
JDBC – We don’t need no
stinking JDBC. How
LinkedIn uses memcached,
a spoonful of SOA, and a
sprinkle of SQL to scale.

David Raccah & Dhananjay Ragade
LinkedIn Corporation

2

Goal of this Presentation
What you will learn
How LinkedIn built a cheap

and scalable system to
store our member’s profiles,
and how you can do the
same

3

Agenda

> Review system ilities
> What happened to databases?
> SOA What
> Discuss existing Best Practices
> Pixie Dust and Kool-Aid are not so bad
> What LinkedIn’s got up their sleeve
> How it all came together…
> Q&A

4

Terminology of the ilities
the terms of large successful systems
> Performance

 Not an “ility” but without it, no ility will save you
> Availability

 Availability is the proportion of time a system is in a
functioning condition

> Reliability
 The probability that a functional unit will perform its

required function for a specified interval under
stated conditions.

 The ability of something to "fail well" (fail without
catastrophic consequences)

5

Terminology of the ilities
the terms of large successful systems
> Scalability

 Slow with multiple users vs. single user
> Manageability

 The ability to manage all parts of a large moving
system

> Serviceability
 The ability to service an arm of the system without

bleeding to death (e.g. change out a database from
a working system). Bleeding is OK in a high
performance system – death is NOT acceptable.

6

Agenda

> Review system ilities
> What happened to databases?
> SOA What
> Discuss existing Best Practices
> Pixie Dust and Kool-Aid are not so bad
> What LinkedIn’s got up their sleeve
> How it all came together…
> Q&A

7

> RDBMS – Relational Data
Base Management System
Attribute

> KVSS – Key Value Storage
System

> Enterprise Search Engines

Databases
The systems that drive the enterprise … or….

8

Database Server History….

9

Database mind set has changed…
From data access to data management to….
> Initially it was all about remote

data access with an index
> Then it moved to ACID data

management and tooling
> Then it became an Application

Server with data affinity
> Now we have come full circle

and people have figured out
that scaling is more important
than relationships, transactions,
and data and behavioral affinity.

10

Database Mantra that Rule the Roost
ACID
> Atomicity – All or nothing
> Consistency – Data in the

system should never get in a
contradictory state.

> Isolation: Two requests
cannot interfere with one
another.

> Durability: No do over – once
the data is persisted, it
cannot change.

11

Anti-Database Rules
BASE
> Basically Available

 Support partial failures within your
architecture (e.g. sharding)

> Soft state
 State may be out of synch for

some time
> Eventually consistent

 Eventually all data is made
consistent (as long as the
hardware is reliable)

12

Database Scalability
Or lack thereof…
> Databases work. Look at:

 Hotmail
 Facebook
 eBay

> Databases scale with hardware
> They do not scale horizontally

well
 Partition management is

nonexistent and RYO is a mess
 Many use them as ISAM and

not even relational

13

Database Tools and language
Duh…
> Defacto standards for tools and

languages abound for relational
databases

> Easy to manage the data within
a partition and easy to write
code to operate on said data

> Terrifying but nice to use
extensions include running
Java within the Data Engine, so
that you could run your
application within the big iron

14

Database’s other features
Which are the pain points….
> Constraints – Nice idea until

you start partitioning.
2PC is the anti-scalability
pattern (Pat Helland)

> Computation – this feature turns out to cause more
pain as cost rises with scale and are incompatible
with most languages and tools.

> Replication & backup
 Nice tools that are indeed important and useful

> ACL support & Data Engine optimizations
 Used for sure, but exist to circumvent deficiencies

15

Key Value Storage Systems
BigTable, Hive, Dynamo– the Wild Wild West
> Reliable – Proven on web
> Available – redundant (locally)
> Scalable – no constraints
> Limited ACIDity
> No Standard and not portable
> Almost no:

 Constraints or relationships
 Computation or transactions

16

Enterprise Search Engines
Index yes – storage device no
> A great inverted index
> Finds data quickly
> However, what it returns is

commonly an ID to the
entity(s) in question

> Real-Time solutions are
available but not fully
deployed today

> Limited ACIDity/transactions
> Scalable, available, reliable

17

Agenda

> Review system ilities
> What happened to databases?
> SOA What
> Discuss existing Best Practices
> Pixie Dust and Kool-Aid are not so bad
> What LinkedIn’s got up their sleeve
> How it all came together…
> Q&A

18

SOA
Service Oriented Architecture
> SOA may be overkill for most

enterprises
> Still a Tiered and layered

architecture – which is what
SOA hoped to formulate and
standardize is a solid approach

> Services (not SOA) allow for
efficient reuse of business
processes and aggregation
services within a complex
development organization

19

Agenda

> Review system ilities
> What happened to databases?
> SOA What
> Discuss existing Best Practices
> Pixie Dust and Kool-Aid are not so bad
> What LinkedIn’s got up their sleeve
> How it all came together…
> Q&A

20

> Store critical data redundantly
and reliably with a cluster
 Google via BigTable, Facebook

via MySQL, eBay via replicated &
sharded DB

> Layer services on top of the
storage device to manage data
integrity and complexity
 LinkedIn, Amazon, eBay

Best Practices
Storage and architecture

21

> Create a bus to route
replicated data to consumers –
e.g. search, data mining, etc.
 Almost all sites

> Parallelization via things like
scatter/gather
 Almost all search topologies

(Google, Yahoo, Live),
 Facebook, etc.

Best Practices
Storage and architecture

22

Best Practices
Storage and architecture
> Keep the system stateless

 eBay, Google, etc.
> Partition data and services

 Facebook, eBay
> Cache data
> Replicate your data
> Route requests to where the

behavior and/or data exists
> Degrade gracefully with load

23

Best Practices
Storage and architecture
> Tiering systems

 Latency vs. Affinity
 Traversal versus affinity – you need to

analyze the cost and make a decision
 Scaling vs. parallelizing

 Do you need to keep tiering all
systems to keep the scalability
uniform?

 Complexity vs. diminished
dependencies
 Does the reduced dependencies make

up for the increased system
complexity?

24

Agenda

> Review system ilities
> What happened to databases?
> SOA What
> Discuss existing Best Practices
> Pixie Dust and Kool-Aid are not so bad
> What LinkedIn’s got up their sleeve
> How it all came together…
> Q&A

25

Pixie Dust and Kool-Aid
Building on the past

26

Pixie Dust and Kool-Aid
Building on the past
> So what do we want:

 Reliable
 Available
 Scalable
 ACIDity on simple transactions
 Standard and portable interface
 Data Optimizations
 Cache and replicate
 Low cost BASE architecture

27

Agenda

> Review system ilities
> What happened to databases?
> SOA What
> Discuss existing Best Practices
> Pixie Dust and Kool-Aid are not so bad
> What LinkedIn’s got up their sleeve
> How it all came together…
> Q&A

28

LinkedIn’s Data Services
Mixture of standards and pixie dust
> Front a database with a service
> Cache data
> Route to and partition the data

service
> Scale and replicate services in a

horizontal manner
> Keep all writes ACID and

subsequent reads ACID as well

29

LinkedIn’s Data Services
Mixture of standards and pixie dust
> Databases are reliable
> Scale out at the service
> Replicate and cache
> Partitioning comes from the front

tier and business servers that
front the data services

30

LinkedIn’s Data Services
Immediate replication vs. eventual replication
> Caching needs a consistency algorithm
> Techniques for immediate replication

 Paxos
 Chubby, Microsoft AutoPilot, Zoo Keeper

 N Phase Commit (2PC and 3PC)
> Techniques for eventual consistency

 BASE (Basically Available, Soft-state,
Eventual Consistency
 Inktomi, Dynamo, AWS

31

LinkedIn’s Data Services
LinkedIn’s approach
> Keep core data ACID
> Keep replicated and cached data BASE
> Replicate data via the data bus
> Cache data on a cheap memory

(memcached)
> Use a hint to route the client to his /

her’s ACID data

32

LinkedIn’s Data Services
Databus – the linchpin of our replication

33

LinkedIn’s Data Services
LinkedIn’s approach

34

LinkedIn’s Data Services
Core DS
> Keep core data ACID in the DB
> All writes come here.
> Databus source for all replication
> The last line of defense for a

cache miss
> Also manages sharding and partitioning

35

LinkedIn’s Data Services
RepDS
> Manages cache consistency and

replication
> Manages the freshness of the

caller
> Reads come from cache

36

LinkedIn’s Data Services
RepReader
> RepReader is the typical tip of the

iceberg problem
> All read operations are sourced

from the cache unless the caller’s
freshness token is out of the window

37

LinkedIn’s Data Services
Freshness Token (AKA Pixie Dust)
> The freshness token = Pixie Dust for

CUD operations
> It also allows us to give the caller

control over whether they are content
with BASE data, even if they did no
CUD operation.

38

LinkedIn’s Data Services
For the love of Pixie dust and Kool-Aid
> We use commodity hardware and

software to run our service
> We use Pixie Dust to keep costs down

and keep our customer happy
> We keep OPS and the exec-staff

happy with our special brand of Kool-
Aid

39

Agenda

> Review system ilities
> What happened to databases?
> SOA What
> Discuss existing Best Practices
> Pixie Dust and Kool-Aid are not so bad
> What LinkedIn’s got up their sleeve
> How it all came together…
> Q&A

40

Profile Re-architecture
Changing planes in mid-flight

> Original LinkedIn System
> Use of XML for i18n
> Phased Transition

41

Problems from the original system
Anthropology 101
> Be fair… it worked well for

a startup
> Many tables in one big

DB
> Too many similar object

hierarchies
> No well defined domains

42

Why XML?
Flexibility
> Profile has many fields
> 1NF for I18n ==> too many

tables
> StAX for fast parsing
> Easier to version the profile
> Human readable
> JSON? ProtoBuf?

43

Issues with XML
<good/> <bad/> <ugly/>
> XML schema design tradeoffs

and analytics impact
> XML is verbose
> StAX is unfriendly
> XML in the DB caused us

some performance
headaches

44

Phased Transition
Evolving a living, breathing organism
> Successive iterations avoid breakages
> No major site downtime
> Easier to sanity check
> Does not hold other teams hostage
> Phases LinkedIn went through

45

Double Writes Topology
Safety first

46

After Legacy Tables Dropped
 Auld Lang Syne

47

Wrap up
The moral of the story is…
> Keep your system BASE
> Use commodity hardware
> Use pixie dust (AKA data freshness token)
> Evolve slowly - no big bang!

48

Q&A

49

David Raccah & Dhananjay Ragade
draccah@linkedin.com
dragade@linkedin.com

Linkedin Corporation

mailto:draccah@linkedin.com
mailto:dragade@linkedin.com

Appendix

51

Performance
Often mixed up with scalability
> Performance

 A numerical value given to
a single system when
asked to do a task under
nominal load

 If the system responds
poorly without load, it will
assuredly continue its
molasses response time
under load

52

Availability
Often mixed up with reliability
> Availability

 A numerical value
given to a system
that defines the
proportion of time a
system is in a
functioning condition.

 Most common
scoring system is
called nines – which is defined as the uptime versus
the uptime and downtime – five nines = 0.99999

53

Reliability
The ability for a system to perform its functionality
> Reliability

 A system can be 100% available
and still be 100% unreliable (e.g.
non consistent caching)

 A person can consistently give
you the wrong answer

 Architecture is defined as the
balance of the ilities and cost

54

Scalability
the term that many think is the holy grail
> Scalability

 The ability for a system to manage
more traffic or to be “scaled” as
more traffic appears

 System slows with multiple users
vs. single user

 Route, Partition, Orchestrate,
replicate, and go asynch

 Split the system horizontally
 Rarely scale vertically

55

The rest of the ilities
the ones that people tend to ignore till its too late
> Manageability

 It is a double-edged
sword which can be
easily ignored

> Serviceability
 Here complexity starts to

rear its ugly head
> Maintainability

 Of course maintainability
tends to run upstream of
complexity

	JDBC – We don’t need no stinking JDBC. How LinkedIn uses memcached, a spoonful of SOA, and a sprinkle of SQL to scale.
	Goal of this Presentation What you will learn
	Agenda
	Terminology of the ilities the terms of large successful systems
	Slide 5
	Slide 6
	Databases The systems that drive the enterprise … or….
	Database Server History….
	Database mind set has changed… From data access to data management to….
	Database Mantra that Rule the Roost ACID
	Anti-Database Rules BASE
	Database Scalability Or lack thereof…
	Database Tools and language Duh…
	Database’s other features Which are the pain points….
	Key Value Storage Systems BigTable, Hive, Dynamo– the Wild Wild West
	Enterprise Search Engines Index yes – storage device no
	Slide 17
	SOA Service Oriented Architecture
	Slide 19
	Best Practices Storage and architecture
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Pixie Dust and Kool-Aid Building on the past
	Slide 26
	Slide 27
	LinkedIn’s Data Services Mixture of standards and pixie dust
	Slide 29
	LinkedIn’s Data Services Immediate replication vs. eventual replication
	LinkedIn’s Data Services LinkedIn’s approach
	LinkedIn’s Data Services Databus – the linchpin of our replication
	Slide 33
	LinkedIn’s Data Services Core DS
	LinkedIn’s Data Services RepDS
	LinkedIn’s Data Services RepReader
	LinkedIn’s Data Services Freshness Token (AKA Pixie Dust)
	LinkedIn’s Data Services For the love of Pixie dust and Kool-Aid
	Slide 39
	Profile Re-architecture Changing planes in mid-flight
	Problems from the original system Anthropology 101
	Why XML? Flexibility
	Issues with XML <good/> <bad/> <ugly/>
	Phased Transition Evolving a living, breathing organism
	Double Writes Topology Safety first
	After Legacy Tables Dropped Auld Lang Syne
	Wrap up The moral of the story is…
	Q&A
	Slide 49
	Appendix
	Performance Often mixed up with scalability
	Availability Often mixed up with reliability
	Reliability The ability for a system to perform its functionality
	Scalability the term that many think is the holy grail
	The rest of the ilities the ones that people tend to ignore till its too late

