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GlassFish V3
> Java EE 6

● Profiles
● Web-developer productivity

> Modularity
● Grow from minimal (3mb) to full Java EE 

support and more...
● Based on OSGi

> Embedded
● Start using Java EE 6 platform features in

your Java SE application (JPA, local ejb...)
● API driven



GlassFish V3 product differentiation
> Open for all JVM based technologies

● JRuby/Grails
● Native deployment (no war repackaging)

> Extensible
● Extensive APIs to replace or extend features
● OSGi also provides extensions capabilities  

> Service based architecture
● services are defined by contracts and 

can be easily substituted
● lazy loading based on usage patterns
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Modularity
> Based on OSGi
> GlassFish v3 is delivered as 170 bundles

● Undoubtedly too many...
● Successfully maintained quick startup

> Modules nomenclature
● Services they provide
● Lifecycle

> Strong build tool is necessary, we used maven
> Used to deliver Java EE profiles



Embedded API
> Start and configure GlassFish using APIs 

// Create the Server
ServerBuilder builder = ServerBuilder.get(“sample”)
Server server = builder.setLogFile(“/tmp/foo.log”).create();

// Configure the web container
server.add((server.getBuilder(WebContainerBuidler)).setHtt
pPort(server.createPort(8080));

// Start the server
server.start();

> Shortcuts possible : 
new WebContainer(8080).deploy(...);



Runtime
> Kernel 

● startup/shutdown sequences
● basic services (deployment)
● configuration reading

> Services
● Cross containers functionalities 

● Java EE 6 : Security, Naming Manager...
● Products : Admin Console

> Containers 
● handle user's applications
● independent of each others



Container Isolation (Java EE 6 Profiles)

Kernel, OSGi, basic services

WEB EJB Persistence WebServices...

Optional Services

Glue Glue Glue Glue



Application Container
> Deployment 

● Ability to add/remove/start/stop applications
> Configuration

● Ability to have configuration stored in central 
configuration

● Automatic clustering support
> Commands

● CLI, REST invocations
> Monitoring (MBeans, Gmbal)
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Service Based Architecture
> Modules are just packaging artifact
> Capabilities and relationships are formed using 

services
● OSGi services
● HK2 services 

● Abstraction to OSGi services
● Per thread/Per request scopes
● Integrated lightweight dependency injection 



HK2 Service
> Interfaces are declared with @Contract 

> Implementations are declared with @Service 

> Build system will generate Metadata 
automatically 

@Contract 

public interface Startup {...} 

@Service 

public class ConfigService implements Startup 

{ 

... }



Service Lookup
> Dependency injection

@Service
Public class RandomService implements SomeCtr { 

@Inject
Startup someStartupService

}

> Automatic cascading
> Name resolution : @Inject(name=”foo”)
> Can be API driven (no DI)
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Application Container Runtime
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Deployment
> Sniffer : recognize applications

● Stigma : META-INF/ejb-jar.xml
● Any class annotated with @Stateless

> Container (1 per container)
● Maintain container state
● Points to the deployer implementation

> Deployer (1 per container)
● Deploy, undeploy

> ApplicationContainer (1 per application)
● Start, stop, suspend, resume



Configuration
> All configuration in v3 uses annotated interface

public interface CtrConfig extends Container {
@attribute
String s1;
@Element
SubCtrConfig

}
> Will result in our central configuration

<ctr-config s1=”foo”>
    <sub-ctr-config .../>
</ctr-config>



Configuration (2)
> Lands in our central config (domain.xml)

● Automatic clustering support
● Automatic MBeans generation
● Automatic REST interface
● Automatic transaction access to mutating data

> Well integrated product, yet made of disparate 
bits and pieces.

> All configuration interfaces are implemented by a 
single class  we own, very lightweight.



REST
> Use JAX-RS to provide REST interfaces to 

● Configuration data
● Commands invocation (deploy, undeploy, etc..)
● Monitoring

> Binding use annotations on @Configured 
configuration model, @Service command 
implementations to generate WADL.

http://localhost:4848/rest-resources/domain
> You can even use REST clients as an AdminGUI 

substitute



CLI
> Administrative commands can be added with each 

container :
● Manipulates the container configuration

@Service(name=”change-random-ctr”)
public class ChangeRandomCtr implements 
AdminCommand {

@Param
String s1;
@Param
String s2;

… }
● Available as :

asadmin change-random-ctr –s1 foo –s2 bar
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GlassFish v3 – Architecture
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OSGi integration 
> No OSGi APIs are used in GlassFish v3

● Hk2 provides isolation layer
● Mockup implementation of hk2 makes V3 capable 

of running without OSGi 
● Embedded mode
● Static mode (single class loader)

> All GlassFish modules are OSGi bundles
> Completely portable to any OSGi R4 compliant 

runtime 
● Felix is the default



OSGi services implemented in v3
> HTTP Service

● Simple dynamic servlet web server 
> OSGi Alliance RFC 98

● Transactions in OSGi
> OSGi Alliance RFC 66

● OSGi-based web container



OSGi integration
> Module management 

● Add, remove, update installed modules
> OSGi as a container !

● Treat OSGi just like any container, bundles are 
deployed to it. 

> Converged Applications
● Started investigating Java EE 6 + OSGi 

converged applications :
● Dependencies in OSGi
● Lifecycle still governed by Java EE. 



OSGi Integration (2)
> OSGi services

● Available to any Java EE application
@Resource(mappedName=”osgiName”)
SomeOSGiService injectedService;

● JNDI lookup
● Portable, no OSGi dependencies in you Java EE 

application code
> No bundle management access
> All installed bundles exported APIs visible to Java 

EE Applications



OSGi bundle management

> OSGi bundles can be deployed to GlassFish
● As a library
● As an extension to glassfish
● Managed like an application

> Coupled with well-known OSGi extended 
pattern, can be used to extend Glassfish 
runtime

> It's possible to extend GlassFish without
 using a single GlassFish APIs.
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Monitoring
> Monitoring possible on all platforms
> Probes are enabled dynamically

● No probe listener result in a no-op
● When listeners register, probe implementations 

are dynamically rewritten to start firing the probe 
events.

> Lightweight
> BTrace under the covers



Probe listeners
public class WebRequestMonitor {

   AtomicInteger counter = ...;

   @OnProbe("glassfish:web:request:started")

   public void webRequestStarted(String appName) {

       System.out.println("....");  

   }

   @OnProbe("glassfish:web:request:stopped")

   public void webRequestStopped(String appName) {

       counter.incrementAndGet();

   }

} 



What about DTrace and Solaris
> GlassFish is DTrace enabled

● Modules define probe points
● Open APIs, any module can define probe points

> Features
● End to End Tracing and monitoring

syscall=>WebRequest=>EjbRequest=>JPARequ
est==>MySQL

● Use scripting languages like JavaScript



DTrace example

glassfish$1:web:request:started {

   trace(probename);

}

glassfish$1:web:request:stopped {

   trace(probename);

}

glassfish$1:jpa:query:beforeExecute {

   trace(copyintr(arg0));  //trace query string!!

} 



Demo
> Demo: We will show GlassFish DTrace 

integration only
> The demo application is a simple Web, JPA 

application that queries all rows in 
DEPARTMENT table

> DEPARTMENT table contains only 20 rows
> But the query will take 15 to 20 seconds!!
> We will enable some of the GlassFish DTrace 

probes to examine whats going on... 



GlassFish Community
Open Source and Enterprise Ready

● GlassFish v3 Preview Available now!
● Java EE 6 reference implementation
● Modular OSGi architecture – easy to develop & deploy
● Runs in-process and easy to extend
● Support for Ruby-on-Rails, Groovy and Grails, 

Python and Django
● GlassFish v2 – Production Ready
● Best price/performance open source App server with 

Clustering, High Availability, Load Balancing 
● Secure, Reliable, Transactional, .NET-interop Web svcs
● Support for Ajax and Comet

● GlassFish ESB
● SOA and Business Integration platform

● GlassFish Communications App Server
● SIP servlet technology for converged services

glassfish.org

• 24x7 Enterprise and Mission 
Critical Support

•sun.com/appserver

• Tools Integration
•NetBeans and Eclipse

● Pavilion booth numbers: 550,
  566, 567

● Meet Java EE spec leads and
  experts at Ancillary Event & 
Booth
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