
Best Practices for
Large-Scale Websites:
Lessons from eBay
Randy Shoup
eBay

2

Challenges at Internet Scale
> eBay manages …

 88.3 million active users worldwide
 160 million items for sale in 50,000 categories
 Over 2 billion page views per day

> … in a dynamic environment
 >300 new features per quarter
 100,000 lines of code changed every 2 weeks

3

Challenges at Internet Scale
> … worldwide

 In 39 countries and 8 languages
 24x7x365

> >48 billion SQL executions / day

4

Architectural Forces at Internet Scale
> Scalability

 Resource usage should increase linearly (or better!)
with load

 Design for 10x growth in data, traffic, users, etc.
> Availability

 Resilience to failure
 Graceful degradation and rapid recoverability

> Latency
 User experience latency
 Data / execution latency

5

Architectural Forces at Internet Scale
> Manageability

 Simplicity and maintainability
 Diagnostics

> Cost
 Development effort and complexity
 Operational cost (TCO)

6

Best Practices for Internet Scale
> 1. Partition Everything
> 2. Asynchrony Everywhere
> 3. Automate Everything
> 4. Remember Everything Fails
> 5. Embrace Inconsistency

7

Best Practice 1: Partition Everything
> Split every problem into manageable chunks

 Split by data, load, and/or usage pattern
 “If you can’t split it, you can’t scale it”

> Motivations
 Scalability: scale horizontally and independently
 Availability: isolate failures
 Manageability: decouple different segments and

functional areas
 Cost: choose partition size that maximizes price-

performance

8

Best Practice 1: Partition Everything
Pattern: Functional Segmentation
> Segment processing into pools, services, and

stages

> Segment data by entity and usage pattern

Item Transaction ProductUser Account Feedback

Search View ItemSelling Bidding

MyEbay Checkout Feedback

9

Best Practice 1: Partition Everything
Pattern: Horizontal Split
> Load-balance processing

 All servers in a pool are created equal

> Split (or “shard”) data along primary access path
 Modulo of a key, range, lookup table, etc.

Item Transaction ProductUser Account Feedback

Search View ItemSelling Bidding

MyEbay Checkout Feedback

10

Best Practice 1: Partition Everything
Corollary: No Session State
> User session flows through multiple pools

> Absolutely no session state or business object
caching in application tier
 No HttpSession, no EJBs

> Session state maintained in cookie, URL, or
database

Search View ItemSelling Bidding

MyEbay Checkout Feedback

11

Best Practice 2: Async Everywhere
> Prefer Asynchronous Processing

 Move most processing to asynchronous flows
 Integrate components asynchronously

> Motivations
 Scalability: scale components independently
 Availability: decouple availability state, retry
 Latency: trade execution latency for response

latency
 Cost: spread peak load over time

12

ItemHost N

Image Processing

Selling Summary Update

User Metrics

ITEM.NEW

Best Practice 2: Async Everywhere
Pattern: Event Queue
> Primary application writes data and queues event

 Create event transactionally with primary insert /
update (e.g., ITEM.NEW, ITEM.BID, ITEM.SOLD)

> Consumers subscribe to event
 At least once delivery, rather than exactly once
 No guaranteed order, rather than in-order
 Idempotency and readback

13

Best Practice 2: Async Everywhere
Pattern: Message Multicast
> Search Feeder publishes item updates

 Reads item updates from primary database
 Publishes sequenced updates via multicast to grid

> Search engines listen to assigned messages
 Update in-memory index in real time
 Request recovery when messages

are missed

Aggregator

Col 1 Col 2 ... Col N

Col 1 Col 2 ... Col N

Col 1 Col 2 ... Col N

Col 1 Col 2 ... Col N

Col 1 Col 2 ... Col N

Search Feeder

M
essage B

us

Search DB

Primary DB

14

Best Practice 3: Automate Everything
> Prefer Adaptive / Automated Systems

 Design systems which adapt to their
environment

 Engineer feedback loops to learn over time

> Motivations
 Scalability: scale with machines, not humans
 Availability / Latency: adapt to changing

environment more rapidly
 Cost: machines are less expensive than humans

15

Best Practice 3: Automate Everything
Pattern: Adaptive Configuration
> Do not manually configure event consumers

 Polling size and frequency, number of threads, etc.
> Define SLA for a given consumer

 E.g., process 99% of events within 15 seconds
 Each consumer dynamically adjusts to meet SLA

> Consumers automatically adapt to changes in
 Load
 Event processing time
 Number of consumers

Consumer A

Consumer B

Consumer C

SLA 15 seconds

SLA 30 seconds

SLA 5 minutes

16

Best Practice 3: Automate Everything
Pattern: Machine Learning
> Dynamically adapt search experience

 Determine best inventory and assemble optimal
page for that user and context

> Feedback loop enables system to learn and
improve over time
 Collect user behavior
 Aggregate and analyze offline
 Deploy updated metadata
 Decide and serve appropriate

experience

17

Best Practice 4: Everything Fails
> Build all systems to be tolerant of failure

 Assume every operation will fail and every resource
will be unavailable

 Detect failure as rapidly as possible
 Recover from failure as rapidly as possible
 Do as much as possible during failure

> Motivation
 Availability

18

Best Practice 4: Everything Fails
Pattern: Failure Detection
> Application servers log all requests

 Log all application activity, database and service
calls on multicast message bus

 Over 2TB of log messages per day
> Listeners automate failure detection and

notification

Message Bus

File Log

Data
Cube

Alert Listener Report Listener

Selling Search View Item

19

Best Practice 4: Everything Fails
Pattern: Rollback
> Absolutely no changes to the site which cannot be

undone (!)

> Every feature has on / off state
 Can immediately turn feature off for operational or

business reasons
 Can deploy “wired-off” to unroll dependencies

 Decouple code deployment from feature deployment
 For an application, feature “availability” is just like

resource availability

20

Best Practice 4: Everything Fails
Pattern: Graceful Degradation
> Application “marks down” a resource if it is

unavailable or distressed
> Remove or ignore non-critical functionality
> Retry or defer critical functionality

 Failover to alternate resource
 Defer processing to guaranteed async event

> Explicit “markup”
 Restore and bring resource online in a controlled

way

21

Best Practice 5: Embrace Inconsistency
> Brewer’s CAP Theorem

 Any shared-data system can have at most two of
the following properties:
 Consistency: All clients see the same data, even in the

presence of updates
 Availability: All clients will get a response, even in the

presence of failures
 Partition-tolerance: The system properties hold even when

the network is partitioned

> This trade-off is fundamental to all distributed
systems

22

Best Practice 5: Embrace Inconsistency
Choose Appropriate Consistency Guarantees
> Typically eBay trades off immediate consistency

for availability and partition-tolerance
> Most real-world systems do not require immediate

consistency (even financial systems!)

> Consistency is a spectrum

Immediate
Consistency
Bids, Purchases

Eventual
Consistency

Search Engine, Billing System, etc.

No
Consistency

Preferences

23

Best Practice 5: Embrace Inconsistency
Avoid Distributed Transactions
> eBay does absolutely no distributed transactions

 No JDBC client transactions, no 2PC, etc.

> Minimize inconsistency through state machines
and careful ordering of database operations

> Reach eventual consistency through
asynchronous event or reconciliation batch

24

Recap: Best Practices for Internet Scale
> 1. Partition Everything
> 2. Asynchrony Everywhere
> 3. Automate Everything
> 4. Remember Everything Fails
> 5. Embrace Inconsistency

25

Randy Shoup
rshoup@ebay.com

	Best Practices for Large-Scale Websites: Lessons from eBay
	Challenges at Internet Scale
	Slide 3
	Architectural Forces at Internet Scale
	Slide 5
	Best Practices for Internet Scale
	Best Practice 1: Partition Everything
	Best Practice 1: Partition Everything Pattern: Functional Segmentation
	Best Practice 1: Partition Everything Pattern: Horizontal Split
	Best Practice 1: Partition Everything Corollary: No Session State
	Best Practice 2: Async Everywhere
	Best Practice 2: Async Everywhere Pattern: Event Queue
	Best Practice 2: Async Everywhere Pattern: Message Multicast
	Best Practice 3: Automate Everything
	Best Practice 3: Automate Everything Pattern: Adaptive Configuration
	Best Practice 3: Automate Everything Pattern: Machine Learning
	Best Practice 4: Everything Fails
	Best Practice 4: Everything Fails Pattern: Failure Detection
	Best Practice 4: Everything Fails Pattern: Rollback
	Best Practice 4: Everything Fails Pattern: Graceful Degradation
	Best Practice 5: Embrace Inconsistency
	Best Practice 5: Embrace Inconsistency Choose Appropriate Consistency Guarantees
	Best Practice 5: Embrace Inconsistency Avoid Distributed Transactions
	Recap: Best Practices for Internet Scale
	Slide 25

