
Java™ Platform,
Enterprise Edition 6 with
Extensible GlassFish™
Application Server v3

Jerome Dochez
Mahesh Kannan
Sun Microsystems, Inc.

Agenda
> Java EE 6 and GlassFish V3
> Modularity, Runtime
> Service Based Architecture
> Containers inside out
> Demo
> OSGi integration
> Monitoring

GlassFish V3
> Java EE 6

● Profiles
● Web-developer productivity

> Modularity
● Grow from minimal (3mb) to full Java EE

support and more...
● Based on OSGi

> Embedded
● Start using Java EE 6 platform features in

your Java SE application (JPA, local ejb...)
● API driven

GlassFish V3 product differentiation
> Open for all JVM based technologies

● JRuby/Grails
● Native deployment (no war repackaging)

> Extensible
● Extensive APIs to replace or extend features
● OSGi also provides extensions capabilities

> Service based architecture
● services are defined by contracts and

can be easily substituted
● lazy loading based on usage patterns

Agenda
> Java EE 6 and GlassFish V3
> Modularity, Runtime
> Service Based Architecture
> Containers inside out
> Demo
> OSGi integration
> Monitoring

Modularity
> Based on OSGi
> GlassFish v3 is delivered as 170 bundles

● Undoubtedly too many...
● Successfully maintained quick startup

> Modules nomenclature
● Services they provide
● Lifecycle

> Strong build tool is necessary, we used maven
> Used to deliver Java EE profiles

Embedded API
> Start and configure GlassFish using APIs

// Create the Server
ServerBuilder builder = ServerBuilder.get(“sample”)
Server server = builder.setLogFile(“/tmp/foo.log”).create();

// Configure the web container
server.add((server.getBuilder(WebContainerBuidler)).setHtt
pPort(server.createPort(8080));

// Start the server
server.start();

> Shortcuts possible :
new WebContainer(8080).deploy(...);

Runtime
> Kernel

● startup/shutdown sequences
● basic services (deployment)
● configuration reading

> Services
● Cross containers functionalities

● Java EE 6 : Security, Naming Manager...
● Products : Admin Console

> Containers
● handle user's applications
● independent of each others

Container Isolation (Java EE 6 Profiles)

Kernel, OSGi, basic services

WEB EJB Persistence WebServices...

Optional Services

Glue Glue Glue Glue

Application Container
> Deployment

● Ability to add/remove/start/stop applications
> Configuration

● Ability to have configuration stored in central
configuration

● Automatic clustering support
> Commands

● CLI, REST invocations
> Monitoring (MBeans, Gmbal)

Agenda
> Java EE 6 and GlassFish V3
> Modularity, Runtime
> Service Based Architecture
> Containers inside out
> Demo
> OSGi integration
> Monitoring

Service Based Architecture
> Modules are just packaging artifact
> Capabilities and relationships are formed using

services
● OSGi services
● HK2 services

● Abstraction to OSGi services
● Per thread/Per request scopes
● Integrated lightweight dependency injection

HK2 Service
> Interfaces are declared with @Contract

> Implementations are declared with @Service

> Build system will generate Metadata
automatically

@Contract

public interface Startup {...}

@Service

public class ConfigService implements Startup

{

... }

Service Lookup
> Dependency injection

@Service
Public class RandomService implements SomeCtr {

@Inject
Startup someStartupService

}

> Automatic cascading
> Name resolution : @Inject(name=”foo”)
> Can be API driven (no DI)

Agenda
> Java EE 6 and GlassFish V3
> Modularity, Runtime
> Service Based Architecture
> Containers inside out
> Demo
> OSGi integration
> Monitoring

Application Container Runtime

C
O
N
T
A
I
N
E
R

Kernel

G
l
u
e

C
o
d
e

K
e
r
n
e
l

Deployment

Configuration

Grizzly

Monitoring

AdminGUI

Deployment
> Sniffer : recognize applications

● Stigma : META-INF/ejb-jar.xml
● Any class annotated with @Stateless

> Container (1 per container)
● Maintain container state
● Points to the deployer implementation

> Deployer (1 per container)
● Deploy, undeploy

> ApplicationContainer (1 per application)
● Start, stop, suspend, resume

Configuration
> All configuration in v3 uses annotated interface

public interface CtrConfig extends Container {
@attribute
String s1;
@Element
SubCtrConfig

}
> Will result in our central configuration

<ctr-config s1=”foo”>
 <sub-ctr-config .../>
</ctr-config>

Configuration (2)
> Lands in our central config (domain.xml)

● Automatic clustering support
● Automatic MBeans generation
● Automatic REST interface
● Automatic transaction access to mutating data

> Well integrated product, yet made of disparate
bits and pieces.

> All configuration interfaces are implemented by a
single class we own, very lightweight.

REST
> Use JAX-RS to provide REST interfaces to

● Configuration data
● Commands invocation (deploy, undeploy, etc..)
● Monitoring

> Binding use annotations on @Configured
configuration model, @Service command
implementations to generate WADL.

http://localhost:4848/rest-resources/domain
> You can even use REST clients as an AdminGUI

substitute

CLI
> Administrative commands can be added with each

container :
● Manipulates the container configuration

@Service(name=”change-random-ctr”)
public class ChangeRandomCtr implements
AdminCommand {

@Param
String s1;
@Param
String s2;

… }
● Available as :

asadmin change-random-ctr –s1 foo –s2 bar

22

GlassFish v3 – Architecture

Naming
Service

Transaction
Service

Injection
Manager

Security
Service

Configuration

Deployment

Monitoring/
Serviceability/

Logging

Clustering

Java SE

GlassFish V3 Core
(Module Subsystem)

Grizzly Framework

Application Container

Config Deploy Security Monitor Cluster

Management Console Management CLIUpdate Center

OSGi

REST
Web Services Scripting WebSpace Server

Portal
OpenMQ

JMS OpenESB OpenSSO

Web
Container JSF Connection

Pooling (JCA)
Java

Persistence EJB Container Web Services
Interop

Agenda
> Java EE 6 and GlassFish V3
> Modularity, Runtime
> Service Based Architecture
> Containers inside out
> Demo
> OSGi integration
> Monitoring

Agenda
> Java EE 6 and GlassFish V3
> Modularity, Runtime
> Service Based Architecture
> Containers inside out
> Demo
> OSGi integration
> Monitoring

25

OSGi integration
> No OSGi APIs are used in GlassFish v3

● Hk2 provides isolation layer
● Mockup implementation of hk2 makes V3 capable

of running without OSGi
● Embedded mode
● Static mode (single class loader)

> All GlassFish modules are OSGi bundles
> Completely portable to any OSGi R4 compliant

runtime
● Felix is the default

OSGi services implemented in v3
> HTTP Service

● Simple dynamic servlet web server
> OSGi Alliance RFC 98

● Transactions in OSGi
> OSGi Alliance RFC 66

● OSGi-based web container

OSGi integration
> Module management

● Add, remove, update installed modules
> OSGi as a container !

● Treat OSGi just like any container, bundles are
deployed to it.

> Converged Applications
● Started investigating Java EE 6 + OSGi

converged applications :
● Dependencies in OSGi
● Lifecycle still governed by Java EE.

OSGi Integration (2)
> OSGi services

● Available to any Java EE application
@Resource(mappedName=”osgiName”)
SomeOSGiService injectedService;

● JNDI lookup
● Portable, no OSGi dependencies in you Java EE

application code
> No bundle management access
> All installed bundles exported APIs visible to Java

EE Applications

OSGi bundle management

> OSGi bundles can be deployed to GlassFish
● As a library
● As an extension to glassfish
● Managed like an application

> Coupled with well-known OSGi extended
pattern, can be used to extend Glassfish
runtime

> It's possible to extend GlassFish without
 using a single GlassFish APIs.

Agenda
> Java EE 6 and GlassFish V3
> Modularity, Runtime
> Service Based Architecture
> Containers inside out
> Demo
> OSGi integration
> Monitoring

Monitoring
> Monitoring possible on all platforms
> Probes are enabled dynamically

● No probe listener result in a no-op
● When listeners register, probe implementations

are dynamically rewritten to start firing the probe
events.

> Lightweight
> BTrace under the covers

Probe listeners
public class WebRequestMonitor {

 AtomicInteger counter = ...;

 @OnProbe("glassfish:web:request:started")

 public void webRequestStarted(String appName) {

 System.out.println("....");

 }

 @OnProbe("glassfish:web:request:stopped")

 public void webRequestStopped(String appName) {

 counter.incrementAndGet();

 }

}

What about DTrace and Solaris
> GlassFish is DTrace enabled

● Modules define probe points
● Open APIs, any module can define probe points

> Features
● End to End Tracing and monitoring

syscall=>WebRequest=>EjbRequest=>JPARequ
est==>MySQL

● Use scripting languages like JavaScript

DTrace example

glassfish$1:web:request:started {

 trace(probename);

}

glassfish$1:web:request:stopped {

 trace(probename);

}

glassfish$1:jpa:query:beforeExecute {

 trace(copyintr(arg0)); //trace query string!!

}

Demo
> Demo: We will show GlassFish DTrace

integration only
> The demo application is a simple Web, JPA

application that queries all rows in
DEPARTMENT table

> DEPARTMENT table contains only 20 rows
> But the query will take 15 to 20 seconds!!
> We will enable some of the GlassFish DTrace

probes to examine whats going on...

GlassFish Community
Open Source and Enterprise Ready

● GlassFish v3 Preview Available now!
● Java EE 6 reference implementation
● Modular OSGi architecture – easy to develop & deploy
● Runs in-process and easy to extend
● Support for Ruby-on-Rails, Groovy and Grails,

Python and Django
● GlassFish v2 – Production Ready
● Best price/performance open source App server with

Clustering, High Availability, Load Balancing
● Secure, Reliable, Transactional, .NET-interop Web svcs
● Support for Ajax and Comet

● GlassFish ESB
● SOA and Business Integration platform

● GlassFish Communications App Server
● SIP servlet technology for converged services

glassfish.org

• 24x7 Enterprise and Mission
Critical Support

•sun.com/appserver

• Tools Integration
•NetBeans and Eclipse

● Pavilion booth numbers: 550,
 566, 567

● Meet Java EE spec leads and
 experts at Ancillary Event &
Booth

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

