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Springing JSF from its social shell

Today you are going to learn two ways to 
implement a multi-page dialog in JSF

         Seam

Spring Web Flow     
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Agenda
> Introduction to conversations and page flows
> Conversations and page flows in Seam
> Flows with Spring Web Flow and Spring Faces
> Finding peace with Java persistence
> Dealing with the “back” button
> Summary
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Scope inventory
A brief look at where state is stashed
> Servlet API

● Request – single request
● Session – all requests by same browser session
● Application – all requests

> JSF
● View (Page) – UI component tree

> Query string
● Hidden form fields
● URL rewriting
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The fallacy of state in JSF
> Stateful UI
> Lacks stateful model to support UI
> Can stash state in UI component tree

● View (page) scope (e.g., <t:saveState>)
● Does not survive navigation event
● No predictable removal point

> Session is our crutch
● Leaks memory / cross streams



6

What is a conversation?
> A long-running context 

whose boundaries are 
dictated by the 
application logic
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Conversation aspects
> Long-running context

● request ≤ conversation << session
> Retains object identity
> Can exist in parallel

● No interference between tabs/windows
● Can become idle and later continued
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Conversation navigation styles
> Ad-hoc (Seam only)

● User decides where to go next
● Useful when goal is vague
● Less work to setup

> Constrained
● Guided by a page flow
● Ideal when goal is well defined



9

What is a page flow?
> A progressive series of 

states (i.e., pages) 
with constrained 
transitions modeling a 
single-user process

Entry point:
Locate reservation

Exit point:
Check-in summary

Preflight check-in

Baggage

Flights and passengers

Confirm seats

Issue boarding passes
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Going with the flow
> Have a definitive START and END
> Backed by a conversation
> Each state represents a page view (wait state)
> User events trigger transition to next state
> Transitions

● Route – can be decision-based
● Invert control
● Can invoke auxiliary behavior
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Seam
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Preflight Check In
A conversation and page flow demo
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Conversations in Seam
> Central aspect of framework – no setup required!
> Conversation styles

1) Ad-hoc
2) Constrained

> Controlled declaratively
> Not explicitly tied to a navigation model

● Page flow is an optional feature
> Available on every request

● Application dictates if it lives on
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Conversation propagation
Keeping the conversation in play
> Conversation token

● Synthetic numeric value (default): cid=1
● Natural business key: airportCode=BWI

> Token propagation (typically automatic)
● Faces request (postback) – stored in UI view root
● Non-faces request – passed as request 

parameter
> Token not shared across windows or tabs
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Seam page flows
> Driven by jBPM execution engine
> Flows defined in jPDL

● XML-based process language for jBPM
● Page nodes map to JSF view IDs
● Resembles Seam stateless navigation descriptor
● Uses JBoss EL to resolve expressions

> A page flow is an extension to a conversation
> Subflows only partially supported
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Registering the page flow
/WEB-INF/components.xml
<components ...>
    <bpm:jbpm>
        <bpm:pageflow-definitions>
            <value>check-in.jpdl.xml</value>
        </bpm:pageflow-definitions>
    </bpm:jbpm>
</components>
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Seam page flow definition
/WEB-INF/classes/check-in.jpdl.xml
<pageflow-definition ... name="check-in">

    <start-state name="begin">
        <transition name="begin" to="flights"/>
    </start-state>

    <page name="flights" view-id="/checkIn/flights.xhtml"> 
        <redirect/>
        <transition name="cancel" to="cancel"/>
        <transition name="continue" to="declareBaggage"/>
    </page>

</pageflow-definition>
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Initiating the page flow
/start.xhtml
<h:form>
    <h:panelGrid columns="2">
        <h:outputLabel for="number"
            value="Reservation number"/>
        <h:inputText id="number"
            value="#{reservationIdentifier.reservationNumber}"/>
        <h:outputLabel for="lastName"
            value="Passenger last name"/>
        <h:inputText id="lastName" 
            value="#{reservationIdentifier.passengerLastName}"/>
    </h:panelGrid>
    <h:commandButton value="Begin check in"
        action="#{checkInAssistant.locateReservationForCheckIn}"/
>
</h:form>
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Beginning the conversation / page flow
CheckInAssistant.java
@Name("checkInAssistant")
@Scope(ScopeType.CONVERSATION)
public class CheckInAssistant implements Serializable {

    @In private ReservationIdentifier reservationIdentifier;
    @Out(required = false) private Reservation reservation;
    @DataModel private List<BoardingPass> boardingPasses;

    @Begin(pageflow = "check-in", flushMode = 
FlushModeType.MANUAL)
    public String locateReservationForCheckIn() {
        reservation = ...;
        if (reservation == null) return null;
        boardingPasses = ...;
        return "located";
    }
}
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Protecting page flow views
/WEB-INF/pages.xml
> Page flow views served via normal JSF life cycle

● JSF isn’t aware of page flows
> Seam can require conversation to render page

● Not part of page flow definition
● Doesn’t say which conversation is required

<page view-id="/checkIn/*" conversation-required="true"
    no-conversation-view-id="/start.xhtml"/>
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Workspace management
For when the user strays
> Workspace

● A conversation with a description (continuable)
● User can have parallel workspaces (akin to tabs)

> Nested conversation
● Related, yet independent conversation
● Parent conversation restored when ended

> Conversation switcher
● Only one active workspace per window at a time
● UI control used to select and resume a workspace
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Spring Web Flow
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Preflight Check In
A conversation and page flow demo
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Spring web flows
> Spring Framework module
> Conversation styles allowed

1) Constrained
> Flows defined in a DSL (XML)

● Expressions evaluated with JBoss EL (in flow 
only)

> Has distinct scopes for top-level flow and subflow
● conversation scope – visible to flow and subflows
● flow scope – visible to current flow only

> Incorporates partial page updates into flow
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Getting Spring in the flow
> Lots of copy-paste configuration to get started!
> Thankfully, it’s a “set and forget” configuration

● Flows discovered based on convention
> Flow is in full control
/preflight     /spring     /checkIn     ?execution=e1s1

 application path    MVC handler        flow name                      flow token

> Can model flow with DSL
● UI strictly focused on input and output
● All scoped data must be Serializable!
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Defining a top-level flow
<flow ...>

    <var name="reservationIdentifier"
        class="org.preflight.criteria.ReservationIdentifier"/>

    <view-state id="enterReservationId">
        <transition on="locate" to="locateReservation"/>
    </view-state>

    <action-state id="locateReservation">
        <evaluate expression="checkInService.
            locateReservationForCheckIn(reservationIdentifier)"
            result="conversationScope.reservation"/>
        <transition on="${reservation!=null}" to="beginCheckIn"/>
        <transition on="${reservation==null}" 
to="enterReservationId"/>
    </action-state>

</flow>

First view
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Branching to a subflow
...
<subflow-state id="beginCheckIn" subflow="checkIn">
    <input name="checkInGroup" type="boolean"
        value="reservationIdentifier.checkInGroup"/>
    <transition on="confirmed" to="finish"/>
    <transition on="canceled" to="enterReservationId"/>
</subflow-state>
...
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A persistence conscious subflow
<flow ...>
    <persistence-context/>
    <input name="checkInGroup" type="boolean" required="true"/>

    <on-start>
        <evaluate expression="checkInService.
            refetchReservation(reservation)"
            result="flowScope.reservation"/>
        <evaluate expression="checkInService.
            locateBoardingPasses(reservation, checkInGroup)"
            result="flowScope.boardingPasses"
            result-type="dataModel"/>
    </on-start>

    <view-state id="flights">...</view-state>

    <end-state id="confirmed" commit="true">
    <end-state id="canceled"/>
</flow>
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Partial page update transition
<view-state id="confirmSeats">
    <transition on="change">
        <evaluate expression="checkInService.changeSeat(
            boardingPasses.selectedRow,seatMatrix.selectedSeat)"/
>
        <render fragments="seatingChart"/>
    </transition>
    ...
</view-state>

id="seatingChart"
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How was it done in Seam?
<rich:subTable var="_col" value="#{_colgroup.columns}">
    <rich:columns var="_row" id="#{_section.rows}" index="r">
        <a:commandLink action="#{seatSelector.select(
            _col.seatSelections[r])}" reRender="seatingChart">
        </a:commandLink>
    </rich:columns>
</rich:subTable>

id="seatingChart"
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Persistence mismanagement
...or who put the LIE in my Hibernate?
> Java persistence manager provides:

● Unique cache of objects per database id
● Lazy fetching of associated entities / collections
● Automatic state detection (dirty checking)

● Transitive persistence
● Optimistic locking

> All bets are off when session is closed
● All loaded entity instances become detached
● The LazyInitializationException reigns!
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Extending the persistence context

Page 
1

Page 
2

Page 
3

Page 
4

Page 
N

...

Persistence Context

Conversation

Application Transaction

Don’t commit changes until the user says so!
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Making the changes stick
> Save == Flush persistence context

         entityManager.flush();

         <end-state commit="true"/>
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Contending with evil browser buttons
> Detects out of 

sequence request
● Blocks action
● Routes to current 

page
> Attempt to use 

conversation that has 
ended will fail

Disclaimer:
Cannot prevent browser 
from revisiting cached page
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A better “state” of affairs
What conversations and page flows provide
> Correlate sequential requests
> Maintain long-running state
> Guide and enforce navigation “flow”
> Support for multi-tasking
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Conclusion

         Seam

Spring Web Flow     

Both frameworks offer a strong
choice for implementing multi-page

dialogs in a web application
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Questions?

Let’s keep the conversation going!



Dan Allen
dan.allen@mojavelinux.com

http://mojavelinux.com
http://in.relation.to/Bloggers/Dan
http://code.google.com/p/seaminaction/source
http://delicious.com/seaminaction
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