
Session Bean Component Contract Enterprise JavaBeans 3.2, Public Draft The Responsibilities of the Bean Provider

 7/3/12 114

Oracle

• The argument and return value types for a method must be legal types for JAX-WS if the
method is a web service method or corresponds to a method on the session bean’s web service
endpoint.

• The throws clause may define arbitrary application exceptions.

Note: Callback methods are permitted to have public access type. This raises the question of
whether a callback method can also be exposed as a business method through one or more cli-
ent views. Doing so is not prohibited, but should be done with caution. The runtime context
(e.g. transaction context, caller principal, operations allowed, etc.) for a method invoked as a
callback can differ significantly from the context for the same method when invoked via a cli-
ent invocation. As a general rule, callback methods should not be exposed as business meth-
ods. Therefore, it is recommended that all non-business methods be assigned an access type
other than public.

Compatibility Note: EJB 1.0 allowed the business methods to throw the java.rmi.RemoteExcep-
tion to indicate a non-application exception. This practice was deprecated in EJB 1.1—an EJB 1.1 or
EJB 2.0 or later compliant enterprise bean should throw the javax.ejb.EJBException or
another RuntimeException to indicate non-application exceptions to the container (see Section
9.2.2). An EJB 2.0 or later compliant enterprise bean should not throw the java.rmi.RemoteEx-
ception from a business method.

4.9.7 Session Bean’s Business Interface

The following are the requirements for the session bean’s business interface:

• The interface must not extend the javax.ejb.EJBObject or javax.ejb.EJBLo-
calObject interface.

• If the business interface is a remote business interface, the argument and return values must be
of valid types for RMI/IIOP. The remote business interface is not required or expected to be a
java.rmi.Remote interface. The throws clause should not include the
java.rmi.RemoteException. The methods of the business interface may only throw
the java.rmi.RemoteException if the interface extends java.rmi.Remote.

• The interface is allowed to have superinterfaces.

• If the interface is a remote business interface, its methods must not expose local interface
types, timers or timer handles as arguments or results.

• The bean class must implement the interface or the interface must be designated as a local or
remote business interface of the bean by means of the Local or Remote annotation or in the
deployment descriptor. The following rules apply:

• A bean class is permitted to have more than one interface.
• If the bean does not expose a no-interface view and has one or more interface that is

not in the exclude list of interfaces listed below and is not designated explicitly as a
local or a remote interface by use of the Local or the Remote annotation on the

The Responsibilities of the Bean Provider Enterprise JavaBeans 3.2, Public Draft Session Bean Component Contract

115 July 3, 2012 6:37 pm

Oracle

bean class or the interface, or by means of the deployment descriptor, all these inter-
faces are assumed to be local business interfaces of the bean.

• If the bean class has one or more interface that is not in the exclude list of interfaces
listed below and is not designated explicitly as a local or a remote interface by use of
the Local or the Remote annotation on the bean class or the interface, or by means
of the deployment descriptor, and the bean class is annotated with the Local annota-
tion, all its interfaces are assumed to be local business interfaces of the bean.

• If the bean class has one or more interface that is not in the exclude list of interfaces
listed below and is not designated explicitly as a local or a remote interface by use of
the Local or the Remote annotation on the bean class or the interface, or by means
of the deployment descriptor, and the bean class is annotated with the Remote anno-
tation, all its interfaces are assumed to be remote business interfaces of the bean.

• If a bean class has more than one interface—excluding the interfaces listed below—
and any interface of the bean class is explicitly designated as a business interface of
the bean by means of the Local or Remote annotation on the bean class or interface
or in the deployment descriptor, or the bean exposes a no-interface view, all business
interfaces must be explicitly designated as such.

• The following interfaces are excluded when determining whether the bean class has
more than one interface: java.io.Serializable; java.io.Externaliz-
able; any of the interfaces defined by the javax.ejb package.

• The same business interface cannot be both a local and a remote business interface of
the bean.[29]

• While it is expected that the bean class will typically implement its business inter-
face(s), if the bean class uses annotations or the deployment descriptor to designate its
business interface(s), it is not required that the bean class also be specified as imple-
menting the interface(s).

[29] It is also an error if the Local and/or Remote annotations are specified both on the bean class and on the referenced interface
and the values differ.

Session Bean Component Contract Enterprise JavaBeans 3.2, Public Draft The Responsibilities of the Bean Provider

 7/3/12 116

Oracle

The following examples assume that there is no deployment descriptor associated with the bean and
neither the Local nor the Remote annotation is specified on the bean class or an interface unless
noted.

Example 1 - session bean A exposes two local business interfaces, Foo and Bar:
public interface Foo { ... }
public interface Bar { ... }
@Stateless
public class A implements Foo, Bar { ... }

Example 2 - session bean A exposes two local business interfaces, Foo and Bar:
public interface Foo { ... }
public interface Bar { ... }
@Local
@Stateless
public class A implements Foo, Bar { ... }
Example 3 - session bean A exposes two remote business interfaces, Foo and Bar
public interface Foo { ... }
public interface Bar { ... }
@Remote
@Stateless
public class A implements Foo, Bar { ... }
Example 4 - session bean A exposes ony one remote business interface Foo
@Remote
public interface Foo { ... }
public interface Bar { ... }
@Stateless
public class A implements Foo, Bar { ... }
Example 5 - session bean A exposes ony one remote business interface Foo
public interface Foo { ... }
public interface Bar { ... }
@Remote(Foo.class)
@Stateless
public class A implements Foo, Bar { ... }

4.9.8 Session Bean’s No-Interface View
The following are the requirements for a session bean that exposes a no-interface view:

