Project SailFin

Functional Specification for Deployment
Author(s): prasad.subramanian@sun.com

Version Comments Date
0.5 Initial Draft 07/21/2007
0.6 Feedback from Sreeram.duvur@sun.com 08/06/2007
0.7 Added specification for EAR with embedded 08/19/2007
.sar deployment

References

Extension Deployment | Proposal by hong.zhang@sun.com:

SPI http://jse.east/~hzhang/deployment/CodeReview/extension_module/Proposal for pluggi
ng_in_extension_module to glassfish.html

JSR 289 http://www.jcp.org/en/jsr/detail7id=289

1 Introduction

Project Sailfin introduces the need to deploy standalone SIP Applications and SIP Applications
embbeded in an Enterprise Application. In addition JSSR289 introduces annotations specfic to the SIP
Servlet API. The deployment and annotation processing module would need to support deployment
of the new “types” of modules and processing of the annotations introduced by JSR289.

1.1 Features

1.1.1 Deployment

Deployment of Standalone SIP Applications , Converged HTTP and SIP Applications and
Enterprise Applications containing a standalone SIP Application or Converged HTTP and
SIP application or both. A mechanism is provided to plug in the code for the processing
the SIP Application module (either standalone or embedded in an ear) to the existing
deployment code, and hereby avoiding incisive code changes. This mechanism would
also re-use code for processing the Web Components in a converged HTTP and SIP

Application.

1.1.2 Support for Runtime Deployment Descriptors

This specification defines the Runtime Deployment Descriptor for SIP Applications ,
which a deployer could use to configure an application.

1.1.3 Application Upgrade
This specification would also specify the deployment changes required to support hot
application upgrades on a per instance basis.

1.1.4 Annotation Processing
Provide a mechanism to process annotations specified by JSR 289 specification. This
mechanism is also pluggable , and custom annotation handlers and annotation
processors would be plugged in the existing annotation processing framework.

http://sailfin.dev.java.net

Project SailFin

The existing mechanism of processing Java EE annotations is used to process
annotations within SIP Servlets being deployed.

1.1.5 Verification

Support for Application verification for Java EE modules is provided. Support for
verification of SIP Applications , based on JSR289 would also be provided and is defined
in another specification.

1.2 Features not covered

1.3 Terminology
This section introduces some concepts and terms used in the specification.

SIP Application

A module equivalent of a Web Application , except that it has only SIP Servlets. The
deployment descriptor is sip.xml . The archive layout is the same as that of the Web Archive
(WAR). The archive can have extension of either .war or .sar

Converged SIP and HTTP Application

A combined Web and SIP Application, it has both SIP Servlets and all allowed components
of a Web Application. The deployment descriptors in this case are sip.xml and web.xml. The
archive layout is the same as that of a Web Archive. The archive can have extension of
either .war or .sar

Converged Java EE and SIP Application

An Enterprise Application with one or more Java EE components and a SIP Application. The
SIP Application is represented as war in the application.xml. The archive has an extension of
.ear.

2 Design Overview

2.1 Basic Design Principle

2.1.1 Binary Overlay

A major consideration for design is to enable binary overlay of the SIP Application deployment
code on GlassFish. What this translates to is that all the code that supports deployment of SIP
Applications would be plugged into the GlassFish deployment backend, without changing any of
the GlassFish code and hence GlassFish code would have no dependency on the SIP Application
deployment code.

2.1.2 Deployment Artifacts

The following set of classes constitute the main artifacts that play a role in the deployment of any
module

Archivist : This class represents the archive , and provide ability to read the deployment
descriptors.

Deployer : The class that handles the exploding of the archive, reading the deployment
descriptors, processing of annotations, creation of an object that represents the
module/application descriptor.

http://sailfin.dev.java.net

Project SailFin

ModulesManager : This class is responsible for managing the lifecycle of a module for loading
and unloading

Loader : This class is responsible for loading or unloading the module to the target container.
ModuleManager : This class represents the module being deployed and holds meta data for the
module being deployed / undeployed.

2.1.3 Extension Modules

The concept of Extension Module has been introduced in GlassFish V2. All modules that do not fit
under a standard Java EE type or as a LifeCycle or Mbeans module are termed as extension
modules. Each of the extension modules have their own “type”. The term extension module is an
unbrella term to cover all such modules and unlike a Web Module does not indicate the type of
the module. All extension modules are represented by an extension-module element in the
domain.xml

2.1.4 Extension Deployment SPI

An SPI has been proposed in GlassFish , to provide a mechanism to write pluggable, custom
deployment code , to deploy/undeploy extension modules. This SPI abstracts the basic artifacts
that are needed to explode an archive, process the deployment descriptors, create a descriptor
object and load to the target container.

The SPI consists of two parts

a. interfaces for custom deployer /archivist, bundle descriptor and loader to be implemented for
processing the custom module (in this case SIP Applications)

b. Additional classes in the GlassFish deployment backend that would handle the extension
modules. These classes are the equivalent of a Archivist, Deployer, Manager and Loader for
extension modules as specfied in Section 2.1.3

Implementation of the SPI

The deployment functionality for SIP Application, Converged SIP Applications is provided by the
implementation of the interfaces provided in the SPI. The implementation encapsulate all the
deployment processing needed for processing SIP Application and delegate to the processing of
the Web Components in these applications to the Web Module deployment code.

The figure below illustrates a schematic of the SPI in GlassFish and how it used in SailFin.

SailFin
Implementation of SPI classes, plugged in

http://sailfin.dev.java.net

Project SailFin

2.2 Design of the SPI

The SPI has been proposed by Hong Zhang (hong.zhang@sun.com) .As described earlier the
SPI has two parts , interfaces and deployment classes to handle extension module.

2.2.1 Interfaces

The SPI exposes three main interfaces

com.sun.enterprise.deployment.interfaces.pluggable.ArchiveDeployer

This provides an interface that combines both the Archivist and Deployer classes in the
GlassFish. The implementation of this interface is responsible for

a. expanding the archive if needed

b. reading the deployment descriptors

c. cleaning up the deployment descriptors after unload

d. reading deployment descriptors during the AS startup

com.sun.enterprise.deployment.interfaces.pluggable.ArchiveLoader

This interfaces provides a mechanism for the user to load/unload the module to the target
container. The implementor of this interface is expected to know about the interfaces that
the target container exposed for loading/unloading. The implemetor may choose not to
use this interfaces to implement the class that loads/unloads the module and may go with
a custom loader specific to the target container.

com.sun.enterprise.deployment.interfaces.pluggable.ArchiveDescriptor
This interface represents the object that would hold the meta data from the Deployment
Descriptor of the module being deployed.

2.2.2 Deployment Classes for extension module

In addition to these interfaces there are new classes introduced in GlassFish deployment
code which would enable plugging in of the custom deployment classes during runtime
and invoking them when a module classified as an extensions module is deployed.

com.sun.enterprise.deployment.pluggable.PluggableDeploymentinfo
This class is the registry for all module types that can be deployed and their
corresponding Deployer classes.

It associates an implementation of the ArchiveDeployer interface with the module type
that can be deployed. It also creates an instance of an ExtensionModuleArchivist and
ExtensionModuleDeployer for this module type.

In addition it would also optionally register a custom loader which would be an
implementation of the ArchiveLoader, for loading and unloading of modules. In case the
developer wishes to use a loading mechanism specific to the target container, then the
ArchiveLoader need not be registered and the ExtensionModuleDeployer provides a
method to register a custom loader (which need not implement the ArchivelLoader)
specific to the container.

This class also creates a custom AnnotationProcessor based on the moduleType, and

registers custom AnnotationHandler classes for processing annotations specific to the
extension module type.

http://sailfin.dev.java.net

Project SailFin

The registration happens when the target container starts up. The target container is
responsible for registering the customer Deployer/Loader/Descriptor classes for any
extension modules that it accepts.

com.sun.enterprise.deployment.archivist.ExtensionModuleArchivist

This class is like a universal Archivist class for all extension modules being deployed.
Based on the module type of the module being deployed , it delegates the function of its
methods to the implementation of the ArchiveDeployer. For example the if the module
being deployed is of type FOO then the ExtensionModuleArchivst would delegate the
operation of its main methods the implementation of the ArchiveDeployer for FOO (e.g.
FOOArchiveDeployer). The ExtensionModuleArchivist delgates to the expand() and
handles() method of the ArchiveDeployer

com.sun.enterprise.deployment.backend. ExtensionModuleDeployer

This class is like a universal Deployer class for all extension modules being deployed.
Based on the module type of the module being deployed , it delegates the function of its
methods to the implementation of the ArchiveDeployer. For example the if the module
being deployed is of type FOO then the ExtensionModuleDeployer would delegate the
operation of its main methods the implementation of the ArchiveDeployer for FOO (e.g.
FOOArchiveDeployer). The ExtensionModuleDeployer delgates to the prepare() and
cleanup() method of the ArchiveDeployer.

The ExtensionModuleDeployer also registers a custom ModulesManager by delegating to
the ArchiveDeployer. If implemented it registers a custom manager that is specific to the
target container.

com.sun.enterprise.instance.ExtensionModule ConfigManager

This class is a universal ModulesManager class for all extension modules being
deployed. The ExtensionModulesConfigManager also delegates to the implementation
ArchiveDeployer where needed .

com.sun.enterprise.server.ExtensionModuleManager

This class is the EventListener for Deploy Events. For each extension module type if
there is a custom loader (implementing ArchiveLoader) defined (in
ExtensionModuleDeployer) , the ExtensionModuleManager processes that event and
delegates to the ExtensionModuleLoader for loading or unloading operations. Note that
this class has no role to play if there is no loader (implementing ArchiveLoader)
registered with the ExtensionModuleDeployer.

com.sun.enterprise.server.ExtensionModuleLoader

This is the wrapper Loader class for Extension Modules, which delegates the loading
operations to the ArchiveLoader implementation. Similar to the
ExtensionModulesManager this class has no role to play if there is no custom loader (
implementing ArchiveLoader) defined for a module type.

The following sequence diagram explains how the implementation of the ArchiveDeployer
plugs into the GlassFish runtime.

http://sailfin.dev.java.net

Project SailFin

sd ExtensionDeployment -deplov)

isual Par m umML Cwu-\zmmrén [notfor commercial u,@ O Q @

J2EECPhase ExtensionModuleDeployer PluggableArchivistHelper ExtensionModuleArchivist ArchiveDeployer PluggableDeploymentinfo
3 4etExtensi onDeployer) : !

|
T
:
2: deployToDom aing |
|
o

3

T T

| |

| |

| |

| 3: expand |

i i

: 4: prepare(:

L_l : : o Registrati

| S: getArchiviktBytypeQ | happens at
i L target
| container

6: handles(| startup

7: handles(

9: undepoyToDomain()

E:

- - ———————————————— -

T 8: doRequestFinis
|
|
|
|

2.3 Implementation of the SPI
2.3.1 Deployment Backend Changes

An implementation of the ArchiveDeployer and ArchiveDescriptor is
provided to handle the deployment of SIP Applications/Converged
SIP Applications. The processing of the the HTTP components of a
converged SIP Applications is delegated to the Web Deployment
component. The implementation of SPI spans deployment and Web
Container

The main artifacts of this implementation are in this class diagram.

http://sailfin.dev.java.net

Project SailFin

[& 1]

]

com.suh.enterprise.deployment. pluggable \
: < 3 . tom .sun.enterprise.server
2t erfaces 5 Web ExtensionLoader
<Interface
AN o +loadWebModule()
ghrchive Deplayer = +unl oadWebModuled)
+expand(Frinerface>g +eniableWebModule)
+prepare() _ Archive Loager #disableWebld odule)
+cleanup() - e +load())
+handles(A'_<|<_m:;eace__>>) +unload(3 $ -~
+getioduleType(), . chive Deset iptor g 3
+géatDescriptor() o|-setModule ClassLoader ' —}
SN : Iy , F g COM. un.enterpris}a’.s’erver.exte_nslons.sip
- SipArchive Loader
g y +load(
2 com.sur.emerprisedep!wment.exter‘smns.sip +uhload()
“SipArchive Deployer Si I Descriner
Fexpand()) i ip an‘ ef cr ||n9| i
+prepare() -sipApplication : SipApplication [Web BundleDescimtor | BundleDesciptor
+cleanup() +addSipApplication(: void D \
+handles() +getSipApplication(
+registerCustomianager(+setModuleClassLoaden() =
& Icom sup.enterprise.deployment &
Web ExtensionDeployer — -
+doRequestFinish(Web Deployer
: : A > com .ericcson.ssa. dd
1 : > Y SipAppliﬁaIion

Module Type

As required by the SPI the module type for the SIP and Converged HTTP+SIP Applications
is the FQ class name of the deployer
com.sun.enterprise.deployment.backend.extensions.sip.SipArchiveDeployer

Bundle Descriptor
com.sun.enterprise.deployment.backend.extensions.sip.SipBundleDescriptor extends
WebBundleDescriptor and implements ArchiveDeployer. The sip.xml meta data is
represented by the com.ericsson.ssa.dd.SipApplication class which is a instance variable in
SipBundleDescriptor. In case there is no web.xml in an SIP Application, then the
SipBundleDescriptor would have the SipApplication object and the contents of the default-
web.xml.

Deployer
com.sun.enterprise.deployment.backend.extensions.sip.SipArchiveDeployer which
implements ArchiveDeployer.

This class acts as both an Archivist and Deployer for SIP and Converged HTTP+SIP
Applications.

http://sailfin.dev.java.net

Project SailFin

The handles() method determines if the archive being deployed can be handled by this
class.

The expand() method explodes the archive.

The prepare() method parses the sip.xml and creates a SipApplication object. To parse the
descriptors (web+ persistence) , this class delegates to a wrapper class called the
WebEXxtensionDeployer. This delegate will also process standard Java EE annotations , The
prepare() method takes in a argument to determine if this a deployment phase or a
application server startup phase.

The prepare() method would also read the deployment descriptors form the generated/xml
folders during application server startup.

Processing of custom annotations would be done in the prepare() method during the
deployment phase.

com.sun.enterprise.deployment. WebExtensionDeployer

This is an extension of the WebDeployer class , and it exposes wrapper methods that call
only those methods of the WebDeployer that would be needed to process the Web
components of an extension module being deployed.

DeployEventListener (ModulesManager)
com.sun.enterprise.server.ExtensionModuleManager

The ExtensionModuleManager is used as the modules manager for SIP Applications. This
class creates a ExtensionModuleLoader instance and delegates the loading / unloading of
the Application to this class. The ExtensionModuleLoader looks up the
ExtensionModuleDeployer and gets the ArchiveLoader implementation for the SIP
Application. The ArchiveLoader is described in the next section.

ArchiveLoader

com.sun.enterprise.server.extensions.sip.SipArchiveLoader

This class implements the
com.sun.enterprise.deployment.pluggable.interfaces.ArchiveLoader interface. Given that the
target container for SIP Applications is the Web Container, a new class that encapsulates
the loading/unloading functionality of the WebContainer is introduced.

This class com.sun.enterprise.server.WebExtensionLoader exposes methods that create the
necessary artifacts (using GlassFish implementation classes) for loading and unloading.
The SipArchiveLoader extends this class and delegates creation of artifacts for loading and
unloading and the loading and unloading operation itself to this class.

2.3.2 Web Container Changes

The target container for SIP Applications both converged and standalone , is the Web
Container. The SIP Servlet Container is bootstrapped by the Web Container during startup
and can be seen as an extension of the WebContainer. The application loading mechanism
in the SIP Servlet Container is similar to the Web Container.

Loading an Application in the Web Container during deployment
The following section describes how a Web Application is loaded in the WebContainer.

1. A Web Application is represented by the class com.sun.enterprise.web.WebModule
.WebModule extends org.apache.catalina.core.StandardContext.

http://sailfin.dev.java.net

Project SailFin

The meta data from the deployment descriptors is represented by
com.sun.enterprise.deployment. WebBundleDescriptor.

The meta data from the WebBundleDescriptor is used to configure the WebModule , by
com.sun.enterprise.web.WebModule ContextConfig, which implements
org.apache.catalina.startup.Lifecycle interface .

2. The loadWebModule(...) method in com.sun.enterprise.web.WebContainer is invoked by
com.sun.enterprise.server.WebModuleDeployEventListener.

3. A new instance of WebModule is created , and an instance of the
WebModuleContextConfig is also created. The WebModuleContextConfig is populated with
the configuration meta data for the Application. This WebModuleContextConfig is then
registered as a Lifecycle listener for the WebModule instance.

4. The WebModule is added to the parent , which is a Virtual Server object as a child.

5. If the VirtualServer is running then the WebModule is started. The start event is captured
by WebModuleContextConfig and the WebModule is configured.

Loading an Application in the Web Container during server startup

The sequence of loading a Web Application during server startup is different from that of
deployment.

1. The WebModule beans for all Web Applications deployed to each of the Virtual Servers is
read.

2. For each Web Module deployed on the Virtual Server the WebBundleDescriptor object is
created by reading the deployment descriptors from the
“${cm.sun.aas.instanceRoot}/generated/xm/l” folder.

3. Using the WebBundleDescriptor obtained, the same sequence as mentioned in the
deployment phase is followed.

Loading of SIP Applications

The loading of SIP Applications and Converged HTTP and SIP Applications follow the same
sequence as mentioned above. The HTTP and SIP components would need share a
context.

Two major changes have been proposed to the Web Container in order to support the
loading of SIP Applications.

a. Support for extension modules in the Web Container.

b. Custom Context and ContextConfig classes for each

Support for Extensions Modules

The Web Container has been modified to support extension modules defined by the
ExtensionModule config beans. The limitation being that the BundleDescriptor of such an
extension module should be a sub class of

com.sun.enterprise.deployment. WebBundleDescriptor

Custom Context and ContextConfig classes

The following classes are introduced to support the loading and configuration of SIP
Applications/ Converged SIP Applications.
com.ericcson.ssa.config.ConvergedContextimpl which extends
com.sun.enterprise.web.WebModule . This class represents the SIP Application being
deployed.

http://sailfin.dev.java.net

Project SailFin

com.ericcson.ssa.config.ConvergedContextConfig which extends
com.sun.enterprise.web.WebModuleContextConfig . This class represents the Lifecycle
listener for configuration of the ConvergedContext.

Bual Fargdigm for UML Community Edition [not for commercial use]
org.apache.catalina.core |
StandardContext org.apache.catalina.core.startup
<<Interface>>
Context Config
LN
LA
7\
[S

|
|
I
|
|
|
|
com.sun.enterprise.web :
Web Module Web Module ContextCo..

yaN A

ConvergedContextlimp|

com .ericcson.ssa.config

ConvergedContext Config

configures +setSipApplication(
+getSipApplication()

F - — =

<<Interface>>
ConvergedCont..

The following class diagram explains these classes.

Pluggable Context SPI

An SPI has been introduced in the WebContainer to enable developers to plug in custom Context
and ContextConfig implementations, to support various extension modules. A registry class
com.sun.enterprise.web.PluggableContextinfo , maps the Context and ContextConfig
implementation for each module type.

The following sequence is followed to plug in the custom Context and ContextConfig classes.

1. During the startup of the WebContainer, the custom Context and ContextConfig
implementation classes are registered, with PluggableContextinfo, with the moduleType as a the
key.

2. During application loading (both at startup and deployment) the appropriate Context and
ContextConfig classes for that module Type are looked up from the PluggableContextinfo. This
lookup happens in com.sun.enterprise.web.WebContainer .

http://sailfin.dev.java.net

Project SailFin

The following sequence diagram explains the sequence of registration and lookup of Context and
ContextConfig classes.

sd F'IuggahleComextInfo)

PEWe bContainer EmbeddedWebContainer ConvergedContext ConvergedContextConfig PluggableConte xtinfo
| |

|

: 3 registerContltaxtComgo :
: 2:re gisterdlontext@ :
| |
|

|

|
%&: getContext(moduIeTypel\

t t
4: new)) : :
|
|
|
|

F——-

|
|
S: getContextConfig(moduleType)
1

>

6: 1'1ew0
f
|
|
|

RN, SR A A S

2.4 Deployment of Converged Java EE and SIP Applications

The deployment of a Pure SIP / Converged HTTP and SIP application embedded within a
.ear (Enterprise Application), follows the same path as any Enterprise Archive. The following
limitations are imposed to extend the SPI to work for an embedded extension application.

1. Only modules who Deployment Descriptor object extend the
com.sun.enterprise.deployment.BundleDescriptor can be deployed.

2. Only modules that extend the web module and are specified as a web module in the
application.xml can be deployed.

The followingclasses in the GlassFish backend are used :

Archivist : com.sun.enterprise.deployment.archivist. ApplicationArchivist

When a web module is being processed by an ApplicationArchvist, the ApplicationArchivist
would delegate the processing of the archive to the appropriate ExtensionModuleArchivist or
the WebArchivist, as the case may be. In the case of all other modules the appropriate
Archivist is invoke to process the module.

Deployer : com.sun.enterprisedeployment.phasing.AppDeployer
The AppDeployer is responsible for the creation of the Application for the EAR deployment
descriptor and the module descriptors of all the modules within.

DeploymentDescriptor : com.sun.enterprise.deployment.Application

The Applcation object would contain the deployment descriptors for all the
ExtensionModules within the EAR. The Application class has been modified to recognize
DepoymentDescriptors whose module type correspond to registered Extension Modules

Loader : com.sun.enterprise.server.ExtendedAppLoader
The ExtendedAppLoader is the Loader class used for deploying EARs with an embedded
Extension module. The ExtendedAppLoader extends the TomcatApplicationLoader which is

http://sailfin.dev.java.net

Project SailFin

the loader used for all the EARs without embedded Extension module. The
ExtendedAppLoader would get the appropriate ArchiveLoader for the module type being
deployed.

In this case the SipArchiveLoader, handles the loading of the extension module , by
delegating to the appropriate method in the Web Container. A helper class
AppArchiveLoader has been introduced in the GlassFish deployment backend, to provide
support during loading for extension modules embedded within an EAR.

This class diagram below explains the model being followed

Sual ‘LT adigm for UML Community Edition [not for commercial use]

com.sun.enterprsise.server |

App licationLoader com.sun.enterprise.server
+doLoad(boolean) AppArchiveLoader
+set)2eeAppBean()

—

TomcatApp licationLoader

com.sun.enterprise.deployment.i...

+doload(boolean)

<<Interface>>
Archive Loader

+load()
+unload(Web ExtensionLoader

+loadExt ensionApplicationModules()

I\

ExtendedApplication Loader

+dolLoad(boolean) 74

<<ACCRSSS > ‘/,’ C \.sun.entyerpr Se.Server.eitensions...
P SipArchive Loader
Delegates to th +load(
appropriate +unload(
Archiveloacer

L]

2.5 Annotation Processing

The SPI provides a mechanism for plugging in annotation handlers for processing custom
annotation.

2.5.1 Plugging in Custom Annotation Handlers

The PluggableDeploymentinfo would register custom annotation handlers with a
AnnotationProcessor object created for a particular module type. The key for registering
these annotation handlers is the module type.

2.5.2 Plugging in the Annotation Processor in the deployment code

The standard Java EE annotations would be processed inside the WebDeployer methods (
exposed via the WebExtensionDeployer). Once these annotations are processed , the
custom annotation processor from the PluggableDeploymentinfo is invoked. A Scanner
object is invoked to parse through the archive for any custom annotations and processed via
the custom annotation handler registered with the custom annotation processor invoked.

http://sailfin.dev.java.net

Project SailFin

Application Upgrade

The High Availability requirements specify that an applications on instances within a cluster
should have the capability to be upgraded without imposing a downtime for the requests
being served. It also specifies that each application would need to have a capability to know
that an upgrade has happened / is going to happen.

When an application is being upgraded it would receive an event stating that an upgrade is
planned. This application would stop allocating resources for new requests and quiesce the
existing request.

The usual redeploy mechanism would be used to deploy a newer version of the Application.
This application would deployed in a disabled state. A deployment property would be used to
indicate that this redeploy action is an Application Upgrade option.

The older application would be disabled and the newer one would be enabled. After the
Upgrade (i.e. Enabling of the newer version of the Application) the application would
revceive another event stating that the application has been upgraded. These notification
events would be generated from the Administration module.

Performance

<How do you want performance team to measure this sub-system? Any micro benchmarks
necessary?Any goals? Anticipated scalability limits or goals?>

Management

<Describe how performance, management status, and diagnostic information is exposed. How does
this feature handle dynamic configuration changes?>

4.1 Interfaces

<How is this feature(s) configured by administrator? Does it infroduce new commands or modify
existing ones? Show syntax of expected administrative commands and response codes. What is the
schema for new configuration? Show the DTD snippets. What are their default values? What are the
validation rules? List stability level for each of the above [committed|evolving|unstable|standard].
Does it consume interfaces from other projects or sub-systems (imported) or produce interfaces for
consumption (exported).

4.1.1 Exported Interfaces

notationHandler

Interface Defined in Stability
sun-sip_1-1.dtd This document Unstable
com.sun.enterprise.deployment.annotation.An | This document ? Unstable

4.1.2 Imported Interfaces

Interface

Defined in

Stability

http://sailfin.dev.java.net

Project SailFin

Interface Defined in Stability
sun_domain_1-4.dtd GlassFish Stable
com.ericsson.glassfish.sip.startup.SipStartupList Project Private
ener

4.1.3 Configuration
Pure SIP Application and Converged HTTP and SIP Application
The configuration and management of the pure SIP Applications and Converged HTTP
and SIP Applications would be handled by the extension-module element in the
domain.xml. The extension-module element has been defined in sun-domain_1_3.dtd.
The following snippet of the DTD shows the extension-module element
<IELEMENT extension-module (description?, property*)>
<IATTLIST extension-module
name CDATA #REQUIRED
location CDATA #REQUIRED
module-type CDATA #REQUIRED
object-type %object-type; "user"
enabled %boolean; "true"
libraries CDATA #IMPLIED
availability-enabled %boolean; "false"
directory-deployed %boolean; "false">
The following table lists down the valid scenarios for SIP Applications and
Converged HTTP and SIP Applications
Components Deployment Descriptors | Context Root Archive extension
SIP Servlets, HTTP web.xml, sip.xml, sun- As defined by HTTP .sar/ .war
Servlets web.xml Servlet Specification
SIP Servlets sip.xml, sun-web.xml Not Applicable .sar /.war
Table 4.1.2

Converged JavaEE and SIP Application

The configuration of such applications would be done via the j2ee-application element as
it is done all other enterprise archives.

A valid converged Java EE and SIP Application consists of any Java EE component and
a SIP / Converged SIP Application packages within an Enterprise Archive (.ear). The SIP
Application would be specified in the application.xml as a web component.

4.1.3.1 ContextRoot for SIP Applications.

Only converged HTTP and SIP Applications would have a context root defined. The
context root would be specified as property named contextRoot under the extension-
module element

4.1.3.2 Differentiating Converged vs Pure Applications

http://sailfin.dev.java.net

Project SailFin

8

A property under extension-module named isConverged would be used to indicate that
an application is converged or not.

Packaging, Files, and Location

5.1 Packaging

The following table lists the jar files created by this module, and also jar files in Glassfish affected by
this module.

Jar File Location New/Updated

comms-appserv- ${com.sun.aas.installRoot}/lib New
deployment.jar

appserv-rt.jar ${com.sun.aas.installRoot}/lib Updated

In case of native packages like SVR4 packages, sailfin-deployment.jar would be a part of the core
package that delivers the SailFin functionality.

Quality
CLI

The same CLI commands that are used for deployment of other modules are used for deploying SIP
Applications. All the command options need to be tested.

Deploy/Redeploy and Undeploy command should be tested, for success and rollback in case of
failure

Application Content

All the valid SIP Applications / Converged HTTP and SIP Application/ Converged Java EE and SIP
Applications should be deployed/redployed/undeployed.

Java EE annotations within SIP Servlets should be tested.

JSR289 annotations with SIP Servlets should be tested.

Documentation Requirements

All the relevant and valid scenarios for SIP Applications and converged SIP Applications need to be
documented.

Open Issues

Issue No Issue Comment

8.1

The annotation processing extension is yet to be
implemented

8.2

The extension deployment SPI is yet to be
implemented for deploying SIP Applications
embedded with an .ear

8.3

There is a comment that the CLOSED
SipModuleDeployEventListener extends a GlassFish
internal class and violates the principle of SPI

http://sailfin.dev.java.net

Project SailFin

APPENDIX
A : sun-sip 1-1.dtd

http://sailfin.dev.java.net

Project SailFin

http://sailfin.dev.java.net

Project SailFin

http://sailfin.dev.java.net

Project SailFin

http://sailfin.dev.java.net

Project SailFin

http://sailfin.dev.java.net

Project SailFin

http://sailfin.dev.java.net

Project SailFin

http://sailfin.dev.java.net

