
Conversations and Page
Flows on the JavaServerTM

Faces Platform

Dan Allen
JBoss, a division of Red Hat, Inc.
Senior Software EngineerSpeaker logo

centered below photo

2

Springing JSF from its social shell

Today you are going to learn two ways to
implement a multi-page dialog in JSF

 Seam

Spring Web Flow

3

Agenda
> Introduction to conversations and page flows
> Conversations and page flows in Seam
> Flows with Spring Web Flow and Spring Faces
> Finding peace with Java persistence
> Dealing with the “back” button
> Summary

4

Scope inventory
A brief look at where state is stashed
> Servlet API

● Request – single request
● Session – all requests by same browser session
● Application – all requests

> JSF
● View (Page) – UI component tree

> Query string
● Hidden form fields
● URL rewriting

5

The fallacy of state in JSF
> Stateful UI
> Lacks stateful model to support UI
> Can stash state in UI component tree

● View (page) scope (e.g., <t:saveState>)
● Does not survive navigation event
● No predictable removal point

> Session is our crutch
● Leaks memory / cross streams

6

What is a conversation?
> A long-running context

whose boundaries are
dictated by the
application logic

7

Conversation aspects
> Long-running context

● request ≤ conversation << session
> Retains object identity
> Can exist in parallel

● No interference between tabs/windows
● Can become idle and later continued

8

Conversation navigation styles
> Ad-hoc (Seam only)

● User decides where to go next
● Useful when goal is vague
● Less work to setup

> Constrained
● Guided by a page flow
● Ideal when goal is well defined

9

What is a page flow?
> A progressive series of

states (i.e., pages)
with constrained
transitions modeling a
single-user process

Entry point:
Locate reservation

Exit point:
Check-in summary

Preflight check-in

Baggage

Flights and passengers

Confirm seats

Issue boarding passes

10

Going with the flow
> Have a definitive START and END
> Backed by a conversation
> Each state represents a page view (wait state)
> User events trigger transition to next state
> Transitions

● Route – can be decision-based
● Invert control
● Can invoke auxiliary behavior

11

Seam

12

Preflight Check In
A conversation and page flow demo

13

Conversations in Seam
> Central aspect of framework – no setup required!
> Conversation styles

1) Ad-hoc
2) Constrained

> Controlled declaratively
> Not explicitly tied to a navigation model

● Page flow is an optional feature
> Available on every request

● Application dictates if it lives on

14

Conversation propagation
Keeping the conversation in play
> Conversation token

● Synthetic numeric value (default): cid=1
● Natural business key: airportCode=BWI

> Token propagation (typically automatic)
● Faces request (postback) – stored in UI view root
● Non-faces request – passed as request

parameter
> Token not shared across windows or tabs

15

Seam page flows
> Driven by jBPM execution engine
> Flows defined in jPDL

● XML-based process language for jBPM
● Page nodes map to JSF view IDs
● Resembles Seam stateless navigation descriptor
● Uses JBoss EL to resolve expressions

> A page flow is an extension to a conversation
> Subflows only partially supported

16

Registering the page flow
/WEB-INF/components.xml
<components ...>
 <bpm:jbpm>
 <bpm:pageflow-definitions>
 <value>check-in.jpdl.xml</value>
 </bpm:pageflow-definitions>
 </bpm:jbpm>
</components>

17

Seam page flow definition
/WEB-INF/classes/check-in.jpdl.xml
<pageflow-definition ... name="check-in">

 <start-state name="begin">
 <transition name="begin" to="flights"/>
 </start-state>

 <page name="flights" view-id="/checkIn/flights.xhtml">
 <redirect/>
 <transition name="cancel" to="cancel"/>
 <transition name="continue" to="declareBaggage"/>
 </page>

</pageflow-definition>

18

Initiating the page flow
/start.xhtml
<h:form>
 <h:panelGrid columns="2">
 <h:outputLabel for="number"
 value="Reservation number"/>
 <h:inputText id="number"
 value="#{reservationIdentifier.reservationNumber}"/>
 <h:outputLabel for="lastName"
 value="Passenger last name"/>
 <h:inputText id="lastName"
 value="#{reservationIdentifier.passengerLastName}"/>
 </h:panelGrid>
 <h:commandButton value="Begin check in"
 action="#{checkInAssistant.locateReservationForCheckIn}"/
>
</h:form>

19

Beginning the conversation / page flow
CheckInAssistant.java
@Name("checkInAssistant")
@Scope(ScopeType.CONVERSATION)
public class CheckInAssistant implements Serializable {

 @In private ReservationIdentifier reservationIdentifier;
 @Out(required = false) private Reservation reservation;
 @DataModel private List<BoardingPass> boardingPasses;

 @Begin(pageflow = "check-in", flushMode =
FlushModeType.MANUAL)
 public String locateReservationForCheckIn() {
 reservation = ...;
 if (reservation == null) return null;
 boardingPasses = ...;
 return "located";
 }
}

20

Protecting page flow views
/WEB-INF/pages.xml
> Page flow views served via normal JSF life cycle

● JSF isn’t aware of page flows
> Seam can require conversation to render page

● Not part of page flow definition
● Doesn’t say which conversation is required

<page view-id="/checkIn/*" conversation-required="true"
 no-conversation-view-id="/start.xhtml"/>

21

Workspace management
For when the user strays
> Workspace

● A conversation with a description (continuable)
● User can have parallel workspaces (akin to tabs)

> Nested conversation
● Related, yet independent conversation
● Parent conversation restored when ended

> Conversation switcher
● Only one active workspace per window at a time
● UI control used to select and resume a workspace

22

Spring Web Flow

23

Preflight Check In
A conversation and page flow demo

24

Spring web flows
> Spring Framework module
> Conversation styles allowed

1) Constrained
> Flows defined in a DSL (XML)

● Expressions evaluated with JBoss EL (in flow
only)

> Has distinct scopes for top-level flow and subflow
● conversation scope – visible to flow and subflows
● flow scope – visible to current flow only

> Incorporates partial page updates into flow

25

Getting Spring in the flow
> Lots of copy-paste configuration to get started!
> Thankfully, it’s a “set and forget” configuration

● Flows discovered based on convention
> Flow is in full control
/preflight /spring /checkIn ?execution=e1s1

 application path MVC handler flow name flow token

> Can model flow with DSL
● UI strictly focused on input and output
● All scoped data must be Serializable!

26

Defining a top-level flow
<flow ...>

 <var name="reservationIdentifier"
 class="org.preflight.criteria.ReservationIdentifier"/>

 <view-state id="enterReservationId">
 <transition on="locate" to="locateReservation"/>
 </view-state>

 <action-state id="locateReservation">
 <evaluate expression="checkInService.
 locateReservationForCheckIn(reservationIdentifier)"
 result="conversationScope.reservation"/>
 <transition on="${reservation!=null}" to="beginCheckIn"/>
 <transition on="${reservation==null}"
to="enterReservationId"/>
 </action-state>

</flow>

First view

27

Branching to a subflow
...
<subflow-state id="beginCheckIn" subflow="checkIn">
 <input name="checkInGroup" type="boolean"
 value="reservationIdentifier.checkInGroup"/>
 <transition on="confirmed" to="finish"/>
 <transition on="canceled" to="enterReservationId"/>
</subflow-state>
...

28

A persistence conscious subflow
<flow ...>
 <persistence-context/>
 <input name="checkInGroup" type="boolean" required="true"/>

 <on-start>
 <evaluate expression="checkInService.
 refetchReservation(reservation)"
 result="flowScope.reservation"/>
 <evaluate expression="checkInService.
 locateBoardingPasses(reservation, checkInGroup)"
 result="flowScope.boardingPasses"
 result-type="dataModel"/>
 </on-start>

 <view-state id="flights">...</view-state>

 <end-state id="confirmed" commit="true">
 <end-state id="canceled"/>
</flow>

29

Partial page update transition
<view-state id="confirmSeats">
 <transition on="change">
 <evaluate expression="checkInService.changeSeat(
 boardingPasses.selectedRow,seatMatrix.selectedSeat)"/
>
 <render fragments="seatingChart"/>
 </transition>
 ...
</view-state>

id="seatingChart"

30

How was it done in Seam?
<rich:subTable var="_col" value="#{_colgroup.columns}">
 <rich:columns var="_row" id="#{_section.rows}" index="r">
 <a:commandLink action="#{seatSelector.select(
 _col.seatSelections[r])}" reRender="seatingChart">
 </a:commandLink>
 </rich:columns>
</rich:subTable>

id="seatingChart"

31

Persistence mismanagement
...or who put the LIE in my Hibernate?
> Java persistence manager provides:

● Unique cache of objects per database id
● Lazy fetching of associated entities / collections
● Automatic state detection (dirty checking)

● Transitive persistence
● Optimistic locking

> All bets are off when session is closed
● All loaded entity instances become detached
● The LazyInitializationException reigns!

32

Extending the persistence context

Page
1

Page
2

Page
3

Page
4

Page
N

...

Persistence Context

Conversation

Application Transaction

Don’t commit changes until the user says so!

33

Making the changes stick
> Save == Flush persistence context

 entityManager.flush();

 <end-state commit="true"/>

34

Contending with evil browser buttons
> Detects out of

sequence request
● Blocks action
● Routes to current

page
> Attempt to use

conversation that has
ended will fail

Disclaimer:
Cannot prevent browser
from revisiting cached page

35

A better “state” of affairs
What conversations and page flows provide
> Correlate sequential requests
> Maintain long-running state
> Guide and enforce navigation “flow”
> Support for multi-tasking

36

Conclusion

 Seam

Spring Web Flow

Both frameworks offer a strong
choice for implementing multi-page

dialogs in a web application

37

Questions?

Let’s keep the conversation going!

Dan Allen
dan.allen@mojavelinux.com

http://mojavelinux.com
http://in.relation.to/Bloggers/Dan
http://code.google.com/p/seaminaction/source
http://delicious.com/seaminaction

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

