
Enterprise JavaTM Web
Apps with Google Open
Source Technology

Dhanji R. Prasanna
Google, Inc.

Monday, 8 June 2009

Dhanji R. Prasanna
Software Engineer at Google

> Co-author
• JAX-RS: Java API for RESTful Web Services
• JSR-303: Bean Validation

> Core Contributor
• Google Guice
• MVEL

> Represent Google on Servlet + Java EE EGs

2

Monday, 8 June 2009

What’s on tap?

> Google Guice
> Google Web Toolkit
> Web Driver

> Google Sitebricks sneak peak!

3

Monday, 8 June 2009

Applications at Google scale

> What does it mean to build a web app at Google
scale?

4

Monday, 8 June 2009

Applications at Google scale

> What does it mean to build a web app at Google
scale?
• Everything x 100100

5

Monday, 8 June 2009

Applications at Google scale

> What does it mean to build a web app at Google
scale?
• Everything x 100100
• Performance (low latency)

6

Monday, 8 June 2009

Applications at Google scale

> What does it mean to build a web app at Google
scale?
• Everything x 100100
• Performance (low latency)
• Concurrency

7

Monday, 8 June 2009

Applications at Google scale

> What does it mean to build a web app at Google
scale?
• Everything x 100100
• Performance (low latency)
• Concurrency
• Developer scalability

8

Monday, 8 June 2009

Google Guice

> is the new new!
> anti-static
> enables testing
> improves testability

> Vitamin C for your
app

9

Monday, 8 June 2009

Ugh, static cling...

10

> Here is a traditional singleton pattern:

public class MyService {

 private static MyService instance;

 public static MyService get() { //factory method
 if (null == instance)
 instance = new MyService();

 return instance;
 }
 }

Monday, 8 June 2009

Ugh, static cling...

11

> How would you test clients of MyService?

public class MyClient {
 private MyService service = MyService.get();

 public void doStuff() {
 ...
 }
}

Monday, 8 June 2009

Ugh, static cling...

12

> How would you test clients of MyService?

public class MyClientTest {

 @Test
 public final void stuff() {
 MyClient = new MyClient(); //can’t mock MyService!
 ...
 }
}

Monday, 8 June 2009

Ugh, static cling...

13

> You have to expose a static setter:
public class MyService {
 private static MyService instance;

 public static MyService get() {
 if (null == instance)
 instance = new MyService();

 return instance;
 }

 public static void set(MyService ms) {
 instance = ms;
 }
}

Monday, 8 June 2009

Ugh, static cling...

14

> Now you can use a mock object:
public class MyClientTest {

 @Test
 public final void badTest() {
 MyService.set(new MockService());
 MyClient = new MyClient();
 ...
 }
}

Monday, 8 June 2009

Ugh, static cling...

15

> Don’t forget to clean up
public class MyClientTest {

 @Test
 public final void betterTest() {
 MyService prev = MyService.get();
 MyService.set(new MockService());
 MyClient = new MyClient();
 ...

 MyService.set(prev);
 }
}

Monday, 8 June 2009

Ugh, static cling...

16

> Don’t forget to clean up, properly:
public class MyClientTest {

 @Test
 public final void goodTest() {
 MyService prev = MyService.get();
 MyService.set(new MockService());

 try {
 MyClient = new MyClient();
 ...
 } finally {
 MyService.set(prev);
 }
 }

Monday, 8 June 2009

Static cling is bad...

> Still has problems:
• Tests can’t be run concurrently

• Static cling: poor concurrency, memory leaks,
delinquent modularity

• Explosion of factory code

• Annoying to test and maintain

17

Monday, 8 June 2009

Google Guice is the anti-static!

> Responsibility for creation, scope and lifecycle is
given to the injector:

 @Singleton
 public class MyService implements Service {
 ...
 }

> Frees you from infrastructure worries
> Keeps code lean and mean!

18

Monday, 8 June 2009

Google Guice is the anti-static!

19

> Client code is now loosely coupled:
public class MyClient {
 private Service service;

 @Inject
 public MyClient(Service service) {
 this.service = service
 }

 public void doStuff() {
 ...
 }
}

Monday, 8 June 2009

Google Guice is the anti-static!

20

> And very easy to test...

public class MyClientTest {

 @Test
 public final void stuff() {
 MyClient = new MyClient(new MockService());
 ...
 }
}

Monday, 8 June 2009

Google Guice is the anti-static!

> Testability means that tests have:

• No state-aware infrastructure code

• Strong focus on functional unit

• Scalability (concurrent & easy to maintain)

• Emphasis on good design

21

Monday, 8 June 2009

Other benefits?

> Simple, idiomatic AOP
> Modularity
> Separation of concerns
> Reduce state-aware code
> Reduce boilerplate

22

Monday, 8 June 2009

Other benefits?

> Peace of mind!

23

Monday, 8 June 2009

Horizontal Scalability

> Important precepts:

• Type safety
• Good citizenry
• Focus on core

competency
• Modularity

24

Monday, 8 June 2009

Modular Java with Guice

25

> Modules are idiomatic, portable configuration
catalogs:
public class MyModule extends AbstractModule {

 @Override
 protected void configure() {

 bind(Towel.class)
 .to(TurkishTowel.class);

 }
}

Monday, 8 June 2009

Modular Java with Guice

26

> Modules are intuitive and type safe:
public class MyModule extends AbstractModule {

 @Override
 protected void configure() {

 bind(Towel.class)
 .to(Bathrobe.class); //compile error

 }
}

Monday, 8 June 2009

Modular Java with Guice

27

> With Guice 2.0, even Servlets are modular:
public class MyModule extends ServletModule {

 @Override
 protected void configureServlets() {

 serve(“/bananas”)
 .with(BananaServlet.class); //type checked

 }
}

Monday, 8 June 2009

Modular Java with Guice

28

> And become idiomatic POJOs:
public class BananaServlet extends HttpServlet {

 @Inject
 BananaServlet(Soil soil, Sunlight light) {
 ...
 }

 //lifecycle managed by Guice:
 public void init(ServletConfig config) { .. }
 public void destroy() { .. }
}

Monday, 8 June 2009

Modular Java with Guice

29

> Filters are modular too, and much more...
public class SingleSignOnModule extends ServletModule {

 @Override
 protected void configureServlets() {
 filter(“/*”)
 .through(SingleSignOnFilter.class);

 filterRegex(“(.)*hack(.)*”)
 .through(AntiHackFilter.class);
 }
}

Monday, 8 June 2009

Modular Java with Guice

> The canonical monkey looking for bananas
application...

30

??

Monday, 8 June 2009

Modular Java with Guice

31

> As simple as pulling in the right modules:
Guice.createInjector(new SingleSignOnModule(),
 new GoogleMapsApiModule(),
 new MegaStoreModule(),
 new BananasModule());

Monday, 8 June 2009

Modular Java with Google Web Toolkit

> Java to JavaScript
compiler

> Hosted mode
> Core libraries

emulated
> Type safe!

32

Monday, 8 June 2009

iGoogle home page

33

Monday, 8 June 2009

Different iGoogle layout

34

Monday, 8 June 2009

Modular Java with Google Web Toolkit

> Decompose UI into
modules

> Widget or Window
based UI

> Each module is a
good citizen

35

Monday, 8 June 2009

Modularizing iGoogle

36

Monday, 8 June 2009

Modules are loaded laaaazily...

37

> GWT.runAsync()
> Code downloaded

on-demand
> Contract-safe

communication
between modules

Monday, 8 June 2009

Modularity means speed!

38

> Initial page loads
much faster

> Feature download
cost is amortized

> Teams can focus on
their module

Monday, 8 June 2009

Testing with Google Web Toolkit

> Use the Model-View-Controller (MVC) pattern
• Isolate UI components in View
• Actions/dispatch logic in Controller
• Model used to communicate with server

> Keep View dumb
> Unit test Controllers like normal POJOs
> Avoid GWTTestCase!

39

Monday, 8 June 2009

Isolating UI components with UI Binder

> UI Binder templates are checked at compile time!

<gwt:FlowPanel xmlns:gwt=”with:com.google.gwt...”>

 <gwt:Label gwt:field=”message”/>
 </gwt:FlowPanel>

 public abstract class MyWidget implements Template {
 abstract Label getMessage(); //bound by GWT
 ...
 }

40

Monday, 8 June 2009

Unit testing with GWT

> Put all your logic in the Controller and inject
dependencies:

 public class MyController {
 MyController(MyView view, RemoteRpc ..) { .. }
 }

 public class MyControllerTest {

 @Test
 public final void testThatRpcIsCalled() {
 new MyController(new MockMyView(), ..);
 //assert stuff
 }
 }

41

Monday, 8 June 2009

Guice + GWT

> Google Gin is Guice for GWT
• Runs as Guice in Hosted mode (java)
• Compiles directly to Javascript
• No additional overhead of reflection
• Use Guice to manage modules

42

Monday, 8 June 2009

Gin lets you use Guice in GWT

> Example module using Gin:
 public class MyModule extends AbstractGinModule {

 @Override
 protected void configure() {
 bind(MyWidgetPanel.class)
 .in(Singleton.class);

 bind(MyService.class)
 .to(MyRemoteService.class);
 }
 }

43

Monday, 8 June 2009

Using Gin for dependency injection

> Your code is now free of boilerplate:
 public class MyController {
 @Inject
 MyController(MyView view, RemoteRpc ..) { .. }

 }

> Free as a bird!

44

Monday, 8 June 2009

Developer Scalability

> Types are Java’s natural currency
• Guice + GWT use types to catch errors early
• To facilitate broad refactorings
• Prevent unsafe API usage
• Reason better about the program

> Essential to projects with 10+ engineers
• Would be impossible in Javascript

45

Monday, 8 June 2009

Acceptance testing with Web Driver

46

Monday, 8 June 2009

Acceptance testing with Web Driver

47

> Alternative to Selenium
• Simpler, blocking API
• Pure Java API

> Uses browser plugin instead of Javascript
• Fast DOM interaction
• Flexible API (no same origin restriction)
• Native keyboard + mouse emulation

Monday, 8 June 2009

Web Driver architecture

48

Monday, 8 June 2009

Using Web Driver to test Google.com

> Example Web Driver test in Safari
 WebDriver driver = new SafariDriver();

 driver.get("http://www.google.com");

49

Monday, 8 June 2009

http://www.google.com
http://www.google.com

Using Web Driver to test Google.com

> Locate the search text box:
 WebDriver driver = new SafariDriver();
 driver.get("http://www.google.com");

 WebElement e = driver.findElement(By.name("q"));

50

Monday, 8 June 2009

http://www.google.com
http://www.google.com

Using Web Driver to test Google.com

> Type in and send a query...
 WebDriver driver = new SafariDriver();
 driver.get("http://www.google.com");

 WebElement e = driver.findElement(By.name("q"));

 e.sendKeys("Guice");
 e.submit();

51

Monday, 8 June 2009

http://www.google.com
http://www.google.com

Using Web Driver to test Google.com

> Assert that the results page has our keyword:
 WebDriver driver = new SafariDriver();
 driver.get("http://www.google.com");

 WebElement e = driver.findElement(By.name("q"));
 e.sendKeys("Guice");
 e.submit();

 assert driver.getTitle().contains(“Guice”);

> Web Driver cleverly waits until the page is ready!

52

Monday, 8 June 2009

http://www.google.com
http://www.google.com

Using Web Driver to test Google.com

> Testing in other browsers is cake!
 WebDriver driver = new FirefoxDriver();
 driver.get("http://www.google.com");

 WebElement e = driver.findElement(By.name("q"));
 e.sendKeys("Guice");
 e.submit();

 assert driver.getTitle().contains(“Guice”);

53

Monday, 8 June 2009

http://www.google.com
http://www.google.com

Web Driver supports clustering

54

Monday, 8 June 2009

Google Sitebricks sneak peak!

55

> RESTful web framework for Java
• Strong focus on HTTP
• Lessons from JAX-RS

> Statically typed templates
• Rigorous error checking
• Concise: uses type inference algorithm

> Fast!

Monday, 8 June 2009

An example Sitebricks web page

> Sitebricks pages are template + POJO couples:

 <body>
 The meaning of life is: ${meaning}
 </body>

 class MyPage {
 @Property String meaning = “17”;
 }

56

Monday, 8 June 2009

Helpful error checking

> Sitebricks templates are compiled on-load:

 <body>
 The meaning of life is: ${meening}
 </body>

 class MyPage {
 @Property String meaning = “17”;
 }

> This raises a compile error!

57

Monday, 8 June 2009

Helpful error checking

> Sitebricks templates are statically type checked:

 <body>
 The meaning of life is: ${meaning - 3}
 </body>

 class MyPage {
 @Property String meaning = “20”;
 }

> This also raises a compile error!

58

Monday, 8 June 2009

Helpful error checking

> Sitebricks error checks complex expressions too:
 <body>
 The meaning of life is: ${person.life.meening}
 </body>

 class MyPage {
 @Property Person person = “20”;
 }

59

Monday, 8 June 2009

An example Sitebricks web page

> Sitebricks templates are much cleverer than that:

 <body>
 Bad Link

 <form action=”/misspelleduri”>
 ...
 </body>

> If there is no target page, Sitebricks raises a
compile warning!

60

Monday, 8 June 2009

RESTful (pretty) URL mapping

> Pages can map to dynamic RESTful URLs:

 @At(“/artists/:name”)
 class MyPage {

 @Get
 void get(@Named(“name”) String name) { .. }
 }

> The URL is stripped and injected:
• localhost/artists/Nirvana => get(“Nirvana”)

• localhost/artists/Pearl%20Jam => get(“Pearl Jam”)

61

Monday, 8 June 2009

Simple, idiomatic templating system

> Sitebricks widgets are like Java annotations:
 <body>
 The meaning of life is:

 @ShowIf(should)
 ${meaning}
 </body>

 class MyPage {
 boolean getShould() {
 return name.equals(“Zaphod Beeblebrox”);
 }
 ...
 }

62

Monday, 8 June 2009

Simple, idiomatic templating system

> Convert any HTML/Javascript page into a widget:
 <head>
 @Require
 <script src=”gwt_suggest.js”></script>
 ...
 <body>
 <input type=”textbox” name=”suggest”/>
 </body>

 @EmbedAs(“Suggest”)
 class SuggestBoxWidget {
 ...
 }

63

Monday, 8 June 2009

Simple, idiomatic templating system

> And reuse it anywhere with a simple annotation:

 <body>
 Tell me something I don’t know:

 @Suggest
 Suggest widget gets embedded here
 </body>

64

Monday, 8 June 2009

Google Sitebricks ftw!

> Everything is type checked at compile time
> Sitebricks modules are Guice Servlet modules

• Ship any module as a widget library
• Any page is injectable
• Web scopes + Conversation scope

> Planned Comet (reverse AJAX) support
> Look out for a preview release soon on the Google

Code Blog!

65

Monday, 8 June 2009

Shout outs

> Bob Lee, Google
> Jesse Wilson, Google
> Simon Stewart, Google
> Mike Brock, Red Hat

66

Monday, 8 June 2009

http://manning.com/prasanna

67

Discount code: depinj40
Monday, 8 June 2009

http://manning.com/prasanna
http://manning.com/prasanna

Dhanji R. Prasanna
twitter.com/dhanji

http://code.google.com/p/google-
guice

Monday, 8 June 2009

http://code.google.com/p/google-guice
http://code.google.com/p/google-guice
http://code.google.com/p/google-guice
http://code.google.com/p/google-guice

