
JDBC – We don’t need no 
stinking JDBC.  How 
LinkedIn uses memcached, 
a spoonful of SOA, and a 
sprinkle of SQL to scale.

David Raccah & Dhananjay Ragade 
LinkedIn Corporation



2

Goal of this Presentation
What you will learn
How LinkedIn built a cheap 

and scalable system to 
store our member’s profiles, 
and how you can do the 
same
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Agenda

> Review system ilities
> What happened to databases?
> SOA What
> Discuss existing Best Practices
> Pixie Dust and Kool-Aid are not so bad
> What LinkedIn’s got up their sleeve
> How it all came together…
> Q&A
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Terminology of the ilities
the terms of large successful systems
> Performance

 Not an “ility” but without it, no ility will save you
> Availability

 Availability is the proportion of time a system is in a 
functioning condition

> Reliability
 The probability that a functional unit will perform its 

required function for a specified interval under 
stated conditions.

 The ability of something to "fail well" (fail without 
catastrophic consequences)
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Terminology of the ilities
the terms of large successful systems
> Scalability

 Slow with multiple users vs. single user
> Manageability

 The ability to manage all parts of a large moving 
system

> Serviceability
 The ability to service an arm of the system without 

bleeding to death (e.g. change out a database from 
a working system).  Bleeding is OK in a high 
performance system – death is NOT acceptable.



6

Agenda

> Review system ilities
> What happened to databases?
> SOA What
> Discuss existing Best Practices
> Pixie Dust and Kool-Aid are not so bad
> What LinkedIn’s got up their sleeve
> How it all came together…
> Q&A



7

> RDBMS – Relational Data 
Base Management System 
Attribute 

> KVSS – Key Value Storage 
System

> Enterprise Search Engines

Databases
The systems that drive the enterprise … or….
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Database Server History….
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Database mind set has changed…
From data access to data management to….
> Initially it was all about remote 

data access with an index
> Then it moved to ACID data 

management and tooling
> Then it became an Application 

Server with data affinity
> Now we have come full circle 

and people have figured out 
that scaling is more important 
than relationships, transactions, 
and data and behavioral affinity.
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Database Mantra that Rule the Roost
ACID
> Atomicity – All or nothing
> Consistency – Data in the 

system should never get in a 
contradictory state.

> Isolation: Two requests 
cannot interfere with one 
another.

> Durability: No do over – once 
the data is persisted, it 
cannot change.
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Anti-Database Rules 
BASE
> Basically Available

 Support partial failures within your 
architecture (e.g. sharding)

> Soft state
 State may be out of synch for 

some time
> Eventually consistent

 Eventually all data is made 
consistent (as long as the 
hardware is reliable)
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Database Scalability
Or lack thereof…
> Databases work.  Look at:

 Hotmail
 Facebook
 eBay

> Databases scale with hardware
> They do not scale horizontally 

well
 Partition management is 

nonexistent and RYO is a mess
 Many use them as ISAM and 

not even relational
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Database Tools and language
Duh…
> Defacto standards for tools and 

languages abound for relational 
databases

> Easy to manage the data within 
a partition and easy to write 
code to operate on said data

> Terrifying but nice to use 
extensions include running 
Java within the Data Engine, so 
that you could run your 
application within the big iron
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Database’s other features 
Which are the pain points….
> Constraints – Nice idea until 

you start partitioning.
2PC is the anti-scalability 
pattern (Pat Helland)

> Computation – this feature turns out to cause more 
pain as cost rises with scale and are incompatible 
with most languages and tools.

> Replication & backup
 Nice tools that are indeed important and useful

> ACL support & Data Engine optimizations
 Used for sure, but exist to circumvent deficiencies
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Key Value Storage Systems
BigTable, Hive, Dynamo– the Wild Wild West
> Reliable – Proven on web
> Available – redundant (locally)
> Scalable – no constraints
> Limited ACIDity
> No Standard and not portable
> Almost no:

 Constraints or relationships
 Computation or transactions



16

Enterprise Search Engines
Index yes – storage device no
> A great inverted index
> Finds data quickly
> However, what it returns is 

commonly an ID to the 
entity(s) in question

> Real-Time solutions are 
available but not fully 
deployed today

> Limited ACIDity/transactions
> Scalable, available, reliable
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SOA
Service Oriented Architecture
> SOA may be overkill for most 

enterprises
> Still a Tiered and layered 

architecture – which is what 
SOA hoped to formulate and 
standardize is a solid approach

> Services (not SOA) allow for 
efficient reuse of business 
processes and aggregation 
services within a complex 
development organization
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> Store critical data redundantly 
and reliably with a cluster
 Google via BigTable, Facebook 

via MySQL, eBay via replicated & 
sharded DB

> Layer services on top of the 
storage device to manage data 
integrity and complexity
 LinkedIn, Amazon, eBay

Best Practices
Storage and architecture
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> Create a bus to route 
replicated data to consumers – 
e.g. search, data mining, etc.
 Almost all sites

> Parallelization via things like 
scatter/gather
 Almost all search topologies 

(Google, Yahoo, Live),
 Facebook, etc.

Best Practices
Storage and architecture
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Best Practices
Storage and architecture
> Keep the system stateless

 eBay, Google, etc.
> Partition data and services

 Facebook, eBay
> Cache data
> Replicate your data
> Route requests to where the 

behavior and/or data exists
> Degrade gracefully with load
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Best Practices
Storage and architecture
> Tiering systems 

 Latency vs. Affinity
 Traversal versus affinity – you need to 

analyze the cost and make a decision
 Scaling vs. parallelizing

 Do you need to keep tiering all 
systems to keep the scalability 
uniform?

 Complexity vs. diminished 
dependencies
 Does the reduced dependencies make 

up for the increased system 
complexity?
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Pixie Dust and Kool-Aid
Building on the past
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Pixie Dust and Kool-Aid
Building on the past
> So what do we want:

 Reliable
 Available
 Scalable
 ACIDity on simple transactions
 Standard and portable interface
 Data Optimizations
 Cache and replicate
 Low cost BASE architecture
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LinkedIn’s Data Services
Mixture of standards and pixie dust
> Front a database with a service
> Cache data
> Route to and partition the data 

service
> Scale and replicate services in a 

horizontal manner
> Keep all writes ACID and 

subsequent reads ACID as well
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LinkedIn’s Data Services
Mixture of standards and pixie dust
> Databases are reliable
> Scale out at the service
> Replicate and cache
> Partitioning comes from the front 

tier and business servers that 
front the data services
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LinkedIn’s Data Services
Immediate replication vs. eventual replication
> Caching needs a consistency algorithm
> Techniques for immediate replication

 Paxos
 Chubby, Microsoft AutoPilot, Zoo Keeper

 N Phase Commit (2PC and 3PC)
> Techniques for eventual consistency

 BASE (Basically Available, Soft-state, 
Eventual Consistency
 Inktomi, Dynamo, AWS
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LinkedIn’s Data Services
LinkedIn’s approach
> Keep core data ACID
> Keep replicated and cached data BASE
> Replicate data via the data bus
> Cache data on a cheap memory 

(memcached)
> Use a hint to route the client to his / 

her’s ACID data
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LinkedIn’s Data Services
Databus – the linchpin of our replication
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LinkedIn’s Data Services
LinkedIn’s approach
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LinkedIn’s Data Services
Core DS
> Keep core data ACID in the DB
> All writes come here.
> Databus source for all replication
> The last line of defense for a 

cache miss
> Also manages sharding and partitioning
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LinkedIn’s Data Services
RepDS
> Manages cache consistency and 

replication
> Manages the freshness of the 

caller
> Reads come from cache
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LinkedIn’s Data Services
RepReader
> RepReader is the typical tip of the 

iceberg problem 
> All read operations are sourced 

from the cache unless the caller’s 
freshness token is out of the window
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LinkedIn’s Data Services
Freshness Token (AKA Pixie Dust)
> The freshness token = Pixie Dust for 

CUD operations
> It also allows us to give the caller 

control over whether they are content 
with BASE data, even if they did no 
CUD operation.
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LinkedIn’s Data Services
For the love of Pixie dust and Kool-Aid
> We use commodity hardware and 

software to run our service
> We use Pixie Dust to keep costs down 

and keep our customer happy
> We keep OPS and the exec-staff 

happy with our special brand of Kool-
Aid
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Profile Re-architecture
Changing planes in mid-flight

> Original LinkedIn System
> Use of XML for i18n
> Phased Transition
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Problems from the original system
Anthropology 101
> Be fair… it worked well for 

a startup
> Many tables in one big 

DB
> Too many similar object 

hierarchies
> No well defined domains
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Why XML?
Flexibility 
> Profile has many fields 
> 1NF for I18n ==> too many 

tables
> StAX for fast parsing
> Easier to version the profile
> Human readable
> JSON? ProtoBuf?
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Issues with XML
<good/> <bad/> <ugly/>
> XML schema design tradeoffs 

and analytics impact
> XML is verbose
> StAX is unfriendly
> XML in the DB caused us 

some performance 
headaches
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Phased Transition
Evolving a living, breathing organism
> Successive iterations avoid breakages
> No major site downtime
> Easier to sanity check
> Does not hold other teams hostage
> Phases LinkedIn went through
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Double Writes Topology
Safety first
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After Legacy Tables Dropped
 Auld Lang Syne 
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Wrap up
The moral of the story is…
> Keep your system BASE
> Use commodity hardware
> Use pixie dust (AKA data freshness token)
> Evolve slowly - no big bang!
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Q&A
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David Raccah & Dhananjay Ragade 
draccah@linkedin.com
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Performance
Often mixed up with scalability
> Performance

 A numerical value given to 
a single system when 
asked to do a task under 
nominal load 

 If the system responds 
poorly without load, it will 
assuredly continue its 
molasses response time 
under load
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Availability
Often mixed up with reliability
> Availability

 A numerical value 
given to a system 
that defines the 
proportion of time a 
system is in a 
functioning condition.

 Most common 
scoring system is 
called nines – which is defined as the uptime versus 
the uptime and downtime – five nines = 0.99999
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Reliability
The ability for a system to perform its functionality
> Reliability

 A system can be 100% available 
and still be 100% unreliable (e.g. 
non consistent caching)

 A person can consistently give 
you the wrong answer

 Architecture is defined as the 
balance of the ilities and cost
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Scalability
the term that many think is the holy grail
> Scalability

 The ability for a system to manage 
more traffic or to be “scaled” as 
more traffic appears

 System slows with multiple users 
vs. single user

 Route, Partition, Orchestrate, 
replicate, and go asynch

 Split the system horizontally
 Rarely scale vertically 
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The rest of the ilities
the ones that people tend to ignore till its too late
> Manageability

 It is a double-edged 
sword which can be 
easily ignored

> Serviceability
 Here complexity starts to 

rear its ugly head
> Maintainability

 Of course maintainability 
tends to run upstream of 
complexity
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