
Choosing the Right
Technology Stack for Your
JavaTM Website.

Ian Robertson
Sean Landis
Overstock.com

2

So you want to build a JavaTM Website

So many choices
> Container
> UI layer
> Persistence layer
> Build tools

3

So you want to build a Java website

With so many considerations
> Buy vs Build
> Commercial vs Open Source
> Standards-based vs proprietary
> Standards-based vs Standards-based

The nice thing about standards is that there are so
many to choose from. - Andrew Tanenbaum

4

Understand your requirements
> Staff skills and experience
> Time and resource availability
> Rapid Application Development vs. Rapid

Application Maintenance
> Stability, Reliability, Scalability, *ility...
> The need to interface with other technologies

(Database, JMS, AJAX, REST, etc)

5

Don't let others define your
requirements for you
Vendors, Industry Analysts and hypesters all are

willing to do so
A product is not the same thing as a solution
A solution is not necessarily a solution for any of

your problems
Beware of vendor lock-in

That said, when there is a solution to your problem,
it can be wonderful

Listen to others who have been where you're going

6

Remember that things change
> With time

Technologies, Companies, Employees and
Requirements all come and go

> With scale
Don't get caught with your servers down
But don't let next years design keep you from

reaching next month!

7

Beware of internal politics
> Staff wants to do new cool technology A
> Staff is afraid of technology B
> Manager just read about technology C
> Manager is afraid of technology D

● “I hear that Java is slow”
> "Nobody ever got fired for choosing X"

● But people do get fired for failed projects, cost
overruns, etc...

8

Choosing a web UI framework

So Many Choices:
JSP, Struts1, Struts2, Java Server Faces, Wicket,

Spring MVC, WebFlow, Tapestry, Jamon, Velocity,
Jboss Seam, Restlet, JAX-RS, GWT, Cocoon,
MyFaces, WebWork, Turbine, Rife, Echo,
AppFuse, Stripes,

There is no one-size-fits-all solution; all frameworks
have to make trade-offs

9

UI Frameworks Trade-offs
> Avoiding repetition (DRY)
> Type safety
> Accessibility to UI designers (non-programmers)
> Performance
> Ramp-up time for developers
> Separation of layers

● does the business layer need to know about the
UI Layer? (annotations?)

> Form handling capabilities

10

Choosing a Container
> JavaEE
> Spring/Guice
> Tomcat/Jetty
> public static void main(String args[])

11

JavaEE
> Plenty of providers

● both commercial and open source
> Swiss Army Knife - can do everything
> Some restrictions

● Thread creation is not allowed
● Nor is direct file access

12

Dependency Injection (Spring, Guice)
> Plenty of documentation
> Large communities of support

● Easy to find developers who know it.
> Most common needs can be met

13

Tomcat
> Primarily “just” a servlet container
> A great choice if all you need is a web server
> A good platform for non-standard requirements

(build your own)
> Increasingly, Jetty is emerging as another popular

alternative for a light-weight server

14

public static void main(String[] args)

> Gives total control, with higher development costs
> Can make sense if its core to your business
> Do not choose this lightly

15

Persistence Layer

Here, at least, the answer has always been clear:
Use JDBC

16

Persistence Layer

Here, at least, the answer has always been clear:
Use JDBC
Use EJB/CMP/BMP

17

Persistence Layer

Here, at least, the answer has always been clear:
Use JDBC
Use EJB/CMP/BMP
Use JDO

18

Persistence Layer

Here, at least, the answer has always been clear:
Use JDBC
Use EJB/CMP/BMP
Use JDO
Use Hibernate

19

Persistence Layer

Here, at least, the answer has always been clear:
Use JDBC
Use EJB/CMP/BMP
Use JDO
Use Hibernate
Use JPA

20

Persistence Layer

Here, at least, the answer has always been clear:
Use JDBC
Use EJB/CMP/BMP
Use JDO
Use Hibernate
Use JPA
or maybe iBATIS...

21

Build Tools
> Ant: the assembly language of build tools

● Can do any task, but you have to do it your self,
and there are problems scaling to large projects

> Maven: the BEPL of build tools
● It's “easy”, except for the hard stuff

> The industry is still searching:
● Ivy provides dependency management, but builds

on ant

22

Build vs “Buy”

If it's not an important differentiator, you're probably
better off using an off-the-shelf component
(ideally open source)

If it's critical and there is a matching solution, use it
But don't be afraid to invent when needed

● Not as much work as some make it out to be, but
requires design skill

● The bigger the shop, the more that custom-built
components make sense

● Innovation requires this....

23

Things to consider when “buying”
> Support
> Provider viability
> Community
> Size of user base
> Trend

24

Commercial vs Open source

Even if you don't plan to change the source, having
access can be invaluable for debugging and
diagnosis

OpenSource projects often have better support
than their commercial counterparts

25

Case Study – Overstock.com

Two separate use cases:
● Public facing websites (i.e. www.overstock.com)
● Internally-facing websites (customer service, item

creation, etc)

http://www.overstock.com/

26

Public-facing website requirements
> Scalable – 2000 requests/second
> Responsive - < .25 second page load time
> Customizable – never say “we cannot do that” to

the business
> Reliable – no site, no money
> Maintainable – lots of developers, lots of changes

27

Public-facing website non-requirements
> Fast developer ramp-up
> Support from a third party for a framework
> Heavy form processing capabilities
Site revenue allows making non-trivial investments

28

Public-facing website stack
> Java 6 SE
> Hibernate
> Tomcat
> Jamon (templating engine)
> Restlet (ReSTful backend web services)
> Ehcache (taxonomy data, sales tax rates, etc)
> Oracle Coherence (caching search results)
> JMS (click tracking, order processing)
> JMX (monitoring, cache invalidation, etc)

29

What's not in the stack
> Session – can limit scalability
> EJB container – no need
> JSP – not enough type safety
> Spring – use a lightweight generic factory pattern

instead

30

Internal website requirements

Quick to develop, maintain
Heavy form processing
Small number of users, all trained on using the

application

31

Internal website non-requirements
> Highly scalable
> Highly customizable
> Ability to support parallel development

32

Internal website stack
> Java 6 SE
> Hibernate
> Tomcat
> Jboss Seam
> Restlet (ReSTful backend web services)
> JMX (monitoring, cache invalidation, etc)

Ian Robertson
irobertson@overstock.com
Sean Landis
slandis@overstock.com

mailto:irobertson@overstock.com
mailto:slandis@overstock.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

