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Instructor-Led Hands-on Labs

> Instructor(s) will provide background for exercises
> Exercises are self-paced
 Hard-copy and online lab guides are available
 Use suggested durations as a guide

> Raise your hand at any time for assistance
> To get the most out of the lab...
 Read the lab guide, especially the background
 Don't just copy and paste the solutions
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Housekeeping

> Before you leave, please fill out a survey and hand 
it to someone before you leave
 We really want to know what you think!

> Please log out of your machine when done
> Please look around to make sure you have all of 

your belongings
 The hard copies of the lab guides are yours to keep
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What is “Real-Time”?

> Simple definition: 
 The addition of temporal constraints to the 

correctness conditions of a program
 “When” is as important as “what”

> Typical temporal constraint: deadline
 Others are latency, jitter

> “real-time” does not mean “real-fast”
 Predictability is the key

 Are operations bounded in time?
> Classifications: hard-, soft-, non- real-time
 How critical is timing to correctness
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Where Could You Use Real-Time JavaTM 
Technology?
> Military/Aerospace
 Command & control systems

> Telecommunication Infrastructure
 VoIP, PBX, IMS, new 3G services

> Banking/Finance
 Meet customer QoS and regulatory requirements

for pricing/trading
> Industry
 Factory automation, process control

> ...
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Real-Time Specification for JavaTM (RTSJ) 
Mission Statement

[To extend] The JavaTM Language Specification and 
The JavaTM Virtual Machine Specification [to 

provide] an Application Programming Interface 
that will enable the creation, verification, analysis, 

execution, and management of Java threads 
whose correctness conditions include timeliness 

constraints (also known as real-time threads)
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Key Functional Areas

> Thread Scheduling & Dispatching
 Priority-preemptive scheduling

> Memory management
 Allocation contexts without garbage collection

> Asynchronous Actions
 Internal events, external “happenings”, and handlers

> Time, Clocks and Timers
> Synchronization
 Priority inversion avoidance
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Sun JavaTM Real-Time System 2.2 Beta

> Based on JavaTM  5.0 platform
 Hotspot client VM (32-bit and 64-bit)

> Runs on:
 SolarisTM 10 operating system (SPARC® and x86)
 Linux with real-time POSIX extensions (x86)

> Implements RTSJ 1.0.2 plus:
 Real-time garbage collection (RTGC)

 Including additional monitoring via MXBeans
 Multi-processor support

 Including interrupt shielding and processor sets
 Initialization-time Compilation (ITC)

 Avoids unpredictable effects of JIT compilation
 Tools to aid in analyzing timing problems
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Exercises

Exercise 1: Creating Periodic Real-Time Threads
Expected duration: 30 minutes

Exercise 2: Debugging Deadline-misses using the 
Thread Scheduling Visualizer

Expected duration: 30 minutes

Exercise 3: Real-time Data Communication (almost!)
Expected duration: 20 minutes
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Exercises (continued)

Exercise 4: More Debugging of Deadline-Misses 
using the Thread Scheduling Visualizer

Expected duration: 15 minutes

Exercise 5: Real-Time Data Communication 
Expected duration: 15 minutes
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Getting Started

> If you have not logged in, log in with
 username: lab5538
 password: hol009

> Online lab guide will open in a browser window
> All necessary software and lab files are already 

installed on your lab machine
> Start from exercise 1
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Background for Exercise 1

> Threads, Scheduling and Parameter Objects
> Clocks and Time objects
> Memory Areas
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Introducing Schedulable Objects
«interface»

java.lang.Runnable

«interface»
Schedulablejava.lang.Thread

RealtimeThread AsyncEventHandler

NoHeapRealtimeThread
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Real-Time Threads

> Most features of RTSJ only apply to real-time threads or 
asynchronous event handlers

>  RealtimeThread extends java.lang.Thread
 The base class for real-time threads
 Specializes the semantics of  some java.lang.Thread methods

 setPriority, interrupt

> Writing a periodic real-time thread:

For start time, S, and period T, periodic threads are released 
according to: S + nT (n=0, 1, 2 ...)

while(workToBeDone) {
   // do work
   waitForNextPeriod();
}
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NoHeapRealtimeThreads

> Extends RealtimeThread
> Forbidden from accessing objects in the regular Java heap

 Must operate in scoped or immortal memory
 Run-time checks to enforce this rule

> Execution eligibility should be higher than GC
 Requires execution eligibility > all heap-using threads & GC threads
 No synchronizing on an object shared with heap-using threads

 Or sharing scoped memory areas 
 Programmers responsibility to get it right!
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Scheduling

> Notion of a Schedulable object
 Real-time threads and async event handlers
 Interface extends java.lang.Runnable

> Scheduler manages scheduling/dispatching of 
schedulable objects

> Default scheduler is the PriorityScheduler
 Enforces priority preemptive scheduling
 Supports periodic release of real-time threads

 RealtimeThread: boolean waitForNextPeriod()

 Supports sporadic and aperiodic async event handlers
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Parameter Objects

> Parameter objects abstract the properties of schedulable 
objects related to
 Release characteristics (periodic, sporadic, aperiodic)
 Scheduling (priority-based, importance-based)
 Memory (allocation rates and limits)

> Can be set at construction time or explicitly, e.g.
 thread.setReleaseParameters(myParams)

> PriorityParameters hold priority value 
 PriorityParameters(int priority)

> PeriodicParameters hold release information 
 Period, start-time, deadline, deadline-miss handler ...
 PeriodicParameters(RelativeTime period)
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Memory Areas

> MemoryArea represents an allocation context
 enter(Runnable r)

 Executes r with this area as the allocation context
 newInstance(Class c, ...)

 Reflectively creates an object in this memory area

> Three kinds of memory areas
 Heap: HeapMemory.instance()

 The normal Java heap
 Immortal: ImmortalMemory.instance()

 Memory that is never garbage-collected
 Scope: ScopedMemory 

 Lifetime of objects determined by use of scope
 When no-longer in-use objects are reclaimed; next use sees empty scope
 Strictly enforced rules to avoid “dangling references”
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Clocks and Times

> Clock represents a time-source
 AbsoluteTime getTime(AbsoluteTime dest)
 RelativeTime getResolution()

> Real-time clock is a nanosecond-precision clock
 Clock.getRealtimeClock()
 Resolution is platform-dependent
 Only pre-defined clock in RTSJ

> Time objects are a (millisecond,nanosecond) pair associated 
with some clock
 long millis, int nanos
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Clocks and Times (cont)

> HighResolutionTime: base class
 Supports simple set/get methods

 void set(HighResolutionTime other)

> AbsoluteTime: An actual time for a given clock
 AbsoluteTime(long millis, int nanos)
 Supports time arithmetic: add/subtract

 RelativeTime subtract(AbsoluteTime other,
                      RelativeTime dest)

 Subtract other time from this time, store in dest and return it

> RelativeTime: A time interval on a given clock
 Similar methods to AbsoluteTime
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Exercise 1
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Background for Exercise 2

> Running and understanding the Thread Scheduling 
Visualizer
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The Thread Scheduling Visualizer
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What is the Thread Scheduling Visualizer?

> A tool that presents a graphical time-line of per-thread events
 Originally only scheduling events (on-cpu, off-cpu) hence TSV

> Events are recorded using DTrace scripts
 VM defined events
 Application defined using com.sun.rtsjx.DTraceUserEvent

> What can you do?
 Inspect the timeline of events
 Measure the elapsed time between events
 Zoom in/out to observe different timescales

> Popup displays of certain event information:
 User-defined events
 Call-stacks
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TSV Basics

> One row of event data per-thread
 Ordered by thread creation time – oldest at bottom

 Main thread on bottom
 Application threads on top (generally)
 VM & library threads in between

> Default color scheme:
 Green: Time Sharing/Interactive/Fair Scheduling
 Blue: System
 Red: Real-Time
 The lighter the shade, the higher the priority

> Thread information in bottom right pane
> Bookmarks can be used to measure intervals between events

 Click first event, click second -> elapsed time shown in bottom left pane
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Exercise 2
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Background for Exercise 3

> Asynchronous Events
> Asynchronous Event Handlers
> Timers
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Asynchronous Events

> Many real-time systems are reactive
 They respond to events occurring in their environment

> RTSJ defines three explicit kinds of events with which handlers 
can be associated
 Programmatic events: AsyncEvent

 Triggered by invoking fire()
 Timers: OneShotTimer, PeriodicTimer

 Triggered by the passage of time
 POSIX Signal handler:

 Triggered by the delivery of a signal to the process

> Plus implicit: deadline-miss handlers, cost overrun handlers
> External named events: “happenings” attach to AsyncEvents

 Implementation defined events triggered externally
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Asynchronous Event Handlers

> Defines the work of the event handler but is not a thread itself
 handleAsyncEvent() is the method to override

 Or pass a Runnable to the constructor, like threads

> Handlers can be associated with one or more events
> When the event is triggered the handler is released as-if in its 

own real-time thread of control
 BoundAsyncEventHandler has a dedicated thread
 “server threads” acquire all the attributes of the handler

 Priority, deadline, cost, miss handler, memory constraints

> Each trigger increases the fire count of the handler
 System calls handleAsyncEvent in a loop while fireCount > 0

 Fire count is decremented each time
 Sporadic MIT constraints need to be accounted for
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Timers

> A Timer is an AsyncEvent triggered by the passage of time
 Methods fire() and bindTo() are disabled

> Timers have a complex lifecycle
 start() tells the timer to start tracking time – active
 stop() tells the timer to stop tracking time – in-active
 destroy() prevents the timer from being used any more

 All handlers are removed
 All methods throw IllegalStateException

 enable() allows the timer to fire
 disable() prevents the timer from firing

 If the fire time passes this is known as a skipped-firing
 isRunning() returns true if the timer is active and enabled
 getFireTime() returns absolute time when next firing is due
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Periodic Timers

> Re-usable periodic timer: fires repeatedly as the period falls due
> PeriodicTimer(HighResolutionTime start, 
            RelativeTime period, A…E…H handler)
 start indicates when the timer should initially fire
 period defines the interval between firings

 A zero period means “act like a one-shot”
 handler is initial handler

> Absolute start
 First firing when start is reached and timer is active and enabled; If start 

is in the past when timer is started, fires immediately
> Relative start

 First firing is start units after start() is called
> void reschedule(HighResolutionTime time)

 Sets a new firing time for the initial firing
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Exercise 3
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Background for Exercise 4

> Synchronization & Priority-Inheritance
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Semantics for Monitors

> Two issues addressed by the RTSJ with respect to monitors
> All queues are ordered by priority with FIFO when equal

 Monitor entry queue
 Wait-set notification queue

 Order of notifications is now defined

> Monitor lock acquisition must avoid unbounded priority inversion
 Priority inversion isn’t addressed with any other form of synchronization 

e.g. java.util.concurrent.locks.Lock
 RTSJ refers to the more general “execution eligibility inversion” but we’ll 

stick with priority for simplicity
> What does the programmer have to do?

 Be aware of how monitors are used
 Be aware of what other forms of synchronization are used
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Priority Inversion and its Avoidance

> When thread A tries to acquire a lock held by thread B, it blocks
> If A is high priority and B is low priority then having B execute 

when A would like to is a priority-inversion
> Worse, if a medium priority thread C preempts B, then A is 

blocked until C completes and then B releases the lock!
 This is potentially an unbounded priority inversion

> Predictable execution time requires predictable locking time
 And preferably a short as possible

> Priority inversion is not just concerned with locks – any means by 
which a thread A has to wait for an action in a thread B, is a 
potential priority inversion

> Priority inversion avoidance
 Techniques to minimise the time that A has to wait for the lock
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Priority Inheritance

> Priority Inheritance Protocol (PIP)
 When A blocks acquiring the lock held by B then B is boosted to A’s 

priority until it releases the lock
 This prevents C from preempting B
 Worst-case for A is the longest critical section for each lock it shares 

with other threads
> The base priority of a SO is the value in its scheduling 

parameters
> The active priority of a SO is the current priority

 Which can be different to base due to priority inheritance
 No means to query the active priority

> Even plain Java threads have an active priority
 Java threads can execute at the highest real-time priority!

 Avoid explicit lock sharing with Java threads
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Exercise 4
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Background for Exercise 5

> Wait-free Queues
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Wait-Free Queues

> Primary goal is to allow non-blocking data exchange between 
no-heap SO’s and heap-using SO’s within a given memory area
 If NHRT synchronizes with RTT then GC can preempt the NHRT

> WaitFreeReadQueue
 Single reader can perform non-blocking read
 Multiple writers can perform synchronized/blocking writes

> WaitFreeWriteQueue
 Single writer can perform non-blocking write
 Multiple readers can perform synchronized/blocking reads

> WaitFreeDequeue
 A combined WaitFreeReadQueue and WaitFreeWriteQueue

> Simple API but construction can be complex and confusing
 The internals of the queue can be created in a different memory area
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Exercise 5
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Real-Time Sessions at JavaOne

> TS-4807: 
 Easily Tuning Your Real-Time Application

> TS-5059: 
 Real Time: Understanding the Trade-Offs Between 

Determinism and Throughput
> TS-6735:
 Building a Java™ Technology-Based Automation 

Controller: What, Why, How
> TS-6989:
 Building Real-Time Systems for the Real World
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Congratulations!

> You should now have completed this lab
> If you would like more time to continue working, 

please consider taking the lab exercises with you
> Discs containing all of the labs offered this year are 

available for you to take home
> To save your work, please copy it to a USB drive or 

email it to yourself
> The lab guide will tell you where to get help with 

this lab after JavaOne
> Thank you for attending this hands-on lab!



David Holmes
Frederic Parain
Sun Microsystems
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