|

\
F ‘
!

_ o=

=2

\

4
/s
X

Contexts and Dependency
Injection for Java™ EE

sssssssssss

An introduction to JSR-299

Gavin King
gavin@hibernate.org
http://in.relation.to/Bloggers/Gavin

Java is a trademark of Sun Microsystems, Inc.

Saturday, 23 May 2009

mailto:gavin@hibernate.org
mailto:gavin@hibernate.org
http://in.relation.to/Bloggers/Gavin
http://in.relation.to/Bloggers/Gavin

JavaOne
Why do you care about Java EE 67

> The EE 6 web profile removes most of the “cruft” that has
developed over the years

* mainly totally useless things like web services, EJB 2 entity beans

* some useful stuff like JIMS™
it if they like

> EJB 3.1 - a whole bunch of cool new functionality!

> JPA 2.0 - typesafe criteria query API, O/R mapping features

> JSF 2.0 - finally fixes the problems!

IS also missing, but vendors can include

> Bean Validation 1.0 - annotation-based validation API
> Servlet 3.0 - async support, better support for frameworks
> Contexts and Dependency Injection for Java EE

@Sun

Satu

rday, 23 May 2009

JavaOne
What is JSR-2997

> JSR-299 defines a unifying dependency injection and contextual
lifecycle model for Java EE 6

a completely new, richer dependency management model
designed for use with stateful objects
integrates the “web” and “transactional” tiers

makes it much easier to build applications using JSF and EJB
together

includes a complete SPI allowing third-party frameworks to integrate
cleanly in the EE 6 environment

S
@dun "’

Saturday, 23 May 2009

JavaOne
The theme

> Loose coupling...

* decouple server and client via well-defined types and “binding
types”

* S0 that the server implementation may vary
* decouple lifecycle of collaborating components
* components are contextual, with automatic lifecycle management

» allows stateful components to interact like services, purely by message-
passing

» decouple orthogonal concerns
* via interceptors

* completely decouple message producer from consumer
* Via events

»
@ oun “

Saturday, 23 May 2009

JavaOne
The theme

> ..with strong typing!
* eliminate lookup using string-based names
* the compiler will detect typing errors
* you don’t need special authoring tools to get autocompletion, etc
* everything specified using declarative Java annotations
* don’t need verbose XML

» easy to write tools that introspect the code and understand the
dependency structure at development time

X

Saturday, 23 May 2009

JavaOne

What’s unique?

> |mplementations of a types may vary at deployment time -
without the need for a central list of available implementations!

* No need to explicitly list beans in XML (Spring, HiveMind, etc)
* Nor even using a Java-based DSL (Guice)

»

Saturday, 23 May 2009

JavaOne

What kinds of things can be injected?

> (Certain kinds of things pre-defined by the specification:
* (Almost) any Java class
* EJB session beans
* Objects returned by producer methods
» Java EE resources (Datasources, JMS topics/queues, etc)
» Persistence contexts (JPA EntityManager)
* Web service references
* Remote EJBs references

> Plus anything else you can think of!
* An SPI allows third-party frameworks to introduce new kinds of things

D
@un 7

Saturday, 23 May 2009

JavaOne

B B s

Simple example

> Areally simple Java class:

public class Greeting ({

public String greet(String name) {
return “hello % + name;

}

»

)

Saturday, 23 May 2009

JavaOne

EJB example

> The class could be an EJB:

@Stateless
public class Greeting {

QRolesAllowed (V“'friend”)
public String greet(String name) ({
return “hello % + name;

}

X

Saturday, 23 May 2009

JavaOne

B B s

Field injection
> A simple client:

public class Printer ({

@Current Greeting greeting;

public void greet() {
System.out.println(greeting.greet (“world”))

}

X

&Sun 10

Saturday, 23 May 2009

Constructor injection

> Qr, using constructor injection:

public class Printer ({

private Greeting greeting;

public Printer (Greeting greeting) ({
this.greeting = greeting;

}

public void greet () {
System.out.println(greeting.greet(“world”))

}

S

Saturday, 23 May 2009

Initializer method injection

> Or, using initializer method injection:

public class Printer ({

private Greeting greeting;

@Initializer
void init (Greeting greeting) {
this.greeting = greeting;

}

public void greet () {
System.out.println(greeting.greet(“world”))

}

S

Saturday, 23 May 2009

JavaOne

Binding types

> A binding type is an annotation that lets a client choose between
multiple implementations of a certain type (class or interface)

* Binding types replace lookup via string-based names
* @Current is the default binding type

S

13
Saturday, 23 May 2009

JavaOne

Defining binding types
> Define a new binding type:

public

@BindingType

@Retention (RUNTIME)

QTarget ({TYPE, METHOD, FIELD, PARAMETER})
@interface Informal ({}

)

Saturday, 23 May 2009

JavaOne

B B s

Declaring bindings
> Same type, different implementation:

public
@Informal
class InformalGreeting extends Greeting {

public String greet(String name) {
return “hi ” + name;

}

S

Saturday, 23 May 2009

JavaOne

Declaring injection point bindings
> A client of the new implementation:

public class Printer {

@Informal Greeting greeting;

public void greet() {
System.out.println(greeting.greet (“JavaOne”));

}

X

&Sun 16

Saturday, 23 May 2009

JavaOne

EL names

> To use our class in Unified EL expressions, give it a hame:

public
@Named (“printer”)
class Printer {

@Current Greeting greeting;

public void greet() {
System.out.println(greeting.greet(“world”))

}

S

Saturday, 23 May 2009

JavaOne

EL name defaulting

> Well, actually, that name can be defaulted:

public
@Named
class Printer {

@Current Greeting greeting;

public void greet () {
System.out.println(greeting.greet (“world”));

}

S

Saturday, 23 May 2009

JavaOne

Unified EL

> Now we can use the object in a JSF or JSP page:

<h:commandButton value="Say Hello”
action="#{printer.greet}”/>

»

)

Saturday, 23 May 2009

JavaOne

A stateful class

> |f we want our object to hold state, we need to declare the scope
of that state:

public
@RequestScoped
@Named
class Printer {

@Current Greeting greeting;
private String name;

public void setName (String name) { this.name=name; }
public String getName () { return name; }

public void greet () {
System.out.println(greeting.greet (name));

}

N

Saturday, 23 May 2009

JavaOne

B B s

Unified EL

> And now we can use it to process a JSF form:

<h:form>
<h:inputText value="#{printer.name}”/>
<h:commandButton value="Say Hello”
action="#{printer.greet}”/>
</h:form>

S

Saturday, 23 May 2009

JavaOne

Scopes and contexts

> Extensible context model
* A scope type is an annotation
* A context implementation can be associated with the scope type

> Dependent scope, @Dependent (the default)

* It means that an object exists to serve exactly one client, and has the
same lifecycle as that client

> Built-in scopes:
* Any web request, web service request, RMI call, EJB timeout:
* (@ApplicationScoped, @RequestScoped

* Any servlet:

» (@SessionScoped

* JSF requests:

Y Sun @ConversationScoped

22

Saturday, 23 May 2009

JavaOne

B B s

Scoped objects

> A session-scoped object

public
@SessionScoped
class Login {

private User user;

public void login() ({
user = ...;

}

public User getUser () { return user; }

»

)

Saturday, 23 May 2009

JavaOne

Injecting a scoped object

> The client doesn’t know anything about the lifecycle of the
session-scoped object:

public
@Named
class Printer {

@Current Greeting greeting;
@Current Login login;

public void greet () {
System.out.println (
greeting.greet(login.getUser () .getName()))

»

)

Saturday, 23 May 2009

JavaOne

Custom scopes

> |t's easy to create the annotation for a custom scope:

public

@ScopeType

@Retention (RUNTIME)

@Target ({TYPE, METHOD})

@interface BusinessProcessScoped {}

> After this, the hard work begins!
* implement the Context SPI

»

)

Saturday, 23 May 2009

JavaOne

Producer methods

> Producer methods allow control over the production of the
Injected instance

* For runtime polymorphism
* For control over initialization

* Allow injection of classes we don’t control, that don’t satisfy the
normal requirements of a class that may be injected

* For further decoupling of a “producer” of state from the “consumer”

»

)

26

Saturday, 23 May 2009

JavaOne

Declaring producer methods

> Simple producer method:

public
@SessionScoped
class Login {

private User user;

public void login () {
user = ... ;

}

@Produces
User getUser() { return user; }

S

Saturday, 23 May 2009

JavaOne

Client of a producer method

> No more dependency to Login!

public class Printer ({

@Current Hello hello;
@Current User user;

public void hello() {
System.out.println (
hello.hello(user.getName())).,

S

Saturday, 23 May 2009

Scoped producer methods

> Producer methods may have a scope:

public
@RequestScoped
class Login {

private User user;

public void login () {
user = ...;

}

@Produces (@SessionScoped
User getUser () { return user; }

> they may even have bindings, names, etc...

X

29

Saturday, 23 May 2009

JavaOne

Producer fields

> Producer fields are really just a shortcut:

public
@RequestScoped
class Login {

@Produces (@SessionScoped User user;

public void login() {
user = ...,

}

S

Saturday, 23 May 2009

JavaOne

Declaring Java EE resources

> To inject Java EE resources, persistence contexts, web service
references, remote EJB references, etc, we use a special kind of
producer field declaration:

public class UserDatabasePersistenceContext {

@Produces (@UserDatabase
@PersistenceContext (unitName="userDB")
EntityManager userDatabase;

public class PricesTopic {

@Produces (@Prices
@Resource (name="“java:global/env/jms/Prices”)
Topic pricesTopic;

}

»

Saturday, 23 May 2009

JavaOne

Injecting Java EE resources

> Now we’ve eliminated the use of string-based names:

public class UserDatabasePersistenceContext {

@UserDatabase EntityManager userDatabase;

public class PricesTopic {

@Prices TopicSession topicSession;
@Prices TopicPublisher topicPublisher;

S

Saturday, 23 May 2009

JavaOne
Deployment types

> A deployment type is an annotation that identifies a deployment
scenario

* Deployment types may be enabled or disabled, allowing whole sets of
implementations to be easily enabled or disabled at deployment time

* Deployment types have a precedence, allowing the container to
choose between various implementations of a type

* Deployment types replace verbose XML configuration documents or
Java-based DSLs

> Default deployment type: @Production

33

Saturday, 23 May 2009

Defining a deployment type

> Define a custom deployment type:

public

@DeploymentType
@QRetention (RUNTIME)
@Target ({TYPE, METHOD})
@interface Espanol {}

> (Actually, we don’t really use deployment types for i18n, since the locale
depends upon the user, not the deployment!)

@Sun .

Saturday, 23 May 2009

JavaOne

Declaring the deployment type

> Same type, different deployment type:

public
@Espanol
class Saludo extends Greeting {

public String greet(String nombre) {
return “hola ” + nombre;

}

»

)

Saturday, 23 May 2009

JavaOne

Enabled deployment types

> |Implementation depends upon which deployment types are
enabled:

<beans>

<deploy>
<deployment-type>
Javax.enterprise.inject.deployment.Production
</deployment-type>
<deployment-type>
org. Jjboss.myapp.Espanol
</deployment-type>
</deploy>

</beans>

»

Saturday, 23 May 2009

JavaOne

Conversation context

> Spans multiple requests
> “Smaller” than session
> Allows multi-window / multi-tab operation

> Corresponds to an optimistic transaction

* conversation-scoped managed persistence context
* solves problems with optimistic locking and lazy fetching

»

37

Saturday, 23 May 2009

Controlling the conversation context

> The conversation context is demarcated by the application:

public
@ConversationScoped
class NumberGuess {

@Current Conversation conversation;

private int number;
private int min;
private int max;

@Initializer
void start(@Random int random) ({
conversation.begin() ;
number = random;
min = 1
1

max = 100;

S

Saturday, 23 May 2009

JavaOne

Controlling the conversation context

> The conversation context is demarcated by the application:

public boolean guess (int guess) {
if (guess==number)
conversation.end () ;
return true;
}
else {
if (guess<number && guess>min) {
min=guess;
}
else i1f (guess>number && guess<max) {
max=guess;
}

return false;

}
}

»

Saturday, 23 May 2009

JavaOne

Interceptors

> The package javax.interceptor defines method and
lifecycle interception APls

* this is good stuff, except for the use of @Interceptors(...) to
bind interceptors directly to a component

> |nterceptor should be completely decoupled from implementation
* via semantic annotations

> |nterceptor classes should be deployment-specific
* disable transaction and security interceptors during testing

> |nterceptor ordering should be defined centrally

@Sun

40

Saturday, 23 May 2009

JavaOne

Interceptor binding types

> Define an interceptor binding type:

public
@InterceptorBindingType
@Retention (RUNTIME)
@Target ({TYPE, METHOD})
@interface Secure {}

)

Saturday, 23 May 2009

JavaOne

Declaring interceptor bindings of an interceptor
> |nterceptor implementation:

public

@Secure

@Interceptor

class SecurityInterceptor {

@AroundInvoke
public Object aroundInvoke (InvocationContext ctx) {

}

»

)

Saturday, 23 May 2009

JavaOne

Class-level interceptor bindings

> (Class-level interceptor:

public
@Secure
class Greeting {

public String greet (String name) {
return “‘hello “ + name;

}

D

)

Saturday, 23 May 2009

JavaOne

Method-level interceptor bindings

> Method-level interceptor:

public class Greeting ({

@Secure
public String greet (String name) ({
return “hello Y + name;

}

»

)

Saturday, 23 May 2009

JavaOne

Interceptor binding types

> Multiple interceptors:

public
@Transactional
class Greeting ({

@Secure
public String greet(String name) {
return “‘hello % + name;

}

D

N

Saturday, 23 May 2009

JavaOne

Enabled interceptors

> Interceptor ordering and enablement:

<beans>

<interceptors>
<class>org. jboss. framework.SecurityInterceptor</class>
<class>org. jboss. framework.TransactionInterceptor</class>
</interceptors>

</beans>

X

&Sun 46

Saturday, 23 May 2009

JavaOne

Reusing interceptor bindings

> Interceptor binding types may be applied to other interceptor
binding types:

public

@Secure

@Transactional
@InterceptorBindingType
@Retention (RUNTIME)
@Target (TYPE)
@interface Action {}

»

)

Saturday, 23 May 2009

JavaOne

Interceptor binding types

> |nterceptor binding inheritance:

public
@Action
class Greeting {

public String greet(String name) ({
return “‘hello “ + name;

}

»

)

Saturday, 23 May 2009

JavaOne
Stereotypes

> |t is not only interceptor bindings we want to reuse!

> We have common architectural “patterns” in our application, with
recurring component roles

» (Capture the roles using stereotypes
> A stereotype packages.

* A default deployment type

* A default scope

* A set of interceptor bindings
* May specify that beans have names by default

»
@ oun

49

Saturday, 23 May 2009

JavaOne

Defining stereotypes

> Defining a new stereotype:

public

@Secure
@Transactional
@RequestScoped
@Named

@Production
@Stereotype
@Retention (RUNTIME)
@Target (TYPE)
@interface Action {}

)
@Sun ;

Saturday, 23 May 2009

JavaOne

Declaring stereotypes

> Using a stereotype:

public
@Action
class Greeting ({

public String greet(String name) {
return “hello “ + name;

}

S

Saturday, 23 May 2009

JavaOne

B B s

Event producers

> Event producer:

public class Login {
@Any Event<LoggedIn> loggedInEvent;
public void logln() {

User user = ..
loggedInEvent. flre(new LoggedIn (user));

@Sun 2

Saturday, 23 May 2009

JavaOne

B B s

Event consumers

> Event consumer:

public class Printer {

void onlogin ((lObserves LoggedIn loggedIn,
Greeting greeting) {
System.out.println(
greeting.greet(loggedIn.getUser () .getName ()))

X

Saturday, 23 May 2009

JavaOne

Event producers with binding types

> Events may also use binding types:

public class Login {
@LoggedIn Event<User> loggedInEvent;

public void login() ({
User user = ...;
loggedInEvent. fire (user) ;

}

@Sun

Saturday, 23 May 2009

JavaOne

B B s

Event consumers with binding types

> Event consumer:

public class Printer ({

void onlogin ((Observes (@LoggedIn User user,
Greeting greeting) {
System.out.println(greeting.greet(user.getName()))

}

»

)

Saturday, 23 May 2009

JavaOne

More information

> Public draft:
* http://www.jcp.org/en/|sr/detail?1d=299

> Reference Implementation:
* http://seamiframework.org/WebBeans

> Rl Documentation:
* http://docs.jboss.org/webbeans/reference/current/en-US/html/

> Blog:
* http://in.relation.to/Bloggers/Everyone/Tag/Web+Beans

»

)

56

Saturday, 23 May 2009

http://www.jcp.org/en/jsr/detail?id=299
http://www.jcp.org/en/jsr/detail?id=299
http://jboss.com/products/seam
http://jboss.com/products/seam
http://jboss.com/products/seam
http://jboss.com/products/seam
http://in.relation.to/Bloggers/Everyone/Tag/Web+Beans
http://in.relation.to/Bloggers/Everyone/Tag/Web+Beans

N

Java

Speaker Name: 48pt
Contact Info: 36pt

Misc. Info: 32pt

Saturday, 23 May 2009

