Javais a trademark of Sun Mi-crosystems, Inc.

Keeping a Relational
Perspective for Optimizing
JPA

Debu Panda

Principal Product Manager, Oracle

Reza Rahman

Independent Consultant

JavaOne

JPA and Database Harmony

> JPA increases productivity by abstracting away
low-level data access code

> Not thinking critically about how JPA affects the
database leads to performance problems

Most problems
originate here

The problem is
rarely here

/4

ﬁ

JavaOne

Roadmap

> ORM mapping and schema refactoring
> Optimizing generated SQL

> Keeping JDBC in mind

> Reducing database access by caching
> Essential tools for tuning

JavaOne

ORM Mapping and Schema Refactoring
Denormalizing
> Normalization is over-emphasized

> Denormalization can significantly improve
performance

> Be careful, denormalization does not come free

> Overdoing it can lead to maintenance problems
and abuse disk-usage

JavaOne
ORM Mapping and Schema Refactoring

Denormalization Examples

GEntity
public class Item {

In-line columns Instead of

L —w ’” @OnetoMany with normalized
@Column (name="DOMESTIC SHIPPING RATE") SHIPPING_RATES table

protected double domesticShippingRate;
@Column (name="INTERNATIONAL SHIPPING RATE")
protected double internationalShippingRate;
ce Column with cached
@Column (name="NUMBER OF BIDS") value instead of
protected long numberOfBids; <¢IU9W|“9 related Bid

entities often
@Embedded
protected ItemDetails details; Embedded object instead
% of @OneToOne with
@Embeddable ItemDetails entity

public class ItemDetails ({
@Column (name="MANUFACTURER")
protected String manufacturer;
@Column (name="YEAR BUILT")
protected Date yearBuilt;

Sun. ;

JavaOne

ORM Mapping and Schema Refactoring

Database Indexes

>

>

>

>

>

>

Primary keys are automatically indexed

ndex frequently used foreign keys in larger tables
ndex any columns heavily used in joins

ndex columns often used as query parameters
ndex columns used in ordering

Be careful, indexing is not free

O un
i
" microsystens 6

ORM Mapping and Schema Refactoring

Indexing Candidates

@Entity
public class Bid {

@ManyToOne The BID_ITEM_ID foreign
@JoinColumn {name="BID_ITEM_ID") key should be indexed

referencedColumnName="ITEM ID")
protected Item item;

}

Query query = entityManager.createQuery (

"SELECT s " +
"FROM Seller s, Buyer b " + /

The location columns should
be indexed, although they
are not foreign keys

"WHERE s.location = b.location " +
"AND b.firstName = :firstName");

The first name column
should be indexed

JavaOne
ORM Mapping and Schema Refactoring

Inheritance Strategies

é BIDDERS h
USERS

1 eccentric-collector .. | 2 | 0.0l Join table strategy is

2 packrat E normalized, but has worst

3 snake-oil-salesman .. s performan“
\ J

BIDDERS A
USERS

avoids joins but causes
unions

1 eccentric-collector
supsr-user 2 packrat ;] % Table per class strategy

SELLERS

3 snake-oil-salesman 10,000.00
\ J
(USERS)
1 eccentric-collector . B 5.70 NULL Slngle table st . g! I mO_St
_ performance friendly, but is
2 packrat B 0.01 NULL denormalized
3 snake-cil-salesman 3 NULL 10,000.00
\ J

microsystems

JavaOne

ORM Mapping and Schema Refactoring

Cascading Deletes

> Consider cascading deletes on the database

GEntity
@DiscriminatorValue (value = "S")
public class Seller extends User {

Generates extra SQL

=

@OneToOne (cascade=CascadeType . REMOVE)
protected BillingInfo billingInfo;

CREATE TABLE billing_info (
billing id NUMBER(10) NOT NULL,

CONSTRAINT fk_us er FOREIGN KEY
(billing_user_id)
REFERENCES user (user id)

ON DELETE CASCADE === Much faster alternative

)

Sun
" microsystens 9

JavaOne

Optimizing Generated SQL
Lazy Loading
> Lazy load fields and relationships not used often

> One-many/many-many relationships lazy loaded
by default

> Carefully consider lazy loading one-one and
many-one relationships

> Lazy loading CLOB/BLOB fields is usually a good
idea

> Eagerly load relationships and data that are often
used

Optimizing Generated SQL

Lazy Loading Example

@Entity

@Table (name="USERS")

@SecondaryTable (name="USER PICTURES",
kaoinColumns=@PrimaryKeaninColumn{name="USER_ID”)}

public class User {

@Column (name="USER NAME")
protected String username;

@Column (name="PICTURE", table="USER PICTURES")

@Lob _ Infrequently used column put
@Basic (fetch=FetchType.LAZY)—=="__ into secondary table and lazily

protected byte[] picture; loaded

Infrequently used

@OneToOne (fetch=FetchType.LAZY)
relationship loaded lazily

protected ContactInfo contactInfo;

& Sun
crosys:cn—s”

11

JavaOne

Optimizing Generated SQL

Join Fetches

> Join fetch used to override relationships

configured as lazy loaded but should be loaded
eagerly in certain use cases

> Avoids the N+1 SELECTSs problem

Query query = entityManager.createQuery (
"SELECT 1 " +

"FROM Item i FETCH JOIN 1i.category " +

"WHERE i.itemId = :itemId");
query.setParameter (“itemId", itemlId);
Item item = (Item) Lazy loading of category being
query.getSingleResult() ; overridden at runtime

% S UN.
¥ microsystems

12

JavaOne

Optimizing Generated SQL
Bulk Updates and Deletes

> Bulk updates and deletes reduce number of
gueries issued

Query query = entityManager.createQuery (
"SELECT i FROM Item i “ +
“WHERE 1i.bidEndDate < :currentDate");
query.setParameter (“currentDate", now) ;
for (Item item : query.getResultList()) {
item.setStatus (“"Closed”) ;< Generates many SQL statements

}

Query query = entityManager.createQuery (
"UPDATE Item i SET i.status = 'Closed' " +
"WHERE 1i.bidEndDate < :currentDate");

query.setParameter (“currentDate", now);

query .executeUpdate() ; <: Generates one SQL statement

JavaOne

Optimizing Generated SQL

Native Queries

> Use native queries to take advantage of database
specific optimization features or very fine tuning

> Hints are an obvious optimization case

Query query = entityManager.createNativeQuery (
"SELECT /*+ FULL(u) */ * " +

"FROM users u " + ‘H%E*?:::::M : Active

; . o ost users are ‘Active’, so
WHERE status = 'Active’”, using the index is expensive

User.class) ; and a table scan is faster

List<User> users = (List<User>) query.getResultList();

§un 14

JavaOne

Keeping JDBC in Mind

Named Queries

> Named queries reduce parsing overhead

> Enforce best practice of parameterized queries
> Use query parameters even for dynamic queries

> Use the database connection pool’s prepared

statement cache or database query caching

@NamedQuery (
name="User.getBySsn",
query="SELECT u FROM User u WHERE u.ssn = :ssn")

Query query =

entityManager.createNamedQuery ("User.getBySsn") ;
query.setParameter (“ssn", ssn);
User user = (User) query.getSingleResult() ;

%%%ﬁ? 15

JavaOne

Keeping JDBC in Mind
Use Transactions Properly

> Eliminate transaction overhead for “read-only”

gueries

@TransactionAttribute (NOT SUPPORTED)

public List<Category> getAllCategories () {
return (List<Category>) entityManager.createQuery (
"SELECT ¢ FROM Category c'") .getResultList() ;

microsystems

JavaOne

Caching to Reduce Database Load

> Transactional cache

> Extended persistence context

> Second Level Cache
> Second level cache can be clustered

% S UN.
¥ microsystems

-
Extended
Persistence Context
LULCUCEULL IS (Transaction)
(Transaction)
" JVM
-
Extended
Persistence Context
Application FER [P TETTTT
(Transaction)
" JVM

Second Level
Cache

17

JavaOne

Essential Tools for Tuning

> Persistence provider tools

* hibernate.show sql, hibernate.format_sql,
hibernate.use sgl_comments, toplink.logging.*

* JMX integration
> Database monitoring tools

* Oracle Enterpriser Manager, SQL Profiler, MySQL
Enterprise Monitor

> Query analysis tools

* Oracle explain plan, SQL Query Analyzer, MySQL
Query Analyzer

> Java Diagnostics Tools
* Oracle AD4J, Wily Introscope

Sun)

microsystems

JavaOne

Summary

> JPA is not a substitute for thinking critically about
the database

> Many factors to keep in mind such as domain
modeling, database refactoring, ORM mapping,
qguery tuning, caching and monitoring

> Solid grasp of SQL and working closely with an
experienced DBA, in addition to having a deep
understanding of JPA is key

> Tuning is a natural and essential part of the
application life-cycle

" microsystens

19

JavaOne

References

(hristian Bauer
Gavin King

Debu Panda
Reza Rahman
Derek Lane

& Shameless plug alert!

20

€

IEVE]

[t

JavaOne

Debu Panda

debabrata.panda@oracle.com
Reza Rahman

reza@rahmannet.net

	Keeping a Relational Perspective for Optimizing JPA
	JPA and Database Harmony
	Roadmap
	ORM Mapping and Schema Refactoring Denormalizing
	ORM Mapping and Schema Refactoring Denormalization Examples
	ORM Mapping and Schema Refactoring Database Indexes
	ORM Mapping and Schema Refactoring Indexing Candidates
	ORM Mapping and Schema Refactoring Inheritance Strategies
	ORM Mapping and Schema Refactoring Cascading Deletes
	Optimizing Generated SQL Lazy Loading
	Optimizing Generated SQL Lazy Loading Example
	Optimizing Generated SQL Join Fetches
	Optimizing Generated SQL Bulk Updates and Deletes
	Optimizing Generated SQL Native Queries
	Keeping JDBC in Mind Named Queries
	Keeping JDBC in Mind Use Transactions Properly
	Caching to Reduce Database Load
	Essential Tools for Tuning
	Summary
	References
	Slide 21

