
LAB-5538: The Real-Time JavaTM
Platform Programming Challenge:
Taming Timing Troubles

David Holmes
Frederic Parain
Sun Microsystems

2

Instructor-Led Hands-on Labs

> Instructor(s) will provide background for exercises
> Exercises are self-paced
 Hard-copy and online lab guides are available
 Use suggested durations as a guide

> Raise your hand at any time for assistance
> To get the most out of the lab...
 Read the lab guide, especially the background
 Don't just copy and paste the solutions

3

Housekeeping

> Before you leave, please fill out a survey and hand
it to someone before you leave
 We really want to know what you think!

> Please log out of your machine when done
> Please look around to make sure you have all of

your belongings
 The hard copies of the lab guides are yours to keep

4

What is “Real-Time”?

> Simple definition:
 The addition of temporal constraints to the

correctness conditions of a program
 “When” is as important as “what”

> Typical temporal constraint: deadline
 Others are latency, jitter

> “real-time” does not mean “real-fast”
 Predictability is the key

 Are operations bounded in time?
> Classifications: hard-, soft-, non- real-time
 How critical is timing to correctness

5

Where Could You Use Real-Time JavaTM
Technology?
> Military/Aerospace
 Command & control systems

> Telecommunication Infrastructure
 VoIP, PBX, IMS, new 3G services

> Banking/Finance
 Meet customer QoS and regulatory requirements

for pricing/trading
> Industry
 Factory automation, process control

> ...

6

Real-Time Specification for JavaTM (RTSJ)
Mission Statement

[To extend] The JavaTM Language Specification and
The JavaTM Virtual Machine Specification [to

provide] an Application Programming Interface
that will enable the creation, verification, analysis,

execution, and management of Java threads
whose correctness conditions include timeliness

constraints (also known as real-time threads)

7

Key Functional Areas

> Thread Scheduling & Dispatching
 Priority-preemptive scheduling

> Memory management
 Allocation contexts without garbage collection

> Asynchronous Actions
 Internal events, external “happenings”, and handlers

> Time, Clocks and Timers
> Synchronization
 Priority inversion avoidance

8

Sun JavaTM Real-Time System 2.2 Beta

> Based on JavaTM 5.0 platform
 Hotspot client VM (32-bit and 64-bit)

> Runs on:
 SolarisTM 10 operating system (SPARC® and x86)
 Linux with real-time POSIX extensions (x86)

> Implements RTSJ 1.0.2 plus:
 Real-time garbage collection (RTGC)

 Including additional monitoring via MXBeans
 Multi-processor support

 Including interrupt shielding and processor sets
 Initialization-time Compilation (ITC)

 Avoids unpredictable effects of JIT compilation
 Tools to aid in analyzing timing problems

9

Exercises

Exercise 1: Creating Periodic Real-Time Threads
Expected duration: 30 minutes

Exercise 2: Debugging Deadline-misses using the
Thread Scheduling Visualizer

Expected duration: 30 minutes

Exercise 3: Real-time Data Communication (almost!)
Expected duration: 20 minutes

10

Exercises (continued)

Exercise 4: More Debugging of Deadline-Misses
using the Thread Scheduling Visualizer

Expected duration: 15 minutes

Exercise 5: Real-Time Data Communication
Expected duration: 15 minutes

11

Getting Started

> If you have not logged in, log in with
 username: lab5538
 password: hol009

> Online lab guide will open in a browser window
> All necessary software and lab files are already

installed on your lab machine
> Start from exercise 1

12

Background for Exercise 1

> Threads, Scheduling and Parameter Objects
> Clocks and Time objects
> Memory Areas

13

Introducing Schedulable Objects
«interface»

java.lang.Runnable

«interface»
Schedulablejava.lang.Thread

RealtimeThread AsyncEventHandler

NoHeapRealtimeThread

14

Real-Time Threads

> Most features of RTSJ only apply to real-time threads or
asynchronous event handlers

> RealtimeThread extends java.lang.Thread
 The base class for real-time threads
 Specializes the semantics of some java.lang.Thread methods

 setPriority, interrupt

> Writing a periodic real-time thread:

For start time, S, and period T, periodic threads are released
according to: S + nT (n=0, 1, 2 ...)

while(workToBeDone) {
 // do work
 waitForNextPeriod();
}

15

NoHeapRealtimeThreads

> Extends RealtimeThread
> Forbidden from accessing objects in the regular Java heap

 Must operate in scoped or immortal memory
 Run-time checks to enforce this rule

> Execution eligibility should be higher than GC
 Requires execution eligibility > all heap-using threads & GC threads
 No synchronizing on an object shared with heap-using threads

 Or sharing scoped memory areas
 Programmers responsibility to get it right!

16

Scheduling

> Notion of a Schedulable object
 Real-time threads and async event handlers
 Interface extends java.lang.Runnable

> Scheduler manages scheduling/dispatching of
schedulable objects

> Default scheduler is the PriorityScheduler
 Enforces priority preemptive scheduling
 Supports periodic release of real-time threads

 RealtimeThread: boolean waitForNextPeriod()

 Supports sporadic and aperiodic async event handlers

17

Parameter Objects

> Parameter objects abstract the properties of schedulable
objects related to
 Release characteristics (periodic, sporadic, aperiodic)
 Scheduling (priority-based, importance-based)
 Memory (allocation rates and limits)

> Can be set at construction time or explicitly, e.g.
 thread.setReleaseParameters(myParams)

> PriorityParameters hold priority value
 PriorityParameters(int priority)

> PeriodicParameters hold release information
 Period, start-time, deadline, deadline-miss handler ...
 PeriodicParameters(RelativeTime period)

18

Memory Areas

> MemoryArea represents an allocation context
 enter(Runnable r)

 Executes r with this area as the allocation context
 newInstance(Class c, ...)

 Reflectively creates an object in this memory area

> Three kinds of memory areas
 Heap: HeapMemory.instance()

 The normal Java heap
 Immortal: ImmortalMemory.instance()

 Memory that is never garbage-collected
 Scope: ScopedMemory

 Lifetime of objects determined by use of scope
 When no-longer in-use objects are reclaimed; next use sees empty scope
 Strictly enforced rules to avoid “dangling references”

19

Clocks and Times

> Clock represents a time-source
 AbsoluteTime getTime(AbsoluteTime dest)
 RelativeTime getResolution()

> Real-time clock is a nanosecond-precision clock
 Clock.getRealtimeClock()
 Resolution is platform-dependent
 Only pre-defined clock in RTSJ

> Time objects are a (millisecond,nanosecond) pair associated
with some clock
 long millis, int nanos

20

Clocks and Times (cont)

> HighResolutionTime: base class
 Supports simple set/get methods

 void set(HighResolutionTime other)

> AbsoluteTime: An actual time for a given clock
 AbsoluteTime(long millis, int nanos)
 Supports time arithmetic: add/subtract

 RelativeTime subtract(AbsoluteTime other,
 RelativeTime dest)

 Subtract other time from this time, store in dest and return it

> RelativeTime: A time interval on a given clock
 Similar methods to AbsoluteTime

21

Exercise 1

22

Background for Exercise 2

> Running and understanding the Thread Scheduling
Visualizer

23

The Thread Scheduling Visualizer

24

What is the Thread Scheduling Visualizer?

> A tool that presents a graphical time-line of per-thread events
 Originally only scheduling events (on-cpu, off-cpu) hence TSV

> Events are recorded using DTrace scripts
 VM defined events
 Application defined using com.sun.rtsjx.DTraceUserEvent

> What can you do?
 Inspect the timeline of events
 Measure the elapsed time between events
 Zoom in/out to observe different timescales

> Popup displays of certain event information:
 User-defined events
 Call-stacks

25

TSV Basics

> One row of event data per-thread
 Ordered by thread creation time – oldest at bottom

 Main thread on bottom
 Application threads on top (generally)
 VM & library threads in between

> Default color scheme:
 Green: Time Sharing/Interactive/Fair Scheduling
 Blue: System
 Red: Real-Time
 The lighter the shade, the higher the priority

> Thread information in bottom right pane
> Bookmarks can be used to measure intervals between events

 Click first event, click second -> elapsed time shown in bottom left pane

26

Exercise 2

27

Background for Exercise 3

> Asynchronous Events
> Asynchronous Event Handlers
> Timers

28

Asynchronous Events

> Many real-time systems are reactive
 They respond to events occurring in their environment

> RTSJ defines three explicit kinds of events with which handlers
can be associated
 Programmatic events: AsyncEvent

 Triggered by invoking fire()
 Timers: OneShotTimer, PeriodicTimer

 Triggered by the passage of time
 POSIX Signal handler:

 Triggered by the delivery of a signal to the process

> Plus implicit: deadline-miss handlers, cost overrun handlers
> External named events: “happenings” attach to AsyncEvents

 Implementation defined events triggered externally

29

Asynchronous Event Handlers

> Defines the work of the event handler but is not a thread itself
 handleAsyncEvent() is the method to override

 Or pass a Runnable to the constructor, like threads

> Handlers can be associated with one or more events
> When the event is triggered the handler is released as-if in its

own real-time thread of control
 BoundAsyncEventHandler has a dedicated thread
 “server threads” acquire all the attributes of the handler

 Priority, deadline, cost, miss handler, memory constraints

> Each trigger increases the fire count of the handler
 System calls handleAsyncEvent in a loop while fireCount > 0

 Fire count is decremented each time
 Sporadic MIT constraints need to be accounted for

30

Timers

> A Timer is an AsyncEvent triggered by the passage of time
 Methods fire() and bindTo() are disabled

> Timers have a complex lifecycle
 start() tells the timer to start tracking time – active
 stop() tells the timer to stop tracking time – in-active
 destroy() prevents the timer from being used any more

 All handlers are removed
 All methods throw IllegalStateException

 enable() allows the timer to fire
 disable() prevents the timer from firing

 If the fire time passes this is known as a skipped-firing
 isRunning() returns true if the timer is active and enabled
 getFireTime() returns absolute time when next firing is due

31

Periodic Timers

> Re-usable periodic timer: fires repeatedly as the period falls due
> PeriodicTimer(HighResolutionTime start,
 RelativeTime period, A…E…H handler)
 start indicates when the timer should initially fire
 period defines the interval between firings

 A zero period means “act like a one-shot”
 handler is initial handler

> Absolute start
 First firing when start is reached and timer is active and enabled; If start

is in the past when timer is started, fires immediately
> Relative start

 First firing is start units after start() is called
> void reschedule(HighResolutionTime time)

 Sets a new firing time for the initial firing

32

Exercise 3

33

Background for Exercise 4

> Synchronization & Priority-Inheritance

34

Semantics for Monitors

> Two issues addressed by the RTSJ with respect to monitors
> All queues are ordered by priority with FIFO when equal

 Monitor entry queue
 Wait-set notification queue

 Order of notifications is now defined

> Monitor lock acquisition must avoid unbounded priority inversion
 Priority inversion isn’t addressed with any other form of synchronization

e.g. java.util.concurrent.locks.Lock
 RTSJ refers to the more general “execution eligibility inversion” but we’ll

stick with priority for simplicity
> What does the programmer have to do?

 Be aware of how monitors are used
 Be aware of what other forms of synchronization are used

35

Priority Inversion and its Avoidance

> When thread A tries to acquire a lock held by thread B, it blocks
> If A is high priority and B is low priority then having B execute

when A would like to is a priority-inversion
> Worse, if a medium priority thread C preempts B, then A is

blocked until C completes and then B releases the lock!
 This is potentially an unbounded priority inversion

> Predictable execution time requires predictable locking time
 And preferably a short as possible

> Priority inversion is not just concerned with locks – any means by
which a thread A has to wait for an action in a thread B, is a
potential priority inversion

> Priority inversion avoidance
 Techniques to minimise the time that A has to wait for the lock

36

Priority Inheritance

> Priority Inheritance Protocol (PIP)
 When A blocks acquiring the lock held by B then B is boosted to A’s

priority until it releases the lock
 This prevents C from preempting B
 Worst-case for A is the longest critical section for each lock it shares

with other threads
> The base priority of a SO is the value in its scheduling

parameters
> The active priority of a SO is the current priority

 Which can be different to base due to priority inheritance
 No means to query the active priority

> Even plain Java threads have an active priority
 Java threads can execute at the highest real-time priority!

 Avoid explicit lock sharing with Java threads

37

Exercise 4

38

Background for Exercise 5

> Wait-free Queues

39

Wait-Free Queues

> Primary goal is to allow non-blocking data exchange between
no-heap SO’s and heap-using SO’s within a given memory area
 If NHRT synchronizes with RTT then GC can preempt the NHRT

> WaitFreeReadQueue
 Single reader can perform non-blocking read
 Multiple writers can perform synchronized/blocking writes

> WaitFreeWriteQueue
 Single writer can perform non-blocking write
 Multiple readers can perform synchronized/blocking reads

> WaitFreeDequeue
 A combined WaitFreeReadQueue and WaitFreeWriteQueue

> Simple API but construction can be complex and confusing
 The internals of the queue can be created in a different memory area

40

Exercise 5

41

Real-Time Sessions at JavaOne

> TS-4807:
 Easily Tuning Your Real-Time Application

> TS-5059:
 Real Time: Understanding the Trade-Offs Between

Determinism and Throughput
> TS-6735:
 Building a Java™ Technology-Based Automation

Controller: What, Why, How
> TS-6989:
 Building Real-Time Systems for the Real World

42

Congratulations!

> You should now have completed this lab
> If you would like more time to continue working,

please consider taking the lab exercises with you
> Discs containing all of the labs offered this year are

available for you to take home
> To save your work, please copy it to a USB drive or

email it to yourself
> The lab guide will tell you where to get help with

this lab after JavaOne
> Thank you for attending this hands-on lab!

David Holmes
Frederic Parain
Sun Microsystems

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

