
Oracle Corporation
www.oracle.com

Send comments to: users@el-spec.java.net

Expression Language Specification
Version 3.0 Public Review Release

Kin-man Chung, editor

Public Review Release - June 18, 2012

Oracle Corporation
www.oracle.com

Send comments to: users@el-spec.java.net

iii
ORACLE IS WILLING TO LICENSE THIS SPECIFICATION TO
YOU ONLY UPON THE CONDITION THAT YOU ACCEPT ALL
OF THE TERMS CONTAINED IN THIS LICENSE AGREEMENT
("AGREEMENT"). PLEASE READ THE TERMS AND
CONDITIONS OF THIS AGREEMENT CAREFULLY. BY
DOWNLOADING THIS SPECIFICATION, YOU ACCEPT THE
TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU
ARE NOT WILLING TO BE BOUND BY THEM, SELECT THE
"DECLINE" BUTTON AT THE BOTTOM OF THIS PAGE AND
THE DOWNLOADING PROCESS WILL NOT CONTINUE.

Specification: JSR-341 Expression Language

Version: 3.0

Status: Public Review

Release: June 18, 2012

Copyright 2012 Oracle America, Inc.

500 Oracle Parkway, Redwood City, California 94065, U.S.A.

All rights reserved.

NOTICE

The Specification is protected by copyright and the information
described therein may be protected by one or more U.S. patents,
foreign patents, or pending applications. Except as provided under
the following license, no part of the Specification may be reproduced
in any form by any means without the prior written authorization of
Oracle America, Inc. ("Oracle") and its licensors, if any. Any use of
the Specification and the information described therein will be
governed by the terms and conditions of this Agreement.
EL 3.0 Public Review Release

iv
Subject to the terms and conditions of this license, including your
compliance with Paragraphs 1 and 2 below, Oracle hereby grants you
a fully-paid, non-exclusive, non-transferable, limited license
(without the right to sublicense) under Oracle's intellectual property
rights to:

1.Review the Specification for the purposes of evaluation. This
includes: (i) developing implementations of the Specification for
your internal, non-commercial use; (ii) discussing the Specification
with any third party; and (iii) excerpting brief portions of the
Specification in oral or written communications which discuss the
Specification provided that such excerpts do not in the aggregate
constitute a significant portion of the Technology.

2.Distribute implementations of the Specification to third parties for
their testing and evaluation use, provided that any such
implementation:

(i) does not modify, subset, superset or otherwise extend the Licensor
Name Space, or include any public or protected packages, classes,
Java interfaces, fields or methods within the Licensor Name Space
other than those required/authorized by the Specification or
Specifications being implemented;

(ii) is clearly and prominently marked with the word "UNTESTED"
or "EARLY ACCESS" or "INCOMPATIBLE" or "UNSTABLE" or
"BETA" in any list of available builds and in proximity to every link
initiating its download, where the list or link is under Licensee's
control; and

(iii) includes the following notice:

"This is an implementation of an early-draft specification developed
under the Java Community Process (JCP) and is made available for
testing and evaluation purposes only. The code is not compatible
with any specification of the JCP."

The grant set forth above concerning your distribution of
implementations of the specification is contingent upon your
agreement to terminate development and distribution of your "early
EL 3.0 Public Review Release

v

draft" implementation as soon as feasible following final completion
of the specification. If you fail to do so, the foregoing grant shall be
considered null and void.

No provision of this Agreement shall be understood to restrict your
ability to make and distribute to third parties applications written to
the Specification.

Other than this limited license, you acquire no right, title or interest
in or to the Specification or any other Oracle intellectual property,
and the Specification may only be used in accordance with the
license terms set forth herein. This license will expire on the earlier
of: (a) two (2) years from the date of Release listed above; (b) the date
on which the final version of the Specification is publicly released; or
(c) the date on which the Java Specification Request (JSR) to which
the Specification corresponds is withdrawn. In addition, this license
will terminate immediately without notice from Oracle if you fail to
comply with any provision of this license. Upon termination, you
must cease use of or destroy the Specification.

"Licensor Name Space" means the public class or interface
declarations whose names begin with "java", "javax", "com.oracle" or
their equivalents in any subsequent naming convention adopted by
Oracle through the Java Community Process, or any recognized
successors or replacements thereof

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or
trade names of Oracle or Oracle's licensors is granted hereunder.
Oracle, the Oracle logo, Java are trademarks or registered
trademarks of Oracle USA, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS
EXPERIMENTAL AND MAY CONTAIN DEFECTS OR
DEFICIENCIES WHICH CANNOT OR WILL NOT BE
CORRECTED BY ORACLE. ORACLE MAKES NO
REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
EL 3.0 Public Review Release

vi
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
OR NON-INFRINGEMENT THAT THE CONTENTS OF THE
SPECIFICATION ARE

SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS
OR OTHER RIGHTS. This document does not represent any
commitment to release or implement any portion of the Specification
in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL
INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN;
THESE CHANGES WILL BE INCORPORATED INTO NEW
VERSIONS OF THE SPECIFICATION, IF ANY. ORACLE MAY
MAKE IMPROVEMENTS AND/OR CHANGES TO THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE
SPECIFICATION AT ANY TIME. Any use of such changes in the
Specification will be governed by the then-current license for the
applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT
WILL ORACLE OR ITS LICENSORS BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION, LOST
REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT,
CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF
LIABILITY, ARISING OUT OF OR RELATED TO ANY
FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE
SPECIFICATION, EVEN IF ORACLE AND/OR ITS LICENSORS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
EL 3.0 Public Review Release

vii
You will hold Oracle (and its licensors) harmless from any claims
based on your use of the Specification for any purposes other than
the limited right of evaluation as described above, and from any
claims that later versions or releases of any Specification furnished to
you are incompatible with the Specification provided to you under
this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S.
Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government's rights in the
Software and accompanying documentation shall be only as set forth
in this license; this is in accordance with 48 C.F.R. 227.7201 through
227.7202-4 (for Department of Defense (DoD) acquisitions) and with
48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or
inaccuracies you may find in connection with your evaluation of the
Specification ("Feedback"). To the extent that you provide Oracle
with any Feedback, you hereby: (i) agree that such Feedback is
provided on a non-proprietary and non-confidential basis, and (ii)
grant Oracle a perpetual, non-exclusive, worldwide, fully paid-up,
irrevocable license, with the right to sublicense through multiple
levels of sublicensees, to incorporate, disclose, and use without
limitation the Feedback for any purpose related to the Specification
and future versions, implementations, and test suites thereof.

GENERAL TERMS

Any action related to this Agreement will be governed by California
law and controlling U.S. federal law. The U.N. Convention for the
International Sale of Goods and the choice of law rules of any
jurisdiction will not apply.
EL 3.0 Public Review Release

viii
The Specification is subject to U.S. export control laws and may be
subject to export or import regulations in other countries. Licensee
agrees to comply strictly with all such laws and regulations and
acknowledges that it has the responsibility to obtain such licenses to
export, re-export or import as may be required after delivery to
Licensee.

This Agreement is the parties' entire agreement relating to its subject
matter. It supersedes all prior or contemporaneous oral or written
communications, proposals, conditions, representations and
warranties and prevails over any conflicting or additional terms of
any quote, order, acknowledgment, or other communication
between the parties relating to its subject matter during the term of
this Agreement. No modification to this Agreement will be binding,
unless in writing and signed by an authorized representative of each
party.
EL 3.0 Public Review Release

Contents

Preface xvii

Historical Note xvii

Typographical Conventions xviii

Comments xviii

1. Language Syntax and Semantics 1

1.1 Overview 1

1.1.1 EL in a nutshell 2

1.2 EL Expressions 2

1.2.1 Eval-expression 3

1.2.1.1 Eval-expressions as value expressions 3

1.2.1.2 Eval-expressions as method expressions 5

1.2.2 Literal-expression 5

1.2.3 Composite expressions 6

1.2.4 Syntax restrictions 7

1.3 Literals 7

1.4 Errors, Warnings, Default Values 8

1.5 Resolution of Model Objects and their Properties or Methods 8

1.6 Operators [] and . 8

1.7 Arithmetic Operators 10

1.7.1 Binary operators - A {+,-,*} B 11
ix

1.7.2 Binary operator - A {/,div} B 11

1.7.3 Binary operator - A {%,mod} B 11

1.7.4 Unary minus operator - -A 12

1.8 String Concatenation Operator - A cat B 12

1.9 Relational Operators 12

1.9.1 A {<,>,<=,>=,lt,gt,le,ge} B 13

1.9.2 A {==,!=,eq,ne} B 13

1.10 Logical Operators 14

1.10.1 Binary operator - A {&&,||,and,or} B 14

1.10.2 Unary not operator - {!,not} A 14

1.11 Empty Operator - empty A 15

1.12 Conditional Operator - A ? B : C 15

1.13 Assignment Operator - A = B 15

1.14 Semicolon Operator - A ; B 16

1.15 Parentheses 16

1.16 Operator Precedence 16

1.17 Reserved Words 17

1.18 Functions 18

1.19 Variables 18

1.20 Lambda Expressions 18

1.21 Enums 19

1.22 Static Field and Method Reference 20

1.22.1 Access Restrictions and Imports 20

1.22.2 Imports of Classes and Packages 20

1.22.3 Special Fields and Methods 21

1.23 Type Conversion 21

1.23.1 To Coerce a Value X to Type Y 21

1.23.2 Coerce A to String 22

1.23.3 Coerce A to Number type N 22

1.23.4 Coerce A to Character or char 23
x Expression Language Specification 3.0 • Public Review Release- June 18, 2012

1.23.5 Coerce A to Boolean or boolean 23

1.23.6 Coerce A to an Enum Type T 24

1.23.7 Coerce A to Any Other Type T 24

1.24 Collected Syntax 24

2. Operations on Collection Objects 41

2.1 Overview 41

2.2 Construction of Collection Objects 42

2.2.1 Set Construction 42

2.2.1.1 Syntax 42

2.2.1.2 Example 42

2.2.2 List Construction 42

2.2.2.1 Syntax 43

2.2.2.2 Example 43

2.2.3 Map Construction 43

2.2.3.1 Syntax 43

2.2.3.2 Example 43

2.3 Collection Operations 43

2.3.1 Stream and Pipeline 43

2.3.2 Operation Syntax Description 44

2.3.3 Implementation Classes 45

2.3.3.1 Stream 45

2.3.3.2 Optional 45

2.3.4 Functions 46

2.3.4.1 predicate 46

2.3.4.2 booleanSupplier 46

2.3.4.3 mapper 46

2.3.4.4 comparator 47

2.3.4.5 consumer 47

2.3.4.6 binaryOperator 47

2.3.5 filter 47
Contents xi

2.3.5.1 Syntax 47

2.3.5.2 Description 47

2.3.5.3 See 48

2.3.5.4 Example 48

2.3.6 map 48

2.3.6.1 Syntax 48

2.3.6.2 Description 48

2.3.6.3 See 48

2.3.6.4 Examples 48

2.3.7 flatMap 49

2.3.7.1 Syntax 49

2.3.7.2 Description 49

2.3.7.3 See 49

2.3.7.4 Example 49

2.3.8 distinct 49

2.3.8.1 Syntax 49

2.3.8.2 Description 49

2.3.8.3 Example 50

2.3.9 sorted 50

2.3.9.1 Syntax 50

2.3.9.2 Description 50

2.3.9.3 See 50

2.3.9.4 Examples 50

2.3.10 forEach 51

2.3.10.1 Syntax 51

2.3.10.2 Description 51

2.3.10.3 See 51

2.3.10.4 Example 51

2.3.11 forEachUntil 52

2.3.11.1 Syntax 52

2.3.11.2 Description 52
xii Expression Language Specification 3.0 • Public Review Release- June 18, 2012

2.3.11.3 See 52

2.3.11.4 Example 52

2.3.12 peek 52

2.3.12.1 Syntax 52

2.3.12.2 Description 52

2.3.12.3 See 53

2.3.12.4 Example 53

2.3.13 limit 53

2.3.13.1 Syntax 53

2.3.13.2 Description 53

2.3.13.3 Example 53

2.3.14 substream 54

2.3.14.1 Syntax 54

2.3.14.2 Description 54

2.3.14.3 Example 54

2.3.15 toArray 54

2.3.15.1 Syntax 54

2.3.15.2 Description 54

2.3.16 toList 55

2.3.16.1 Syntax 55

2.3.16.2 Description 55

2.3.17 reduce 55

2.3.17.1 Syntax 55

2.3.17.2 Description 55

2.3.17.3 See 55

2.3.17.4 Example 56

2.3.18 max 56

2.3.18.1 Syntax 56

2.3.18.2 Description 56

2.3.18.3 See 56

2.3.18.4 Examples 56
Contents xiii

2.3.19 min 56

2.3.19.1 Syntax 56

2.3.19.2 Description 57

2.3.19.3 See 57

2.3.20 average 57

2.3.20.1 Syntax 57

2.3.20.2 Description 57

2.3.21 sum 57

2.3.21.1 Syntax 57

2.3.21.2 Description 58

2.3.22 anyMatch 58

2.3.22.1 Syntax 58

2.3.22.2 Description 58

2.3.22.3 See 58

2.3.22.4 Example 58

2.3.23 allMatch 58

2.3.23.1 Syntax 58

2.3.23.2 Description 59

2.3.23.3 See 59

2.3.24 noneMatch 59

2.3.24.1 Syntax 59

2.3.24.2 Description 59

2.3.24.3 See 59

2.3.25 findFirst 59

2.3.25.1 Syntax 59

2.3.25.2 Description 60

2.3.25.3 See 60

2.3.26 findAny 60

2.3.26.1 Syntax 60

2.3.26.2 Description 60

2.3.26.3 See 60
xiv Expression Language Specification 3.0 • Public Review Release- June 18, 2012

A. Changes 61

A.1 New in 3.0 EDR 61

A.2 Imcompatibilities between EL 3.0 and EL 2.2 62

A.3 Changes between Maintenance 1 and Maintenance Release 2 62

A.4 Changes between 1.0 Final Release and Maintenance Release 1 63

A.5 Changes between Final Release and Proposed Final Draft 2 63

A.6 Changes between Public Review and Proposed Final Draft 64

A.7 Changes between Early Draft Release and Public Review 65
Contents xv

xvi Expression Language Specification 3.0 • Public Review Release- June 18, 2012

Preface

This is the Expression Language specification version 3.0, developed the JSR-341 (EL
3.0) expert groups under the Java Community Process. See http://www.jcp.org.

Historical Note
The EL was originally inspired by both ECMAScript and the XPath expression
languages. During its inception, the experts involved were very reluctant to design
yet another expression language and tried to use each of these languages, but they
fell short in different areas.

The JSP Standard Tag Library (JSTL) version 1.0 (based on JSP 1.2) was therefore first
to introduce an Expression Language (EL) to make it easy for page authors to access
and manipulate application data without having to master the complexity associated
with programming languages such as Java and JavaScript.

Given its success, the EL was subsequently moved into the JSP specification (JSP
2.0/JSTL 1.1), making it generally available within JSP pages (not just for attributes
of JSTL tag libraries).

JavaServer Faces 1.0 defined a standard framework for building User Interface
components, and was built on top of JSP 1.2 technology. Because JSP 1.2 technology
did not have an integrated expression language and because the JSP 2.0 EL did not
meet all of the needs of Faces, an EL variant was developed for Faces 1.0. The Faces
expert group (EG) attempted to make the language as compatible with JSP 2.0 as
possible but some differences were necessary.

It was obviously desirable to have a single, unified expression language that meets
the needs of the various web-tier technologies. The Faces and JSP EGs therefore
worked together on the specification of a unified expression language, defined in
JSR 245, and which took effect for the JSP 2.1 and Faces 1.2 releases.
xvii

The JSP/JSTL/Faces expert groups also acknowledged that the Expression
Language(EL) is useful beyond their own specifications. This specification is the first
JSR that defines the Expression Language as an independent specification, with no
dependencies on other technologies.

Typographical Conventions

Comments
We are interested in improving this specification and welcome your comments and
suggestions. We have a java.net project with an issue tracker and a mailing list for
comments and discussions about this specification.

Project:

http://java.net/projects/el-spec

Mail alias for comments:

users@el-spec.java.net

Font Style Uses

Italic Emphasis, definition of term.

Monospace
Syntax, code examples, attribute names, Java language types,
API, enumerated attribute values.
xviii Expression Language Specification 3.0 • Public Review Release- June 18, 2012

CHAPTER 1

Language Syntax and Semantics

The syntax and semantics of the Expression Language (EL) are described in this
chapter.

1.1 Overview
The EL was originally designed as a simple language to meet the needs of the
presentation layer in web applications. It features:

■ A simple syntax restricted to the evaluation of expressions

■ Variables and nested properties

■ Relational, logical, arithmetic, conditional, and empty operators

■ Functions implemented as static methods on Java classes

■ Lenient semantics where appropriate default values and type conversions are
provided to minimize exposing errors to end users

as well as

■ A pluggable API for resolving variable references into Java objects and for
resolving the properties applied to these Java objects

■ An API for deferred evaluation of expressions that refer to either values or
methods on an object

■ Support for lvalue expressions (expressions a value can be assigned to)

These last three features are key additions to the JSP 2.0 EL resulting from the EL
alignment work done in the JSP 2.1 and Faces 1.2 specifications.
1

EL 3.0 adds features to enable EL to be used as a stand-alone tool. It introduces APIs
for direct evaluation of EL expressions and manipulation of EL environments. It also
adds some powerful features to the language, such as the support of operations for
collection objects.

1.1.1 EL in a nutshell
The syntax is quite simple. Model objects are accessed by name. A generalized []
operator can be used to access maps, lists, arrays of objects and properties of a
JavaBeans object, and to invoke methods in a JavaBeans object; the operator can be
nested arbitrarily. The . operator can be used as a convenient shorthand for property
access when the property name follows the conventions of Java identifiers, but the
[] operator allows for more generalized access. Similarly, . operator can also be used
to invoke methods, when the method name is known, but the [] operator can be used
to invoke methods dynamically.

Relational comparisons are allowed using the standard Java relational operators.
Comparisons may be made against other values, or against boolean (for equality
comparisons only), string, integer, or floating point literals. Arithmetic operators can
be used to compute integer and floating point values. Logical operators are
available.

The EL features a flexible architecture where the resolution of model objects (and
their associated properties and methods), functions, and variables are all performed
through a pluggable API, making the EL easily adaptable to various environments.

1.2 EL Expressions
An EL expression is specified either as an eval-expression, or as a literal-expression. The
EL also supports composite expressions, where multiple EL expressions (eval-
expressions and literal-expressions) are grouped together.

An EL expression is parsed as either a value expression or a method expression. A value
expression refers to a value, whereas a method expression refers to a method on an
object. Once parsed, the expression can optionally be evaluated one or more times.

Each type of expression (eval-expression, literal-expression, and composite
expression) is described in its own section below.
2 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

1.2.1 Eval-expression
An eval-expression is formed by using the constructs ${expr} or #{expr}. Both
constructs are parsed and evaluated in exactly the same way by the EL, even though
they might carry different meanings in the technology that is using the EL.

For instance, by convention the JavaEE web tier specifications use the ${expr}
construct for immediate evaluation and the #{expr} construct for deferred
evaluation. This difference in delimiters points out the semantic differences between
the two expression types in the JavaEE web tier. Expressions delimited by "#{}" are
said to use "deferred evaluation" because the expression is not evaluated until its
value is needed by the system. Expressions delimited by "${}" are said to use
"immediate evaluation" because the expression is compiled when the JSP page is
compiled and it is executed when the JSP page is executed. More on this in
Section 1.2.4, “Syntax restrictions”.

Other technologies may choose to use the same convention. It is up to each
technology to enforce its own restrictions on where each construct can be used.

In some EL APIs, especially those introduced in EL 3.0 to support stand-alone use,
the EL expressions are specified without ${} or #{} delimiters.

Nested eval-expressions, such as ${item[${i}]}, are illegal.

1.2.1.1 Eval-expressions as value expressions

When parsed as a value expression, an eval-expression can be evaluated as either an
rvalue or an lvalue. An rvalue is an expression that would typically appear on the
right side of the assignment operator. An lvalue would typically appear on the left
side.

For instance, all EL expressions in JSP 2.0 are evaluated by the JSP engine
immediately when the page response is rendered. They all yield rvalues.

In the following JSTL action

 <c:out value="${customer.name}"/>

the expression ${customer.name} is evaluated by the JSP engine and the returned
value is fed to the tag handler and converted to the type associated with the
attribute (String in this case).

Faces, on the other hand, supports a full UI component model that requires
expressions to represent more than just rvalues. It needs expressions to represent
references to data structures whose value could be assigned, as well as to represent
methods that could be invoked.
Chapter 1 Language Syntax and Semantics 3

For example, in the following Faces code sample:

when the form is submitted, the "apply request values" phase of Faces evaluates the
EL expression #{checkOutFormBean.email} as a reference to a data structure
whose value is set with the input parameter it is associated with in the form. The
result of the expression therefore represents a reference to a data structure, or an
lvalue, the left hand side of an assignment operation.

When that same expression is evaluated during the rendering phase, it yields the
specific value associated with the object (rvalue), just as would be the case with JSP.

The valid syntax for an lvalue is a subset of the valid syntax for an rvalue. In
particular, an lvalue can only consist of either a single variable (e.g. ${name}) or a
property resolution on some object, via the . or [] operator (e.g.
${employee.name}). Of course, an EL function or method that returns either an
object or a name can be part of an lvalue.

When parsing a value expression, an expected type is provided. In the case of an
rvalue, the expected type is what the result of the expression evaluation is coerced
to. In the case of lvalues, the expected type is ignored and the provided value is
coerced to the actual type of the property the expression points to, before that
property is set. The EL type conversion rules are defined in Section 1.23, “Type
Conversion”. A few sample eval-expressions are shown in FIGURE 1-1.

FIGURE 1-1 Sample eval-expressions

<h:form>
 <h:inputText
 id="email"
 value="#{checkOutFormBean.email}"
 size="25" maxlength="125"
 validator="#{checkOutFormBean.validateEmail}"/>
</h:form>

Expression Expected Type Result

${customer.name} String
Guy Lafleur
Expression evaluates to a String. No
conversion necessary.

${book} String

Wonders of the World
Expression evaluates to a Book object
(e.g. com.example.Book). Conversion
rules result in the evaluation of
book.toString(), which could for
example yield the book title.
4 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

1.2.1.2 Eval-expressions as method expressions

In some cases, it is desirable for an EL expression to refer to a method instead of a
model object.

For instance, in JSF, a component tag also has a set of attributes for referencing
methods that can perform certain functions for the component associated with the
tag. To support these types of expressions, the EL defines method expressions (EL
class MethodExpression).

In the above example, the validator attribute uses an expression that is associated
with type MethodExpression. Just as with ValueExpressions, the evaluation of
the expression (calling the method) is deferred and can be processed by the
underlying technology at the appropriate moment within its life cycle.

A method expression shares the same syntax as an lvalue. That is, it can only consist
of either a single variable (e.g. ${name}) or a property resolution on some object, via
the . or [] operator (e.g. ${employee.name}). Information about the expected
return type and parameter types is provided at the time the method is parsed.

A method expression is evaluated by invoking its referenced method or by retrieving
information about the referenced method. Upon evaluation, if the expected signature
is provided at parse time, the EL API verifies that the method conforms to the
expected signature, and there is therefore no coercion performed. If the expected
signature is not provided at parse time, then at evaluation, the method is identified
with the information of the parameters in the expression, and the parameters are
coerced to the respective formal types.

1.2.2 Literal-expression
A literal-expression does not use the ${expr} or #{expr} constructs, and simply
evaluates to the text of the expression, of type String. Upon evaluation, an
expected type of something other than String can be provided. Sample literal-
expressions are shown in FIGURE 1-2.

FIGURE 1-2 Sample literal-expressions

To generate literal values that include the character sequence "${" or “#{“, the
developer can choose to use a composite expression as shown here:

Expression
Expected

Type
Result

Aloha! String Aloha!

true Boolean Boolean.TRUE
Chapter 1 Language Syntax and Semantics 5

${'${'}exprA}

#{'#{'}exprB}The resulting values would then be the strings ${exprA} and
#{exprB}.

Alternatively, the escape characters \$ and \# can be used to escape what would
otherwise be treated as an eval-expression. Given the literal-expressions:

\${exprA}

\#{exprB}

The resulting values would again be the strings ${exprA} and #{exprB}.

A literal-expression can be used anywhere a value expression can be used. A literal-
expression can also be used as a method expression that returns a non-void return
value. The standard EL coercion rules (see Section 1.23, “Type Conversion”) then
apply if the return type of the method expression is not java.lang.String.

1.2.3 Composite expressions
The EL also supports composite expressions, where multiple EL expressions are
grouped together. With composite expressions, eval-expressions are evaluated from
left to right, coerced to Strings (according to the EL type conversion rules), and
concatenated with any intervening literal-expressions.

For example, the composite expression “${firstName} ${lastName}” is
composed of three EL expressions: eval-expression “${firstName}”, literal-
expression “ “, and eval-expression “${lastName}”.

Once evaluated, the resulting String is then coerced to the expected type,
according to the EL type conversion rules. A sample composite expression is shown
in FIGURE 1-3.

FIGURE 1-3 Sample composite expression

Expression
Expected

Type
Result

Welcome
${customer.name} to
our site

String

Welcome Guy Lafleur to our
site
${customer.name} evaluates to a
String which is then concatenated with the
literal-expressions. No conversion
necessary.
6 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

It is illegal to mix ${} and #{} constructs in a composite expression. This
restriction is imposed to avoid ambiguities should a user think that using ${expr}
or #{expr} dictates how an expression is evaluated. For instance, as was mentioned
previously, the convention in the J2EE web tier specifications is for ${} to mean
immediate evaluation and for #{} to mean deferred evaluation. This means that in
EL expressions in the J2EE web tier, a developer cannot force immediate evaluation
of some parts of a composite expression and deferred evaluation of other parts. This
restriction may be lifted in future versions to allow for more advanced EL usage
patterns.

For APIs prior to EL 3.0, a composite expression can be used anywhere an EL
expression can be used except for when parsing a method expression. Only a single
eval-expression can be used to parse a method expression.

Some APIs in EL 3.0 use only single eval-expressions, and not the composite
expressions. However, there is no lost in functionality, since a composite expression
can be specified with a single eval-expressions, by using the string concatenation
operators, introduced in EL 3.0. For instance, the composite expression

Welcome ${customer.name} to our site

can be written as

${‘Welcome ‘ cat customer.name cat ‘ to our site’}.

1.2.4 Syntax restrictions
While ${} and #{} eval-expressions are parsed and evaluated in exactly the same
way by the EL, the underlying technology is free to impose restrictions on which
syntax can be used according to where the expression appears.

For instance, in JSP 2.1, #{} expressions are only allowed for tag attributes that
accept deferred expressions. #{expr} will generate an error if used anywhere else.

1.3 Literals
There are literals for boolean, integer, floating point, string, and null in an eval-
expression.

■ Boolean - true and false
■ Integer - As defined by the IntegerLiteral construct in Section 1.24
■ Floating point - As defined by the FloatingPointLiteral construct in

Section 1.24
Chapter 1 Language Syntax and Semantics 7

■ String - With single and double quotes - " is escaped as \", ' is escaped as \',
and \ is escaped as \\. Quotes only need to be escaped in a string value enclosed
in the same type of quote

■ Null - null

1.4 Errors, Warnings, Default Values
The Expression Language has been designed with the presentation layer of web
applications in mind. In that usage, experience suggests that it is most important to
be able to provide as good a presentation as possible, even when there are simple
errors in the page. To meet this requirement, the EL does not provide warnings, just
default values and errors. Default values are type-correct values that are assigned to
a subexpression when there is some problem. An error is an exception thrown (to be
handled by the environment where the EL is used).

1.5 Resolution of Model Objects and their
Properties or Methods
A core concept in the EL is the evaluation of a model object name into an object, and
the resolution of properties or methods applied to objects in an expression (operators
. and []).

The EL API provides a generalized mechanism, an ELResolver, implemented by
the underlying technology and which defines the rules that govern the resolution of
model object names and their associated properties.

1.6 Operators [] and .
The EL follows ECMAScript in unifying the treatment of the . and [] operators.

expr-a.identifier-b is equivalent to expr-a["identifier-b"]; that is, the
identifier identifier-b is used to construct a literal whose value is the identifier,
and then the [] operator is used with that value.

Similarly, expr-a.identifier-b(params)is equivalent to expr-
a["identifier-b"](params).
8 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

The expression expr-a["identifier-b"](params)denotes a parametered
method invocation, where params is a comma-separated list of expressions
denoting the parameters for the method call.

To evaluate expr-a[expr-b] or expr-a[expr-b](params):

■ Evaluate expr-a into value-a.

■ If value-a is null:

■ If expr-a[expr-b] is the last property being resolved:

■ If the expression is a value expression and
ValueExpression.getValue(context) was called to initiate this
expression evaluation, return null.

■ Otherwise, throw PropertyNotFoundException.
[trying to de-reference null for an lvalue]

■ Otherwise, return null.

■ Evaluate expr-b into value-b .

■ If value-b is null:

■ If expr-a[expr-b] is the last property being resolved:

■ If the expression is a value expression and
ValueExpression.getValue(context) was called to initiate this
expression evaluation, return null.

■ Otherwise, throw PropertyNotFoundException.
[trying to de-reference null for an lvalue]

■ Otherwise, return null.

■ If the expression is a value expression:

■ If expr-a[expr-b] is the last property being resolved:

■ If ValueExpression.getValue(context) was called to initiate this
expression evaluation.

■ If the expression is a parametered method call, evaluate params into
param-values, and invoke elResolver.invoke(context, value-
a, value-b, null, param-values).

■ Otherwise, invoke elResolver.getValue(value-a, value-b).

■ If ValueExpression.getType(context) was called, invoke
elResolver.getType(context, value-a, value-b).

■ If ValueExpression.isReadOnly(context) was called, invoke
elResolver.isReadOnly(context, value-a, value-b).

■ If ValueExpression.setValue(context, val) was called, invoke
elResolver.setValue(context, value-a, value-b, val).

■ Otherwise:
Chapter 1 Language Syntax and Semantics 9

■ If the expression is a parametered method call, evaluate params into
param-values, and invoke elResolver.invoke(context, value-a,
value-b, null, params).

■ Otherwise, invoke elResolver.getValue(value-a, value-b).

■ Otherwise, the expression is a method expression:

■ If expr-a[expr-b] is the last property being resolved:

■ Coerce value-b to String.

■ If the expression is not a parametered method call, find the method on
object value-a with name value-b and with the set of expected parameter
types provided at parse time. If the method does not exist, or the return type
does not match the expected return type provided at parse time, throw
MethodNotFoundException.

■ If MethodExpression.invoke(context, params) was called:

■ If the expression is a parametered method call, evaluate params into
param-values, and invoke elResolver.invoke(context, value-
a, value-b, paramTypes, param-values), where paramTypes
is the parameter types, if provided at parse time, and
is null otherwise.

■ Otherwise, invoke the found method with the parameters passed to the
invoke method.

■ If MethodExpression.getMethodInfo(context) was called, construct
and return a new MethodInfo object.

■ Otherwise:

■ If the expression is a parametered method call, evaluate params into
param-values, and invoke elResolver.invoke(context, value-a,
value-b, null, params).

■ Otherwise, invoke elResolver.getValue(value-a, value-b).

1.7 Arithmetic Operators
Arithmetic is provided to act on integer (BigInteger and Long) and floating point
(BigDecimal and Double) values. There are 5 operators:

■ Addition: +

■ Substraction: -

■ Multiplication: *

■ Division: / and div
10 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

■ Remainder (modulo): % and mod

The last two operators are available in both syntaxes to be consistent with XPath and
ECMAScript.

The evaluation of arithmetic operators is described in the following sections. A and B
are the evaluation of subexpressions

1.7.1 Binary operators - A {+,-,*} B
■ If A and B are null, return (Long)0

■ If A or B is a BigDecimal, coerce both to BigDecimal and then:

■ If operator is +, return A.add(B)

■ If operator is -, return A.subtract(B)

■ If operator is *, return A.multiply(B)

■ If A or B is a Float, Double, or String containing ., e, or E:

■ If A or B is BigInteger, coerce both A and B to BigDecimal and apply
operator.

■ Otherwise, coerce both A and B to Double and apply operator

■ If A or B is BigInteger, coerce both to BigInteger and then:

■ If operator is +, return A.add(B)

■ If operator is -, return A.subtract(B)

■ If operator is *, return A.multiply(B)

■ Otherwise coerce both A and B to Long and apply operator

■ If operator results in exception, error

1.7.2 Binary operator - A {/,div} B
■ If A and B are null, return (Long)0

■ If A or B is a BigDecimal or a BigInteger, coerce both to BigDecimal and
return A.divide(B, BigDecimal.ROUND_HALF_UP)

■ Otherwise, coerce both A and B to Double and apply operator

■ If operator results in exception, error

1.7.3 Binary operator - A {%,mod} B
■ If A and B are null, return (Long)0
Chapter 1 Language Syntax and Semantics 11

■ If A or B is a BigDecimal, Float, Double, or String containing ., e, or E,
coerce both A and B to Double and apply operator

■ If A or B is a BigInteger, coerce both to BigInteger and return
A.remainder(B).

■ Otherwise coerce both A and B to Long and apply operator

■ If operator results in exception, error

1.7.4 Unary minus operator - -A
■ If A is null, return (Long)0

■ If A is a BigDecimal or BigInteger, return A.negate().

■ If A is a String:

■ If A contains ., e, or E, coerce to a Double and apply operator

■ Otherwise, coerce to a Long and apply operator

■ If operator results in exception, error

■ If A is Byte, Short, Integer, Long, Float, Double

■ Retain type, apply operator

■ If operator results in exception, error

■ Otherwise, error

1.8 String Concatenation Operator - A cat
B
To evaluate A cat B

■ Coerce A and B to String.

■ Return the concatenated string of A and B.

1.9 Relational Operators
The relational operators are:

■ == and eq
12 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

■ != and ne

■ < and lt

■ > and gt

■ <= and le

■ >= and ge

The second versions of the last 4 operators are made available to avoid having to use
entity references in XML syntax and have the exact same behavior, i.e. < behaves the
same as lt and so on.

The evaluation of relational operators is described in the following sections.

1.9.1 A {<,>,<=,>=,lt,gt,le,ge} B
■ If A==B, if operator is <=, le, >=, or ge return true.

■ If A is null or B is null, return false

■ If A or B is BigDecimal, coerce both A and B to BigDecimal and use the return
value of A.compareTo(B).

■ If A or B is Float or Double coerce both A and B to Double apply operator

■ If A or B is BigInteger, coerce both A and B to BigInteger and use the return
value of A.compareTo(B).

■ If A or B is Byte, Short, Character, Integer, or Long coerce both A and B to
Long and apply operator

■ If A or B is String coerce both A and B to String, compare lexically

■ If A is Comparable, then:

■ If A.compareTo(B) throws exception, error.

■ Otherwise use result of A.compareTo(B)

■ If B is Comparable, then:

■ If B.compareTo(A) throws exception, error.

■ Otherwise use result of B.compareTo(A)

■ Otherwise, error

1.9.2 A {==,!=,eq,ne} B
■ If A==B, apply operator

■ If A is null or B is null return false for == or eq, true for != or ne.

■ If A or B is BigDecimal, coerce both A and B to BigDecimal and then:
Chapter 1 Language Syntax and Semantics 13

■ If operator is == or eq, return A.equals(B)

■ If operator is != or ne, return !A.equals(B)

■ If A or B is Float or Double coerce both A and B to Double, apply operator

■ If A or B is BigInteger, coerce both A and B to BigInteger and then:

■ If operator is == or eq, return A.equals(B)

■ If operator is != or ne, return !A.equals(B)

■ If A or B is Byte, Short, Character, Integer, or Long coerce both A and B to
Long, apply operator

■ If A or B is Boolean coerce both A and B to Boolean, apply operator

■ If A or B is an enum, coerce both A and B to enum, apply operator

■ If A or B is String coerce both A and B to String, compare lexically

■ Otherwise if an error occurs while calling A.equals(B), error

■ Otherwise, apply operator to result of A.equals(B)

1.10 Logical Operators
The logical operators are:

■ && and and

■ || and or

■ ! and not

The evaluation of logical operators is described in the following sections.

1.10.1 Binary operator - A {&&,||,and,or} B
■ Coerce both A and B to Boolean, apply operator

The operator stops as soon as the expression can be determined, i.e., A and B and
C and D – if B is false, then only A and B is evaluated.

1.10.2 Unary not operator - {!,not} A
■ Coerce A to Boolean, apply operator
14 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

1.11 Empty Operator - empty A
The empty operator is a prefix operator that can be used to determine if a value is
null or empty.

To evaluate empty A

■ If A is null, return true

■ Otherwise, if A is the empty string, then return true

■ Otherwise, if A is an empty array, then return true

■ Otherwise, if A is an empty Map, return true

■ Otherwise, if A is an empty Collection, return true

■ Otherwise return false

1.12 Conditional Operator - A ? B : C
Evaluate B or C, depending on the result of the evaluation of A.

■ Coerce A to Boolean:

■ If A is true, evaluate and return B

■ If A is false, evaluate and return C

1.13 Assignment Operator - A = B
Assign the value of B to A. A must be a lvalue, otherwise, a
PropertyNotWritableException will be thrown.

The assignment operator is right-associative. For instance, A=B=C is the same as A=
(B=C).

To evaluate expr-a = expr-b,

■ Evaluate expr-a, up to the last property reolution, to (base-a, prop-a)

■ If base-a is null, and prop-a is a String,

■ If prop-a is a Lambda parameter, throw a
PropertyNotWritableException
Chapter 1 Language Syntax and Semantics 15

■ If prop-a is an EL variable (see Section 1.19), evaluate the ValueExpression
the variable was set to, to obtain the new (base-a, prop-a)

■ Evaluate expr-b, to value-b

■ Invoke ELResolver.setValue(base-a, prop-a, value-b)

■ Return value-b

The behavior of the assignment operator is determined by the ELResolver. For
instance, in a stand-alone environment, the class StandardELContext contains a
default ELResolver that allows the assignment of an expression to a non-existing
name, resulting in the creation of a bean with the given name in the local bean
repository.

1.14 Semicolon Operator - A ; B
The semicolon operators behaves like the comma operator in C.

To evaluate A;B, A is first evaluated, and its value is discarded. B is then evaluated
and its value is returned.

1.15 Parentheses
Parentheses can be used to change precedence, as in: ${(a*(b+c))}

1.16 Operator Precedence
Highest to lowest, left-to-right.

■ [] .

■ ()

■ - (unary) not ! empty

■ * / div % mod

■ + - (binary)

■ cat

■ < > <= >= lt gt le ge
16 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

■ == != eq ne

■ && and

■ || or

■ ? :

■ -> (Lambda Expression)

■ =

■ ;

Qualified functions with a namespace prefix have precedence over the operators.
Thus the expression ${c?b:f()} is illegal because b:f() is being parsed as a
qualified function instead of part of a conditional expression. As usual, () can be
used to make the precedence explicit, e.g ${c?b:(f())}.

The symbol -> in a Lambda Expression behaves like an operator for the purpose of
ordering the operator precedence, and it has a higher precedence than the
assignment and semicolon operators. The following examples illustrates when () is
and is not needed.

v = x->x+1

x-> (a=x)

 x-> c?x+1:x+2

All operators are left associative except for the ?:, =, and -> operators, which are
right associative. For instance, a=b=c is the parsed as a=(b=c), and x->y->x+y is
parsed as x->(y->x+y).

1.17 Reserved Words
The following words are reserved for the language and must not be used as
identifiers.

and eq gt true instanceof
or ne le false empty
not lt ge null div

mod cat

Note that many of these words are not in the language now, but they may be in the
future, so developers must avoid using these words.
Chapter 1 Language Syntax and Semantics 17

1.18 Functions
The EL has qualified functions, reusing the notion of qualification from XML
namespaces (and attributes), XSL functions, and JSP custom actions. Functions are
mapped to public static methods in Java classes.

The full syntax is that of qualified n-ary functions:

[ns:]f([a1[,a2[,...[,an]]]])

Where ns is the namespace prefix, f is the name of the function, and a is an
argument.

EL functions are mapped, resolved and bound at parse time. It is the responsibility
of the FunctionMapper class to provide the mapping of namespace-qualified
functions to static methods of specific classes when expressions are created. If no
FunctionMapper is provided (by passing in null), functions are disabled.

1.19 Variables
Just like FunctionMapper provides a flexible mechanism to add functions to the
EL, VariableMapper provides a flexible mechanism to support the notion of EL
variables. An EL variable does not directly refer to a model object that can then be
resolved by an ELResolver. Instead, an EL variable refers to an EL expression. The
evaluation of that EL expression yields the value associated with the EL variable.

EL variables are mapped, resolved and bound at parse time. It is the responsibility of
the VariableMapper class to provide the mapping of EL variables to
ValueExpressions when expressions are created. If no VariableMapper is
provided (by passing in null), variable mapping is disabled.

See the javax.el package description for more details.

1.20 Lambda Expressions
A lambda expression is a ValueExpression with parameters. The syntax is similar
to the lambda expression in the Java Language, except that in EL, the body of the
Lambda expression is an EL expression. These are some examples:
18 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

■ x->x+1

■ (x,y)->x+y

■ ()->64

The identifiers to the left of -> are lambda parameters. The parenthesis is optional if
and only if there is one parameter.

A Lambda expression behaves like a function. It can be invoked immediately,

■ ((x,y)->x+y)(3,4) evaluates to 7.

When a lambda expression is assigned, it can be referenced and invoked indirectly,

■ v = (x,y)->x+y; v(3,4) evaluates to 7

■ fact = n -> n==0? 1: n*fact(n-1); fact(5) evaluates to 120

It can also be passed as an argument to a method, and be invoked in the method, by
invoking javax.el.LambdaExpression.invoke(), such as

■ employees.where(e->e.firstName == ‘Bob’)

When a lambda expression is invoked, the expression in the body is evaluated, with
its formal parameters replaced by the arguments supplied at the invocation. The
number of arguments must be equal to or more than the number the formal
parameters. Any extra arguments are ignored.

A lambda expression can be nested within another lambda expression, like

■ customers.select(c->[c.name, c.orders.sum(o->o.total)])

The scope of a lambda argument is the body of the lambda expression. A lambda
argument hides other EL variables, identifiers or arguments of the nesting lambda
expressions, of the same name.

Note that for the case of nested lambda expressions where the inner body contains
references to parameters of both lambda expressions, such as

■ x->y->x+y

the scope of the outer lamdba parameters extends to cover the inner body. For
instance, with the above example, the argument x must be in scope when x+y is
evaluated, even though the outer lambda expression has already been executed.

1.21 Enums
The Unified EL supports Java SE 5 enumerated types. Coercion rules for dealing
with enumerated types are included in the following section. Also, when referring
to values that are instances of an enumerated type from within an EL expression, use
Chapter 1 Language Syntax and Semantics 19

the literal string value to cause coercion to happen via the below rules. For example,
Let’s say we have an enum called Suit that has members Heart, Diamond,
Club, and Spade. Furthermore, let’s say we have a reference in the EL, mySuit,
that is a Spade. If you want to test for equality with the Spade enum, you would
say ${mySuit == ’Spade’}. The type of the mySuit will trigger the invocation of
Enum.valueOf(Suit.class, ’Spade’).

1.22 Static Field and Method Reference
A static field or static method of a Java class can be referenced with the syntax
classname.field, such as

Boolean.TRUE

the classname is the name of a class, without the package name.

An enum constant is a public static field, so the same syntax can be used to refer to
an enum constant, like the following:

RoundingMode.FLOOR

1.22.1 Access Restrictions and Imports
For security, the following restrictions are enforced.

1. Only the public static fields and methods can be referenced.

2. Static fields cannot be modified.

3. Except for classes with java.lang.* package names, a class has to be explicitly
imported before its static fields or methods can be referenced.

1.22.2 Imports of Classes and Packages
Either a class or a package can be explicitly imported into the EL evaluation
environment. Importing a package imports all the classes in the package. The
classes that can be imported are restricted to the classes that can be loaded by the
current class loader.

By default, the following packages are imported by the EL environment.

java.lang.*
20 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

A static field can also be imported statically. A statically imported static field can be
referenced by the field name, without the classname.

1.22.3 Special Fields and Methods
The field class refers to the java.lang.Class instance of the class. For
instance, the expression

Boolean.class

evaluates to the object java.lang.Boolean.class.

A class name reference, followed by arguments in parenthesis, such as

Boolean(true)

denotes the invocation of the constructor of the class with the supplied arguments.
The same restrictions (must be public and has already been imported) for static
fields applies to the construtor calls.

1.23 Type Conversion
Every expression is evaluated in the context of an expected type. The result of the
expression evaluation may not match the expected type exactly, so the rules
described in the following sections are applied.

Custom type conversions can also be specified in an ELResolver by implementing
the method convertToType. More than one ELResolvers can be specified for
performing conversion from object to different types, and they are applied in the
order of their positions in the ELResolver chain, as usual.

During expression evaluations, the custom type converters are first selected and
applied. If there is no custom type converter for the conversion, the default
conversions specified in the following sections are used.

1.23.1 To Coerce a Value X to Type Y
■ If X is null and Y is not a primitive type and also not a String, return null.

■ If X is of a primitive type, Let X’ be the equivalent “boxed form” of X.
Otherwise, Let X’ be the same as X.

■ If Y is of a primitive type, Let Y’ be the equivalent “boxed form” of Y.
Otherwise, Let Y’ be the same as Y.
Chapter 1 Language Syntax and Semantics 21

■ Apply the rules in Sections 1.23.2-1.23.7 for coercing X’ to Y’.

■ If Y is a primitive type, then the result is found by "unboxing" the result of the
coercion. If the result of the coercion is null, then error.

■ If Y is not a primitive type, then the result is the result of the coercion.

For example, if coercing an int to a String, "box" the int into an Integer and
apply the rule for coercing an Integer to a String. Or if coercing a String to a
double, apply the rule for coercing a String to a Double, then "unbox" the
resulting Double, making sure the resulting Double isn’t actually null.

1.23.2 Coerce A to String
■ If A is null: return “”

■ Otherwise, if A is String: return A

■ Otherwise, if A is Enum, return A.name()

■ Otherwise, if A.toString() throws an exception, error

■ Otherwise, return A.toString()

1.23.3 Coerce A to Number type N
■ If A is null and N is not a primitive type, return null.

■ If A is null or "", return 0.

■ If A is Character, convert A to new Short((short)a.charValue()), and
apply the following rules.

■ If A is Boolean, then error.

■ If A is Number type N, return A

■ If A is Number, coerce quietly to type N using the following algorithm:

■ If N is BigInteger
■ If A is a BigDecimal, return A.toBigInteger()
■ Otherwise, return BigInteger.valueOf(A.longValue())

■ If N is BigDecimal,
■ If A is a BigInteger, return new BigDecimal(A)
■ Otherwise, return new BigDecimal(A.doubleValue())

■ If N is Byte, return new Byte(A.byteValue())

■ If N is Short, return new Short(A.shortValue())

■ If N is Integer, return new Integer(A.intValue())

■ If N is Long, return new Long(A.longValue())

■ If N is Float, return new Float(A.floatValue())
22 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

■ If N is Double, return new Double(A.doubleValue())

■ Otherwise, error.

■ If A is String, then:

■ If N is BigDecimal then:
■ If new BigDecimal(A) throws an exception then error.
■ Otherwise, return new BigDecimal(A).

■ If N is BigInteger then:
■ If new BigInteger(A) throws an exception then error.
■ Otherwise, return new BigInteger(A).

■ If N.valueOf(A) throws an exception, then error.

■ Otherwise, return N.valueOf(A).

■ Otherwise, error.

1.23.4 Coerce A to Character or char
■ If A is null and the target type is not the primitive type char, return null

■ If A is null or "", return (char)0

■ If A is Character, return A

■ If A is Boolean, error

■ If A is Number, coerce quietly to type Short, then return a Character whose
numeric value is equivalent to that of a Short.

■ If A is String, return A.charAt (0)

■ Otherwise, error

1.23.5 Coerce A to Boolean or boolean
■ If A is null and the target type is not the primitive type boolean, return null

■ If A is null or "", return false

■ Otherwise, if A is a Boolean, return A

■ Otherwise, if A is a String, and Boolean.valueOf(A) does not throw an
exception, return it

■ Otherwise, error
Chapter 1 Language Syntax and Semantics 23

1.23.6 Coerce A to an Enum Type T
■ If A is null, return null

■ If A is assignable to T, coerce quietly

■ If A is "", return null.

■ If A is a String call Enum.valueOf(T.getClass(), A) and return the result.

1.23.7 Coerce A to Any Other Type T
■ If A is null, return null

■ If A is assignable to T, coerce quietly

■ If A is a String, and T has no PropertyEditor:

■ If A is "", return null

■ Otherwise error

■ If A is a String and T's PropertyEditor throws an exception:

■ If A is "", return null

■ Otherwise, error

■ Otherwise, apply T's PropertyEditor

■ Otherwise, error

1.24 Collected Syntax
The following is a javaCC grammar with syntax tree generation. It is meant to be
used as a guide and reference only.

/* == Option Declaration == */

options

{

 STATIC=false;

 NODE_PREFIX="Ast";

 VISITOR_EXCEPTION="javax.el.ELException";

 VISITOR=false;

 MULTI=true;
24 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

 NODE_DEFAULT_VOID=true;

 JAVA_UNICODE_ESCAPE=false;

 UNICODE_INPUT=true;

 BUILD_NODE_FILES=true;

}

/* == Parser Declaration == */

PARSER_BEGIN(ELParser)

package com.sun.el.parser;

import java.io.StringReader;

import javax.el.ELException;

public class ELParser

{

 public static Node parse(String ref) throws ELException

 {

 try {

 return (new ELParser(new
StringReader(ref))).CompositeExpression();

 } catch (ParseException pe) {

 throw new ELException(pe.getMessage());

 }

 }

}

PARSER_END(ELParser)

/*

 * CompositeExpression

 * Allow most flexible parsing, restrict by examining

 * type of returned node

 */

AstCompositeExpression CompositeExpression() #CompositeExpression :
{}

{

 (DeferredExpression() |

 DynamicExpression() |

 LiteralExpression())* <EOF> { return jjtThis; }

}

Chapter 1 Language Syntax and Semantics 25

/*

 * LiteralExpression

 * Non-EL Expression blocks

 */

void LiteralExpression() #LiteralExpression : { Token t = null; }

{

 t=<LITERAL_EXPRESSION> { jjtThis.setImage(t.image); }

}

/*

 * DeferredExpression

 * #{..} Expressions

 */

void DeferredExpression() #DeferredExpression : {}

{

 <START_DEFERRED_EXPRESSION> Expression() <RCURL>

}

/*

 * DynamicExpression

 * ${..} Expressions

 */

void DynamicExpression() #DynamicExpression : {}

{

 <START_DYNAMIC_EXPRESSION> Expression() <RCURL>

}

/*

 * Expression

 * EL Expression Language Root

 */

void Expression() : {}

{

 SemiColon()

}

/*
26 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

 * SemiColon

 */

void SemiColon() : {}

{

 Assignment() (<SEMICOLON> Assignment() #SemiColon(2))*

}

/*

 * Assignment

 * For '=', right associatve, then LambdaExpression or Choice or
Assignment

 */

void Assignment() : {}

{

 LOOKAHEAD(3) LambdaExpression() |

 Choice() (<ASSIGN> Assignment() #Assign(2))?

}

/*

 * LambdaExpression

 */

void LambdaExpression() #LambdaExpression : {}

{

 LambdaParameters() <ARROW>

 (LOOKAHEAD(3) LambdaExpression() | Choice())

}

void LambdaParameters() #LambdaParameters: {}

{

 Identifier()

 | <LPAREN (Identifier() (<COMMA> Identifier())*)? <RPAREN>

}

/*

 * Choice

 * For Choice markup a ? b : c, right associative
Chapter 1 Language Syntax and Semantics 27

 */

void Choice() : {}

{

 Or() (<QUESTIONMARK> Choice() <COLON> Choice() #Choice(3))?

}

/*

 * Or

 * For 'or' '||', then And

 */

void Or() : {}

{

 And() ((<OR0>|<OR1>) And() #Or(2))*

}

/*

 * And

 * For 'and' '&&', then Equality

 */

void And() : {}

{

 Equality() ((<AND0>|<AND1>) Equality() #And(2))*

}

/*

 * Equality

 * For '==' 'eq' '!=' 'ne', then Compare

 */

void Equality() : {}

{

 Compare()

 (

 ((<EQ0>|<EQ1>) Compare() #Equal(2))

 |

 ((<NE0>|<NE1>) Compare() #NotEqual(2))

)*

}

28 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

/*

 * Compare

 * For a bunch of them, then Math

 */

void Compare() : {}

{

 Concatenation()

 (

 ((<LT0>|<LT1>) Concatenation() #LessThan(2))

 |

 ((<GT0>|<GT1>) Concatenation() #GreaterThan(2))

 |

 ((<LE0>|<LE1>) Concatenation() #LessThanEqual(2))

 |

 ((<GE0>|<GE1>) Concatenation() #GreaterThanEqual(2))

)*

}

/*

 * Concatenation

 * For 'cat', then Math()

 */

void Concatenation() : {}

{

 Math() (<CONCAT> Math() #Concat(2))*

}

/*

 * Math

 * For '+' '-', then Multiplication

 */

void Math() : {}

{

 Multiplication()

 (

 (<PLUS> Multiplication() #Plus(2))
Chapter 1 Language Syntax and Semantics 29

 |

 (<MINUS> Multiplication() #Minus(2))

)*

}

/*

 * Multiplication

 * For a bunch of them, then Unary

 */

void Multiplication() : {}

{

 Unary()

 (

 (<MULT> Unary() #Mult(2))

 |

 ((<DIV0>|<DIV1>) Unary() #Div(2))

 |

 ((<MOD0>|<MOD1>) Unary() #Mod(2))

)*

}

/*

 * Unary

 * For '-' '!' 'not' 'empty', then Value

 */

void Unary() : {}

{

 <MINUS> Unary() #Negative

 |

 (<NOT0>|<NOT1>) Unary() #Not

 |

 <EMPTY> Unary() #Empty

 |

 Value()

}

/*

 * Value
30 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

 * Defines Prefix plus zero or more Suffixes

 */

void Value() : {}

{

 (ValuePrefix() (ValueSuffix())*) #Value(>1)

}

/*

 * ValuePrefix

 * For Literals, Variables, and Functions

 */

void ValuePrefix() : {}

{

 Literal() | NonLiteral()

}

/*

 * ValueSuffix

 * Either dot or bracket notation

 */

void ValueSuffix() : {}

{

 DotSuffix() | BracketSuffix()

}

/*

 * DotSuffix

 * Dot Property and Dot Method

 */

void DotSuffix() #DotSuffix : { Token t = null; }

{

 <DOT> t=<IDENTIFIER> { jjtThis.setImage(t.image); }

 (MethodArguments())?

}

/*

 * BracketSuffix
Chapter 1 Language Syntax and Semantics 31

 * Sub Expression Suffix

 */

void BracketSuffix() #BracketSuffix : {}

{

 <LBRACK> Expression() <RBRACK>

 (MethodArguments())?

}

/*

 * MethodArguments

 */

void MethodArguments() #MethodArguments : {}

{

 <LPAREN> (Expression() (<COMMA> Expression())*)? <RPAREN>

}

/*

 * Parenthesized Lambda Expression, with optional invokation

 */

void LambdaExpressionOrCall() #LambdaExpression : {}

{

 <LPAREN>

 LambdaParameters() <ARROW>

 (LOOKAHEAD(3) LambdaExpression() | Choice())

 <RPAREN>

 (MethodArguments())*

}

/*

 * NonLiteral

 * For Grouped Operations, Identifiers, and Functions

 */

void NonLiteral() : {}

{

 LOOKAHEAD(4) LambdaExpressionOrCall()

 | <LPAREN> Expression() <RPAREN>

 | LOOKAHEAD(4) Function()
32 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

 | Identifier()

 | MapData()

 | ListData()

}

void MapData() #MapData: {}

{

 <START_MAP>

 (MapEntry() (<COMMA> MapEntry())*)?

 <RCURL>

}

void MapEntry() #MapEntry: {}

{

 Expression() (<COLON> Expression())?

}

void ListData() #ListData: {}

{

 <LBRACK>

 (Expression() (<COMMA> Expression())*)?

 <RBRACK>

}

/*

 * Identifier

 * Java Language Identifier

 */

void Identifier() #Identifier : { Token t = null; }

{

 t=<IDENTIFIER> { jjtThis.setImage(t.image); }

}

/*

 * Function

 * Namespace:Name(a,b,c)

 */
Chapter 1 Language Syntax and Semantics 33

void Function() #Function :

{

 Token t0 = null;

 Token t1 = null;

}

{

 t0=<IDENTIFIER> (<COLON> t1=<IDENTIFIER>)?

 {

 if (t1 != null) {

 jjtThis.setPrefix(t0.image);

 jjtThis.setLocalName(t1.image);

 } else {

 jjtThis.setLocalName(t0.image);

 }

 }

 (MethodArguments())+

}

/*

 * Literal

 * Reserved Keywords

 */

void Literal() : {}

{

 Boolean()

 | FloatingPoint()

 | Integer()

 | String()

 | Null()

}

/*

 * Boolean

 * For 'true' 'false'

 */

void Boolean() : {}

{

 <TRUE> #True
34 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

 | <FALSE> #False

}

/*

 * FloatinPoint

 * For Decimal and Floating Point Literals

 */

void FloatingPoint() #FloatingPoint : { Token t = null; }

{

 t=<FLOATING_POINT_LITERAL> { jjtThis.setImage(t.image); }

}

/*

 * Integer

 * For Simple Numeric Literals

 */

void Integer() #Integer : { Token t = null; }

{

 t=<INTEGER_LITERAL> { jjtThis.setImage(t.image); }

}

/*

 * String

 * For Quoted Literals

 */

void String() #String : { Token t = null; }

{

 t=<STRING_LITERAL> { jjtThis.setImage(t.image); }

}

/*

 * Null

 * For 'null'

 */

void Null() #Null : {}

{

 <NULL>

}

/* ===
========= */TOKEN_MGR_DECLS:
Chapter 1 Language Syntax and Semantics 35

{

 java.util.Stack<Integer> stack = new java.util.Stack<Integer>();

}

<DEFAULT> TOKEN :

{

 < LITERAL_EXPRESSION:

 ((~["\\", "$", "#"])

 | ("\\" ("\\" | "$" | "#"))

 | ("$" ~["{", "$"])

 | ("#" ~["{", "#"])

)+

 | "$"

 | "#"

 >

|

 < START_DYNAMIC_EXPRESSION: "${" > {stack.push(DEFAULT);}:
IN_EXPRESSION

|

 < START_DEFERRED_EXPRESSION: "#{" > {stack.push(DEFAULT);}:
IN_EXPRESSION

}

<DEFAULT> SKIP : { "\\" }

<IN_EXPRESSION, IN_MAP> SKIP:

{ " " | "\t" | "\n" | "\r" }

<IN_EXPRESSION, IN_MAP> TOKEN :

{

 < START_MAP : "{" > {stack.push(curLexState);}: IN_MAP

| < RCURL: "}" > {SwitchTo(stack.pop());}

| < INTEGER_LITERAL: ["0"-"9"] (["0"-"9"])* >

| < FLOATING_POINT_LITERAL: (["0"-"9"])+ "." (["0"-"9"])*
(<EXPONENT>)?

 | "." (["0"-"9"])+ (<EXPONENT>)?

 | (["0"-"9"])+ <EXPONENT>
36 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

 >

| < #EXPONENT: ["e","E"] (["+","-"])? (["0"-"9"])+ >

| < STRING_LITERAL: ("\"" ((~["\"","\\"])

 | ("\\" (["\\","\""])))* "\"")

 | ("\'" ((~["\'","\\"])

 | ("\\" (["\\","\'"])))* "\'")

 >

| < BADLY_ESCAPED_STRING_LITERAL: ("\"" (~["\"","\\"])* ("\\"
(~["\\","\""])))

 | ("\'" (~["\'","\\"])* ("\\" (~["\\","\'"])))

 >

| < TRUE : "true" >

| < FALSE : "false" >

| < NULL : "null" >

| < DOT : "." >

| < LPAREN : "(" >

| < RPAREN : ")" >

| < LBRACK : "[" >

| < RBRACK : "]" >

| < COLON : ":" >

| < COMMA : "," >

| < SEMICOLON : ";" >

| < GT0 : ">" >

| < GT1 : "gt" >

| < LT0 : "<" >

| < LT1 : "lt" >

| < GE0 : ">=" >

| < GE1 : "ge" >

| < LE0 : "<=" >

| < LE1 : "le" >

| < EQ0 : "==" >

| < EQ1 : "eq" >

| < NE0 : "!=" >

| < NE1 : "ne" >

| < NOT0 : "!" >

| < NOT1 : "not" >
Chapter 1 Language Syntax and Semantics 37

| < AND0 : "&&" >

| < AND1 : "and" >

| < OR0 : "||" >

| < OR1 : "or" >

| < EMPTY : "empty" >

| < INSTANCEOF : "instanceof" >

| < MULT : "*" >

| < PLUS : "+" >

| < MINUS : "-" >

| < QUESTIONMARK : "?" >

| < DIV0 : "/" >

| < DIV1 : "div" >

| < MOD0 : "%" >

| < MOD1 : "mod" >

| < CONCAT : "cat" >

| < ASSIGN : "=" >

| < ARROW : "->" >

| < IDENTIFIER : (<LETTER>|<IMPL_OBJ_START>) (<LETTER>|<DIGIT>)* >

| < #IMPL_OBJ_START: "#" >

| < #LETTER:

 [

 "\u0024",

 "\u0041"-"\u005a",

 "\u005f",

 "\u0061"-"\u007a",

 "\u00c0"-"\u00d6",

 "\u00d8"-"\u00f6",

 "\u00f8"-"\u00ff",

 "\u0100"-"\u1fff",

 "\u3040"-"\u318f",

 "\u3300"-"\u337f",

 "\u3400"-"\u3d2d",

 "\u4e00"-"\u9fff",

 "\uf900"-"\ufaff"

]

 >
38 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

| < #DIGIT:

 [

 "\u0030"-"\u0039",

 "\u0660"-"\u0669",

 "\u06f0"-"\u06f9",

 "\u0966"-"\u096f",

 "\u09e6"-"\u09ef",

 "\u0a66"-"\u0a6f",

 "\u0ae6"-"\u0aef",

 "\u0b66"-"\u0b6f",

 "\u0be7"-"\u0bef",

 "\u0c66"-"\u0c6f",

 "\u0ce6"-"\u0cef",

 "\u0d66"-"\u0d6f",

 "\u0e50"-"\u0e59",

 "\u0ed0"-"\u0ed9",

 "\u1040"-"\u1049"

]

 >

| < ILLEGAL_CHARACTER: (~[]) >

}

Notes

■ * = 0 or more, + = 1 or more, ? = 0 or 1.

■ An identifier is constrained to be a Java identifier - e.g., no -, no /, etc.

■ A String only recognizes a limited set of escape sequences, and \ may not
appear unescaped.

■ The relational operator for equality is == (double equals).

■ The value of an IntegerLiteral ranges from Long.MIN_VALUE to
Long.MAX_VALUE

■ The value of a FloatingPointLiteral ranges from Double.MIN_VALUE to
Double.MAX_VALUE

■ It is illegal to nest ${ or #{ inside an outer ${ or #{.
Chapter 1 Language Syntax and Semantics 39

40 Expression Language Specification 3.0 • Public Review Release - June 18, 2012

CHAPTER 2

Operations on Collection Objects

This chapter describes how collection objects and literals can be constructed in the
EL expression, and how collection objects can be manupilated and processed by
applying operations in a pipeline.

2.1 Overview
To provide full support for collection objects, EL includes syntaxes for constructing
sets, lists, and maps dynamically. These syntaxes, decripted in Section 2.2, are
similar to the syntaxes used for collection literals in the Java Language (to be
included in Java SE 8). However, any EL expressions, not just literals, can be used in
the construction.

EL also includes a set of operations that can be applied on collections. By design, the
methods supporting these operations have names and semantics very similar to
those in Java SE 8 libraries. Since EL and Java have different syntaxes and
capabilities, they are not identical, but they are similar enough that users should
have no problems switching from one to the other.

Since the methods supporting the collection operations do not exist in Java SE 7,
they are implemented in the Expression Language with ELResolvers. In an EL
expression, collection operations are carried out by invoking methods, and no
special syntaxes are introduced for them. Strictly speaking, these operations are not
part of the expression language, and can be taken as examples of what can be
achieved with the expression language. The specification specifies the syntaxes and
behaviors of a standard set of collection operations. However, an user can easily add,
extend and modify the behavior of the operations by providing customized
ELResolvers.

Compared to Java SE 8, the collection support in EL has a much smaller and simpler
scope. Although EL does not disallow collections of infinite size, it works best when
the collection objects are created in memory, with known sizes. It also does not
41

address the performance issue in a mult-threaded environment, and does not
provide explicit controls for evaluating collection operations in parallel. The future
version of EL will likely include functionalities from Java SE 8, when it is released.

Central to the implementation is the use of lambda expressions, now supported in
EL. A lambda expression in the Java language is used to specify a method in an
anonymous implementation of a functional interface. The concept of a lambda
expression in EL is much simpler: it is just an anonymous function that can be
passed as an argument to a method, to be evaluated in the method when needed. In
the collection operations, lambda expressions are specified as arguments to the
methods supporting the operations. Usually when the lambda expressions are
invoked, an element from stream of the collection is passed as an argument to the
lambda expression. For instance, the argument to the filter method is a lambda
expression which acts as a predicate function to determine if an element should be
included in the resulting stream.

2.2 Construction of Collection Objects
EL allows the construction of sets, lists, and maps dynamically. Any EL expressions,
including nested collection constructions, can be used in the construction. These
expressions are evaluated at the time of the construction.

2.2.1 Set Construction
Construct an instance of java.lang.util.Set<Object>.

2.2.1.1 Syntax
SetData := ‘{‘ DataList ‘}’

DataList := (expression (‘,’ expression)*)?

2.2.1.2 Example
{1, 2, 3}

2.2.2 List Construction
Construct an instance of java.lang.util.List<Object>.
42 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

2.2.2.1 Syntax
ListData := ‘[‘ DataList ‘]’

DataList := (expression (‘,’ expression)*)?

2.2.2.2 Example
[1, “two”, [foo, bar]]

2.2.3 Map Construction
Construct an instance of java.lang.util.Map<Object>.

2.2.3.1 Syntax
Map := '{' MapEntries '}'

MapEntries := (MapEntry (',' MapEntry)*)?

MapEntry := expression ':' expression

2.2.3.2 Example
{"one":1, "two":2, "three":3}

2.3 Collection Operations

2.3.1 Stream and Pipeline
The operations on a collection object are realized as method calls to the stream of
elements derived from the collection. The method stream can be used to obtain a
Stream from a collection.

EL does not provide a direct way to obtain a Stream from a Java array. An array can
be manually converted to a List to get a Stream.

To obtain a Stream from a Map, the collection view of a Map, such as MapEntry can be
used as the source of Stream.
Chapter 2 Operations on Collection Objects 43

Some Stream operations return another Stream, which allows another operation.
Therefore the operations can be chained together to form a pipeline. For example, to
get a list of titles of history books, one can write in EL:

books.stream().filter(b->b.category == ‘history’)
 .map(b->b.title)
 .toList()

A stream pipeline consists of

■ The source,

■ Intermediate operations, and

■ A terminal operation.

The source of a pipeline is the Stream of a collection.

An intermediate operation is a method in stream that returns a Stream. A pipeline
may contain zero or more intermediate operations.

A pipeline ends in a terminal operation. A terminal operation is a method in Stream
that does not return a Stream.

The specification specifies the behavior of the operations in a pipeline, and does not
specify the implementation of a pipeline. The operations must not modify the
source collection. The user must also make sure that the source collection is not
modified externally during the execution of the pipeline, otherwise the behavior of
the collection operations will be undefined.

The behavior of the operations are undefined if the collection contains null elements.
Null elements in a collection should be removed by a filter to obtain consistent
results.

2.3.2 Operation Syntax Description
The implementation of Stream that contains the methods supporting the operations
are not part of the API. The syntax and the behavior of the operations are described
in this chapter.

For documentation purposes, pseudo method declarations are used in this chapter
for the operations. A method includes

■ The return type

■ The type of the source stream

■ The method name

■ The method parameters

A typical method declaration would looks like
44 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

returnT Stream<T>.method(T1 arg1, T2 arg2)

Some methods have optional parameters. The declarations of the methods with all
possible combinations of the parameters are listed in the syntax sections, as if they
are overloaded. Any null parameter will result in a NullPointerException at
run-time.

Some of the parameters are lambda expressions, also known as functions. A lambda
expression can have parameters and can return a value. To describe the parameter
types and the return type of a lambda expression, the following is an example of the
notation that is used.

(p1,p2)->returnT

For instance, the declaration for the operation filter is

Stream<S> Stream<S>.filter((S->boolean) predicate)

From this we know that the source object is a Stream of S, and the return object is
also a Stream, of the same type. The operator takes a predicate function (lambda
expression) as an argument. The argument of the function is an element of the
source, and the function returns a boolean.

The generic types in the declaration are used only to help the readers of this
document to identify the type relationships among various parts of the declaration,
and do not have the same meaning as those in the Java language. At runtime, EL
deals with Objects, and does not track generic types.

2.3.3 Implementation Classes
The specification makes references to some implementation classes that are not in
the API. They contains methods whose behaviors are specified in this section.

2.3.3.1 Stream

An instant of Stream is obtained by calling the method stream() of a collection. The
methods in this class support the stream operations and are described in
Section 2.3.5 to Section 2.3.25.

2.3.3.2 Optional

An Optional is used to represent a value that may not exist. Instead of using null as
a default value, the use of Optional allows the user to specify a default.

A non-existing or empty value is represented by an empty Optional.
Chapter 2 Operations on Collection Objects 45

An Optional is usually the result of computation over the elements of a Stream.
Since Stream may be empty, and the result of the computation is represented by an
Optional. See for instance, Section 2.3.18.

The following are methods in Optional<T>

■ T get()

Returns the value held by the Optional, or throws an ELException if the Optional
is empty.

■ T orElse(T other)

Returns the value held by the Optional, or the value other if the Optional is empty.

■ T orElse((()->T) other)

Returns the value held by the Optional, or the value returned by the lambda
expression other if the Optional is empty.

2.3.4 Functions
Some operations takes functions (lambda expressions) as parameters. Again, we
used the notion

(arg1Type, ...)->returnType

to describe the argument types and the return type of a function.

2.3.4.1 predicate
■ S -> boolean

This function takes the input argument, usually the element of the source stream,
and determines if it satisfies some criteria.

2.3.4.2 booleanSupplier
■ () -> boolean

This function takes no arguments, and returns a boolean value.

2.3.4.3 mapper
■ S -> R
46 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

This function maps, or transforms the input argument, usually the element of the
source stream, to the result.

2.3.4.4 comparator
■ (S, S) -> int

This function compares two arguments, usually the elements of the source stream,
and returns a negative integer, zero, or a positive integer, if the first argument is
respectively less than, equal to, or greater than the second argument.

2.3.4.5 consumer
■ S -> void

This function processes the input argument, usually the element of the source
stream, and returns nothing.

2.3.4.6 binaryOperator
■ (S, S) -> S

This function applies a binary operation to the input arguments, and returns the
result. The first argument is usually an internal accumulator, and the second
argument is usually the element of the source stream.

The arguments and the result are of the same type.

2.3.5 filter

2.3.5.1 Syntax
Stream<S> Stream<S>.filter((S->boolean) predicate)

2.3.5.2 Description

This method produces a stream containing the source stream elements for which the
predicate function returns true. The argument of predicate function
represents the element to test.
Chapter 2 Operations on Collection Objects 47

2.3.5.3 See

Section 2.3.4.1 “predicate” on page 2-46

2.3.5.4 Example

To find the products whose price is greater than or equal to 10:

 products.stream().filter(p->p.unitPrice >= 10).toList()

2.3.6 map

2.3.6.1 Syntax
Stream<R> Stream<S>.map((S->R) mapper)

2.3.6.2 Description

This method produces a stream by applying the mapper function to the elements of
the source stream. The argument of mapper function represents the element to
process.

2.3.6.3 See

Section 2.3.4.3 “mapper” on page 2-46

2.3.6.4 Examples
■ To get the list of the names of all products:

 products.stream().map(p->p.name).toList()

■ To creates a list of product names and prices for products with a price greater
than or equal to 10:

 products.stream().filter(p->p.unitPrice >= 10).

 .map(p->[p.name,p.unitPrice])

 .toList()
48 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

2.3.7 flatMap

2.3.7.1 Syntax
Stream<R> Stream<S>.flatMap((S->Stream<R>) mapper)

2.3.7.2 Description

This method produces a stream by mapping each of the source elements to another
stream and then concatenating the mapped streams. If the mapper function does not
return a Stream, the behavior is undefined.

2.3.7.3 See

Section 2.3.4.3 “mapper” on page 2-46

2.3.7.4 Example

To list all orders of US customers:

 customers.stream().filter(c->c.country == 'USA')

 .flatMap(c->c.orders.stream())

 .toList()

2.3.8 distinct

2.3.8.1 Syntax
Stream<S> Stream<S>.distinct()

2.3.8.2 Description

This method produces a stream containing the elements of the source stream that are
distinct, according to Object.equals.
Chapter 2 Operations on Collection Objects 49

2.3.8.3 Example

To remove the duplicate element b:

['a', 'b', 'b', 'c'].stream().distinct().toArray()

2.3.9 sorted

2.3.9.1 Syntax
Stream<S> Stream<S>.sorted()

Stream<S> Stream<S>.sorted(((p,q)->int) comparator)

2.3.9.2 Description

This method produces a stream containing the elements of the source stream in
sorted order. If no comparator is specified, the elements are sorted in natural
order. The behavior is undefined if no comparator is specified, and the elements
do not implement java.lang.Comparable. If a comparator is specified, the
elements are sorted with the provided comparator.

The source collection is unaffected by this operation.

2.3.9.3 See

Section 2.3.4.4 “comparator” on page 2-47

2.3.9.4 Examples
■ To sort a list of integers

 [1,3,2,4].stream().sorted()

■ To sort a list of integers in reversed order

 [1,3,2,4].stream().sorted((i,j)->j-i).List()

■ To sort a list of words in the order of word length; and then for words of the same
length, in alphabetical order:

 words.stream().sorted(

 (s,t)->(s.length()==t.length()? s.compareTo(t)

 : s.length() - t.length()))

 .toLst()
50 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

■ To sort the products by name:

 products.stream().sorted(

 (p,q)->p.name.compareTo(p.name)).toList()

Or by defining a comparing function, this can be rewritten as:

 comparing = map->(x,y)->map(x).compareTo(map(y));

 products.stream().sorted(comparing(p->p.name)).toList()

2.3.10 forEach

2.3.10.1 Syntax
Object stream<S>.forEach(((S)->void)consumer)

2.3.10.2 Description

This method invokes the consumer function for each element in the source stream.

This method always returns null.

2.3.10.3 See

Section 2.3.4.5 “consumer” on page 2-47

2.3.10.4 Example

To print a list of customer names:

 customers.stream().forEach(c->printer.print(c.name))
Chapter 2 Operations on Collection Objects 51

2.3.11 forEachUntil

2.3.11.1 Syntax
Object stream<S>.forEachUntil(((S)->void)consumer,

 (()->boolean)booleanSupplier)

2.3.11.2 Description

This method invokes the consumer function for each element in the source stream,
until the function booleanSupplier evaluates to true.

This method always returns null.

2.3.11.3 See

Section 2.3.4.5 “consumer” on page 2-47

Section 2.3.4.2 “booleanSupplier” on page 2-46

2.3.11.4 Example

To print the customer names until the printer runs out of ink:

 customers.stream().forEachUntil(c->printer.print(c),

 ()->printer.noInk())

2.3.12 peek

2.3.12.1 Syntax
Stream<S> Stream<S>.peek(((S)->void)consumer)

2.3.12.2 Description

This method produces a stream containing the elements of the source stream, and
invokes the consumer function for each element in the stream.
52 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

2.3.12.3 See

Section 2.3.4.5 “consumer” on page 2-47

2.3.12.4 Example

To print the a list of integer before and after a filter:

 [1,2,3,4,5].stream().peek(i->print(i))

 .filter(i-> i%2 == 0)

 .peek(i->print(i))

2.3.13 limit

2.3.13.1 Syntax
Stream<S> Stream<S>.limit(long count)

2.3.13.2 Description

This method produces a stream containing the first count number of elements of
the source stream.

If count is greater than the number of source elements, all the elements are included
in the returned stream. If the count is less than or equal to zero, an empty stream is
returned.

2.3.13.3 Example

To list the 3 most expensive products:

 products.stream().sorted(p->p.unitPrice)

 .limit(3)

 .toList()
Chapter 2 Operations on Collection Objects 53

2.3.14 substream

2.3.14.1 Syntax
Stream<S> Stream<S>.substream(long start)

Stream<S> Stream<S>.substream(long start, long end)

2.3.14.2 Description

This method produces a stream containing the source elements, skipping the first
start elements, and including the rest of the elements in the stream if end is not
specified, or the next (end - start) elements in the stream if end is specified.

If the elements in the source stream has fewer than start elements, nothing is
included. If start is less than or equal to zero, no elements are skipped.

2.3.14.3 Example

The example

 [1,2,3,4,5].stream().substream(2,4).toArray()

produces the array [3,4].

2.3.15 toArray

2.3.15.1 Syntax
S[] Stream<S>.toArray()

2.3.15.2 Description

This method returns an array containing the elements of the source stream.
54 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

2.3.16 toList

2.3.16.1 Syntax
List Stream<S>.toList()

2.3.16.2 Description

This method returns a List containing the elements of the source stream.

2.3.17 reduce

2.3.17.1 Syntax
Optional<S> Stream<S>.reduce(((S,S)->S) binaryOperator)

S Stream<S>.reduce(S seed, ((S,S)->S) binaryOperator))

2.3.17.2 Description

The method with a seed value starts by assigning the seed value to an internal
accumulator. Then for each of the elements in the source stream, the next
accumulator value is computed, by invoking the binaryOperator function, with
the current accumulator value as the first argument and the current element as the
second argument. The final accumulator value is returned.

The method without a seed value uses the first element of the source elements as
the seed value. If the source stream is empty, an empty Optional is returned,
otherwise an Optional with the final accumulator value is returned.

2.3.17.3 See

Section 2.3.3.2 “Optional” on page 2-45

Section 2.3.4.6 “binaryOperator” on page 2-47
Chapter 2 Operations on Collection Objects 55

2.3.17.4 Example

To find tallest student in a class:

 students.stream().reduce((p,q)->(p.height>q.height? p: q).get()

2.3.18 max

2.3.18.1 Syntax
Optional Stream<S>.max()

Optional Stream<S>.max(((p,q)->int) comparator)

2.3.18.2 Description

This method computes the maximum of the elelments in the source stream. If the
comparator function is specified, it is used for comparisons. If no comparator
function is specified, the elements themselves are compared, and must implement
Comparable, otherwise an ELException is thrown.

2.3.18.3 See

Section 2.3.4.4 “comparator” on page 2-47

2.3.18.4 Examples
■ To find tallest student in a class:

 students.stream().max((p,q)->p.height-q.height)

■ To find the maximum height of the students in a class:

 students.stream().map(s->s.height).max()

2.3.19 min

2.3.19.1 Syntax
Optional Stream<S>.min()
56 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

Optional Stream<S>.min(((p,q)->int) comparator)

2.3.19.2 Description

This method computes the minimum of the elelments in the source stream. If the
comparator function is specified, it is used for comparisons. If no comparator
function is specified, the elements themselves are compared, and must implement
Comparable, otherwise an ELException is thrown.

2.3.19.3 See

Section 2.3.4.4 “comparator” on page 2-47

2.3.20 average

2.3.20.1 Syntax
Optional Stream<S>.average()

2.3.20.2 Description

This method computes the average of all elements in the source stream by first
computes the sum of the elements and then divides the sum by the number of
elements. The elements are coerced to Number types according to Section 1.23.3
during the computation.

This method returns zero for an empty stream.

2.3.21 sum

2.3.21.1 Syntax
Number Stream<S>.sum()
Chapter 2 Operations on Collection Objects 57

2.3.21.2 Description

This method computes the sum of all elements in the source stream. The elements
are coerced to Number types according to Section 1.23.3 during the computation.

This method returns zero for an empty stream.

2.3.22 anyMatch

2.3.22.1 Syntax
Optional<boolean> Stream<S>.anyMatch((S->boolean) predicate)

2.3.22.2 Description

This method returns an Optional of true if any element in the source stream
satisfies the test given by the predicate. It returns an empty Optional if the stream
is empty.

2.3.22.3 See

Section 2.3.4.1 “predicate” on page 2-46

2.3.22.4 Example

To determine if the list of integers contains any negative numbers:

 integers.stream().anyMatch(i->i<0).orElse(false)

Note the use of orElse to set a default value for the empty list.

2.3.23 allMatch

2.3.23.1 Syntax
Optional<boolean> Stream<S>.allMatch((S->boolean) predicate)
58 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

2.3.23.2 Description

This method returns an Optional of true if all elements in the source stream satisfy
the test given by the predicate. It returns an empty Optional if the stream is
empty.

2.3.23.3 See

Section 2.3.4.1 “predicate” on page 2-46

2.3.24 noneMatch

2.3.24.1 Syntax
Optional<boolean> Stream<S>.noneMatch((S->boolean) predicate)

2.3.24.2 Description

This method returns an Optional of true if none of the elements in the source
stream satisfies the test given by the predicate. It returns an empty Optional if the
stream is empty.

2.3.24.3 See

Section 2.3.4.1 “predicate” on page 2-46

2.3.25 findFirst

2.3.25.1 Syntax
Optional<S> Stream<S>.findFirst()
Chapter 2 Operations on Collection Objects 59

2.3.25.2 Description

This method returns an Optional containing the first element in the stream, or an
empty Optional if the stream is empty.

2.3.25.3 See

Section 2.3.3.2 “Optional” on page 2-45

2.3.26 findAny

2.3.26.1 Syntax
Optional<S> Stream<S>.findAny()

2.3.26.2 Description

This method returns an Optional containing the an element in the stream, or an
empty Optional if the stream is empty.

2.3.26.3 See

Section 2.3.3.2 “Optional” on page 2-45
60 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

CHAPTER A

Changes

This appendix lists the changes in the EL specification. This appendix is non-
normative.

A.1 New in 3.0 EDR
■ Removed API from the specification document, since they are included in the

javadocs.

■ Added Chapter 2 “Operations on Collection Objects”.

■ Added 1.8, String Concatenation operator.

■ Added 1.13, Assignment operator.

■ Added 1.14, Semi-colon operator.

■ Added 1.20 Lambda Expression.

■ Added 1.22 Static Field and Methods.

■ Added T and cat to 1.17 Reserved words.

■ Modified 1.16 Operator precedence.

■ Modified coercion rule from nulls to non-primitive types.

■ Many changes to the javadoc API.
61

A.2 Imcompatibilities between EL 3.0 and EL
2.2
EL 3.0 introduces many new features, and although we take care to keep it backward
compatible, there are a few areas that cannot be made backward compatible, either
because the new features requires it, or because the feature in EL 2.2 is a bug that
needs to be fixed. An implementation can provide an option to revert to the 2.2
behavior, if desired.

■ New key words: T and cat.

■ The operator + is now overloaded and behaves like that in the Java language

■ The default coercion for nulls to non-primitive types returns nulls. For
instance, a null coerced to String now returns a null, instead of an empty
String.

A.3 Changes between Maintenance 1 and
Maintenance Release 2
The main change in this release is the addition of method invokations with
parameters in the EL, such as #{trader.buy(“JAVA”)}.

■ Added one method in javax.el.ELResolver:

■ Object invoke(ELContext context, Object base, Object method, Class<?>[]
paramTypes, Object[] params).

■ Added one method in javax.el.BeanELResolver:

■ Object invoke(ELContext context, Object base, Object method, Class<?>[]
paramTypes, Object[] params).

■ Added one method in javax.el.CompositeELResolver:

■ Object invoke(ELContext context, Object base, Object method, Class<?>[]
paramTypes, Object[] params).

■ Section 1.1.1. Added to the first paragraph:

Simlarly, . operator can also be used to invoke methods, when the method name is
known, but the [] operator can be used to invoke methods dynamically

■ Section 1.2.1. Change the last part of the last paragraph from

Upon evaluation, the EL API verifies that the method conforms to the expected
signature provided at parse time. There is therefore no coercion performed.
62 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

to

Upon evaluation, if the expected signature is provided at parse time, the EL API
verifies that the method conforms to the expected signature, and there is therefore
no coercion performed. If the expected signature is not provided at parse time,
then at evaluation, the method is identified with the information of the
parameters in the expression and the parameters are coerced to the respective
formal types.

■ Section 1.6

Added syntax for method invocation with parameters.

The steps for evaluation of the expression was modified to handle the method
invocations with parameters.

■ Section 1.19

Production of ValueSuffix includes the optional parameters.

A.4 Changes between 1.0 Final Release and
Maintenance Release 1
■ Added two methods in javax.el.ExpressionFactory:

■ newInstance()

■ newInstance(Properties)

A.5 Changes between Final Release and
Proposed Final Draft 2
Added support for enumerated data types. Coercions and comparisions were
updated to include enumerated type types.
Chapter A Changes 63

A.6 Changes between Public Review and
Proposed Final Draft
New constructor for derived exception classes

Exception classes that extend ELException (PropertyNotFoundException,
PropertyNotWritableException, MethodNotFoundException) did not have a
constructor with both 'message' and 'rootCause' as arguments (as it exists in
ELException). The constructor has been added to these classes.

javax.el.ELContext API changes

■ removed the ELContext constructor
protected ELContext(javax.el.ELResolver resolver)

■ added the following abstract method in ELContext
public abstract javax.el.ELResolver getELResolver();

Section 1.8.1 - A {<,>,<=,>=,lt,gt,le,ge} B

■ If the first condition (A==B) is false, simply fall through to the next step (do not
return false). See See issue 129 at jsp-spec-public.dev.java.net.

javax.el.ResourceBundleELResolver

■ New ELResolver class added to support easy access to localized messages.

Generics

■ Since JSP 2.1 requires J2SE 5.0, we’ve modified the APIs that can take
advantage of generics. These include:
ExpressionFactory:createValueExpression(),
ExpressionFactory:createMethodExpression(),
ExpressionFactory:coerceToType(), ELResolver:getType(),
ELResolver:getCommonPropertyType(), MethodInfo:MethodInfo(),
MethodInfo.getReturnType(), MethodInfo:getParamTypes()
64 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

A.7 Changes between Early Draft Release
and Public Review
New concept: EL Variables

The EL now supports the concept of EL Variables to properly support code
structures such as <c:forEach> where a nested action accesses a deferred expression
that includes a reference to an iteration variable.

■ Resulting API changes are:

■ The javax.el package description describes the motivation behind EL
variables.

■ ElContext has two additional methods to provide access to
FunctionMapper and VariableMapper.

■ ExpressionFactory creation methods now take an ELContext parameter.
FunctionMapper has been removed as a parameter to these methods.

■ Added new class VariableMapper

■ At a few locations in the spec, the term "variable" has been replaced with "model
object" to avoid confusion between model objects and the newly introduced EL
variables.

■ Added new section “Variables” after section 1.15 to introduce the concept of EL
Variables.

EL in a nutshell (section 1.1.1)

■ Added a paragraph commenting on the flexibility of the EL, thanks to its
pluggable API for the resolution of model objects, functions, and variables.

javax.el.ELException

■ ElException now extends RuntimeException instead of Exception.

■ Method getRootCause() has been removed in favor of
Throwable.getCause().

javax.el.ExpressionFactory

■ Creation methods now use ELContext instead of FunctionMapper (see EL
Variables above).

■ Added method coerceToType(). See issue 132 at jsp-spec-public.dev.java.net.

javax.el.MethodExpression

■ invoke() must unwrap an InvocationTargetExceptions before re-throwing
as an ELException.
Chapter A Changes 65

Section 1.6 - Operators [] and .

■ PropertyNotFoundException is now thrown instead of
NullPointerException when this is the last property being resolved and we’re
dealing with an lvalue that is null.

Section 1.13 - Operator Precedence

■ Clarified the fact that qualified functions with a namespace prefix have
precedence over the operators.

Faces Action Attribute and MethodExpression

In Faces, the action attribute accepts both a String literal or a
MethodExpression. When migrating to JSF 1.2, if the attribute's type is set as
MethodExpression, an error would be reported if a String literal is specified
because a String literal cannot evaluate to a valid javax.el.MethodExpression.

To solve this issue, the specification of MethodExpression has been expanded to also
support String literal-expressions. Changes have been made to:

■ Section 1.2.2

■ ExpressionFactory.createMethodExpression()

■ javax.el.MethodExpression:invoke()
66 Expression Language Specification 3.0 • Public Review Release- June 18, 2012

	Expression Language Specification Version 3.0 Public Review Release
	Contents
	Preface
	Historical Note
	Typographical Conventions
	Comments

	Language Syntax and Semantics
	1.1 Overview
	1.1.1 EL in a nutshell

	1.2 EL Expressions
	1.2.1 Eval-expression
	1.2.1.1 Eval-expressions as value expressions
	1.2.1.2 Eval-expressions as method expressions

	1.2.2 Literal-expression
	1.2.3 Composite expressions
	1.2.4 Syntax restrictions

	1.3 Literals
	1.4 Errors, Warnings, Default Values
	1.5 Resolution of Model Objects and their Properties or Methods
	1.6 Operators [] and .
	1.7 Arithmetic Operators
	1.7.1 Binary operators - A {+,-,*} B
	1.7.2 Binary operator - A {/,div} B
	1.7.3 Binary operator - A {%,mod} B
	1.7.4 Unary minus operator - -A

	1.8 String Concatenation Operator - A cat B
	1.9 Relational Operators
	1.9.1 A {<,>,<=,>=,lt,gt,le,ge} B
	1.9.2 A {==,!=,eq,ne} B

	1.10 Logical Operators
	1.10.1 Binary operator - A {&&,||,and,or} B
	1.10.2 Unary not operator - {!,not} A

	1.11 Empty Operator - empty A
	1.12 Conditional Operator - A ? B : C
	1.13 Assignment Operator - A = B
	1.14 Semicolon Operator - A ; B
	1.15 Parentheses
	1.16 Operator Precedence
	1.17 Reserved Words
	1.18 Functions
	1.19 Variables
	1.20 Lambda Expressions
	1.21 Enums
	1.22 Static Field and Method Reference
	1.22.1 Access Restrictions and Imports
	1.22.2 Imports of Classes and Packages
	1.22.3 Special Fields and Methods

	1.23 Type Conversion
	1.23.1 To Coerce a Value X to Type Y
	1.23.2 Coerce A to String
	1.23.3 Coerce A to Number type N
	1.23.4 Coerce A to Character or char
	1.23.5 Coerce A to Boolean or boolean
	1.23.6 Coerce A to an Enum Type T
	1.23.7 Coerce A to Any Other Type T

	1.24 Collected Syntax

	Operations on Collection Objects
	2.1 Overview
	2.2 Construction of Collection Objects
	2.2.1 Set Construction
	2.2.1.1 Syntax
	2.2.1.2 Example

	2.2.2 List Construction
	2.2.2.1 Syntax
	2.2.2.2 Example

	2.2.3 Map Construction
	2.2.3.1 Syntax
	2.2.3.2 Example

	2.3 Collection Operations
	2.3.1 Stream and Pipeline
	2.3.2 Operation Syntax Description
	2.3.3 Implementation Classes
	2.3.3.1 Stream
	2.3.3.2 Optional

	2.3.4 Functions
	2.3.4.1 predicate
	2.3.4.2 booleanSupplier
	2.3.4.3 mapper
	2.3.4.4 comparator
	2.3.4.5 consumer
	2.3.4.6 binaryOperator

	2.3.5 filter
	2.3.5.1 Syntax
	2.3.5.2 Description
	2.3.5.3 See
	2.3.5.4 Example

	2.3.6 map
	2.3.6.1 Syntax
	2.3.6.2 Description
	2.3.6.3 See
	2.3.6.4 Examples

	2.3.7 flatMap
	2.3.7.1 Syntax
	2.3.7.2 Description
	2.3.7.3 See
	2.3.7.4 Example

	2.3.8 distinct
	2.3.8.1 Syntax
	2.3.8.2 Description
	2.3.8.3 Example

	2.3.9 sorted
	2.3.9.1 Syntax
	2.3.9.2 Description
	2.3.9.3 See
	2.3.9.4 Examples

	2.3.10 forEach
	2.3.10.1 Syntax
	2.3.10.2 Description
	2.3.10.3 See
	2.3.10.4 Example

	2.3.11 forEachUntil
	2.3.11.1 Syntax
	2.3.11.2 Description
	2.3.11.3 See
	2.3.11.4 Example

	2.3.12 peek
	2.3.12.1 Syntax
	2.3.12.2 Description
	2.3.12.3 See
	2.3.12.4 Example

	2.3.13 limit
	2.3.13.1 Syntax
	2.3.13.2 Description
	2.3.13.3 Example

	2.3.14 substream
	2.3.14.1 Syntax
	2.3.14.2 Description
	2.3.14.3 Example

	2.3.15 toArray
	2.3.15.1 Syntax
	2.3.15.2 Description

	2.3.16 toList
	2.3.16.1 Syntax
	2.3.16.2 Description

	2.3.17 reduce
	2.3.17.1 Syntax
	2.3.17.2 Description
	2.3.17.3 See
	2.3.17.4 Example

	2.3.18 max
	2.3.18.1 Syntax
	2.3.18.2 Description
	2.3.18.3 See
	2.3.18.4 Examples

	2.3.19 min
	2.3.19.1 Syntax
	2.3.19.2 Description
	2.3.19.3 See

	2.3.20 average
	2.3.20.1 Syntax
	2.3.20.2 Description

	2.3.21 sum
	2.3.21.1 Syntax
	2.3.21.2 Description

	2.3.22 anyMatch
	2.3.22.1 Syntax
	2.3.22.2 Description
	2.3.22.3 See
	2.3.22.4 Example

	2.3.23 allMatch
	2.3.23.1 Syntax
	2.3.23.2 Description
	2.3.23.3 See

	2.3.24 noneMatch
	2.3.24.1 Syntax
	2.3.24.2 Description
	2.3.24.3 See

	2.3.25 findFirst
	2.3.25.1 Syntax
	2.3.25.2 Description
	2.3.25.3 See

	2.3.26 findAny
	2.3.26.1 Syntax
	2.3.26.2 Description
	2.3.26.3 See

	Changes
	A.1 New in 3.0 EDR
	A.2 Imcompatibilities between EL 3.0 and EL 2.2
	A.3 Changes between Maintenance 1 and Maintenance Release 2
	A.4 Changes between 1.0 Final Release and Maintenance Release 1
	A.5 Changes between Final Release and Proposed Final Draft 2
	A.6 Changes between Public Review and Proposed Final Draft
	A.7 Changes between Early Draft Release and Public Review

