
Jeanfrancois Arcand
Sun Microsystems

Grizzly 1.5 Architecture
Overview

2

JGD
Agenda

• Introduction
• Grizzly 1.5 UML Diagrams

> Class Diagram
> Sequence Diagrams

• Classes description and review
• Summary
• Q&A

3

JGD
Class Diagram

4

JGD

Creating a Controller

5

JGD

Request Handling

6

JGD

Worker Thread execution

7

JGD
Controller

• Main entry point when using the Grizzly
Framework. A Controller is composed of
> Handlers

> SelectorHandler
> SelectionKeyHandler
> InstanceHandler

> ProtocolChain
> Pipeline.

• All of those components are configurable
by client using the Grizzly Framework.

8

JGD
SelectorHandler

• A SelectorHandler handles all
java.nio.channels.Selector operations. One
or more instance of a Selector are handled
by SelectorHandler.

• The logic for processing of SelectionKey
interest (OP_ACCEPT,OP_READ, etc.) is
usually defined using an instance of
SelectorHandler.

• This is where the decision of attaching an
object to SelectionKey.

9

JGD
SelectorHandler (Cont.)

 /**

 * This method is garantee to always be called before operation

 * Selector.select().

 */

 public void preSelect(Context controllerCtx) throws IOException;;

 /**

 * Invoke the Selector.select() method.

 */

 public Set<SelectionKey> select(Context controllerCtx) throws IOException;

 /**

 * This method is garantee to always be called after operation

 * Selector.select().

 */

 public void postSelect(Context controllerCtx) throws IOException;

10

JGD
SelectionKeyHandler

• A SelectionKeyHandler is used to handle
the life life cycle of a SelectionKey.

• Operations likes cancelling, registering or
closing are handled by
SelectionKeyHandler.

11

JGD
SelectionKeyHandler (Cont.)

 /**

 * Expire a SelectionKey.

 */

 public void expire(SelectionKey key);

 /**

 * Cancel a SelectionKey and close its Channel.

 */

 public void cancel(SelectionKey key);

 /**

 * Close the SelectionKey's channel input or output, but keep alive

 * the SelectionKey.

 */

 public void close(SelectionKey key);

12

JGD
InstanceHandler

• An InstanceHandler is where one or
several ProtocolChain are created and
cached.

• An InstanceHandler decide if a stateless or
statefull ProtocolChain needs to be
created.

13

JGD
InstanceHandler (Cont.)

 /**

 * Return an instance of ProtocolChain.

 */

 public ProtocolChain poll();

 /**

 * Pool an instance of ProtocolChain.

 */

 public boolean offer(ProtocolChain instance);

14

JGDPipeline

• An interface used as a wrapper around
any kind of thread pool.

15

JGDPipeline (Cont.)

 /**

 * Add an <code>E</code> to be processed by this
<code>Pipeline</code>

 */

 public void execute(E task) throws PipelineFullException;

 /**

 * Return a <code>E</code> object available in the pipeline.

 */

 public E waitForIoTask() ;

16

JGD
ProtocolChain

• A ProtocolChain implement the "Chain of
Responsibility" pattern (for more info, take
a look at the classic "Gang of Four" design
patterns book).

• Towards that end, the Chain API models a
computation as a series of "protocol filter"
that can be combined into a "protocol
chain".

17

JGDProtocolChain (Cont.)

• The API for ProtocolFilter consists of a two
methods (execute() and postExecute)
which is passed a "protocol context"
parameter containing the dynamic state of
the computation, and whose return value is
a boolean that determines whether or not
processing for the current chain has been
completed (false), or whether processing
should be delegated to the next
ProtocolFilter in the chain (true).

• The owning ProtocolChain must call the
postExectute() method of each
ProtocolFilter in a ProtocolChain in reverse
order of the invocation of their execute()
methods.

18

JGDProtocolChain (Cont.)

 /**

 * Add a <code>ProtocolFilter</code> to the list.
<code>ProtocolFilter</code>

 * will be invoked in the order they have been added.

 */

 public boolean addFilter(ProtocolFilter protocolFilter);

 /**

 * Remove the <code>ProtocolFilter</code> from this chain.

 */

 public boolean removeFilter(ProtocolFilter theFilter);

 public void addFilter(int pos, ProtocolFilter protocolFilter);

19

JGD
ProtocolFilter

• A ProtocolFilter encapsulates a unit of
processing work to be performed, whose
purpose is to examine and/or modify the
state of a transaction that is represented
by a ProtocolContext.

• Individual ProtocolFilter can be assembled
into a ProtocolChain, which allows them to
either complete the required processing or
delegate further processing to the next
ProtocolFilter in the ProtocolChain.

• ProtocolFilter implementations should be
designed in a thread-safe manner, suitable
for inclusion in multiple ProtocolChains
that might be processed by different
threads simultaneously.

20

JGD
ProtocolFilter (Cont.)

• In general, this implies that ProtocolFilter
classes should not maintain state
information in instance variables.

• Instead, state information should be
maintained via suitable modifications to the
attributes of the ProtocolContext that is
passed to the execute() and postExecute()
methods.

21

JGD
ProtocolFilter (Cont.)

 /**

 * Execute a unit of processing work to be performed. This
ProtocolFilter

 * may either complete the required processing and return false,

 * or delegate remaining processing to the next ProtocolFilter in a

 * ProtocolChain containing this ProtocolFilter by returning true.

 */

 public boolean execute(Context ctx) throws IOException;

 /**

 * Execute any cleanup activities, such as releasing resources that
were

 * acquired during the execute() method of this ProtocolFilter
instance.

 */

 public boolean postExecute(Context ctx) throws IOException;

22

JGDExample 1 - TCP

• By default, the Grizzly Framework bundle
default implementation for TCP and UPD
transport. The TCPSelectorHandler is
instanciated by default.

• As an example, supporting the TCP
protocol should only consist of adding the
appropriate ProtocolFilter like:

23

JGDExample – 1 TCP (Cont.)

 Controller con = new Controller();
 con.setInstanceHandler(new DefaultInstanceHandler(){
 public ProtocolChain poll() {
 ProtocolChain protocolChain = protocolChains.poll();
 if (protocolChain == null){
 protocolChain = new DefaultProtocolChain();
 protocolChain.addFilter(new ReadFilter());
 protocolChain.addFilter(new HTTPParserFilter());

 }
 return protocolChain;
 }
 });

24

JGDExample – 2 UDP

 Controller con = new Controller();
 con.setInstanceHandler(new DefaultInstanceHandler(){
 public ProtocolChain poll() {
 ProtocolChain protocolChain = protocolChains.poll();
 if (protocolChain == null){
 protocolChain = new DefaultProtocolChain();
 protocolChain.addFilter(new UDPReadFilter());
 protocolChain.addFilter(new ParserFilter());

 }
 return protocolChain;
 }

 con.setSelectorHandler(new UDPSelectorHandler());
 });

25

JGDQ&A

Grizzly 1.5 Architecture
Overview

