contains a notify routine called
ADD_DOC_NOTIFY, the options file, sql_add_doc.opt, contains a symbol
vector for it as well as for the routine. The options file contains the
following lines:

SYMBOL_VECTOR = (ADD_DOC = PROCEDURE)
SYMBOL_VECTOR = (ADD_DOC_NOTIFY = PROCEDURE)
PSECT_ATTR=RDB$MESSAGE_VECTOR,NOSHR
PSECT_ATTR=RDB$DBHANDLE,NOSHR
PSECT_ATTR=RDB$TRANSACTION_HANDLE,NOSHR

2. Link the object file of the program and the options file to create a shareable
image:

$ LINK/SHARE=sys$login:adddoc.exe sql_add_doc.obj, sql_add_doc_mod.obj, -
$_ sql_add_doc.opt/OPT, -
$_ SQL$USER/LIB ♦

14.7 Creating Shared Objects on Digital UNIX
Digital UNIX On Digital UNIX, you must build a shared object to use an external routine,

unless the existing routine already resides in a shared object.

If the routine does not contain any calls into the database, take the following
steps to build a shared object:

1. Before you link the images to create a shared object, compile the program
that contains the external routine. For example, the following command
line shows how to compile an external routine written in the C language:

$ cc -c -o soundex_c.o soundex_c.c

2. Link the modules, using the -shared option on the command line. The
following example shows how to create the shared object for the
SOUNDEX external routine:

$ ld -shared -soname ${HOME}/soundex_c_image.exe -o \
> ${HOME}/soundex_c_image.exe soundex_c.o \
> -no_archive -nocount -lots -lc

Using External Routines 14–33

To create a shared object that contains an external routine that calls into the
database, take the following steps:

1. If the routine uses embedded SQL to make calls to an Oracle Rdb
database, compile the source code with the SQL precompiler. For example,
the following command shows how to use the SQL precompiler to compile a
C language program, sql_test.sc, that contains embedded SQL statements:

$ sqlpre -l cc sql_test.sc

If the routine refers to SQL module procedures, which make calls to
an Oracle Rdb database, compile the routine source code with the host
language compiler and the SQL module procedures with the SQL module
processor. For example, the following command lines show how to compile
the ADD_DOC external routine using the SQL module processor and the C
language compiler:

$ sqlmod -int32 sql_add_doc_mod.sqlmod
$
$ cc -c -o sql_add_doc.o sql_add_doc.c

2. Link the modules, using the -shared option on the command line. The
following example shows how to link to create the shared object for the
ADDDOC external routine:

$ ld -hidden_symbol ’RDB$TRANSACTON_HANDLE’ -hidden_symbol ’RDB$DBHANDLE’ \
> -hidden_symbol ’RDB$MESSAGE_VECTOR’ -shared \
> -soname ${HOME}/adddoc.exe -o ${HOME}/adddoc.exe \
> sql_add_doc.o sql_add_doc_mod.o -no_archive -nocount \
> -lsql -lrdbshr -lcosi -lots -lc ♦

14.8 Invoking External Routines
To invoke an external routine, you must have explicit execute access to the
external routine. System privileges, such as the OpenVMS SYSPRV or the
Digital UNIX superuser accounts, do not serve as overrides.

14.8.1 Invoking External Functions
You can invoke an external function from anywhere a value expression can be
specified in an SQL statement.

The SQL statements in Example 14–21 show how to invoke an external
function called SOUNDEX from a variety of value expression locations. The
SOUNDEX external function definition is shown in the following example:

14–34 Using External Routines

CREATE FUNCTION SOUNDEX(IN CHAR(32))
RETURNS CHAR(4);
EXTERNAL LOCATION ’SOUNDEX$EXE’ LANGUAGE C
GENERAL PARAMETER STYLE;

Example 14–21 Invoking External Functions in SQL Statements

-- Invoke the external function in the select list of a SELECT statement
-- to display an employee’s last name and the last name generated by the
-- SOUNDEX external function.
SELECT LAST_NAME, SOUNDEX(LAST_NAME)

FROM EMPLOYEES;

-- Invoke the external function in a WHERE clause to find employees
-- whose name sounds like "Barns".
SELECT LAST_NAME

FROM EMPLOYEES
WHERE SOUNDEX(LAST_NAME) = SOUNDEX(’Barns’);

-- Invoke the external function to insert column values into rows of
-- a table.
INSERT INTO EMPLOYEES

(LAST_NAME, SOUNDEX_LAST_NAME)
VALUES
(’Barnes’, SOUNDEX(’Barnes’));

-- Invoke the external function twice in a column constraint definition.
-- You can also use an external function in a table constraint definition.
CREATE TABLE EMPLOYEES

(LAST_NAME CHAR(32),
FIRST_NAME CHAR(32),
CHECK(SOUNDEX(LAST_NAME) <> SOUNDEX(FIRST_NAME)
);

-- Invoke an external function in a COMPUTED BY clause.
CREATE TABLE EMPLOYEES_CACHE

(LAST_NAME,
SOUNDEX_LAST_NAME COMPUTED BY SOUNDEX(LAST_NAME)));

The parameters you pass to the external function must agree with the formal
parameters in number, data type, and length.

14.8.2 Invoking an External Function Within a Trigger
You can invoke an external function from within a trigger, as a predicate in a
triggered action, or as an action in a triggered statement (INSERT, DELETE,
and UPDATE).

Using External Routines 14–35

Example 14–22 invokes the SOUNDEX external function in a triggered
INSERT statement.

Example 14–22 Invoking External Functions Within a Trigger Definition

CREATE TRIGGER LOG_UNUSUAL_NAME_CHANGES
AFTER UPDATE OF LAST_NAME
ON EMPLOYEES
REFERENCING OLD AS OEMP

NEW AS NEMP
WHEN (SOUNDEX(OEMP.LAST_NAME) = SOUNDEX(NEMP.LAST_NAME))
(INSERT INTO UNUSUAL_NAME_CHANGES_LIST

(OEMP.LAST_NAME,
NEMP.LAST_NAME,
SOUNDEX(OEMP.LAST_NAME))

FOR EACH ROW;

Suppose that you want to receive a mail message whenever an employee record
is removed from your personnel database. The mail message might contain
both the type of operation (DELETE) performed on the employee’s record
and the employee’s identification number. The following set of OpenVMS
examples shows one way to use an external function within a trigger definition
to send a mail message. Refer to the Oracle Rdb7 Guide to Database Design
and Definition for more information about using external functions in trigger
definitions.

Example 14–23 shows the external function definition.

Example 14–23 Tracking Database Activity with External Functions

CREATE FUNCTION SEND_MAIL
(IN CHAR(32),

IN CHAR(32),
IN CHAR(256))

RETURNS INTEGER;
EXTERNAL NAME SEND_MAIL
LOCATION ’SUPPORT_FUNCTIONS’
LANGUAGE C
GENERAL PARAMETER STYLE;

The first argument passes the user name of the person to whom the mail is
sent, the second argument passes the mail subject text, and the third argument
passes the message content.

14–36 Using External Routines

Example 14–24 shows the trigger definition.

Example 14–24 Using Triggers and External Functions to Track Database
Activity

CREATE TRIGGER EMPLOYEE_ID_CASCADE_DELETE
BEFORE DELETE ON EMPLOYEES
WHEN SEND_MAIL (’godfrind’,

’Employee ’|| EMPLOYEES.EMPLOYEE_ID || ’ deleted’,
’User ’ || CURRENT_USER || ’ just deleted employee ’ ||

EMPLOYEES.EMPLOYEE_ID) <> 0
(ERROR)
FOR EACH ROW;

The SEND_MAIL external function uses the return value as a status to
indicate success or failure of the mail operation. Before an employee record
is deleted, the SEND_MAIL external function is called. The trigger passes
information about the database activity to the external function.

14.8.3 Invoking External Procedures
You invoke an external procedure using the CALL statement, as shown in
Example 14–25.

Example 14–25 Invoking External Procedures

BEGIN
SET :ERROR = 0;
CALL ADD_SOUNDEX_NAME (:ERROR);

END;

The parameters you pass to the external procedure must agree with the formal
parameters in number, data type, and length.

14.9 Specifying Execution Characteristics of Routines
All external routines are controlled by an executor manager. The executor
manager, as well as all external routines, operates in a non-privileged
execution mode, such as OpenVMS user mode.

When you create an external routine definition, you can control many of the
execution characteristics of the routine by specifying the BIND ON CLIENT
SITE or BIND SERVER SITE clauses.

Using External Routines 14–37

OpenVMS
VAX

OpenVMS
Alpha

You can specify CLIENT SITE binding only on OpenVMS. When you specify
this binding, Oracle Rdb activates and executes the external routine in the
same process as the server. This binding offers the most efficient execution
characteristics. When the server resides in the same process with the client
application, this binding allows sharing of client resources and debugging of
external routines as if they are part of the client application. However, it has
address space limitations and is restricted to the SYSTEM_USER execution
environment.

In addition, Oracle Rdb returns an error if an application process has higher
privileges than the user running the application. This situation usually occurs
when one of the application images is installed with privileges that the user
has not been granted. Oracle Rdb generates an exception to prevent the
security problem of a random external routine using elevated privileges to
which it would not normally have access. ♦

You can specify SERVER SITE binding on any platform. When you specify
this binding, Oracle Rdb activates and executes the the external routine in
a separate executor process on the same processing node as the Oracle Rdb
server. SERVER SITE binding offers reasonable execution characteristics,
a larger address space than client-site binding, a true SESSION_USER
execution environment, and has no restrictions regarding elevated privileges
for the client process. However, this binding does not permit sharing of client
resources and it can be difficult to debug routines.

When you specify SERVER SITE binding, a server-site executor process is
initialized on behalf of the SESSION_USER who invokes the external routine.
That is, the executor process uses the user name and user identification, the
default login device and directory, and on OpenVMS, the privileges and quotas
of the session user.

The process environment is similar to that established for a login with no
login command script available. In other words, the environment is similar
to logging on an OpenVMS system using the DCL LOGIN/NOCOMMAND
command or logging on a Digital UNIX system with no .login, .profile, or
resource configuration (.*rc) files. The process is non-interactive (that is,
detached on OpenVMS), has no command line interpreter or command shell,
has all standard I/O devices connected to the null device, and uses system
defaults for file creation protection and other masks.

As stated earlier, when you specify server-site binding, the external routine
uses the session user’s environment. The session user is the user specified by
the authorization identifier of the current SQL session. Consider the following
scenario to understand when and how the session user is used:

14–38 Using External Routines

• Your user name is USERA. When you log on to an OpenVMS system, you
establish the process system user as USERA.

• You attach to database D1 and do not specify the USER clause. As a result,
when you query database D1, the session user is USERA, the same as the
SYSTEM_USER. External routines at either the client site or server site
operate in the system environment of USERA.

• You attach to database D2 specifying the USER ’USERX’ clause. As a
result, when you query database D2, the session user is USERX, but the
SYSTEM_USER is USERA. External routines at the server site operate
in the system environment of USERX because USERX was the declared
session user when the server site executor process was created. External
routines at the client site operate in the system environment of USERA,
because the OpenVMS process system user is USERA.

If the server-site binding executor manager encounters an unexpected error,
the current routine execution is aborted and an exception is returned. All
subsequent attempts to use that executor process generate the same exception,
until all databases for the session user are disconnected. At that point,
the executor process is discarded and the next execution of a routine with
server-site binding initiates a new executor process.

Digital UNIX On Digital UNIX, the server-site process is initialized so that any trappable
signal that normally stops or terminates the process is converted to an
exception when a signal is raised. ♦

The database server and the server-site binding executor manager manipulate
routine parameter data and control information by using shared memory.
Shared memory has a default size of 31 pages. You can select a different
shared memory size by setting the RDMS$RTX_SHRMEM_PAGE_CNT logical
name or the RDB_RTX_SHRMEM_PAGE_CNT configuration parameter to a
different value.

14.10 Understanding Routine Activation and Deactivation
When you create the external routine definition, ensure that the proper
external routine image is activated. Do that by using one of the following
methods:

• Specify an image file specification; do not use the default image name.

• Use a full file specification; do not use any of the default components in
the image file specification. On OpenVMS, specify a device and specific
directory or a logical name that translates to both. On Digital UNIX,
specify an absolute path.

Using External Routines 14–39

OpenVMS
VAX

OpenVMS
Alpha

• On OpenVMS, follow these rules:

Do not use logical names in the file specification. Specify the physical
device names.

Use only logical names defined as /SYSTEM/EXECUTIVE_MODE
/CONCEALED.

Specify SYSTEM LOGICAL_NAME TRANSLATION in the routine
definition and ensure that all logical names are defined as /SYSTEM
/EXECUTIVE_MODE and have only one translation.

If you use the WITH SYSTEM LOGICAL_NAME TRANSLATION
clause, the logical name is expanded. The resultant expanded file
specification must have no more than 255 characters.

Make sure any logicals are defined on all nodes where the image is
used.

Use user mode logical names only while testing. User mode logical names
allow the flexibility of using different routine images by redefining the
logical name and, as such, are appropriate only in a non-production
environment. ♦

Oracle Rdb recommends that, whenever possible, you place routine images to
be used in a production environment in a protected library.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, place images in a directory referenced by the system-level,
executive-mode logical name RDB$LIBRARY and specify SYSTEM LOGICAL_
NAME TRANSLATION in the routine definition.

Example 14–26 adds a secure external function definition to your Oracle Rdb
database.

Example 14–26 Securing an External Function Definition

CREATE FUNCTION SECURE_FUNC (IN CHAR(32) BY REFERENCE)
RETURNS TINYINT;
EXTERNAL LOCATION ’RDB$LIBRARY:SECURE_FUNC.EXE’
WITH SYSTEM LOGICAL_NAME TRANSLATION
LANGUAGE C
GENERAL PARAMETER STYLE;

On OpenVMS, generally it is not necessary for an external routine image to be
installed, particularly for server-site binding. When you use client-site binding
and the application image is a privileged image, the routine image must be
installed and the location file specification must contain only system-level,
executive-mode logical names. ♦

14–40 Using External Routines

Digital UNIX On Digital UNIX, place shared objects in the following directory:

/usr/local/dbs/shlib ♦

Oracle Rdb dynamically activates the shareable image containing the external
routine code at the time of the initial routine invocation. While the image
containing the routine is active, the dynamic activation overhead is incurred
only once for a routine.

When you physically replace an external routine image, any associated active
external routine is not invalidated. Invocations of routines defined in these
already active routine images continue to execute code from the old image.
Only those invocations that cause physical activation after you replace the code
use the new image and routine code.

Deactivation of a routine from the executor process occurs logically and,
depending on the platform, sometimes physically. Deactivation occurs at the
end of the bind scope and only if the external routine is in the activated state.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, physical deactivation (removal from the address space)
can occur only for routines defined with the SERVER SITE binding. The
deactivation occurs in bulk when all databases are detached and the SERVER
SITE executor process is destroyed. ♦

If an external routine is still attached to one or more databases during the
routine’s deactivation, Oracle Rdb rolls back all active transactions and
disconnects all databases. Oracle Rdb ignores any exceptions that occur during
these cleanup operations.

14.11 Declaring and Passing Parameters and Return Values
How you declare parameters and function return values, and the mechanism
you use to pass them, depends on the language of the external routine.
Section 14.12 discusses the language-specific guidelines. However, the
following points pertain to all languages:

• You cannot pass INOUT or OUT parameters by VALUE.

• If a function definition declares the function value passing mechanism
to be by REFERENCE, LENGTH, or, on OpenVMS, DESCRIPTOR,
the corresponding 3GL routine code must represent a procedure that
accesses the output function value parameter as the first argument.
Some languages, such as FORTRAN, provide function-specific syntax that
handles this situation automatically.

Using External Routines 14–41

• If character string data items are longer than the corresponding parameter,
SQL truncates the data on input and blank-fills it on output. If character
string data items are shorter than the corresponding parameter, SQL
blank-fills or null-terminates the data on input and truncates it on output.

• External functions support only OpenVMS F-floating point and G-floating
point data types. Routines that require IEEE floating point data types
(S-floating and T-floating) must convert the input and output floating point
data before and after use. As a result, on Digital UNIX you must pass the
"foreign format floating" data as nonfloating point parameters.

• When the values associated with input or output parameters or function
values are uninitialized, the results are indeterminate.

• If a routine invocation generates an exception, the output values for any
OUT and INOUT access mode parameters (including a function value) is
indeterminate.

• Output data (including the function value data) cannot represent an
address.

In selecting and using a passing mechanism, keep in mind the following points:

• BY REFERENCE

The input and output data is passed as an address argument
referencing the actual data. The address argument is 32 bits on
OpenVMS and 64 bits on Digital UNIX.

If you specify the routine host language as C, SQL passes the character
data types CHAR(n), NCHAR(n), VARCHAR(n), NCHAR VARYING(n),
and LONG VARCHAR as null-terminated character strings, and the
VARCHAR actual strings do not include the 16-bit length field.

• BY VALUE

The input data and function value data is passed as a value. On OpenVMS,
the valid input data types are SMALLINT, TINYINT, INTEGER, and
REAL (32 bits). On Digital UNIX, and as a function value, valid data
types are SMALLINT, TINYINT, INTEGER, and REAL (32 bits), BIGINT,
DOUBLE PRECISION, DATE VMS, DATE ANSI, TIME, TIMESTAMP,
and INTERVAL (64 bits).

14–42 Using External Routines

OpenVMS
VAX

OpenVMS
Alpha

• BY DESCRIPTOR

The input and output character data are each passed as an address
argument referencing an OpenVMS fixed-length (class S) string (type T
or VT) descriptor, which in turn references the actual character data.
The descriptor is read-only and both addresses are 32 bits.

For fixed-length character string (type T) descriptors, the descriptor
length value is the minimum of the length of the actual argument and
the length of the declared parameter. For varying character string
(type VT) descriptors, the descriptor length value is the length of the
declared parameter. ♦

• BY LENGTH

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, BY LENGTH is the same as mechanism BY
DESCRIPTOR. ♦

Digital UNIX On Digital UNIX, input and output data are each passed as an address
argument referencing, either directly or indirectly, the actual character
data.

For Digital UNIX Pascal, the parameter argument is an address
referencing a private descriptor which consists of an address that
references the character string and a length. For Digital UNIX
FORTRAN, the parameter argument is an address referencing the
character string; an extra hidden argument is passed representing the
string length. All addresses are 64 bits.

On Digital UNIX, for fixed-length character strings, any passed length
value is the minimum of the length of the actual argument and the
length of the declared parameter. For all other character data types,
the passed length value is the length of the declared parameter. ♦

14.12 Language-Specific Guidelines for Coding External Routines
Oracle Rdb supports external routines written in any programming language;
however, if the external routine is written in a language other than Ada, C,
COBOL, FORTRAN, or Pascal, you must specify the GENERAL keyword in the
LANGUAGE clause of the CREATE FUNCTION or CREATE PROCEDURE
statement. Although you can call external functions written in any language
when you specify GENERAL, the external functions can only use the data
types and parameter mechanisms that Oracle Rdb supports.

For information about the supported data types and parameter mechanisms,
see the following sections.

Using External Routines 14–43

14.12.1 Using External Routines with Ada
Keep in mind the following guidelines when you use external routines with the
Ada language:

• SQL data types that have direct Ada equivalents are: TINYINT,
SMALLINT, INTEGER, REAL, DOUBLE PRECISION, CHAR(n), and
VARCHAR(n).

• The passing mechanism for parameters depends on the data type of the
parameter:

Pass numeric arguments by REFERENCE.

On OpenVMS, pass fixed-length character strings by DESCRIPTOR or
LENGTH.

On Digital UNIX, pass fixed-length character strings by REFERENCE.

Pass variable-length character strings by REFERENCE.

• The passing mechanism of the return value of external functions depends
on the data type of the return value:

Numeric data types are returned by VALUE.

On OpenVMS, fixed-length character strings are returned by
DESCRIPTOR or LENGTH.

On Digital UNIX, fixed-length character strings of eight or fewer
characters are returned by VALUE; more than eight characters by
REFERENCE.

Variable-length character strings are returned by REFERENCE.

• If you are using DEC Ada V3.0 or earlier, the parameter mechanism is
determined by the compiler. You can find out the parameter mechanism
chosen by the compiler by using the option ’ warnings=compilation_
notes’ during compilation. The parameter mechanism specification in the
CREATE Routine statement should match the mechanism chosen by the
Ada compiler.

• In addition to the mechanism choices listed, you can use the MECHANISM
pragma to specify the passing mechanism for exported procedures in the
Ada compiler.

• In addition to Ada functions, Ada procedures whose first argument has
an OUT mode can be treated as Ada functions. These procedures must be
exported as valued procedures.

14–44 Using External Routines

14.12.2 Using External Routines with C
Keep in mind the following guidelines when you use external routines with the
C language:

• SQL data types that have direct C equivalents are: TINYINT, SMALLINT,
INTEGER, BIGINT (OpenVMS Alpha and Digital UNIX only), REAL,
DOUBLE PRECISION, CHAR(n), and VARCHAR(n).

• The passing mechanism of parameters depends on the data type of the
parameter:

Pass numeric data types by VALUE or REFERENCE.

Pass character string data types by REFERENCE.

• The passing mechanism of the return value of external functions depends
on the data type of the return value:

Numeric data types are returned by VALUE or REFERENCE.

Character string data types are returned by REFERENCE.

• When you pass CHAR(n) and VARCHAR(n) strings by REFERENCE, SQL
converts them to null-terminated text for input parameters and converts
them from null-terminated text to CHAR(n) or VARCHAR(n) for output
parameters.

• The following SQL statement creates an external function definition that
points to an external function written in the C language:

CREATE FUNCTION CONCAT_STRING (IN CHAR(20), IN CHAR(20)) RETURNS CHAR(40);
EXTERNAL LOCATION ’concat_location.exe’ LANGUAGE C
GENERAL PARAMETER STYLE;

The C function is coded with the return value as the first argument:

void concat_string (char *result_str, char *first_input, char *second_input);

OpenVMS
VAX

Some compilers, such as VAX C (V3.2-044), do not place the return value
as the first parameter, as it can return the address into R0. You must
rewrite the C routine in the following example to correct this condition.
For example:

char *concat_string (char *first_input, char *second_input); ♦

• You can pass fixed-length and variable-length character strings by
DESCRIPTOR (on OpenVMS) or LENGTH, but the resulting data type
does not represent a C language data type.

Using External Routines 14–45

14.12.3 Using External Routines with COBOL
Keep in mind the following guidelines when you use external routines with the
COBOL language:

• SQL data types that have direct COBOL equivalents are: TINYINT,
SMALLINT, INTEGER, BIGINT, REAL, CHAR(n), and VARCHAR(n).

• COBOL numeric equivalents are COMP (TINYINT, SMALLINT, INTEGER,
BIGINT), and COMP-1 (REAL). COMP-2 (D-Float double precision) is not
supported.

• You must pass all parameters, regardless of data type, by REFERENCE.

• The passing mechanism of the return value of external functions depends
on the data type of the return value:

Numeric data types are returned by VALUE.

Character string data types are returned by REFERENCE.

14.12.4 Using External Routines with FORTRAN
Keep in mind the following guidelines when you use external routines with the
FORTRAN language:

• SQL data types that have direct FORTRAN equivalents are: TINYINT,
SMALLINT, INTEGER, BIGINT (OpenVMS Alpha and Digital UNIX only),
REAL, DOUBLE PRECISION, CHAR(n), and VARCHAR(n).

• The passing mechanism of parameters depends on the data type of the
parameter:

Pass numeric data types by REFERENCE.

Pass character strings by LENGTH or, on OpenVMS, DESCRIPTOR.

• The passing mechanism of the return value of external functions depends
on the data type of the return value:

Numeric data types are returned by VALUE.

Character string data types are returned by LENGTH or, on OpenVMS,
DESCRIPTOR.

• You can pass fixed-length and variable-length character strings by
REFERENCE, but the resulting data type does not represent a FORTRAN
language data type.

14–46 Using External Routines

14.12.5 Using External Routines with Pascal
Keep in mind the following guidelines when you use external routines with the
Pascal language:

• SQL data types that have direct Pascal equivalents are: SMALLINT,
INTEGER, REAL, DOUBLE PRECISION, CHAR(n), and VARCHAR(n).

• You can pass all parameters, regardless of data type, by REFERENCE.

• To pass a character string by REFERENCE, declare it as:

VAR name : PACKED ARRAY [1..n] OF CHAR

• You can pass fixed-length character strings by LENGTH, or on OpenVMS,
by DESCRIPTOR. To do so, you must declare the resulting argument as
shown in the following example:

[CLASS_S] PACKED ARRAY [LOW..HIGH :INTEGER] OF CHAR

• The passing mechanism of the return value of external functions depends
on the data type of the return value:

Numeric data types are returned by VALUE.

Character string data types are returned by REFERENCE.

The following example shows an external function definition called
CONCAT_STRING:

CREATE FUNCTION CONCAT_STRING (IN CHAR(20) BY REFERENCE,
IN CHAR(20) BY REFERENCE)

RETURNS CHAR(40);
EXTERNAL LOCATION ’CONCAT_LOCATION’ LANGUAGE Pascal
GENERAL PARAMETER STYLE;

Specify an external function in Pascal as follows:

function concat_string (var input1_str : packed array[1..20] of char;
var input2_str : packed array[1..20] of char)

: packed array [1..40];

14.13 Using Notify Routines
You can use a notify routine for initialization and cleanup operations, such as
initializing variables or attaching or detaching from a database. You can also
use it to share information about database-related events with the body of the
external routine. For example, you can extend the caller’s transaction scope
to the functions of the body of the external routine by managing a journal of
changes made to non-database files by the body of the external routine.

Using External Routines 14–47

The notify routine must be contained in the shared image or object that
contains the external routine.

When you use the NOTIFY clause, you can specify the following events:

• BIND—The notify routine is called when the external routine is activated
and deactivated.

• CONNECT—The notify routine is called when a connection is made to the
database that contains the external routine and when that database is
disconnected.

• TRANSACTION—The notify routine is called when a transaction starts
and when the transaction terminates.

When you use the NOTIFY clause, Oracle Rdb calls the notification entry point
at the start of a selected event (queued until the next call to execute the body
routine), and at the end of the event (immediately prior to event completion,
assuming that notification of the start event has occurred.)

You pass a notify routine four 32-bit arguments by reference. The first
argument indicates the type of notification, as shown in the following table,
and the last three arguments are reserved for future use.

Value Meaning Constant

1 Routine activation RDB$K_RTX_NOTIFY_ACTV_START

2 Routine deactivation RDB$K_RTX_NOTIFY_ACTV_END

3 Database attachment RDB$K_RTX_NOTIFY_CONN_START

4 Database disconnect RDB$K_RTX_NOTIFY_CONN_END

5 Transaction start RDB$K_RTX_NOTIFY_TRAN_START

6 Transaction commit RDB$K_RTX_NOTIFY_TRAN_COMMIT

7 Transaction rollback RDB$K_RTX_NOTIFY_TRAN_ROLLBACK

The notify events have a specific scope hierarchy. The BIND events (activation
and deactivation) are the topmost scope, and TRANSACTION events the
bottom-most scope. If you select all three events for notification and you invoke
the external routine at least once while a transaction is active, the notify
routine is called at least six times for the events of: routine bind, database
connect, transaction start, transaction end, database disconnect, and routine
unbind.

The bind scope you specify in the BIND SCOPE clause can affect which notify
events are received. For example, if the bind scope is TRANSACTION, you
cannot receive a notification for a database disconnect.

14–48 Using External Routines

Note that the notification events and use of the notify routine is not linked in
any way to the database recovery process.

14.14 Handling Exceptions in External Routines
Exceptions produced by an external routine, whether by the routine identified
by the external routine name, or by the notify routine, are returned to the
routine caller.

If an exception occurs in a notify routine that is called for an end of scope
event, the exception causes the associated SQL statement to fail. However, the
notify event is considered complete and trying the SQL statement again does
not produce the notify routine exception a second time.

Oracle Rdb can detect the following exception conditions when you invoke
external routines:

• A dynamic activation failure of a shareable image or object, which can
occur when:

An incorrect shareable image or object location is specified.

A compilation warning is found in a shareable image or object.

A routine entry point cannot be located.

• An external routine execution failure, which can occur when:

One of the arguments to the external routine is NULL.

Oracle Rdb aborts the request and displays a message.

An illegal instruction is executed, for example, division by zero.

Oracle Rdb aborts the request and displays a message.

An external routine goes into an infinite loop.

Oracle Rdb cannot and does not abort a request of this type.

14.15 Understanding the Limitations of External Routines
Oracle Rdb does not allow or support the following:

• Any external routine action that inhibits the functions of the executor
manager. Those actions include system calls that would affect the executor
process such as SYS$EXIT() or exit(), SYS$DELPRC() or kill().

Using External Routines 14–49

OpenVMS
Alpha

• Direct calls to OpenVMS Alpha routines that are translated images.

For such cases, create a jacket routine to invoke the routine in the
translated image. Then, compile the jacket routine with the /TIE
qualifier, include the jacket routine in a shareable image loaded with
the /NONATIVE_ONLY qualifier, and reference the jacket routine and this
shareable image in the routine definition. ♦

When you create an external function that calls into the database, keep in
mind the following guidelines:

• You cannot use data definition statements.

• You cannot access remote databases.

• You cannot use distributed transactions.

• You cannot pass database or transaction handles to the routine for use in
SQL statements. This either generates an exception or causes an indefinite
wait situation in the database server.

• The query optimizer always tries to move SQL statistical functions and
some predicates, such as EXISTS and IN, to outer levels of a query where
they are executed the fewest number of times. This optimization occurs
regardless of the presence of an external function declared as VARIANT
within the statistical function or predicate.

14.16 Troubleshooting External Routines
This section summarizes common problems you may encounter when executing
external routines and suggests the causes and solutions to those problems.

You may encounter the following problems:

• Unexpected results

These are usually caused by bad parameter data. To correct the error,
make sure that:

All input parameters have a defined value before calling the routine.

All output parameters and any function result are given a defined
value by the routine.

Arguments are used in a manner that reflects the declared parameter
data type and passing mechanism. Be sure to consider any special
passing mechanism semantics imposed for the declared language.

• Access violations

14–50 Using External Routines

These are usually caused by using arguments in a manner that does not
reflect the declared parameter data type and passing mechanism.

Test the routine outside the database environment. To detect data type and
passing mechanism problems, write a test program in a separate source
module to pass expected data instances to the external routine. Using a
separate source module can pinpoint mechanism problems which might be
obscured by compilers that globally optimize intrasource routine calls.

• Exceptions RTNSBC_INITERR or RTNSBC_TASKERR, reasons 1
through 9

Generally caused by a quota problem associated with a routine that has a
server-site binding.

Make sure that the user has the required quotas and privileges to allow
creating the routine executor process, creating shared memory, and, on
OpenVMS, establishing locks and creating mailboxes.

• Exception RTNSBC_TASKERR, reasons 10 through 19

Generally caused by insufficient shared memory allocated for parameters
of routines declared with server-site binding. In addition, if the routine
performs database operations, there may be insufficient shared memory
allocated for the parameters needed for the database operations.

Increase the shared memory page count defined by the logical name
RDMS$RTX_SHRMEM_PAGE_CNT or the configuration parameter RDB_
RTX_SHRMEM_PAGE_CNT.

When changing the shared memory size, allow 2 pages for the execution
control region, 2 pages for each level of call from the server to the executor
(callout), and a sufficient number of pages to contain the callout and any
database operation (callback) argument list, descriptors, and argument
data for all the active callouts and callbacks.

• Exception INVRTNUSE, Image not activated

Generally, a more common problem for a routine with server-site binding,
in which case the file specification or the location clause may refer to
OpenVMS logical names which are not defined, or may assume a current
directory other than the user’s login directory.

Examine the secondary exceptions for the specific image file specification
that could not be found.

• Lock conflicts or deadlocks reported either by an exception or by a bugcheck
dump

Using External Routines 14–51

External routines that attach to databases that are already in use by the
user application or other external routines will encounter lock conflicts. In
many cases, these lock conflicts are resolved internally. However, certain
scenarios can produce unresolvable conflicts or deadlocks that return fatal
errors, and a few scenarios can produce severe lock conflict errors that
appear to be internal errors and cause a bugcheck dump to be produced.

Refer to the Oracle Rdb7 Guide to Database Performance and Tuning to
determine how you should rework the application, external routine, or both
to avoid lock conflicts.

14.17 Improving Portability and Efficiency of External Routines
Oracle Rdb recommends that you avoid the following when you write external
routines:

• Platform-dependent code for routines that are used on multiple operating
systems

For example, avoid logical names, configuration parameters, environment
variables, and interactive I/O.

• System service calls and other asynchronous event services

• Exit handlers that perform operations on databases connected by external
routines

• Registering the same routine multiple times under different names

• Registering the same routine in multiple databases that are used
concurrently by any user

• Recursion involving external routines

Because the definition of the routine in the database contains information
about the location of the shareable image or shared object and parameter-
passing mechanisms and because that information is often platform-specific,
routine definitions are usually not portable.

14–52 Using External Routines

Part V
Your Program’s Context

This part describes the environment in which your program operates:

• Database context

• Transaction context

• SQL connections

15
Attaching to Databases

Before executing an SQL statement, Oracle Rdb must have information about
the database context in which the statement executes. This chapter explains
how to declare the database context properly for the SQL statements you
write. This chapter explains how to:

• Specify and attach to a database

• Specify and attach to a remote database

• Attach to a database in a distributed transaction

• Attach to multiple databases by using aliases

• Detach from a database

15.1 Specifying and Attaching to a Database
Database context identifies the database that you want to access. Your
program must attach to a database before it can execute SQL statements.

Most of the work of attaching to a database consists of loading the database
(the set of definitions for the database) into memory for use by your process.
When you attach to a database, you specify how SQL should access database
definitions. You can access database definitions through the repository or
directly from a database file.

15.1.1 Specifying File or Repository Access for Database Attachment
You can identify databases with which you want to work in two ways: by file
name or by repository path name.

• FILENAME file-specification

The file-specification specifies the source of your database definitions. You
type the complete or relative file specification of the Oracle Rdb database.

• PATHNAME path-name

Attaching to Databases 15–1

The path-name is a character string that represents a node in the
repository where database definitions are stored. In programs, you should
supply this value indirectly using a logical name or program parameter.

You can always access a database by file name, but you can access a database
by repository path name only if database definitions are stored in the repository
as well as in a database file.

15.1.2 Specifying the Database Name
To tell SQL that you want to work with a given database, you usually use the
ATTACH statement in interactive SQL or the DECLARE ALIAS statement in
SQL module language and precompiled SQL. You can use one of the following
methods:

• Enter an ATTACH or DECLARE ALIAS statement with a file specification
for the database or a path name for the repository.

• Enter an ATTACH or DECLARE ALIAS statement and use a logical name
or configuration parameter to refer to either the database file name or the
repository path name.

Logical names and configuration parameters make it easier to maintain
your program if you need to move the database or the repository to
different disks or nodes. You specify the configuration parameter in the
.dbsrc file on Digital UNIX.

• Pass a variable containing either a file name or a repository path name.

• Define the logical name SQL$DATABASE or configuration parameter
SQL_DATABASE to specify the file specification for the database.

The SQL precompiler, SQL module processor, and the database run-time
system translate SQL$DATABASE or SQL_DATABASE if you do not
explicitly declare an alias or attach to a database in a program or in an
SQL context file.

You cannot specify repository access using SQL$DATABASE or
SQL_DATABASE. Therefore, if you intend to execute CREATE, ALTER, or
DROP statements that include the DICTIONARY IS REQUIRED clause,
you should not attach to a database using SQL$DATABASE or
SQL_DATABASE.

In host language programs, you should supply the file specification indirectly
by using a logical name or configuration parameter. In programs that will be
run on various nodes, you may decide to prompt the user for a file specification
value and supply it to SQL through a program parameter.

15–2 Attaching to Databases

The Oracle Rdb7 Introduction to SQL describes in more detail how to attach to
databases in interactive SQL.

Although the information you provide when you use the ATTACH or DECLARE
ALIAS statements tells SQL to which database you want to attach and whether
or not you want repository access, Oracle Rdb may or may not attach to the
database or access the repository at the time you provide this information.
When Oracle Rdb attaches to a database depends on the environment in
which you are working and the way you provide database information. In SQL
programs:

• Oracle Rdb usually does not attach to the database until it processes the
first executable SQL statement.

• Oracle Rdb does immediately attach to the database if you use an ATTACH
or CONNECT TO statement.

• If your program declares more than one database, Oracle Rdb attaches
concurrently to all declared databases (at the first executable SQL
statement). This is true regardless of how many of the databases are
accessed by the first transaction started by the program.

You must handle database attachment failures at the first occurrence of the
statement that causes SQL to attach to the database. In SQL programs,
database attachment occurs when the transaction starts. Depending on what
operation your program first performs, the statement that causes databases to
be attached could be an ALTER, CREATE, DELETE, DROP, GRANT, INSERT,
OPEN, REVOKE, SELECT, SET TRANSACTION, or UPDATE statement.

15.1.3 Specifying Different Databases for Compile Time and Run Time
This section describes why you may choose to attach to your database by path
name or file name at different points in your program development cycle.

When you write a program to access a database, you can specify one database
definition to be used at compile time and one to be used at run time. The
following example declares the database from two different sources:

EXEC SQL
DECLARE LOCAL personnel ALIAS

COMPILETIME PATHNAME PERS_CDD
RUNTIME FILENAME PERS;

At compile time, the precompiler uses the database definitions in the repository.
The PATHNAME clause of the DECLARE ALIAS statement uses the logical
name PERS_CDD to point to the repository.

Attaching to Databases 15–3

At run time, SQL uses the database definitions in the database file. The
FILENAME clause of the DECLARE ALIAS statement uses the logical name
or configuration parameter PERS to point to the personnel database.

If you do not specify a run-time option, SQL uses the file name extracted from
the repository at compile time, or the one specified in the COMPILETIME
FILENAME clause.

The specified source can be either a file specification or a repository path name.
However, if you specify access by repository path name at compile time and you
do not specify the RUNTIME clause, SQL uses the file name extracted from
the repository at compile time.

If your program manipulates or updates only data and not database definitions,
file name access is appropriate. But if database definitions are stored in
the repository and your program changes data definitions, always specify
the PATHNAME qualifier for run time. When you access a database by
PATHNAME, any changes you make to database definitions are entered in
the repository as well as the database file. This is especially important if
other users will include these repository definitions in programs as parameter
declarations.

You might want to specify a different database for compile time and run time
for the following reasons:

• To permit the user to specify the database at run time

If you want to accept the file name or path name value into a program
parameter at run time, you need some way to obtain this value other than
by specifying it explicitly in your program. At compile time, both SQL
processors can process a literal, logical name, or configuration parameter
in the COMPILETIME clause to find the definitions they need in the
repository or a database file. However, SQL does not evaluate parameters
in the RUNTIME clause until the program is running. Then, SQL can
evaluate the program parameter specified by the RUNTIME clause and
attach to the correct database.

• To improve the performance of the SQL precompiler or SQL module
processor when dealing with remote databases

Section 15.2 discusses attaching to remote databases.

15–4 Attaching to Databases

15.2 Specifying a Database on a Remote Node
To access an Oracle Rdb database on another system, both systems must use
the same communication protocol. That is, both must use TCP/IP or both must
use DECnet. In addition, the accounts you use as remote server accounts must
be set up correctly.

The Oracle Rdb7 Installation and Configuration Guide explains the network
protocols and how to set up the remote server accounts.

You specify a database on a remote system by including a node specification
in the FILENAME clause. For example, to attach to a database on a remote
OpenVMS system, use the following SQL statement:

SQL> ATTACH ’FILENAME speedy::disk3:[dept3]personnel’;

As with local databases, you can specify logical names or configuration
parameters for all or part of the file specification.

When you access a remote Oracle Rdb database, you use the Oracle Rdb
remote server account. The remote server account is the account on the
remote node that Oracle Rdb logs into to run Oracle Rdb on the remote node.

Also, you must provide, either implicitly or explicitly, a valid user name
and password for an account on the remote system. This remote user
authentication is the user information on the remote node that Oracle Rdb
uses to determine the user’s database access privileges.

To provide the user name and password for user authentication on the remote
system, use any of the following methods:

• Explicitly, in one of the following ways:

In the USER and USING clauses of SQL statements, such as ATTACH
or DECLARE ALIAS. See Section 15.2.1 for more information.

In qualifiers for the module language or precompiler command line.
You use these qualifiers in combination with the USER DEFAULT and
USING DEFAULT clauses of the DECLARE ALIAS statement. See
Section 15.2.2 for more information.

In your client configuration file on the local system

On Digital UNIX, the configuration file is the .dbsrc file; on OpenVMS,
it is the RDB$CLIENT_DEFAULTS.DAT file.

See Section 15.2.3 for more information.

• Implicitly

Attaching to Databases 15–5

In certain cases, such as when you attach to a database on a Digital UNIX
system from a Digital UNIX system, you do not need to explicitly specify
the user name and password if the user name and password are the same
on both systems. Oracle Rdb implicitly authenticates the user whenever
the user attaches to a database. Table 15–1 shows when Oracle Rdb
implicitly authenticates the user.

To access the remote server account, use one of the following methods:

OpenVMS
VAX

OpenVMS
Alpha

• Through a proxy account set up for you on the remote node (the
recommended approach on OpenVMS). See Section 15.2.4. ♦

OpenVMS
VAX

OpenVMS
Alpha

• Through the RDB$REMOTE default account on OpenVMS for remote
access. See Section 15.2.5. ♦

Digital UNIX • Through the dbsmgr account on Digital UNIX. Oracle Rdb for
Digital UNIX sets up the dbsmgr account automatically during installation.
You do not modify the account during or after installation, nor do you
specify the account name during remote access. ♦

The options you can use when attaching to remote databases depend on the
operating systems and the network protocols, as Table 15–1 shows.

Table 15–1 Options for Remote Access

OpenVMS to
OpenVMS

OpenVMS to
UNIX

UNIX to
UNIX

UNIX to
OpenVMS

Remote User Authentication

Implicit T1, D1 N/A T1 N/A

USER/USING clauses T, D T, D T, D T, D

SQL command line qualifiers T, D T, D T, D T, D

Configuration file T, D T, D T, D T, D

Remote Server Account

Proxy account D N/A N/A D

1If the user name and password are the same on both nodes
Key to Network Protocols

T—TCP/IP
D—DECnet
N/A–Not Applicable

(continued on next page)

15–6 Attaching to Databases

Table 15–1 (Cont.) Options for Remote Access

OpenVMS to
OpenVMS

OpenVMS to
UNIX

UNIX to
UNIX

UNIX to
OpenVMS

Remote Server Account

RDB$REMOTE[nn] account T, D N/A N/A T, D

dbsmgr account N/A T, D T, D N/A

Key to Network Protocols

T—TCP/IP
D—DECnet
N/A–Not Applicable

The following sections explain each option.

Reference Reading

For more information about setting up remote accounts, refer to the
Oracle Rdb7 Installation and Configuration Guide. You might also
need to refer to the installation and configuration guide for other
database access product you use.

15.2.1 Using the USER and USING Clauses for Remote User Authentication
To access databases on remote nodes, you can explicitly provide user name and
password information in SQL statements that attach to the database.

You use the USER and USING clauses to embed the user name and password
in the ATTACH or DECLARE ALIAS statements or any other SQL statements
that attach to a database (such as ALTER DATABASE or CONNECT).

For example, to attach to the mf_personnel database on a remote Digital UNIX
node, you can use the USER and USING clauses in the ATTACH statement:

SQL> ATTACH ’FILENAME osfrem::/usr/users/heleng/mf_personnel
cont> USER ’’heleng’’ USING ’’MYpassword’’’;

You must enclose the user name and password in single quotes (’), but because
the literal in this example is within the quoted attach-string, you must
surround the user name and password with two sets of single quotes.

To avoid placing the user name and password in a program’s source code, you
can use the DEFAULT keyword for both clauses. Then, use command line
qualifiers for the SQL module processor and the SQL precompiler to pass the
user name and password.

Attaching to Databases 15–7

If you do not specify the USER and USING clause in SQL statements, Oracle
Rdb uses the information in the configuration file.

15.2.2 Using Command Line Qualifiers for Remote User Authentication
You can use the following command line qualifiers to specify the user name and
password:

Digital UNIX • On Digital UNIX:

For the SQL module processor, the –user and –pass options

For the SQL precompiler, the –s -user and –s -pass options ♦

OpenVMS
VAX

OpenVMS
Alpha

• On OpenVMS:

For the SQL module processor, the USER_DEFAULT and
PASSWORD_DEFAULT qualifiers

For the SQL precompiler, the USER_DEFAULT and PASSWORD_
DEFAULT options to the SQL_OPTIONS qualifier ♦

Use these qualifiers in conjunction with the USER DEFAULT and PASSWORD
DEFAULT clauses of the DECLARE alias statement. They pass the compile-
time user’s name and password to the program.

The following example shows how to process an SQL module on Digital UNIX
using these qualifiers:

$ sqlmod myprog -user heleng -pass MYpassword

15.2.3 Using Configuration Files for Remote User Authentication
You can explicitly provide the user name and password for the remote
system in the local configuration file, using the SQL_USERNAME and
SQL_PASSWORD configuration parameters.

Digital UNIX On Digital UNIX, provide the information in the local .dbsrc configuration file.
♦

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, provide the information in the local configuration file,
RDB$CLIENT_DEFAULTS.DAT. ♦

For example, if your user name and password on the remote Digital UNIX
node is ‘‘heleng’’ and ‘‘MYpassword’’, add them to your configuration file on the
local node, as the following example shows:

SQL_USERNAME heleng
SQL_PASSWORD MYpassword

15–8 Attaching to Databases

15.2.4 Using a Proxy Account As the Remote Server Account

OpenVMS
VAX

OpenVMS
Alpha

If you are accessing a remote OpenVMS database, Oracle Rdb recommends
that you use a proxy account.

A proxy account gives access privileges on a remote node to selected users
who do not have a private account on that node. With a proxy account, these
selected users gain network access, but they do not have to include an access
control string to provide the user name and password for their network login
request. Therefore, proxy accounts have several security benefits:

• Passwords are not echoed on the terminal where the request originates.

• Passwords are not passed between systems where they might be
intercepted in unencrypted form.

• Users are less tempted to store passwords in command files that would
perform the remote access steps.

To maintain the security of your system, a proxy account should not be a
privileged account. When a proxy account is set up, it inherits the privileges of
the local account.

To attach to a remote database through a proxy account, include a user name
in the ATTACH statement. For example, to use the JONES account on NODEB
as your remote server account, include the following information:

SQL> ATTACH ’FILENAME NODEB"JONES"::USER2:[JONES]PERSONNEL’;

The proxy account must be assigned process quota values and privileges
sufficient for database access. The Oracle Rdb7 Installation and Configuration
Guide recommends minimal quota values when values normally assigned
to OpenVMS users are likely to be inadequate for database operations. In
addition, the person who administers the remote database usually must change
database protection to allow the proxy account database access.

If the proxy account you are using has inadequate process quotas, your process
may not be able to activate required database images on the remote system.
In this case, you will probably receive a message that says Oracle Rdb is
unavailable to you. If protection for the remote database has not been modified
to allow the proxy account access, you will probably receive a message that
tells you that you do not have database privileges for the operation you want
to perform.

To access a version of Oracle Rdb other than the one specified by the
RDB$REMOTE default account, you must define the RDBSERVER
and RDMS$VERSION_VARIANT logical names in the proxy account’s
LOGIN.COM. For example, if Oracle Rdb V6.1 is the default version and

Attaching to Databases 15–9

you want to access V7.0, you must add the following to the proxy account’s
LOGIN.COM:

$ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER70.EXE
$ DEFINE RDMS$VERSION_VARIANT 70 ♦

15.2.5 Using the RDB$REMOTE Account As the Remote Server Account

OpenVMS
VAX

OpenVMS
Alpha

To attach to a remote database through the RDB$REMOTE default account,
the RDB$REMOTE account must be set up correctly on the remote nodes. The
Oracle Rdb7 Installation and Configuration Guide explains how to set up the
account. Then, you specify the node name where the database resides and the
database’s directory and file specification, as shown in the following example:

SQL> ATTACH ’FILENAME speedy::disk3:[dept3]personnel’;

However, to use a version of Oracle Rdb other than the one specified by the
RDB$REMOTE default account, you must specify the name and password
of the corresponding account on the remote system. For example, if the
RDB$REMOTE account on the remote node is set up for V6.1 of Oracle Rdb,
but you want to use V7.0, you must specify the RDB$REMOTE70 account and
user name in the access control string:

SQL> ATTACH ’FILENAME SPEEDY"RDB$REMOTE70 password"::DISK3:[DEPT3]PERSONNEL’;

Note

You cannot use an access control string with the TCP/IP network
protocol, only with DECnet. For information about accessing an
account other than the RDB$REMOTE default account when using
TCP/IP, see Section 15.2.6.

To avoid using a password in the SQL statement, set up proxy accounts on the
remote node for selected users. Map the proxy account to the version-specific
RDB$REMOTE account. For example, to set up the user HELENG to access a
V7.0 database on the remote node SPEEDY from the node FASTR, define the
proxy account on SPEEDY as shown in the following example:

UAF> ADD/PROXY FASTR::HELENG RDB$REMOTE70/DEFAULT ♦

15–10 Attaching to Databases

15.2.6 Using an Alternate UCX or Internet Service
When you use the TCP/IP network protocol, you can use an alternate service
to access a different version of Oracle Rdb on remote OpenVMS systems or to
use a different set of configuration defaults on remote Digital UNIX systems.
An alternate service is particularly useful in accessing a different version of a
Oracle Rdb database on an OpenVMS system from a Digital UNIX system.

If you use the TCP/IP network protocol for remote database access, by default,
you use the service RdbServer.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, the service uses the user name RDB$REMOTE by
default. You can create a new UCX service by using a different user
name. You specify that Oracle Rdb use the new service by adding the
SQL_ALTERNATE_SERVICE_NAME configuration parameter to your client
configuration file. Suppose you create a new service called myservice and
specify the user name of the service as RDB$REMOTE61. Add the following
line to your client configuration file to access databases using Oracle Rdb V6.1:

SQL_ALTERNATE_SERVICE_NAME myservice ♦

Digital UNIX On Digital UNIX, the service uses the user name dbsmgr by default. You
cannot change the username, but you can create an alternate service. You
specify that Oracle Rdb use the new service by adding the configuration
parameter SQL_ALTERNATE_SERVICE_NAME to your client configuration
file. Suppose you create a new service called myservice and specify the user
name of the service as dbsmgr (the only acceptable value.) Add the following
line to your client configuration file:

SQL_ALTERNATE_SERVICE_NAME myservice ♦

For more information about setting up alternate services and about
configuration files, see the Oracle Rdb7 Installation and Configuration Guide.

15.3 Avoiding Asynchronous System Traps
You should not use asynchronous system trap (AST) service routines in an
application that accesses Oracle Rdb databases. If you do, Oracle Rdb cannot
guarantee the behavior of the application.

Because several Oracle Rdb components use AST service routines and because
an AST cannot be delivered while an AST service routine is currently executing
at the same mode or more privileged mode, using an AST service routine in
an application can prevent the delivery of an AST in one of the components of
Oracle Rdb.

Attaching to Databases 15–11

15.4 Attaching to Databases in a Distributed Transaction
When you use distributed transactions to access databases on remote systems,
you may encounter problems unique to distributed transactions. The following
sections discuss how to avoid those problems.

15.4.1 Avoiding Undetected Deadlock with Distributed Transactions
When you use distributed transactions to access databases on remote systems,
undetected deadlocks may result. Deadlock occurs when two users are locking
resources that they both need, and neither user can continue until the other
user ends a transaction. When deadlock occurs on the same node or the same
cluster, the lock manager detects the deadlock and issues the deadlock error
condition to one user. However, when a transaction accesses databases on
remote systems, the lock manager cannot detect the deadlock.

To help avoid distributed deadlock, Oracle Rdb provides several methods to set
the amount of time a transaction waits for locks to be released. Section 16.2.5
explains how to use those options.

See the Oracle Rdb7 Guide to Distributed Transactions for more information on
avoiding deadlock in distributed transactions.

15.4.2 Avoiding Privilege Errors on Distributed Transactions
When you start a distributed transaction that attaches to a database on a
remote node, Oracle Rdb checks that the account on the remote node has the
DISTRIBTRAN privilege. For example, if you use a proxy account on the
remote node, the proxy account must have the DISTRIBTRAN privilege on
that database.

If you do not have the DISTRIBTRAN privilege and you try to start a
distributed transaction, Oracle Rdb returns an error and does not start
the transaction. This is especially important to remember when you use SQL.
SQL starts a distributed transaction by default when you start a transaction
that attaches to more than one database.

For more information about database privileges, see the Oracle Rdb7 Guide to
Database Design and Definition and the Oracle Rdb7 SQL Reference Manual.

15–12 Attaching to Databases

15.5 Using Aliases for Multiple Attaches
An alias is a name you supply to identify a particular attachment to a
database. Unlike a file name or repository path name, an alias may differ
from one declaration of a database to another. In other words, an alias is a
session-specific or program-specific name you give to a database. Once you
attach to a database (ATTACH) or declare an alias (DECLARE ALIAS), you
refer to the database by the alias in all subsequent statements.

In the following database attach, SP indicates the alias:

SQL> ATTACH ’ALIAS SP FILENAME personnel’;

You can attach to more than one database and thus work with more than one
database at the same time by giving each database a different alias. You can
also have multiple attachments to the same database if you specify multiple
ATTACH statements and these contain different aliases for the same database.

In precompiled SQL, once you identify a database by an alias, you must use
the alias name to qualify all references to that database. The SQL precompiler
assumes that any unqualified references identify elements from the default
database identified by RDB$DBHANDLE. If RDB$DBHANDLE is undefined,
you receive an error. If RDB$DBHANDLE is defined, you will be attempting to
access a different database than you intended.

When you work with aliases in programs supported by the SQL module
processor, specify the alias for the default database in the ALIAS clause of
an SQL module header. In the module procedures, you do not have to qualify
references to database entities when an alias is declared in the module header.

Generally, you do not have to explicitly specify an alias for a database when
you work with one database at a time. If you do not explicitly enter an
alias, the SQL precompiler supplies the default alias RDB$DBHANDLE. In
the SQL module language, the default is the alias specified in the module
header. If an alias is not specified there, SQL assigns the authorization
identifier as the alias. If no authorization identifier is assigned, SQL supplies
RDB$DBHANDLE as the default.

If you specify your own alias, SQL does not consider the alias a default, and
you must always qualify table references with the alias, as Example 15–1
shows.

Attaching to Databases 15–13

Example 15–1 Qualifying Table References with an Alias

SQL> ATTACH ’ALIAS SP FILENAME personnel’;
SQL> SELECT JOB_CODE, JOB_TITLE, MINIMUM_SALARY, MAXIMUM_SALARY
cont> FROM JOBS LIMIT TO 5 ROWS;
%SQL-F-NODEFDB, There is no default database
SQL> --
SQL> SELECT JOB_CODE, JOB_TITLE, MINIMUM_SALARY, MAXIMUM_SALARY

FROM SP.JOBS LIMIT TO 5 ROWS;;
JOB_CODE JOB_TITLE MINIMUM_SALARY MAXIMUM_SALARY
APGM Associate Programmer $15,000.00 $24,000.00
CLRK Clerk $12,000.00 $20,000.00
ASCK Assistant Clerk $7,000.00 $15,000.00
DMGR Department Manager $50,000.00 $100,000.00
DSUP Dept. Supervisor $36,000.00 $60,000.00
5 rows selected
SQL>

A default alias is easy to work with when you are attaching to one database.
However, in a multidatabase environment, you should explicitly declare all
aliases and provide your own names for them. If you plan to work with more
than one database, do not rely on automatic declaration of a default alias
for the database with the logical name SQL$DATABASE or configuration
parameter SQL_DATABASE.

Example 15–2 shows an excerpt of a SQL precompiled program that declares
an alias for one database but uses the default RDB$DBHANDLE for another
database.

Example 15–2 Using Aliases
.
.
.

EXEC SQL DECLARE ALIAS FILENAME personnel;
EXEC SQL DECLARE alias_1 ALIAS FILENAME mf_personnel;
EXEC SQL SELECT EMPLOYEE_ID, LAST_NAME

INTO :employee_id1, :last_name1
FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00301’;

15–14 Attaching to Databases

EXEC SQL INSERT INTO alias_1.EMPLOYEES
(EMPLOYEE_ID, LAST_NAME)

VALUES (:employee_id1, :last_name1);
.
.
.

To use two databases at the same time, you must attach to at least one of them
using an alias. (The default alias RDB$DBHANDLE can identify only one
database.) You must qualify all table references with the alias you specify in a
database attach.

Example 15–3 shows part of a program that attaches to two databases at the
same time and declares an alias for each.

Example 15–3 Working with More Than One Database

/***
* This routine transfers an employee from the EAST database to the WEST
* database. It expects the distributed context structure as a parameter.
* The employee record is selected first, deleted from the EAST database
* and inserted into the WEST database.
***/

.

.

.
EXEC SQL DECLARE east ALIAS FOR FILENAME 2pceast;
EXEC SQL DECLARE west ALIAS FOR FILENAME 2pcwest;

.

.

.
EXEC SQL USING CONTEXT :local_context

SELECT EMPLOYEE_ID,LAST_NAME,FIRST_NAME,MIDDLE_INITIAL,
ADDRESS_DATA_1, CITY, STATE, POSTAL_CODE, SEX, BIRTHDAY

INTO
:local_employee.emp_id, :local_employee.emp_last_name,
:local_employee.emp_first_name, :local_employee.emp_middle_initial,
:local_employee.emp_address1, :local_employee.emp_city,
:local_employee.emp_state, :local_employee.emp_zip,
:local_employee.emp_sex, :local_employee.emp_birth
FROM east.EMPLOYEES
WHERE east.EMPLOYEES.EMPLOYEE_ID = :emp_id;

printf("Deleting the record from the EAST database \n");

(continued on next page)

Attaching to Databases 15–15

Example 15–3 (Cont.) Working with More Than One Database
EXEC SQL USING CONTEXT :local_context

DELETE FROM east.EMPLOYEES E
WHERE E.EMPLOYEE_ID = :emp_id;

printf("\nInserting the employee record into WEST \n");

EXEC SQL USING CONTEXT :local_context
INSERT INTO west.EMPLOYEES

(EMPLOYEE_ID,LAST_NAME,FIRST_NAME,MIDDLE_INITIAL,
ADDRESS_DATA_1,CITY,STATE, POSTAL_CODE, SEX, BIRTHDAY)

VALUES
(:local_employee.emp_id, :local_employee.emp_last_name,

:local_employee.emp_first_name,
:local_employee.emp_middle_initial,
:local_employee.emp_address1, :local_employee.emp_city,
:local_employee.emp_state, :local_employee.emp_zip,
:local_employee.emp_sex, :local_employee.emp_birth);

.

.

.

As Example 15–3 shows, you cannot combine data from two different databases
in the same data manipulation operation. However, you can work with two
databases in the same transaction as long as you are performing different data
manipulation operations on each database. In this case, you specify aliases
for the databases in a DECLARE TRANSACTION or SET TRANSACTION
statement. Section 16.2 discusses these statements in more detail.

15.6 Detaching from a Database
In a program, Oracle Rdb detaches from a database when:

• You enter a DISCONNECT statement

The DISCONNECT statement performs the following functions:

Rolls back any active transactions.

Detaches from all databases whose declarations apply to the module in
which the DISCONNECT statement is issued. Any databases that are
declared with the GLOBAL argument are disconnected also.

If the module uses dynamic SQL, the DISCONNECT statement
releases any dynamically executed SQL statements in the module,
detaches from any dynamically declared aliases in the module,
and cancels the characteristics specified in a dynamically executed
DECLARE TRANSACTION statement.

15–16 Attaching to Databases

• The program stops execution

The same actions are performed for program termination as for a
DISCONNECT statement.

If your program issues a new ATTACH statement specifying an alias that is
already in use, you do not cause the previous attachment to end; rather, you
receive an error.

Attaching to Databases 15–17

16
Managing Transaction Context

This chapter describes transactions and explains how to specify the transaction
characteristics so that your SQL programs run correctly and efficiently. The
sections that follow explain:

• The concept of a transaction and transaction characteristics

• How to decide what characteristics your transaction needs

• The scope of a transaction

• When to use distributed transactions

• How to control locking of database resources

• How to design transactions so that they do not span input or output

• Constraint evaluation and how to control the timing of the evaluation

• Commit or roll back a transaction

16.1 Understanding Transactions
All access to data in Oracle Rdb databases takes place in the context of a
transaction. Oracle Rdb treats all SQL statements within the transaction
as a single unit; all the statements in the unit complete, or none of them
complete. (Statements inside an ATOMIC compound statement may fail
separately, however.) Thus, the transaction does not leave partial changes in
the database.

For example, suppose that an employee transfers to a new job with a higher
rate of pay. In the personnel sample database, this would mean changing and
adding rows to the JOB_HISTORY and SALARY_HISTORY tables. If you
update each table separately, and an error or hardware failure occurs before
all operations in the transaction complete, the database might show that the
employee belongs to two departments, has two salaries, or has the old salary
with the new job; thus the database would no longer be consistent. To avoid
such inconsistencies, include all update tasks in a single transaction. Then,

Managing Transaction Context 16–1

you can monitor errors and roll back the entire set of operations explicitly
when an error occurs.

Your program determines when the transaction starts and when it ends. You
specify what access you want other users to have to the database while the
transaction is running, what characteristics you want the transaction to have,
and whether Oracle Rdb should make the changes permanent (commit them)
or remove them from the database (roll them back) when you are done.

16.1.1 Understanding Transaction Characteristics
You can specify many transactions characteristics, including the following:

• The type of access to the database or databases

You can request read-only, read/write, or batch-update access to the
database. The default is read/write access to all attached databases.

A read-only transaction reads data but cannot change it. It cannot delete
or update old data or insert new rows.

A read/write transaction can perform update as well as retrieval operations.
Many transaction characteristics in this list make sense only in the context
of a read/write transaction.

A batch-update transaction is a special-purpose transaction that is not
for general use. Batch-update transactions cannot be rolled back because
they do not write to a recovery-unit journal file. Therefore, a batch-update
transaction that encounters an error or ends abnormally corrupts the
database. Section 16.2.3 describes the advantages and hazards of using a
batch-update transaction.

• The databases you plan to access

A transaction is associated with one or more databases. If you plan to
access only one database, you do not need to specify it. Likewise, if you
intend to access every database in the same way, you do not need to
specify those databases. In this case, SQL automatically applies the same
transaction characteristics to each database.

If you are working with one or more databases using different transaction
characteristics (for example, read-only for some and read/write for others),
you must define aliases in the DECLARE ALIAS or ATTACH statements
for those databases. Then, you must specify the aliases when you start
the transaction. Section 16.2.8 describes how to start a transaction using
aliases. Section 16.4 describes what to do if some of those databases are on
different systems.

• The tables you plan to use

16–2 Managing Transaction Context

You can explicitly name the tables you want to work with in a RESERVING
clause. If you list tables in a RESERVING clause, you cannot access tables
you did not list.

If you do not explicitly name the tables, Oracle Rdb automatically reserves
tables as required at the time the transaction performs an operation.

• A lock type

The lock type tells Oracle Rdb how you plan to use each table. Read
access allows you to retrieve information but not change, delete, or insert
it. Write access allows you to read, change, add, or delete data. Data
definition access allows you to create or drop indexes in the tables you
specify, but not to perform any other operations.

By default, Oracle Rdb locks rows as required when the transaction
performs an operation.

• A share mode

The share mode determines how much access other users may have to each
table during your transaction. You can allow other transactions shared
access to the tables you are using, restrict them to reading but not writing,
or exclude them altogether.

• A wait option

The wait option specifies whether you want to wait for locks on tables
or rows until other users release them (WAIT), or want to receive an
immediate lock conflict message (NOWAIT). The default is WAIT.

• An isolation level

The isolation level specifies how much data written by other transactions
you want your transaction to see.

A serializable isolation level means that if you retrieve a particular row
more than once during the course of a transaction, you see the same
version of that row each time you retrieve it (assuming that you have
not updated or deleted that row between the times that you look at it).
Less stringent isolation levels allow you to see changes made by other
users, even if those changes are inconsistent with what your transaction
previously saw. The default is a serializable isolation level.

See Section 16.2.6 for more information about choosing an isolation level.

• The time when constraints are to be evaluated.

See Section 16.7.

Managing Transaction Context 16–3

Before you write a program to access the database, you should determine the
tasks you want to accomplish. Some of these tasks might be:

• Data retrievals from tables in one or more databases

• Changes to existing rows in tables

• Changes to database definitions

If these tasks depend on each other, you should include them in the same
transaction. If the tasks are not related, you should include them in separate
transactions.

16.1.2 Deciding When to Modify Transaction Characteristics
The defaults for transaction characteristics are reasonable for many
transactions, particularly for transactions started by users who update the
database and who must share access to a database with other users. The
defaults are also reasonable for many report applications that require data
that is completely up-to-date and, therefore, should not process previous
versions of rows that have been written to a snapshot file.

Change the defaults in any of the following situations, assuming the database
must support simultaneous access by multiple users:

• When you enter database queries or generate reports that can include data
that is not absolutely up-to-date

Specify READ ONLY in the transaction statement. Assuming that a
snapshot file was enabled for the database, this allows other database
users to access the tables. You may also want to reset your isolation
level from serializable to repeatable read or read committed. Reducing a
transaction’s isolation level can improve application performance.

• When your application should take priority over other users; therefore, you
want to prevent interference by others after your transaction starts

Explicitly reserve tables and upgrade table share modes to protected
or exclusive. (Table share modes are explained in Section 16.2.4 and
Section 16.5.)

• When you modify database definitions (using the CREATE, DELETE,
ALTER, GRANT, or REVOKE statement)

The SHARED DATA DEFINITION option allows others to access the
database while you make changes to indexes. To protect database integrity,
Oracle Rdb does not let you change most data definitions until no other
users are accessing the affected tables in the database. Oracle Rdb behaves
as though you explicitly specified restricted access to these tables by other
transactions, even though you may not have done so explicitly.

16–4 Managing Transaction Context

Despite the automatic protection provided by Oracle Rdb, you should
explicitly request the most restrictive access to tables affected by a
definition change you plan to make. If you do, you know as soon as you
attempt to start a transaction whether or not you have the access you need
to complete the changes you intend to make.

If you are changing only index definitions, you can reserve the
affected tables for SHARED or EXCLUSIVE DATA DEFINITION. No
other transaction can query the table if you specify SHARED DATA
DEFINITION, but they can concurrently define indexes. If you request
a table for EXCLUSIVE DATA DEFINITION, no one else can access the
table. No one, including you, can access the table for other purposes.

• When you use a database product that does not support one or more of the
default transaction characteristics

Explicitly specify the transaction characteristics the other product needs.

Section 16.2 describes how and when to specify transaction characteristics.

16.2 Specifying Transaction Characteristics in SQL Programs
Understanding the relationship between transaction characteristics and
locking is very important when a database is simultaneously accessed by
multiple users. For example, if you use transaction characteristics that are
more restrictive to other users than those you need, you unnecessarily lock out
other users from the data. In addition, your transaction may be difficult to
start if other users are already accessing tables you reserve.

Conversely, if you explicitly specify transaction characteristics that are not
restrictive enough for a certain kind of task, one of the following two events
occurs:

• Oracle Rdb overrides your specifications if doing so is necessary to protect
the database.

• Your transaction encounters lock conflicts or unacceptable delays produced
by the interference of other users.

To explicitly control transaction characteristics, use either the DECLARE
TRANSACTION or the SET TRANSACTION statement.

The DECLARE TRANSACTION statement is not executable and therefore
does not start a transaction. When you use the DECLARE TRANSACTION
statement, SQL starts a transaction with the first SQL statement that executes
following either the declaration or a COMMIT or ROLLBACK statement. In
the latter case (following a COMMIT or ROLLBACK statement), SQL applies
the transaction characteristics you declare to the next transaction you start.

Managing Transaction Context 16–5

The DECLARE TRANSACTION statement offers the following advantages:

• It can establish transaction defaults for an interactive SQL session or
program.

• You can include it an SQL context file.

To manage database and transaction contexts, you must provide
information specific to Oracle Rdb that is not included in the standard SQL
language. For this reason, the SQL interface to Oracle Rdb lets you choose
between including such information in a program source file or including
it some other way. One option available for SQL module language
and embedded SQL programs is to include database and transaction
information in an SQL context file. Refer to Section 5.5 for information
about using context files with the SQL module processor and Section 6.6.2
for information about using context files with the SQL precompiler.

When you use the DECLARE TRANSACTION statement, all transactions
have the same characteristics, unless they were started by explicit SET
TRANSACTION statements.

In programs, you are limited to one DECLARE TRANSACTION statement
per SQL module or precompiled source file. To establish different default
transaction characteristics in programs that use a DECLARE TRANSACTION
statement, distribute the SQL statements in the program among separate files
and apply different DECLARE TRANSACTION statements to each file. When
you want to change transaction characteristics within one source file, use a
SET TRANSACTION statement for each transaction you start.

The SET TRANSACTION statement is an executable statement that
both specifies and starts a transaction. You can include multiple SET
TRANSACTION statements in a precompiled source file or in an SQL module.
The SET TRANSACTION statement offers the following advantages:

• It lets you explicitly control when transactions start.

• It provides flexibility for changing transaction characteristics in a program
source file.

Both statements allow you to explicitly specify transaction characteristics. The
following sections describe those options in detail.

Section 16.3 explains how to use SET TRANSACTION and DECLARE
TRANSACTION statements together.

16–6 Managing Transaction Context

16.2.1 Using Read-Only Transactions
Specifying a read-only transaction limits your transaction to data retrieval;
however, it permits more users to access the database concurrently than would
be possible if you specify a read/write transaction.

Specify READ ONLY in a DECLARE TRANSACTION or SET TRANSACTION
statement when:

• You do not intend to add new rows or change existing values in the
database.

• You do not intend to create, alter, or drop data definitions or to grant or
revoke database privileges.

• You do not require absolute, up-to-the-minute accuracy. A read-only
transaction sees the database as it was at the moment the transaction
began—in effect, a ‘‘snapshot’’ of the database. Unless your application
requires an absolutely current picture of the database, you should be able
to use a read-only transaction.

• You are accessing a read-only storage area.

Read-only storage areas do not have snapshot files because you cannot
update data in read-only storage areas. (Any discussion in this chapter
about snapshot files and locking does not apply to read-only storage areas.)

• You are using Oracle Rdb with a database product that requires read-only
access to data.

Note that the other product might use entirely different locking rules and
strategies than Oracle Rdb.

When you start a read-only transaction, your transaction reads current
versions of rows from the database file and previous versions of rows from the
snapshot file. Because many transactions can share the versions of rows in the
snapshot file, your transaction does not conflict with others.

If you start a read-only transaction without specifying a RESERVING clause,
your transaction requests access to any table in the database. Your database
operations are restricted to retrieval only. Your transaction does not use any
row locks in this transaction mode and other transactions can access the same
data. If other transactions make changes, your transaction still retrieves the
old record from the snapshot file. Because your transaction reads data from the
snapshot file, other transactions are free to update rows in any table without
waiting or experiencing access conflicts.

Managing Transaction Context 16–7

You can specify a RESERVING clause in combination with a read-only
transaction, but you include the clause only to specify (limit) the tables
you can work with during the transaction. The shared read mode is the only
combination of share mode and lock type keywords you can specify for a
read-only transaction.

If a snapshot file is not enabled for your database (and you are not accessing a
read-only storage area), a read-only transaction has the same effect as starting
a read/write transaction that reserves tables using a shared read reserving
option. If snapshots are enabled deferred, the read-only transaction waits until
the snapshot file is updated, then proceeds as normal.

In most cases, the previous versions of rows stored in a snapshot file are
adequate; they will likely be outdated only by a matter of seconds or minutes.
However, if your retrieval transaction requires an absolutely current picture
of the database, start a read/write transaction so that you do not use the
snapshot file.

If your retrieval transaction generates a complex report that your site considers
high priority, you may also want to reserve the tables that you need to
read in protected share mode. Interference from others may make your
transaction more difficult to start in a high-contention environment, but once
your transaction is underway, it encounters minimal interference from others
and completes more quickly.

16.2.2 Using Read/Write Transactions
Specify a read/write transaction when you want to perform retrieval tasks
that require an absolutely current picture of the database. In addition, you
must use a read/write transaction to modify schema definitions with the
INSERT, DELETE, UPDATE, CREATE, ALTER, DROP, GRANT, or REVOKE
statements.

The following statement lets you perform operations on any table or view that
is not reserved in a conflicting mode by another transaction:

SET TRANSACTION READ WRITE;

Oracle Rdb reserves the tables as you name them in SQL statements and,
depending on the type of operations your transaction performs, places read
locks on selected rows to complete a retrieval task and write locks on selected
rows to complete an update task.

For example, the first data manipulation statements in your transaction might
retrieve data from the EMPLOYEES table. Oracle Rdb locks tables and rows
in the same way as specified by a shared read reserving option. Later in the
transaction, you might modify values in selected rows in the EMPLOYEES

16–8 Managing Transaction Context

table. Oracle Rdb, using only the necessary locks to complete the transaction,
promotes the shared read locks to shared write.

Data definition statements lock system tables, which contain definitions for
the database. Depending on the change you make, the result is that data in
one, several, or all tables in the database is inaccessible to other users until
you end your transaction. (In other words, the effect is the same as specifying
EXCLUSIVE WRITE access to those tables.)

Some database operations require a higher level of protection than your
statement specifies. In such cases, Oracle Rdb automatically promotes the
mode to protected read or protected write to complete the task. Oracle Rdb
always attempts to secure the highest share mode and lock type necessary for
the protection of your transactions and the database. Although the share mode
may be higher than what you explicitly specify, it is never lower than that level
once you start processing data.

16.2.3 Using Batch-Update Transactions
Batch-update transactions provide a performance advantage over read/write
transactions, at the cost of recovery and concurrent access. Batch-update
transactions work faster than read/write transactions that reserve tables using
the exclusive write reserving option, because the batch-update transaction
does not write to snapshot or recovery-unit journal files. As a result, disk I/O
operations are kept to an absolute minimum. However, that means batch-
update transactions must be terminated by a COMMIT statement because the
information necessary to roll back a transaction is not available. If a batch-
update transaction fails, the database will be corrupt. In this case, your only
options are to rebuild the database entirely or restore it from a backup file.

No other users can access a database during a batch-update transaction.

You can use a batch-update transaction to load a database quickly. For
example, assume you are refreshing all the data in an extracted database.
(An extracted database is a copy of some or all data in another database,
and is usually created to support impromptu queries or reports.) You have
decided that the performance advantage offered by a batch-update transaction
is a worthwhile trade-off against possible corruption of the second database
that would occur if an abnormal event such as a system failure occurs before
the transaction is committed. You should make a backup copy of the second
database immediately prior to starting this transaction, so that you can restore
the database if it becomes corrupted. The following example shows how to
start a batch-update transaction on one database and a read-only transaction
on another database:

Managing Transaction Context 16–9

SET TRANSACTION
ON FIRST_DB USING (READ ONLY)

AND ON SECOND_DB USING (BATCH UPDATE);

The preceding transaction starts only if no other users are accessing the
database specified as SECOND_DB.

Without the support of a recovery-unit journal, transactions cannot be rolled
back. Therefore, you must always terminate batch-update transactions with
a COMMIT statement. If an error condition is not handled with a COMMIT
statement or if a system or other kind of failure prevents a commit operation
from being performed, the database being accessed by the batch-update
transaction is marked as corrupt and it cannot be accessed again by anyone.

Specify BATCH UPDATE only from an explicit SET TRANSACTION
statement. Use it only when increasing the performance of an update
transaction justifies the risk of possible database corruption in the event
of abnormal termination of an interactive session or program. This risk may
be justified when:

• You are loading a database initially.

You should have a program or SQL command procedure available to create
database definitions again if the load operation fails. If the batch-update
transaction fails before it can be committed, you can delete the corrupted
database file, redefine the database, and start the load operation again.

• You are performing extensive update operations to most (if not all) the
tables in a database.

You should use the RMU Backup command to back up the database
immediately prior to beginning the batch-update transaction. Should the
batch-update transaction fail before it can be committed, you can delete the
corrupted database file or files, use the RMU Restore command to restore
the database from the backup copy, and start the updates again.

16.2.4 Using the RESERVING Clause
If you do not enter a transaction statement, SQL assumes you want to start a
transaction using all the attached or declared databases. It behaves as though
you have entered the following statement:

DECLARE TRANSACTION READ WRITE WAIT;

SQL reserves tables as you refer to them in statements. SQL also puts read or
write locks on rows as appropriate when you access the rows.

16–10 Managing Transaction Context

If you know when you start the transaction which tables you will access,
you can explicitly reserve them. Oracle Rdb places an intent lock on the
entire table. Your program may have to wait for other transactions to release
incompatible locks on the table and you may cause other transactions to wait
for your transaction to complete.

In read/write transactions, you can specify the following combinations of share
mode and lock type in RESERVING clauses:

• SHARED READ

• SHARED WRITE

• SHARED DATA DEFINITION

• PROTECTED READ

• PROTECTED WRITE

• EXCLUSIVE READ

• EXCLUSIVE WRITE

• EXCLUSIVE DATA DEFINITION

Figure 16–1 shows the SET TRANSACTION RESERVING syntax and
summarizes the share modes and lock types that apply to read/write
transactions.

Managing Transaction Context 16–11

Figure 16–1 Share Mode and Lock Type Options for Read/Write Transactions

share mode lock type

READ

WRITE

SHARED

PROTECTED

Other users can work with the same table as you do. Depending on the
option those users choose, they can have read−only or read and write
access to the table.

Other users can read rows from the same tables as you but cannot have
write access.

Other users cannot even read rows from your table. If another user
tries to access the same table, SQL denies the request.

You plan to retrieve rows from
tables without changing any of
those rows or storing new ones.

You plan to retrieve rows and
change or store new ones.

EXCLUSIVE

SQL> SET TRANSACTION READ WRITE
RESERVING table_name FOR

NU−2111A−RA

You plan to add or drop indexes.DATA
DEFINITION

You can use the RESERVING clause with a read-only transaction. For
example:

SET TRANSACTION READ ONLY
RESERVING EMPLOYEES FOR SHARED READ;

In this case, you cannot access tables you do not specify in the RESERVING
clause. Moreover, Oracle Rdb does not evaluate protected or exclusive
share modes or the write lock type when you combine READ ONLY and a
RESERVING clause.

To reserve more than one table for your transaction, specify each table
explicitly. The following example reserves three tables for read-only access:

SET TRANSACTION READ ONLY RESERVING
EMPLOYEES FOR SHARED READ,
JOBS FOR SHARED READ,
DEPARTMENTS FOR SHARED READ;

The transaction started by this statement cannot read from tables that you do
not specify.

16–12 Managing Transaction Context

The following SET TRANSACTION statement names different tables for
different database tasks (EMPLOYEES for retrieval and COLLEGES and
DEGREES for update):

SET TRANSACTION READ WRITE RESERVING
EMPLOYEES FOR SHARED READ,
COLLEGES FOR SHARED WRITE,
DEGREES FOR EXCLUSIVE WRITE;

The following statement reserves two tables. Use this statement when you
want to read data from one table and store it in the other table and you want
to avoid locks on any row. This statement prevents other users from accessing
either table:

SET TRANSACTION READ WRITE RESERVING
EMPLOYEES FOR EXCLUSIVE READ,
EMPLOYEES_TEMP FOR EXCLUSIVE WRITE;

You cannot start the preceding transaction until all other transactions
accessing either table have completed.

Remember that you may also lock tables that you have not explicitly reserved.
This happens when a view, constraint, or trigger in the tables that you have
reserved refers to other tables. Note the following:

• When a trigger or constraint first accesses a table, Oracle Rdb
automatically reserves the table in shared read mode.

• If a trigger updates a table, Oracle Rdb automatically reserves the table in
shared write mode.

• If you explicitly reserve a view, Oracle Rdb automatically reserves, in the
same share mode, any table to which the view refers.

If another user is accessing any of the tables you need, you can encounter a
lock on that table. To prevent locking problems later, explicitly reserve all the
tables that you need to access.

Oracle Rdb does not automatically reserve tables to which a computed-by
column refers. You must explicitly reserve those tables.

16.2.5 Choosing Whether to Wait for Locks to Be Obtained
You can specify the WAIT option if you want to wait for locks on tables or rows
until other users release them, or specify the NOWAIT option if you want to
receive an immediate lock conflict message when other users are locking the
table you want to access. The WAIT option is the default. For example, the
following transaction waits for the locks it needs:

SET TRANSACTION READ ONLY;

Managing Transaction Context 16–13

If you want your program to handle lock conflicts directly, you can specify the
NOWAIT option in your transaction statement. When another transaction
locks a row and your transaction has the no-wait characteristic, you receive a
lock-conflict error to inform you that the row is unavailable. You may try to
retrieve the row again by ending the current transaction and again executing
the statement that accesses the row. Your statement succeeds only after the
transaction holding the lock on the row ends.

You specify the NOWAIT option only when you want to be notified immediately
about a lock conflict. For example:

SET TRANSACTION READ WRITE RESERVING
EMPLOYEES FOR PROTECTED WRITE,
JOB_HISTORY FOR PROTECTED WRITE,
SALARY_HISTORY FOR SHARED READ NOWAIT;

The NOWAIT option lets your program decide how to handle lock conflicts.
Your program can allow the user to choose whether or not to wait, or it can
retry a certain number of times before informing the user that the record is
unavailable. For example, to permit the user to choose whether or not to wait,
your program could contain the following logic:

1. Start a transaction specifying NOWAIT.

2. Start the data manipulation operation.

3. If the data manipulation statement encounters a lock conflict, roll back the
NOWAIT transaction and display a message to the user: ‘‘The record you
want is in use. Do you want to wait?’’

4. If the user replies Y or y, start a transaction specifying WAIT. If the user
replies N or n, handle the condition as appropriate for the application.

Specify a wait interval to set the amount of time a transaction waits for locks
to be released

To specify an application-specific wait interval, use the WAIT clause of the
SET TRANSACTION or DECLARE TRANSACTION statement. The following
example shows a SET TRANSACTION statement with a wait interval of 15
seconds:

SET TRANSACTION READ WRITE WAIT 15;

Oracle Rdb waits 15 seconds for a lock to be released before returning a lock
conflict error. (You express the wait interval in seconds, but the exact time
period is approximate.)

16–14 Managing Transaction Context

Oracle Rdb provides several methods to specify a wait interval; the methods
can apply to every transaction in your process, to an entire database, or to
an entire system. If more than one option for a wait interval applies to your
transaction, Oracle Rdb uses the minimum value—that is, it waits the shortest
amount of time specified by any wait-interval option. The Oracle Rdb7 SQL
Reference Manual explains these options in detail and describes how Oracle
Rdb decides which wait interval to use.

Whether you specify the wait interval using the WAIT clause in the SET
TRANSACTION statement or using another method, Oracle Rdb returns a
lock-conflict error if the resource is still locked after the transaction waits the
specified interval.

16.2.6 Choosing an Isolation Level
The isolation level of a transaction defines the degree to which the read
operations of one transaction can be affected by the update operations of other
concurrently executing transactions.

Oracle Rdb provides the following three isolation levels for transactions:

• SERIALIZABLE guarantees that the operations of concurrently executing
transactions are not affected by any other transaction. Concurrent
execution of serializable transactions must produce the same results
as would be produced by the execution of the same transactions in a
one-after-the-other order.

By default, all Oracle Rdb transactions run at ISOLATION LEVEL
SERIALIZABLE.

• REPEATABLE READ guarantees that if you execute the same query again,
your program receives the same rows it read the first time. However, you
may also see rows inserted and committed by other transactions. These
rows, called phantoms, can lead to data inconsistency if your program
performs operations that rely on the aggregate properties of the range,
such as COUNT, AVERAGE, and so forth.

• READ COMMITTED allows your transaction to see all data committed
by other transactions. Oracle Rdb releases read locks when the cursor
advances to the next row or the cursor is closed. Thus, data items your
transaction reads can be updated and committed by another transaction
before your transaction finishes. Therefore, your application cannot rely on
data that it reads to remain unchanged. However, data items cannot be
changed while you are displaying them.

You explicitly specify the isolation levels in the SET TRANSACTION and
DECLARE TRANSACTION statements.

Managing Transaction Context 16–15

Isolation levels affect only read/write transactions. Read-only transactions
always read from the snapshot file, if it is enabled, and thus never see other
transactions’ changes. Furthermore, only read operations in a read/write
transaction are affected, and then only if your program executes the same
query more than once in the same transaction.

Oracle Rdb places long-term locks on various database resources while
executing a transaction. Serializable transactions ensure data consistency but
limit the ability of multiple users to access database objects simultaneously.
Reduced isolation levels sacrifice data consistency under well-defined
circumstances but can increase transaction concurrency. If your transaction
can run correctly with lower levels of protection, the database system may be
able to provide increased concurrency for the database. You need to balance
your program’s needs for consistency and protection against the overall
performance of the database.

Table 16–1 shows the phenomena permitted for the isolation levels.

Table 16–1 Phenomena Permitted at Each Isolation Level

Isolation Level
Nonrepeatable Reads
Allowed?

Phantoms
Allowed?

READ COMMITTED Yes Yes

REPEATABLE READ No Yes

SERIALIZABLE No No

Note

If you reserve a table with a RESERVING clause, that RESERVING
clause may override the behavior the specified isolation level implies.
For example, Oracle Rdb always prevents phantoms in a table explicitly
reserved for protected retrieval. If you reserve some tables for protected
retrieval and others for concurrent retrieval, Oracle Rdb does not
attempt to prevent phantoms in the tables reserved for concurrent
retrieval.

For all isolation levels, if an UPDATE ONLY cursor reads a row, Oracle Rdb
locks the row exclusively and holds the lock until you issue a COMMIT or
ROLLBACK statement.

16–16 Managing Transaction Context

16.2.6.1 Using a Serializable Transaction
When you specify a serializable isolation level, Oracle Rdb guarantees that if
you retrieve a row multiple times during a transaction, you will retrieve the
same version of the row, assuming your own transaction does not change it. If
your own transaction does change the row, you will see the changed values if
you request the same row again. Other transactions may commit changes to
the row after your transaction starts but before you retrieve the row the first
time.

However, after you have retrieved the row the first time, you cannot see
changes made by other transactions. Your first retrieval of the row places a
read lock on it that prevents other transactions from updating or deleting it
until your transaction finishes and releases the lock.

16.2.6.2 Using a Repeatable Read Transaction
When you specify a repeatable read isolation level, Oracle Rdb guarantees that
a query repeated multiple times during a single transaction will return (for
each execution of the query) the same rows as were returned the first time the
query was executed. Although a repeatable read transaction guarantees that
you see the same set of rows, it cannot guarantee that you will not see extra
rows called phantoms.

The following example shows a repeatable read transaction that finds a
phantom row. The repeatable read transaction queries the database to select a
set of rows. The query returns six rows in this example:

ATTACH ’FILENAME mf_personnel’;
SET TRANSACTION READ WRITE

ISOLATION LEVEL REPEATABLE READ;
SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL

FROM EMPLOYEES WHERE EMPLOYEE_ID < ’00170’;

EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
00164 Toliver Alvin A.
00165 Smith Terry D.
00166 Dietrich Rick NULL
00167 Kilpatrick Janet NULL
00168 Nash Norman NULL
00169 Gray Susan O.

6 rows selected

While the repeatable read transaction is executing, another transaction
starts, inserts a single row into the mf_personnel database, and commits
the transaction:

Managing Transaction Context 16–17

ATTACH ’FILENAME mf_personnel’;
SET TRANSACTION READ WRITE;
INSERT INTO EMPLOYEES

(EMPLOYEE_ID, LAST_NAME, FIRST_NAME,MIDDLE_INITIAL)
VALUES (’00161’,’Muggs’,’Fred’,’J’);

1 row inserted
COMMIT;

If the first transaction executes the same query again, the query returns the
same six rows as before, but it also returns the phantom row (Fred Muggs)
inserted by the second transaction, as shown in the following example:

SELECT EMPLOYEE_ID, LAST_NAME,FIRST_NAME,MIDDLE_INITIAL
FROM EMPLOYEES WHERE EMPLOYEE_ID < ’00170’;

EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
00161 Muggs Fred J.
00164 Toliver Alvin A.
00165 Smith Terry D.
00166 Dietrich Rick NULL
00167 Kilpatrick Janet NULL
00168 Nash Norman NULL
00169 Gray Susan O.

7 rows selected

Oracle Rdb guarantees that reads are repeatable; that is, for each execution
of the query, Oracle Rdb returns at least the rows first selected. Oracle Rdb
cannot guarantee that other rows (phantoms) will not appear.

A repeatable read transaction holds short-term locks on indexes and holds
locks on the table until the end of the transaction.

When using the REPEATABLE READ isolation level, Oracle Rdb occasionally
holds long-term read locks on rows that are not really required to prevent the
nonrepeatable read phenomenon. The REPEATABLE READ isolation level
reduces index contention, not data contention.

16.2.6.3 Using a Read Committed Transaction
When you specify a read committed isolation level, Oracle Rdb cannot
guarantee that a query repeated multiple times during a single transaction will
return (for each execution of the query) the same rows as were returned the
first time the query was executed. In addition, a read committed transaction
cannot guarantee that you will not observe extra rows called phantoms. The
number of rows and the data in those rows can change in a read committed
transaction because a read committed transaction allows the reading of data
committed by other concurrently executing transactions.

16–18 Managing Transaction Context

Many applications return inconsistent results when they permit nonrepeatable
read/write transactions, such as when an application executes transactions at
the READ COMMITTED isolation level. A well-known example, referred to as
the buried update anomaly, illustrates this fact:

• Two transactions read the same row and find two items in stock.

• The first transaction subtracts one item from the stock total and updates
and commits the result.

• A second transaction also subtracts one item from the stock total, which its
original read indicates is still two, and updates and commits the result.

Although the two transactions have actually reduced the number of items
by two, the row on disk still shows one item in stock. The second update
transaction wrote over the first update. A subsequent transaction will
incorrectly read the row containing the item count and find one item in stock
when there should be none. This is called a buried update anomaly.

To prevent buried update anomalies, you must run the item stock transactions
at REPEATABLE READ or SERIALIZABLE isolation level, not at READ
COMMITTED.

The following example shows a read committed transaction that queries the
database to select a set of rows. The query returns six rows in this example:

SET TRANSACTION READ WRITE
ISOLATION LEVEL READ COMMITTED;

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL
FROM EMPLOYEES WHERE EMPLOYEE_ID < ’00170’;

EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
00164 Toliver Alvin A.
00165 Smith Terry D.
00166 Dietrich Rick NULL
00167 Kilpatrick Janet NULL
00168 Nash Norman NULL
00169 Gray Susan O.

6 rows selected

Meanwhile, another transaction starts, inserts a single row into the
mf_personnel database, updates another row, and commits the transaction:

SET TRANSACTION READ WRITE;
INSERT INTO EMPLOYEES

(EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL)
VALUES (’00161’,’Muggs’,’Fred’,’J’);

1 row inserted

Managing Transaction Context 16–19

UPDATE EMPLOYEES
SET FIRST_NAME = ’David’,

LAST_NAME = ’Garroway’,
MIDDLE_INITIAL = ’E’

WHERE EMPLOYEE_ID = ’00164’;
1 row updated
COMMIT;

When the first transaction requests the same range of ID numbers as before,
the query returns the changes made by the second transaction— the phantom
row (Fred Muggs) and the David Garroway row, instead of the Alvin Toliver
row:

SELECT EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL
FROM EMPLOYEES WHERE EMPLOYEE_ID < ’00170’;

EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
00161 Muggs Fred J.
00164 Garroway David E.
00165 Smith Terry D.
00166 Dietrich Rick NULL
00167 Kilpatrick Janet NULL
00168 Nash Norman NULL
00169 Gray Susan O.

7 rows selected
COMMIT;

In a repeatable read transaction, Oracle Rdb would have redisplayed the Alvin
Toliver row (as it did in the first execution of the query) and the update in the
other concurrently executing transaction would have had to wait.

A read committed transaction holds short-term locks on indexes and tables.

When a sequential scan is done under the READ COMMITTED isolation level,
the number of lock operations may increase. If adjustable lock granularity is
disabled, the number of lock operations (and the total number of locks) might
increase to unacceptable levels.

16.2.7 Benefits of Using Various Isolation Levels
Using the SERIALIZABLE isolation level enables all transactions to run
correctly in relationship to concurrently executing transactions without
special programming or application design. Tracing incorrect inventory
figures to specific cases of buried updates and debugging tasks can be time
consuming. Discovering the reason for inconsistencies in reports can take
considerable time as well. The SERIALIZABLE isolation level relieves you of
these time-consuming tasks.

16–20 Managing Transaction Context

Nonetheless, the benefits of serializable transactions come at a cost. To
eliminate harmful phenomena, the database system uses long-term read locks
on objects that it touches, such as data records and index nodes. Concurrency
drops as a result of holding the long-term locks. A transaction that does
not need phantom protection to execute correctly, but is running at the
SERIALIZABLE isolation level can block transactions from inserting unrelated
rows. This can reduce overall performance for the application. By running this
transaction at the REPEATABLE READ isolation level, the database system
need not maintain long-term read locks, allowing the overall throughput of the
application to increase.

Applications that perform communications during a transaction can make good
use of read committed transactions, which do not hold long-term read locks on
data records or index nodes. Long-running report transactions can also use
read committed transactions because they interfere minimally with update
transactions. If you need to run a large number of reports, or the reports
require serializable protection, a read-only transaction is a better choice than
the READ COMMITTED isolation level in terms of a reducing locks.

Although user-selectable isolation levels enable you to tune individual
transactions for optimal concurrency and consistency, the flexibility of using
various isolation levels can nonetheless introduce data inconsistencies from
application design or programming errors. Some applications can run and
produce predictable results at isolation levels below the most stringent and
default isolation level SERIALIZABLE. Think carefully about whether or not
these applications will behave consistently as expected if nonrepeatable reads
or phantoms occur. In general, you can run applications at reduced isolation
levels when the application does not include a transaction that performs the
same query expression two or more times.

Reduced isolation level applications can be divided into two classes: reporting
and update.

Using Reduced Isolation Levels for Reporting Applications
You can produce many useful reports or one-of-a-kind inquiries from
applications permitting nonrepeatable reads and phantoms. Anyone looking for
estimates, for example, can tolerate inconsistencies that would be unacceptable
under other circumstances, such as for end-of-period reports that might
demand greater precision.

By their nature, one-time reports or queries are immune to nonrepeatable
reads and phantoms. For example, a query that makes one pass over sales
data, calculating the percentage of each item sold in the last week, does
not need the protections afforded by serializable transactions. Such reports

Managing Transaction Context 16–21

or queries can suit your purposes when run at the READ COMMITTED or
REPEATABLE READ isolation levels.

Using Reduced Isolation Levels for Update Applications
Carefully constructed update transactions can often run correctly despite
potential interference from nonrepeatable reads and phantoms; however, you
might have to add some code to your applications to accomplish this.

Suppose that a customer orders 100 T-shirts of assorted colors. The transaction
that processes the order displays how many of each color are in stock. It then
allows you to enter the number of each color to be added to the customer’s
order. You can run this transaction and allow nonrepeatable reads and
phantoms (using the READ COMMITTED isolation level) and still avoid
the buried update anomaly by including some logic in your program.

Suppose your application reads the row for blue T-shirts and finds 25 in stock.
The customer asks you to send him 10. Because the transaction executes at
isolation level READ COMMITTED, you cannot update the row to record that
there are 15 blue T-shirts left in stock; another transaction might have altered
the row between the time your application read and updated it.

So, you must read the row again to make sure no one, except you, can modify
it. To do this, you can open a second cursor declared with the UPDATE ONLY
clause to reread the row. The application must then recalculate the remaining
inventory by subtracting 10 from the value in the reread row, and then issue
the update.

This is an alternative to including the read and update operations in the same
transaction, ensuring nobody else can read the record while your transaction is
working with it.

Using Isolation Levels with Databases Other Than Oracle Rdb
Databases other than Oracle Rdb databases may require you to specify a
particular isolation level, frequently ISOLATION LEVEL READ COMMITTED.
If you are using SQL with a database product other than Oracle Rdb specify
the isolation level required by that product.

16.2.8 Using Aliases to Access More Than One Database in a Single
Transaction

If you want to read data from one table in one Oracle Rdb database and store
it in another table in another Oracle Rdb database, you must use aliases. In
the following example, FIRST_DB and SECOND_DB are aliases specified in
ATTACH or DECLARE ALIAS statements:

16–22 Managing Transaction Context

SET TRANSACTION
ON FIRST_DB USING (READ ONLY

RESERVING FIRST_DB.EMPLOYEES FOR SHARED READ)
AND ON SECOND_DB USING (READ WRITE

RESERVING SECOND_DB.EMPLOYEES FOR EXCLUSIVE WRITE);

If you use multiple aliases, you must qualify all database names with the alias
that identifies the database where the object appears. Otherwise, Oracle Rdb
assumes the object comes from the default database and looks for it there. If
you have not established a default database, Oracle Rdb returns an error; if
the default database is not the one you wanted, you might receive an error or
an unexpected result, depending on whether the default database contains an
object with the name you specified.

Chapter 17 discusses aliases in more detail.

16.3 Understanding the Scope of a Transaction
The executable statement that marks the start of a transaction and the
statement that commits or rolls back the changes to the database, thus ending
the transaction, identify the scope of the transaction. Oracle Rdb executes
either all of the statements in the scope of the transaction or none of them.

Your program can start a transaction explicitly, using the SET TRANSACTION
statement, or implicitly, by executing a statement that requires database
access. SQL starts an implicit transaction on the first SQL statement that
executes during an interactive SQL session or program and on the first
statement that executes following a COMMIT or ROLLBACK statement.

When it starts an implicit transaction, Oracle Rdb uses the current default
values for transaction characteristics. These defaults might be defaults set by
a DECLARE TRANSACTION statement or, if you don’t specify a DECLARE
TRANSACTION statement, the Oracle Rdb defaults. The Oracle Rdb default
transaction is a read/write transaction that waits for the locks it needs and
runs at ISOLATION LEVEL SERIALIZABLE.

Your program can allow Oracle Rdb to implicitly end a transaction or it can
explicitly end the transaction by issuing a COMMIT statement to make all
your changes permanent or a ROLLBACK statement to remove all changes.
Section 16.8 explains your options for ending a transaction.

Figure 16–2 illustrates transaction scope using the SET TRANSACTION
statement. The SET TRANSACTION statement works the same way in
programs as it does in interactive SQL; that is, it specifies one transaction and
starts it.

Managing Transaction Context 16–23

Figure 16–2 Transaction Scope with a SET TRANSACTION Statement

Read−only transaction ends.

Read/write transaction ends.

Transaction ends.

SET TRANSACTION...

COMMIT

.

.

.

Read−only transaction begins.

SELECT...

ROLLBACK

.

.

.

New transaction begins with whatever
characteristics are specified. If the
transaction characteristics are not
specified, the SQL defaults are used.

SET TRANSACTION READ ONLY

COMMIT

.

.

.

Read/write transaction begins because
read/write is the SQL default and no
DECLARE TRANSACTION statement
has changed that default.

ZK−1178A−RA

Scope of
Transaction

Scope of
Transaction

Scope of
Transaction

The DECLARE TRANSACTION statement establishes defaults for any
transactions started implicitly by statements other than SET TRANSACTION.
If, for example, an OPEN statement starts a transaction, the transaction
inherits characteristics from the DECLARE TRANSACTION statement.
However, if a SET TRANSACTION statement starts a transaction, SQL ignores
the DECLARE TRANSACTION statement. Any unspecified transaction
characteristics are the Oracle Rdb defaults.

The DECLARE TRANSACTION statement can be useful if you want defaults
for your session or program to be different than Oracle Rdb defaults. For
example, if your interactive SQL session or program includes queries against
a database and all queries should be read-only to avoid locking rows, you can
specify DECLARE TRANSACTION READ ONLY just once at the beginning
of your session or source file to ensure that your queries avoid locking
rows. Conversely, if you specify READ ONLY using a SET TRANSACTION
statement, you must enter the statement again after every COMMIT or

16–24 Managing Transaction Context

ROLLBACK statement to ensure that subsequent queries are processed as
read-only transactions.

Figure 16–3 illustrates transaction scope using a DECLARE TRANSACTION
statement in a file submitted to the SQL precompiler or SQL module
processor.

Figure 16–3 Transaction Scope with a DECLARE TRANSACTION Statement

OPEN CURSOR1...

COMMIT

.

.

.

SELECT...INTO...

ROLLBACK

.

.

.

SELECT...INTO...

COMMIT

.

.

.

Transaction ends.

Transaction ends.

Read−only transaction begins.

ZK−1038A−RA

Another read−only transaction begins.

DECLARE TRANSACTION READ ONLY Transaction characteristics specified.

Transaction ends.

Another read−only transaction begins.

Scope of
Transaction

Scope of
Transaction

Scope of
Transaction

You may also find a use for mixing one DECLARE TRANSACTION and
several SET TRANSACTION statements in programs. However, too much
variation in the approach to transaction management increases the likelihood
of inadvertently starting the wrong kind of transaction at different points
in your program. In general, you should explicitly specify the kind of access
you want: what tables you will be using and the share mode, lock type, and
isolation level you need. The more specific you are about your needs, the more
efficient and maintainable your database operations will be.

Managing Transaction Context 16–25

Reference Reading

The Oracle Rdb7 SQL Reference Manual describes the DECLARE
TRANSACTION and SET TRANSACTION statements in detail.

Figure 16–4 shows a combination of SET TRANSACTION and DECLARE
TRANSACTION statements.

Figure 16–4 Transaction Scope with SET and DECLARE TRANSACTION Statements

Scope of
Transaction

Scope of
Transaction

Scope of
Transaction

SELECT...

COMMIT

.

.

.

SET TRANSACTION READ WRITE

.

.

.

SELECT...

.

.

.

Transaction ends.

Transaction ends.

Read−only transaction begins.

ZK−1039A−GE

Read/write transaction begins.

DECLARE TRANSACTION READ ONLY Transaction characteristics specified.

Transaction ends.

Read−only transaction begins.

ROLLBACK

COMMIT

INSERT INTO...

16.4 Using Distributed Transactions
A distributed transaction groups more than one database or more than
one database attachment together into one transaction. The databases can be
on the same node or on different nodes. A transaction guarantees that if one
operation in a transaction cannot complete, none of the operations complete.

16–26 Managing Transaction Context

However, in an ordinary multidatabase transaction, it is possible for one
database to commit successfully and one to fail.

To ensure that data remains consistent even if your application attaches to
more than one database on more than one node, SQL uses the two-phase
commit protocol to ensure that every operation in a transaction completes
before a transaction is made permanent, even if the transaction is a distributed
transaction.

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, if a transaction accesses databases on more than one node and
DECdtm services are active on your system, Oracle Rdb starts a two-phase
commit transaction by default. ♦

A two-phase commit transaction works by first querying each participant in
the transaction about whether it is able to commit. If even one participant
fails, the whole transaction fails. Only when each and every participant has
indicated it can commit does the final commit take place.

For information about the two-phase commit protocol and distributed
transactions, see the Oracle Rdb7 Guide to Distributed Transactions.

If your application does not use a distributed transaction and a hardware or
software problem causes the system to fail, any incomplete transactions are
automatically rolled back when you restart the system. Section 16.8 describes
in more detail when a transaction is rolled back or committed.

16.5 Locking Database Resources
Locking is the mechanism by which Oracle Rdb controls concurrency and
enforces the logical and physical integrity of the database. Locks are used to:

• Synchronize access to the physical database. For instance, pages and
logical areas such as tables and indexes are locked as they are used.

• Keep track of events. For instance, the monitor uses a process termination
lock to determine when a user is no longer accessing the database.

• Keep your view of the database logically consistent.

Your program does not explicitly control locking. Rather, you specify your
needs for protection and access. Oracle Rdb then determines what locking
scheme meets your needs while still allowing the most user concurrency and
protecting the database’s integrity. The actual locks Oracle Rdb acquires might
not be what you expect or even what you request.

Managing Transaction Context 16–27

The following sections describe locking for read/write transactions. A read-only
transaction does not lock tables and rows unless snapshots are disabled.
If snapshots are disabled, a read-only transaction behaves the same as a
read/write transaction. Section 16.5.4 explains read-only transactions and
snapshot files.

16.5.1 Locking Strategies
Oracle Rdb uses a simple strategy for locking objects:

• Lock the object.

• Perform the work on the object—for instance, retrieve a physical page from
disk or update a row.

• Unlock the object at some later time, most likely at the end of the
transaction unless some other condition allows the lock to be freed sooner.
Physical page locks, for instance, can be released if another transaction
needs to read a different row from the same physical page.

In general, Oracle Rdb tries to lock at the highest level possible. For instance,
if you select one row from a 500,000-row table, and no other transaction is
using that table, Oracle Rdb might choose to place the lock on the entire table.
Thus when you select other rows, no new locks need to be acquired. Only if
another transaction requested compatible access to the table would smaller
portions of the table—index nodes or individual rows—be locked. This is called
adjustable lock granularity.

16.5.2 Intent Locks
Whether you start a default transaction or you explicitly reserve tables for a
particular access and share mode, Oracle Rdb takes out locks on a table-by-
table basis. In a transaction without a RESERVING clause, Oracle Rdb does
not lock the tables until an SQL statement accesses them; at that time, Oracle
Rdb chooses an appropriate lock based on the operation being performed.
When you explicitly reserve tables, Oracle Rdb locks each table at the start of
the transaction, placing an intent lock on the table.

Table 16–2 shows the intent lock modes, their meaning, and the allowed
activities.

16–28 Managing Transaction Context

Table 16–2 Intent Locks

Lock
type Meaning Allowed Activities

CR Concurrent Read The current transaction explicitly locks every record it
reads. Other transactions may read from and write to
the same table.

CW Concurrent Write The current transaction explicitly locks every record it
reads or writes. Other transactions may read from and
write to the same table.

PR Protected Read The current transaction does not need to lock any
records it reads. Other transactions may read from, but
not write to, the same table.

PW Protected Write The current transaction does not need to lock any
records it reads, but it locks every record it modifies or
adds. Other transactions may read in CR mode.

EX Exclusive The current transaction does not need to lock any
record it reads or modifies because no other access to
the table is allowed. Other transactions must wait
until this transaction finishes before they can have any
access to the table.

By default, each transaction holds all locks until the transaction ends. Other
transactions cannot change the rows you have locked. In many circumstances,
they cannot even read the same rows. Further, depending on how the table
is structured and how Oracle Rdb processes your query, it is possible to lock
records your transaction does not directly request. For instance, if you request
a row that must be located by going through the table one row at a time, you
lock the entire table one row at a time. Your transaction may also lock tables
to which constraints and triggers refer. Again, these locks are held until your
transaction ends. Other transactions cannot use any records you have locked
in a manner that is inconsistent with the usage you have requested.

Similarly, if another transaction is already using any of the rows, tables,
or indexes that you need, you have to wait for the resource to be released
or else handle the lock-conflict error. (Section 16.5.3 explains lock conflicts.
Section 10.5 tells how to handle lock conflict and deadlock situations in your
program.)

If you cannot gain the access you requested to all the tables you want to
reserve, your transaction will not start.

Managing Transaction Context 16–29

The kind of lock (read or write) placed on a row is determined by the nature
of the statement that is processing the row. An OPEN statement, for example,
places only read locks on the rows in a cursor, even if you specify the write
lock type for the table in a RESERVING clause. You must fetch a row from the
opened cursor and then execute an UPDATE or DELETE statement on the row
before Oracle Rdb upgrades the read lock to a write lock.

When you reserve tables using the protected or exclusive mode, you minimize
the time it takes for your transaction to complete because you reduce the
availability of data to other users. The exclusive share mode, for example,
does not allow other users to access a table. If a table is not available to other
users, you prevent someone else’s transaction from locking rows you plan to
process.

Deciding if you want to specify share modes and lock types is important only
when you start a read/write transaction. The decision is not important for
either read-only or batch-update transactions.

16.5.3 Lock Conflicts
When you lock a row, you may or may not conflict with other users, as shown
in Figure 16–5. When a conflict occurs, if the second transaction has specified
the NOWAIT option, it receives an error immediately. If the second transaction
has specified the WAIT option, it waits until one of the following occurs:

• The lock is freed by the first transaction, at which point the second
transaction can proceed

• A deadlock is detected, at which point one of the users receives a deadlock
error and the other proceeds

• The wait timeout interval expires, at which point the second transaction
receives an error.

Figure 16–5 shows when other users wait for row locks to be released and
when they encounter a lock-conflict error. Assume that the wait characteristic
(the default) applies to other users’ transactions. If the no-wait characteristic
applies, ‘‘a conflict’’ would appear wherever the chart indicates ‘‘a wait.’’ (Note
that the table does not indicate when users encounter deadlock errors. Unlike
lock-conflict errors, deadlock errors are not easily predicted.)

Remember that other users must wait until you end your transaction for locks
to be released. A read/write transaction with shared read access to a table
places read locks on all rows that it processes. This may mean that all the
rows in a table are locked if you are sequentially searching rows in the table
rather than accessing rows by unique index values. Because other users cannot

16–30 Managing Transaction Context

update rows on which your transaction has read locks, you may prevent users
from updating any row in the table until your transaction ends.

Managing Transaction Context 16–31

Figure 16–5 Chart of Database Access Conflicts

R
E

A
D

 W
R

IT
E

P
R

O
TE

C
TE

D
R

E
A

D
 H

as
:

R
E

A
D

 W
R

IT
E

P
R

O
TE

C
TE

D
W

R
IT

E
 H

as
:

R
E

A
D

 O
N

LY
H

as
:

R
E

A
D

 W
R

IT
E

E
X

C
LU

S
IV

E
W

R
IT

E
 H

as
:

R
E

A
D

 W
R

IT
E

E
X

C
LU

S
IV

E
R

E
A

D
 H

as
:

R
E

A
D

 W
R

IT
E

S
H

A
R

E
D

W
R

IT
E

 H
as

:

If
Y

ou
 A

cc
es

s
a

R
ow

 U
si

ng
Tr

an
sa

ct
io

n
M

od
e:

R
E

A
D

 W
R

IT
E

S
H

A
R

E
D

R
E

A
D

 H
as

:

S
om

eo
ne

 E
ls

e
U

si
ng

:

R
E

A
D

 O
N

L
Y

R
E

A
D

 W
R

IT
E

E
X

C
L

U
S

IV
E

W
R

IT
E

R
E

A
D

 W
R

IT
E

E
X

C
L

U
S

IV
E

R
E

A
D

R
E

A
D

 W
R

IT
E

P
R

O
T

E
C

T
E

D
W

R
IT

E

R
E

A
D

 W
R

IT
E

P
R

O
T

E
C

T
E

D
R

E
A

D

R
E

A
D

 W
R

IT
E

S
H

A
R

E
D

W
R

IT
E

R
E

A
D

 W
R

IT
E

S
H

A
R

E
D

R

E
A

D

N
o

co
nf

lic
t

to
re

ad
, a

 w
ai

t t
o

up
da

te

N
o

co
nf

li
ct

N
o

co
nf

li
ct

N
o

co
nf

li
ct

N
o

co
nf

li
ct

N
o

co
nf

li
ct

A
 w

ai
t

A
 w

ai
t,

 th
en

a
co

nf
li

ct

N
o

co
nf

li
ct

N
o

co
nf

li
ct

N
o

co
nf

li
ct

N
o

co
nf

li
ct

N
o

co
nf

li
ct

A
 w

ai
t

A
 w

ai
t

N
o

co
nf

li
ct

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

N
o

co
nf

li
ct

N
o

co
nf

li
ct

A
 w

ai
t

N
o

co
nf

li
ct

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

N
o

co
nf

lic
t

to
re

ad
, a

 w
ai

t t
o

up
da

te

A
 w

ai
t

N
o

co
nf

li
ct

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

A
 w

ai
t

Z
K

−
1

4
8

4
A

−
G

E

N
o

co
nf

lic
t

to
re

ad
 a

 r
ow

 n
ot

up
da

te
d;

 o
th

er
−

w
is

e,
 a

 w
ai

t

16–32 Managing Transaction Context

In all update cases, Oracle Rdb does not allow other read/write transactions
to read changed rows until the updating transaction commits or rolls back
the transaction. Because Oracle Rdb locks your rows against access by other
transactions, you can display the changes you have made to those rows. This
row locking assures the consistency and integrity of database rows.

To improve concurrent access to tables, it is particularly important to be as
specific as possible when you specify rows in cursor declarations. As soon as
it opens a cursor, your transaction places read locks on all rows in the table
associated with the cursor and (if you do not access tables by index) other rows
as well. In a read/write transaction, if you open a cursor that accesses a large
number of rows, you lock out other users who wish to update the database
until you commit or roll back the transaction. For example, if you write an
application that starts a transaction, opens a cursor, lets a data entry clerk
examine each row and update or delete the row, and commits all the changes
at once, your application will probably stop operations, even retrieval tasks, of
other users who start read/write transactions after you do. As a general rule,
cursors opened for an interactive update should be limited to one or a few rows
and should be closed as quickly as possible with a COMMIT or ROLLBACK
statement. (Executing a CLOSE statement does not release locks.)

Keep in mind that Oracle Rdb may lock a table for exclusive access even if
you request shared access, if it is necessary to protect database integrity and
consistency. This occurs during certain data definition statements and during
other statements as needed.

16.5.4 Read-Only Transactions and the Snapshot File
When snapshots are enabled for a database (the default), read-only
transactions do not lock the rows they read. Rather, when an update occurs,
Oracle Rdb writes the previous version of rows, the before-images, to the
snapshot file. The read-only transaction reads the before-images directly from
the snapshot file.

If a row is updated multiple times, multiple before-images are written to
the snapshot file. All before-images for a row are retained long enough to
guarantee that other transactions can read the version of the record that was
current when the update transaction started.

Read-only transactions that access an Oracle Rdb database with the snapshot
file disabled, however, do place read locks on rows processed during the
transaction. When there is no snapshot file (and you are not accessing a
read-only storage area), read-only transactions are processed as read/write
transactions.

Managing Transaction Context 16–33

Read-only storage areas do not have snapshot files because you cannot update
data in read-only storage areas.

16.5.5 Encountering Lock-Conflict Errors with Read-Only Transactions
Transactions that reserve tables in the exclusive share mode update the
recovery-unit journal file but not the snapshot file. Eliminating the chore of
updating a snapshot file improves the performance of a read/write transaction
by reducing the amount of disk I/O operations associated with an update.
However, because read-only transactions depend on snapshot file update, a
transaction that reserves tables in the exclusive share mode disables all read-
only transactions that attempt to access the same tables. If your transaction is
a high-priority transaction and you want it to encounter the least interference
possible from other read/write transactions, but do not want to interfere with
read-only transactions, reserve tables for protected write.

Read-only transactions that access a snapshot file (and normally should not
encounter locks at all) sometimes encounter lock-conflict errors. This happens
when a read-only transaction tries to access a table that has been reserved
by a read/write transaction using the exclusive write option, or when any
table in the database is being accessed by a batch-update transaction. (Batch-
update transactions reserve all tables in the database using the exclusive
write option.) When a read-only transaction encounters either kind of conflict,
the read-only transaction is always treated as though it had the no-wait
characteristic and it encounters a lock-conflict error.

The following steps illustrate the conflict between read-only transactions and
read/write transactions that reserve a table in exclusive-write mode:

1. User A reserves a table for EXCLUSIVE WRITE and fetches a collection of
rows.

2. User B starts a read-only WAIT transaction without a RESERVING clause.

3. User B attempts to access the table reserved by User A.

4. User B waits until the earlier exclusive-write transaction commits or rolls
back and then receives a lock-conflict error.

5. Even if User A terminates the current transaction, releases all locks, and
exits SQL, User B’s transaction will encounter the error if it tries to access
that table again in the same transaction.

A transaction that specifies EXCLUSIVE WRITE does not write data to the
snapshot file. However, all data committed to the database before a read-only
transaction starts must be available to that read-only transaction. Oracle Rdb
cannot determine whether a transaction in exclusive share mode has written
data to the snapshot file; therefore, the read-only transaction’s requirements

16–34 Managing Transaction Context

can never be satisfied. In this case, the WAIT option specified by User B is
rejected; thus, User B receives an error rather than waiting forever.

16.5.6 Improving Concurrent Access
Indexes that contain unique values and well-designed indexes that contain
duplicate values almost always improve multiuser access to single tables when
the following conditions apply:

• The table is large.

• Users access the table concurrently, but by different index values.

To improve concurrent access to a table, use a unique index to search the table,
instead of a sequential (nonindexed) search. Nonindexed searches process rows
from the beginning of the table to the end and place read locks on every table
row. When indexes are unique, a user searching a single table by one index
value is unlikely to lock out users who need to use the index to search for other
values. When you retrieve rows by unique index value, you are most likely to
place read locks only on the table rows you need.

However, indexes are database structures whose entry points (nodes) can
be locked by user access just as rows in tables can be locked by user access.
Therefore, your transaction may encounter a lock-conflict error or may have to
wait for another transaction to end because of a lock on the node for a sorted
index. Such a lock may be part of the reason why a user encounters a deadlock
error.

Sorted indexes are most likely to cause such conflicts. The unique index values
in columns that hold ID numbers, timestamps, order numbers, and so forth
frequently increase by 1, and often the most recent rows are the rows most in
demand. The likelihood that several needed records will appear in the same
index node is quite high. Hashed indexes are less likely to cause contention
because they are distributed more evenly through the database. However,
hashed indexes can be defined only for multifile databases. Partitioning
indexes so that different applications can access a different set of nodes may
also help.

Searching tables using sorted indexes that allow duplicates can lock out other
users as effectively as a sequential search of the table. The problem is related
to the way a sorted index is structured, and arises when there are few index
values (for example, only three department code values in an index based on
department code). In this case, the structure for the sorted index has so few
nodes that it can be completely locked by only one user (who is searching for
only one index value).

Managing Transaction Context 16–35

To avoid this problem, create a sorted index that has fewer duplicates—perhaps
basing it on more than one column. For example, if there are few department
code values, a sorted index based on both department code and supervisor
identification number (ID) increases the number of values in the sorted index
and thereby increases the number of nodes for the index. Another solution
is to create a hashed index in addition to a sorted index. Keep in mind that
Oracle Rdb chooses which index to use depending on whether your query is a
range retrieval or an exact match retrieval.

It is important to emphasize that you cannot predict whether a table will be
searched sequentially or by index, especially when the query involves a join
operation or accesses a view based on multiple tables. For these cases, the
Oracle Rdb query optimizer decides which table is searched first and whether
the search is done sequentially, by index, or (if both hashed and sorted indexes
are available) by a particular index. The query optimizer makes this decision
based on a variety of factors, among them the relative size of the tables being
joined.

If the query optimizer determines that a join operation in your transaction can
be executed most quickly by searching a particular table first, and that it must
look at all the rows in that table, your transaction places read locks on all the
rows in that table. Other users will not be able to update any rows in that
table until your transaction ends. Conversely, your transaction may encounter
a lock-conflict error or delays if another transaction has already obtained a
conflicting lock on the table.

For example, to evaluate the following query, the query optimizer may read
every row in one table to find a starting set of values for which the other tables
can be checked. The query optimizer may decide that using the EMPLOYEES
table for the starting set of values is fastest because EMPLOYEES is the
smallest table. Conversely, the query optimizer may decide that overall query
performance is best served by first searching the larger tables to eliminate rows
with end-date values that are not null. In any event, you can be reasonably
sure that the following query will place read locks on every row of at least one
table:

SELECT LAST_NAME, FIRST_NAME, JOB_CODE, JOB_START, SALARY_AMOUNT
FROM EMPLOYEES E, JOB_HISTORY JH, SALARY_HISTORY SH
WHERE (

(JH.EMPLOYEE_ID = E.EMPLOYEE_ID)
AND
(SH.EMPLOYEE_ID = JH.EMPLOYEE_ID)
)
AND (JOB_END IS NULL)
AND (SALARY_END IS NULL);

16–36 Managing Transaction Context

Thus, your application has only indirect control over what locks will be placed
on which objects. Accessing all tables by index values is still the best policy. By
joining tables on columns that are indexed for all tables, you allow the query
optimizer to choose among access methods rather than forcing it to perform a
sequential search of a particular table.

The Oracle Rdb7 Guide to Database Design and Definition provides more
information about indexes. The Oracle Rdb7 Guide to Database Performance
and Tuning tells you how to locate and debug locking problems and explains
the query optimizer and its potential strategies in detail and offers suggestions
for dealing with problems.

16.6 Designing Transactions so They Do Not Span Terminal I/O
Operations

In many programs, interactive users provide values used for database retrieval
and update. In addition, many interactive users may be concurrently running
one program image. In these cases, users should not be using transaction
time to read error messages and make corrections to input. You may therefore
decide to keep all users’ transactions as short as possible rather than ensure
that one user’s database operation never encounters changes made by
others. This tradeoff is the best way to keep any one user from waiting an
unacceptably long time or encountering locking errors because of interference
by other users. This tradeoff also implies that your program allows interactive
users to add, change, or delete only one row in a table per transaction when
many users are likely to simultaneously update the data in the same table.

Data update tasks often involve table searches that place read locks on rows
and indexes before placing write locks on rows and indexes. When one user
causes another user to encounter a long wait or a lock-conflict or deadlock
error, the problem is usually caused by one of the following situations:

• One user has write locks on rows or index nodes to which another user
needs read access.

• One user has read locks on rows or index nodes to which another user
needs to write.

If you allow interactive users to update, delete, or insert only one row in
a table per transaction, you reduce both the number and duration of write
locks that interfere with data retrieval. For single-row transactions, using
verb time for constraint evaluation reduces unnecessary write locks. When
you specify constraint evaluation at verb time, a row change that causes a
constraint violation is automatically undone without any action on the part of
the program.

Managing Transaction Context 16–37

You can avoid including terminal I/O operation time within a transaction by
rolling back a transaction after you retrieve a row for user verification or after
a fatal error. As a result, you reduce the length of time a read lock exists on a
row or index node and therefore reduce the likelihood that the lock interferes
with a write operation.

Keeping terminal I/O operation time out of a transaction can be difficult
because often you do not want a user to have to enter all input values for a
row again after a rollback operation. You also have to handle the possibility
(however remote) that, if you roll back a transaction after a user error, the
row on which that user is working may be deleted or updated by another user
before the first user enters the corrected input.

This section provides two pseudocode examples to illustrate how you can trade
off the risk of a user being adversely affected by operations performed by
others against the need to keep transactions short.

Example 16–1 illustrates how to update a row in a table (EMPLOYEES) that
may be concurrently accessed by many users. The example logic involves
retrieving a row twice, first by index value and then by database key (dbkey)
value. (Retrieval by dbkey value, instead of index value, avoids encountering a
write lock that occurs because an index node is being updated.) The example
assumes that two users will not be updating the same row at the same time. If
you cannot make this assumption for the operation your application performs,
either do not use a multiple-transaction approach to a user task, or alter it
significantly.

Example 16–1 Updating a Row in a Multiuser Environment

Set the flag to indicate that EMPLOYEE_ID is invalid and initialize
other parameters.

Perform VERIFY_EMPLOYEE section until a valid EMPLOYEE_ID is obtained.
Perform UPDATE_EMPLOYEES section.

VERIFY_EMPLOYEE section:

Prompt the user for EMPLOYEE_ID value to determine which employee row
needs an update.

Verify that input characters represent a valid string for an employee
identification number; prompt again if necessary.

SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED READ

Check the status parameter to ensure that the transaction started
successfully; if not:
Handle deadlock and lock conflict with timed retry of the
SET TRANSACTION statement, or
Stop the program with appropriate messages for other errors.

(continued on next page)

16–38 Managing Transaction Context

Example 16–1 (Cont.) Updating a Row in a Multiuser Environment

Select the row in the EMPLOYEES table that has the input ID number.

Check the status parameter to ensure that the operation was successful;
if not:
Handle deadlock and lock conflict with the ROLLBACK statement and
the timed retry of the SET TRANSACTION statement and row retrieval,
or display messages, roll back, and stop the program for
unexpected errors.

If no row is found:
Roll back.
Tell the user that the entered employee number is not assigned
to any employee and to enter a new value.

If row is found:
Set a predefined flag to indicate the EMPLOYEE_ID exists.
Store the dbkey value for the row in a parameter.
Store the row in the first of three identical sets of program

parameters.
Roll back.
Display the row values stored in the parameters on the terminal.

UPDATE_EMPLOYEES section:

Prompt for change values and store them in the second set of parameters
for the row.

Verify that valid characters are entered for all entries and prompt
for corrections if necessary.

SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED WRITE

Check the status parameter to ensure that the transaction started
successfully; if not:
Handle deadlock or lock conflict with timed retry of the
SET TRANSACTION statement, or
Stop the program with appropriate messages for other errors.

Retrieve the row by the dbkey value and store it in the third set
of parameters for the row.

If no row found:
Roll back.
Tell the user that the row was unexpectedly deleted by

another user.
Exit the program or loop.

If row is found:
Compare the values in the first and third sets of parameters
to determine if another user has changed row.
If yes:

Roll back.
Tell the user that an unexpected change occurred to the row.
Stop the program.

If no:
Update the row, setting column values to those input by the

user.

(continued on next page)

Managing Transaction Context 16–39

Example 16–1 (Cont.) Updating a Row in a Multiuser Environment

Check the status parameter to ensure that the operation was
successful; if not:
Handle lock conflict or deadlock with ROLLBACK and
timed retry of the entire transaction.
Stop the program for unexpected errors.

COMMIT

Example 16–2 updates an employee’s job history information by inserting a
row with information about the employee’s new job into the JOB_HISTORY
table and by updating the row that stores information about the employee’s
last job. This problem is different than the problem in Example 16–1 because
of intertable constraints. The example involves numerous but brief read/write
transactions when an interactive user makes input errors that violate many
constraints. However, no transaction spans terminal I/O operations, and the
user is prompted again only for values that remain invalid.

Example 16–2 Updating a Table Containing Constraints

Perform INITIALIZE_FLAGS section.
Perform VERIFY_EMPLOYEE section until a valid EMPLOYEE_ID is obtained.
Perform VERIFY_ROW_VALUES section until valid SUPERVISOR_ID, JOB_CODE,

and DEPARTMENT_CODE values are obtained.
Perform UPDATE_JOB_HISTORY section.

INITIALIZE_FLAGS section:

Initialize all flags to indicate "invalid". (Flags are set to "valid"
when values input by the user have passed program checks.)

VERIFY_EMPLOYEE section:

Prompt the user for the EMPLOYEE_ID value to determine for which
employee the job history information needs an update.

Verify that input characters represent a valid string for an
employee identification number; prompt again if necessary.

SET TRANSACTION READ WRITE RESERVING EMPLOYEES FOR SHARED READ

Check the status parameter to ensure that the transaction started
successfully; if not:

Handle deadlock and lock conflict with timed retry.
Stop the program for unexpected errors.

Select the row in the EMPLOYEES table that has the input ID number.

(continued on next page)

16–40 Managing Transaction Context

Example 16–2 (Cont.) Updating a Table Containing Constraints

Check the status parameter to ensure that the operation was successful;
if not:

Handle deadlock and lock conflict with ROLLBACK and timed
retry of the statement.
Roll back.
Stop the program for unexpected errors.

If no row is found:
Roll back.
Tell the user that the entered employee ID number is not yet
assigned to any employee in the database; therefore, no update
to the JOB_HISTORY table using that number is allowed.

If a row is found:
Set a predefined flag to indicate EMPLOYEE_ID exists.
Perhaps display the employee ID number and name for the user.
Roll back.

VERIFY_ROW_VALUES section:

Prompt for the JOB_START date and for any of the following values
whose associated flag is set to "invalid":
JOB_CODE, DEPARTMENT_CODE, SUPERVISOR_ID.

Verify that valid characters have been entered for first or revised
entries.
Prompt for corrections if necessary.

If the flag for SUPERVISOR_ID is set to "invalid":
SET TRANSACTION READ WRITE

RESERVING EMPLOYEES FOR SHARED READ
Check the status parameter to ensure that the transaction
started successfully; if not:

Handle deadlock and lock conflict with timed retry of
the SET TRANSACTION statement.
Stop the program for unexpected errors.
Select the row in the EMPLOYEES table that has the
input supervisor ID.

Check the status parameter to ensure that the operation was
successful; if not:

Handle deadlock and lock conflict with ROLLBACK and
timed retry of the statement.
Stop the program for unexpected errors.

If a row is found, roll back and set the predefined flag
to indicate that the SUPERVISOR_ID is valid.

If no row is found, roll back.

If the flag for DEPARTMENT_CODE is set to "invalid":
SET TRANSACTION READ WRITE

RESERVING DEPARTMENTS FOR SHARED READ

(continued on next page)

Managing Transaction Context 16–41

Example 16–2 (Cont.) Updating a Table Containing Constraints
Check the status parameter to ensure that the transaction
started successfully; if not:

Handle deadlock and lock conflict with timed retry of
the SET TRANSACTION statement.
Stop the program for unexpected errors.

Select the row in the DEPARTMENTS table that has the input
department code.
Check the status parameter to ensure that the operation was
successful; if not:

Handle deadlock or lock conflict with ROLLBACK and
timed retry of the statement.
Stop the program for unexpected errors.

If a row is found:
Roll back.
Set the predefined flag to indicate that DEPARTMENT_CODE
is valid.

If no row is found, roll back.

If the flag for JOB_CODE is set to "invalid":
SET TRANSACTION READ WRITE RESERVING JOBS FOR SHARED READ
Check the status parameter to ensure that the transaction
started successfully; if not:

Handle deadlock and lock conflict with timed retry of
the SET TRANSACTION statement.
Stop the program for unexpected errors.

Select the row in the JOBS table that has the input job code
value.
Check the status parameter to ensure that the operation was
successful; if not:

Handle deadlock and lock conflict with ROLLBACK and
timed retry of the statement.
Stop the program for unexpected errors.

If a row is found:
Roll back.
Set a predefined flag to indicate that JOB_CODE is
valid.

If no row is found, roll back.

If any flag indicates an input code or ID is still "invalid":
Display messages that specify input values that failed
verification checks.

UPDATE_JOB_HISTORY section:

SET TRANSACTION READ WRITE
RESERVING EMPLOYEES FOR SHARED READ,

JOBS FOR SHARED READ,
DEPARTMENTS FOR SHARED READ,
JOB_HISTORY FOR SHARED WRITE

(continued on next page)

16–42 Managing Transaction Context

Example 16–2 (Cont.) Updating a Table Containing Constraints

Check the status parameter to ensure that the transaction started
successfullu; if not:

Handle deadlock and lock conflict with timed retry of
the SET TRANSACTION statement.
Stop the program for unexpected errors.

Update the current JOB_HISTORY row where EMPLOYEE_ID is equal to
the input value for EMPLOYEE_ID and where JOB_END is null,
setting JOB_END equal to the value input for JOB_START.

Check the status parameter to ensure that the operation was successful
or a row was not found (an acceptable condition for newly hired
employees); if not:

Handle lock conflict and deadlock with ROLLBACK and timed
retry of the statement.
Roll back and stop the program for unexpected errors.

Insert into the JOB_HISTORY table a new row using all input values
and setting JOB_END to null.

Check the status parameter to ensure that the operation was successful;
if not:

Handle lock conflict and deadlock with ROLLBACK and timed
retry of the statement.
Roll back and stop the program for unexpected errors.

COMMIT
Check the status parameter to ensure that the COMMIT was successful;

if not:
Display a message saying an unexpected error occurred.
Roll back and stop the program.

Example 16–2 shows that for the multiple-transaction strategy to work with
minimal risk of the interactive user waiting too long for a lock to be released by
other users, all transactions that need access to the same set of tables should
access those tables in the shared share mode and keep the access time as brief
as possible. The strategy also assumes that there is only a remote possibility
that anyone would delete values after the program has checked them to make
sure they exist. (Something is obviously wrong if a data entry clerk is trying
to file new job information for an employee and code values suddenly become
obsolete.)

The same strategy may not apply to your application given the kind of
information in the database, number of concurrent users, and expected data
access patterns at your site. For example, it may be appropriate to force users
to start again from the beginning when an intertable constraint violation
occurs. Upgrading the table share mode to protected may also be appropriate
when a reduction in the number of deadlock encounters is worth the cost
of an increase in wait time. Furthermore, program logic cannot solve all

Managing Transaction Context 16–43

problems. For example, if users who wish to update data are competing for the
same tables with the more lengthy read/write transactions of report-writing
programs, wait time may be unacceptably long because large amounts of
data are not accessible for update. In such cases, your program may need
the support of a database operations schedule that ensures interactive users
encounter less interference from long read/write transactions.

16.7 Deciding When to Evaluate Constraints
If constraints are defined for tables in a database, all transactions that update
those tables must evaluate the constraints. You cannot completely disable
constraint evaluation for some update transactions and enable constraint
evaluation again for other transactions. However, Oracle Rdb allows users to
specify when constraints are evaluated:

• At verb time, which means all applicable constraints are evaluated for each
row that is being written to the database file when the write takes place

• Immediately, which means constraints are evaluated at the end of the SQL
statement that caused the constraint to be evaluated

• At commit time, which means applicable constraints are checked only
once for all write operations applied to the database file during an entire
transaction

Section 16.7.1 describes how to specify different constraint evaluation times.

16.7.1 Specifying Constraint Evaluation Time
You can specify when to evaluate constraints in the following ways:

• Define a default evaluation time when you create a table.

• Specify either verb time or commit time evaluation in the EVALUATE
clause of the DECLARE TRANSACTION and SET TRANSACTION
statements.

In addition, you can specify when commit-time constraints are actually
evaluated using the following methods:

• Specify the /SQLOPTIONS=(CONSTRAINT=IMMEDIATE | DEFERRED)
or –s –’cm immediate|deferred’ command line qualifier when using the
SQL precompiler

The SQLOPTIONS=(CONSTRAINT=IMMEDIATE) or or –s –’cm
immediate’ qualifier causes each of the affected constraints to be evaluated
immediately, as well as at the end of each statement, until the SET ALL
CONSTRAINTS DEFERRED statement is issued or until the transaction
completes with a commit or rollback operation.

16–44 Managing Transaction Context

• Specify the CONSTRAINT=IMMEDIATE | DEFERRED or –cm
immediate|deferred command line qualifier when using the SQL module
processor

The CONSTRAINT=IMMEDIATE or –cm immediate qualifier causes each
of the affected constraints to be evaluated immediately, as well as at the
end of each statement, until the SET ALL CONSTRAINTS DEFERRED
statement is issued or until the transaction completes with a commit or
rollback operation.

• Specify the SET ALL CONSTRAINTS statement

The SET ALL CONSTRAINTS IMMEDIATE statement causes all commit-
time constraints to be evaluated immediately, as well as at the end of
each statement and at commit time, until the SET ALL CONSTRAINTS
DEFERRED statement is issued or until the transaction completes.

The following list describes when constraints are evaluated and the behavior of
the constraint at evaluation time:

• A NOT DEFERRABLE constraint is always evaluated at the end of an
SQL statement, regardless of what you specify with SET DEFAULT
CONSTRAINT MODE statement or the SET ALL CONSTRAINTS
statement. If you try to use the EVALUATING clause of the SET
TRANSACTION statement to evaluate a NOT DEFERRABLE constraint
at commit time, Oracle Rdb raises an exception.

• A DEFERRABLE constraint can be evaluated at any point up to the
COMMIT statement, unless constraint mode is ON or you have specified
EVALUATE AT VERB TIME with the SET TRANSACTION statement.

• When a NOT DEFERRABLE constraint or a DEFERRABLE constraint
that is being evaluated at verb time is violated during a transaction, Oracle
Rdb allows you to issue a COMMIT statement. The COMMIT statement
stores the rows that did not violate the constraint. Rows that violated the
constraint are not stored. A DEFERRABLE constraint that is evaluated at
verb time has the behavior of a NOT DEFERRABLE constraint.

• When a DEFERRABLE constraint that is evaluated at commit time is
violated, Oracle Rdb does not allow you to issue a COMMIT statement
until you find the records that violated the constraint and specify values
that do not violate the constraint. If you cannot find and fix the record that
violated the constraint, you must roll back all modifications attempted by
the transaction, including any updates that did not violate the constraint.

Managing Transaction Context 16–45

• A COMMIT statement can produce a constraint violation on execution
only when commit-time evaluation of constraints is in effect. If you are
designing statement-specific error-handling sections, the error handler
for COMMIT does not need to take constraint violation into account. If
you pass control to the same error-handling section whether an error is
returned on an SQL statement writing to the database or on a COMMIT
statement, write a generic error-handling section that monitors for and
handles all expected errors.

If constraints are evaluated at commit time, Oracle Rdb returns an error
at the first violation, no matter how many rows it has processed. If you
cannot find and fix the row that violated the constraint, you must roll
back the entire transaction, including any updates that did not violate the
constraint.

If the dialect is set to SQLV40, the default constraint attribute is
DEFERRABLE. However, you receive a deprecated feature message if you
do not specify a constraint attribute. If the dialect is set to SQL92, the default
constraint attribute is NOT DEFERRABLE.

16.7.2 Recommendations for When to Evaluate Constraints
In general, for transactions that perform many update operations, Oracle Rdb
recommends that you use constraints that are evaluated at verb time because:

• Any updates that violate a constraint immediately receive an error
message, making it easier to find and fix records that violated the
constraint.

In contrast, Oracle Rdb generates one error message when one or more
records violate a constraint that is evaluated at commit time. In this case,
it is more difficult to find the particular record or records that violated the
constraint.

• If only a small percentage of the records being updated violate a constraint,
you can still commit all the other records that did not violate any
constraints.

In contrast, you must roll back all the records modified by an update
transaction if even one record violates a constraint that is evaluated at
commit time (unless you can find and fix the records that violated the
constraint).

It is also advantageous to evaluate constraints at verb time when the
modifications being performed by a transaction can use the verb-time context
(foreign keys, for example) to directly look up records in referenced tables.
This context is not available at commit time; therefore, Oracle Rdb may have
to scan each row in the referenced table. As a result, even when only a small

16–46 Managing Transaction Context

number of updates are made, evaluating the constraint at verb time can take
considerably less time than evaluating it at commit time.

Oracle Rdb recommends that you evaluate constraints at commit time in the
following cases:

• When a constraint may cause every record in two or more tables to be
checked. For example, suppose a constraint depends on this relationship:

MIN (A.NUMBER) > MAX (B.NUMBER)

To calculate the minimum value, Oracle Rdb may need to read every record
in table A and table B.

• When you update one or more records several times during a transaction.

• When there are cross-dependencies (A depends on B, and B depends on
A) that make it impossible to successfully evaluate the constraint at verb
time. In this case, only a commit-time constraint works.

If the database evaluates constraints at commit time, but you want the
application to comply with the ANSI/ISO SQL standard without changing
the source code, you can use the precompiler or module processor command
line qualifiers. With these qualifiers, you can specify that the commit-time
constraints be evaluated at the end of each statement.

If you use the precompiler or module processor command line qualifiers to
specify that the commit-time constraints be evaluated at the end of each
statement, sometimes you may want to defer constraint checking so that you
can insert data that may violate a constraint. In this situation, you can use
the SET ALL CONSTRAINTS OFF statement.

16.8 Committing or Rolling Back a Transaction
When you end a transaction, you must commit or roll back the changes to
the database. A COMMIT statement makes the changes to the database
permanent; a ROLLBACK statement undoes the database changes.

If your transaction involves only Oracle Rdb databases, you end a transaction
with a COMMIT or ROLLBACK statement. If you called a transaction
manager explicitly to start a distributed transaction, you must call the
transaction manager directly to end the transaction. If you do not, the
COMMIT or ROLLBACK statements return errors.

Assume that you declare the alias for the sample personnel database and
you use a SET TRANSACTION statement to start a read/write transaction
reserving the EMPLOYEES table for write access. Within the transaction, you
open a cursor and then fetch the rows from a cursor and update the rows.

Managing Transaction Context 16–47

To support a rollback operation, Oracle Rdb creates a recovery-unit journal
file (file type .ruj) to which it writes previous versions of rows (or definitions)
that are changed or deleted during a transaction. The recovery-unit journal
file also notes which rows (or definitions) are added by a transaction. When
a transaction is rolled back, Oracle Rdb uses information in the recovery-
unit journal file to undo any changes you made to the database during the
transaction.

As you update each row, Oracle Rdb writes the original version of the row to
the recovery-unit journal file. After all the UPDATE statements execute, the
EMPLOYEES table contains modified rows and the recovery-unit journal file
contains the rows in their original forms. Figure 16–6 shows the effect of an
update on a database.

Figure 16–6 Transaction Recovery-Unit Journal (.ruj) File During an Update
Transaction

NU−2113A−RA

Updated Row 2
Updated Row 3

.

.

.

Original Row 3
Original Row 2

Original Row 1

Updated Row 3
Updated Row 2

Updated Row 1

Updated Row 1

Recovery−Unit
Journal File

Original Row 1
Original Row 2
Original Row 3

.

.

.

personnel.ruj

personnel
Database

EMPLOYEES
Table

If you enter a COMMIT statement to make your changes to the EMPLOYEES
table permanent, Oracle Rdb empties the recovery-unit journal file and makes
it ready for further transactions.

16–48 Managing Transaction Context

If you enter a ROLLBACK statement to undo the changes you made to the
EMPLOYEES table during the transaction, SQL uses the recovery-unit journal
file to bring the database back to its original state before the transaction
started. SQL replaces the changed rows in the EMPLOYEES table with the
original versions stored in the recovery-unit journal file.

Because a transaction groups SQL statements into a unit, it lets you undo (roll
back) database changes made by all statements in the unit if, for example,
one statement should fail. Thus, a transaction lets you defer the action of
making permanent (committing) database changes until you are sure that all
statements in a unit have executed successfully and have done what you expect
them to do.

In interactive SQL and in programs on OpenVMS, if you do not specify a
ROLLBACK statement, SQL (by default) commits database changes when your
program exits normally. SQL commits the changes whether or not all update
operations in the transaction executed successfully. Therefore, it is especially
important to monitor and handle normal errors in programs.

In interactive SQL, the completion status is the status of the last statement
prior to the EXIT statement, unless a transaction is active. In that case, SQL
attempts to commit the transaction and the completion status is the status of
the attempted COMMIT statement.

Digital UNIX On Digital UNIX, when a program exits from SQL, active transactions are
rolled back by default. Active transactions cannot be committed, as they can
on OpenVMS, because the termination status is unknown to Oracle Rdb. If
you want the transactions committed, you must do so before exiting. ♦

SQL does, however, roll back transactions under abnormal conditions from
which your program could not recover. SQL rolls back a transaction, for
example:

• On OpenVMS, if a user presses Ctrl/Y and then enters the DCL STOP
command to end program execution

• When a hardware failure occurs

• If a program image exits with a failure status

Batch-update transactions must be committed, not rolled back. A batch-update
transaction writes changes only:

• To the database storage file or files

• To the after-image journal file (if enabled by an ALTER DATABASE
statement)

Managing Transaction Context 16–49

A batch-update transaction does not write to snapshot or recovery-unit journal
files, thus reducing disk I/O operations to an absolute minimum. However, that
means the information necessary to roll back a transaction is not available.
If a batch-update transaction fails, the database will be corrupt. Your only
options are to rebuild the database entirely or restore it from a backup.

16–50 Managing Transaction Context

17
Managing Multiple Connections in Programs

This chapter describes how to use SQL connections interactively for querying,
testing, and prototyping programs and how to use them in programs. View
connections primarily as programming tools for developing static and dynamic
SQL programs. Connections allow explicit attaches and detaches from Oracle
Rdb databases, concurrent access to one or more databases with one set of SQL
procedures, and simultaneous SQL transactions.

This chapter describes how to:

• Define the components of an SQL connection

• Create, switch between, and end connections

• Use transactions with connections

• Enable and disable connections in programs

• Use connections in applications

17.1 Introducing Connections
An SQL connection consists of two distinct but related pieces, an SQL session
and a database environment. A connection associates a session with a database
environment to form a matched pair that SQL associates with an application.
Applications can have one or multiple connections, as Figure 17–1 shows.

Managing Multiple Connections in Programs 17–1

Figure 17–1 Components of an SQL Connection

NU−2384A−RA

Connection

Application

Database Environment

SQL Session

An SQL session is a series of SQL statements and their execution and
resource context.

The database environment consists of all the databases to which a program
(or interactive SQL) is attached. It specifies the set of Oracle Rdb databases
that are attached or detached as a unit. Also, a connection is the set of all
databases with unique aliases in the current connection.

17.1.1 Defining a Session
In the context of a connection, an SQL session refers both to the execution of
a series of consecutive SQL statements and to the state of execution of those
statements at any time. A series of SQL statements changes constantly over
time. The context within which that change occurs includes:

• The state of all statements, queries, cursors, and dynamically prepared
statements

• The resources taken by request handles and dynamically prepared
statements

SQL creates a default session implicitly when a program executes its first
SQL statement. The default session identifies the statement and resource
context for all database attaches in the default database environment (see
Section 17.1.2). The default session and the default database environment are
matching components in the default connection (see Section 17.1.3).

In interactive SQL, a session consists of a series of executed SQL statements.
Connections expand the meaning to include SQL statement context. This
enhanced view of sessions has particular importance for connections.

17–2 Managing Multiple Connections in Programs

Because a single application can include multiple connections and can switch
between connections as necessary, connections require SQL to suspend the SQL
statement context of a connection before switching to another. Suspending SQL
statement execution lets your program switch to another connection and back,
allowing it to take up execution where it left off. An analogy helps to clarify
this point.

Imagine an application with multiple connections to be like a group of
videocassette recorders that you pause and unpause to view video tapes in
various stages of completion. Each pause suspends action until you view the
tape again. Just as pausing a tape lets you resume viewing where you left
off, suspending SQL statement context allows your programs (or interactive
SQL) to switch between connections, then return to a session and continue
processing in that session at the exact point the SQL statement context
paused.

An SQL session can exist in either of two states: dormant (pause) or current
(unpause):

• Dormant SQL sessions are the SQL sessions associated with an SQL
environment that is not the current SQL environment.

• The current SQL session is the SQL session associated with the current
SQL database environment.

SQL automatically handles connections for you. You need to know only that
each connection possesses one session and that a session can be either current
(currently active) or dormant (currently inactive).

17.1.2 Defining a Database Environment
A valid connection requires that a session have a matching database
environment. While a session identifies the SQL statement execution and
resource context for a connection, a database environment identifies one or
more databases that are:

• Associated with a particular session

• Attached or detached as a unit

• Assigned unique aliases in the current connection

In embedded and module language programs, an application possesses at least
one default database environment. All databases declared at compilation
time with the DECLARE ALIAS statement constitute the default environment
for an application.

Managing Multiple Connections in Programs 17–3

The code fragment in Example 17–1 shows the default database environment
created by declaring two aliases using embedded SQL.

Example 17–1 Declaring Databases for the Default Database Environment in
Embedded SQL

EXEC SQL DECLARE ALIAS FILENAME personnel;
EXEC SQL DECLARE ALIAS_CORP ALIAS FILENAME corporate;

The default database environment for this program consists of the two
databases, personnel and corporate. SQL permits a program to declare more
than one alias but permits only one of those aliases to assume the default.
When you omit an alias in the DECLARE ALIAS statement, SQL uses the
default alias name RDB$DBHANDLE. The DECLARE ALIAS statement is
valid only in precompiled SQL and SQL module language, not in interactive
SQL or as a dynamically executable SQL statement.

The DECLARE ALIAS statement specifies the name and the source of the
database definitions to be used for module compilation and precompilation
and makes the named alias part of the default database environment of the
applications. It is a nonexecutable statement that declares the database to the
program at compilation. SQL does not attach to the database until it executes
the first executable SQL statement in the program or SQL module.

17.1.3 Defining a Connection
A connection associates a session with a database environment and the
matched session-environment pair with the application. An application has at
least one connection, called the default connection, but multiple connections
are possible, depending on application need. The default connection contains
the:

• Default database environment, which includes all databases declared by a
program

• Default session, which identifies all of the SQL statement context and
resource context for the default database environment

The default connection for the application in Figure 17–2 contains the default
session and two declared databases in the default database environment.

17–4 Managing Multiple Connections in Programs

Figure 17–2 Default Connection

NU−2385A−RA

Default Session

Alias:
RDB$DBHANDLE

Alias:
ALIAS_CORP

personnel corporate

Default Database Environment

Default Connection

Application

The personnel database uses the default RDB$DBHANDLE alias, and the
corporate database uses the user-defined alias ALIAS_CORP.

When a program invokes a procedure in a module without explicitly specifying
a connection, SQL establishes a default connection and connects it to the
default SQL session and default database environment. SQL declares
all databases simultaneously and attaches to each of them when the first
executable SQL statement in the program or SQL module is executed.

You can create an explicit connection other than the default with the
CONNECT statement, as described in Section 17.2.

17.2 Creating, Switching Between, and Ending Connections
The SQL interface provides three statements to help you control connections
in your programs. Table 17–1 describes the CONNECT, SET CONNECT,
and DISCONNECT statements that let you create, switch between, and end
connections, respectively.

Managing Multiple Connections in Programs 17–5

Table 17–1 SQL Statements Affecting Connections

SQL Statement Description

CONNECT Creates a session and a database environment pair and
associates the connection pair with an application. Gives the
connection a name that the SET CONNECT statement uses to
change connections and the DISCONNECT statement uses to
release the named connection.

SET CONNECT Selects a connection from the available connections, thereby
switching the connection. Changes the default database
environment for subsequent SQL statements.

DISCONNECT Detaches from declared databases and releases the aliases that
you specified in program declarations.

Section 17.2.1 discusses creating connections. Section 17.2.5 discusses
switching connections. Section 17.2.6 discusses ending connections.

17.2.1 Creating Connections
When a program executes a CONNECT statement, SQL creates a connection,
attaches to the database environment, and gives the association the name
specified in the CONNECT statement. SQL also performs an implicit SET
CONNECT statement to establish the connection, which makes execution of an
explicit SET CONNECT statement after a CONNECT statement unnecessary.

Section 17.2.2, Section 17.2.3, and Section 17.2.4 show examples of how to use
the CONNECT statement in your programs. Section 17.2.5 describes when and
how to make an explicit connection.

17.2.2 Duplicating the Default Database Environment
The CONNECT statement lets you duplicate in another connection all aliases
in the default connection. You can do this explicitly, with the DEFAULT
argument and the AS clause, or with the AS clause only. You can duplicate the
default database environment using any of three CONNECT statements.

• Specify explicitly all aliases in the default connection.

This use of the CONNECT statement to duplicate the default database
environment is the most laborious of the three techniques for duplicating
the default connection. You can save typing time by using either of the
other two techniques; however, explicit specification of the aliases in the
CONNECT statement does demonstrate how you might duplicate a portion
of the aliases in the default connection by simply including the aliases that
you need in the new connection.

17–6 Managing Multiple Connections in Programs

A statement that explicitly specifies all aliases might look like this:

CONNECT TO ’ALIAS RDB$DBHANDLE, ALIAS ALIAS_CORP’ AS ’OTHER’;

• Use the DEFAULT argument with the AS clause.

You might prefer to show more clearly (by including the DEFAULT
argument) that you want to duplicate the aliases in the default connection,
like this:

CONNECT TO ’DEFAULT’ AS ’OTHER’;

• Use the AS clause only.

When you use the CONNECT statement with only the AS clause and a
name, it might look like this:

CONNECT AS ’OTHER’;

SQL duplicates the aliases in the default connection with the specified
name. This is the easiest way to duplicate the default database
environment.

The database environment created by any of these CONNECT statements is
shown in Figure 17–3.

New connections (such as OTHER created in the previous examples) can
duplicate aliases only from the default connection, not from any previously
created connections.

Managing Multiple Connections in Programs 17–7

Figure 17–3 Duplicating the Default Connection

NU−2386A−RA

Default Session

Alias:
RDB$DBHANDLE

Alias:
ALIAS_CORP

OTHER ConnectionApplication

Default Session

Alias:
RDB$DBHANDLE

Alias:
ALIAS_CORP

Default Database Environment

Default Connection

Database Environment

personnel

personnel

corporate

corporate

Aliases are duplicated

17.2.3 Specifying Different Databases for the Same Aliases
You might find it necessary to have two connections that contain different
databases but the same aliases. The following example shows how to do this:

CONNECT TO ’FILENAME personnel_west,
ALIAS ALIAS_CORP FILENAME corporate_west’ AS ’DEFAULT_WEST’;

Databases sharing aliases in different connections must contain the same
metadata. Thus, the personnel and personnel_west databases must have
matching metadata, as must the corporate and corporate_west databases.

The database environment created by this CONNECT statement is shown in
Figure 17–4.

17–8 Managing Multiple Connections in Programs

Figure 17–4 Specifying Different Databases for the Same Aliases

NU−2387A−RA

Application

Default Session

Alias:
RDB$DBHANDLE

Alias:
ALIAS_CORP

Default Session

Alias:
RDB$DBHANDLE

Alias:
ALIAS_CORP

personnel corporate

Default Database Environment

Default Connection

Database Environment

DEFAULT_WEST Connection

personnel_west corporate_west

matching metadata
Databases must have

17.2.4 Specifying an Additional Run-Time Attach
Figure 17–5 shows the database environment created by using the CONNECT
and ATTACH statements to attach at run time. In this case, you include the
ATTACH statement in a CONNECT statement, as shown in the following
example:

CONNECT TO ’ALIAS RDB$DBHANDLE, ALIAS ALIAS_CORP,
ATTACH ALIAS ALIAS_CUST FILENAME customers’ AS ’AT_RUN_TIME’;

Managing Multiple Connections in Programs 17–9

Figure 17–5 Specifying an Additional Run-Time Attach

NU−2388A−RA

AT_RUN_TIME Connection

Default Session

Alias:
RDB$DBHANDLE

Alias:
ALIAS_CORP

Default Session

Alias:
RDB$DBHANDLE

Alias:
ALIAS_CORP

personnel corporate

Default Connection

ALIAS_CUST
Alias:

personnel corporate customers

Default Database Environment

Database Environment

Attaching to ALIAS_CUST at runtime

Application

17.2.5 Switching Between Connections
Once you create a connection with the CONNECT statement, your program
must have a way to connect to it. In SQL embedded and module language
programs, you can use either of two forms of the SET CONNECT statement to
accomplish this:

• SET CONNECT connection-name

Connects your program to the named connection from the connection
names available to the program.

• SET CONNECT DEFAULT

17–10 Managing Multiple Connections in Programs

Connects your program to the default connection, which includes the
default session and the default database environment consisting of all
databases declared by the program at compile time.

The SET CONNECT statement suspends the current connection and switches
to the connection specified in the statement. After switching connections,
your program executes subsequent SQL statements in the context of that
connection.

You can issue another SET CONNECT statement to return to the first
connection and resume processing.

17.2.6 Ending Connections
When a program no longer needs a connection, issue the DISCONNECT
statement. The DISCONNECT statement:

• Deletes one or more connections

• Closes the session associated with each connection

• Frees all the resources associated with each connection

• Releases all the compiled requests and prepared statements

• Detaches all databases

• Releases the memory for session contexts

The DISCONNECT statement provides the flexibility to disconnect some or all
the connections, using the following forms:

• DISCONNECT ALL ends all available connections.

• DISCONNECT DEFAULT ends the default connection only.

• DISCONNECT CURRENT ends your program’s current connection.

• DISCONNECT connection-name ends the named connection.

When a program exits without an explicit connection disconnect, SQL:

• Commits all transactions in the default connection and executes an implicit
DISCONNECT ALL statement

• Rolls back all other transactions available to the same program and
executes an implicit DISCONNECT ALL statement

For compliance with the ANSI/ISO SQL standard, use the explicit
DISCONNECT ALL statement, which rolls back all transactions. To disconnect
the current connection, use COMMIT and the DISCONNECT CURRENT
statements.

Managing Multiple Connections in Programs 17–11

17.3 Using Transactions with Connections
Every session has its own transaction, which SQL starts when it first enters
a connection. You can change the characteristics of a transaction within a
connection by using the SET TRANSACTION statement, as the SQL module
in Example 17–2 shows. Because a database cannot be attached while a
transaction is active, connections allow you to have multiple transactions
active simultaneously without having to commit or roll back a transaction.

17.4 Enabling and Disabling Connections in Programs
You must enable SQL connections before using them in SQL modules or in
precompiled programs. SQL disables connections by default. This section
describes the process of enabling and disabling connections when using the
SQL module processor and the SQL precompiler.

17.4.1 Enabling and Disabling Connections for Module Programming
To enable connections for the SQL module processor, compile your program,
process the module with the CONNECT or the -conn qualifier, link the
program and processed module, and then run it.

Connections are disabled by default. However, you can explicitly disable them
by using the NOCONNECT or -noconn qualifier.

When you enable connections with the SQL module processor, do not combine
in a single program the modules you compiled with connections enabled and
the modules you compiled with connections disabled. Either all modules
must be compiled with connections enabled, or all must be compiled without
connections. You cannot mix the two.

17.4.2 Enabling and Disabling Connections for Precompiled Programs
To enable connections for the SQL precompiler, use the qualifier
SQLOPTIONS=CONNECT or -s ’ -conn , link your application, and then run
it.

Connections are disabled by default. However, you can explicitly disable them
by using the /SQLOPTIONS=NOCONNECT or -s ’ -noconn qualifier.

17–12 Managing Multiple Connections in Programs

17.5 Using Connections in an Application
This section contains a sample SQL module (Example 17–2) and its matching
C program (Example 17–3) that show one use for connections. The program
creates two connections, each containing separate attaches to the same
database. In the first connection, a read-only transaction allows the program to
open and increment with FETCH through a cursor. In the second connection, a
read/write transaction allows the program to update the database.

Example 17–2 SQL Module Using Connections

-- SQL module that uses connections for two concurrent read/write
-- transactions.

MODULE CURSOR_LOOP
LANGUAGE C
AUTHORIZATION JONES
PARAMETER COLONS

DECLARE ALIAS FILENAME test
DECLARE A CURSOR FOR SELECT CITY FROM S

WHERE CITY IS NOT NULL

-- Connection management routines.

-- Create an explicit connection that duplicates the default database
-- environment.
PROCEDURE CONNECT

(SQLCODE,
:CONNECT_2 CHAR(31));

CONNECT AS :CONNECT_2;

-- Switch to the nondefault connection called CONNECT_2.

PROCEDURE SET_CONNECT
(SQLCODE,

:CONNECT_2 CHAR(31));

SET CONNECT :CONNECT_2;

-- Switch to the default connection.
PROCEDURE SET_CONNECT_DEFAULT

(SQLCODE);

SET CONNECT DEFAULT;

(continued on next page)

Managing Multiple Connections in Programs 17–13

Example 17–2 (Cont.) SQL Module Using Connections

-- Disconnect all available connections (CONNECT_2 and DEFAULT).
PROCEDURE DISCONNECT

(SQLCODE);

DISCONNECT ALL;

-- Open and fetch row information from cursor A in a read-only transaction.
PROCEDURE OPEN_A

(SQLCODE);

OPEN A;

PROCEDURE FETCH_A
(SQLCODE,

:RET_CITY CHAR(15));

FETCH A INTO :RET_CITY;

PROCEDURE CLOSE_A
(SQLCODE);

CLOSE A;

-- Update rows that meet a certain program criteria.
PROCEDURE UPDATE_P

(SQLCODE,
:PCITY CHAR(15));

UPDATE MYP SET CITY_CODE = ’XXXXX’ WHERE CITY = :PCITY;

-- Start a read-only transaction for fetching rows.
PROCEDURE RO_TXN

(SQLCODE);

SET TRANSACTION READ ONLY NOWAIT;

-- Start a read/write transaction for updating rows.
PROCEDURE RW_TXN

(SQLCODE);

SET TRANSACTION READ WRITE NOWAIT;

17–14 Managing Multiple Connections in Programs

-- Commit the update transaction.
PROCEDURE COMMIT

(SQLCODE);

COMMIT;

Example 17–3 shows a program that uses the modules from Example 17–2.

Example 17–3 C Program Using Connections
.
.
.

/* Create the read-only transaction in the default connection. SQL
implicitly creates a default connection when a program executes its
first SQL statement.*/

RO_TXN(&sqlcode);
if (sqlcode != SQLCODE_SUCCESS)

goto err;

/* Create a second connection to handle update operations. */
CONNECT(&sqlcode, updater);
if (sqlcode != SQLCODE_SUCCESS)

goto err;

/* Return to the default connection to read rows. */
SET_CONNECT_DEFAULT(&sqlcode);
if (sqlcode != SQLCODE_SUCCESS)

goto err;

/* Open a cursor and read the first row. */

OPEN_A(&sqlcode);
if (sqlcode != SQLCODE_SUCCESS)

goto err;

FETCH_A(&sqlcode, city);
while (sqlcode == SQLCODE_SUCCESS) {

/* Test whether or not values in the row meet program criteria. If criteria
is not met, the program loops back to read another row; otherwise it
continues. */

if (strcmp(city, "London ") == 0) {

/* Switch to the nondefault connection. */
SET_CONNECT(&sqlcode, updater);
if (sqlcode != SQLCODE_SUCCESS)

goto err;

(continued on next page)

Managing Multiple Connections in Programs 17–15

Example 17–3 (Cont.) C Program Using Connections

/* Create the read/write transaction for an update operation. */
RW_TXN(&sqlcode);
if (sqlcode != SQLCODE_SUCCESS)

goto err;

/* Update the rows that meet the criteria. */
UPDATE_P(&sqlcode, city);
if (sqlcode != SQLCODE_SUCCESS)

goto err;

/* Commit the change. */
COMMIT(&sqlcode);
if (sqlcode != SQLCODE_SUCCESS)

goto err;

/* Return to the default connection to read rows. */
SET_CONNECT_DEFAULT(&sqlcode);
if (sqlcode != SQLCODE_SUCCESS)

goto err;
}

/* Read another row. */
FETCH_A(&sqlcode, city);
}

/* Close cursor A. */
CLOSE_A(&sqlcode);
if (sqlcode != SQLCODE_SUCCESS)

goto err;
return;

/* Error handling. */
err:

sql_signal();
/* Disconnect all active connections. */
DISCONNECT(&sqlcode);

EXIT(0);
}

Connections allow this program to have two active database attaches, two
concurrent transactions, and concurrent access to both attaches.

17–16 Managing Multiple Connections in Programs

Part VI
Data Manipulation in Programs

This part discusses:

• How to declare and use cursors

• How to load and update data from your SQL programs

• How to manipulate data in multischema databases

18
Using Cursors

This chapter defines SQL cursors and describes the SQL cursor classes and
types. The sections that follow explain:

• The concepts related to cursors

• The different categories of cursors

• How to control the opening and closing of cursors

• How to use table cursors

• How to use holdable table cursors

• How to use list cursors

• How to use scrollable list cursors

• How to use dynamic cursors

• How to use extended dynamic cursors

Reference Reading

Chapter 11 shows how to use dynamic and extended dynamic cursors
to process SELECT statements at run time. The Oracle Rdb7 SQL
Reference Manual includes detailed information about how cursors
work.

18.1 Introduction to Cursors
In most cases, when you use SQL to retrieve data, SQL retrieves multiple rows
as a result of the select expression. However, application programs cannot
process multiple rows together but rather must process the rows one row at a
time. Thus, unless SQL retrieves only one row (a singleton select), you must
use cursors in programs in order to read, insert, or update data in a database.

Using Cursors 18–1

A cursor lets you execute a query and process multiple rows one row at a
time. When you use a cursor, you create:

• An ordered result table, which is a temporary collection of columns and
rows from one or more tables or views.

• A row pointer, which determines either the next row to be fetched or the
end of the result table.

Cursors are modeled after the general methods used to process records from
a data file. To process multiple rows, your program must perform a sequence
of basic cursor operations—declaring the cursor, opening the cursor, fetching
rows, and closing the cursor.

18.1.1 How Cursors Work
Basic cursor operations include declaring a cursor, opening a cursor, fetching
rows, and closing the cursor to delete the result table. Figure 18–1 shows this
basic algorithm and the steps that you take to retrieve multiple rows using a
table cursor.

18–2 Using Cursors

Figure 18–1 How Cursors and Related Statements Work Together

Declare cursor

Open cursor

Fetch row

Close cursor

Yes

No

NU−2543A−RA

Process
row

DECLARE EMPLROW CURSOR FOR

OPEN

SELECT LAST_NAME, FIRST_NAME, CITY

FETCH

FROM EMPLOYEES

CLOSE

LIMIT TO 4 ROWS;

FETCH

Advancement of row pointer

FETCH

.

FETCH

.

.

FETCH

End of
table

5

Flow of
Application Program Flow of SQL Statement Execution

2

1

3

4

6

Toliver

Smith

Dietrich

Kilpatrick

Alvin

Terry

Rick

Janet

Chocorua

Chocorua

Boscawen

Marlow

(End of table)

To use a cursor, take the following steps, which are keyed to Figure 18–1:

! Declare the cursor

You use the DECLARE CURSOR statement to provide a name for the
result table and to specify its table sources, rows, and columns. The cursor
declaration consists of:

• The name of the cursor, in this case, EMPLROW.

• The select expression that produces the result table, in this case, a
query that generates a result table with three columns and four rows.

The following example shows how to declare the cursor EMPLROW:

DECLARE EMPLROW CURSOR FOR
SELECT LAST_NAME, FIRST_NAME, CITY FROM EMPLOYEES

" Open the cursor

Using Cursors 18–3

Opening a cursor executes the query, creates the result table associated
with the cursor declaration, and sets the row pointer to a position before
the first row in the result table.

When you execute the OPEN statement (not when you declare the cursor),
the result table becomes available for further processing. The following
example shows how to open the cursor:

OPEN EMPLROW;

The result table exists until you close the cursor.

Opening a cursor after it has been closed positions the next fetch data
retrieval operation back to the first row in the result table. If a cursor
is already open, SQL returns an error and the next FETCH statement
retrieves the next row.

Fetch a row

The FETCH statement retrieves the row pointed to by the row pointer (also
called the current row), then advances the row pointer to the next row in
the result table. If the row pointer is positioned before the first row in the
result table, SQL retrieves the first row. If the row pointer is positioned
after the last row of the result table, SQL signals that all rows have been
fetched.

Therefore, the row pointer is either before the first row, on a certain row,
or after the last row. A row pointer may be before the first row or after the
last row of a table even if the result table is empty.

The following example shows how to fetch a row of the EMPLROW cursor
using interactive SQL:

FETCH EMPLROW;

When you use SQL module language or precompiled SQL, you use the
INTO clause to store the data values in program parameters. The following
example shows how to use the FETCH statement to store the values
from the EMPLROW cursor in parameters in an SQL module language
procedure:

FETCH EMPLROW INTO :L_NAME_P, :F_NAME_P, CITY_P;

Each time the FETCH statement executes, the pointer moves to a new
row in the result table. If the result table contains five rows, five FETCH
statements must execute to retrieve all rows. In an SQL program, you
typically execute a loop containing a FETCH statement to process all rows.

18–4 Using Cursors

SQL provides considerable flexibility in fetching rows. You can retrieve
rows in the order in which they occur in the result table. In addition, when
you use a list cursor, you can retrieve rows at random using a scrollable list
cursor. For more information about scrollable list cursors, see Section 18.7.

If you do not declare a scrollable list cursor, you must use the FETCH
statement to retrieve rows only in the order in which they occur. You
cannot skip rows or go backwards. To retrieve a row that was fetched
earlier, you must close the cursor, reopen it, create a new result table, and
then fetch rows until you get the one you want.

If you attempt to fetch a row after you close the cursor, the fetch operation
fails because the result table for the cursor declaration no longer exists.

$ Test for the condition ‘‘No data’’

As in data file processing, you need to know when you are at the end of
your result table so you can finish processing in a clean manner. Check the
SQLCODE or SQLSTATE status parameter to detect that there is no data.

% Process the row

If there is data, the currently fetched row is available to your program.
You can use the retrieved data in your program, modify the row using the
positioned UPDATE statement, or remove the row using the positioned
DELETE statement.

When you successfully execute a positioned DELETE statement in a cursor
operation, the row pointer is positioned on the next row. If the deleted row
is the last row in the result table, then the row pointer is positioned after
the last row.

& Close the cursor

Closing a cursor makes the result table unavailable for further processing
and deletes the result table associated with the cursor declaration. You can
open and close cursors many times. Reopening a cursor after it has been
closed executes the query again and positions the row pointer before the
first row in the new result table. The following example shows how to close
the cursor:

CLOSE EMPLROW;

To close all open cursors, you can use the sql_close_cursors() routine.

See Section 18.3 for more information about controlling the opening and
closing of cursors.

Using Cursors 18–5

Even after you close a cursor, the cursor declaration remains in effect
throughout a connection within a program execution cycle. After you
disconnect from the connection (using the DISCONNECT statement or
attaching to another database using the same alias for the database), the
cursor declaration is no longer in effect.

Because opening a cursor creates a new result table, if you open the same
cursor in different transactions, the result table may reflect updates to the
database made by other procedures. Refer to Chapter 16 for information
on maintaining a consistent state of the data in a transaction.

When an application program opens a cursor, Oracle Rdb checks that the user
has the appropriate privileges to open the particular type of cursor (such as
an update cursor) and that the user has all privileges necessary to execute
the request. That is, if the application uses a cursor to insert, update, or
delete rows in the same module as the OPEN statement, the user must have
appropriate privileges to perform those actions, even if the application may not
perform those actions during runtime.

Reference Reading

The FETCH statement updates row count information in the SQL
Communications Area (SQLCA). After successful execution of the
FETCH statement, the third element of the SQLERRD array in the
SQLCA indicates the ordinal position in the cursor of the row retrieved
by the statement. For more information, read the Oracle Rdb7 SQL
Reference Manual section about the SHOW SQLCA statement and the
Oracle Rdb7 SQL Reference Manual appendix about the SQLCA.

18.1.2 Comparing Cursors and Views
A cursor is a logical construct similar to a view. Like a view, a cursor creates
a temporary collection of columns and rows from one or more tables or views.
This collection of columns and rows is called a result table and is created
dynamically.

The result table associated with a view is not created until a statement
accesses the view. The result table associated with a cursor is not created until
you open the cursor.

Unlike when you refer to views in a SELECT, INSERT, or UPDATE statement,
you can vary the length of time that a cursor’s result table exists. The table
created for a view does not exist longer than it takes to execute the statement
that refers to the view; however, the table created for a cursor exists until you
close the cursor implicitly or explicitly.

18–6 Using Cursors

A cursor is a logical entity, not a specific result table. However, to simplify
text, the term ‘‘cursor’’ is often used to refer to a result table created by an
OPEN statement. Keep this fact in mind when you read other SQL manuals
and other chapters in this book.

18.1.3 Deciding When a Cursor Is Needed
In a program, you must use a cursor when the result table contains multiple
rows. There are a few cases where this is not necessary. For example:

• You use a value in a program variable to determine a condition for deleting
multiple rows, and then execute a DELETE statement that erases all those
rows.

• You use values in program variables to determine a condition for selecting
rows for update, and to change all occurrences of specified columns to the
same value.

You do not have to use cursors when you want to perform multiple operations
on a single row. For single-row processing, it is simpler to use a singleton
select, a SELECT statement that includes an INTO clause to retrieve the
row from the database and store its values in program variables. In fact, you
can use the INTO clause in SELECT statements only for program retrieval of
single rows. The following are singleton select statements in an SQL module:

SELECT EMPLOYEE_ID INTO :ID_NUMBER:ID_NUMBER_IND
FROM DBH1.EMPLOYEES
WHERE EMPLOYEE_ID = :INPUT_ID

SELECT LAST_NAME, FIRST_NAME INTO :FULL_NAME
FROM DBH1.EMPLOYEES
WHERE EMPLOYEE_ID = :INPUT_ID

If your program retrieves or stores data in columns that might contain null
values, you must use indicator parameters, as shown in the first of the
preceding two examples. Refer to Chapter 8 for a discussion on when and how
to specify indicator parameters.

In most cases, however, you need to work with multiple rows one at a time, by
retrieving each row’s values into program parameters. Doing this requires a
cursor declaration and a statement to create a result table for the cursor.

To see how cursors work in a complete program, refer to the precompiled
program sql_report in the samples directory.

Using Cursors 18–7

18.2 Understanding the Different Categories of Cursors
SQL provides different types of cursors, different classes of cursors, and
different modes of cursors.

With SQL, you can create two different types of cursors:

• Table cursors

Table cursors provide a method to access individual rows of a result table.
Many of the examples in this chapter, including Figure 18–1, illustrate the
use of table cursors. Section 18.4 explains how to work with table cursors.

• List cursors

List cursors provide a method for accessing individual elements in a list.
A list is an ordered collection of elements, also called segments. A list is
a LIST OF BYTE VARYING data type and each segment of the list is a
BYTE VARYING data type. List cursors enable you to manipulate objects
that are too large to be stored in CHAR or VARCHAR fields. (Such fields
often contain structured binary data.) Section 18.6 describes how to use
list cursors.

The classes of cursors differentiate what information is specified at compile
time. The three classes of cursors are:

• Static cursors, which this manual usually refers to using the general term
of ‘‘cursor.’’

If you explicitly specify both the cursor name and the SELECT statement
in a DECLARE CURSOR statement, the cursor is a static cursor. In other
words, the cursor name and the SELECT statement are known at compile
time.

Use static cursors in interactive SQL and in programs. Most of the
examples in this chapter demonstrate the use of static cursors.

• Dynamic cursors

If you supply the name of a prepared statement instead of a SELECT
statement in the DECLARE CURSOR statement, the cursor is a dynamic
cursor.

Use dynamic cursors in dynamic SQL programs. You explicitly specify the
cursor name at compile time; however, you do not explicitly specify the
SELECT statement. In other words, the cursor name is known at compile
time, but the SELECT statement is not known until run time. Section 18.8
describes how to use dynamic cursors.

• Extended dynamic cursors

18–8 Using Cursors

If you supply parameters for both the cursor name and the SELECT
statement in the DECLARE CURSOR statement, the cursor is an extended
dynamic cursor. Neither the cursor name nor the SELECT statement is
known until run time. Extended dynamic cursors let you use one set of
cursor-related statements to process any number of dynamically generated
statements. Section 18.9 explains how to use extended dynamic cursors.

SQL further divides cursors into the modes of operation that each type of
cursor can perform:

• You can specify the following modes for table cursors:

Update

You must use an update cursor if you want to modify a row in the
result table. Update cursors are the default table cursors. With
update cursors, Oracle Rdb first reads the rows and uses SHARED (or
PROTECTED) READ access. When you update a row, Oracle Rdb uses
EXCLUSIVE access.

Update-only

When you use update-only cursors, Oracle Rdb uses a more aggressive
locking model, locking the rows for EXCLUSIVE access when it first
reads the rows. As a result, update-only cursors may avoid deadlocks
normally encountered during lock promotion. Use update-only cursors
when you are updating all (or a high percentage of) fetched rows.

Read-only

Use a read-only cursor when you do not want to update information in
a result table.

Insert-only

Use insert-only cursors when you want to position the cursor on a row
that has just been inserted so that you can load lists into that row.

• You can specify the following modes for list cursors:

Read-only

Use read-only cursors to read existing lists.

Insert-only

Use insert-only cursors to insert data into a list.

You cannot update data in a list.

Using Cursors 18–9

18.3 Controlling the Opening and Closing of Cursors
Section 18.1.1 describes using the OPEN statement to open an cursor and the
CLOSE statement to close a cursor. This section describes in more detail how
you can control the opening and closing of cursors.

By default, the result table of a table or list cursor exists from the time an
OPEN statement executes until you close the cursor. You can close a cursor in
the following ways:

• Explicitly, by using the CLOSE statement

• Implicitly, using a COMMIT or ROLLBACK statement

• Implicitly, when a program stops execution

• Implicitly, when you exit from interactive SQL

When you close the cursor, SQL deletes the result table. If you reopen the
cursor, you read a new result table containing any new or changed data, unless
you use the REPEATABLE READ isolation level.

When you disconnect from a database, not only does SQL close the cursor, but
it no longer recognizes the cursor declaration.

For table cursors, SQL provides additional control with the WITH HOLD
clause of the DECLARE CURSOR statement, letting you keep cursors open
across transactions. These cursors, called holdable cursors, remain open
after the transaction ends and hold the position of the row pointer when a new
transaction begins.

See Section 18.5 for a description of holdable cursors.

18.4 Using Table Cursors
Table cursors let you access individual rows of a result table, retrieving,
updating, or deleting them one row at a time.

The statements you execute to process the rows typically include a combination
of SQL and programming language statements. If the program is processing
multiple rows in the result table, these statements execute in a loop. The first
time the loop executes, the FETCH statement points to the first row in the
result table and stores its values into one or more parameters specified by
the program. Subsequent statements manipulate the parameter values, for
example, to:

• Include them in calculations along with values supplied by the program

• Write them to a report

18–10 Using Cursors

• Display them on a terminal screen

The next time the loop executes, the FETCH statement stores values of
the next row into the program parameters and the program operations are
repeated using the new set of values.

A program ends a row-processing loop when it detects that a FETCH statement
caused a ‘‘no data’’ completion condition. The ‘‘no data’’ completion condition
is returned by the database system as RDB$_STREAM_EOF. In interactive
SQL, this error appears as ‘‘%RDB-E-STREAM_EOF, attempt to fetch past
end of record stream.’’ In a program, this error is returned as value 100
in the SQLCODE status parameter and value 02000 in the SQLSTATE
status parameter. Chapter 10 describes how you handle completion exception
conditions and errors in a program.

If a cursor is opened and its result table contains no rows, the first FETCH
statement that executes (first iteration of the loop) causes the ‘‘no data’’
completion condition. When the ‘‘no data’’ completion condition occurs, there
is no current row for the cursor and no values are transferred from columns to
the program variables specified in the INTO clause of the FETCH statement.

Example 18–1 shows how to declare a table cursor that contains current job
history data associated with the department code MBMF and how to open the
cursor, fetch rows, and close the cursor.

Example 18–1 Using Table Cursors

SQL> DECLARE CURRENT_MBMF TABLE CURSOR FOR
cont> SELECT JOB_CODE, EMPLOYEE_ID, JOB_START FROM JOB_HISTORY
cont> WHERE (DEPARTMENT_CODE = ’MBMF’) AND
cont> (JOB_END IS NULL)
cont> ORDER BY JOB_CODE, JOB_START;
SQL> --
SQL> -- The OPEN statement creates the result table.
SQL> --
SQL> OPEN CURRENT_MBMF;
SQL> --
SQL> -- The first FETCH statement retrieves the first row.
SQL> --
SQL> FETCH CURRENT_MBMF;

JOB_CODE EMPLOYEE_ID JOB_START
APGM 00174 22-Sep-1981

SQL> --

(continued on next page)

Using Cursors 18–11

Example 18–1 (Cont.) Using Table Cursors
SQL> -- Each subsequent FETCH statement retrieves the
SQL> -- row positioned next in the result table.
SQL> --
SQL> FETCH CURRENT_MBMF;

JOB_CODE EMPLOYEE_ID JOB_START
ASCK 00165 8-Mar-1981

SQL> FETCH CURRENT_MBMF;
JOB_CODE EMPLOYEE_ID JOB_START
DMGR 00227 25-Nov-1981

SQL> --
SQL> -- The preceding row was the last row in the result table.
SQL> -- Another FETCH statement reveals this fact.
SQL> --
SQL> FETCH CURRENT_MBMF;
%RDB-E-STREAM_EOF, attempt to fetch past end of record stream
SQL> --
SQL> -- The CLOSE statement deletes the result table.
SQL> --
SQL> CLOSE CURRENT_MBMF;
SQL> --
SQL> -- However, the cursor declaration remains in effect during
SQL> -- an entire interactive session or program execution cycle
SQL> -- unless you disconnect from the session using the DISCONNNECT
SQL> -- statement or attach to another database using the same alias.
SQL> --
SQL> -- Another OPEN statement creates the result table again.
SQL> --
SQL> OPEN CURRENT_MBMF;
SQL> --
SQL> -- After the cursor is opened again, the FETCH statement starts
SQL> -- data retrieval at the first row in the result table.
SQL> --
SQL> FETCH CURRENT_MBMF;

JOB_CODE EMPLOYEE_ID JOB_START
APGM 00174 22-Sep-1981

SQL> --
SQL> -- If a cursor is already open, an OPEN statement generates an
SQL> -- error message.
SQL> --
SQL> OPEN CURRENT_MBMF;
%SQL-F-CURALROPE, Cursor CURRENT_MBMF was already open
SQL> --
SQL> -- The next FETCH statement retrieves the next row.
SQL> FETCH CURRENT_MBMF;

JOB_CODE EMPLOYEE_ID JOB_START
ASCK 00165 8-Mar-1981

SQL> --

(continued on next page)

18–12 Using Cursors

Example 18–1 (Cont.) Using Table Cursors

SQL> -- A COMMIT or ROLLBACK statement implicitly executes a CLOSE
SQL> -- statement, which deletes the result table. An attempt to
SQL> -- fetch a row after ending the transaction fails because no
SQL> -- result table exists for the cursor declaration.
SQL> --
SQL> COMMIT;
SQL> FETCH CURRENT_MBMF;
%SQL-F-CURNOTOPE, Cursor CURRENT_MBMF is not opened
SQL>

You cannot override cursor declarations. If you open the cursor and find
that you have selected far too many rows (you have to enter many FETCH
statements to get to the rows you want to change), you have two choices:

• Close the cursor and then declare and open another cursor (using a
different name) that is more specific in selecting rows.

If you start a read/write transaction and are accessing rows that other
users may want to update, end your transaction to release any locks you
may have placed on rows that you do not plan to use. (Closing a cursor
does not release any locks you place on rows; specifying a COMMIT or
ROLLBACK statement does.) When you start read/write transactions in a
multiuser database environment, try to avoid creating cursors that contain
many more rows than you need, and keep transactions as short as possible.

• Issue a DISCONNECT statement and attach to the database again. You
can then declare the cursor again using the same name but a different
select expression, or you can attach to a database with the same alias as
the database for the cursor. See Section 15.6 for more information about
the DISCONNECT statement.

Reference Reading

The Oracle Rdb7 Introduction to SQL also includes more information
about the DISCONNECT statement.

Using Cursors 18–13

18.5 Using Holdable Cursors
Holdable cursors provide more control in using and positioning table cursors by
letting cursors remain open across transactions. When you declare a holdable
cursor, it remains open and the row pointer maintains its position in the result
table even when a transaction ends.

Consider using a holdable cursor when your application needs to query a user
after it fetches each row, but before it modifies it. Holdable cursors let you
release locks by committing or rolling back the transaction, but still preserve
the positioning of the cursor.

You can use the following options with holdable cursors:

• Use the WITH HOLD PRESERVE ON COMMIT clause to specify that the
cursor remain open when you commit a transaction. If you rollback the
transaction, SQL implicitly closes the cursor.

Because the PRESERVE clause is an extension to the SQL standard and
PRESERVE ON COMMIT is the default, Oracle Rdb recommends that you
use only the WITH HOLD clause.

• Use the WITH HOLD PRESERVE ON ROLLBACK clause to specify that
the cursor remain open when you roll back a transaction. If you commit
the transaction, SQL implicitly closes the cursor.

• Use the WITH HOLD PRESERVE ALL clause to specify that the cursor
remain open when you commit or roll back a transaction.

• Use the WITH HOLD PRESERVE NONE clause to override the SET
HOLD CURSOR clause.

Example 18–2 shows how a holdable cursor works. Contrast it to the basic
table cursor in Example 18–1.

Example 18–2 Using Holdable Table Cursors

SQL> DECLARE CURRENT_MBMF TABLE CURSOR WITH HOLD PRESERVE ON COMMIT FOR
cont> SELECT JOB_CODE, EMPLOYEE_ID, JOB_START FROM JOB_HISTORY
cont> WHERE (DEPARTMENT_CODE = ’MBMF’) AND
cont> (JOB_END IS NULL)
cont> ORDER BY JOB_CODE, JOB_START;
SQL> --
SQL> OPEN CURRENT_MBMF;
SQL> --

(continued on next page)

18–14 Using Cursors

Example 18–2 (Cont.) Using Holdable Table Cursors
SQL> -- The first FETCH statement retrieves the first row.
SQL> FETCH CURRENT_MBMF;

JOB_CODE EMPLOYEE_ID JOB_START
APGM 00174 22-Sep-1981

SQL> FETCH CURRENT_MBMF;
JOB_CODE EMPLOYEE_ID JOB_START
ASCK 00165 8-Mar-1981

SQL> --
SQL> -- Commit the transaction.
SQL> COMMIT;
SQL> --
SQL> -- Because this is a holdable cursor using the WITH HOLD
SQL> -- PRESERVE ON COMMIT clause, the cursor remains open and
SQL> -- the row pointer retains its position. The next FETCH
SQL> -- statement reads the next record.
SQL> FETCH CURRENT_MBMF;

JOB_CODE EMPLOYEE_ID JOB_START
DMGR 00227 25-Nov-1981

You can use the SET HOLD CURSOR statement to specify a default hold
attribute for all cursors that do not specify a WITH HOLD clause. The SET
HOLD CURSORS statement controls the hold attributes of all cursors that you
declare after you specify the SET HOLD CURSORS statement. For example,
to force cursors that do not specify the WITH HOLD clause to remain open on
commit, use the following statement:

SQL> SET HOLD CURSORS ’ON COMMIT’;

18.6 Using List Cursors
List cursors let you read from and insert large data structures (lists) into a
row. A list is an ordered collection of elements or segments of the data type
LIST OF BYTE VARYING. Lists are frequently used to store multimedia
objects, such as video displays, long pieces of text, audio recordings, and so
forth.

Because lists exist as a set of elements with a row of a table and you use a
table cursor to position on a specific row in the table, a list cursor must refer to
a table cursor.

You can use list cursors to read or insert lists; however, you cannot use list
cursors to update a list.

Using Cursors 18–15

To read or insert a list, you must first declare a table cursor and then specify
both the table column and list column names in a select list. The table cursor
provides the row context for the list cursor. In other words, before you can read
or insert a list in row 1, you must position the table cursor on row 1.

After you declare the table cursor, you declare the list cursor and specify the
table cursor in the WHERE CURRENT OF clause of the DECLARE CURSOR
statement. The WHERE CURRENT OF clause associates the list cursor with
the table cursor.

Remember that before you open a list cursor, you must open the table cursor
and position it on a row by using the FETCH statement. Example 18–3 shows
how to declare a list cursor and read lists. It reads the employee ID and the
resume in the RESUMES table. The RESUME column is defined as a data
type of LIST OF BYTE VARYING.

Example 18–3 Using List Cursors

SQL> -- Declare the table cursor.
SQL> DECLARE RESUME_CURS TABLE CURSOR FOR
cont> SELECT EMPLOYEE_ID, RESUME FROM RESUMES;
SQL> --
SQL> -- Open the table cursor.
SQL> OPEN RESUME_CURS;
SQL> --
SQL> -- Fetch the first row. The table cursor returns the employee ID
SQL> -- and segmented string identifier for the RESUME column.
SQL> --
SQL> FETCH RESUME_CURS;

EMPLOYEE_ID RESUME
00164 86:2:4

SQL> --
SQL> -- To read the contents of the RESUME column, you must declare
SQL> -- a list cursor and position it on the row.
SQL> --
SQL> DECLARE LIST_CURS LIST CURSOR FOR
cont> SELECT RESUME WHERE CURRENT OF RESUME_CURS;
SQL> --
SQL> -- Open the list cursor.
SQL> OPEN LIST_CURS;
SQL> --

(continued on next page)

18–16 Using Cursors

Example 18–3 (Cont.) Using List Cursors
SQL> -- Fetch the first segment of the list. Remember that
SQL> -- the table cursor is already opened and positioned on
SQL> -- the row containing employee ID 00164.
SQL> FETCH LIST_CURS;

RESUME
This is the resume for Alvin Toliver

SQL> --
SQL> -- Fetch the remaining segments of the list.
SQL> FETCH LIST_CURS;

RESUME
Boston, MA

SQL> FETCH LIST_CURS;
RESUME

Oracle Corporation
SQL> FETCH LIST_CURS;

RESUME
%RDB-E-STREAM_EOF, attempt to fetch past end of record stream
SQL> --
SQL> -- To move to the next row, first close the list cursor, then
SQL> -- fetch the next table row.
SQL> --
SQL> CLOSE LIST_CURS;
SQL> FETCH RESUME_CURS;

EMPLOYEE_ID RESUME
00165 86:2:8

SQL> --
SQL> -- Open the list cursor.
SQL> OPEN LIST_CURS;
SQL> -- Fetch the first segment of the list for employee 00165.
SQL> FETCH LIST_CURS;

RESUME
This is the resume for Terry Smith

SQL> --
SQL> -- Close the cursors.
SQL> CLOSE LIST_CURS;
SQL> CLOSE RESUME_CURS;

18.7 Using Scrollable List Cursors
A scrollable list cursor differs from a one-direction (nonscrollable) list cursor
in that it permits applications to scan randomly through a result table. An
application can fetch up or down, fetch the first or last row directly, or fetch
any single row randomly. The following example shows how to declare a
scrollable list cursor:

Using Cursors 18–17

DECLARE BCURSOR SCROLL LIST CURSOR
FOR SELECT RESUME WHERE CURRENT OF ACURSOR;

The FETCH statement allows the following options on a SCROLL list cursor:

• FETCH NEXT

• FETCH PRIOR

• FETCH FIRST

• FETCH LAST

• FETCH RELATIVE simple-value-expression

• FETCH ABSOLUTE simple-value-expression

The simple-value-expression must be either a positive or negative integer, or a
numeric module language or host language parameter. The Oracle Rdb7 SQL
Reference Manual includes detailed information about these options.

Example 18–4 shows an excerpt of a C program with embedded SQL
statements that use scrollable list cursors.

Example 18–4 Using Scrollable List Cursors
.
.
.

/* Declare a table cursor. */
EXEC SQL DECLARE ONE TABLE CURSOR

FOR SELECT EMPLOYEE_ID, RESUME FROM RESUMES
WHERE EMPLOYEE_ID = :sel_emp_id ;

EXEC SQL DECLARE TWO READ ONLY SCROLL LIST CURSOR
FOR SELECT RESUME
WHERE CURRENT OF ONE;

EXEC SQL OPEN ONE;
dump_error();

EXEC SQL FETCH ONE INTO :emp_id, blob;
dump_error();

EXEC SQL OPEN TWO;
dump_error();

EXEC SQL FETCH LAST FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

EXEC SQL FETCH NEXT FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

(continued on next page)

18–18 Using Cursors

Example 18–4 (Cont.) Using Scrollable List Cursors

EXEC SQL FETCH FIRST FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

EXEC SQL FETCH NEXT FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

EXEC SQL FETCH NEXT FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

EXEC SQL FETCH NEXT FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

EXEC SQL FETCH NEXT FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

EXEC SQL FETCH FIRST FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

EXEC SQL FETCH LAST FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

EXEC SQL FETCH PRIOR FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

EXEC SQL FETCH ABSOLUTE 1 FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

two_s = 2;

EXEC SQL FETCH ABSOLUTE :two_s FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

two_l = 2;

EXEC SQL FETCH ABSOLUTE :two_l FROM TWO INTO :seg2;
printf("Segment returned: %s\n", seg2);
dump_error();

.

.

.

Using Cursors 18–19

18.8 Using Dynamic Cursors
You use dynamic cursors in dynamic SQL programs. Dynamic cursors are
different than regular (or static) cursors because you do not explicitly specify
the SELECT statement in the source code. Instead, you specify the name of
a prepared statement. The cursor name is known at compile time, but the
SELECT statement is not known until run time. You can use dynamic cursors
when you do not know what query a user will input.

To use dynamic cursors, first declare the cursor using the dynamic DECLARE
CURSOR statement. Then, prepare the SELECT statement for dynamic
execution using the PREPARE statement.

Example 18–5 shows an SQL module that uses dynamic cursors to fetch rows
from a table.

Example 18–5 Using Dynamic Cursors

-- This module uses dynamic cursors to fetch rows one at a time.
--
MODULE C_MOD_DYN_CURS
LANGUAGE GENERAL
AUTHORIZATION RDB$DBHANDLE
PARAMETER COLONS

DECLARE ALIAS FILENAME personnel

-- Declare the dynamic cursor. Use a statement name to identify
-- a prepared SELECT statement.
DECLARE CURSOR1 CURSOR FOR STMT_NAME

-- Prepare the statement from a statement entered at run time.
-- Specify that SQL write information about the number and
-- data type of select list items to the SQLDA.
PROCEDURE PREP_STMT

(SQLCODE,
:COMMAND_STRING CHAR (256));

PREPARE STMT_NAME FROM :COMMAND_STRING;

PROCEDURE DESCRIBE
(SQLCODE,

SQLDA);

DESCRIBE STMT_NAME SELECT LIST INTO SQLDA;

PROCEDURE OPEN_CURSOR
(SQLCODE);

OPEN CURSOR1;

(continued on next page)

18–20 Using Cursors

Example 18–5 (Cont.) Using Dynamic Cursors

PROCEDURE FETCH_CURSOR
(SQLCODE,

SQLDA);

FETCH CURSOR1 USING DESCRIPTOR SQLDA;

PROCEDURE CLOSE_CURSOR
(SQLCODE);

CLOSE CURSOR1;

PROCEDURE ROLLBACK
(SQLCODE);

ROLLBACK;

For more information about dynamic SQL and dynamic cursors, see
Chapter 11.

18.9 Using Extended Dynamic Cursors
You use extended dynamic cursors in dynamic SQL programs. When you use
extended dynamic cursors, you supply parameters for both the cursor name
and the SELECT statement. The cursor name and SELECT statement are
not known until run time. Extended dynamic cursors let you use one set of
cursor-related statements to process any number of dynamically generated
statements.

To use extended dynamic cursors, first declare the cursor using the extended
dynamic DECLARE CURSOR statement. Then, prepare the SELECT
statement for dynamic execution using the PREPARE statement.

Example 18–6 shows an SQL module that uses extended dynamic cursors to
fetch rows from a table.

Example 18–6 Using Extended Dynamic Cursors

--
-- This module uses extended dynamic cursors to fetch rows one at a time.
--
MODULE MOD_C_EXTDYN_CURS
LANGUAGE C
AUTHORIZATION RDB$DBHANDLE
PARAMETER COLONS

(continued on next page)

Using Cursors 18–21

Example 18–6 (Cont.) Using Extended Dynamic Cursors

DECLARE ALIAS FILENAME personnel

-- Prepare the statement from a statement entered at run time.

PROCEDURE PREP_STMT
(SQLCODE,

:STMTID INTEGER,
:COMMAND_STRING CHAR (256),
SQLDA);

PREPARE :STMTID FROM :COMMAND_STRING;

-- Specify that SQL write information about the number and
-- data type of select list items to the SQLDA.
PROCEDURE DESCRIBE

(SQLCODE,
:STMTID INTEGER,
SQLDA);

DESCRIBE :STMTID SELECT LIST INTO SQLDA;

-- Declare an extended dynamic cursor.

PROCEDURE DEC_CUR_FROM_STMT
(SQLCODE,

:CURSOR_NAME CHAR(32),
:STMTID INTEGER);

DECLARE :CURSOR_NAME CURSOR FOR :STMTID;

PROCEDURE OPEN_CURSOR_NAME
(SQLCODE,

:CURSOR_NAME CHAR(32));

OPEN :CURSOR_NAME;

PROCEDURE FETCH_CURSOR_NAME
(SQLCODE,

:CURSOR_NAME CHAR(32),
SQLDA);

FETCH :CURSOR_NAME USING DESCRIPTOR SQLDA;

(continued on next page)

18–22 Using Cursors

Example 18–6 (Cont.) Using Extended Dynamic Cursors

PROCEDURE CLOSE_CURSOR_NAME
(SQLCODE,

:CURSOR_NAME CHAR(32));

CLOSE :CURSOR_NAME;

PROCEDURE ROLLBACK
(SQLCODE);

ROLLBACK;

For more information about dynamic SQL and extended dynamic cursors, see
Chapter 11.

Using Cursors 18–23

19
Inserting, Updating, and Deleting Data

This chapter explains how to use programs to insert, update, and delete table
rows. It also shows how to use list cursors to insert large data structures into
a database.

The sections that follow explain how to:

• Load a database

• Insert rows

• Use list cursors to insert large data structures

• Update rows

• Delete rows

• Use triggers with insert, update, and delete operations

19.1 Loading a Database
To load data into tables with SQL, you use the INSERT statement, which is
discussed in Section 19.2.

If you are loading large amounts of data (from a file or another table, for
example, refer to the chapter about loading data in the Oracle Rdb7 Guide to
Database Design and Definition. That chapter discusses different ways to load
data and describes how to make the load operation more efficient.

Several online programs, all beginning with ‘‘sql_load’’, demonstrate how to
stores row into tables of the sample databases. The programs are available in
several host languages in the samples directory.

Inserting, Updating, and Deleting Data 19–1

19.2 Inserting Rows
To store rows, use the INSERT statement, which has two general forms:

• INSERT . . . VALUES

• INSERT . . . SELECT

Both forms identify a table or view and the columns in which to store values.
However, in the INSERT . . . VALUES form, you explicitly specify values for
only one row; in the INSERT . . . SELECT form, you specify a select expression
to supply values for one or more rows.

19.2.1 Using the INSERT . . . VALUES Statement
The first form of the INSERT statement, INSERT . . . VALUES, inserts data
that is listed in the VALUES clause. The data can be explicitly listed in the
VALUES clause or parameters can represent the data to be loaded by a user or
from a data file.

Example 19–1, an excerpt of the program sql_load_employees.sc, loads the
EMPLOYEES table from a data file.

Example 19–1 Loading a Table from a Data File in a Precompiled C Program
.
.
.

/*
In the INSERT statement, the list of names in the VALUES clause corresponds
to the host variables containing the values. The list of names that follows
the INSERT clause names the columns in the table that are to be inserted.
*/
EXEC SQL

-- Insert the row.
INSERT INTO EMPLOYEES

(EMPLOYEE_ID, LAST_NAME, FIRST_NAME, MIDDLE_INITIAL,
ADDRESS_DATA_1, CITY, STATE, POSTAL_CODE, SEX, BIRTHDAY,
STATUS_CODE)

VALUES
(:emp_id, :last, :first, :middle:middle_ind,

:address, :city, :state, :zip, :sex,
:date_out, :status);

.

.

.

19–2 Inserting, Updating, and Deleting Data

When you create a program to insert rows, you may need to store either an
actual or a null value for a particular column; you cannot predict for all rows
being stored which of the two types of values a column will have. For example,
in Example 19–1 a null value may be loaded into the MIDDLE_INITIAL
column. To handle the null value, an indicator parameter, middle_ind, is
passed to SQL.

For more information about working with stored and null values in programs,
see Section 8.10.

19.2.2 Using the INSERT . . . SELECT Statement
The second form of the INSERT statement, INSERT . . . SELECT, stores rows
from another source into a table. This form of the statement is useful when
you extract data for a replicate database. It is also useful when you restructure
a table in which data is already stored.

You can use this form of INSERT statement in interactive SQL or in a
program. Note that when rows being inserted in a table are transferred from
other tables or views, programs do not have to include variable declarations
to store column values. When a select expression specifies the data, SQL can
transfer the data without intermediate processing by the program.

Use the INSERT statement to:

• Update the data in a table that performs an informational function (such
as a view or complex query) and that actually stores data. Give users
read-only privileges for this table.

A view can access many tables in complex ways. If many users and
programs frequently request information through the view, database
performance may suffer. If some users who retrieve data through the
view can be satisfied by information that is not completely current, you
can create an extra table in which to store that data. In this case, the
INSERT statement that updates the data in this extra table reads the view
only occasionally. This method reduces the number of times the database
system must perform complex operations, and database performance may
improve.

• Store data from more than one query into only one table.

If you combine the values of columns in one table with the values of
columns in another table using the UNION operator, you can store the
results in a table.

• Copy data that resides in a remote database to your own system.

Inserting, Updating, and Deleting Data 19–3

For example, if you plan queries or reports that frequently use remote
Oracle Rdb databases or data from databases other than Oracle Rdb
databases, you can periodically copy the remote data into a local database.
Then you can generate queries and reports against the local database.
Response time for queries against a local database is better than response
time for queries against a remote database.

• Store data into one or several tables that have been created only
temporarily to be the basis for complex or spontaneous reports or ‘‘what if’’
calculations.

If you know that you will be working on complex calculations or queries,
particularly if these access many tables, you can create tables to use
temporarily for early stages of your work. (This is the time you enter
the same sort of query repeatedly until it is refined.) These tables could
contain a representative subset of the data in the original tables. While
using the tables, you obtain results faster and do not interfere with other
users’ access to permanent tables. When your query or calculation is
refined, you delete the tables you created and revise the query to specify
permanent tables.

You can also use an INSERT statement that includes a select expression as
part of an operation to restructure a table.

If you plan to delete and create a table again in a database on which your site
depends, follow these guidelines:

• Take necessary safeguards to protect data in its original form (back up the
database).

• Prevent users from writing to or reading from any of the tables you are
working on until you finish. (To do this, reserve tables for EXCLUSIVE
WRITE in a SET TRANSACTION statement.)

You should be the only user accessing the database when you are changing
a pivotal table. Otherwise, your operations can disrupt the activities of
other users, and the activities of other users can interfere with what you
are doing.

19.3 Using List Cursors to Insert Large Data Structures
If a table contains a list, you must use a list cursor to insert data into the
list. A list is an ordered collection of elements of the data type LIST OF BYTE
VARYING. A list is sometimes called a segmented string. List cursors enable
you to scan through very large data structures from within a language that
does not provide support for objects of such size.

19–4 Inserting, Updating, and Deleting Data

First, declare a table cursor and then specify both the table column and list
column names in the FROM clause of the DECLARE CURSOR statement.
After you declare the table cursor, declare the list cursor and specify the
table cursor in the WHERE CURRENT OF clause of the DECLARE CURSOR
statement. The WHERE CURRENT OF clause associates the list cursor with
the table cursor. Section 18.6 describes list cursors in more detail.

In order to insert lists into an existing row, the list cursor must use insert-only
mode. Before opening the list cursor, open the table cursor and use the FETCH
statement to position the cursor on the desired row.

If you want to insert a new row that will contain a list, both the table cursor
and the list cursor must use insert-only mode. Be careful not to add data to
an existing list, because SQL replaces the previous list with the data you just
inserted.

The sql_resumes program in the samples directory demonstrates how to insert
lists into rows using list cursors.

19.4 Updating Rows
To modify values in existing rows, use the UPDATE statement. Unlike
inserting rows, updating rows is a more complex operation that involves
selecting the row (or set of rows) whose values you need to modify. There are
several methods for using the UPDATE statement:

• You can include data selection conditions in the UPDATE statement.

• You can use the UPDATE statement with a cursor.

• You can use an UPDATE . . . RETURNING statement.

Reference Reading

For more information about updating rows, see the Oracle Rdb7
SQL Reference Manual. The section on the UPDATE statement
provides details about the update operation itself. The sections on
the DECLARE CURSOR statement, CREATE VIEW statement (view
update examples), and FETCH statement (INTO clause) provide
additional guidance on operations that affect data modification.

Inserting, Updating, and Deleting Data 19–5

19.4.1 Selecting Data in the UPDATE Statement
When you want to change values in only one row, use a simple UPDATE
statement with a SET clause. This form of the UPDATE statement has the
following format:

UPDATE table-or-view-name SET list-of-column-assignments
WHERE condition(s)-identifying-row(s)-to-be-modified ;

You can also update multiple rows this way, but only if you are setting all
column occurrences to the same value expression. For example, you can specify
multiple JOB_HISTORY rows in the WHERE clause of the UPDATE statement
to store the same value for supervisor ID in all the rows.

The following extracts from a precompiled SQL program show this kind of
update statement:

EXEC SQL UPDATE JOB_HISTORY SET JOB_END = :BINTIMOUT
WHERE EMPLOYEE_ID = :ID-NUMBER

AND JOB_END IS NULL;
.
.
.

EXEC SQL UPDATE SALARY_HISTORY SET SALARY_END = :BINTIMOUT
WHERE EMPLOYEE_ID = :ID-NUMBER

AND SALARY_END IS NULL;
.
.
.

19.4.2 Using the UPDATE Statement with a Cursor
To change values in more than one row at a time, use the UPDATE statement
with a cursor. This form of UPDATE statement has the following format:

DECLARE cursor-name CURSOR FOR
select-expression
FOR UPDATE OF list-of-columns-to-be-modified ;

OPEN cursor-name;
-+

FETCH cursor name; | Repeat FETCH and
UPDATE table-or-view-name | UPDATE statements

SET list-of-column-assignments | to change each
WHERE CURRENT OF cursor-name ; | row in the cursor.

-+

In this case, you work with each row individually and can specify values for
updated columns that are different for each row.

19–6 Inserting, Updating, and Deleting Data

You can specify a FOR UPDATE clause in a cursor declaration to identify the
columns you want to update. You can update rows from a cursor whether or
not you include a FOR UPDATE clause in your cursor declaration. However,
if you include the FOR UPDATE clause and update columns other than the
columns named in the clause, SQL returns a warning message because you are
changing values you may not have intended to change.

When you declare a cursor for the purpose of updating rows, your DECLARE
CURSOR statement must include SELECT statement syntax that allows
rows to be updated. The rules for determining whether a SELECT statement
will allow rows to be updated are defined differently by the ANSI/ISO SQL
standard and by Oracle Rdb. If you refer to one table in your DECLARE
CURSOR statement and optional WHERE clause, it is safe to assume that the
cursor will allow rows to be updated.

Example 19–2 illustrates an UPDATE statement with a cursor in a
precompiled SQL program. The example is an extract from the source code for
the precompiled C program sql_terminate.sc. The complete source file for the
program (along with sources in other languages) is available on line, in the
samples directory.

Example 19–2 Updating Rows in a Precompiled C Program

/* ABSTRACT:
*
* This program demonstrates the use of a cursor to fetch and update
* rows in the database using the C precompiler.
*
* This program prompts the operator for the employee ID and termination
* date of an employee, until the operator asks to exit. It uses
* the employee ID to check for the employee by opening a cursor
* and fetching the employee row. If the employee is found in the
* database, it updates three tables with the employee’s status and
* termination date. Then, it commits the transaction and prompts
* the operator for the next request.
*/

.

.

.
/* Declare the cursor to be used for fetching employee records. */

EXEC SQL DECLARE EMPLROW CURSOR FOR
SELECT EMPLOYEE_ID, STATUS_CODE FROM EMPLOYEES
WHERE EMPLOYEE_ID = :employee_id;

(continued on next page)

Inserting, Updating, and Deleting Data 19–7

Example 19–2 (Cont.) Updating Rows in a Precompiled C Program
.
.
.

/* Open the cursor that had been previously declared. */
EXEC SQL OPEN EMPLROW;

.

.

.
/* Fetch a row from the opened cursor. */

EXEC SQL FETCH EMPLROW INTO :e_id, :status_code;
.
.
.

/* Update the EMPLOYEES table. */
EXEC SQL UPDATE EMPLOYEES

SET STATUS_CODE = ’0’
WHERE CURRENT OF EMPLROW;

.

.

.

19.4.3 Using the UPDATE . . . RETURNING Statement
The UPDATE . . . RETURNING statement allows you to request that updated
values be returned to your program. It can be used only when you update a
single row.

You can request that, after the row is updated, the database system return the
value of the dbkey of the row. Subsequent queries can use the dbkey value to
access the record directly.

The following example shows how to use an UPDATE statement to return the
dbkey:

EXEC SQL UPDATE JOB_HISTORY
SET JOB_END = :BINTIMOUT
WHERE EMPLOYEE_ID = :ID-NUMBER

AND JOB_END IS NULL
RETURNING DBKEY INTO :TERM_DBKEY;

Subsequent queries can use the dbkey value to look up this job history record
for tasks such as calculating termination benefits or issuing a report to a state
agency.

Instead of the DBKEY keyword, you can use the ROWID keyword.

19–8 Inserting, Updating, and Deleting Data

The RETURNING clause can return more than one value, and the value need
not be a dbkey, as shown in this example:

EXEC SQL UPDATE ACCOUNT
SET AMOUNT = AMOUNT + :TXN
WHERE ACCOUNT_NUMBER = :ACCNUM
RETURNING AMOUNT INTO :NEW_AMOUNT;

19.5 Deleting Rows
The DELETE statement lets you erase rows from tables. You can use the
DELETE statement in two ways: alone or associated with a cursor.

When you use the DELETE statement as a standalone statement, specify the
table name and the conditions that identify the rows to be deleted:

DELETE FROM EMPLOYEES
WHERE EMPLOYEE_ID = ’00164’;

When you use the DELETE statement with a cursor, specify the table name
and use the CURRENT OF clause to specify that the row to be deleted is
the row to which the cursor points. The following example shows the cursor
declaration, the associated cursor statements, and the DELETE statement:

-- Declare the cursor.
DECLARE DEL_CURSOR CURSOR FOR

SELECT DEPARTMENT_CODE, DEPARTMENT_NAME
FROM DEPARTMENTS;

OPEN DEL_CURSOR;

-- Fetch the row.
FETCH DEL_CURSOR;

-- Delete the current row.
DELETE FROM DEPARTMENTS WHERE CURRENT OF DEL_CURSOR;

Note that you can optionally specify a FOR UPDATE clause in a cursor
declaration to identify the columns you want to update.

When you declare a cursor for the purpose of deleting rows, the DECLARE
CURSOR statement must include SELECT statement syntax that allows rows
to be deleted. The rules for determining whether a SELECT statement will
allow rows to be deleted are defined differently by the ANSI/ISO SQL standard
and Oracle Rdb. If you refer to one table in your DECLARE CURSOR
statement and optional WHERE clause, it is generally safe to assume that the
cursor will allow rows to be deleted.

Inserting, Updating, and Deleting Data 19–9

Reference Reading

For more information about the DELETE statement, see the chapter on
SQL statements in the Oracle Rdb7 SQL Reference Manual.

19.6 Deleting List Data
You cannot delete a column of data type LIST unless you delete the entire row.
However, you can set the column to NULL, as shown in Example 19–3.

Example 19–3 Deleting List Data From a Row

SQL> -- Set the list column, RESUME, to NULL
SQL> UPDATE RESUMES
cont> SET RESUME = NULL
cont> WHERE EMPLOYEE_ID =’00164’;
1 row updated
SQL> select * from resumes;

EMPLOYEE_ID RESUME
00164 NULL
00165 86:2:8
00166 86:2:12

3 rows selected

19.7 Using Triggers with Insert, Update, and Delete Operations
When you insert, update, or delete data in a database with a defined trigger,
you cause other actions to be automatically performed on the database. A
trigger causes one or more actions to be performed before or after a particular
write operation is performed. For example, you can define a trigger that
tracks which users make changes to the database and the date and time of the
changes. The Oracle Rdb7 Guide to Database Design and Definition explains
how to define triggers and shows an example of a trigger definition using the
CURRENT_TIMESTAMP function to track changes to the data.

19–10 Inserting, Updating, and Deleting Data

20
Using the Multiple Schema Option

An Oracle Rdb database can contain multiple schemas. The SQL interface to
Oracle Rdb lets you use the ANSI/ISO standard naming of multiple schemas
(multischemas) within a catalog and multiple catalogs within an Oracle Rdb
database. The multischema SQL option does not change how Oracle Rdb stores
objects, only how SQL names those objects.

The sections that follow tell you how to:

• Use the terminology and concepts associated with multischema databases

• Name multischema objects in programs written in SQL module language

• Name multischema objects in precompiled SQL programs

Reference Reading

To understand the multischema SQL option completely, see the
following manuals:

• The Oracle Rdb7 SQL Reference Manual discusses multischema
terms, syntax for creating and altering multischema databases,
multischema naming conventions, and reference information about
how to use the multischema option in the SQL module language
and the SQL precompiler.

• The Oracle Rdb7 Guide to Database Design and Definition describes
how to alter, create, and delete multischema databases and objects
and shows the data definitions for the sample multischema
corporate_data database used in examples throughout this chapter.

Using the Multiple Schema Option 20–1

20.1 Understanding Multischema Databases
SQL defines schema and catalog objects in a multischema Oracle Rdb database
as follows:

• A schema is a group of objects within a catalog. The schema contains
objects such as tables, views, constraints, triggers, domains, collating
sequence, storage maps, and indexes and privileges for each of these
objects. You can create one or more schemas within a catalog in a
multischema database.

Each multischema database contains at least one schema, called
RDB$SCHEMA, which is contained in the Oracle Rdb default database
catalog, RDB$CATALOG.

• A catalog is a multischema object that identifies a group of schemas
within a multischema database. You can create one or more catalogs in a
multischema database.

Each multischema database contains at least one catalog, called
RDB$CATALOG, which contains the database schema, RDB$SCHEMA.

A multischema database therefore contains one or more catalogs that
can each contain one or more schemas. Figure 20–1 shows a multischema
database.

20–2 Using the Multiple Schema Option

Figure 20–1 Structure of a Multischema SQL Database

Multischema Database

NU−2243A−RA

. . .

Catalog C
Catalog B

Catalog A

. . .

Schema C
Schema B

Schema A

Tables
Collating sequences
Constraints
Triggers
Views
Domains
Indexes
Storage maps

.
Schema Objects

.

.

.

.

.

.

.
Stored Routines.

You enable the multischema attribute on an Oracle Rdb database by specifying
the MULTISCHEMA IS ON clause of the CREATE DATABASE or ALTER
DATABASE statement. By default, SQL creates a database with only one
schema and does not allow you to create additional schemas in that database.

20.2 Using Multischema Databases with the SQL Module
Processor

This section describes the default settings that apply when you process an SQL
module. It shows a sample module file that uses multischema names.

20.2.1 Setting Defaults for SQL Modules
You can set the default catalog and default schema in the module header when
you use an Oracle Rdb database that has the multischema attribute. If you set
a default schema and catalog, you do not need to include a catalog and schema
name to qualify every object to which you refer. Objects within the default
schema and default catalog can be referenced without schema and catalog
qualification. Thus, if you plan to work primarily with one schema and one
catalog, set the defaults in the header of the module.

Using the Multiple Schema Option 20–3

You can also specify the default catalog and schema in a context file.

When you do not qualify a schema object and the SQL context is ambiguous,
SQL uses the defaults listed in Table 20–1.

Table 20–1 Module Defaults for Multischema SQL

Compiler Attribute Implicit Default

Alias Authorization identifier

Authorization identifier User name

Catalog RDB$CATALOG

Schema Authorization identifier

When you select the multischema option, the default authorization identifier
for each schema is the user name of the user compiling the module. You can
specify a different authorization identifier by using the AUTHORIZATION
clause in the module header.

This authorization identifier defines the default alias and schema. If you do
not qualify the name of a schema element, SQL implicitly qualifies it with the
current authorization identifier. You can use the ALIAS and SCHEMA clauses
to override the default settings. When you do not specify an alias or a schema
in the module header, but do explicitly specify an authorization identifier in
the module header, SQL uses the authorization identifier defined in the module
header as the default alias and default schema. If you do not specify a default
schema name in a module header, you must specify an authorization identifier.
The RDB$CATALOG catalog name remains the default until overridden by the
CATALOG clause.

The authorization identifier is used for privilege checking. If you specify a
RIGHTS clause with the RESTRICT option in the module header, SQL bases
privilege checking on the default authorization identifier, in compliance with
the ANSI/ISO SQL standard, and does not allow execution of the program at
run time unless the compile-time authorization identifier matches the run-time
authorization identifier. If you specify RIGHTS INVOKER (the default), SQL
bases privilege checking on the user name of the person who executes the
module.

20–4 Using the Multiple Schema Option

20.2.2 Using Multischema Naming in an SQL Module File and C Program
Example 20–1 illustrates an SQL module, sql_msdb_mod.sqlmod. You can find
a copy of this module and the programs that call it in the samples directory.

Example 20–1 Using Multischema Names in an SQL Module File

--
-- This module shows how to use SQL module language when working with a
-- multischema database and using multischema naming conventions. The
-- C program sql_msdb.c with which this module is linked uses the sample
-- multischema database corporate_data.
--
-- Header Information Section
--
MODULE sql_msdb_mod -- Module name
LANGUAGE C -- Language of calling program
CATALOG ADMINISTRATION -- Set default catalog !
SCHEMA PERSONNEL -- Set default schema "
PARAMETER COLONS -- Require colons before parameter names
--
-- DECLARE Statements Section
--
DECLARE ALIAS FILENAME corporate_data -- Declare the database.

-- Declare table cursor for the DEPARTMENTS table in the ACCOUNTING schema.
DECLARE DEPT_CURSOR TABLE CURSOR FOR

SELECT DEPARTMENT_CODE, DEPARTMENT_NAME, MANAGER_ID
FROM ACCOUNTING.DEPARTMENTS#
ORDER BY DEPARTMENT_CODE

-- Declare table cursor for the EMPLOYEES table in the PERSONNEL schema.
DECLARE EMP_CURSOR TABLE CURSOR FOR

SELECT E.EMPLOYEE_ID, E.LAST_NAME, E.FIRST_NAME
FROM EMPLOYEES E, JOB_HISTORY JH$
WHERE E.EMPLOYEE_ID = JH.EMPLOYEE_ID

AND JH.DEPARTMENT_CODE = :DEPT_CODE
AND JH.JOB_END IS NULL

ORDER BY E.LAST_NAME

(continued on next page)

Using the Multiple Schema Option 20–5

Example 20–1 (Cont.) Using Multischema Names in an SQL Module File
--
-- Procedure Section
--
%

-- Opens the cursor declared for the DEPARTMENTS table.
PROCEDURE OPEN_DEPT_CURSOR

(SQLCODE);

OPEN DEPT_CURSOR;

-- Opens the cursor declared for the EMPLOYEES table.
PROCEDURE OPEN_EMP_CURSOR

(SQLCODE,
:DEPT_CODE CHAR(4));

OPEN EMP_CURSOR;

-- Fetches data from the opened cursor for the DEPARTMENTS table.
PROCEDURE FETCH_DEPT_DATA

(SQLCODE,
:DEPT_CODE CHAR(4),
:DEPT_NAME CHAR(20),
:DEPT_MAN_ID CHAR(5));

FETCH DEPT_CURSOR INTO
:DEPT_CODE, :DEPT_NAME, :DEPT_MAN_ID;

-- Fetches data from the opened cursor for the EMPLOYEES table.

PROCEDURE FETCH_EMP_DATA
(SQLCODE,

:EMP_ID CHAR(5),
:EMP_LAST_NAME CHAR(20),
:EMP_FIRST_NAME CHAR(20));

FETCH EMP_CURSOR INTO
:EMP_ID, :EMP_LAST_NAME, :EMP_FIRST_NAME;

-- Closes the DEPT_CURSOR cursor for the DEPARTMENTS table.
PROCEDURE CLOSE_DEPT_CURSOR

(SQLCODE);

CLOSE DEPT_CURSOR;

(continued on next page)

20–6 Using the Multiple Schema Option

Example 20–1 (Cont.) Using Multischema Names in an SQL Module File

-- Closes the EMP_CURSOR cursor for the EMPLOYEES table.
PROCEDURE CLOSE_EMP_CURSOR

(SQLCODE);

CLOSE EMP_CURSOR;

The following descriptions are keyed to the numbered items in Example 20–1:

! CATALOG clause

Specifying a catalog name in the module header lets you reference
schema objects without qualifying them with a catalog name. The
CATALOG clause changes the default catalog from RDB$CATALOG to
the ADMINISTRATION catalog, which contains both the ACCOUNTING
and PERSONNEL schemas used in the module.

" SCHEMA clause

Specifying a schema name in the module header lets you reference schema
objects without qualifying them with a schema name. If you do not specify
a default schema name, you have to specify an authorization identifier with
the AUTHORIZATION clause. Otherwise, SQL issues an error message
such as‘‘%SQL-F-SCHNOTDEF, Schema SCHWARTZ is not defined.’’ This
message indicates that SQL is looking for a schema with the same name as
the user name of the user who compiled the module.

ACCOUNTING schema object qualification

Because the DEPARTMENTS table belongs to the ACCOUNTING schema
and not to the default PERSONNEL schema, you must qualify the
DEPARTMENTS table with the ACCOUNTING schema name. If you
had not qualified the DEPARTMENTS table, SQL would have tried to
gather department data from the DEPARTMENTS table in the default
PERSONNEL schema; however, it would not have been able to find the
MANAGER_ID column and would have generated an error.

$ PERSONNEL schema object qualification

Because the EMPLOYEES and JOB_HISTORY tables belong to the default
PERSONNEL schema, you do not have to qualify schema object names
with their schema name.

% Procedure section

Using the Multiple Schema Option 20–7

Processing a multischema file is no different from processing a single-
schema file. Only the naming you use is different.

The samples directory includes a C program that calls the module procedure
shown in Example 20–1. Once compiled and linked with the SQL module object
file, the program displays a list of employees belonging to each department
in the corporate_data multischema database. The program uses the same
statements and logic as it would to process a single-schema database.

You compile the SQL module and C program, link them to create the executable
image, and run the image to display the employees assigned to each corporate
department as you would any other SQL module language programs.

To see what SQL syntax in your module does not comply with the ANSI/ISO
SQL standard, specify the FLAG_NONSTANDARD or -std qualifier when you
compile your SQL module file. By default, SQL does not flag non-standard
syntax. For other qualifiers that you can use on the SQL module processor
command line, refer to the Oracle Rdb7 SQL Reference Manual.

20.3 Using Multischema Databases with the SQL Precompiler
This section describes the default settings that apply when you process a
program with the SQL precompiler. It shows a precompiled program that uses
multischema names. You can find a copy of the sql_msdb_pre.sc program in
the samples directory.

20.3.1 Default Settings for the SQL Precompiler
When you use the SQL precompiler, you can change the default settings for
alias, authorization identifier, catalog, and schema by using the DECLARE
MODULE statement. If you do not use this statement, you must explicitly
specify the attributes within the embedded program. Table 20–2 shows the
implicit compile-time defaults for SQL compiler attributes.

Table 20–2 SQL Defaults for Compiler Attributes in Precompiled Programs

Compiler Attribute Implicit Default

Alias RDB$DBHANDLE

Authorization identifier User name

Catalog RDB$CATALOG

Schema Authorization identifier

The following list explains the default settings for compiler attributes in
embedded programs:

20–8 Using the Multiple Schema Option

• Default alias

The default alias for precompiled programs is RDB$DBHANDLE.
Specifying a default database means that statements that refer to the
default database do not need to use an alias. You need to assign an explicit
alias when your program attaches to more than one database because only
one database can have the RDB$DBHANDLE alias default.

• Default authorization identifier

The default authorization identifier is the authorization identifier (user
name) of the user who compiles an embedded program. SQL uses the
authorization identifier for privilege checking. If you specify a RIGHTS
clause in a DECLARE MODULE statement or a context file, SQL bases
privilege checking on the default authorization identifier, in compliance
with the ANSI/ISO SQL standard.

Specifying RIGHTS RESTRICTED tells SQL to compare the user name
of the person who executes an embedded program with the authorization
identifier with which the program was compiled. SQL prevents any user
other than the one who compiled the program from invoking that program.
By default, SQL uses RIGHTS INVOKER and bases privilege checking on
the user name of the user who invoked the program.

• Default catalog

The default catalog, RDB$CATALOG, for precompiled programs is the
same as the default in the SQL module language. The RDB$CATALOG,
by default, contains the RDB$SCHEMA schema, which contains all Oracle
Rdb system tables.

• Default schema

The default schema for schema objects named in a precompiled program is
taken from the authorization identifier (user name) of the user who most
recently compiled the program. The RDB$SCHEMA is not the default
schema. The authorization identifier of the user compiling the precompiled
program is the default schema.

You can also specify the default catalog and schema in a context file.

If you do not specify the SCHEMA and CATALOG clauses in the DECLARE
MODULE statement, you must qualify schema object names in precompiled
programs with their catalog, schema, and optionally alias names, unless you
are using only the default catalog and schema.

Using the Multiple Schema Option 20–9

20.3.2 Using Multischema Naming in a Precompiled Program
Example 20–2 shows how to name schema objects in a precompiled C
program.

Example 20–2 Using Multischema Names in a Precompiled C Program

/* ABSTRACT:
This sample precompiled C program lists the employees assigned to
each department defined in the sample multischema corporate_data
database. */

#include <stdio.h>

main()
{
/* Declare return status variable for error handling. */

int SQLCODE;

/* Declare module to specify SQL standard dialect, including quoting rules. */

EXEC SQL DECLARE MODULE SQL_MODULE
DIALECT SQL92; !

/* Variables for program use. */
char emp_id[6],

emp_last_name[21],
emp_first_name[21],
dept_name[21],
dept_code[5],
dept_man_id[6];

/* Declare the corporate_data database. */

EXEC SQL DECLARE ALIAS FILENAME corporate_data; "

/* Declare the cursor for the DEPARTMENTS table. */

EXEC SQL DECLARE DEPT_CURSOR TABLE CURSOR
FOR SELECT

DEPARTMENT_CODE, DEPARTMENT_NAME, MANAGER_ID FROM
"RDB$DBHANDLE.ADMINISTRATION".ACCOUNTING.DEPARTMENTS#

ORDER BY DEPARTMENT_CODE;

(continued on next page)

20–10 Using the Multiple Schema Option

Example 20–2 (Cont.) Using Multischema Names in a Precompiled C
Program

/* Declare the cursor for the EMPLOYEES table. */

EXEC SQL DECLARE EMP_CURSOR TABLE CURSOR
FOR SELECT

E.EMPLOYEE_ID, E.LAST_NAME,E.FIRST_NAME FROM
"RDB$DBHANDLE.ADMINISTRATION".PERSONNEL.EMPLOYEES E,
"RDB$DBHANDLE.ADMINISTRATION".PERSONNEL.JOB_HISTORY JH

WHERE E.EMPLOYEE_ID = JH.EMPLOYEE_ID
AND JH.DEPARTMENT_CODE = :dept_code

AND JH.JOB_END IS NULL
ORDER BY E.LAST_NAME;

/* Print the report title. */

printf("%20s DEPARTMENT EMPLOYEE LISTING\n\n"," ");

/* Open the DEPARTMENTS cursor. */

EXEC SQL OPEN DEPT_CURSOR;

while (1)
{

/* Fetch the department data. */

EXEC SQL FETCH DEPT_CURSOR INTO
:dept_code,
:dept_name,
:dept_man_id;

.

.

.

The following descriptions are keyed to the numbered items in Example 20–2:

! DECLARE MODULE statement

The DIALECT clause specifies, among other things, ANSI/ISO quoting
rules. Because this program uses delimited identifiers, you must specify
that you want to use ANSI/ISO SQL (SQL92) quoting rules. Otherwise,
SQL incorrectly interprets the string inside the double quotation marks
as a string literal and generates an error indicating that the use of double
quotation marks (") for a string literal is a deprecated feature.

The default for the dialect or quoting rules is SQLV40, which interprets
quoted strings as string literals.

" Declare alias

Using the Multiple Schema Option 20–11

You do not have to specify the MULTISCHEMA IS ON clause when the
database to which you want to attach was created as a multischema
database. Use the MULTISCHEMA IS OFF clause in a DECLARE ALIAS
statement when you want to view a multischema database in the single-
schema mode. With the multischema mode disabled, you must refer to
schema objects in SQL statements by their external names.

Multischema object naming

If you do not specify the SCHEMA and CATALOG clauses in
a precompiled program, you must qualify schema objects with
catalog and schema names. Alias names are optional. In the name
"RDB$HANDLE.ADMINISTRATION".ACCOUNTING.DEPARTMENTS,
RDB$HANDLE is the alias, ADMINISTRATION is the catalog name, and
ACCOUNTING is the name of the schema in which the DEPARTMENTS
object resides. To avoid exceeding the three-level limit for naming, the alias
and catalog name are together enclosed in quotation marks (") to appear
as one level of naming.

To use quotation marks in this situation, you must use the DIALECT
SQL92 or QUOTING RULES SQL92 clause in the DECLARE MODULE
statement.

Because the example program contains only one attach, qualifying the
object name with the RDB$DBHANDLE default alias is unnecessary.

You link the program as you would if it did not use multischema naming.

20–12 Using the Multiple Schema Option

A
Using SQL International Options

Oracle Rdb provides a number of features that are useful when the data in the
database is not in English or when the users’ primary language is not English.

This appendix describes:

• The statements that control the format of data for input and display

• The specification of collating sequences to control sorting and comparisons

• The behavior of specific collating sequences

• The collating order used by all Oracle Rdb character sets

A.1 Controlling Input and Display Formats
You can modify the input format (and in many cases, display the format) for
the following features:

• Radix point character

Use the SET RADIX POINT and SHOW RADIX POINT statements.

• Digit separator character

Use the SET DIGIT SEPARATOR and SHOW DIGIT SEPARATOR
statements.

• Currency indicator character

Use the SET CURRENCY SIGN and SHOW CURRENCY SIGN
statements.

• Date and time format for DATE VMS data types

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, use the SET DATE FORMAT and SHOW DATE FORMAT
statements. ♦

Digital UNIX On Digital UNIX, you cannot modify the date and time format. ♦

• Language used for various input and displays, such as day names, month
names, and so on

Using SQL International Options A–1

OpenVMS
VAX

OpenVMS
Alpha

On OpenVMS, use the SET LANGUAGE and SHOW LANGUAGE
statements. ♦

Digital UNIX On Digital UNIX, use a locale setting. See Section A.1.1 for more
information. ♦

The SET and SHOW statements related to these features are documented in
the Oracle Rdb7 SQL Reference Manual.

A.1.1 Using Locale Settings on Digital UNIX
Digital UNIX Locale refers to the international environment of a program. It defines

localized behavior of that program at run time. This information can be
established from one or more sets of locale databases.

Oracle Rdb complies with the POSIX standard in implementing locale support.
It provides message files in subdirectories that are named using the language
field and territory field. The following example shows a message subdirectory
for the language Japanese (ja) and the territory Japan (JP):

/usr/lib/dbs/sql/vnn/lib/ja_JP/

The language field name is based on the POSIX iso639lang field; the territory
field name is based on the POSIX iso3166terr field.

The default message subdirectory is named C_C. The following example shows
the file specification for the SQL message file when no locale has been specified:

/usr/lib/dbs/sql/vnn/lib/C_C/sqlmsg.mdf

See your system manager to set up locales on Digital UNIX. ♦

A.2 Specifying Collating Sequences
By default, Oracle Rdb uses the ASCII collating sequence for all sorting and
Boolean operations; however, you can override this default by specifying one of
the following:

• A language-specific collating sequence supplied by the OpenVMS National
character set utility (NCS)

• A user-defined collating sequence using NCS

You can specify a collating sequence for an entire database or for a particular
domain, not for columns in tables. (If you define a column using a domain,
however, the column inherits any collating sequence you specify for the
domain.) The collating sequence determines how rows are sorted when the
column is used as a sort key. The collating sequence also determines the
behavior of Boolean operations that compare two columns or a column with a
literal value.

A–2 Using SQL International Options

Refer to the Oracle Rdb7 SQL Reference Manual for descriptions of all the SQL
statements involved with collating sequences.

A.3 Using Collating Sequences
A predicate specifies a condition that SQL evaluates as true, false, or unknown.
The following list describes the behavior of specific collating sequences with the
CONTAINING, STARTING WITH, and LIKE predicates:

• CONTAINING

The CONTAINING predicate is not sensitive to diacritical markings used
in multinational character sets. Thus a matches A, á, à, ä, Á, À, Â and so
on. (In Norwegian, ä is treated as if it is ae.)

In Spanish, ch and ll are treated as if they are unique single letters. Thus,
CONTAINING ’C’ finds C, c, ç, and Ç but not CH, ch, Ch and cH.

• STARTING WITH

Because the STARTING WITH operator is case sensitive, searches for
uppercase multinational characters do not include lowercase multinational
characters; the reverse is also true. For example, STARTING WITH ’C’
retrieves a set of rows that is different from those retrieved by STARTING
WITH ’ç’ .

In Spanish, ch and ll are treated as if they were individual, unique, single
letters. For example, if a domain is defined with the collating sequence
SPANISH, then STARTING WITH ’c’ does not retrieve the word char but
does retrieves the word cat.

• LIKE

The behavior of the LIKE operator is the same as that of the STARTING
WITH operator. Because the LIKE operator is case sensitive, searches for
uppercase multinational characters do not include lowercase multinational
characters; the reverse is also true. For example, LIKE Ç retrieves a
different set of records than LIKE ç .

In Spanish, the LIKE operator recognizes the Spanish combinations of ch
and ll each as one character. For example, if a domain is defined with the
collating sequence SPANISH, then LIKE c does not retrieve the word char
but does retrieve the word cat.

The following list describes multinational character set behavior that applies
to all predicates:

• The character ñ is always treated as different from the character n, in
keeping with the practices of the Spanish language. In a similar manner,

Using SQL International Options A–3

the character ç is treated the same as the character c, in keeping with the
practices of the French language.

• The character ü is treated the same as the character u for many languages,
but is sorted between the characters x and z (with the y’s) for Danish,
Norwegian, and Finnish languages.

See the chapter on language and syntax elements in the Oracle Rdb7 SQL
Reference Manual for any restrictions that these predicates might impose.

A.4 Collating Order for Oracle Rdb Character Sets
The standard collating sequences, in which characters are compared octet
for octet, are the only collating sequences that are available for use with the
character sets in Oracle Rdb.

Note

If a column uses multi-octet character sets, user-defined collating
sequences do not work. For example, if you define DEC_KANJI as
the database default character set and all the data values are ASCII
characters, you can use the DEC Multinational character set (MCS)
collating sequence. However, if a Kanji character appears in the data,
collating results appear random and are ineffective when using the
MCS collating sequence.

Table A–1 details the collating order that is used for the different character
sets supported by Oracle Rdb.

Table A–1 Collating Order for Oracle Rdb Character Sets

Type of Character Set Collating Sequence Definition

Single-octet character
sets 1

The collating sequence is user-defined or is the default MCS
collating sequence.

Fixed multi-octet
character sets 1

The collating sequence is based on the numeric values
specified by the KANJI, HANZI, HANYU, SICGCC, and
KOREAN character sets.

1See the chapter on language and syntax elements in the Oracle Rdb7 SQL Reference Manual for
a list of single-octet and multi-octet (fixed and mixed) character sets.

(continued on next page)

A–4 Using SQL International Options

Table A–1 (Cont.) Collating Order for Oracle Rdb Character Sets

Type of Character Set Collating Sequence Definition

Mixed multi-octet
character sets 1

The collating sequence of these character sets is based on
the following (in order from lowest value):

1. ASCII characters

The collating sequence for the ASCII character set
is based on the numeric values defined in the MCS
collating sequence table.

2. User-defined characters

The collating sequence for user-defined characters is
based on either the numeric value of the individual
octets or as the values specified in the user-defined
collating sequence table.

3. DEC_HANZI, DEC_KOREAN, DEC_HANYU, and
DEC_SICGCC character sets

The collating sequences for these character sets are
based on the numeric values of the individual octets.

1See the chapter on language and syntax elements in the Oracle Rdb7 SQL Reference Manual for
a list of single-octet and multi-octet (fixed and mixed) character sets.

The DEC_KANJI character set is different from the other mixed multi-octet
character sets because it also includes the Hankaku (narrow) Katakana
character set. The collating sequence of this character set is the following (in
order from lowest value):

1. ASCII character set

The collating sequence for the ASCII character set is based on the numeric
values defined in the MCS collating sequence table.

2. Katakana character set

The collating sequence for the Katakana character set is based on the
numeric values provided by JIS X0201.

3. User-defined characters

The collating sequence for user-defined characters is based on either
the numeric value of the individual octets or the values specified in the
user-defined collating sequence table.

4. Kanji character set

Using SQL International Options A–5

The collating sequence for the KANJI character set is based on the numeric
values provided by JIS X0208.

A–6 Using SQL International Options

Index

- (hyphen)
See Hyphen (-)

" (quotation mark)
See Quotation mark (")

! (exclamation point)
See Comment

$ (dollar sign)
See Dollar sign ($)

: (colon)
See Colon (:)

; (semicolon)
See Semicolon (;)

= (equal sign)
See Equal sign (=)

? (question mark)
See Parameter marker

@ (at sign)
See Execute statement (@)

_ (underscore)
See Underscore (_)

A
Access

conflict, 16–30t
Actual parameter, 4–9

See also Parameter
Ada language

See also SQL precompiler; Program
calling procedure in SQL module, 4–14
creating an executable image, 7–4
debugging program, 7–15

Ada language (cont’d)
declaring

parameter in, 8–30
symbolic error code in, 10–18

external routine guidelines, 14–44
language identifier in SQL module, 3–8
library, 6–16
package, 8–30
precompiled program

ending SQL statement in, 6–6
length of file name, 6–15

precompiling
files used, 6–17

SQLDA and, 11–11
SQL precompiler, 6–16

files used, 6–17
input file, 6–8t
output file, 6–8t

substitute underscore for dollar sign in, 8–30
RDB$ name, 10–20

using parameter in, 8–30
Ada program library manager (ACS)

See Ada or LINK command (ACS)
Alias, 15–13, 15–14e

attaching to multiple databases, 15–14e
declaring, 15–2
default database, 15–14e

in SQL module, 15–13
default in

SQL module, 20–4e
SQL precompiler, 20–8

in SQL module, 3–11
in transaction statement, 16–22
module default, 20–4e
precompiler default, 20–9

Index–1

Alias (cont’d)
RDB$DBHANDLE, 15–14e
shareable image and, 7–7, 7–8, 7–10
sharing across modules, 7–13
when to specify, 16–2

ALIAS clause, 20–4
in SQL module, 3–11

Alignment
SQLCA status parameter

in C, 8–31
SQLDA status parameter, 11–13

ALIGN_RECORDS qualifier, 8–31
ANSI/ISO SQL standard, 1–1

flagging nonstandard SQL syntax, 20–8
format with COBOL program, 6–20
for multischema database, 20–1
SQL module language, 1–4, 3–15

–ansi SQL precompiler command line qualifier,
6–9

ANSI_FORMAT SQL precompiler command line
qualifier, 6–20

Arithmetic expression
handling null result, 8–20

Assigning value
using host language parameter, 8–14
using procedure parameter, 8–14

Assigning variable
in compound statement, 12–4

AST
See Asynchronous System Trap (AST)

Asynchronous System Trap (AST), 15–11
Atomicity

of compound statement, 12–16
ATOMIC keyword, 12–16
Attaching to a database, 15–2

See also ATTACH statement
connections, 17–5
failure, 10–39
in programs, 17–4
SQL$DATABASE logical name, 15–2, 15–14
SQL_DATABASE configuration parameter,

15–2, 15–14
ATTACH statement, 15–1, 15–2, 15–3

alias in, 15–14e
FILENAME option, 15–1

ATTACH statement
FILENAME option (cont’d)

remote database, 15–5
lock-conflict error, 10–37
PATHNAME option, 15–1
remote access, 15–10
USER clause, 15–5, 15–7

Authentication
for remote access, 15–5, 15–7, 15–8

AUTHORIZATION clause, 20–4, 20–7
in SQL module, 3–10
stored routine and, 13–3, 13–4

Authorization identifier, 15–13
default in SQL precompiler, 20–8, 20–9
default setting in SQL module, 20–4e
for default schema, 20–4
in SQL module, 3–10

AVG function
null result, 8–20

B
BASIC language identifier in SQL module, 3–8
Batch-update transaction, 16–2, 16–9, 16–10,

16–49
BEGIN keyword

compound statement and, 12–3
stored function and, 13–9
stored procedure and, 13–7

Beginning label
for compound statement, 12–13
for FOR statement, 12–14
for LOOP statement, 12–14

Binary data
C language and, 4–19, 6–18, 8–32

Binding to database
See Attaching to a database

BIND ON clause
in CREATE Routine statement, 14–9, 14–37

BIND SCOPE clause
CREATE Routine statement

notify routine and, 14–48
in CREATE Routine statement, 14–9

Index–2

Blank line
including in SQL module, 3–6

Block structure
in Ada, 6–16
in C, 6–19
in COBOL, 6–20
in FORTRAN, 6–24
in Pascal, 6–25
in PL/I, 6–26

Buried update
definition of, 16–19

BY DESCRIPTOR clause
of SQL module language, 4–15

C
Callback

database
from external routine, 14–19

Call parameter
See Actual parameter

CALL statement, 12–4, 12–15
invoking an external procedure with, 14–2,

14–37
invoking a stored procedure with, 13–11,

13–12
passing arguments, 13–12

Call to SQL module procedure
parameter in, 4–9

CASCADE keyword
in DROP FUNCTION statement, 13–14,

14–10
in DROP PROCEDURE statement, 13–14,

14–10
CASE expression, 13–8e
Case sensitivity

in C language
SQLCODE, 8–31
SQLSTATE, 8–31

in precompiled program, 6–6
of SQL module procedure name, 4–3

CASE statement, 12–3, 12–9

CAST function, 9–5, 9–6, 9–7, 9–9, 9–14, 9–15,
9–16, 9–17, 9–19

parameter marker and, 9–20
Catalog, 20–2

default, 20–4
setting in

SQL module, 20–4e
SQL precompiler, 20–8

definition of, 20–2
naming in SQL module, 3–9
RDB$CATALOG system database default,

20–2, 20–9
CATALOG clause, 20–4, 20–7

in SQL module, 3–9
CDD/Plus

See Repository
Character set

collating sequence order, A–4
default, 3–8
for session, 3–8

Character string
null-terminated in C, 4–18, 6–18, 8–11, 8–13,

8–32, 11–23
CHAR data type, 8–29

dynamic SQL and, 4–5
SQL module language and, 4–18

CHECK option
for procedure parameter, 4–16

C language
See also SQL precompiler; Program
aligning data, 8–31
binary data and, 4–19, 6–18, 8–32
debugging program, 7–15
declaring

parameter in, 8–13, 8–31
SQLCA in, 8–31
SQLCODE in, 8–31
symbolic error code in, 10–18

external routine guidelines, 14–45
include file, 6–19, 10–34
INCLUDE SQLCA statement, 8–11
INTEGER data type, 8–32
language identifier in SQL module, 3–8
linking Digital C, 7–3

Index–3

C language (cont’d)
null-terminated string, 4–18, 4–19, 6–18,

8–11, 8–32, 11–23
repository and, 8–13

pointer in parameter, 6–19
precompiled SQL, 6–18

ending SQL statement in, 6–6
input file, 6–8t
output file, 6–8t

SMALLINT data type, 8–33
SQLDA and, 11–11
SQL module language and, 8–13
using multischema names in SQL module,

20–5e
using parameter in, 8–31
VAX C extension, 6–19

Client/server system
stored routines in, 13–3

Client-site binding
external routine and, 14–9, 14–37

CLOSE statement, 18–5, 18–6, 18–10
lock and, 16–33, 18–13
using parameter in dynamic SQL, 11–41

–cm qualifier
SQL module processor command line, 16–45
SQL precompiler command line, 16–44

COBOL language
See also SQL precompiler; Program
COPY statement restriction, 8–9
debugging program, 7–15
declaring

parameter in, 8–34
symbolic error code in, 10–18

EXECUTE IMMEDIATE statement, 11–6e
external routine guidelines, 14–46
language identifier in SQL module, 3–8
precompiled SQL, 6–19

continuing multiline literals, 6–19
ending SQL statement in, 6–6
processing parameter names, 6–6
restriction, 6–20
using ANSI/ISO format, 6–20
using terminal format, 6–20

SQLCODE and, 6–20
SQL precompiler

COBOL language
SQL precompiler (cont’d)

input file, 6–8t
output file, 6–8t

using parameter in, 8–34
Collating sequence

behavior in predicates, A–3
comparing character sets, A–4
order, A–4
specifying, A–2

Colon (:)
in precompiled program, 8–14
in SQL module, 3–11, 8–14

Column
See also Row; Table
using indicator parameter with, 8–20

Column constraint
See Constraint

Combining tables
storing value in table, 19–3

Comment
including in SQL module, 3–6

COMMIT statement, 16–47, 16–49
compound statement and, 12–19
constraint violation and, 16–46
cursor and, 18–10, 18–13, 18–14
effect on recovery-unit journal file, 16–48
error when transaction not started, 10–39,

10–40
in SQL module

procedure parameter for, 4–7
stored function and, 13–10

Common data dictionary
See Repository

Communications area
See SQLCA status parameter

COMPILETIME option, 15–3
Compiling

See SQL precompiler, SQL module processor
Completion condition, 10–2

compound statement and, 12–25, 12–26
detecting, 10–4

using SQLCODE, 10–6
using SQLSTATE, 10–5

Index–4

Completion condition (cont’d)
no data, 18–11

detecting using SQLCODE, 10–8
detecting using SQLSTATE, 10–6
detecting using WHENEVER statement,

10–11
success

detecting using SQLCODE, 10–8
detecting using SQLSTATE, 10–6

Completion status
interactive SQL, 16–49

Compound statement, 12–1 to 12–27
atomicity, 12–16
CALL statement in, 13–11
completion condition, 12–26
creating, 12–3
cursor and, 12–11
dynamic SQL and, 12–20
error handling and, 10–6
exception handling, 12–25
exiting from, 12–14
in embedded SQL, 6–4, 12–7
in interactive SQL, 12–3
in SQL module, 4–16, 12–8, 12–12, 12–19
invoking stored functions from, 13–13
invoking stored procedures from, 13–11
label, 12–13
nested, 12–4, 12–6e, 12–12

atomicity and, 12–17
label, 12–13
variable declaration, 12–6

performance, 12–2
stored function and, 13–8e, 13–9
stored procedure and, 13–5e, 13–7

COMPUTED BY clause
external function in, 14–35

Computed-by column
transaction and, 16–13

Concatenation
date-time data type and, 9–19

Conditional operator
CONTAINING operator

non-English collating, A–3
LIKE operator

non-English collating, A–3

Conditional operator (cont’d)
STARTING WITH operator

non-English collating, A–3
using in dynamic SQL, 11–10

Configuration file
.dbsrc, 15–2, 15–5, 15–8
RDB$CLIENT_DEFAULTS.DAT, 15–5, 15–8

Configuration parameter
in ATTACH statement, 15–14e
RDB_DEBUG_FLAGS, 12–21
RDB_DEBUG_FLAGS_OUTPUT, 12–21
RDB_RTX_SHRMEM_PAGE_CNT, 14–39,

14–51
RDB_VALIDATE_ROUTINE, 13–23
SQL_ALTERNATE_SERVICE_NAME, 15–11
SQL_DATABASE, 15–2

Connection, 17–1
components of, 17–1f
compound statement and, 12–23
CONNECT statement, 17–5t
controlling, 17–5
creating, 17–6
current session, 17–3
cursor declaration within, 18–6
database environment, 17–1
default, 17–4

database environment, 17–2
session, 17–2

definition of, 17–1
DISCONNECT statement, 17–5t
dormant session, 17–3
dynamic SQL, 17–9
ending, 17–11
explicit, 17–5
implicit, 17–2
in SQL module, 17–13
sample

C program using, 17–13, 17–15e
SQL module using, 17–13e

session, 17–1, 17–2
SET CONNECT statement, 17–5t
SQL module processor

disabling, 17–12
enabling, 17–12

SQL precompiler

Index–5

Connection
SQL precompiler (cont’d)

disabling, 17–12
enabling, 17–12

switching, 17–10
transactions within, 17–12

CONNECT qualifier
SQL module processor command line, 17–12
SQL precompiler command line, 17–12

CONNECT statement, 15–3, 17–5t
creating connections, 17–6
duplicate default database environment, 17–6

–conn qualifier
SQL module processor command line, 17–12
SQL precompiler command line, 17–12

Consistency level
See Isolation level

Constant
See Literal

CONSTANT keyword of DECLARE variable
clause, 12–5

Constraint
deferrable, 16–45
evaluation of, 10–36, 10–41, 16–44, 16–46

at commit time, 16–44
at verb time, 16–44
controlling, 16–44

external function in, 14–35
not deferrable, 16–45
transaction and, 16–13, 16–29
validation error, 10–35
violation

value for, 10–35
CONSTRAINT qualifier

SQL module processor command line, 16–45
SQL precompiler command line, 16–44

Contained program in COBOL, 6–20
CONTAINING operator with non-English

collating sequence, A–3
Context file, 5–5, 6–14

declaration in, 6–14
default catalog and schema, 20–4, 20–9
precompiler command line parameter, 6–9
program portability, 6–9, 6–14
SQL module language, 5–5

Context file (cont’d)
SQL precompiler, 6–14

inserting DECLARE MODULE statement,
6–13

Continuation line
in FORTRAN, 6–23

Continuation of multiline literal
in program, 6–4
in SQL module, 4–18

Continuation of multiline statement
in precompiled program, 6–4

Control statement
See Flow-control statement, Compound

statement
Copying declaration

See also INCLUDE statement, FROM
path-name clause

using host language statement, 8–4
COUNT function

indicator parameter and, 8–20
Counting row

processed by SQL statement, 8–11
CREATE DATABASE statement

in precompiled program, 6–5
in SQL module, 4–18

CREATE FUNCTION statement, 14–5, 14–11,
14–15, 14–28

CREATE MODULE statement, 13–3, 13–4
defining stored routine, 13–3e

CREATE PROCEDURE statement, 14–7
Currency indicator character, A–1
Current record

See Current row
Current row, 18–11
Current session in connections, 17–3
CURRENT_TIMESTAMP function, 19–10

setting environment, 9–4
Cursor, 18–1 to 18–23

basic operation, 18–2
categories of, 18–8
classes of, 18–8
CLOSE statement, 18–5
closing, 18–6, 18–10
COMMIT statement, 18–10, 18–13, 18–14
compared to view, 18–6

Index–6

Cursor (cont’d)
compound statement and, 12–11
creating, 18–4
current row, 18–4
declaration for

cannot override, 18–13
in SQL module, 4–8

DECLARE statement, 4–8, 18–3
declaring, 18–3
declaring extended dynamic, 11–37
definition of, 18–2
deleting row, 19–9

restriction, 19–9
deleting with CLOSE statement, 18–5
deleting with OPEN statement, 18–4
differences between static and dynamic,

18–20
dynamic, 18–8, 18–20e
empty, 18–11
error handling, 10–8, 10–11
extended dynamic, 18–9, 18–21e
FETCH statement and, 18–4
FOR statement and, 12–11
holdable, 18–10, 18–14
list, 18–8, 18–15, 19–4

insert-only, 18–9
positioning, 18–16
read-only, 18–9

locking caused by using, 16–30, 16–33, 18–13,
18–14

modes of, 18–8
name, 18–3
opening, 18–10

in different transactions, 18–6
OPEN statement, 4–8, 18–4
read-only, 19–9
reopening, 18–4, 18–5
result table associated with, 18–6
ROLLBACK statement, 18–10, 18–13, 18–14
row pointer, 18–4

definition of, 18–2
scrollable list, 18–5, 18–17, 18–18e
select expression, 18–3
static, 18–8
table, 18–8, 18–10

Cursor
table (cont’d)

insert-only, 18–9
read-only, 18–9
update, 18–9
update-only, 18–9

types of, 18–8
updating column, 19–7
updating row, 19–6, 19–7
using SELECT statement instead, 18–7
when to use, 18–7, 18–10

D
Danish collating sequence conditional operator,

A–4
Database

alias, 15–13
attaching to, 15–1, 15–2

more than one, 15–13
remote, 15–5
using access only to database file, 15–1
using repository access, 15–1

connection, 17–1
consistency of, 16–1
context, 15–1
default

naming in Oracle Rdb, 20–1
detaching from, 15–16
extracted, 16–9
failure to attach to, 10–39
including declaration in context file, 6–14
inconsistency, 16–27
inserting row in, 19–2
loading data into, 19–1

using data file, 19–1
logical name, 15–2
multischema, 20–1 to 20–12
specifying definition, 15–3
using more than one at a time, 15–13, 15–16

when declaring transaction, 16–2
Database callback

from external routine, 14–19
Database environment

connections, 17–1
creating, 17–4

Index–7

Database environment (cont’d)
default, 17–2, 17–3
definition of, 17–1, 17–3
duplicate, 17–6
duplicating aliases, 17–7
embedded language programs, 17–3
module language programs, 17–3

Database integrity
error, 10–34

Data definition language (DDL)
EXECUTE IMMEDIATE statement and, 11–9
in embedded SQL, 6–5
in module language, 4–18
in SQL module

procedure parameter for, 4–7
SQL, 1–1

Data manipulation language (DML)
SQL, 1–1

Data type
See also Date-time data type
CHAR, 4–18, 8–29
converting, 8–8, 8–29
DATE, 8–8, 8–24
DATE ANSI, 9–1 to 9–21

format, 9–3
SQL precompiler and, 9–6

DATE VMS, 9–15, 9–17
format, 9–16

decimal, 8–29
floating point, 6–19, 8–6, 8–31
for parameter, 8–6

in SQL module, 4–11, 4–12
handling in program

Ada, 8–30
C, 8–31
SQL module, 8–34

including
table in RDB$RELATIONS directory of

repository, 8–10
text file into source program, 8–12

in SQL module, 4–11
integer in C, 8–32
INTERVAL, 9–2, 9–4e, 9–14, 9–20

precision, 9–2
SQL precompiler and, 9–6

Data type (cont’d)
LIST OF BYTE VARYING, 18–8
parameter passing in SQL module language,

8–29
SMALLINT in C, 8–33
$SQL_VARCHAR, 6–18, 8–32
stored function definition and, 13–9
stored procedure definition and, 13–7
text string, 8–24
TIME, 9–6
TIMESTAMP, 9–3, 9–6, 9–11
VARCHAR, 6–18

Date
modifying format, A–1
storing current, 19–10

Date-time data type
ANSI/ISO SQL standard, 9–1
assignment error, 9–3
converting, 9–3, 9–4, 9–15
converting character strings in programs,

9–4e
converting date-time format in programs,

9–4e
DATE, 9–4
DATE ANSI, 9–4e, 9–6, 9–9, 9–15

format, 9–3
SQL precompiler and, 9–6

DATE VMS, 9–15, 9–16, 9–17
format, 9–16
on Digital UNIX, 9–17
restriction in dynamic SQL, 9–21

declaring in embedded SQL, 9–6e
dynamic SQL and, 9–20
INSERT statement, 9–3e
INTERVAL, 9–2, 9–4e, 9–14, 9–20

precision, 9–2
SQL precompiler and, 9–6

passing as parameter, 8–8
portability considerations with, 9–14
SQL defined, 9–6
SQL module processor and, 9–9
SQL precompiler and, 9–6
storing data, 9–2
TIME

SQL precompiler and, 9–6

Index–8

Date-time data type (cont’d)
TIMESTAMP, 9–3, 9–11

SQL precompiler and, 9–6
trigger and, 19–10
using in programs, 9–6

Dbkey values with UPDATE . . . RETURNING,
19–8

.dbsrc configuration file, 15–2, 15–5, 15–8
Deadlock

external routine and, 14–51
Deadlock error, 10–36, 10–38

avoiding with distributed transactions, 15–12
recovery from, 10–38

Debugging compound statement, 12–21
Debugging program, 7–14

See also Error
DEBUG qualifier, 7–15
using EDIT command, 7–15
using interactive SQL, 2–4

DEC C compiler
See Digital C compiler

DECIMAL data type, 8–29
DECLARE ALIAS statement, 15–2, 15–3

COMPILETIME option, 15–3
EXTERNAL keyword, 7–8, 7–13
FILENAME option for remote database, 15–5
GLOBAL keyword, 7–8, 7–13
included in context file, 6–15
in precompiled SQL, 6–5, 11–8
in SQL module, 3–12, 15–13

containing parameter, 4–5, 4–6e
in SQL precompiler, 20–11
multiple modules and, 7–13
RUNTIME option, 15–4
shareable image and, 7–8
USER clause, 15–5, 15–7
uses in SQL, 17–4

DECLARE CURSOR statement, 18–3
See also Dynamic DECLARE CURSOR

statement, Extended dynamic DECLARE
CURSOR statement

cannot override, 18–13
dynamic cursors, 18–8
error handling and, 10–4
extended dynamic cursors, 18–9

DECLARE CURSOR statement (cont’d)
FOR UPDATE clause, 19–7, 19–9
holdable cursor, 18–14
in precompiled program, 6–5
in SQL module, 3–12, 4–8

procedure parameter for, 4–8
read-only cursor, 19–7, 19–9
scrollable list cursor, 18–17
SCROLL keyword, 18–5, 18–18
static cursors, 18–8
WHERE CURRENT OF clause, 18–16, 19–5
WITH HOLD clause, 18–10, 18–14

DECLARE MODULE statement, 6–13
DEFAULT DATE FORMAT clause, 9–4
in multischema naming, 20–8

DECLARE statement in SQL module, 3–12
DECLARE STATEMENT statement

in SQL module, 3–12
portability of, 6–15

DECLARE TABLE statement, 6–12
in precompiled program, 6–5
in SQL module, 3–12, 4–18
portability of, 6–15
using to improve performance, 5–4

DECLARE TRANSACTION statement, 16–10e
compound statement and, 12–20
contrasted with SET TRANSACTION

statement, 16–5
included in context file, 6–15
in precompiled program, 6–5
in SQL module, 3–12
isolation level, 16–17
lock type option, 16–11f
RESERVING clause, 16–10

stored routine and, 13–18
setting default, 16–24
share mode option, 16–11f
specifying read/write, 16–8
specifying read-only, 16–7

DECLARE variable clause
of compound statement, 12–4

Declaring host language parameter, 8–2
for dynamically executed statement, 8–5
handling error, 8–4
handling null value, 8–4

Index–9

Declaring host language parameter (cont’d)
storing column value, 8–4

Declaring parameter
causing run-time errors, 4–13
in module procedure, 4–4, 4–5, 4–9, 4–11

Declaring table
See DECLARE TABLE statement

Declaring transaction
See DECLARE TRANSACTION statement;

SET TRANSACTION statement; Context
file

DECnet network protocol, 15–10
Default character set of session, 3–8
DEFAULT clause

of DECLARE variable clause, 12–5
DEFAULT DATE FORMAT clause

of DECLARE MODULE statement, 9–4
of module header, 9–4

Default evaluating dependency type, 13–18
Default reserving dependency type, 13–18
DEFERRABLE constraint, 16–45
Definer’s rights module

stored routine and, 13–4
DELETE statement, 19–9

affecting multiple rows, 18–7
counting rows processed by, 8–11
cursor and, 18–5, 19–9
in SQL module

procedure parameter for, 4–9
restriction, 15–15e
WHERE clause, 19–9

Deleting
external routine definition, 14–10
list data, 19–10
row, 19–9

restriction, 19–9
stored function, 13–14
stored module, 13–13
stored procedure, 13–14

Delimited identifier, 20–11
Dependency tracking, 13–14 to 13–19

dependent object, 13–14
information stored in

RDB$INTERRELATIONS, 13–16
referenced object, 13–14, 13–15t

Dependency type, 13–15t, 13–16
default evaluating, 13–18
default reserving, 13–18
language semantic dependency, 13–17
procedure dependency, 13–16
transaction dependency, 13–18

Dependent object, 13–14
DESCRIBE statement, 11–4

compound statement and, 12–20
in dynamic SQL

using parameter, 11–39
MARKERS clause, 11–10, 11–26
SELECT LIST clause, 11–10, 11–22
using parameter, 11–39, 11–41

Detaching from a database
DISCONNECT statement, 15–16

Developing program
guideline, 2–1

Dialect
setting, 3–7, 6–13

DIALECT clause
DECLARE MODULE statement, 20–11

Digital C compiler
linking, 7–3

Digit separator character, A–1
DISCONNECT statement, 15–16, 17–5t, 17–11

cursors with, 18–6
cursor with, 18–13

Displaying message
user-supplied message file, 10–33
with sql_get_error_text routine, 10–32
with sql_signal routine, 10–31

DISTRIBTRAN privilege, 15–12
Distributed transaction

accessing databases on remote nodes, 15–12
definition of, 16–26
ending, 16–47

Dollar sign ($)
in Ada program, substitute underscore, 8–30

Dormant session in connections, 17–3
DO statement in FORTRAN, 6–24
Double hyphen (--) comment character, 3–6
Double-precision floating-point, 6–19

Index–10

DROP FUNCTION statement, 13–14, 14–10
DROP MODULE statement

deleting stored function, 13–13
deleting stored module, 13–13
deleting stored procedure, 13–13

DROP PROCEDURE statement, 13–14, 14–10
DROP TABLE statement

when restructuring table, 19–4e
Duplicate value error, 10–35
Dynamic cursor, 11–21, 11–23e, 18–8, 18–20e
Dynamic DECLARE CURSOR statement, 11–5,

11–21, 11–26, 18–8, 18–20
in SQL module, 3–12

Dynamic SQL, 11–1 to 11–48
CAST and parameter marker, 9–20
category of statement to be dynamically

executed, 11–2
CLOSE statement, 11–41
compound statement and, 12–20
connections in, 17–9
date-time data type considerations, 9–20,

9–21
declaring parameter

for cursor name, 11–38
for dynamically executed statement, 8–5
for statement name, 11–38

DESCRIBE statement, 11–4, 11–39, 11–41
dynamic cursor, 11–5, 11–21, 11–26
EXECUTE IMMEDIATE statement, 11–4,

11–6e
EXECUTE statement, 11–4, 11–37, 11–39
extended dynamic cursor, 11–5, 11–22, 11–26,

11–37, 11–41
FETCH statement, 11–5, 11–41
multistatement procedure and, 12–20
non-SELECT statement, 11–2, 11–37, 11–39

without parameter marker, 11–6
with parameter marker, 11–9

OPEN statement, 11–5
parameter

for cursor name, 11–37, 11–41
for statement name, 11–37, 11–41
supplying at run time, 11–37

parameter marker, 11–2, 11–9

Dynamic SQL (cont’d)
PREPARE statement, 11–4, 11–37, 11–39,

11–41
processing, 11–5
RELEASE statement, 11–5
select list item, 11–3, 11–4, 11–21
SELECT statement, 11–3, 11–21, 11–26,

11–37, 11–41
SQLDA, 11–11
SQLDA2, 11–11
statement, 11–2

dynamically executed, 11–2
with parameter marker, 11–15

E
ELSEIF clause of IF statement, 12–8
Embedded SQL

See SQL precompiler
Embedding SQL statements in host language

program, 1–3
END-EXEC flag, 6–6
Ending label

for compound statement, 12–13
for FOR statement, 12–14
for LOOP statement, 12–14

Ending SQL statement
in Ada program, 6–6
in COBOL program, 6–6
in C program, 6–6
in FORTRAN program, 6–7
in Pascal program, 6–7
in PL/I program, 6–7

END keyword
compound statement and, 12–3
stored function and, 13–9
stored procedure and, 13–7

END MODULE clause, 13–5
END PROGRAM statement in COBOL, 6–20
END statement in FORTRAN, 6–24
Equal sign (=) in SET clause of UPDATE

statement, 19–7e
Error

See also Error code; Error handling; Exception
condition

Index–11

Error (cont’d)
database

attachment, 10–39
integrity, 10–34

data validation, 10–34
deadlock, 10–36, 10–38
debugging a program, 7–14
handling run-time

on database attachment, 15–3
infinite looping, 10–13
lock conflict, 10–36, 10–37
logging

compile-time error, 6–11
SQL precompiler error, 6–11

message display, 10–30
run-time, 7–14
starting transaction, 10–39
validation, 10–34
value returned in SQLCODE, 10–8

Error code
RDB$LU_STATUS

RDB$_DEADLOCK, 10–39
RDB$_INTEG_FAIL, 10–35
RDB$_LOCK_CONFLICT, 10–38
RDB$_NOT_VALID, 10–35
RDB$_NO_DUP, 10–35

SQLCODE, 10–35
SQLCODE_DEADLOCK, 10–39
SQLCODE_EOS, 10–8
SQLCODE_LOCK_CONFLICT, 10–38
SQLCODE_NOT_VALID, 10–35
SQLCODE_SUCCESS, 10–8
SQLSTATE, 10–35

Error handling
compound statement and, 12–25, 12–26
declaring symbolic error code, 10–17
displaying a message

from user-supplied message file, 10–33
with sql_get_error_text routine, 10–32
with sql_signal routine, 10–31

external routine and, 14–49
options, 10–2
run-time, 10–1

message display, 10–30
online example for, 10–4

Error handling
run-time (cont’d)

summary of options for, 10–2
using conditional statement, 10–13
using SQLCODE, 10–12
using sql_get_error_text routine, 10–32
using sql_signal routine, 10–31
using WHENEVER statement, 10–12,

10–13
using RDB$MESSAGE_VECTOR, 10–15
using SQL routines, 10–4, 10–20
using sql_get_error_text routine, 10–32
using sql_get_message_vector, 10–14, 10–15
using sql_signal routine, 10–31
warning

using SQLCODE, 10–8
using WHENEVER statement, 10–12

Examples
online programs, 1–5
sample databases, 1–5

Exception condition, 10–2
See also Error code, Error Handling
detecting, 10–4

using SQLCODE, 10–6, 10–8
using SQLSTATE, 10–5
using WHENEVER statement, 10–11

handling, 10–2
atomicity and, 12–17
in a compound statement, 12–25

no data, 18–11
Exception handling

See Error handling; Exception condition
EXCLUSIVE share mode, 16–30

conflict with read-only transaction, 16–34
read-only transaction and, 16–34

EXEC SQL flag, 6–4
Executable image, 7–2

creating, 7–1
EXECUTE IMMEDIATE statement, 11–4

compound statement and, 12–20
EXECUTE statement, 11–4

compound statement and, 12–20
using parameter, 11–37, 11–39

Index–12

Exiting
from a compound statement, 12–14
from a procedure, 12–14
from a program, 16–49

Extended dynamic cursor, 11–5, 11–22, 11–26,
11–37, 11–41, 18–9, 18–21e

Extended dynamic DECLARE CURSOR
statement, 11–5, 11–22, 11–26, 18–9, 18–21

using parameter, 11–37, 11–41
Extend_source qualifier, SQL precompiler

command line, 6–22
External function, 14–1 to 14–52

See also External routine
creating, 14–10

definition, 14–5e
definition of, 14–2
invoking, 14–4, 14–13, 14–16, 14–34, 14–35
LANGUAGE clause

GENERAL keyword, 14–43
language-specific coding guidelines, 14–43
languages supported, 14–6, 14–43
parameter data type, 14–5
passing mechanism, 14–5
predefined, 14–11e, 14–27
return value, 14–5
trigger and, 14–35
user-defined, 14–14e

EXTERNAL keyword
DECLARE ALIAS statement, 7–8, 7–13

EXTERNAL NAME clause
in external function definition, 14–6
in external procedure definition, 14–8

External procedure, 14–1 to 14–52
See also External routine
creating definition, 14–7e
data type, 14–7
definition of, 14–7
invoking, 12–15, 14–2, 14–4, 14–37

in compound statement, 12–15
passing mechanism, 14–7

External routine, 14–1 to 14–52
See also External function, External procedure
activation, 14–37, 14–39, 14–41
Ada and, 14–44
C and, 14–45

External routine (cont’d)
COBOL and, 14–46
creating, 14–10

definition, 14–3
options file for, 14–31, 14–32
shareable image for, 14–30, 14–31, 14–32
shared object for, 14–33

deactivation, 14–41
definition

creating, 14–3
deleting, 14–10
modifying, 14–10

definition of, 14–2
developing, 14–3
exception handling, 14–49
execution characteristics, 14–37
FORTRAN and, 14–43, 14–46
invoking, 14–13, 14–16, 14–28, 14–34, 14–37
jacket routine, 14–12, 14–27
LANGUAGE clause, 14–6, 14–8
languages supported, 14–8
limitations, 14–49
notification, 14–47
parameter data type, 14–41
Pascal and, 14–43, 14–47
passing mechanism, 14–41
portability, 14–52
scope of, 14–4, 14–9
security considerations, 14–39
shared memory, 14–39, 14–51
testing execution of, 14–3
troubleshooting, 14–50
types of, 14–2

EXTERNAL_GLOBAL command line qualifier
SQL module processor, 7–8, 7–11
SQL precompiler, 7–8, 7–11

–extern option, 7–13
Extracted database, 16–9
EXTRACT function, 9–9, 9–14

Index–13

F
FETCH statement

cursors, 18–18
error handling, 10–39
in a loop, 18–10
in an SQL module

procedure parameter for, 4–8
in dynamic SQL, 11–5

using parameter, 11–41
in program, 18–4
INTO clause, 18–4
list cursors and, 19–5
options, 18–18
order of row retrieval, 18–4, 18–5
ordinal position of row in the cursor, 8–11
row pointer, 18–4

File access
specifying, 15–1

FILENAME clause
ATTACH statement

including node specification, 15–5
specifying an alias, 15–13

DECLARE ALIAS statement
retrieving database definitions, 15–4

File name length in Ada program, 6–15
Finnish collating sequence conditional operator,

A–4
FLAG_NONSTANDARD qualifier, 3–15

displaying nonstandard ANSI/ISO SQL
syntax, 20–8

Floating-point data, 8–6
double-precision, 6–19
in C, 6–19

Flow-control statement, 12–1
CASE, 12–9
FOR, 12–11
IF, 12–7
LEAVE, 12–14
LOOP, 12–10
WHILE loop, 12–10

–form ansi SQL precompiler command line
qualifier, 6–9, 6–20

FOR statement, 12–3, 12–11, 13–13e
current row, 12–24e
exiting from, 12–14
label in, 12–14

FORTRAN language
See also SQL precompiler; Program
and SQLCODE, 6–24
debugging program, 7–15
declaring parameter in, 8–34
declaring symbolic error code in, 10–18
END statement, 6–24
external routine guidelines, 14–43, 14–46
language identifier in SQL module, 3–8
precompiled program

block structure, 6–24
DO loop restriction, 6–24
ending SQL statement, 6–7
IF statement restriction, 6–23
number of characters per line, 6–22
number of continuation lines, 6–23
SQLCA field name, 6–23

SQL precompiler
input file, 6–8t
output file, 6–8t

using parameter in, 8–34
FOR UPDATE clause

when deleting rows, 19–9
FOR UPDATE OF clause, 19–6
French collating sequence conditional operator,

A–3
FROM DICTIONARY clause of SQL module

language, 8–13
FROM path-name clause of SQL module

language, 8–4
Function

CAST, 9–5, 9–9
external, 14–1 to 14–52
EXTRACT, 9–9
handling null result, 8–20
stored

See Stored function, Stored routine

Index–14

G
GENERAL keyword

in CREATE FUNCTION statement, 14–6
in CREATE PROCEDURE statement, 14–8
in LANGUAGE clause, 14–43

GENERAL language identifier
in SQL module, 3–8

interpretation of, 4–13
GET DIAGNOSTICS statement, 10–3, 12–4,

12–23, 12–25, 12–26
GLOBAL keyword

DECLARE ALIAS statement, 7–8, 7–13
Global symbol

SQLLIBS, 5–3, 7–12
G_FLOAT qualifier

specifying for precompiled program, 6–9

H
HAVING clause

cannot contain indicator parameter, 8–26
in SQL module

procedure parameter for, 4–8
Header file

sql_rdb_headers.h, 6–19, 10–34
sql_sqlda.h, 8–5, 11–12

Holdable cursor, 18–10, 18–14
Hold open cursor

See Holdable cursor
Host language

supported by SQL precompiler, 6–15
supported for external routine, 14–43
supported for SQL module language, 3–2

Host language parameter
assigning value, 8–14
copying from file, 8–9, 8–13
retrieving row, 8–14

Host language program
developing, 2–1 to 2–7

Host language variable
See also Parameter, in SQL module procedure
compared with parameter marker, 11–3, 11–9
manipulation by language statement, 18–10

Host language variable (cont’d)
using with singleton select statement, 18–7

Hyphen (-)
double hyphens (--) comment flag in SQL

module, 3–6
relationship to underscore (_), 6–6

I
Identifier character set of session, 3–8
IF statement, 12–3, 12–7, 12–19e, 13–13e

in precompiled FORTRAN, 6–23
nested, 12–8

in FOR statement, 12–11
Image section, 7–6
Include file

sql_rdb_headers.h, 6–19, 10–34
sql_sqlda.h, 8–5, 11–12

INCLUDE statement, 8–4, 8–9
file specification option, 8–12
FROM DICTIONARY clause, 8–9, 8–10

in Pascal, 6–25
in precompiled program, 6–5
in SQL module, 4–18
restriction, 8–10
SQLCA keyword, 8–4, 8–9, 10–7

EXTERNAL keyword, 8–11
source of definition, 8–11

SQLDA2 keyword, 8–5, 8–9
source of definition, 8–12

SQLDA keyword, 8–5, 8–9
source of definition, 8–12

Index locking, 16–35, 16–37
when index not used, 16–30

Indicator array, 8–4, 8–20, 8–27, 8–28
in precompiled SQL, 8–23
in SQL module, 8–23

Indicator parameter, 8–4, 8–20, 18–7
array element of, 8–20

unexpected allocation of, 8–28
as individually named parameter, 8–22
calling stored procedure, 13–12
common mistake using, 8–26
declaring, 8–20
for host language structure, 8–20
in array, 8–20

Index–15

Indicator parameter (cont’d)
in C, 8–31
in FETCH statement, 8–24
in INSERT statement, 8–22, 8–25, 8–26
in precompiled SQL, 8–23
in SQL module, 8–23, 8–34
interpreting value of, 8–23
in UPDATE statement, 8–22, 8–23
in WHERE clause, 8–22
need for, 8–20
not used in WHERE or HAVING clause, 8–26
retrieving value, 8–23
stored function and, 13–9
stored procedure and, 13–7
storing value, 8–25

Indicator variable
See Indicator parameter

Infinite looping
between WHENEVER statement and error

handler, 10–13
INOUT parameter mode, 13–6
IN parameter mode, 13–6, 13–9
Insert-only cursor, 18–9

list, 18–9
INSERT statement, 19–2

combining tables, 19–3
copying data, 19–3
counting rows processed by, 8–11
date-time data type and, 9–2e, 9–3e
external function in, 14–35
improving performance, 19–4
indicator parameter and, 8–25
in SQL module

procedure parameter for, 4–9
loading database, 19–1
SELECT clause, 19–3
specifying NULL in program, 19–3
specifying value in program, 19–3
storing data, 19–3
updating data, 19–3
VALUES clause, 19–2
when restructuring table, 19–4

Integer data type in C, 8–32

Interactive SQL
completion status, 16–49
compound statement in, 12–3
EXIT statement, 16–49
label for compound statement, 12–14
SET FLAGS statement, 12–21
testing statement in program, 2–4

Internationalization, A–1
Internet service

alternate, 15–11
INTERVAL data type, 9–2, 9–4e, 9–14, 9–20

precision, 9–2
SQL precompiler and, 9–6

INTO clause
FETCH statement, 18–4

in loop, 18–10
SELECT statement, 18–7e

Invalidation
stored routine, 13–20

SQL statements causing, 13–20t
Invoker’s rights module

stored routine, 13–5
Invoking

stored function, 13–13
stored procedure, 12–16, 13–11

Isolation level, 16–3
benefits of, 16–20
for reports, 16–21
for updates, 16–22
phenomena permitted, 16–16
READ COMMITTED, 16–18
REPEATABLE READ, 16–17
RESERVING clause and, 16–16
SERIALIZABLE, 16–3, 16–17
specifying non-Oracle Rdb databases, 16–22
type of, 16–15
update-only cursor and, 16–16

ISO standard
See ANSI/ISO SQL standard

Index–16

J
Jacket routine, 14–12

writing, 14–27
Join restricted to data from one database,

15–15e

K
Keywords in precompiled programs, 6–6

L
Label

for compound statement, 12–13
for LOOP statement, 12–14
in FOR statement, 12–14

Labeled statement in FORTRAN, 6–24
Language

specifying for input/output, A–1
supported by SQL precompiler, 6–15
supported for external routine, 14–43
supported for SQL module language, 3–2

LANGUAGE clause
in CREATE FUNCTION statement, 14–6
in CREATE PROCEDURE statement, 14–8
in SQL module, 3–8, 4–12, 4–13

use of C, 4–19
use of GENERAL, 3–9, 4–19

stored routine, 13–4
Language identifier in SQL module, 3–8, 4–12,

4–13
Language semantic dependency, 13–17

invalidation due to, 13–24
–lcosi library, 5–3, 7–12
–lc_proc qualifier

SQL module command line, 4–4
LEAVE statement, 12–4, 12–14
Library

Ada, 6–16
SQL, 7–2, 7–12

Library file not supported by SQL INCLUDE
statement, 8–10

LIKE operator with non-English collating
sequence, A–3

LINK command (ACS)
to create executable image, 7–4, 7–5e
using for Ada, 7–4

LINK command (DCL) to create executable
image, 7–2e

Linking, 7–1
error caused by

non-unique module name, 3–7
non-unique procedure name, 4–3

LNK$LIBRARY logical name and, 7–3
multiple modules, 7–13
multiple object files, 7–13
object file

on Digital UNIX, 7–12
on OpenVMS, 7–2

shareable image, 7–6
SQL$USER library file, 7–3
SQL libraries, 5–3, 7–12
SQL module, 5–3
user-defined message file, 7–2

List
cursor for, 18–15
definition of, 18–8
deleting, 19–10
inserting, 18–16, 19–4, 19–5
reading, 18–16
scrollable, 18–17

List cursor, 18–8, 18–15, 19–4
inserting rows, 19–5
insert-only, 18–9, 19–5
positioning, 18–16
read-only, 18–9
scrollable, 18–17, 18–18e

LIST OF BYTE VARYING data type, 18–8
–list SQL precompiler command line qualifier,

6–9
Literal

in Ada, 6–15
in SQL module, 4–18
multiline literal in program, 6–4

Index–17

Literal character set of session, 3–8
LNK$LIBRARY logical name, 7–2
Loading database, 19–1

sample online program, 19–1
Locale setting, A–2
Lock

releasing, 16–33
Lock conflict

access conflict, 16–30t
definition of, 16–30
external routine and, 14–51
no-wait characteristic, 16–30

Lock-conflict error, 10–36
recovery from, 10–37
with read-only transaction, 16–34

Locking
cursor and, 16–33, 18–13, 18–14
definition of, 16–27
index and, 16–35

duplicates allowed, 16–35
not used, 16–30

intent locks, 16–28
lock conflict

definition of, 16–30
no-wait characteristic, 16–30

option
access conflict, 16–30t

READ COMMITTED isolation level and,
16–20

reducing conflict, 16–35
REPEATABLE READ isolation level and,

16–18
row, 16–28
SERIALIZABLE isolation level and, 16–17
sorted index and, 16–35
strategy, 16–28
table, 16–10, 16–28
waiting for release of lock, 16–13
waiting for resources, 16–29

Lock type, 16–11f
affect on other users, 16–30
how determined, 16–30
READ, 16–30
WRITE, 16–30

Log file
for compile-time error

when using SQL precompiler, 6–11
for precompiler error, 6–11

Logical name
database, 15–2
external routine and, 14–6, 14–8, 14–30,

14–39
in ATTACH statement, 15–14e
LNK$LIBRARY, 7–2
RDB$ROUTINES, 14–6, 14–8
RDBSERVER, 15–9
RDMS$DEBUG_FLAGS, 12–21
RDMS$DEBUG_FLAGS_OUTPUT, 12–21
RDMS$RTX_SHRMEM_PAGE_CNT, 14–39,

14–51
RDMS$VALIDATE_ROUTINE, 13–23
RDMS$VERSION_VARIANT, 15–9
SQL$DATABASE, 15–2

LONG_SQLCODE command line qualifier, 8–31
Loop

retrieving data using, 18–10
LOOP statement, 12–4, 12–10

exiting from, 12–14
label in, 12–14

–lots library, 5–3, 7–12
Lowercase name

in SQL module, 4–4
–lrdbshr library, 5–3, 7–12
–lrdbsql library, 5–3, 7–12
–lsqlcode command line qualifier, 8–31
–l SQL precompiler command line qualifier, 6–7

M
Main parameter

See Parameter; Structure
Make file

sqllibs.make file, 7–13
MARKERS clause of DESCRIBE statement,

11–10, 11–26
–match SQL precompiler command line qualifier,

6–9

Index–18

MAX function
null result, 8–20

Memory
shared

external routine and, 14–39, 14–51
Message file

user-defined
run time, 10–33
sql$persmsg example, 10–33

MIA
See Multivendor Integration Architecture

(MIA)
MIN function

null result, 8–20
Missing value

See Null value
Mode

reserve, 16–30t
share, 16–30t

EXCLUSIVE, 16–11f, 16–30
PROTECTED, 16–11f, 16–30
SHARED, 16–11f, 16–30

transaction
batch-update, 16–49
read/write, 16–8
read-only, 16–7

Module
See also SQL module
building applications with, 7–13
stored

creating, 13–5e, 13–8e
MODULE clause

in SQL module, 3–6
Module language

See SQL module language; SQL module
Module processor

See SQL module processor
Multiline literal

COBOL, 6–19
in program, 6–4
in SQL module, 4–18

Multiline statement in precompiled program,
6–4

Multinational character set, A–1
behavior in predicates, A–3

Multiple object files
linking, 7–13

Multischema database, 20–1 to 20–12
attribute, 20–2
catalog within, 20–2
default

catalog, 20–2, 20–9
schema, 20–2, 20–9

definition of, 20–2
disabling in SQL precompiler, 20–12
enabling, 20–2
naming in, 20–1

in SQL module, 20–7
in SQL precompiler, 20–9, 20–10e

programming, 20–8
compile, 20–11
link, 20–12
sample C program, 20–5, 20–8
sample SQL module, 20–5e
SQL module processor, 20–3 to 20–8
SQL precompiler, 20–8 to 20–12

schema objects in, 20–2
schema within, 20–2
structure of, 20–2f

MULTISCHEMA IS ON clause, 20–2
Multistatement procedure, 4–2, 4–16, 12–1 to

12–27
performance, 12–2

Multiuser conflict, 10–36
access conflict, 16–30t
handling in program, 10–39

Multivendor Integration Architecture (MIA)
support for exception handling, 10–20

Multiversioning
access, 15–9, 15–10, 15–11
remote access and, 15–10

Index–19

N
Name

of compound statement, 12–13
of procedure in SQL module, 4–3

case-sensitivity, 4–3
of procedure parameter in SQL module, 4–11
of SQL module, 3–6
unique in Ada, 6–16

National character set of session, 3–8
Nested compound statement, 12–4, 12–6e, 12–12

label, 12–13
NOCONNECT qualifier

SQL module processor command line, 17–12
SQL precompiler command line, 17–12

No data condition
detecting using SQLCODE, 10–8
detecting using SQLSTATE, 10–6

NOEXTERNAL_GLOBAL command line qualifier
SQL module processor, 7–8, 7–11
SQL precompiler, 7–8, 7–11

–noextern option, 7–13
NOG_FLOAT command line qualifier, 6–19
Non-SELECT statement

in dynamic SQL, 11–2, 11–37, 11–39
executing, 11–20
without parameter marker, 11–6
with parameter marker, 11–9

Nonstored module, 13–2
NOOPTIMIZE qualifier, 7–15
NOPARAMETER_CHECK qualifier

SQL module processor command line, 5–4
Norwegian collating sequence conditional

operator, A–3
NOT ATOMIC keyword, 12–16
NOT DEFERRABLE constraint, 16–45
Not found condition, 18–11

detecting
using SQLCODE, 10–8
using WHENEVER statement, 10–11

Notification routine, 14–47
NOTIFY clause

in CREATE Routine statement, 14–9, 14–47

NOWAIT transaction option, 16–14, 16–30
Null-terminated string in C language, 8–11,

8–13, 8–32, 11–23
Null value

assigning, 8–20
identifying, 8–20
in calling stored procedure, 13–12
indicator parameter for, 18–7

value, 8–23
in stored function, 13–9
in stored procedure, 13–7, 13–12
setting, 8–19
when inserting row

in program, 19–3

O
Object file

inserting in archive, 7–13
inserting in library, 7–13
linking

on Digital UNIX, 7–12
on OpenVMS, 7–2

precompiled program
specifying location of, 6–9

OBJECT qualifier
specifying for precompiled program, 6–9

ON clause of transaction statement, 16–22
OPEN statement, 18–4, 18–10

in dynamic SQL, 11–5
using parameter, 11–41

in precompiled program, 6–5
in SQL module, 4–8

procedure parameter for, 4–8
locking and, 16–30

OpenVMS Linker utility
deciding need for shareable image, 7–6
LIBRARY qualifier, 7–2
SHAREABLE qualifier, 7–4
use of program sections, 7–6

Options file
creating for external routine, 14–31, 14–32
for OpenVMS Linker utility, 7–4

Index–20

Oracle Rally
See Rally

Order of statements in Pascal
in SQL precompiled program, 6–26

OUT parameter mode, 13–6

P
Parameter, 8–1 to 8–34

See also Host language variable; Indicator
parameter; Structure

common mistake using, 8–26 to 8–30
compared to variable, 8–3
data type of, 8–6

in SQL module, 4–11
declaring, 8–4, 8–6, 8–30 to 8–34

in Ada, 8–30
in C, 8–31
in COBOL, 8–34
in FORTRAN, 8–34
in host language program, 8–2, 8–13
in Pascal, 8–34
in PL/I, 8–34
in SQL module procedure, 4–5, 4–6e,

8–34
using FROM clause, 8–13
using INCLUDE statement, 8–9

floating point, 8–6
for dynamically executed statement, 8–5
for sql_get_error_text routine, 10–32
in call to procedure in SQL module, 4–13,

4–14
indicator, 8–4, 13–7, 13–9, 18–7
in dynamic SQL

declaring, 11–38
for cursor name, 11–37, 11–41
for statement name, 11–37, 11–41

in precompiled program, 8–14
case sensitivity in, 6–6
hyphen (-) in, 6–6
underscore in, 6–6

in SQL module procedure, 4–4, 4–5
main, 8–4, 8–14

declaring, 8–15
using, 8–16

Parameter (cont’d)
name, 8–14

in SQL module procedure, 8–30
passing mechanism for, 4–14
passing to SQL module, 4–5
to handle error, 8–4
to handle null value, 8–4, 8–20
to store column value, 8–4
using for database attachment, 15–4

PARAMETER COLONS clause, 3–11, 8–14
Parameter marker, 11–2, 11–9, 11–19

CAST function and, 9–20
compared with host language variable, 11–3,

11–9
data type of, 11–10, 11–11
date-time data type and, 9–20
DESCRIBE statement, 11–10, 11–22

Parameter mode
stored function, 13–9
stored procedure, 13–6

PARAMETER STYLE clause
in CREATE FUNCTION statement, 14–6
in CREATE PROCEDURE statement, 14–8

PARAMETER_CHECK qualifier
SQL module processor command line, 5–4

Pascal language
See also SQL precompiler; Program
debugging program, 7–15
declaring parameter in, 8–34
declaring symbolic error code in, 10–18
declaring variable, 6–26
external routine guidelines, 14–43, 14–47
language identifier in SQL module, 3–8
precompiled program

ending SQL statement in, 6–7
restriction, 6–26

SQL precompiler
input file, 6–8t
output file, 6–8t

using parameter in, 8–34
Passing mechanism for parameter

in SQL module, 4–14, 8–29
BY DESCRIPTOR CHECK, 4–16
CHECK option for, 4–16
in call to procedure, 4–13

Index–21

Passing mechanism for parameter
in SQL module (cont’d)

overriding default, 4–15
–pass option

SQL module processor command line, 15–8
SQL precompiler command line, 15–8

Password
supplying for remote access, 15–7

PASSWORD_DEFAULT qualifier, 15–8
PATHNAME clause

DECLARE ALIAS statement
retrieving database definitions, 15–3

Performance
improving

by creating redundant table, 19–3
compilation time with the SQL module

processor, 5–4
during INSERT, 19–4
SQL module processor, 5–4
SQL precompiler, 6–12
with compound statement, 12–2
with stored routines, 13–2

Performance degradation
if others do not use index, 16–30

Phantom row, 16–15
READ COMMITTED and, 16–18
REPEATABLE READ and, 16–17

PL/I language
See also SQL precompiler; Program
debugging program, 7–15
declaring

parameter in, 8–34
symbolic error code in, 10–18

language identifier in SQL module, 3–8
precompiled program

ending SQL statement in, 6–7
SQLDA and, 11–11
SQL precompiler

input file, 6–8t
output file, 6–8t

using parameter in, 8–34
Plan file

See Context file

PLI language identifier in SQL module, 3–8
Pointer variable, using in C precompiler, 6–19
Portability

date-time data type considerations, 9–14
DATE VMS, 9–17
external routine, 14–52
of error-handling technique, 10–40
SQL module language, 3–15
using context file, 6–9, 6–14

Precision
fractional

date-time data type and, 9–2
leading

date-time data type and, 9–2
TIMESTAMP data type, 9–3

Precompiled SQL
See SQL precompiler

Predefined external function
direct, 14–11e

Predicate
behavior of multinational character set, A–3

PREPARE statement, 11–4, 18–20, 18–21
compound statement and, 12–20
initializing statement identifier, 11–41
using parameter, 11–37, 11–39, 11–41

PRESERVE clause
DECLARE CURSOR statement, 18–14

Privilege
checking

in SQL module processor, 20–4
in SQL precompiler, 20–9

DISTRIBTRAN, 15–12
external routine and, 14–38
stored routine, 13–3, 13–4

deleting, 13–13
Privilege checking

cursor, 18–6
Procedure

See also Procedure in SQL module
external, 14–1 to 14–52

See also External procedure, External
routine

stored
See Stored procedure; Stored Routine

Index–22

Procedure dependency, 13–16
Procedure in SQL module, 4–1

calling from host language module, 3–13
compound statement in, 4–16
data type of procedure parameter, 4–11
declaring parameter, 4–4
executable statement in, 4–16
multistatement, 4–2
naming, 4–3

case-sensitivity, 4–3
order of parameter in, 4–10
parameter, 4–9
parameter required for, 4–5
simple, 4–2

Processing SQL module, 5–2
Program

combining multiple modules, 3–11
compiling with DEBUG qualifier, 7–15
connections in, 17–1, 17–13, 17–15e
creating executable image, 7–1 to 7–15
creating SQL module called by, 3–3
cursor and, 18–7
database

attachment in, 15–3
detachment in, 15–16

date-time data type and, 9–3 to 9–21
debugging, 2–4, 7–14
developing, 2–1 to 2–7
displaying error message, 10–30
embedding SQL statements in

Ada, 6–15
C, 6–18
COBOL, 6–19
FORTRAN, 6–22
Pascal, 6–25
PL/I, 6–26

error recovery
deadlock, 10–38
lock conflict, 10–37

exiting, 16–49
host language restriction when including file

or library, 8–10
including SQL statement in, 1–3
indicator parameter in, 8–20
linking, 7–1

Program
linking (cont’d)

multiple modules, 7–13
main parameter in, 8–14
parameter declaration

for Ada, 8–30
for C, 8–31
for COBOL, 8–34
for FORTRAN, 8–34
for Pascal, 8–34
for PL/I, 8–34
in SQL module, 4–5, 8–34

precompiled, 6–1
flagging SQL statement, 6–4
SQL statement in, 6–5
treatment of hyphen and underscore in,

6–6
processing precompiled SQL, 6–1
processing SQL module used by, 5–2
running, 6–1, 7–14
run-time error, 10–2
sample, 3–15

date-time data type, 9–6
extended dynamic cursor, 18–21
for loading database from data file, 19–3
illustrating cursor use, 18–7
illustrating dynamic cursors, 18–20
illustrating error handling, 10–4
illustrating list cursors, 19–5
illustrating scrollable list cursor, 18–18e
sql_all_datatypes, 8–30
sql_all_datatypes.sc, 8–31
sql_all_datatypes_ada.sqlmod, 8–34
sql_dynamic, 11–45
sql_multi_stmt_dyn.sqlada, 11–45
sql_report, 18–7
sql_terminate, 10–33, 19–7
using cursor, 19–7

SQL module, 3–1, 3–4, 4–1, 5–1
validation checking by host language, 10–34
with embedded UPDATE statement, 19–7
with multischema database, 20–1 to 20–12

Programming construct in SQL
See Flow-control statement

Index–23

Program portability
See Portability

Program section
attributes of, 7–6
definition of, 7–6
for database alias, 7–7, 7–10
for database objects, 7–7
when length changes, 7–10

PROTECTED share mode, 16–8, 16–30
Protection

See Lock type; Share mode; Table
Proxy account, 15–9

multiversioning and, 15–10
PSECT attribute, 7–3, 7–6

Q
Qualifier

SQL module processor command line, 5–2
SQL precompiler command line, 6–10

Query optimizer, 16–36
Quotation mark ("), 3–7
Quotation mark, single (’)

in INCLUDE FROM DICTIONARY clause,
8–10

QUOTING RULES clause
DECLARE MODULE statement, 20–11

R
Radix point character, A–1
Rally with SQL module language, 3–1
RDB$CATALOG catalog, 20–2

contents, 20–9
default

for SQL module processor, 20–4
for SQL precompiler, 20–9

RDB$CLIENT_DEFAULTS.DAT configuration
file, 15–5, 15–8

RDB$DBHANDLE alias, 15–13, 15–14e
default alias in SQL precompiler, 20–9
in AUTHORIZATION clause, 3–11

RDB$INTERRELATIONS system table
dependency tracking, 13–16

RDB$LU_STATUS field, 10–15, 10–17
declaring symbolic error code for, 10–17
symbolic code for

constraint violation, 10–35
deadlock, 10–39
duplicate value in unique index, 10–35
lock conflict, 10–38
‘‘valid if’’ violation, 10–35

RDB$MESSAGE_VECTOR array, 10–3, 10–5,
10–15

declaring, 10–17
using sql_signal to display message, 10–31

RDB$RELATIONS node of repository path name,
8–10

RDB$REMOTE account, 15–10
RDB$ROUTINES image name, 14–6, 14–8
RDB$SCHEMA schema, 20–2

location, 20–9
RDB$_DEADLOCK code

for RDB$LU_STATUS field, 10–39
RDB$_INTEG_FAIL code

for RDB$LU_STATUS field, 10–35
RDB$_LOCK_CONFLICT code

for RDB$LU_STATUS field, 10–38
RDB$_NOT_VALID code

for RDB$LU_STATUS field, 10–35
RDB$_NO_DUP code

for RDB$LU_STATUS field, 10–35
RDBSERVER logical name, 15–9
RDB_DEBUG_FLAGS configuration parameter,

12–21
RDB_DEBUG_FLAGS_OUTPUT configuration

parameter, 12–21
RDB_RTX_SHRMEM_PAGE_CNT configuration

parameter, 14–39, 14–51
RDB_VALIDATE_ROUTINE configuration

parameter, 13–23
RDMS$DEBUG_FLAGS logical name, 12–21
RDMS$DEBUG_FLAGS_OUTPUT logical name,

12–21
RDMS$RTX_SHRMEM_PAGE_CNT logical

name, 14–39, 14–51

Index–24

RDMS$VALIDATE_ROUTINE logical name,
13–23

RDMS$VERSION_VARIANT logical name, 15–9
READ COMMITTED isolation level, 16–15,

16–18, 16–20
benefits of, 16–21
use of, 16–21, 16–22

READ lock type, 16–30
Read-only cursor

list, 18–9
table, 18–9

Read-only storage area
accessing, 16–7, 16–33

Read-only transaction, 16–2, 16–7
EXCLUSIVE share mode and, 16–34
lock-conflict error, 16–34
row lock if snapshot enabled, 16–30
snapshot file and, 16–33

Read/write transaction, 16–2, 16–8
RESERVING clause and, 16–13

Record
See also Row; Structure
compared to structure, 8–3

Recovery-unit journal (.ruj) file, 16–48
when row is written to, 16–30

Referenced object, 13–14
RELEASE statement, 11–5
Remote access

authenticating users for, 15–5
DECnet and, 15–6
method, 15–5 to 15–10
proxy account, 15–9
TCP/IP and, 15–6, 15–11
troubleshooting, 15–12
using default account, 15–10

Remote database
improving precompiler performance with,

6–12
Remote node

declaring database on, 15–5
Remote server account, 15–5
Remote user authentication, 15–5, 15–7, 15–8

REPEATABLE READ isolation level, 16–15,
16–17, 16–18

benefits of, 16–21
use of, 16–21

Report writing
choosing transaction type, 16–8
creating table for, 19–4
using PROTECTED share mode, 16–8

Repository
copying definition

using FROM clause, 8–13
using INCLUDE statement, 8–9, 8–10

specifying access for database attachment,
15–1

using null-terminated strings and C, 8–13
Reserve mode

access conflict, 16–30t
RESERVING clause, 16–3

DECLARE TRANSACTION statement, 16–10
EXCLUSIVE share mode and, 16–13
isolation level and, 16–16
read/write transaction and, 16–13
read-only transaction and, 16–12
SET TRANSACTION statement, 16–10

Restriction
date-time, 9–21
SQL precompiler

DO loop (FORTRAN), 6–24
embedding SQL statements (COBOL),

6–20
IF statement (FORTRAN), 6–23
invoking, 6–8
number of characters per line

(FORTRAN), 6–22
number of continuation lines (FORTRAN),

6–23
parameter names (FORTRAN), 6–23
Pascal, 6–26
SQLCODE field (COBOL), 6–20
SQLCODE field (FORTRAN), 6–24

RESTRICT keyword
in DROP FUNCTION statement, 13–14,

14–10
in DROP PROCEDURE statement, 13–14,

14–10

Index–25

Restructuring table, 19–4
Result table, 18–1

associated with view, 18–6
creating, 18–4
cursor, 18–6

in program, 18–7
definition of, 18–2, 18–7
deleting, 18–5, 18–10, 18–13, 18–14
FETCH statement, 18–4
in different transactions, 18–6
insert-only cursor, 18–9
random access, 18–17
read-only cursor, 18–9
reopening cursor, 18–5
scrollable list cursor, 18–17
select expression for, 18–3
update cursor, 18–9
update-only cursor, 18–9

Retrieving data
FETCH statement

order of row retrieval, 18–5
in program, 18–7
locking and, 16–30
using

cursor, 18–1
host language parameter, 8–14
index that allows duplicate, 16–35
indicator parameter, 8–23
unique index, 16–35

RETURNING clause of UPDATE statement,
19–8, 19–9

RETURNS clause, 13–9
CREATE FUNCTION statement, 14–5

RETURN statement, 13–8e, 13–10
Revalidation of stored routine, 13–22
RIGHTS clause

AUTHORIZATION clause, 3–10
for privilege checking, 20–4
of DECLARE MODULE statement, 20–9

ROLLBACK statement, 16–47, 16–49
compound statement and, 12–19
cursor and, 18–10, 18–13, 18–14
effect on recovery-unit journal file, 16–49
error

monitoring for, 10–13

ROLLBACK statement
error (cont’d)

when transaction not started, 10–39,
10–40

in SQL module
procedure parameter for, 4–7

stored function and, 13–10
Routine

See also SQL routine
external, 14–1 to 14–52
sql_close_cursors, 18–5
sql_deregister_error_handler, 10–21
sql_get_error_handler, 10–21
sql_get_error_text, 10–32
sql_get_message_vector, 10–14, 10–15
sql_register_error_handler, 10–20
stored, 13–1 to 13–24
types of, 14–2

Row
See also Retrieving data
count of rows processed by an SQL statement,

10–7
current, 18–4, 18–11
deleting, 19–9
inserting, 19–2

when row contains list, 19–5
locking, 16–28
pointer, 18–4
retrieving, 18–2
updating, 19–5

using program, 19–7e
ROWID keyword, 19–8
Row pointer, 18–4

definition of, 18–2
deleting row, 18–5
position, 18–4
position after reopening cursor, 18–5
setting, 18–4

.ruj file
See Recovery-unit journal (.ruj) file

Index–26

S
Sample database

location of, 1–5
Sample directory, 3–15
Sample program

See also Program, sample
location of, 1–5

Schema, 20–2
default, 20–4

setting in SQL module, 20–4e
setting in SQL precompiler, 20–8

definition of, 20–2
name in SQL module, 3–10
objects, 20–2
RDB$SCHEMA, 20–2, 20–9

SCHEMA clause, 20–4, 20–7
in SQL module, 3–10

Scope
external routine, 14–4, 14–9
of SQL module, 5–6
of transaction, 16–23f, 16–25f, 16–26f

Scrollable list cursor, 18–5, 18–17, 18–18e
SCROLL keyword of FETCH statement, 18–18
Security

external routine, 14–39
Oracle Rdb remote, 15–12
remote access, 15–5
system

remote access, 15–9
Segmented string

See List
Select expression

for cursor, 18–3
in FOR statement, 12–11

Select list
external function in, 14–35

SELECT LIST clause of DESCRIBE statement,
11–10, 11–22

Select list item in dynamic SQL, 11–3, 11–21
DESCRIBE statement and, 11–4, 11–10,

11–22

SELECT statement
counting rows processed by, 8–11
in dynamic SQL, 11–3, 11–21, 11–26, 11–37,

11–41
using parameter marker, 11–3, 11–26

in SQL module
procedure parameter for, 4–8

INTO clause, 18–7e
instead of cursor, 18–7

restriction, 15–15e
Semicolon (;)

in compound statement, 6–4
in precompiled SQL, 6–6
in SQL module, 3–13, 4–16

Sequence number
generating with stored function, 13–10

SERIALIZABLE isolation level, 16–3, 16–15,
16–17

benefits of, 16–20
Server-site binding

external routine and, 14–9, 14–37
Session

character set, 3–8
connections, 17–2

compared to interactive, 17–2
current, 17–3
default, 17–2
definition of, 17–1
dormant, 17–3

default character set, 3–8
identifier character set, 3–8
interactive

compared to connections, 17–2
literal character set, 3–8
national character set, 3–8

SET ALL CONSTRAINTS statement, 16–45
SET assignment statement in compound

statement, 12–4
SET clause, 19–6
SET CONNECT statement, 17–5t, 17–10

implicit, 17–6
SET DEFAULT CHARACTER SET statement,

3–8

Index–27

SET DEFAULT CONSTRAINT MODE statement,
16–45

SET DIALECT statement, 3–7
SET EXECUTE statement, 13–24
SET FLAGS statement

NOPREFIX keyword, 12–22
TRACE keyword, 12–21

SET HOLD CURSOR statement, 18–15
SET IDENTIFIER CHARACTER SET statement,

3–8
SET LITERAL CHARACTER SET statement,

3–8
SET NATIONAL CHARACTER SET statement,

3–8
SET NOEXECUTE statement, 13–23
SET TRANSACTION statement, 16–23

compound statement and, 12–19
connections and, 17–12
constraint and, 16–13, 16–29
contrasted with DECLARE TRANSACTION

statement, 16–6
in precompiled program, 6–5
in SQL module, 3–12
isolation level, 16–17
lock type option, 16–11f
RESERVING clause, 16–10

stored routines and, 13–18
scope of, 16–23
share mode option, 16–11f
specifying read/write, 16–8
specifying read-only, 16–7
stored function and, 13–10
trigger and, 16–13, 16–29
WAIT or NOWAIT option, 16–13

Shareable image, 7–2
creating, 7–6
external routine, 14–30

on OpenVMS Alpha systems, 14–32
on OpenVMS VAX systems, 14–31

installing, 7–11
linking with, 7–4
shared handles, 7–6, 7–8

without, 7–7
sql_register_error_handler routine and, 10–26
transfer vectors in, 7–10

Shareable image (cont’d)
using options file to specify, 7–4

Shared memory
external routine and, 14–39, 14–51

Shared object
external routine

on Digital UNIX systems, 14–33
SHARED share mode, 16–30
Share mode, 16–3, 16–11

access conflict, 16–30t
EXCLUSIVE, 16–11f, 16–30
PROTECTED, 16–8, 16–11f, 16–30
reserving table, 16–30
SHARED, 16–30

SHOW FUNCTION statement, 13–21
SHOW PROCEDURE statement, 13–21
SIGNAL statement, 10–3, 12–4, 12–25
Simple statement procedure, 4–2, 4–16

invoking stored functions from, 13–13
invoking stored procedures from, 13–11

Singleton select statement, 18–7e
SMALLINT data type in C, 8–33
Snapshot (.snp) file

EXCLUSIVE share and, 16–34
lock-conflict errors with, 16–34
locking and, 16–30
read-only transaction and, 16–33

Spanish collating sequence conditional operator,
A–3

SQL$DATABASE logical name, 15–2
when attaching to multiple databases, 15–14

SQL$GET_ERROR_TEXT routine, 10–33
See also sql_get_error_text routine

sql$persmsg file, 10–33
SQL$SAMPLE directory

sample programs, 1–5
SQL$SIGNAL routine

See sql_signal routine
SQL$USER library file in LINK command, 7–2e
SQLCA status parameter, 8–5, 10–5, 10–7

declaring in C, 8–31
in precompiled SQL, 6–6

restrictions for FORTRAN, 6–24
in SQL module, 4–4
name in FORTRAN, 6–23

Index–28

SQLCA status parameter (cont’d)
stored function and, 13–9
stored procedure and, 13–7

SQLCODE status parameter, 8–4, 10–3, 10–6,
10–7

C language and, 8–31
declaring, 10–6, 10–7

in C, 8–31
in FORTRAN, 6–23

in precompiled SQL, 6–6
restrictions for COBOL, 6–20
restrictions for FORTRAN, 6–24

in SQL module, 4–4
program portability, 10–40
retrieving value from compound statement,

12–26
stored function and, 13–9
stored procedure and, 13–7
value for

constraint violation, 10–35
deadlock, 10–39
duplicate value in unique index, 10–35
fatal error, 10–8
lock conflict, 10–38
no data condition, 10–8
success, 10–8
successful execution, 10–8
‘‘valid if’’ violation, 10–35
warning, 10–8

SQLCODE_DEADLOCK code, 10–39
SQLCODE_EOS code, 10–8
SQLCODE_LOCK_CONFLICT code, 10–38
SQLCODE_NOT_VALID code, 10–35
SQLCODE_SUCCESS code, 10–8
SQL Communications Area

See SQLCA status parameter
SQLDA, 8–5, 11–10, 11–11

declaring, 11–12
declaring in module procedures, 4–4
header file for, 11–12
parameter marker

data type returned, 11–10
SQLDA2, 8–5, 11–11

declaring, 11–12
declaring in module procedures, 4–5

SQL Descriptor Areas
See SQLDA and SQLDA2

SQLERRD array, 8–11
declaring in FORTRAN, 6–23
element storing count of processed rows, 10–7

SQL library
linking, 5–3, 7–12

sqllibs.make file, 7–13
SQLLIBS global symbol, 5–3, 7–12
SQL module, 3–1 to 3–16, 4–1 to 4–19, 5–1 to

5–6
alias clause, 3–11, 15–13
authorization clause, 3–10
calling from host language program, 1–2
catalog clause, 3–9
colons (:) in, 8–14
common mistake using, 8–26, 8–29
COMPILETIME clause and, 15–3
compiling, 5–1
creating file, 1–2f
DECLARE statement, 3–12
declaring parameter using FROM clause,

8–13
declaring procedure parameter, 4–4
error handling for, 10–7
file, 3–3
for connections, 17–13e
FROM DICTIONARY clause, 8–13
FROM path-name clause, 8–4
label for compound statement, 12–14
language clause, 3–8

effect on parameter data type, 4–12
effect on parameter-passing mechanism,

4–13
linking with other modules, 3–11
multischema, 20–5e

default settings, 20–4e
sample, 20–8

naming, 3–6, 3–7
PARAMETER COLONS clause, 3–11
parts of, 3–3, 3–4e

alias clause, 3–11
authorization clause, 3–10
catalog clause, 3–9
comment, 3–6

Index–29

SQL module
parts of (cont’d)

DECLARE statement, 3–12
language identifier, 3–8
name, 3–6
PARAMETER COLONS clause, 3–11
schema clause, 3–10

procedure in, 4–1
calling from host language module, 3–13
checking passing mechanism, 4–16
compound statement in, 12–8e, 12–12e,

12–19e
exiting from, 12–14
naming, 4–3

case-sensitivity, 4–3
order of procedure parameter, 4–10
specifying executable statement, 4–16

procedure parameter
relationship to call parameter, 4–9

processing, 5–2
repository definition and, 15–3
restriction, 4–18
schema clause, 3–10
scope of, 5–6
specifying data type of procedure parameter,

4–11
SQL module language, 3–1, 3–3

See also SQL module
C language and, 8–31

declaring parameter, 8–13
context files, 5–5
improving performance, 5–4
INTEGER data type, 8–32
SMALLINT data type, 8–33
SQL statement in, 4–18

SQL module processor, 5–1
command line parameter, 5–1
command line qualifier

–cm deferred, 16–45
–cm immediate, 10–41, 16–45
–conn, 17–12
CONNECT, 17–12
CONSTRAINTS=IMMEDIATE, 10–41
–extern, 7–13
EXTERNAL_GLOBAL, 7–8, 7–11

SQL module processor
command line qualifier (cont’d)

FLAG_NONSTANDARD, 3–15, 20–8
–lc_proc, 4–4
LONG_SQLCODE, 8–31
–lsqlcode, 8–31
–noconn, 17–12
NOCONNECT, 17–12
–noextern, 7–13
NOEXTERNAL_GLOBAL, 7–8, 7–11
NOPARAMETER_CHECK, 5–4
PARAMETER_CHECK, 5–4
–pass, 15–8
PASSWORD_DEFAULT, 15–8
–std, 3–15, 20–8
–user, 15–8
USER_DEFAULT, 15–8

compiling with, 5–1, 5–2
for connections, 17–12

date-time data type and, 9–9
disabling connections, 17–12
enabling connections, 17–12
in program development, 1–2f
invoking, 5–1
multischema, 20–8
setting date format, 9–4

SQL precompiler, 6–1 to 6–27
Ada program, 6–16
Ada-specific requirement, 6–15

debugging, 7–15
case sensitivity and, 6–6
COBOL example, 19–7
COBOL-specific requirement, 6–19
colons (:) in, 8–14
command line qualifier, 6–10

–ansi, 6–9
ANSI_FORMAT, 6–20
–cm deferred, 16–44
–cm immediate, 10–41, 16–44
–conn, 17–12
CONNECT, 17–12
CONSTRAINTS=IMMEDIATE, 10–41
–extern, 7–13
EXTERNAL_GLOBAL, 7–8, 7–11
–form ansi, 6–9, 6–20

Index–30

SQL precompiler
command line qualifier (cont’d)

–l, 6–7
–list, 6–9, 6–11
LIST, 6–11
–match, 6–9
–noconn, 17–12
NOCONNECT, 17–12
–noextern, 7–13
NOEXTERNAL_GLOBAL, 7–8, 7–11
–pass, 15–8
PASSWORD_DEFAULT, 15–8
–user, 15–8
USER_DEFAULT, 15–8

common mistake using, 8–26, 8–29
COMPILETIME option, 15–3
compiling

for connections, 17–12
compound statement and, 12–7
correcting errors, 6–10
C-specific requirement, 6–18
date-time data type and, 9–6
declaring parameter using INCLUDE

statement, 8–9
definition of, 1–1
delimiting SQL statement for, 6–4
disabling connections, 17–12
embedding clauses, 6–13
enabling connections, 17–12
error log file, 6–11
EXEC SQL flag, 6–4
FETCH statement, 18–4
FORTRAN-specific requirement, 6–22

debugging, 7–15
hyphen (-) and, 6–6
in program development, 1–3f
input file, 6–8t
invoking, 6–7, 6–8
keywords and, 6–6
label for compound statement, 12–14
multischema

compile, 20–11
default settings, 20–8
link, 20–12
naming schema objects, 20–9, 20–10e

SQL precompiler (cont’d)
output file, 6–8t
parameter name and, 6–6, 8–14
Pascal program

order of statements, 6–26
Pascal-specific requirement, 6–25

debugging, 7–15
PL/I-specific requirement, 6–26
RDB$DBHANDLE default alias, 20–9
repository definition and, 15–3
setting default date format, 9–4
underscore and, 6–6

SQL routine
See also Routine
declaring in program, 6–19, 10–34
for error handling, 10–4, 10–20
sql_deregister_error_handler, 10–21
sql_get_error_handler, 10–21
sql_get_error_text, 10–32
sql_get_message_vector, 10–14, 10–15
sql_register_error_handler, 10–20
sql_signal, 10–31

SQL statement
ATTACH, 15–1
CALL, 12–4, 12–15, 13–12, 14–37
CASE, 12–3, 12–9
category of statement to be dynamically

executed, 11–2
checking and processing

in SQL module, 5–1
CLOSE, 18–5

in dynamic SQL, 11–41
COMMIT, 16–47, 16–49

in compound statement, 12–19
compound, 12–1
copying declaration into language source, 8–9
CREATE FUNCTION, 14–5, 14–11, 14–15,

14–28
CREATE PROCEDURE, 14–7
creating module procedure for, 3–3
DECLARE CURSOR, 18–3
DECLARE TRANSACTION, 16–5, 16–8

in compound statement, 12–20
DELETE, 19–9
DESCRIBE, 11–4, 11–39, 11–41

Index–31

SQL statement
DESCRIBE (cont’d)

in compound statement, 12–20
DROP FUNCTION, 13–14
DROP PROCEDURE, 13–14
dynamic DECLARE CURSOR, 11–5, 11–21,

11–26
executable

error handling, 10–4
in SQL module procedure, 4–16

EXECUTE, 11–4, 11–37, 11–39
in compound statement, 12–20

EXECUTE IMMEDIATE, 11–4
in compound statement, 12–20

extended dynamic DECLARE CURSOR,
11–5, 11–22, 11–26, 11–37, 11–41

FETCH, 18–4
in dynamic SQL, 11–5, 11–41
in program, 18–4

finding count of rows processed by, 10–7
FOR, 12–3, 12–11
GET DIAGNOSTICS, 12–4, 12–23, 12–25
IF, 12–3, 12–4, 12–7
INCLUDE SQLCA, 10–7
INSERT, 19–2
in SQL module procedure, 4–1
LEAVE, 12–4, 12–14
LOOP, 12–10
monitoring, 10–4

using RDB$LU_STATUS, 10–17
using SQLCODE, 10–7
using WHENEVER statement, 10–11

multiline statement in precompiled program,
6–4

non-SELECT
in dynamic SQL, 11–2, 11–6, 11–9

OPEN, 18–4
in dynamic SQL, 11–5, 11–41

PREPARE, 11–4, 11–37, 11–39, 11–41
in compound statement, 12–20

RELEASE, 11–5
RETURN, 13–8, 13–10
ROLLBACK, 16–47, 16–49

in compound statement, 12–19
SELECT

SQL statement
SELECT (cont’d)

in dynamic SQL, 11–3, 11–26, 11–37
SET ALL CONSTRAINTS, 16–45
SET assignment statement, 12–4
SET DEFAULT CONSTRAINT MODE, 16–45
SET FLAGS

NOPREFIX keyword, 12–22
TRACE keyword, 12–21

SET HOLD CURSOR, 18–15
SET TRANSACTION, 16–6, 16–8

in compound statement, 12–19
SIGNAL, 12–4, 12–25
testing

for program development, 2–4
interactively, 2–4

TRACE, 12–4, 12–21
UPDATE, 19–5, 19–6
WHENEVER, 10–11

SQLSTATE status parameter, 8–4, 10–3, 10–5
declaring, 10–5

in C, 8–31
in precompiled SQL, 6–6
in SQL module, 4–4
program portability, 10–40
retrieving value from compound statement,

12–26
stored function and, 13–9
stored procedure and, 13–7
value for

deadlock, 10–39
error, 10–6
lock conflict, 10–38
no data condition, 10–6
success, 10–6
warning, 10–6

sql_all_datatypes sample program, 8–30
SQL module, 8–34

SQL_ALTERNATE_SERVICE_NAME
configuration parameter, 15–11

sql_close_cursors routine, 18–5
SQL_DATABASE configuration parameter, 15–2

when attaching to multiple databases, 15–14

Index–32

sql_deregister_error_handler routine, 10–4,
10–21, 10–23e

calling, 10–27
declaring, 10–29

sql_dynamic sample program, 11–4
sql_get_error_handler routine, 10–4, 10–21,

10–23e
calling, 10–27
declaring, 10–29

sql_get_error_text routine, 10–32
sql_get_message_vector routine, 10–3, 10–14,

10–15
sql_load_jobhist sample program, 19–1
sql_rdb_headers.h include file, 6–19, 10–34
sql_register_error_handler routine, 10–4, 10–20,

10–23e
calling, 10–27
declaring, 10–29
shareable image and, 10–26

sql_report sample program, 18–7
sql_signal routine, 10–3, 10–31
sql_sqlda.h header file, 8–5, 11–12
sql_terminate sample program, 19–7

error-handling technique in, 10–4
use of user-defined message file, 10–33

$SQL_VARCHAR data type, 6–18, 8–32
Standard

ANSI/ISO SQL, 20–1
STARTING WITH operator with non-English

collating sequence, A–3
Static cursor, 18–8
Status code

See Error code, Status parameter
Status parameter

See also SQLCODE status parameter, SQLCA,
SQLSTATE status parameter

declaring
in nonstored procedures, 13–12
in stored procedures, 13–12

SQLCODE, 10–6
SQLSTATE, 10–5
stored function and, 13–9
stored procedure and, 13–7

–std command line qualifier, 3–15
displaying nonstandard ANSI/ISO SQL

syntax, 20–8
Stored function, 13–1 to 13–24

creating, 13–8e, 13–10
data types used in, 13–9
deleting, 13–13
indicator parameters in, 13–9
invoking, 13–13
NULL values in, 13–9
parameter modes, 13–9
parameter use in, 13–9

Stored module, 13–2
defining, 13–3
deleting, 13–13

Stored procedure, 13–1 to 13–24
calling, 13–11

using indicator parameter, 13–7, 13–12
creating, 13–5e
data types used in, 13–7
declaring status parameters, 13–12
deleting, 13–13
indicator parameters disallowed in, 13–7
invoking, 12–15, 13–11

in compound statement, 12–15
invoking (CALL), 13–12
name of module, 3–7
nested, 12–16
nesting, 13–11
NULL values in, 13–7, 13–12
parameter modes, 13–6
status parameter use in, 13–7

Stored routine, 13–1 to 13–24
accessing schema objects through, 13–4
benefits of, 13–2
client/server processing of, 13–3
definer’s right module for, 13–4
defining, 13–3e
dependency tracking with, 13–14 to 13–19
dependency types for, 13–15t, 13–16
invalidation of, 13–16, 13–20
invoker’s rights module, 13–5
invoking language, 13–4
language semantic dependency, 13–17
language semantic invalidation, 13–24

Index–33

Stored routine (cont’d)
privileges to access, 13–3
privileges to execute, 13–4
procedure dependency, 13–16
revalidation, 13–22
SQL statements causing invalidation, 13–20t
transaction dependency, 13–18

Storing data, 19–2
date-time data type, 9–2

Storing row
See INSERT statement

Storing value using indicator parameter, 8–25
Structure, 8–16

block
in Ada, 6–16
in C, 6–19
in COBOL, 6–20
in FORTRAN, 6–24
in Pascal, 6–25
in PL/I, 6–26

compared to record, 8–3
declaring in COBOL, 6–22
declaring in FORTRAN, 6–25
definition, 8–27
expansion by SQL module processor, 8–28
expansion by SQL precompiler, 8–28
in SQL

restriction, 8–6
SUM function

null result, 8–20
Symbol

global
SQLLIBS, 5–3, 7–12

Symbol (DCL)
defining to invoke

SQL module processor, 5–1
to invoke precompiler, 6–7

restriction, 6–8
Symbolic error code, 10–17

declaring and using, 10–18
Symbol vector, 7–6, 7–10

external routine, 14–32

SYSTEM LOGICAL_NAME TRANSLATION
clause

CREATE Routine statement, 14–40
System service call

external routine and, 14–52

T
Table

access conflict, 16–30t
assigning null value in column, 8–20
date-time data type and, 9–2e
deleting row from, 19–9
dropping, 19–4
identifying null value in column, 8–20
inserting row, 19–1, 19–2
locking, 16–28
reserving

explicitly, 16–11
implicitly, 16–10

restructuring, 19–4
updating, 19–5

using program, 19–7e
Table cursor, 18–8
TCP/IP network protocol, 15–10, 15–11
THEN clause of IF statement, 12–7
Third-generation language (3GL), 3–1
TIME data type and SQL precompiler, 9–6
Time format

modifying, A–1
Time stamp, 19–10
TIMESTAMP data type, 9–11

precision, 9–3
SQL precompiler and, 9–6

TRACE statement, 12–4, 12–21
Transaction

avoiding database inconsistency, 16–1
batch-update, 16–9, 16–49
characteristics

setting, 16–24
specifying, 16–2, 16–5

committing, 16–47, 16–49
compound statement and, 12–19, 12–23
computed-by column, 16–13
constraint and, 16–13, 16–29

Index–34

Transaction (cont’d)
context, 16–1
default, 16–10
default characteristics, 16–23
definition of, 16–1
distributed

See Distributed transaction
ending, 16–47, 16–49

on Digital UNIX, 16–49
under abnormal condition, 16–49

external routine and, 14–4
failure to start, 10–39
including declaration in context file, 6–14
incomplete, 16–1
involving multiple databases, 16–22
managing, 16–37
overriding previous characteristic, 16–23
read/write, 16–8, 16–13
read-only, 16–7, 16–33

lock-conflict error, 16–34
rolling back, 16–47, 16–49
scope, 16–23f, 16–25f, 16–26f
starting, 16–2
trigger and, 16–13, 16–29
update recovery-time journal file, 16–48f
used with connections, 17–12
using two-phase commit protocol, 16–27
view and, 16–13
waiting for lock release, 16–13

Transaction dependency, 13–18
Transfer vector, 7–6, 7–10
Translated image, 14–50
Transportability

See Portability
Trigger, 19–10

external function in, 14–35
transaction and, 16–13, 16–29

Troubleshooting
deadlock, 15–12
DISTRIBTRAN privilege, 15–12
external routine, 14–50
remote access, 15–12

Truncated string, 8–24

Two-phase commit protocol, 16–27

U
UCX service

alternate, 15–11
Underscore (_)

in Ada program, 8–30
relationship to hyphen (-), 6–6

UNION operator, 19–3
UNIVERSAL symbol, 14–31
UPDATABLE keyword

of DECLARE variable clause, 12–5
Update cursor, 18–9
Update-only cursor, 16–22, 18–9

isolation level and, 16–16
UPDATE statement, 19–5

affecting multiple rows, 18–7
containing retrieval condition, 19–6
counting rows processed by, 8–11
cursor and, 18–5, 19–6
indicator parameter and, 8–25
in FOR statement, 12–11
in program, 19–7e
in SQL module

procedure parameter for, 4–9
restriction, 15–15e
RETURNING clause, 19–8
returning dbkey value, 19–8
returning values, 19–9

Updating data, 19–5, 19–7
conflict during, 16–30
in program, 19–7e
multiple rows, 18–7, 19–5

using cursor, 18–7
one or more rows with same set of column

value, 19–6
set of rows one row at a time, 19–6
single row, 19–5

User authentication, 15–5, 15–7, 15–8
USER clause, 15–7
User-defined external function

writing, 14–14e

Index–35

User name
supplying for remote access, 15–7

–user option
SQL module processor command line, 15–8
SQL precompiler command line, 15–8

USER_DEFAULT qualifier, 15–8
USING clause, 15–7

V
Validation

checking, 10–34
NOT NULL constraint for column, 10–35
of constraint, 10–35
stored routine, 13–20
UNIQUE constraint for column, 10–35
UNIQUE option for index, 10–35

Valid if error, 10–35
Value expression

invoking an external function in, 14–2, 14–4
parameter for, 8–2

VARCHAR data type, 8–32
C language and, 6–18
dynamic SQL and, 4–5

Variable
assigning in compound statement, 12–4
compared to parameter, 8–3
declaring in compound statement, 12–4
declaring in Pascal, 6–26

VARIANT clause in CREATE Routine statement,
14–6

View
compared to

cursor, 18–6
table created for query, 19–3

transaction and, 16–13

W
WAIT transaction option, 16–13, 16–30
Warning

detecting using SQLCODE, 10–12
WHENEVER statement, 10–3, 10–11

affect on FORTRAN DO loop, 6–24
avoiding looping, 10–13

WHENEVER statement (cont’d)
checklist for avoiding errors when using,

10–14
CONTINUE option, 10–13
NOT FOUND option, 10–11
not used in SQL module, 4–18
processed during precompilation, 10–12
SQLERROR option, 10–12
SQLWARNING option, 10–12
turning off, 10–13

WHERE clause
cannot contain indicator parameter, 8–26
external function in, 14–35
in DELETE statement, 19–9
in SQL module

procedure parameter for, 4–8
in UPDATE statement, 19–6

WHERE CURRENT OF clause
in DECLARE CURSOR statement, 19–5
in UPDATE statement, 19–6

WHILE clause
of LOOP statement, 12–10

WHILE predicate clause, 12–4
WITH HOLD clause

DECLARE CURSOR statement, 18–10, 18–14
WRITE lock type, 16–30

Index–36

