

Adding Comet to your
GWT application in less
than 10 minutes!

Jeanfrancois Arcand

Senior Staff Engineer

Sun Microsystems

Goal

Because Ajax-based applications are almost becoming the de facto
technology for designing web-based applications, it is more and more
important that such applications react on the fly, or in real time, to both

client and server events.

This Quickie highlights how to build GWT-based applications that can
take advantage of the Ajax push (a.k.a. Comet) technique to deliver

real-time rich Internet applications (RIAs).

Poll, Long Poll and Streaming

Comet Techniques

• Send a request to the server every X seconds.

• The response is “empty” if there is no update.

•  Long Poll:

• Send a request to the server, wait for an event to happen, then send the response.

• The response is never empty.

• HTTP specification satisfied: indistinguishable from “slow” server

•  Http Streaming:

• Send a request, wait for events, stream multi-part/chunked response, and then wait
for the events.

• The response is continually appended to.

Grizzly Comet Framework

•  The Framework contains the classes required to add

support for Comet in a Web Application

•  Main classes to interact with (details next):

•  CometEngine

•  CometContext

•  CometHandler

•  NotificationHandler

•  CometReader

•  CometWriter

How it works

Push data

filters

push

send

send

CometContext

•  A CometContext is a distribution mechanism
for pushing messages that are delivered to
multiple subscribers called CometHandler.

•  All connections registered to a
CometContext automatically becomes
suspended, waiting for an event (a push) to
happens.

•  A browser receives only those messages
published after the client “register “ to a

CometHandler

•  The CometHandler is the master piece of a Grizzly Comet

based application.

•  A CometHandler contains the business logic of what will
be pushed back to the browser.

•  A CometHandler might be invoked by the Container:

•  When a push operation happens

•  When a I/O operations are ready to be process
(asynchronous read or write)

•  When the browser close the connection.

CometHandler

•  The CometHandler is the master piece of a Grizzly Comet

based application.

•  A CometHandler contains the business logic of what will
be pushed back to the browser.

•  A CometHandler might be invoked by the Container:

•  When a push operation happens

•  When a I/O operations are ready to be process
(asynchronous read or write)

•  When the browser close the connection.

Three really simple steps

•  Extends RemoteServiceServlet, register
CometContext

•  Implement CometHandler

•  Implement RemoteService, invoke
CometContext.notify()

Grizzly Comet & GWT"
•  First, create a Servlet that extends

RemoteServiceServlet. Let’s call it
GrizzlyCometGWTServlet

•  Inside the init(), register your CometContext.

•  Inside the doGet(), creates CometHandler and add
them to the CometContext

•  By default, all GET request will be suspended.

•  Next, create another RemoteServiceServlet which
implement your RemoteService

•  That’s it!!!

Extend RemoteServiceServlet

 // Create the CometContext associated with the
 // application
 @Override
 public void init() throws ServletException {
 CometEngine ce = CometEngine.getEngine();
 cc = ce.register(”AuctionTopic");

Extend RemoteServiceServlet

 // Suspend the connection
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/
 html;charset=ISO-8859-1");

 GWTCometHandler ch = new GWTCometHandler();
 ch.attach(response);
 cc.addCometHandler(ch);
 }

Create your CometHandler

 private class GWTCometHandler implements
 CometHandler<HttpServletResponse>{

 public void onEvent(CometEvent ce) throws IOException

 GWTEvent event = (GWTEvent)ce.attachment();
 StringBuffer stream = new StringBuffer();
 writeCallback(stream,
 event.queueName, event.message);

 writeToStream(res.getOutputStream(),
 stream.toString());
 if (count++ > numberOfIteration){
 cc.resumeCometHandler(this);

Link your RemoteService

 // Update the connected client.
 private void sendNewBid(AuctionItem item,
 TextBox myBid, Label message) {

 ….

 cometService.updateClient(TOPIC, message);

CometContext

 // Update the connected client.
 public void updateClient(String topic,
 String message){
 try {
 CometEngine.getEngine()
 .getCometContext(”AuctionTopic")
 .notify(
 new GWTEvent(topic, message));
 } catch (IOException ex) {
 }

DEMO

GWT Auction Demo

Conclusion

•  Writing GWT application is simple

•  The Asynchronous Web will revolutionize human
interaction

•  Adding Comet/Ajax Push support is even simple
using Grizzly Comet.

Q&A

•  Follow us on http://twitter.com/project_grizzly

•  Getting Started with GlassFish and Comet

•  http://grizzly.dev.java.net

http://weblogs.java.net/blog/jfarcand/archive/
2008/11/writing_a_twitt.html

•  Project Grizzly mailing lists,

 dev@grizzly.dev.java.net &
users@dev.grizzly.java.net

•  My blog: http://weblogs.java.net/jfarcand

