
Metro Web Services
Security Usage Scenarios
Harold Carr
Sun Microsystems
Metro Architect

Jiandong Guo
Sun Microsystems
Metro Security Architect

2

Metro Security Profiles
> Username Authentication with Symmetric Keys
> Mutual Certificates Security
> Symmetric Binding with Kerberos Tokens

> Transport Security (SSL)

> Message Authentication over SSL
> SAML Authorization over SSL

> Endorsing Certificate

> SAML Sender Vouches with Certificates

> SAML Holder of Key

> STS Issued Token
> STS Issued Token with Service Certificate

> STS Issued Endorsing Token

> STS Issued Supporting Token

3

Metro Security Profiles - Guarantees

✓ ✓ ✓ ✓ ✓

Mutual Certificates Security ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓
Transport Security (SSL) ✓ ✓ ✓
Message Authentication Over SSL ✓ ✓ ✓

SAML Authorization Over SSL ✓ ✓ ✓
Endorsing Certificates ✓ ✓ ✓ ✓ ✓
SAML Sender Vouches With Certificates ✓ ✓ ✓ ✓
SAML Holder Of Key ✓ ✓ ✓ ✓ ✓
STS Issued Token ✓ ✓ ✓ ✓ ✓
STS Issued Token With Service Certificates ✓ ✓ ✓ ✓ ✓
STS Issued Endorsing Token ✓ ✓ ✓ ✓ ✓
STS Issued Supporting Token ✓ ✓ ✓ ✓

Peer
Authentication

Message Origin
Authentication

Message
Integrity

Message
Confidentiality

End-To-End
Security

Username Authentication With Symmetric Key

Symmetric Binding With Kerberos Tokens

4

Selected Metro Security Profiles

> Message Authentication over SSL
● Use: client has username/password or X.509

relationship with service
● Point-to-point

> Username Authentication With Symmetric Keys
● Use: client has username/password

relationship with service
● End-to-end

5

Selected Metro Security Profiles

> Mutual Certificates
● Use: interaction with known partners
● Certificates exchanged out-of-band in advance
● End-to-end

> STS Issued Token
● Use: role-based access control
● 3rd party handles authentication --- not service
● End-to-end

6

Pattern
Confidentiality

7

Pattern
Integrity,
Authentication,
Nonrepudiation

8

Message Authentication over SSL
Use case: client/service ID/Auth token relationship

> Use token to plug into service's ID/Authentication
infrastructure

> Options: Username/Password,X.509, (& SAML)
> Client dynamically obtain service's certificate;

verifies with trusted CA
> Point-to-point; (SSL only use case:

 client with no relationship with service)

9

Message Authentication over SSL

10

Message Authentication over SSL

> Token:
● Username
● X.509: better security than username
● SAML: get user credentials from 3rd party; attributes

> WSS: 1.1 enables signature confirmation
> Sig confirmation: avoid man-in-the-middle attack

11

Message Authentication over SSL
Advanced
> Certificate Revocation:

● Use: do not accept certs on
reject list (CRL)

● Click: use container
mechanism

● No click & no cert validator:
● Always accept

● No click & cert validator:
● Custom revocation

12

Message Authentication over SSL
Summary
> Use:

● Client authentication at message level
● Auth can be propagated further after initial wire exchange

● When you can't exchange certs in advance
● Reuse existing web SSL infrastructure

> PROS:
● Transport level Performance; little setup
● Message level authentication

> CONS:
● Point-to-point (confidentiality)

13

End-to-end Message Level Security
Options for message-level profiles

Firewall Service
ProvidersFirewall

Clients

Firewall load-
balancer

14

End-to-end security options

128 bit default: built into JDK; larger needs JCE adjustment

15

End-to-end security options
Algorithm Suite (applies to most security profiles)
> Algorithm and key lengths used for crypto ops
> Decisions:

● Security versus performance
● What is supported on both ends (e.g. Legacy)

> Best: AES + RSA OEAP:
● Basic256SHA256, Basic192SHA256,

Basic128SHA256, Basic256, Basic192,
*Basic 128bit

> Legacy: TripleDES, Basic256RSA15, Basic192RSA15, Basic128RSA15,
TripleDESRSA15, TripleDESSHA256, Basic256SHA256RSA15,
Basic192SHA256RSA15, Basic128SHA256RSA15, TripleDESSHA256RSA15

16

End-to-end security options
Security header layout (applies to all profiles)
> Rules for adding items

to security header
> Recommended:

● Strict (default):
declare before use

> Legacy:
● Lax: any order

conforming to
Oasis WSS

● Lax (Timestamp First/Last):
● Same as Lax but timestamp placed first/last

17

Mutual Certificates Security
Use case: service to service (e.g., known partners)

> Use case: end-to-end security
> Certificates exchanged in advance

Firewall Service
Providers

Service Providers
acting as Clients

Firewall load-
balancer

18

Mutual Certificates Security

Firewall

19

Mutual Certificates Security

> Derived Keys:
● No need
● Key only used

once
> Encrypt Sig:

● Avoid dictionary
attack

● CON: performance
> Encrypt before signing:

● Reject msg with bad sig before decrypting
(potentially large) msg

● Better performance (needs measurement)

20

Option: Encrypt Signature
Use: avoid dictionary attack

encrypted

not
encrypted

21

Mutual Certificates Security

> Keystore:
● Alias: static
● Selector class:

● Runtime
> Certificate validator:

● Signature, identity,
CA, revoked, …

● Plug into other
frameworks

● Ex: OCSP
● Company specific CAs

22

Mutual Certificates Security
Summary
> Use: server to server (i.e., partner to partner)
> Certificates exchanged OOB in advance
> PROS:

● End-to-end security (e.g., through load-balancers)
> CONS:

● Secure response does same as request
● Generate and encrypt a NEW ephemeral key
● Use that NEW key to encrypt and sign the response

● See “Endorsing Certificate” profile for optimization
● (note: endorsing is for 3rd party endorsing signature)

23

Username Auth with Symmetric Keys
Use case: client/service ID/Auth token relationship

> Use token to plug into service's ID/Authentication
infrastructure; no client certificate required

Firewall

Service
Providers

U/P

24

Username Authentication with Sym Keys

Firewall

25

Username Auth with Symmetric Keys
Options: Derived Keys and Secure Conversation

> Derived Keys
● Key reused in this

profile: therefore
recommend using
derived keys for
increased security

> Secure Conversation
● Better performance

for multiple
message exchange

26

Option: Derived Keys
Use case: increase security when reusing keys

derivednon derived

27

Option: Secure Conversation
Use: increase performance/security on multiple msgs

28

Option: Secure Conversation
Use: increase performance/security on multiple msgs

Note: 2 derived keys
(one for encryption,
one for signing) for
Increased security

29

Option: Secure Conversation
Use: increase performance/security on multiple msgs

1 2 5 10
0

2000

4000

6000

8000
WSS vs WSSC vs TLS

WSS
WSSC(with KD)
WSSC(without KD)
TLS

number of messages

tim
e

in
 m

illi
se

co
nd

s

KD = Key Derivation

30

Option: Secure Conversation
Use: increase performance/security on multiple msgs

1 2 5 10 50 100 200 300 400 500 600
-20000

10000

40000

70000

100000

130000

160000

190000

0
25000
50000
75000
100000
125000
150000
175000
200000
225000
250000

WSS vs WSSC vs TLS

WSS
WSSC(with KD)
WSSC(without KD)
TLS

number of messages

tim
e

in
 m

illi
se

co
nd

s

(note: baseline is plain text)

KD = Key Derivation

31

STS Issued Token
Use: Client gets auth/protection token from 3rd party

Firewall

STS

Client service

(e.g., OpenSSO)

32

STS Issued Token

Firewall

33

STS Issued Token : C → S

Firewall

detail

34

STS : SAML Validation

Firewall

35

STS Issued Token – Options
> Token Type: 1.0, 1.1*, 2.0

● 1.1 : most widely adopted
> Key Type: Symmetric*, Public

● Symmetric: best perf;
but STS masquerade
as client

● Public: no masq., problem
> Size: 256*, 192, 128

● Security viz performance
> Derived X509/Issued:

● Security viz performance

Firewall

36

STS Issued Token
Summary
> No service certificate required at client
> Service directs client to 3rd party token issuers (STS)
> Issued token for authentication & protection
> Can use symmetric (better performance) or

public (better user privacy) proof key

Firewall

37

Recap
Patterns, profiles, use cases

Firewall

38

Pattern
Confidentiality

39

Pattern
Integrity,
Authentication,
Nonrepudiation

40

Selected Metro Security Profiles

> Message Authentication over SSL
● Use: client has username/password or X.509

relationship with service
● Point-to-point

> Username Authentication With Symmetric Keys
● Use: client has username/password or X.509

relationship with service
● End-to-end

41

Selected Metro Security Profiles
> Mutual Certificates

● Use: interaction with known partners
● Certificates exchanged out-of-band in advance
● End-to-end

> SAML Holder of Key
● Use: role-based access control
● Plug into existing SAML infrastructure; e2e

> STS Issued Token
● Use: role-based access control
● 3rd party handles authentication --- not service; e2e

42

Upcoming Security Features in Metro

> Convenience/control of use of issued tokens
● Token cache & sharing among services
● Token renewal & cancellation
● Access different services with same credential

> Manage/exchange credentials at run-time
● SSL/TLS Handshake for Web Services
● SPNego
● WS-Addressing Endpoint References & Identity

43

Upcoming Security Features in Metro

> Password derived keys
● No certificates required
● But not as strong as PKI or symmetric

> Support for @RolesAllowed
● Servlet Web Services
● (109/EJB Web Services already supported)

44

● GlassFish v3 Preview Available now!
● Java EE 6 reference implementation
● Modular OSGi architecture – easy to develop & deploy
● Runs in-process and easy to extend
● Support for Ruby-on-Rails, Groovy and Grails,

Python and Django
● GlassFish v2 – Production Ready
● Best price/performance open source App server with

Clustering, High Availability, Load Balancing
● Secure, Reliable, Transactional, .NET-interop Web svcs
● Support for Ajax and Comet

● GlassFish ESB
● SOA and Business Integration platform

● GlassFish Communications App Server
● SIP servlet technology for converged services

glassfish.org

• 24x7 Enterprise and Mission
Critical Support

•sun.com/appserver

• Tools Integration
•NetBeans and Eclipse

● Pavilion booth numbers: 550,
 566, 567

● Meet Java EE spec leads and
 experts at Ancillary Event &
 Booth

Metro and GlassFish
Open Source and Enterprise Ready

metro.dev.sun.net

Harold Carr
weblogs.java.net/blog/haroldcarr

Jiandong Guo
blogs.sun.com/trustjdg

metro.dev.java.net

46

EXTRA SLIDES
> Please do NOT remove

47

Endorsing Certificate optimization of mutual certificates

Firewall

request

> Mutual:
generates/encrypts
another ephemeral key
for response

> Endorsing reuses key
> (Use derived key since

reusing key)
> Endorsing Signature to

prove sender has
private key

> Response: no endorsing
sig because service has
decrypted ephemeral
key using its private key

48

Endorsing Certificate optimization of mutual certificates

Firewall

response

> Mutual: generates/encrypts
another ephemeral key for
response

> Endorsing reuses key
> (Use derived key since

reusing key)
> Endorsing Signature to prove

sender has private key
> Response: no endorsing sig

because service has
decrypted ephemeral key
using its private key

49

Slide Heading: 36pt
Subhead: 28pt
> All text is Arial
> Level One bullet point: 28pt

● Level Two bullet: 26pt
● Level Three: 22pt

● Level Four and subsequent: 18pt
> Text block is aligned to the left

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

