
Best Practices for
Large-Scale Websites:
Lessons from eBay
Randy Shoup
eBay

2

Challenges at Internet Scale
> eBay manages …

 88.3 million active users worldwide
 160 million items for sale in 50,000 categories
 Over 2 billion page views per day

> … in a dynamic environment
 >300 new features per quarter
 100,000 lines of code changed every 2 weeks

3

Challenges at Internet Scale
> … worldwide

 In 39 countries and 8 languages
 24x7x365

> >48 billion SQL executions / day

4

Architectural Forces at Internet Scale
> Scalability

 Resource usage should increase linearly (or better!)
with load

 Design for 10x growth in data, traffic, users, etc.
> Availability

 Resilience to failure
 Graceful degradation and rapid recoverability

> Latency
 User experience latency
 Data / execution latency

5

Architectural Forces at Internet Scale
> Manageability

 Simplicity and maintainability
 Diagnostics

> Cost
 Development effort and complexity
 Operational cost (TCO)

6

Best Practices for Internet Scale
> 1. Partition Everything
> 2. Asynchrony Everywhere
> 3. Automate Everything
> 4. Remember Everything Fails
> 5. Embrace Inconsistency

7

Best Practice 1: Partition Everything
> Split every problem into manageable chunks

 Split by data, load, and/or usage pattern
 “If you can’t split it, you can’t scale it”

> Motivations
 Scalability: scale horizontally and independently
 Availability: isolate failures
 Manageability: decouple different segments and

functional areas
 Cost: choose partition size that maximizes price-

performance

8

Best Practice 1: Partition Everything
Pattern: Functional Segmentation
> Segment processing into pools, services, and

stages

> Segment data by entity and usage pattern

Item Transaction ProductUser Account Feedback

Search View ItemSelling Bidding

MyEbay Checkout Feedback

9

Best Practice 1: Partition Everything
Pattern: Horizontal Split
> Load-balance processing

 All servers in a pool are created equal

> Split (or “shard”) data along primary access path
 Modulo of a key, range, lookup table, etc.

Item Transaction ProductUser Account Feedback

Search View ItemSelling Bidding

MyEbay Checkout Feedback

10

Best Practice 1: Partition Everything
Corollary: No Session State
> User session flows through multiple pools

> Absolutely no session state or business object
caching in application tier
 No HttpSession, no EJBs

> Session state maintained in cookie, URL, or
database

Search View ItemSelling Bidding

MyEbay Checkout Feedback

11

Best Practice 2: Async Everywhere
> Prefer Asynchronous Processing

 Move most processing to asynchronous flows
 Integrate components asynchronously

> Motivations
 Scalability: scale components independently
 Availability: decouple availability state, retry
 Latency: trade execution latency for response

latency
 Cost: spread peak load over time

12

ItemHost N

Image Processing

Selling Summary Update

User Metrics

ITEM.NEW

Best Practice 2: Async Everywhere
Pattern: Event Queue
> Primary application writes data and queues event

 Create event transactionally with primary insert /
update (e.g., ITEM.NEW, ITEM.BID, ITEM.SOLD)

> Consumers subscribe to event
 At least once delivery, rather than exactly once
 No guaranteed order, rather than in-order
 Idempotency and readback

13

Best Practice 2: Async Everywhere
Pattern: Message Multicast
> Search Feeder publishes item updates

 Reads item updates from primary database
 Publishes sequenced updates via multicast to grid

> Search engines listen to assigned messages
 Update in-memory index in real time
 Request recovery when messages

are missed

Aggregator

Col 1 Col 2 ... Col N

Col 1 Col 2 ... Col N

Col 1 Col 2 ... Col N

Col 1 Col 2 ... Col N

Col 1 Col 2 ... Col N

Search Feeder

M
essage B

us

Search DB

Primary DB

14

Best Practice 3: Automate Everything
> Prefer Adaptive / Automated Systems

 Design systems which adapt to their
environment

 Engineer feedback loops to learn over time

> Motivations
 Scalability: scale with machines, not humans
 Availability / Latency: adapt to changing

environment more rapidly
 Cost: machines are less expensive than humans

15

Best Practice 3: Automate Everything
Pattern: Adaptive Configuration
> Do not manually configure event consumers

 Polling size and frequency, number of threads, etc.
> Define SLA for a given consumer

 E.g., process 99% of events within 15 seconds
 Each consumer dynamically adjusts to meet SLA

> Consumers automatically adapt to changes in
 Load
 Event processing time
 Number of consumers

Consumer A

Consumer B

Consumer C

SLA 15 seconds

SLA 30 seconds

SLA 5 minutes

16

Best Practice 3: Automate Everything
Pattern: Machine Learning
> Dynamically adapt search experience

 Determine best inventory and assemble optimal
page for that user and context

> Feedback loop enables system to learn and
improve over time
 Collect user behavior
 Aggregate and analyze offline
 Deploy updated metadata
 Decide and serve appropriate

experience

17

Best Practice 4: Everything Fails
> Build all systems to be tolerant of failure

 Assume every operation will fail and every resource
will be unavailable

 Detect failure as rapidly as possible
 Recover from failure as rapidly as possible
 Do as much as possible during failure

> Motivation
 Availability

18

Best Practice 4: Everything Fails
Pattern: Failure Detection
> Application servers log all requests

 Log all application activity, database and service
calls on multicast message bus

 Over 2TB of log messages per day
> Listeners automate failure detection and

notification

Message Bus

File Log

Data
Cube

Alert Listener Report Listener

Selling Search View Item

19

Best Practice 4: Everything Fails
Pattern: Rollback
> Absolutely no changes to the site which cannot be

undone (!)

> Every feature has on / off state
 Can immediately turn feature off for operational or

business reasons
 Can deploy “wired-off” to unroll dependencies

 Decouple code deployment from feature deployment
 For an application, feature “availability” is just like

resource availability

20

Best Practice 4: Everything Fails
Pattern: Graceful Degradation
> Application “marks down” a resource if it is

unavailable or distressed
> Remove or ignore non-critical functionality
> Retry or defer critical functionality

 Failover to alternate resource
 Defer processing to guaranteed async event

> Explicit “markup”
 Restore and bring resource online in a controlled

way

21

Best Practice 5: Embrace Inconsistency
> Brewer’s CAP Theorem

 Any shared-data system can have at most two of
the following properties:
 Consistency: All clients see the same data, even in the

presence of updates
 Availability: All clients will get a response, even in the

presence of failures
 Partition-tolerance: The system properties hold even when

the network is partitioned

> This trade-off is fundamental to all distributed
systems

22

Best Practice 5: Embrace Inconsistency
Choose Appropriate Consistency Guarantees
> Typically eBay trades off immediate consistency

for availability and partition-tolerance
> Most real-world systems do not require immediate

consistency (even financial systems!)

> Consistency is a spectrum

Immediate
Consistency
Bids, Purchases

Eventual
Consistency

Search Engine, Billing System, etc.

No
Consistency

Preferences

23

Best Practice 5: Embrace Inconsistency
Avoid Distributed Transactions
> eBay does absolutely no distributed transactions

 No JDBC client transactions, no 2PC, etc.

> Minimize inconsistency through state machines
and careful ordering of database operations

> Reach eventual consistency through
asynchronous event or reconciliation batch

24

Recap: Best Practices for Internet Scale
> 1. Partition Everything
> 2. Asynchrony Everywhere
> 3. Automate Everything
> 4. Remember Everything Fails
> 5. Embrace Inconsistency

25

Randy Shoup
rshoup@ebay.com

	Best Practices for Large-Scale Websites: Lessons from eBay
	Challenges at Internet Scale
	Slide 3
	Architectural Forces at Internet Scale
	Slide 5
	Best Practices for Internet Scale
	Best Practice 1: Partition Everything
	Best Practice 1: Partition Everything Pattern: Functional Segmentation
	Best Practice 1: Partition Everything Pattern: Horizontal Split
	Best Practice 1: Partition Everything Corollary: No Session State
	Best Practice 2: Async Everywhere
	Best Practice 2: Async Everywhere Pattern: Event Queue
	Best Practice 2: Async Everywhere Pattern: Message Multicast
	Best Practice 3: Automate Everything
	Best Practice 3: Automate Everything Pattern: Adaptive Configuration
	Best Practice 3: Automate Everything Pattern: Machine Learning
	Best Practice 4: Everything Fails
	Best Practice 4: Everything Fails Pattern: Failure Detection
	Best Practice 4: Everything Fails Pattern: Rollback
	Best Practice 4: Everything Fails Pattern: Graceful Degradation
	Best Practice 5: Embrace Inconsistency
	Best Practice 5: Embrace Inconsistency Choose Appropriate Consistency Guarantees
	Best Practice 5: Embrace Inconsistency Avoid Distributed Transactions
	Recap: Best Practices for Internet Scale
	Slide 25

