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Balancing JMS Performance with 
Reliability
> Key factors affecting performance and reliability 

in a JMS messaging application.
> How can I design/tune my application to balance 

performance and reliability?
> How can I configure my JMS provider to improve 

performance and reliability?
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Content
● Sending and consuming messages with JMS

● JMS reliability model
● Where are the major performance bottlenecks?

● JMS options for controlling reliability
● Impact on performance

● JMS provider tuning options
● Deployment options for JMS providers 

● Options for boosting performance and reliability
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Life cycle of a (reliable) JMS message
● Producer sends message

● Client producer creates message
● Producer sends message to server
● Server persists message

● Server delivers message 
● Server determines which consumers should receive message
● Server delivers message to client consumer

● Consumer processes and acknowledges 
message

● Consumer processes message
● Consumer sends acknowledgement  to server
● Server processes acknowledgement and updates/removes 

message
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Message send (reliable)
MessageProducer producer = session.createProducer(dest);
producer.setDeliveryMode(DeliveryMode.PERSISTENT);
producer.send(msg);

1) client sends message
2) server stores message
3) server sends reply to client

JMS client

JMS serverprod.send(msg) reliable
storage

1
2

3
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Message send (reliable)
● If send call returns successfully, then message 

delivery is “guaranteed”.
● If a failure of client or server occurs during the 

send, the message is in doubt.
● JMS Spec: “It is up to a JMS application to deal with 

this ambiguity. In some cases, this may cause a client 
to produce functionally duplicate messages.”

JMS client

JMS serverprod.send(msg) reliable 
storage

1
2

X
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Message delivery to consumer
Connection connection = connectionFactory.createConnection();
Session session = 

connection.createSession(false,Session.CLIENT_ACKNOWLEDGE);
MessageConsumer consumer = session.createConsumer(dest);
connection.start();

1) server (asynchronously) delivers message to 
consumer

JMS server JMS client1reliable
storage
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Message acknowledgement (reliable)
Message message = consumer.receive();
// process message
message.acknowledge();

2) consumer sends back a message acknowledgment to 
the server

3) server removes message from store
4) server sends reply to client

JMS server JMS clientreliable
storage 2

3
4
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Message delivery failure
● The message will not be removed from storage until 

acknowledged by consumer
● Any system failure before message is acknowledged 

will result in unacknowledged messages being re-
delivered to a consumer.

JMS server JMS client
1

reliable 
storage 2

3
4
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So where are some of the performance 
bottlenecks?
> Creating JMS components
> Producer waiting for a response from server on 

send()
> Server persisting message
> Application processing the message
> Consumer waiting for a response from server on 

acknowledge()
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So how can we improve performance?
> Be aware of the performance costs of different 

messaging options
> Application should use appropriate levels of JMS 

reliability
> Understand configuration options in your JMS 

provider that affect performance and reliability
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General techniques for improving 
performance in distributed systems

● Reuse JMS components (caching)
● Reduce network traffic
● Reduce size of messages
● Use non-blocking calls
● Use non-persistent messaging
● Batch work (bundle multiple messages together)
● Process message data serially
● Control resources (sockets, threads, memory)
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Managing life cycle of  JMS objects

Generally a high cost to create and close JMS 
objects – reuse them where possible

● Connection (most expensive)
● Session
● Destination
● Consumer
● Producer
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Connection life-cycle costs
Connection connection = 
ConnectionFactory.createConnection();

Creating a connection may involve:
● Creating a socket
● Creating a thread on both client and server
● Sending “hello” message to server
● Sending authentication data
● Exchanging protocol and configuration messages

OpenMQ clients often connect first to portMapper and 
then reconnect to assigned port. 

If you need to create many connections consider 
connecting directly to JMSService
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Connection life-cycle costs

connection.close(); 

● Closing a connection may involve:
● Sending “goodbye” message to server
● Closing all sessions
● Closing any temporary destinations owned by connection
● Stopping connection thread
● Closing socket



17

Session life-cycle costs
Session session = connection.createSession(...);
● Creating a session may involve:

● Creating a client session thread
● Request to server

session.close();
● Closing a session may involve

● Request to server
● Stopping client session thread
● Waiting for any message handling methods to complete
● Resolving any “in-process” work 

● (open transactions, unacknowledged messages)
● Closing consumers
● Closing producers
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Consumer life-cycle costs
MessageConsumer consumer = 
session.createConsumer(destination);

● Creating a consumer may involve:
● Request to server
● Pre-sending of messages from server to client

consumer.close();
● Closing a consumer may involve

● Request to server:
● Re-delivery by server of any unacknowledged messages that 

were pre-sent to consumer
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Benefits of caching
Example of object creation and closing costs for 

OpenMQ:
Relative message production rates for non-persistent queues. 
Create or cache connection, session and producer per message 

send.

● cache connection: ~ 4 times faster
● cache connection and session: ~ 10 times faster
● cache connection, session and producer: ~80 times 

faster
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Managing life-cycle of JMS components
● Avoid repeatedly creating and destroying 

components. Cache if possible.
● Check if JMS components are being recreated by 

your messaging frameworks 
● (e.g. Spring JMSTemplate).

● Close connections when no longer needed to 
save resources.

● Make use of connection pooling solutions
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Connection pooling – application server 
environment

● JMS connection management  in an application server 
is specified by JCA (J2EE Connector Architecture)

● JCA gives you connection pooling e.g. for outbound 
connections.

● JMS connections are wrapped in managed connections.
● Closing a connection returns it to the pool.
● Creating a new connection fetches an existing connection from 

the pool.
● configuration of connection pools is application server specific .

● e.g. minPoolSize, maxPoolSize, idleTimeout
● As well as connection pooling, some resource adapters 

have options for session and producer pooling:
● e.g. JMSJCA  RA: https://jmsjca.dev.java.net
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Pooling – outside app server 

● Manage your own pooling – reuse connections
● Use a standalone connection manager that 

provides connection pooling (e.g. JMSJCA)
● Use a Application Client Container (ACC)

● A light weight container which manages the execution 
of JEE application client components in their own JVM, 
in conjunction with an JEE application server

● ActiveMQ provides a PooledConnectionFactory
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Managing message data
● Message size has large impact on performance

● Message cached in memory in server 
● Maybe cached in consumer
● More work to read and write
● More network packets 

● Message passed between client and server will consist 
of JMS Message content plus additional provider 
overhead

● Message body – generally not unmarshalled by server
● Message headers – may be unmarshalled by server 

(selectors)
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Managing message data
● Minimise any redundant application message data
● Avoid sending a series of separate messages 

where you could consolidate application data into 
one message.

● Very large messages may have to be specially 
handled by provider. 

● Consider storing very large messages outside of JMS.
● JMS could be used to notify consumer of location of 

data
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Provider tuning: 
reducing message data size

● Consider using provider compression:
● OpenMQ: 

MyMsg.setBooleanProperty(“JMS_SUN_COMPRESS”,true);
● ActiveMQ:

ActiveMQConnectionFactory.setMessageCompression(true);
● May be able to tune provider specific wire protocol 

to reduce size of data
● ActiveMQ: Open wire protocol 

● has choice of tight or loose encoding of packets 
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Message Delivery Mode
Choose appropriate delivery mode

● Persistent (default) messages must be stored “reliably” 
and should survive a failure and recovery of JMS 
server. 

● Performance cost:
● persistent messages normally written to disk.
● producer.send(message) should block until server has 

stored message. 
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Non-persistent delivery mode
Sending non-persistent messages is faster:

● Server does not need to store message reliably
● Message may be lost if server fails
● Typically server will not write message to disk 
● Client producer does not need to block on 

producer.send(msg) waiting for reply from server
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Acknowledging non-persistent  
messages

● Server can process non-persistent message 
acknowledgements faster than persistent

● No need to remove message from reliable storage
● Acknowledging non-persistent topic messages 

may be faster than queue messages
● JMS Spec allows non-persistent messages to be lost in the 

event of provider failure, but does not allow duplicates.
● This implies Queue receivers should block on non-persistent 

message acknowledgement, to avoid duplicate delivery in the 
event of client failure.

● Blocking behavior is not consistent across all JMS providers
● Topic subscribers may not need to block on non-persistent 

message acknowledgment.
● May be able to configure behavior.
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Producer flow control
● JMS servers may force producers to slow down if 

the server is running out of memory or disk 
storage.

● Message store resources will be used up over 
time if your application is producing data faster 
than it is consuming data.

● Ensure server has sufficient resources to avoid 
producer throttling

● May want to configure destination limits to control 
message store growth.
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Pre-sending messages
● Many providers have option to pre-send or push 

messages to consumers
● Messages are sent in batches from server to 

client 
● Messages are cached in consumer waiting for the 

application to process them
● Makes more effective use of network and thread 

resources.
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Pre-sending messages
● Can have big impact on performance

● particularly for non-persistent messages
● For queues with multiple receivers, pre-sending 

may lead to some loss of message order. 
● If a queue receiver closes, unconsumed messages 

may be re-dispatched to another receiver. These 
messages may appear out of order.

● JMS spec does not define behavior for multiple queue 
receivers.
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Provider tuning: 
controlling message pre-sending

● ActiveMQ  connectionFactory property:
● prefetchPolicy.xxxPrefetch (where xxx is one of queue, 

queueBrowser,topic, durableTopic)
● Specifies the maximum number of messages that will be 

present to a consumer.
● OpenMQ connectionfactory property

● imqConsumerFlowLimit 
● Specifies the maximum number of messages that will be 

present to a consumer.
● ImqConsumerFlowThreshold 

● Controls percentage of present messages that need to be 
consumed before more messages will be sent by the server.
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Asynchronous message consumption  
● Consuming messages asynchronously may be faster 

than consuming synchronously with consumer.receive()
● For asynchronous delivery:

● 1) messages are read from the socket by a connection thread 
and placed on a session queue.

● 2) a session thread pulls messages off the session queue and 
calls MessageListeners.onMessage().

● For synchronous delivery:
● 1) messages are read from the socket by a connection thread 

and placed on a session queue.
● 2) a session thread pulls messages off the session queue and 

places them on a consumer queue.
● 3) The application thread pulls messages of the consumer 

queue by calling consumer.receive() 
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Concurrent message consumption
● Processing messages concurrently can improve overall 

throughput
● Will affect order in which messages are processed and 

acknowledged
● Can achieve concurrency by:

● Explicitly creating multiple sessions and consumers
● Using JMS ConnectionConsumer facility (application needs to 

supply a ServerSessionPool).
● Can use containers;  e.g. Spring 

DefaultMessageListenerContainer or 
ServerSessionMessageListenerContainer 

● Concurrent message consumption is provided by 
MessageDrivenBeans in a JEE application server.
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Message acknowledgement modes
● AUTO_ACKNOWLEDGE

● Each message is automatically acknowledged when 
onMessage() completes or receive() returns. 

● CLIENT_ACKNOWLEDGE
● Allows client to control when messages are 

acknowledged
● Acknowledging multiple messages should improve 

consumer performance.
● DUPS_OK_ACKNOWLEDGE

● Provider may optimize message acknowledgement
● Multiple message acknowledgments grouped together
● Consumer does not need to block leading to faster performance

● Duplicate messages may be received in the event of 
failure
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Provider tuning: 
no-ack acknowledgement modes

● Some JMS providers offer a no-ack mode, 
● messages are removed from server as soon 

as they are sent to a consumer. 
● This can improve performance at the risk of 

message loss
e.g. OpenMQ:

Session noAckSession =
((com.sun.messaging.jms.Connection)connection)
.createSession(com.sun.messaging.jms.Session.NO_ACKNOWLEDGE)
;
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Transactions 
● Used to group a series of messaging operations 

into an atomic unit of work
● Local transactions: 

● Transacted sessions
● Transaction boundaries controlled by calling 

session.commit();
● Distributed XA transactions 

● Used in conjunction with a transaction manager
● Provides atomic commit over multiple transactional 

resources
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Transaction performance 
● There is additional overhead for JMS provider in 

processing transactions, e.g.
● Storing transaction id, transaction state
● Ensuring atomicity

● Work done in transaction can be consolidated by 
provider

● e.g. blocking call to server not required on message 
sends and acknowledgements

● Only need to block on session.commit()
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Transaction Log

Many JMS providers use transaction logs to 
implement reliable transactions

● Transactional work is written first to a transaction log, 
and then to main persistent storage.

● In the event of failure, on recovery, transaction log is 
replayed to main storage.

● Periodic checkpoints allow main storage to be 
synchronised and transaction log reset or swapped.
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Transaction log performance 
● writes to transaction log are typically forced to 

disk.
● writes to main storage are typically not forced to 

disk until checkpoint.
● transaction log writes to end of file minimise disk 

head seeks and allow maximum throughput. 
● if possible, consider placing transaction log on 

separate disk to avoid contention with other IO.
● can group commit concurrent transaction from 

multiple clients.
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XA Transactions 
●

● For XA 2-phase commit, transaction has two 
stages: 

● prepare(): all work is persisted  
● commit(): all work is committed 

● A failure after prepare must be recoverable
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XA transaction optimizations
● Single-phase commit

● TransactionManager (TM) should use single phase 
commit if only 1 resource involved in transaction.

● Single phase commit is much more efficient 
● TM does not need to log transaction progress
● Single write to JMS transaction log

● IsSameRM optimization
● If two or more resources involved in a transaction  

represent the same resource manager, TM can join 
resources and use single phase commit

● Check if your JMS provider/RA supports this option
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Deployment options for JMS providers
> For improved performance

● Co-locating client and server
● Partitioning data over a cluster
● Server-less messaging
● System tuning

> For improved reliability
● Protecting message data against failure
● Replication strategies
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Remote client and server

machine 1
jvm

client

machine 2
jvm

servernetwork

● Typical deployment
● Client and server on separate machines
● Transport over network
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Co-located client and server

machine 3
jvm

client
jvm

server

● Client and server located on same machine
● Running in separate JVMs
● Avoids network hop
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Embedded client and server

machine 4
jvm

client server

● Client and server reside in same JVM
● Client can communicate with server using java method 

calls rather than passing messages over tcp stack
● Avoids marshalling of message data
● Avoids many thread context switches
● Fewer message exchanges (may be no need for a 

reply message)
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Configuring embedded server: OpenMQ
● creating embedded server
BrokerInstance brokerInstance = 

ClientRuntime.getRuntime().createBrokerInstance();
Properties props = brokerInstance.parseArgs(args);
BrokerEventListener listener = new 

ExampleBrokerEventListener();
brokerInstance.init(props, listener);
brokerInstance.start(); 
● connecting to embedded server
com.sun.messaging.ConnectionFactory cf = new 

com.sun.messaging.ConnectionFactory();
cf.setProperty(ConnectionConfiguration.imqAddressList, 

"mq://localhost/direct"); 
Connection connection = cf.createConnection();  
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Configuring embedded server: 
ActiveMQ

● creating embedded server
BrokerService broker = new BrokerService();
broker.setBrokerName(“service”);
broker.addConnector(“tcp://localhost:61616”);
broker.start();
● connecting to embedded server
ActiveMQConnectionFactory cf = new 

ActiveMQConnectionFactory(“vm://service”);
Connection connection = cf.createConnection();  
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Distributed destinations in OpenMQ

server a

prod1(dest1) server b

server c

prod2(dest1)
prod2(dest1)

dest1a dest1c

dest1b

● Fully connected cluster
● Messages stored on the server to which a producer 

connects.
● Messages delivered to consumers wherever they 

connect
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Distributed destinations in OpenMQ
● Distributed destinations provide scalability
● More servers can be added as number of clients 

or message load increases
● Each server only needs to store and process a 

fraction of the destination
● Performance of producers is the same as for a 

single server
● Performance of consumers receiving messages 

stored on a remote server is reduced 
● (message and message acknowledgment are routed 

through local server to remote server)
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Server-less messaging with ActiveMQ
● Clients communicate directly with each other
● Use a combination of multicast and broadcast to 

make efficient use of the network
● Targeted at real time applications

● eg market data distribution
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Other system factors 
● Storage tuning

● Fragmentation of data reduces performance of disk 
reads and writes

● Over time message storage may get fragmented and 
performance may decline

● Consider periodically consolidating message store,  
e.g. For openMQ: “imqcmd compact dst”

● Network tuning
● tcpNoDelay:
● socket buffer sizes 

● JVM, GC settings
● Consider monitoring GC and checking if provider 

defaults are appropriate for your application
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Improving reliability
● Protecting data against failure
● Data replication strategies
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Improving reliability: protecting against 
JMS server failure

● Use persistent messaging
● Significantly slower than non-persistent messaging

● Cache non-persistent messages on producer 
● ActiveMQ provides option for caching sent messages 

on the producer
● Benefits: In the event of some failures, these can be 

replayed to avoid message loss.
● Costs: extra memory overhead. Does not protect 

against failure of producer.
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Improving reliability: protecting against 
OS/system failure

● How safe are disk writes?
● Depends on write cache settings of JMS provider, 

OS and disk drives.
● To avoid possible loss of data from buffers, use 

sync-to-disk
● Significantly slower than using buffered writes
● JMS provider can group together concurrent writes to 

transaction log to reduce the number of syncs
● Alternative: Use data replication strategies
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Improving reliability with replication
● Replication protects against localized failures
● Can control number and location of replicas
● Different levels of replication:

● Persistent data files
● Databases
● JMS servers
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File system replication
● Replicate persistent data files
● Use a reliable file system (disk arrays, SAN etc) 

resilient to individual disk failure
● Performance usually acceptable

● In the event of a server failure, where persistent data is 
still available, a replacement server can be manually 
restarted.

● Can script to automatically restart a failed server.
● Can use more sophisticated management software to 

restart server on a different system (e.g. SunCluster).
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Database replication
● Store data in a reliable clustered database 

● (e.g. Oracle RAC or MySQL Cluster)
● OpenMQ and ActiveMQ both offer storage on 

databases through JDBC
● OpenMQ allows active servers in a cluster to monitor 

and automatically takeover the data of failed servers.
● Storing messages in databases may give poorer 

performance than using JMS provider message stores
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JMS server replication
● Replication of message data between multiple 

JMS servers
● ActiveMQ supports a master-slave configuration

● Slave acts as a hot-standby to take over if master fails.
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Conclusions
● There are many options available in JMS.
● We have shown how some of these options affect 

messaging performance and reliability.
● Improving performance often reduces reliability and 

vice versa.
● Check you are using JMS appropriately for each of 

your message flows in your application.
● Understand the options and configurations available in 

your JMS provider and choose those that give you the 
right balance of performance and reliability. 



Gordon Sivewright
gordon.sivewright@sun.com
Rob Davies
rodavies@progress.com
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