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Overview
● Java Servlet 3.0 API – JSR 315
● About 20 members in the expert group

● Good mix of representation from major Java EE 
vendors, web container vendors and individual 
web framework authors

● Main areas of focus
● Ease of Development
● Pluggability
● Asynchronous support
● Security
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Status
● Specification in Proposed Final Draft
● Final release aligned with Java EE 6
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Ease of Development (EoD)
● Focus on Ease of Development (EoD) in the 

Servlet 3.0 API
● Enhance API to use the new language features 

introduced since J2SE 5.0
● Annotations for declarative style of programming

● No web.xml needed
● Generics for type safety in the API without 

breaking backwards compatibility
● Better defaults and convention over configuration
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Ease of Development
Use of Annotations
● Annotations to declare Servlets, Filters, Listeners 

and security constraints
● @WebServlet – Define a Servlet
● @WebFilter – Define a Filter
● @WebListener – Define a Listener
● @WebInitParam – Define init params
● @MultipartConfig – Define fileupload 

properties
● Can use web.xml to override values specified in 

the annotations
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Ease of Development
Use of Annotations (contd)
● @WebServlet for defining a Servlet

● The annotation MUST have at a minimum the 
URL pattern for the Servlet

● All other fields optional with reasonable defaults
● For example, the default name of the Servlet is 

the fully qualified class name
● Class MUST still extend HttpServlet

● Method contracts for doGet, doPost 
inherited from abstract class
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Servlet 2.5 example 
public class SimpleSample 
extends HttpServlet {
    public void doGet 
    (HttpServletRequest req, 
     HttpServletResponse res) 
    {

    }
}

web.xml 
(intentionally left 
unreadable)

<web-app>

  <servlet>

    <servlet-name>                  MyServlet

    </servlet-name>

    <servlet-class> 

     samples.SimpleSample

    </servlet-class>

  </servlet>

  <servlet-mapping>

    <servlet-name> 

      MyServlet

    </servlet-name>

    <url-pattern>

      /MyApp

    </url-pattern>

  </servlet-mapping>

...

</web-app>
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Servlet 3.0 example
@WebServlet(“/foo”)
public class SimpleSample extends 
HttpServlet 
{
    public void doGet(HttpServletRequest     
             req,HttpServletResponse res) 
    {

    }
}
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Servlet 3.0 example
@WebServlet(urlPatterns=“/foo”, 
name=”MyServlet”, asyncSupported=true)

public class SimpleSample extends 
HttpServlet 
{
    public void doGet(HttpServletRequest     
             req,HttpServletResponse res) 
    {

    }
}



12

Agenda
● Overview
● Ease of Development
● Dynamic registration of Servlets and Filters
● Pluggability
● Asynchronous support
● Security enhancements
● Miscellaneous



13

Dynamic registration of Servlets and 
Filters
Register
● Performed during ServletContext initialization
● ServletContext#add[Servlet|Filter]

● Overloaded versions take [Servlet|Filter] name 
and
● Fully qualified [Servlet|Filter] class name OR
● Class<? extends [Servlet|Filter]> OR
● [Servlet|Filter] instance

● Use returned Registration handle to configure 
all aspects of [Servlet|Filter]



14

Dynamic registration of Servlets and 
Filters
Create and Register
● ServletContext#create[Servlet|Filter]

● Takes Class<? extends [Servlet|Filter]> 
argument

● Container responsible for instantiating the [Servlet |Filter]
● Supports resource injection by container
● Returned [Servlet|Filter]  instance may be 

fully customized before it is registered via the 
ServletContext#add[Servlet|Filter] 
methods
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Dynamic registration of Servlets and 
Filters
Lookup
● ServletContext#get[Servlet|
Filter]Registration
● Takes [Servlet|Filter] name as argument
● Returned Registration handle provides subset 

of configuration methods
● May only be used to add initialization parameters and 

mappings
● Any conflicts returned as java.util.Set 
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Dynamic registration of Servlets/Filters
Register Example

ServletRegistration.Dynamic dynamic =
    servletContext.addServlet(
        "DynamicServlet", 
"com.mycom.MyServlet");

dynamic.addMapping("/dynamicServlet");
dynamic.setAsyncSupported(true);
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Dynamic registration of Servlets/Filters
Lookup Example

ServletRegistration declared =
    
servletContext.getServletRegistration("Declar
edServlet");

declared.addMapping("/declaredServlet");
declared.setInitParameter("param", "value");
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Pluggability
● Enable use of libraries and framework without 

boiler plate configuration in deployment 
descriptors
● Put the burden on the framework developer

● Modularize web.xml to allow frameworks to be 
self-contained within their own JAR file

● Programmatic configuration APIs
● Use of annotations
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Pluggability
Motivation for web.xml modularization
● Use of framework requires (possibly complex) 

configuration in web.xml
● For example

● Declare a controller Servlet
● Logging and security Filters
● Declare Listeners to perform actions at various 

points in the lifecycle of the application
● Can get complex as dependencies increase
● Frameworks also need to document all the 

configuration that needs to be done



21

Pluggability
web-fragment.xml
● web-fragment.xml is descriptor for framework / 

library
● Included in META-INF directory
● Container responsible for discovering fragments and 

assembling the effective deployment descriptor
● Almost identical to web.xml

● Ordering related elements different
● Only JAR files in WEB-INF/lib considered as 

fragments
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Pluggability
web-fragment.xml example
<web-fragment>

  <servlet>
    <servlet-name>welcome</servlet-name>
    <servlet-class>com.mycom.WelcomeServlet</servlet-class>
  </servlet>
  <servlet-mapping>
    <servlet-name>welcome</servlet-name>
    <url-pattern>/Welcome</url-pattern>
  </servlet-mapping>
  ...
</web-fragment>



23

Pluggability
Ordering
● Compatible with JavaServer™ Faces
● Fragments identified by <name>
●  web.xml may declare absolute ordering of 

fragments via <absolute-ordering>
● Fragments may declare ordering preferences 

relative to other fragments via <ordering> with 
nested <before> and <after>

● Ignored if <absolute-ordering> specified
● Special <others/> element moves fragment to 

beginning or end of list of sorted fragments
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Pluggability
Resource sharing

● Static and JavaServer™ Pages (JSP) resources 
no longer confined to web application's document 
root

● May be placed inside WEB-INF/lib/[*.jar]/
META-INF/resources

● Container must honor this new location when 
processing HTTP requests and calls to ServletContext#getResource[AsStream]

● Resources in document root take precedence 
over those in bundled JAR files
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Pluggability
Resource sharing: Example
mywebapp.war packaging:
  /index.jsp
  /WEB-INF/lib/shared.jar!/META-
INF/resources/shared.jsp

Request for:
http://localhost:8080/mywebapp/shared.jsp
will be served from:
  /path/to/mywebapp/WEB-
INF/lib/shared.jar!/META-
INF/resources/shared.jsp

http://localhost:8080/mywebapp/shared.jsp
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Pluggability
Shared libraries
● Support plugging in of container installed JAR 

files
● Examples: JSF, JAX-WS, Spring

● Libraries may provide implementation of ServletContainerInitializer
● Looked up via the JAR Services API in JDK 6
● Invoked before any Listeners during the 

initialization of the application
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Pluggability
Shared libraries (contd)

● ServletContainerInitializer expresses 
interest in Classes via @HandlesTypes 

● Container discovers classes that match 
@HandlesTypes and passes them to 
ServletContainerInitializer

● ServletContainerInitializer inspects 
passed in Classes and may register Servlets and 
Filters based on them
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Pluggability
ServletContainerInitializer example
@HandlesTypes(WebService.class)
public class JAXWSInitializer implements 
ServletContainerInitializer {
  public void onStartup(Set<Class<?>> c,     
                       ServletContext ctx) 
  {
    ctx.addServlet(“JAXWSServlet”,           
            “com.sun.jaxws.JAXWSServlet”);   
  
  }
}
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Why Asynchronous Servlets?
● Not for Async IO!

● Requests mostly small (single packet)
● Hard to asynchronously produce large responses
● Async IO support waiting for NIO2 (Servlet 3.1?)

● Async Servlets are for:
● Waiting for resources (eg JDBC connection)
● Waiting for events (eg Chat)
● Waiting for responses (eg web services, QoS)
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Blocking waiting consumes resources
● Web Application using remote web services

● Handling 1000 requests / sec
● 50% requests call remote web service
● 500 threads in container thread pool

● If remote web service is slow (1000ms)
● Thread starvation in 1 second!
● 50% of requests use all 500 threads
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Waiting for Web Services
Blocking Asynchronous

Thread 
blocked

WS request 
In parallel
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Asynchronous API
ServletRequest
● ServletRequest#isAsyncSupported()

● True if ALL [Filter|Servlet]s support async in 
● the Filter chain
● the RequestDispatch chain

● Configured in
● web.xml 

● <async-supported>true</async-supported>
● With annotation

● @WebServlet(asyncSupported=true)
● Programmatic

● registration.setAsyncSupported(boolean)  
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Asynchronous API
ServletRequest
● AsyncContext 
ServletRequest#startAsync()
● Called by [Filter|Servlet] 
● Response is NOT commited on return of:

● Servlet.service(request,response)
● Filter chain

● AsyncContext 
ServletRequest#startAsync
 (ServletRequest req,
  ServletResponse res)
● Variation that preserves wrappers
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Asynchronous API
AsyncContext
● AsyncContext#dispatch()

● Called by your asynchronous handler
● Schedule async dispatch:

DispatcherType.ASYNC
● Response generated by [Filter|Servlet] using:

● container thread pool
● JSP, JSF or other frameworks usable
● JNDI, JTA, EJBs usable

● AsyncContext#dispatch(String path)
● Variation to async dispatch to specific Servlet
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Asynchronous API
AsyncContext

● AsyncContext#complete()
● Called by your asynchronous handler
● Response has been generated asynchronously

● without Servlet features, or
● with AsyncContext#start(Runnable r) 

● for JNDI, classloader
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Asynchronous Web Service

Webapp

doGet()

doGet()

s ta rtAs ync () WS call

dis pa tc h()

Server
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Multiple Usage Styles
● startAsync() … dispatch()

● Retry request after async wait
● Filters re-applied if on DispatcherType.ASYNC

● startAsync() … dispatch(path)
● Use specific Servlet handling after async wait

● startAsync() … complete()
● Generate response asynchronously
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Multiple Usage Styles
● startAsync(req,res)… dispatch()

● Retry request after async wait
● Wrappers are kept
● RequestDispatcher#forward target used

● startAsync(req,res)… dispatch(path)
● Specific Servlet handling after async wait

● startAsync(req,res)… complete()
● Generate wrapped response asynchronously
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Asynchronous API Details
● Timeouts

● ServletRequest#setAsyncTimeout(long ms)
● By default error dispatch on timeout

● Listeners
● AsyncListener#OnTimeout
● AsyncListener#OnComplete
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Demonstration 
Asynchronous eBay Web Service
> EoD packaging

● META-INF
● web-fragment.xml
● Resources/*

> Glassfish Container
● Async Serlvet

> Jetty HTTP Client
● Async Client
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Security 
Security constraints via common annotations
● Support for common annotations

● @RolesAllowed -> auth-constraint with roles
● @DenyAll -> Empty auth-constraint
● @PermitAll -> No auth-constraint 
● @TransportProtected -> user-data-constraint

● Annotations enforced on javax.http.Servlet 
class and doXXX methods of HttpServlet

● Method-targeted annotations take precedence over 
class-targeted annotations
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Security 
Security constraints via common annotations (contd)
● Security constraints in web.xml override 

annotations, metdata-complete disables 
annotations

● web-resource-collection enhanced with http-
method-omission to 
● Allow constraints to be specified on non-

enumerable HTTP method subsets (i.e., all 
other methods)
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Security 
Programmatic container authentication and logout
● HttpServletRequest#login(String username, 
String password)
● Replacement for FBL
● Application supervises credential collection

● HttpServletRequest#authenticate(HttpServl
etResponse)
● Application initiates container mediated 

authentication from a resource that is not 
covered by any authentication constraints

● Application decides when authentication must 
occur 
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Security
Programmatic container authentication and logout 
(contd)
● HttpServletRequest#logout
● Integration of additional container authentication 

modules via Servlet Profile of JSR 196 
recommended
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Miscellaneous Features / APIs
● Session tracking cookie configuration

● Via web.xml
● Programmatic via javax.servlet.SessionCookieConfig

● Support for HttpOnly cookie attribute
● Example: 
servletContext.getSessionCookieConfig
().setHttpOnly(true)

● Default error page



49

Miscellaneous Features / APIs (contd)

ServletRequest#getServletContext
ServletRequest#getDispatcherType
Servlet[Request|
Response]Wrapper#isWrapperFor

HttpServletResponse#getStatus
HttpServletResponse#getHeader
HttpServletResponse#getHeaders
HttpServletResponse#getHeaderNames
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Miscellaneous Features / APIs (contd)
File upload APIs

ServletRequest#getParts
ServletRequest#getPart
@MultipartConfig
Changes to web.xml 
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Summary
● Major revision since Servlet 2.4
● Comprehensive set of new features enable 

modern style of web applications and greatly 
increases developer productivity 

● Simplifies assembly of large applications from 
reusable components
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GlassFish Community
Open Source and Enterprise Ready
● GlassFish V3 Preview Available now!

● Java EE 6 reference implementation
● Modular OSGi architecture – easy to develop & deploy
● Runs in-process and easy to extend
● Support for Ruby-on-Rails, Groovy and Grails, 

Python and Django
● GlassFish V2 – Production Ready
● Best price/performance open source App server with 

Clustering, High Availability, Load Balancing 
● Secure, Reliable, Transactional, .NET-interop Web svcs
● Support for Ajax and Comet

● GlassFish ESB
● SOA and Business Integration platform

● GlassFish Communications App Server
● SIP servlet technology for converged services

• 24x7 Enterprise and Mission 
Critical Support

•sun.com/glassfish

• Tools Integration
•NetBeans and Eclipse

glassfish.org

Always free to download, deploy and distribute
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Webtide & Jetty
> Status update
> http://eclipse.org/jetty
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