
Java™ Servlet 3.0:
Empowering Your Web
Applications With Async,
Extensibility and More

Rajiv Mordani, Jan Luehe
Sun Microsystems
Greg Wilkins
Webtide / Jetty

2

Agenda
● Overview
● Ease of Development
● Dynamic registration of Servlets and Filters
● Pluggability
● Asynchronous support
● Security enhancements
● Miscellaneous

3

Overview
● Java Servlet 3.0 API – JSR 315
● About 20 members in the expert group

● Good mix of representation from major Java EE
vendors, web container vendors and individual
web framework authors

● Main areas of focus
● Ease of Development
● Pluggability
● Asynchronous support
● Security

4

Status
● Specification in Proposed Final Draft
● Final release aligned with Java EE 6

5

Agenda
● Overview
● Ease of Development
● Dynamic registration of Servlets and Filters
● Pluggability
● Asynchronous support
● Security enhancements
● Miscellaneous

6

Ease of Development (EoD)
● Focus on Ease of Development (EoD) in the

Servlet 3.0 API
● Enhance API to use the new language features

introduced since J2SE 5.0
● Annotations for declarative style of programming

● No web.xml needed
● Generics for type safety in the API without

breaking backwards compatibility
● Better defaults and convention over configuration

7

Ease of Development
Use of Annotations
● Annotations to declare Servlets, Filters, Listeners

and security constraints
● @WebServlet – Define a Servlet
● @WebFilter – Define a Filter
● @WebListener – Define a Listener
● @WebInitParam – Define init params
● @MultipartConfig – Define fileupload

properties
● Can use web.xml to override values specified in

the annotations

8

Ease of Development
Use of Annotations (contd)
● @WebServlet for defining a Servlet

● The annotation MUST have at a minimum the
URL pattern for the Servlet

● All other fields optional with reasonable defaults
● For example, the default name of the Servlet is

the fully qualified class name
● Class MUST still extend HttpServlet

● Method contracts for doGet, doPost
inherited from abstract class

9

Servlet 2.5 example
public class SimpleSample
extends HttpServlet {
 public void doGet
 (HttpServletRequest req,
 HttpServletResponse res)
 {

 }
}

web.xml
(intentionally left
unreadable)

<web-app>

 <servlet>

 <servlet-name> MyServlet

 </servlet-name>

 <servlet-class>

 samples.SimpleSample

 </servlet-class>

 </servlet>

 <servlet-mapping>

 <servlet-name>

 MyServlet

 </servlet-name>

 <url-pattern>

 /MyApp

 </url-pattern>

 </servlet-mapping>

...

</web-app>

10

Servlet 3.0 example
@WebServlet(“/foo”)
public class SimpleSample extends
HttpServlet
{
 public void doGet(HttpServletRequest
 req,HttpServletResponse res)
 {

 }
}

11

Servlet 3.0 example
@WebServlet(urlPatterns=“/foo”,
name=”MyServlet”, asyncSupported=true)

public class SimpleSample extends
HttpServlet
{
 public void doGet(HttpServletRequest
 req,HttpServletResponse res)
 {

 }
}

12

Agenda
● Overview
● Ease of Development
● Dynamic registration of Servlets and Filters
● Pluggability
● Asynchronous support
● Security enhancements
● Miscellaneous

13

Dynamic registration of Servlets and
Filters
Register
● Performed during ServletContext initialization
● ServletContext#add[Servlet|Filter]

● Overloaded versions take [Servlet|Filter] name
and
● Fully qualified [Servlet|Filter] class name OR
● Class<? extends [Servlet|Filter]> OR
● [Servlet|Filter] instance

● Use returned Registration handle to configure
all aspects of [Servlet|Filter]

14

Dynamic registration of Servlets and
Filters
Create and Register
● ServletContext#create[Servlet|Filter]

● Takes Class<? extends [Servlet|Filter]>
argument

● Container responsible for instantiating the [Servlet |Filter]
● Supports resource injection by container
● Returned [Servlet|Filter] instance may be

fully customized before it is registered via the
ServletContext#add[Servlet|Filter]
methods

15

Dynamic registration of Servlets and
Filters
Lookup
● ServletContext#get[Servlet|
Filter]Registration
● Takes [Servlet|Filter] name as argument
● Returned Registration handle provides subset

of configuration methods
● May only be used to add initialization parameters and

mappings
● Any conflicts returned as java.util.Set

16

Dynamic registration of Servlets/Filters
Register Example

ServletRegistration.Dynamic dynamic =
 servletContext.addServlet(
 "DynamicServlet",
"com.mycom.MyServlet");

dynamic.addMapping("/dynamicServlet");
dynamic.setAsyncSupported(true);

17

Dynamic registration of Servlets/Filters
Lookup Example

ServletRegistration declared =

servletContext.getServletRegistration("Declar
edServlet");

declared.addMapping("/declaredServlet");
declared.setInitParameter("param", "value");

18

Agenda
● Overview
● Ease of Development
● Dynamic registration of Servlets and Filters
● Pluggability
● Asynchronous support
● Security enhancements
● Miscellaneous

19

Pluggability
● Enable use of libraries and framework without

boiler plate configuration in deployment
descriptors
● Put the burden on the framework developer

● Modularize web.xml to allow frameworks to be
self-contained within their own JAR file

● Programmatic configuration APIs
● Use of annotations

20

Pluggability
Motivation for web.xml modularization
● Use of framework requires (possibly complex)

configuration in web.xml
● For example

● Declare a controller Servlet
● Logging and security Filters
● Declare Listeners to perform actions at various

points in the lifecycle of the application
● Can get complex as dependencies increase
● Frameworks also need to document all the

configuration that needs to be done

21

Pluggability
web-fragment.xml
● web-fragment.xml is descriptor for framework /

library
● Included in META-INF directory
● Container responsible for discovering fragments and

assembling the effective deployment descriptor
● Almost identical to web.xml

● Ordering related elements different
● Only JAR files in WEB-INF/lib considered as

fragments

22

Pluggability
web-fragment.xml example
<web-fragment>

 <servlet>
 <servlet-name>welcome</servlet-name>
 <servlet-class>com.mycom.WelcomeServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>welcome</servlet-name>
 <url-pattern>/Welcome</url-pattern>
 </servlet-mapping>
 ...
</web-fragment>

23

Pluggability
Ordering
● Compatible with JavaServer™ Faces
● Fragments identified by <name>
● web.xml may declare absolute ordering of

fragments via <absolute-ordering>
● Fragments may declare ordering preferences

relative to other fragments via <ordering> with
nested <before> and <after>

● Ignored if <absolute-ordering> specified
● Special <others/> element moves fragment to

beginning or end of list of sorted fragments

24

Pluggability
Resource sharing

● Static and JavaServer™ Pages (JSP) resources
no longer confined to web application's document
root

● May be placed inside WEB-INF/lib/[*.jar]/
META-INF/resources

● Container must honor this new location when
processing HTTP requests and calls to ServletContext#getResource[AsStream]

● Resources in document root take precedence
over those in bundled JAR files

25

Pluggability
Resource sharing: Example
mywebapp.war packaging:
 /index.jsp
 /WEB-INF/lib/shared.jar!/META-
INF/resources/shared.jsp

Request for:
http://localhost:8080/mywebapp/shared.jsp
will be served from:
 /path/to/mywebapp/WEB-
INF/lib/shared.jar!/META-
INF/resources/shared.jsp

http://localhost:8080/mywebapp/shared.jsp

26

Pluggability
Shared libraries
● Support plugging in of container installed JAR

files
● Examples: JSF, JAX-WS, Spring

● Libraries may provide implementation of ServletContainerInitializer
● Looked up via the JAR Services API in JDK 6
● Invoked before any Listeners during the

initialization of the application

27

Pluggability
Shared libraries (contd)

● ServletContainerInitializer expresses
interest in Classes via @HandlesTypes

● Container discovers classes that match
@HandlesTypes and passes them to
ServletContainerInitializer

● ServletContainerInitializer inspects
passed in Classes and may register Servlets and
Filters based on them

28

Pluggability
ServletContainerInitializer example
@HandlesTypes(WebService.class)
public class JAXWSInitializer implements
ServletContainerInitializer {
 public void onStartup(Set<Class<?>> c,
 ServletContext ctx)
 {
 ctx.addServlet(“JAXWSServlet”,
 “com.sun.jaxws.JAXWSServlet”);

 }
}

29

Agenda
● Overview
● Ease of Development
● Dynamic registration of Servlets and Filters
● Pluggability
● Asynchronous support
● Security enhancements
● Miscellaneous

30

Why Asynchronous Servlets?
● Not for Async IO!

● Requests mostly small (single packet)
● Hard to asynchronously produce large responses
● Async IO support waiting for NIO2 (Servlet 3.1?)

● Async Servlets are for:
● Waiting for resources (eg JDBC connection)
● Waiting for events (eg Chat)
● Waiting for responses (eg web services, QoS)

31

Blocking waiting consumes resources
● Web Application using remote web services

● Handling 1000 requests / sec
● 50% requests call remote web service
● 500 threads in container thread pool

● If remote web service is slow (1000ms)
● Thread starvation in 1 second!
● 50% of requests use all 500 threads

32

Waiting for Web Services
Blocking Asynchronous

Thread
blocked

WS request
In parallel

33

Asynchronous API
ServletRequest
● ServletRequest#isAsyncSupported()

● True if ALL [Filter|Servlet]s support async in
● the Filter chain
● the RequestDispatch chain

● Configured in
● web.xml

● <async-supported>true</async-supported>
● With annotation

● @WebServlet(asyncSupported=true)
● Programmatic

● registration.setAsyncSupported(boolean)

34

Asynchronous API
ServletRequest
● AsyncContext
ServletRequest#startAsync()
● Called by [Filter|Servlet]
● Response is NOT commited on return of:

● Servlet.service(request,response)
● Filter chain

● AsyncContext
ServletRequest#startAsync
 (ServletRequest req,
 ServletResponse res)
● Variation that preserves wrappers

35

Asynchronous API
AsyncContext
● AsyncContext#dispatch()

● Called by your asynchronous handler
● Schedule async dispatch:

DispatcherType.ASYNC
● Response generated by [Filter|Servlet] using:

● container thread pool
● JSP, JSF or other frameworks usable
● JNDI, JTA, EJBs usable

● AsyncContext#dispatch(String path)
● Variation to async dispatch to specific Servlet

36

Asynchronous API
AsyncContext

● AsyncContext#complete()
● Called by your asynchronous handler
● Response has been generated asynchronously

● without Servlet features, or
● with AsyncContext#start(Runnable r)

● for JNDI, classloader

37

Asynchronous Web Service

Webapp

doGet()

doGet()

s ta rtAs ync () WS call

dis pa tc h()

Server

38

Multiple Usage Styles
● startAsync() … dispatch()

● Retry request after async wait
● Filters re-applied if on DispatcherType.ASYNC

● startAsync() … dispatch(path)
● Use specific Servlet handling after async wait

● startAsync() … complete()
● Generate response asynchronously

39

Multiple Usage Styles
● startAsync(req,res)… dispatch()

● Retry request after async wait
● Wrappers are kept
● RequestDispatcher#forward target used

● startAsync(req,res)… dispatch(path)
● Specific Servlet handling after async wait

● startAsync(req,res)… complete()
● Generate wrapped response asynchronously

40

Asynchronous API Details
● Timeouts

● ServletRequest#setAsyncTimeout(long ms)
● By default error dispatch on timeout

● Listeners
● AsyncListener#OnTimeout
● AsyncListener#OnComplete

41

Demonstration
Asynchronous eBay Web Service
> EoD packaging

● META-INF
● web-fragment.xml
● Resources/*

> Glassfish Container
● Async Serlvet

> Jetty HTTP Client
● Async Client

42

Agenda
● Overview
● Ease of Development
● Dynamic registration of Servlets and Filters
● Pluggability
● Asynchronous support
● Security enhancements
● Miscellaneous

43

Security
Security constraints via common annotations
● Support for common annotations

● @RolesAllowed -> auth-constraint with roles
● @DenyAll -> Empty auth-constraint
● @PermitAll -> No auth-constraint
● @TransportProtected -> user-data-constraint

● Annotations enforced on javax.http.Servlet
class and doXXX methods of HttpServlet

● Method-targeted annotations take precedence over
class-targeted annotations

44

Security
Security constraints via common annotations (contd)
● Security constraints in web.xml override

annotations, metdata-complete disables
annotations

● web-resource-collection enhanced with http-
method-omission to
● Allow constraints to be specified on non-

enumerable HTTP method subsets (i.e., all
other methods)

45

Security
Programmatic container authentication and logout
● HttpServletRequest#login(String username,
String password)
● Replacement for FBL
● Application supervises credential collection

● HttpServletRequest#authenticate(HttpServl
etResponse)
● Application initiates container mediated

authentication from a resource that is not
covered by any authentication constraints

● Application decides when authentication must
occur

46

Security
Programmatic container authentication and logout
(contd)
● HttpServletRequest#logout
● Integration of additional container authentication

modules via Servlet Profile of JSR 196
recommended

47

Agenda
● Overview
● Ease of Development
● Dynamic registration of Servlets and Filters
● Pluggability
● Asynchronous support
● Security enhancements
● Miscellaneous

48

Miscellaneous Features / APIs
● Session tracking cookie configuration

● Via web.xml
● Programmatic via javax.servlet.SessionCookieConfig

● Support for HttpOnly cookie attribute
● Example:
servletContext.getSessionCookieConfig
().setHttpOnly(true)

● Default error page

49

Miscellaneous Features / APIs (contd)

ServletRequest#getServletContext
ServletRequest#getDispatcherType
Servlet[Request|
Response]Wrapper#isWrapperFor

HttpServletResponse#getStatus
HttpServletResponse#getHeader
HttpServletResponse#getHeaders
HttpServletResponse#getHeaderNames

50

Miscellaneous Features / APIs (contd)
File upload APIs

ServletRequest#getParts
ServletRequest#getPart
@MultipartConfig
Changes to web.xml

51

Summary
● Major revision since Servlet 2.4
● Comprehensive set of new features enable

modern style of web applications and greatly
increases developer productivity

● Simplifies assembly of large applications from
reusable components

52

GlassFish Community
Open Source and Enterprise Ready
● GlassFish V3 Preview Available now!

● Java EE 6 reference implementation
● Modular OSGi architecture – easy to develop & deploy
● Runs in-process and easy to extend
● Support for Ruby-on-Rails, Groovy and Grails,

Python and Django
● GlassFish V2 – Production Ready
● Best price/performance open source App server with

Clustering, High Availability, Load Balancing
● Secure, Reliable, Transactional, .NET-interop Web svcs
● Support for Ajax and Comet

● GlassFish ESB
● SOA and Business Integration platform

● GlassFish Communications App Server
● SIP servlet technology for converged services

• 24x7 Enterprise and Mission
Critical Support

•sun.com/glassfish

• Tools Integration
•NetBeans and Eclipse

glassfish.org

Always free to download, deploy and distribute

53

Webtide & Jetty
> Status update
> http://eclipse.org/jetty

Rajiv Mordani
rajiv.mordani@sun.com
Jan Luehe
jan.luehe@sun.com
Greg Wilkins
gregw@webtide.com

mailto:rajiv.mordani@sun.com
mailto:jan.luehe@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

