

W application In less

han 10 minutes!

Jeanfrancois Arcand
" Senior Staff Engineer
Sun Microsystems

Because Ajax-based applications are almost becoming the de facto

echnology for designing web-based applications, it is more and mor:

nportant that such applications react on the fly, or in real time, to bot
client and server events.

'his Quickie highlights how to build GWT-based applications that car
take advantage of the Ajax push (a.k.a. Comet) technique to deliver
real-time rich Internet applications (RIAS).

Oll, LONg FOll ana streamll

(Polling)

Server
I

quest |

U

2Sponse

event
B e |

quest

|

2sponse |

Browser

' request

|

Ajax Push (Long Poll)

Server

event

I
I
| response g

| req uesi

Ajax Push (Strear

Browser Sen

' request

|

[

response part

*———

[y, ——
'response part!

met 1ecnniques

>nd a request to the server every X seconds.

e response is “empty” if there is no update.
g Poll:

>nd a request to the server, wait for an event to happen, then send the respon
1€ response is never empty.

[TP specification satisfied: indistinguishable from “slow” server

Streaming:

ond a request, wait for events, stream multi-part/chunked response, and then
r the events.

1€ response is continually appended to.

IZZ1y LOmet rramewor

e Framework contains the classes required to add
pport for Comet in a Web Application

in classes to interact with (details next):
ometEngine

ometContext

ometHandler

otificationHandler

ometReader

CometHandle

CometContext

NotificationiHa

metouontex

A CometContext is a distribution mechanis

for pushing messages that are delivered to
multiple subscribers called CometHandler.

All connections registered to a
CometContext automatically becomes

suspended, waiting for an event (a push) tc
happens.

A browser receives only those messages
published after the client “reaqister “ to a

metranaier

e CometHandler is the master piece of a Grizzly Cor
sed application.

sometHandler contains the business logic of what w
pushed back to the browsetr.

sometHandler might be invoked by the Container:
hen a push operation happens

hen a I/O operations are ready to be process
synchronous read or write)

'hen the browser close the connection.

metranaier

e CometHandler is the master piece of a Grizzly Cor
sed application.

sometHandler contains the business logic of what w
pushed back to the browsetr.

sometHandler might be invoked by the Container:
hen a push operation happens

hen a I/O operations are ready to be process
synchronous read or write)

'hen the browser close the connection.

reec really SImplie Steps

Extends RemoteServiceServlet, register
CometContext

Implement CometHandler

Implement RemoteService, invoke
CometContext.notify()

irzzly Gomet & GV

First, create a Servlet that extends
RemoteServiceServlet. Let’s call it
GrizzlyCometGWTServlet

Inside the init(), register your CometContext.

Inside the doGet(), creates CometHandler and add
them to the CometContext

By default, all GET request will be suspended.

Next, create another RemoteServiceServiet which
implement your RemoteService

That’e it

// Create the CometContext associated with the
// application

@Override
public void 1nit () throws ServletException {
CometEngine ce = CometEngine.getEngine () ;

cc = ce.regilister (“"AuctionTopic");

nd RemoteServiceServlet

// Suspend the connection
@Override
protected voild doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOExcepti
response.setContentType ("text/
html; charset=IS0-8859-1") ;

GWTCometHandler ch = new GWTCometHandler () ;
ch.attach (response) ;
cc.addCometHandler (ch) ;

1vate class GWTCometHandler implements
CometHandler<HttpServletResponse>({

public void onEvent (CometEvent ce) throws IOExcepti

GWTEvent event = (GWTEvent)ce.attachment () ;
StringBuffer stream = new StringBuffer();

writeCallback (stream,
event.queueName, event.message)

writeToStream(res.getOutputStream(),
stream.toString());
1f (count++ > numberOfIteration) {
cc.resumeCometHandler (this) :

Yyour nelmoleoscrviCe

Update the connected client.
ivate vold sendNewBid (AuctionItem item,
TextBox myBid, Label message

cometService.updateClient (TOPIC, message);

etContext

Update the connected client.
blic void updateClient (String topic,
String message) {

try |

CometEngine.getEngine ()

.getCometContext ("AuctionTopic")
.not1fy(
new GWTEvent (topilic, message));

} catch (IOException ex) {

J

/T Auction Demo

Conclusion

Writing GWT application is simple

The Asynchronous Web will revolutionize human
1iteraction

Adding Comet/Ajax Push support is even simple
sing Grizzly Comet.

s

-ollow us on http://twitter.com/project_grizzly
setting Started with GlassFish and Comet
\ttp://grizzly.dev.java.net

ittp://weblogs.java.net/blog/jfarcand/archive/
2008/11/writing_a_twitt.html

’roject Grizzly mailing lists,

ev@qgrizzly.dev.java.net &
users@dev.grizzly.java.net

My blog: http://weblogs.java.net/jfarcand

