
Balancing JMSTM
Performance with
Reliability

Rob Davies
Progress Inc
Gordon Sivewright
Sun Microsystems Inc

2

Balancing JMS Performance with
Reliability
> Key factors affecting performance and reliability

in a JMS messaging application.
> How can I design/tune my application to balance

performance and reliability?
> How can I configure my JMS provider to improve

performance and reliability?

3

Speaker info

Rob Davies
> Director of Engineering for Progress FUSE
> Developer Apache ActiveMQ

● http://activemq.apache.org/
Gordon Sivewright
> Staff Engineer, Sun Microsystems
> Developer GlassfishTM Open Message Queue

● https://mq.dev.java.net/

4

Content
● Sending and consuming messages with JMS

● JMS reliability model
● Where are the major performance bottlenecks?

● JMS options for controlling reliability
● Impact on performance

● JMS provider tuning options
● Deployment options for JMS providers

● Options for boosting performance and reliability

5

Life cycle of a (reliable) JMS message
● Producer sends message

● Client producer creates message
● Producer sends message to server
● Server persists message

● Server delivers message
● Server determines which consumers should receive message
● Server delivers message to client consumer

● Consumer processes and acknowledges
message

● Consumer processes message
● Consumer sends acknowledgement to server
● Server processes acknowledgement and updates/removes

message

6

Message send (reliable)
MessageProducer producer = session.createProducer(dest);
producer.setDeliveryMode(DeliveryMode.PERSISTENT);
producer.send(msg);

1) client sends message
2) server stores message
3) server sends reply to client

JMS client

JMS serverprod.send(msg) reliable
storage

1
2

3

7

Message send (reliable)
● If send call returns successfully, then message

delivery is “guaranteed”.
● If a failure of client or server occurs during the

send, the message is in doubt.
● JMS Spec: “It is up to a JMS application to deal with

this ambiguity. In some cases, this may cause a client
to produce functionally duplicate messages.”

JMS client

JMS serverprod.send(msg) reliable
storage

1
2

X

8

Message delivery to consumer
Connection connection = connectionFactory.createConnection();
Session session =

connection.createSession(false,Session.CLIENT_ACKNOWLEDGE);
MessageConsumer consumer = session.createConsumer(dest);
connection.start();

1) server (asynchronously) delivers message to
consumer

JMS server JMS client1reliable
storage

9

Message acknowledgement (reliable)
Message message = consumer.receive();
// process message
message.acknowledge();

2) consumer sends back a message acknowledgment to
the server

3) server removes message from store
4) server sends reply to client

JMS server JMS clientreliable
storage 2

3
4

10

Message delivery failure
● The message will not be removed from storage until

acknowledged by consumer
● Any system failure before message is acknowledged

will result in unacknowledged messages being re-
delivered to a consumer.

JMS server JMS client
1

reliable
storage 2

3
4

11

So where are some of the performance
bottlenecks?
> Creating JMS components
> Producer waiting for a response from server on

send()
> Server persisting message
> Application processing the message
> Consumer waiting for a response from server on

acknowledge()

12

So how can we improve performance?
> Be aware of the performance costs of different

messaging options
> Application should use appropriate levels of JMS

reliability
> Understand configuration options in your JMS

provider that affect performance and reliability

13

General techniques for improving
performance in distributed systems

● Reuse JMS components (caching)
● Reduce network traffic
● Reduce size of messages
● Use non-blocking calls
● Use non-persistent messaging
● Batch work (bundle multiple messages together)
● Process message data serially
● Control resources (sockets, threads, memory)

14

Managing life cycle of JMS objects

Generally a high cost to create and close JMS
objects – reuse them where possible

● Connection (most expensive)
● Session
● Destination
● Consumer
● Producer

15

Connection life-cycle costs
Connection connection =
ConnectionFactory.createConnection();

Creating a connection may involve:
● Creating a socket
● Creating a thread on both client and server
● Sending “hello” message to server
● Sending authentication data
● Exchanging protocol and configuration messages

OpenMQ clients often connect first to portMapper and
then reconnect to assigned port.

If you need to create many connections consider
connecting directly to JMSService

16

Connection life-cycle costs

connection.close();

● Closing a connection may involve:
● Sending “goodbye” message to server
● Closing all sessions
● Closing any temporary destinations owned by connection
● Stopping connection thread
● Closing socket

17

Session life-cycle costs
Session session = connection.createSession(...);
● Creating a session may involve:

● Creating a client session thread
● Request to server

session.close();
● Closing a session may involve

● Request to server
● Stopping client session thread
● Waiting for any message handling methods to complete
● Resolving any “in-process” work

● (open transactions, unacknowledged messages)
● Closing consumers
● Closing producers

18

Consumer life-cycle costs
MessageConsumer consumer =
session.createConsumer(destination);

● Creating a consumer may involve:
● Request to server
● Pre-sending of messages from server to client

consumer.close();
● Closing a consumer may involve

● Request to server:
● Re-delivery by server of any unacknowledged messages that

were pre-sent to consumer

19

Benefits of caching
Example of object creation and closing costs for

OpenMQ:
Relative message production rates for non-persistent queues.
Create or cache connection, session and producer per message

send.

● cache connection: ~ 4 times faster
● cache connection and session: ~ 10 times faster
● cache connection, session and producer: ~80 times

faster

20

Managing life-cycle of JMS components
● Avoid repeatedly creating and destroying

components. Cache if possible.
● Check if JMS components are being recreated by

your messaging frameworks
● (e.g. Spring JMSTemplate).

● Close connections when no longer needed to
save resources.

● Make use of connection pooling solutions

21

Connection pooling – application server
environment

● JMS connection management in an application server
is specified by JCA (J2EE Connector Architecture)

● JCA gives you connection pooling e.g. for outbound
connections.

● JMS connections are wrapped in managed connections.
● Closing a connection returns it to the pool.
● Creating a new connection fetches an existing connection from

the pool.
● configuration of connection pools is application server specific .

● e.g. minPoolSize, maxPoolSize, idleTimeout
● As well as connection pooling, some resource adapters

have options for session and producer pooling:
● e.g. JMSJCA RA: https://jmsjca.dev.java.net

22

Pooling – outside app server

● Manage your own pooling – reuse connections
● Use a standalone connection manager that

provides connection pooling (e.g. JMSJCA)
● Use a Application Client Container (ACC)

● A light weight container which manages the execution
of JEE application client components in their own JVM,
in conjunction with an JEE application server

● ActiveMQ provides a PooledConnectionFactory

23

Managing message data
● Message size has large impact on performance

● Message cached in memory in server
● Maybe cached in consumer
● More work to read and write
● More network packets

● Message passed between client and server will consist
of JMS Message content plus additional provider
overhead

● Message body – generally not unmarshalled by server
● Message headers – may be unmarshalled by server

(selectors)

24

Managing message data
● Minimise any redundant application message data
● Avoid sending a series of separate messages

where you could consolidate application data into
one message.

● Very large messages may have to be specially
handled by provider.

● Consider storing very large messages outside of JMS.
● JMS could be used to notify consumer of location of

data

25

Provider tuning:
reducing message data size

● Consider using provider compression:
● OpenMQ:

MyMsg.setBooleanProperty(“JMS_SUN_COMPRESS”,true);
● ActiveMQ:

ActiveMQConnectionFactory.setMessageCompression(true);
● May be able to tune provider specific wire protocol

to reduce size of data
● ActiveMQ: Open wire protocol

● has choice of tight or loose encoding of packets

26

Message Delivery Mode
Choose appropriate delivery mode

● Persistent (default) messages must be stored “reliably”
and should survive a failure and recovery of JMS
server.

● Performance cost:
● persistent messages normally written to disk.
● producer.send(message) should block until server has

stored message.

27

Non-persistent delivery mode
Sending non-persistent messages is faster:

● Server does not need to store message reliably
● Message may be lost if server fails
● Typically server will not write message to disk
● Client producer does not need to block on

producer.send(msg) waiting for reply from server

28

Acknowledging non-persistent
messages

● Server can process non-persistent message
acknowledgements faster than persistent

● No need to remove message from reliable storage
● Acknowledging non-persistent topic messages

may be faster than queue messages
● JMS Spec allows non-persistent messages to be lost in the

event of provider failure, but does not allow duplicates.
● This implies Queue receivers should block on non-persistent

message acknowledgement, to avoid duplicate delivery in the
event of client failure.

● Blocking behavior is not consistent across all JMS providers
● Topic subscribers may not need to block on non-persistent

message acknowledgment.
● May be able to configure behavior.

29

Producer flow control
● JMS servers may force producers to slow down if

the server is running out of memory or disk
storage.

● Message store resources will be used up over
time if your application is producing data faster
than it is consuming data.

● Ensure server has sufficient resources to avoid
producer throttling

● May want to configure destination limits to control
message store growth.

30

Pre-sending messages
● Many providers have option to pre-send or push

messages to consumers
● Messages are sent in batches from server to

client
● Messages are cached in consumer waiting for the

application to process them
● Makes more effective use of network and thread

resources.

31

Pre-sending messages
● Can have big impact on performance

● particularly for non-persistent messages
● For queues with multiple receivers, pre-sending

may lead to some loss of message order.
● If a queue receiver closes, unconsumed messages

may be re-dispatched to another receiver. These
messages may appear out of order.

● JMS spec does not define behavior for multiple queue
receivers.

32

Provider tuning:
controlling message pre-sending

● ActiveMQ connectionFactory property:
● prefetchPolicy.xxxPrefetch (where xxx is one of queue,

queueBrowser,topic, durableTopic)
● Specifies the maximum number of messages that will be

present to a consumer.
● OpenMQ connectionfactory property

● imqConsumerFlowLimit
● Specifies the maximum number of messages that will be

present to a consumer.
● ImqConsumerFlowThreshold

● Controls percentage of present messages that need to be
consumed before more messages will be sent by the server.

33

Asynchronous message consumption
● Consuming messages asynchronously may be faster

than consuming synchronously with consumer.receive()
● For asynchronous delivery:

● 1) messages are read from the socket by a connection thread
and placed on a session queue.

● 2) a session thread pulls messages off the session queue and
calls MessageListeners.onMessage().

● For synchronous delivery:
● 1) messages are read from the socket by a connection thread

and placed on a session queue.
● 2) a session thread pulls messages off the session queue and

places them on a consumer queue.
● 3) The application thread pulls messages of the consumer

queue by calling consumer.receive()

34

Concurrent message consumption
● Processing messages concurrently can improve overall

throughput
● Will affect order in which messages are processed and

acknowledged
● Can achieve concurrency by:

● Explicitly creating multiple sessions and consumers
● Using JMS ConnectionConsumer facility (application needs to

supply a ServerSessionPool).
● Can use containers; e.g. Spring

DefaultMessageListenerContainer or
ServerSessionMessageListenerContainer

● Concurrent message consumption is provided by
MessageDrivenBeans in a JEE application server.

35

Message acknowledgement modes
● AUTO_ACKNOWLEDGE

● Each message is automatically acknowledged when
onMessage() completes or receive() returns.

● CLIENT_ACKNOWLEDGE
● Allows client to control when messages are

acknowledged
● Acknowledging multiple messages should improve

consumer performance.
● DUPS_OK_ACKNOWLEDGE

● Provider may optimize message acknowledgement
● Multiple message acknowledgments grouped together
● Consumer does not need to block leading to faster performance

● Duplicate messages may be received in the event of
failure

36

Provider tuning:
no-ack acknowledgement modes

● Some JMS providers offer a no-ack mode,
● messages are removed from server as soon

as they are sent to a consumer.
● This can improve performance at the risk of

message loss
e.g. OpenMQ:

Session noAckSession =
((com.sun.messaging.jms.Connection)connection)
.createSession(com.sun.messaging.jms.Session.NO_ACKNOWLEDGE)
;

37

Transactions
● Used to group a series of messaging operations

into an atomic unit of work
● Local transactions:

● Transacted sessions
● Transaction boundaries controlled by calling

session.commit();
● Distributed XA transactions

● Used in conjunction with a transaction manager
● Provides atomic commit over multiple transactional

resources

38

Transaction performance
● There is additional overhead for JMS provider in

processing transactions, e.g.
● Storing transaction id, transaction state
● Ensuring atomicity

● Work done in transaction can be consolidated by
provider

● e.g. blocking call to server not required on message
sends and acknowledgements

● Only need to block on session.commit()

39

Transaction Log

Many JMS providers use transaction logs to
implement reliable transactions

● Transactional work is written first to a transaction log,
and then to main persistent storage.

● In the event of failure, on recovery, transaction log is
replayed to main storage.

● Periodic checkpoints allow main storage to be
synchronised and transaction log reset or swapped.

40

Transaction log performance
● writes to transaction log are typically forced to

disk.
● writes to main storage are typically not forced to

disk until checkpoint.
● transaction log writes to end of file minimise disk

head seeks and allow maximum throughput.
● if possible, consider placing transaction log on

separate disk to avoid contention with other IO.
● can group commit concurrent transaction from

multiple clients.

41

XA Transactions
●

● For XA 2-phase commit, transaction has two
stages:

● prepare(): all work is persisted
● commit(): all work is committed

● A failure after prepare must be recoverable

42

XA transaction optimizations
● Single-phase commit

● TransactionManager (TM) should use single phase
commit if only 1 resource involved in transaction.

● Single phase commit is much more efficient
● TM does not need to log transaction progress
● Single write to JMS transaction log

● IsSameRM optimization
● If two or more resources involved in a transaction

represent the same resource manager, TM can join
resources and use single phase commit

● Check if your JMS provider/RA supports this option

43

Deployment options for JMS providers
> For improved performance

● Co-locating client and server
● Partitioning data over a cluster
● Server-less messaging
● System tuning

> For improved reliability
● Protecting message data against failure
● Replication strategies

44

Remote client and server

machine 1
jvm

client

machine 2
jvm

servernetwork

● Typical deployment
● Client and server on separate machines
● Transport over network

45

Co-located client and server

machine 3
jvm

client
jvm

server

● Client and server located on same machine
● Running in separate JVMs
● Avoids network hop

46

Embedded client and server

machine 4
jvm

client server

● Client and server reside in same JVM
● Client can communicate with server using java method

calls rather than passing messages over tcp stack
● Avoids marshalling of message data
● Avoids many thread context switches
● Fewer message exchanges (may be no need for a

reply message)

47

Configuring embedded server: OpenMQ
● creating embedded server
BrokerInstance brokerInstance =

ClientRuntime.getRuntime().createBrokerInstance();
Properties props = brokerInstance.parseArgs(args);
BrokerEventListener listener = new

ExampleBrokerEventListener();
brokerInstance.init(props, listener);
brokerInstance.start();
● connecting to embedded server
com.sun.messaging.ConnectionFactory cf = new

com.sun.messaging.ConnectionFactory();
cf.setProperty(ConnectionConfiguration.imqAddressList,

"mq://localhost/direct");
Connection connection = cf.createConnection();

48

Configuring embedded server:
ActiveMQ

● creating embedded server
BrokerService broker = new BrokerService();
broker.setBrokerName(“service”);
broker.addConnector(“tcp://localhost:61616”);
broker.start();
● connecting to embedded server
ActiveMQConnectionFactory cf = new

ActiveMQConnectionFactory(“vm://service”);
Connection connection = cf.createConnection();

49

Distributed destinations in OpenMQ

server a

prod1(dest1) server b

server c

prod2(dest1)
prod2(dest1)

dest1a dest1c

dest1b

● Fully connected cluster
● Messages stored on the server to which a producer

connects.
● Messages delivered to consumers wherever they

connect

50

Distributed destinations in OpenMQ
● Distributed destinations provide scalability
● More servers can be added as number of clients

or message load increases
● Each server only needs to store and process a

fraction of the destination
● Performance of producers is the same as for a

single server
● Performance of consumers receiving messages

stored on a remote server is reduced
● (message and message acknowledgment are routed

through local server to remote server)

51

Server-less messaging with ActiveMQ
● Clients communicate directly with each other
● Use a combination of multicast and broadcast to

make efficient use of the network
● Targeted at real time applications

● eg market data distribution

52

Other system factors
● Storage tuning

● Fragmentation of data reduces performance of disk
reads and writes

● Over time message storage may get fragmented and
performance may decline

● Consider periodically consolidating message store,
e.g. For openMQ: “imqcmd compact dst”

● Network tuning
● tcpNoDelay:
● socket buffer sizes

● JVM, GC settings
● Consider monitoring GC and checking if provider

defaults are appropriate for your application

53

Improving reliability
● Protecting data against failure
● Data replication strategies

54

Improving reliability: protecting against
JMS server failure

● Use persistent messaging
● Significantly slower than non-persistent messaging

● Cache non-persistent messages on producer
● ActiveMQ provides option for caching sent messages

on the producer
● Benefits: In the event of some failures, these can be

replayed to avoid message loss.
● Costs: extra memory overhead. Does not protect

against failure of producer.

55

Improving reliability: protecting against
OS/system failure

● How safe are disk writes?
● Depends on write cache settings of JMS provider,

OS and disk drives.
● To avoid possible loss of data from buffers, use

sync-to-disk
● Significantly slower than using buffered writes
● JMS provider can group together concurrent writes to

transaction log to reduce the number of syncs
● Alternative: Use data replication strategies

56

Improving reliability with replication
● Replication protects against localized failures
● Can control number and location of replicas
● Different levels of replication:

● Persistent data files
● Databases
● JMS servers

57

File system replication
● Replicate persistent data files
● Use a reliable file system (disk arrays, SAN etc)

resilient to individual disk failure
● Performance usually acceptable

● In the event of a server failure, where persistent data is
still available, a replacement server can be manually
restarted.

● Can script to automatically restart a failed server.
● Can use more sophisticated management software to

restart server on a different system (e.g. SunCluster).

58

Database replication
● Store data in a reliable clustered database

● (e.g. Oracle RAC or MySQL Cluster)
● OpenMQ and ActiveMQ both offer storage on

databases through JDBC
● OpenMQ allows active servers in a cluster to monitor

and automatically takeover the data of failed servers.
● Storing messages in databases may give poorer

performance than using JMS provider message stores

59

JMS server replication
● Replication of message data between multiple

JMS servers
● ActiveMQ supports a master-slave configuration

● Slave acts as a hot-standby to take over if master fails.

60

Conclusions
● There are many options available in JMS.
● We have shown how some of these options affect

messaging performance and reliability.
● Improving performance often reduces reliability and

vice versa.
● Check you are using JMS appropriately for each of

your message flows in your application.
● Understand the options and configurations available in

your JMS provider and choose those that give you the
right balance of performance and reliability.

Gordon Sivewright
gordon.sivewright@sun.com
Rob Davies
rodavies@progress.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

