
JSF Avatar
13 June 2006

Ed Burns
Senior Staff Engineer
Enterprise Java Platforms

2

Agenda
• You already know what avatar is...
• What's changed since last update (on 19 April)?
• Current Thinking
• Roadmap

3

What's changed since last update?
• Ed and Jacob working independently, collaborating on

concept level

• Each had separate implementations leading into JavaOne

• Ed's approach:
> ajaxZone for each dynamically updated area. This is the main API to avatar
> User provides JavaScript functions to fill well-defined contract to construct the AJAX

request
> Avatar JS library calls moderately complex user functions, builds request, handles

response
> Avatar JS library not exposed to users.

• Jacob's approach:
> No ajaxZone, User must point to the sub-tree manually using clientIds
> Avatar JS library exposed to user. This is the main API to avatar
> User-level JS functions tend to be very simple, mostly defined in-line.

4

Current Thinking: API

• Two paths, both valid
> Expose Jacob's JavaScript library

> <h:inputText id=”email” value=”#{employee.email}”
 onblur=”new Faces.Event(this, { update: this.name });” />

> click

> <script>new Faces.Command($(click), 'mousedown',

> { encode: 'catalog' });

> Make ajaxZone use that library to get its work done.

• Avatar JS library
> Exposes Faces.Event and Faces.Command
> Responsible for initiating AJAX requests, incorporating

responses into current DOM.

5

Current Thinking: Request Headers

• Request headers convey metadata, indicate
AJAXiness
• Are added to the Ajax request by the avatar js

library.
> com.sun.faces.Async: true
> com.sun.faces.Subtrees: form:subview1,form:subview2
> (optional) com.sun.faces.RunThru: <PHASE_ID>
> (optional) com.sun.faces.lifecycle.<PHASE_ID>:

form:subview1,form:subview2

6

Current Thinking: Lifecycle
• Custom JSF Lifecycle Implementation. Decorates

the default Lifecycle impl.
• All requests with header com.sun.faces.Async: true

treated as AJAX request. Otherwise, default
Lifecycle impl is used.

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <init-param>
 <param-name>javax.faces.LIFECYCLE_ID</param-name>
 <param-value>com.sun.faces.lifecycle.AJAX</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern><url-pattern>*.faces</url-pattern>
</servlet-mapping>

7

Current Thinking: Lifecycle
• No custom UIViewRoot
• Use the custom lifecycle instead of the default one.
• Examines request headers and takes action

accordingly
• Makes use of invokeOnComponent()to

ensure component context when running a lifecycle
phase on a particular subtree.
• Renders the XML for the AJAX response
• Calls state save and restore APIs

8

Roadmap
• Integrating Ed and Jacob's approach into one

codebase.
• Adding new ideas
• Plan to be done initial merge by 30 June
• Would like to get Exadel's ajax4jsf project on board

after initial merge.

