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Metro Security Profiles
> Username Authentication with Symmetric Keys
> Mutual Certificates Security
> Symmetric Binding with Kerberos Tokens

> Transport Security (SSL)

> Message Authentication over SSL
> SAML Authorization over SSL

> Endorsing Certificate

> SAML Sender Vouches with Certificates

> SAML Holder of Key

> STS Issued Token
> STS Issued Token with Service Certificate

> STS Issued Endorsing Token

> STS Issued Supporting Token
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Metro Security Profiles - Guarantees

✓ ✓ ✓ ✓ ✓

Mutual Certificates Security ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓
Transport Security (SSL) ✓ ✓ ✓
Message Authentication Over SSL ✓ ✓ ✓

SAML Authorization Over SSL ✓ ✓ ✓
Endorsing Certificates ✓ ✓ ✓ ✓ ✓
SAML Sender Vouches With Certificates ✓ ✓ ✓ ✓
SAML Holder Of Key ✓ ✓ ✓ ✓ ✓
STS Issued Token ✓ ✓ ✓ ✓ ✓
STS Issued Token With Service Certificates ✓ ✓ ✓ ✓ ✓
STS Issued Endorsing Token ✓ ✓ ✓ ✓ ✓
STS Issued Supporting Token ✓ ✓ ✓ ✓

Peer 
Authentication

Message Origin 
Authentication

Message 
Integrity

Message 
Confidentiality

End-To-End 
Security

Username Authentication With Symmetric Key

Symmetric Binding With Kerberos Tokens
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Selected Metro Security Profiles

> Message Authentication over SSL
● Use: client has username/password or X.509 

relationship with service
● Point-to-point

> Username Authentication With Symmetric Keys
● Use: client has username/password

relationship with service
● End-to-end
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Selected Metro Security Profiles

> Mutual Certificates
● Use: interaction with known partners
● Certificates exchanged out-of-band in advance
● End-to-end

> STS Issued Token
● Use: role-based access control
● 3rd party handles authentication --- not service
● End-to-end
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Pattern
Confidentiality
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Pattern
Integrity,
Authentication,
Nonrepudiation
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Message Authentication over SSL
Use case: client/service ID/Auth token relationship

> Use token to plug into service's ID/Authentication 
infrastructure

> Options: Username/Password,X.509, (& SAML)
> Client dynamically obtain service's certificate; 

verifies with trusted CA
> Point-to-point; (SSL only use case: 

             client with no relationship with service)
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Message Authentication over SSL
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Message Authentication over SSL

> Token:
● Username
● X.509: better security than username
● SAML: get user credentials from 3rd party; attributes

> WSS: 1.1 enables signature confirmation
> Sig confirmation: avoid man-in-the-middle attack
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Message Authentication over SSL
Advanced
> Certificate Revocation:

● Use: do not accept certs on 
reject list (CRL)

● Click: use container 
mechanism

● No click & no cert validator:
● Always accept

● No click & cert validator:
● Custom revocation
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Message Authentication over SSL
Summary
> Use: 

● Client authentication at message level
● Auth can be propagated further after initial wire exchange

● When you can't exchange certs in advance
● Reuse existing web SSL infrastructure

> PROS:
● Transport level Performance; little setup
● Message level authentication

> CONS:
● Point-to-point (confidentiality)
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End-to-end Message Level Security
Options for message-level profiles

Firewall Service 
ProvidersFirewall

Clients

Firewall load-
balancer



14

End-to-end security options

128 bit default: built into JDK; larger needs JCE adjustment
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End-to-end security options
Algorithm Suite (applies to most security profiles)
> Algorithm and key lengths used for crypto ops
> Decisions:

● Security versus performance
● What is supported on both ends (e.g. Legacy)

> Best: AES + RSA OEAP: 
● Basic256SHA256, Basic192SHA256,      

Basic128SHA256, Basic256, Basic192, 
*Basic 128bit 

> Legacy: TripleDES, Basic256RSA15, Basic192RSA15, Basic128RSA15, 
TripleDESRSA15, TripleDESSHA256, Basic256SHA256RSA15, 
Basic192SHA256RSA15, Basic128SHA256RSA15, TripleDESSHA256RSA15
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End-to-end security options
Security header layout (applies to all profiles)
> Rules for adding items

to security header
> Recommended:

● Strict (default):
declare before use

> Legacy:
● Lax: any order

conforming to 
Oasis WSS

● Lax (Timestamp First/Last):
● Same as Lax but timestamp placed first/last
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Mutual Certificates Security
Use case: service to service (e.g., known partners)

> Use case: end-to-end security
> Certificates exchanged in advance

Firewall Service 
Providers

Service Providers 
acting as Clients

Firewall load-
balancer
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Mutual Certificates Security

Firewall
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Mutual Certificates Security

> Derived Keys:
● No need
● Key only used

once
> Encrypt Sig:

● Avoid dictionary 
attack

● CON: performance
> Encrypt before signing: 

● Reject msg with bad sig before decrypting 
(potentially large) msg

● Better performance (needs measurement)
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Option: Encrypt Signature
Use: avoid dictionary attack 

encrypted

not
encrypted
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Mutual Certificates Security

> Keystore:
● Alias: static
● Selector class:

● Runtime
> Certificate validator:

● Signature, identity,
CA, revoked, …

● Plug into other
frameworks

● Ex: OCSP
● Company specific CAs
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Mutual Certificates Security
Summary
> Use: server to server (i.e., partner to partner)
> Certificates exchanged OOB in advance
> PROS:

● End-to-end security (e.g., through load-balancers)
> CONS:

● Secure response does same as request
● Generate and encrypt a NEW ephemeral key
● Use that NEW key to encrypt and sign the response

● See “Endorsing Certificate” profile for optimization
● (note: endorsing is for 3rd party endorsing signature)
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Username Auth with Symmetric Keys
Use case: client/service ID/Auth token relationship

> Use token to plug into service's ID/Authentication 
infrastructure; no client certificate required

Firewall

Service 
Providers

U/P
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Username Authentication with Sym Keys

Firewall
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Username Auth with Symmetric Keys
Options: Derived Keys and Secure Conversation

> Derived Keys
● Key reused in this 

profile: therefore 
recommend using 
derived keys for 
increased security

> Secure Conversation
● Better performance 

for multiple 
message exchange
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Option: Derived Keys
Use case: increase security when reusing keys

derivednon derived
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Option: Secure Conversation
Use: increase performance/security on multiple msgs
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Option: Secure Conversation
Use: increase performance/security on multiple msgs

Note: 2 derived keys 
(one for encryption, 
one for signing) for
Increased security
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Option: Secure Conversation
Use: increase performance/security on multiple msgs
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Option: Secure Conversation
Use: increase performance/security on multiple msgs
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STS Issued Token
Use: Client gets auth/protection token from 3rd party

Firewall

STS

Client service

(e.g., OpenSSO)
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STS Issued Token

Firewall
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STS Issued Token : C → S

Firewall

detail
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STS  : SAML Validation

Firewall
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STS Issued Token – Options
> Token Type: 1.0, 1.1*, 2.0

● 1.1 : most widely adopted
> Key Type: Symmetric*, Public

● Symmetric: best perf;
but STS masquerade
as client

● Public: no masq., problem
> Size: 256*, 192, 128

● Security viz performance
> Derived X509/Issued:

● Security viz performance

Firewall
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STS Issued Token
Summary
> No service certificate required at client
> Service directs client to 3rd party token issuers (STS)
> Issued token for authentication & protection
> Can use symmetric (better performance) or 

public (better user privacy) proof key

Firewall



37

Recap
Patterns, profiles, use cases

Firewall
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Pattern
Confidentiality
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Pattern
Integrity,
Authentication,
Nonrepudiation
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Selected Metro Security Profiles

> Message Authentication over SSL
● Use: client has username/password or X.509 

relationship with service
● Point-to-point

> Username Authentication With Symmetric Keys
● Use: client has username/password or X.509 

relationship with service
● End-to-end
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Selected Metro Security Profiles
> Mutual Certificates

● Use: interaction with known partners
● Certificates exchanged out-of-band in advance
● End-to-end

> SAML Holder of Key
● Use: role-based access control
● Plug into existing SAML infrastructure; e2e

> STS Issued Token
● Use: role-based access control
● 3rd party handles authentication --- not service; e2e
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Upcoming Security Features in Metro

> Convenience/control of use of issued tokens
● Token cache & sharing among services
● Token renewal & cancellation
● Access different services with same credential 

> Manage/exchange credentials at run-time
● SSL/TLS Handshake for Web Services
● SPNego
● WS-Addressing Endpoint References & Identity
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Upcoming Security Features in Metro

> Password derived keys
● No certificates required
● But not as strong as PKI or symmetric

> Support for @RolesAllowed
● Servlet Web Services
● (109/EJB Web Services already supported) 
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● GlassFish v3 Preview Available now!
● Java EE 6 reference implementation
● Modular OSGi architecture – easy to develop & deploy
● Runs in-process and easy to extend
● Support for Ruby-on-Rails, Groovy and Grails, 

Python and Django
● GlassFish v2 – Production Ready
● Best price/performance open source App server with 

Clustering, High Availability, Load Balancing 
● Secure, Reliable, Transactional, .NET-interop Web svcs
● Support for Ajax and Comet

● GlassFish ESB
● SOA and Business Integration platform

● GlassFish Communications App Server
● SIP servlet technology for converged services

glassfish.org

• 24x7 Enterprise and Mission 
Critical Support

•sun.com/appserver

• Tools Integration
•NetBeans and Eclipse

● Pavilion booth numbers: 550,
  566, 567

● Meet Java EE spec leads and
  experts at Ancillary Event &
  Booth

Metro and GlassFish
Open Source and Enterprise Ready

metro.dev.sun.net



Harold Carr
weblogs.java.net/blog/haroldcarr

Jiandong Guo
blogs.sun.com/trustjdg

metro.dev.java.net
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EXTRA SLIDES
> Please do NOT remove



47

Endorsing Certificate optimization of mutual certificates

Firewall

request

> Mutual: 
generates/encrypts 
another ephemeral key 
for response

> Endorsing reuses key
> (Use derived key since 

reusing key)
> Endorsing Signature to 

prove sender has 
private key

> Response: no endorsing 
sig because service has 
decrypted ephemeral 
key using its private key
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Endorsing Certificate optimization of mutual certificates

Firewall

response

> Mutual: generates/encrypts 
another ephemeral key for 
response

> Endorsing reuses key
> (Use derived key since 

reusing key)
> Endorsing Signature to prove 

sender has private key
> Response: no endorsing sig 

because service has 
decrypted ephemeral key 
using its private key
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Slide Heading: 36pt
Subhead: 28pt
> All text is Arial
> Level One bullet point: 28pt

● Level Two bullet: 26pt
● Level Three: 22pt

● Level Four and subsequent: 18pt
> Text block is aligned to the left
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