
ASYNCHRONOUS AJAX FOR
REVOLUTIONARY WEB APPLICATIONS

Jeanfrancois Arcand
Ted Goddard, Ph.D.

TS-5250

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Join the Asynchronous Web Revolution!

Easily develop multi-user collaboration features in
NetBeans with Ajax Push and Comet using Dojo,
DWR, or ICEfaces.

Deploy and scale on Jetty, Tomcat,
or GlassFish™ project.

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Agenda

Web2.0™
Multi-user Ajax Demo

Asynchronous HTTP on the Wire

Asynchronous HTTP and the Server

Developing Asynchronous Applications

Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 4

What sort of revolution?
“And yet it moves.”

American Revolution
Dump everything in the bay

French Revolution
Storm the Bastille

Scientific Revolution
Experimentation and Reason

2008 JavaOneSM Conference | java.sun.com/javaone | 5

Web 2.0
A Web by the people, for the people.

Documents on the web increasingly generated by users

Out of the Information Age, into the Participation Age

As a whole, the World Wide Web is a collaborative
environment, but individual pages are only weakly so

Are web user interfaces becoming more powerful?

Is the user an HTTP client?

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Ajax
Ajax is a state of mind.

It was AJAX (Asynchronous JavaScript™ Technology with XML)
• or Asynchronous JavaScript technology with XMLHttpRequest
• now it’s Ajax (not an acronym) because many different techniques

satisfied the same goals
• coined by Jesse James Garrett in 2005 to sell an insurance company on

re-writing all their software

Is the web defined by the W3C or by browser implementers?
(Ajax does not exist in W3C universe yet.)

Ajax decouples user interface from network protocol

Ajax is the leading edge of the user interface possible with
current popular browsers

The user experience is important

2008 JavaOneSM Conference | java.sun.com/javaone | 7

The Asynchronous Web Revolution
The Web enters the Participation Age.

Ajax is still typically synchronous with user events

Full asynchrony has updates pushed from server any time

Update pages after they load

Send users notifications

Allow users to communicate and collaborate within the web
application

Called “Ajax Push”, “Comet”, or “Reverse Ajax”
• This is the full realization of Ajax, now fully asynchronous

2008 JavaOneSM Conference | java.sun.com/javaone | 8

Server-mediated Collaboration

Server

Client 1 Client 2

External Application

• User Initiated
• Application Initiated

User
Action PushPush Push

2008 JavaOneSM Conference | java.sun.com/javaone | 9

Applications in the Participation Age
Application-mediated communication.

Distance learning
Collaborative authoring
Auctions
Shared WebDAV filesystem
Blogging and reader comments
SIP-coordinated mobile applications
Hybrid chat/email/discussion forums
Customer assistance on sales/support pages
Multi-step business process made collaborative
Shared trip planner or restaurant selector with maps
Shared calendar, “to do” list, project plan
Games

2008 JavaOneSM Conference | java.sun.com/javaone | 10

Agenda

Web 2.0

Multi-user Ajax Demo

Asynchronous HTTP on the Wire

Asynchronous HTTP and the Server

Developing Asynchronous Applications

Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 11

Asynchronous Ajax Demo
GlassFish project/Project Grizzly with
ICEfaces WebMC

http://webmc.icefaces.org/javaone

http://webmc.icefaces.org/javaone

2008 JavaOneSM Conference | java.sun.com/javaone | 12

Agenda

Web 2.0

Multi-user Ajax Demo

Asynchronous HTTP on the Wire

Asynchronous HTTP and the Server

Developing Asynchronous Applications

Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 13

What is Ajax Push, exactly?
Responsive, low-latency interaction for the web.

highly responsive, event driven browser applications
• Keep clients up-to-date with data arriving or changing on the

server, without frequent polling

Pros
• Lower latency, not dependent on polling frequency
• Server and network do not have to deal with frequent polling

requests to check for updates

Example Applications
• GMail and GTalk
• Meebo
• Many more …

• 4homemedia.com
(using GlassFish project's Comet)

• JotLive

• KnowNow

2008 JavaOneSM Conference | java.sun.com/javaone | 14

Ajax Poll vs Ajax Push
Bending the rules of HTTP.

2008 JavaOneSM Conference | java.sun.com/javaone | 15

Ajax Poll vs Ajax Push
Bending the rules of HTTP.

Poll:
• Send a request to the server every X seconds.
• The response is “empty” if there is no update.

Long Poll:
• Send a request to the server, wait for an event to happen, then send

the response.
• The response is never empty.
• HTTP specification satisfied: indistinguishable from “slow” server

Http Streaming:
• Send a request, wait for events, stream multi-part/chunked response,

and then wait for the events.
• The response is continually appended to.

2008 JavaOneSM Conference | java.sun.com/javaone | 16

How Push works
Keep an open connection.

Deliver data over a previously opened connection

Always “keep a connection open”
• do not respond to the initiating request until

event occurs

Streaming is an option
• send response in multiple parts without closing

the connection in between

2008 JavaOneSM Conference | java.sun.com/javaone | 17

HTTP Polling
Regularly checking for updates.

GET /chatLog HTTP/1.1
Accept: */*
Connection: keep-alive
<message>One</message>

Uses the HTTP protocol in a standard way, but requests
are regularly invoked

setTimeout(‘poll()’, 10000);

2008 JavaOneSM Conference | java.sun.com/javaone | 18

Asynchronous HTTP Streaming
The long response.

GET /chatLog HTTP/1.1
Accept: */*
Connection: keep-alive
<message>One</message>

Parse most recent message in JavaScript programming
language (not shown here)

The original 1999 “Push” technique (Netscape 1.1)

<message>Two</message>
<message>Three</message>
<message>Four</message>

2008 JavaOneSM Conference | java.sun.com/javaone | 19

Bayeux/Cometd
JSON Pub/Sub.

JSON Messages are published on specified channels

Channel operations: connect, subscribe, unsubscribe, etc.

Multiple transports: polling, long-polling, iframe, flash

Server implementations: Perl, Python, Java™ programming
language

Server-side reflector with no server-side application
possible

[
 {
 "channel": "/some/name",
 "clientId": "83js73jsh29sjd92",
 "data": { "myapp" : "specific data", value: 100 }
 }
]

2008 JavaOneSM Conference | java.sun.com/javaone | 20

Ajax Push
HTTP message flow inversion.

GET /auctionMonitor/block/receive-updates?icefacesID=1209765435 HTTP/1.1
Accept: */*
Cookie: JSESSIONID=75CF2BF3E03F0F9C6D2E8EFE1A6884F4
Connection: keep-alive
Host: vorlon.ice:18080

Chat message “Howdy”
HTTP/1.1 200 OK
Content-Type: text/xml;charset=UTF-8
Content-Length: 180
Date: Thu, 27 Apr 2006 16:45:25 GMT
Server: Apache-Coyote/1.1

<updates>
 <update address="_id0:_id5:0:chatText">
 Howdy
 </update>
</updates>

2008 JavaOneSM Conference | java.sun.com/javaone | 21

Agenda

Web 2.0

Multi-user Ajax Demo

Asynchronous HTTP on the Wire

Asynchronous HTTP and the Server

Developing Asynchronous Applications

Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 22

Architecture Challenge
Can Push scale?

A blocking, synchronous technology will result in a blocked
thread for each open connection that is “waiting”

Every blocked thread will consume memory

This lowers scalability and can affect performance

To get the Java Virtual Machine (JVM™) to scale to 10,000
threads and up needs specific tuning and is not an efficient
way of solving this

Servlets 2.5 are an example of blocking, synchronous
technology

2008 JavaOneSM Conference | java.sun.com/javaone | 23

Servlet Thread Catastrophe
Strangled by a thread for every client.

GET /updates HTTP/1.1
Connection: keep-alive

HTTP/1.1 200 OK

<updates>
 …
</updates>

GET /updates HTTP/1.1
Connection: keep-alive

GET /updates HTTP/1.1
Connection: keep-alive

GET /updates HTTP/1.1
Connection: keep-alive

2008 JavaOneSM Conference | java.sun.com/javaone | 24

Architecture Challenges
The serious effect of blocking threads.

(default thread
stack size)

2008 JavaOneSM Conference | java.sun.com/javaone | 25

Technology Solution
NIO avoids blocked threads.

Use new I/O (NIO) non-blocking sockets to avoid
blocking a thread per connection

Use technology that supports asynchronous request
processing
• Release the original request thread while waiting for an event
• May process the event/response on another thread than the

original request

Advantages
• Number of clients is primarily limited by the number of open

sockets a platform can support
• Could have all clients (e.g. 10’000) “waiting” without any threads

processing or blocked

2008 JavaOneSM Conference | java.sun.com/javaone | 26

Server-side Ajax Push: Server considerations
Not all servers are non-blocking.

To handle the “wait” for an event in Ajax Push,
choose a Web Server / language that does not have
to block

Some inherently do not block
• Traditional Web Servers (like Apache, Tomcat, and

GlassFish v1 project) are blocking.

Continuations are another option
• E.g. JavaScript™ technology “continuation” in the “Rhino”

open source implementation

2008 JavaOneSM Conference | java.sun.com/javaone | 27

Server-side Ajax Push: Required functionality
A spectrum of asynchronicity.

Asynchronous Content Handlers
• Asynchronous read and write

Suspendable Requests
• Suspend/resume requests/responses

Support Delivery Guarantee mechanism
• Push data from one connection to another
• Ability to aggregate/filter/transform data

before the push operation

2008 JavaOneSM Conference | java.sun.com/javaone | 28

Server-side Ajax Push: Who supports what
The asynchronicity matrix.

XWebLogic

Container Asynchronous IO Suspendible
Request/
Response

Delivery
Guarantee

Jetty X
Tomcat X X
GlassFish X X X
Resin X

2008 JavaOneSM Conference | java.sun.com/javaone | 29

03/07/2008

Resin
Suspend, Wake, and Resume with Resin

29

public class CometServlet extends GenericCometServlet {
 public boolean service(ServletRequest request,
 ServletResponse response,
 CometController cometController)
 ...
 return true;
 }
 public boolean resume(ServletRequest request,
 ServletResponse response,
 CometController cometController)
 PrintWriter out = res.getWriter();
 out.write(message);
 return false;
}

message.setValue(“Howdy”);
cometController.wake();

Suspend

Resume

Asynchronously and elsewhere in the application ...

2008 JavaOneSM Conference | java.sun.com/javaone | 30

Jetty
service() will resume shortly.

import org.mortbay.util.ajax.Continuation;

service(request, response) {
 Continuation continuation = ContinuationSupport
 .getContinuation(request, this);
 ...
 continuation.suspend();
 response.getWriter().write(message);
}

message.setValue(“Howdy”);
continuation.resume();

Asynchronously and elsewhere in the application ...

2008 JavaOneSM Conference | java.sun.com/javaone | 31

WebLogic
doRequest() and doResponse() separated by notify().

import weblogic.servlet.http.AbstractAsyncServlet;
import weblogic.servlet.http.RequestResponseKey;

class Async extends AbstractAsyncServlet {

boolean doRequest(RequestResponseKey rrk) {
 ... = rrk;
 return false;
}

void doResponse(RequestResponseKey rrk, Object message) {
 rrk.getResponse().getWriter.write(message);
}

message.setValue(“Howdy”);
AbstractAsyncServlet.notify(rrk, message);

Asynchronously and elsewhere in the application ...

2008 JavaOneSM Conference | java.sun.com/javaone | 32

Tomcat 6
Eventful Comet.

import org.apache.catalina.CometProcessor;

public class Processor implements CometProcessor {

public void event(CometEvent event) {
 request = event.getHttpServletRequest();
 response = event.getHttpServletResponse();

 if (event.getEventType() == EventType.BEGIN) { ...
 if (event.getEventType() == EventType.READ) { ...
 if (event.getEventType() == EventType.END) { ...
 if (event.getEventType() == EventType.ERROR) { ...
}

message.setValue(“Howdy”);
response.getWriter().write(message);
event.close();

Asynchronously and elsewhere in the application ...

2008 JavaOneSM Conference | java.sun.com/javaone | 33

03/07/2008

33

GlassFish Project
Suspend with Project Grizzly.

 CometContext context =
 CometEngine.getEngine().register(contextPath);
 context.setExpirationDelay(20 * 1000);

 SuspendableHandler handler = new SuspendableHandler();
 handler.attach(response);
 cometContext.addCometHandler(handler);

class SuspendableHandler implements CometHandler {

 public void onEvent(CometEvent event) {
 response.getWriter().println(event.attachment());
 cometContext.resumeCometHandler(this);
}

message.setValue(“Howdy”);
cometContext.notify(message);

Asynchronously and elsewhere in the application ...

2008 JavaOneSM Conference | java.sun.com/javaone | 34

03/07/2008

34

Grizzlets
Bite-sized Project Grizzly

public void onPush(AsyncConnection asyncConnection) {
 GrizzletRequest req = ac.getRequest();
 GrizzletResponse res = ac.getResponse();
 if (asyncConnection.isResuming()) {
 res.write("Why Servlet? POJO much better!
");
 res.write("</body></html>");
 res.flush();
 res.finish();
 } else if (asyncConnection.hasPushEvent()) {
 res.write(ac.getPushEvent().toString());
 res.flush();
 }
}

message.setValue(“Howdy”);
asyncConnection.push(message.toString());

Asynchronously and elsewhere in the application ...

2008 JavaOneSM Conference | java.sun.com/javaone | 35

Asynchronous Ajax Demo
Grizzlet with Project jMaki

http://grizzly.dev.java.net

http://webmc.icefaces.org/javaone

2008 JavaOneSM Conference | java.sun.com/javaone | 36

Servlet 3.0
Future Asynchronous Standard.

Defined by JSR-315 Expert Group

DWR, Jetty, Tomcat, GlassFish project, and ICEfaces participants

Standard asynchronous processing API being defined
• Asynchronous I/O
• Suspendible requests
• Delivery guarantee not included

Will improve portability of DWR, Cometd, and ICEfaces

(But unless you write Servlets today, this API will be hidden
by your chosen Ajax framework.)

2008 JavaOneSM Conference | java.sun.com/javaone | 37

Agenda

Web 2.0

Multi-user Ajax Demo

Asynchronous HTTP on the Wire

Asynchronous HTTP and the Server

Developing Asynchronous Applications

Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 38

JavaScript Programming Language Polling
Are we there yet? Are we there yet? Are we there yet? ...

function poll() {
 setTimeout(‘poll()’, 10000);
 req = new XMLHttpRequest();
 req.onreadystatechange = update();
 req.open(“POST”, “http://server/getMessage.jsp”);
}

function update() {
 chatLog.innerHTML = req.responseText;
}

poll();

2008 JavaOneSM Conference | java.sun.com/javaone | 39

Cometd
Distributed, loosely coupled, scripting

function update(message) {
 chatLog.innerHTML = message.data.value;
}
...
 cometd.subscribe(“chat”, remoteTopics, “update”)
 cometd.publish(“chat”, message)

import dojox.cometd.*;

Channel channel = Bayeux.getChannel(“chat”, create);
channel.subscribe(client);

message.setValue(“Howdy”);
channel.publish(client, message, “chat text”);

Asynchronously and elsewhere in the application ...

JavaScript programming
language

Java programming
language

2008 JavaOneSM Conference | java.sun.com/javaone | 40

DWR
JavaScript programming language RPC

import org.directwebremoting.proxy.dwr.Util;

scriptSessions =
 webContext.getScriptSessionsByPage(currentPage);
 util = new Util(scriptSessions);

util.addScript(ScriptBuffer script);

util.setValue(“form:chat:_id3”, “Howdy”);

Asynchronously and elsewhere in the application ...

To “Reverse Ajax” and invoke arbitrary JavaScript technology:

2008 JavaOneSM Conference | java.sun.com/javaone | 41

ICEfaces
Preserve MVC with Transparent Ajax.

public class PageBean {
 String text;

 public String getText() {
 return text;
 }

 public void setText(String text) {
 this.text = text;

 }

}

<f:view
 xmlns:f=“http://java.sun.com/jsf/core”
 xmlns:h="http://java.sun.com/jsf/html“ >
 <html>
 <body>
 <h:form>
 <h:inputText value=“#{pageBean.text}” />
 </h:form>
 </body>
 </html>
</f:view>

Presentation Model Declarative User Interface

PageBean.java Page.xhtml

A language for Ajax Push that preserves Designer and Developer roles

2008 JavaOneSM Conference | java.sun.com/javaone | 42

ICEfaces
High level push.

import org.icefaces.application.SessionRenderer;

SessionRenderer.render(SessionRenderer.ALL_SESSIONS);

SessionRenderer.addCurrentSession(“chat”);

message.setValue(“Howdy”);
SessionRenderer.render(“chat”);

Asynchronously and elsewhere in the application ...

Or to keep track of groups of users:

The JavaServer™ Faces (JSF) platform lifecycle runs and
each user’s page is updated from the component tree.

2008 JavaOneSM Conference | java.sun.com/javaone | 43

Agenda

Web 2.0

Multi-user Ajax Demo

Asynchronous HTTP on the Wire

Asynchronous HTTP and the Server

Developing Asynchronous Applications

Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 44

Summary
The Asynchronous Web Revolution is Now

The Asynchronous Web will revolutionize human interaction

Push can scale with Asynchronous Request Processing

With ICEfaces, GlassFish project, and Project Grizzly, the
revolution begins with your applications today

Get ready for Servlet 3.0

2008 JavaOneSM Conference | java.sun.com/javaone | 45

For More Information

TS-6482: Ajax and JavaServer™ Faces Technology: Wed 2:50
BOF-5661: Comet: The Rise of Interactive Web: Wed 6:30
BOF-4922: Using Google Web Tookit and Comet: Wed 7:30
BOF-6584: Using Comet to Create a Web Game: Wed 8:30

TS-5415: Java™ Servlet 3.0 API: Thu 10:50
BOF-5495: Untangling the Asynchronous Web: Thu 8:30

TS-4883: Java™ NIO Technology w/ Grizzly Framework: Fri 1:30

2008 JavaOneSM Conference | java.sun.com/javaone | 46

Asynchronous Ajax for Revolutionary
Web Applications

Jeanfrancois Arcand
Ted Goddard, Ph.D.
TS-5250

