
Rich Internet Applications with Adobe® Flex
and Java™ Technology

Tony Constantinides,
CEO
Constant Innovations Inc

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Using Adobe Flex and Java technology together to
build next-generation Rich Internet Applications

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Agenda

Introducing Adobe Flex
Why Flex
Streaming video and audio
Changing look and feel at runtime (Skinning)
Adding special effects
Specialized Flex supported backend
Flex and Java technology working together
Asynchronous Messaging
Using the Remoting Service
Using the Flex Compiler API
Summary and Q&A

2008 JavaOneSM Conference | java.sun.com/javaone | 4

How to get it?

• Download the free Flex 3 SDK from http://flex.org
/download/

• Download the AIR SDK at http://
www.adobe.com/products/air/tools/sdk
Install the Flash debug runtime from the player directory
inside the Flex SDK. Install the AIR runtime from Adobe web
site

• Download the docs at
http://livedocs.adobe.com/flex/3/flex3_documentation.zip
Alternatively buy and download the Eclipse-based
professional version called “Adobe Flex Builder” which
already include all SDKs and docs

http://flex.org/download/
http://flex.org/download/
http://flex.org/download/
http://www.adobe.com/products/air/tools/sdk
http://www.adobe.com/products/air/tools/sdk
http://livedocs.adobe.com/flex/3/flex3_documentation.zip

2008 JavaOneSM Conference | java.sun.com/javaone | 5

What is Adobe Flex?

Is an RIA platform for building next-generation web apps
Its uses a framework created over the Flash Player API
Is browser and OS independent (by having its own plug-in and
its own VM)
Contains a free open source SDK that contains source code,
compilers, debugger, and debug flash players which can be
used to create web and desktop apps
Uses XML based tags to describe your RIA graphical user
interface and uses ActionScript 3.0 to code the interactivity
Developers can buy Flex Builder which contains an
environment built on Eclipse with source-code editor support,
Wizards and Data Access features

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Adobe Flex Technologies

MXML (Macromedia XML)
ActionScript 3.0 based on ECMA-262 draft 4
Flex Framework which contain ActionScript-based graphical
and utility components (Flex SDK)
Adobe Integrated Runtime (AIR) which allows desktop apps
to be written using the Flex framework and AIR SDK
Eclipse 3.3 based Flex Builder IDE
• Flash Debug Player or plugin/ActiveX

• AVM2 (virtual machine which runs in the Flash Player plugin ,
which also contains the AVM1 virtual machine for
ActionScript 2.0 and 3.0 support)

2008 JavaOneSM Conference | java.sun.com/javaone | 7

Key facts about Flex

Flex Applications are Flash Applications. Flash runtime or
Flash Player must be present to run a Flex app.
The Flex SDK contains the predefined class libraries and
application services necessary to create Flex applications

• Flex applications are written using MXML and/or
ActionScript 3.0. Then all code is compiled to a SWF format
Data can be access by HTTP, WebServices, or in binary format
using AMF (Active Message format)
Developers typically layout their applications in MXML which
is generated by a design tool in Flex Builder
Developers code Actionscript 3.0 for all user interaction and
GUI development

2008 JavaOneSM Conference | java.sun.com/javaone | 8

Why use Flex for RIA development?

Very short learning curve for Java technology developers,
(approx 2 weeks) due to ActionScript 3.0 using much the
same syntax as Java technology
Developer layouts a RIA application visually using a design
tool and have your design be executed through code
generation to a Flash video file (SWF)
Supports Flash multimedia streaming technology which is
useful for adding video and audio to your apps
Has two-way call level support for JavaScript™ technology,
and therefore compatible with all AJAX based technology
Allows complete control over look and feel (skinning) at
runtime using CSS (Cascading Style Sheet) settings for visual
classes

2008 JavaOneSM Conference | java.sun.com/javaone | 9

Why Flex Builder? (Product is optional)

Has express install that generates an HTML wrapper fro
your flex apps so you are ready to deploy to a website right
away. The wrapper will download the Flash runtime if the
user does not already have it installed
Contains an excellent profiler which visually shows memory
allocation and performance bottleneck
Has data access wizards that generate ActionScript
code from a WSDL, a database schema, or an XML
store
Contain a design view that allows drag-and-drop layout of
visual components, class property setting, and CSS file
generation
Provides all the benefits of Eclipse 3.3 including Quick Fix
and other code editor refactoring support

2008 JavaOneSM Conference | java.sun.com/javaone | 10

What is AIR? (Adobe Integrated Runtime)

Consist of a runtime that acts as a layer between your
desktop app and the OS. This is what makes your AIR apps
portable across platforms

• AIR uses an HTML rendering engine from http://webkit.org
included in many browsers
AIR reuses the Flex framework and adds additional classes to
access the local file system, clipboard, and a local SQLlite
database
Supports creating non-standard Window classes, like circular
windows or transparent square windows
All AIR apps are signed by the developer using certificates
-based security technology
Create native Windows, Mac OSX and Linux GTK(soon)
desktop apps

http://webkit.org/
http://webkit.org/

2008 JavaOneSM Conference | java.sun.com/javaone | 11

RIA with MXML and ActionScript 3.0
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlnx=
“http://www.adobe.com/2006/mxml”
usePreloader=true
frameRate= 60 pageTitle=“JavaOne TS-5389”
backgroundGradientColors=“[0xCCCCCC, 0x66CCFF]”
backgroundColor=“0xCCCCCC” horizontalAlign=“center”
applicationComplete=“appComplete();”>
<mx:Script>
<![CDATA[
 private function appComplete():void {
 myTextControl.text += “Hello RIA World!”;
}]
</mx:Script>
 <mx:TextInput id=“myTextControl” />
</mx:Application>

http://www.adobe.com/2006/mxml

2008 JavaOneSM Conference | java.sun.com/javaone | 12

MXML demystified

All Flex Web apps start with the <mx:Application> tag
AIR Apps start with an <mx:WindowedApplication> tag
XML Attributes allow the underlying Application Object to be
preset with certain data attributes like framerate which tells
the flash player to take advantage of the client video card
capability
We can integrate MXML and ActionScript by using the CDATA
section of the <mx:Script> tag
When the previous application object has finished loading
the “applicationComplete” event is fired and the
appComplete() ActionScript function is called
The viewable text content of the TextInput control is then set
with “Hello RIA world!”

2008 JavaOneSM Conference | java.sun.com/javaone | 13

Are MXML tags objects?

MXML tags have frequently a 1-to-1 relationship with the
underlying visual ActionScript class
So <mx:Application> refers to the Application class under the
MX package in the Flex framework
The source code is under your Flex Builder install directory “/
sdks/3.0.0/frameworks/project/framework/src”

• XML attributes set on the MXML tags are implemented by
get and set functions of the property of the class
Remember that all MXML will generate ActionScript code
that is compiled along with your hand written ActionScript
The tags cause the ActionScript objects to be created
physically in memory in the Flash Player Virtual Machine

2008 JavaOneSM Conference | java.sun.com/javaone | 14

Demo Explorer

2008 JavaOneSM Conference | java.sun.com/javaone | 15

Adding video to Flex 3

Use Flash Player 9 update 3, or version 9.0.115
Full support for H.264 (MPEG-4). This includes High Definition
video
Full support for HE-AAC Audio, the successor to MP3
Graphics Hardware acceleration
Runs on Windows, Mac (OS X and Linux 32 bit)
Multi-core CPU support. Bitmaps, filters, vectors, and video
can now be split across processors to make playback more
efficient while ActionScript is executed on the first processor
Full screen support
They used Codec SDK 7.0 from mainconcept
Check them out at http://www.mainconcept.com

2008 JavaOneSM Conference | java.sun.com/javaone | 16

Using video and attaching a camera
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

creationComplete=“myVideo.pause();">
<mx:VideoDisplay id=“myVideo”
 creationComplete=“initCamera();”
 source=“../assets/MyVideo.flv”

 autoBandWidthDection=“true”
 height=300 width=300 />
<mx:Button label=“||” click=“myVideo.pause();”/>
<mx:Button label=“>” click=“myVideo.play();”/>
</mx:Application>
Import flash.media.Camera;
public var cam:Camera; // declare a camera varaible
public function initCamera():void {
 cam = Camaera.getCammera();
 // attach the camera to the video class
 myVideo.attachCamaera(cam);
}

2008 JavaOneSM Conference | java.sun.com/javaone | 17

Streaming video from the server - connect

// first create variables for the video name,
// connection and stream objects
private var videoURL:String = "Video.flv";
private var connection:NetConnection;
private var stream:NetStream;
public function VideoExample():void {
// create the connection
connection = new NetConnection();
// add the event listners for error handling
connection.addEventListener(NetStatusEvent.NET_STATUS,
 netStatusHandler);
connection.addEventListener(

SecurityErrorEvent.SECURITY_ERROR,
securityErrorHandler);

connection.connect(null); // setup an empty connection
}

2008 JavaOneSM Conference | java.sun.com/javaone | 18

Streaming video from the server – show, play

 // Connect to a video on the server to stream
 private function connectStream():void {
 // create the stream
 var stream:NetStream = new NetStream(connection);
 // add event handlers in cause of errors
stream.addEventListener(NetStatusEvent.NET_STATUS,
 netStatusHandler);
stream.addEventListener(AsyncErrorEvent.ASYNC_ERROR,
 asyncErrorHandler);
 // create the video and attach to the stream
 var video:Video = new Video();
video.attachNetStream(stream);
 // finally play the video
 stream.play(videoURL);
 // makes sure its visible to the user
 addChild(video);
}

2008 JavaOneSM Conference | java.sun.com/javaone | 19

Streaming audio from the server
 // import the needed sound and URLRequest clases
 import flash.media.Sound;
 import flash.media.SoundLoaderContext;
 import flash.net.URLRequest;
 // create the Sound class
 var songStreamed:Sound = new Sound();
 // prepare an URL request for the named sound file
 var req:URLRequest = new

URLRequest("http://av.adobe.com/bigSound.mp3");
 // create 8 seconds of buffering when loading sound
 var context:SoundLoaderContext = new
 SoundLoaderContext(8000, true);
 // stream the song from the website and play it
 songStreamed.load(req, context);
 var channel:SoundChannel = songStreamed.play();
 // call OnPlayCmplete function when song is over
 channel.addEventListner(Event.SOUND_COMPLETE, OnPlayComplete);

2008 JavaOneSM Conference | java.sun.com/javaone | 20

Defining your look and feel with CSS
/* styles/runtime/assets/CoolStyles.css */
/* CSS that defines the App and Button class Style */
Application {
 backgroundImage: "orangeBackground.gif";
 theme-color: #9DBAEB;
}
Button {
 fontFamily: Tahoma;
 color: #000000;
 fontSize: 18;
 fontWeight: bold;
 text-roll-over-color: #000000;
 upSkin: Embed(source="orb_up_skin.gif");
 overSkin: Embed(source="orb_over_skin.gif");
 downSkin: Embed(source="orb_down_skin.gif");
}

2008 JavaOneSM Conference | java.sun.com/javaone | 21

Load and apply CSS styles by button selection
/* Compile the CSS file and load at runtime */
<mx:Application
 xmlns:mx =”http://www.adobe.com/2006/mxml”>
 <mx:Script>
 <![CDATA[
 import mx.styles.StyleManager;
 public function applyRuntimeStyleSheet():void{
 StyleManager.loadStyleDeclarations(
 "../assets/CoolStyles.swf", true);// apply right away
 }
]]>
 </mx:Script>
 <mx:Label text="Click the button to load a new CSS-based
 SWF file"/>
 <mx:Button id="CSSButton" label="Click Me"

 click="applyRuntimeStyleSheet()"/>
 </mx:Application>

http://www.adobe.com/2006/mxml

2008 JavaOneSM Conference | java.sun.com/javaone | 22

Adding special effects

<!-- define two special effects -->
<mx:Dissolve id="dissolveOut" duration="1000"
 alphaFrom="1.0" alphaTo="0.0"/> <mx:Dissolve
id="dissolveIn" duration="1000"
 alphaFrom=0.0” alphaTo=”1.0”/>
<!-- create a checkbox control -->
<mx:CheckBox id="cb" label="visible" selected="true"/>
<!-- apply the effects to an image and a button
 when the checkbox is selected or unselected -->
<mx:Image source=”@Embed(source='asserts/myPic.png')”
 visible=”{cb.selected}”
 hideeffect=”{dissolveOut}”
 showffect=”{dissolveIn}”/>
<mx:Button label="Purchase"
 visible="{cb.selected}"
 hideEffect="{dissolveOut}"
 showEffect="{dissolveIn}"/>

2008 JavaOneSM Conference | java.sun.com/javaone | 23

Java and Flex Integration

2008 JavaOneSM Conference | java.sun.com/javaone | 24

Flex Data Access and Security choices

Read the Flash Player 9.0 Security paper
Add a crossdomain.xml file to the server with the data, -
(recommended). This file restrict access to only certain
domain on the web site OR
Upload your SWF file to the same server as the web server.
SWF files are usually stored in a directory under your web
root OR
Create a proxy on your web server that calls the data
service, and put your SWF file on the same server as the
proxy
Now choice between HTTPService, WebServices SOAP based
(requires a WSDL), or Remote Access using Adobe binary
protocol --Active Message Format

2008 JavaOneSM Conference | java.sun.com/javaone | 25

Specialized Flex supported backend
 • BlazeDS is an open-source Flex backend service which runs as

a Java Technology Server for Flex Clients. Its purpose is:
• Remoting – Remoting provides a call and response model for

accessing external data from Flex or Ajax application
• Messaging - Developers can push messages from the server

on an event basis, or can transmit to other connected Flash
clients in real time

• Action Message Format (AMF) transport protocol support
• Software Clustering: For messaging applications deployed in

a cluster using Publish/subscribe or point-to-point messaging
deployment

• Proxy-Services –For SOAP-compliant web services and HTTP
(REST) services). Used to avoid the Security cross-domain
restrictions

2008 JavaOneSM Conference | java.sun.com/javaone | 26

Java technology and Flex working together

 Adobe sells a high-end Enterprise product that provides more infrastructure
for J2EE projects called Adobe LifeCycle ES. Included is a JSP tag library for
Flex among other services

Consider using JSP™ frameworks as your Java API to Flex

If you want Flex to call an EJB™ architecture, write a Java class that wraps
that call, and remote call that from Flex

Use BlazeDS as your entry point in Flex/Java technology integration. Install
the WAR files and configure your endpoints. Note it comes with an
administrator app and uses Tomcat 6.0 as a servlet container. Get BlazeDS at
http://opensource.adobe.com/wiki/display/blazeds/Release+Builds

• Look at other RIA platform servers like WEBORB from Midnight coders at
http://www.themidnightcoders.com/weborb/

If you do not need direct access, use Flex mx:HttpService or XML/SOAP
access using mx:WebService calls instead

http://www.themidnightcoders.com/weborb/

2008 JavaOneSM Conference | java.sun.com/javaone | 27

Asynchronous Messaging

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

creationComplete="consumer.subscribe()">
<mx:Script>
<![CDATA[
import mx.messaging.events.MessageEvent;
import mx.messaging.messages.AsyncMessage;
private function send():void {

var message:AsyncMessage = new AsyncMessage();
message.body.chatMessage = msg.text;
producer.send(message);
msg.text = "Hello from Flex";

}
private function messageHandler(event:MessageEvent):void {
log.text += event.message.body.chatMessage + "\n";

}]]> </mx:Script>

2008 JavaOneSM Conference | java.sun.com/javaone | 28

Using the Remoting Service – Configuration

Point to your different server configuration by passing the services-
config.xml file location to Flex Builder “additional Compiler arguments”
text area

Define the technology adapter. This translate the specific AMF message
into the specific technology (Java-object)

Set the “Channel”. This defines the location where the server with the
remote service exists and what technology the server is using. The default
is “AMF”

Set the “Destination handles”. These are the grouping of adapters,
channels, and custom properties that Flex will reference by the “id”

By setting the “source” property in the XML this is the exact Java class
name that the destination is referencing.

Use remote-config.xml for the destinations

2008 JavaOneSM Conference | java.sun.com/javaone | 29

<service id="remoting-service"
 class="flex.messaging.services.RemotingService"
 messageTypes="flex.messaging.messages.RemotingMessage">
 <adapters>
 <adapter-definition id="java-object"
 class="flex.messaging.services.remoting.adapters.JavaAdapter"
 default="true"/>
 </adapters>
 <default-channels>
 <channel ref="flex-amf3"/>
 </default-channels>
 <destination id="CustomerServiceRO">
 <properties>
 <!-- Actual Java class name on the server under /WEB_INF/Classes -->
 <source>com.samples.javaon2008.CustomerService</source>
 <scope>application</scope>
 </properties>
 <adapter ref=”java-object”/>
 </destination>
</service

Sample remote-config.xml

2008 JavaOneSM Conference | java.sun.com/javaone | 30

public CustomerEntryVO[] getElements(int begin,int count)
{
 CustomerDAO dao = new CustomerDAO();
 try {

CustomerEntryVO[] list =
 dao.getList(begin,count);
 } (catch (SQLExceiptn ex) {
 ex.printStatckTrace();
 }
 }
}

public class CustomerService implements ValueListService {
public int getNumElements() {
 CustomerDAO dao = new CustomerDAO();
 return dao.getSize();

} // Called by the Flex client in the browser or desktop

Working together - Java Server side

2008 JavaOneSM Conference | java.sun.com/javaone | 31

Calling the Java Server to get data
<mx:Application xmlns:mx="/2006/mxml">
<mx:RemoteObject id="MyRemoteJavaClass”

 destination=“CustomerServiceRO"
 result="handleResult(event)"
 endpoint="messagebroker/amf?id=flex-amf3”/>
 <mx:DataGrid>
 dataProvider
 ="{MyRemoteJavaClass.getElements.lastResult}“
 updateComplete="done()">
 <mx:columns>
 <mx:DataGridColumn dataField=“name"/>
 <mx:DataGridColumn dataField=“rank"/>
 <mx:DataGridColumn dataField=“offerings"/>
 </mx:columns>
 </mx:DataGrid>
</mx:Application>

2008 JavaOneSM Conference | java.sun.com/javaone | 32

More fun with Java Technology
Using the Flex Compiler API

2008 JavaOneSM Conference | java.sun.com/javaone | 33

Calling the Flex Compiler API from Java Technology

Flex 3 includes a Java-based compiler API that lets you
compile SWF and SWC files from Java applications
The API supports all the same options as the mxmlc and
compc command-line compilers
The API includes classes like Application, Logger and Project
The API is contained in flex-oem-compiler.jar
The capability to create application and library source files at
run time and to compile these files into Flex applications and
libraries
Create Flex applications in memory and compile them to SWF
files without ever having an MXML file on disk

2008 JavaOneSM Conference | java.sun.com/javaone | 34

Creating a Project and SWF from Java Technology

Import flex2.tools.oem.Application;
import flex2.tools.oem.Project;
import flex2.tools.oem.Configuration;
import flex2.tools.oem.Library;
import java.io.*;
public class MyProjectCreator {
public static void main(String[] args) {
String assetRoot = "../assets/";
String outputRoot = "../apps/";
Project project=new Project();
// Create the Application.
Application app = new Application(new File(outputRoot,
"TestAppWithComponents.mxml"));
app.setOutput(new File(outputRoot, "TestAppWithComponents.swf"));
app.setLogger(new ComplexLogger());
// go to next slide

2008 JavaOneSM Conference | java.sun.com/javaone | 35

Creating a Library (SWC) from Java Technology

Library lib=new Library(); // Create the Library.
lib.setOutput(new File(assetRoot, "MyComponents.swc"));
lib.addComponent(new File(assetRoot, "MyButton.mxml"));
lib.addComponent(new File(assetRoot, "MyLabel.mxml"));
lib.setLogger(new ComplexLogger());
// Add the new SWC file to the library-path.
Configuration config = app.getDefaultConfiguration();
config.addLibraryPath(new File[]
{new File(assetRoot, "MyComponents.swc")});
app.setConfiguration(config);
// Add Application and Library objects to the Project.
project.addBuilder(app);
project.addBuilder(lib);
project.dependsOn(app, lib);
project.build(true); // finally do the custom build from Java
}

2008 JavaOneSM Conference | java.sun.com/javaone | 36

More fun with Java Technology
Using the Flex Builder extensibility API

2008 JavaOneSM Conference | java.sun.com/javaone | 37

Flex Builder 3 Extensibility
// Get all the class names in a Flex Project
IFlexProject flexProject = workspace.getProject();
CMFactory.getRegistrar().registerProject(flexProjet
 .getProject(), null);
sychronized ICMFactory getLockObject() {
IProject project = CMFactory.getManager()
.getProjectFor(flexPorject.getProject());
IClassNameIndex classIndex = (IClassNameIndex)

project.getIndex(IClassNameIndex.ID);
IClass[] allClasses = classIndex.getAllClasses();
String [] allClassesNames = new
String(allClasses.length);
for (int i = 0; i < allClasses.length; i++) {

allClassesNames[i] =
allClasses[i].getQualifiedName();
} }

}

2008 JavaOneSM Conference | java.sun.com/javaone | 38

Summary

Flex can be used for web and desktop applications from the
same source by re-targeting the SDK
Flex provides streaming video, audio, special effects and
runtime skinning(via CSS) for your RIA
Flex does not lock you into any particular web technology,
API, JavaScript library, browser version, and OS
There are public API that allows quick integration to common
Web software Platform like Yahoo, eBay, Amazon, YouTube,
and Facebook
ActionScript 3.0 and MXML are easy for Java technology
developers to learn (less than two weeks learning curve)
The Flex framework and the compilers are open-sourced

2008 JavaOneSM Conference | java.sun.com/javaone | 39

Tony Constantinides, CEO,
Constant Innovations Inc.
625 Powell Street, #41
San Francisco, CA
http://www.riajava.com
TS-5389

http://www.riajava.com/
http://www.riajava.com/

