
Project SailFin

Functional Specification for Number Normalization and URI
Canonicalization

Author(s): joel.binnquist.xc@ericsson.com
Version: 1.10

Version Date Comment
1.0 2008-09-12 First version
1.1 2008-09-16 Updated after review comments.
1.2 2008-09-18 Updated after decision about how to configure mappings.
1.3 2008-09-18 Added information about how to access the API.
1.4 2008-09-18 Added information about directories used in clustered environment.
1.5 2008-09-23 Clarified order in which the different functions are applied.
1.6 2008-09-26 Updated the class diagram. Added ConfigurationHandler class.
1.7 2008-09-26 Changed name from UriUtil to UriTools.
1.8 2008-09-26 - Stated package names for plugin-interfaces.

- Clarified how to check for successful configuration.
1.9 2008-10-06 Changed pattern to mapping in domain.xml examples in section 2.1
1.10 2008-12-18 Corrected some typos.

1 Introduction
This document describes the solution for handling number normalization and URI
aliasing in Sailfin.

Number Normalization
Number normalization is used to translate a local number, with a phone context,
specified in a Tel-URI according to RFC3966. Such a local number can be specified
either as a pure Tel-URI, e.g., tel:81234567;phone-context=+46, or as part of a SIP-
URI, e.g., sip: 81234567;phone-context=+46@example.com;user=phone.

URI Canonicalization
URI canonicalization is a function aimed find the canonical representation of a URI
alias.

URI aliasing is a (non-standardized) concept where one URI can have several
aliases. For example, alice@alpha.com and AliceAtHome@alpha.com could refer to
the same user. URI aliasing could also be used to translate telephone numbers not
specified according to RFC3966, e.g. the local number
sip:00468123456@example.com (note that it does not contain user=phone, thus
the user is not considered being a telephone number according to RFC3966; as a
consequence number normalization is not applicable) to the global number sip:
+468123456@example.com;user=phone.

2 Function

http://sailfin.dev.java.net

mailto:alice@alpha.com
mailto:AliceAtHome@alpha.com

Project SailFin
2.1 Configuration
Normalization/Canonicalization procedures are implemented by the application or
the deployer in the form of POJO:s. These are plugged into the application server.
This is done by packaging them into one or more jar files and dropping the jar files
into the <sailfin>/domains/<domain>/lib
(<sailfin>/domains/<domain>/config/<cluster-config>/lib may be used for clusters)
and adding the path into the classpath suffix of the application server.
Moreover the deployer must map the plugin-class to a regular expression pattern
that selects the specified plugin. This mapping is specified as a property in the sip-
service. The properties shall follow the following syntax to be recognized as
mappings:
URI-Alias handler: <property name=”uri-alias-mapping<suffix>
value=”<handler-class-name>;<regular-expression1>” />
Phone context handler: <property name=”phone-context-
mapping<suffix> value=”<handler-class-name>;<regular-
expression>” />

suffix: this can be an arbitrary string, but it determines the order in which patterns
are checked.
handler-class-name: the fully qualified name of the plugin-class.
regular-expression: a regular expression2 which is checked and if it is matched
selects the handler class.

Example:

<sip-service>
 :
 <property name="phone-context-mapping1"
 value="com.myapp.MyOperatorSpecificNumberNormalizer;
 \+46702.*"/>
 <property name="phone-context-mapping2"
 value="com.myapp.MyGeneralSwedishNumberNormalizer;\+46.*"/>
 <property name="uri-alias-mapping1"
 value="com.myapp.MyHomeUriCanonicalizer;.*Home.*"/>
 <property name="uri-alias-mapping2"
 value="com.myapp.MyGeneralUriCanonicalizer;.*"/>
</sip-service>

The application server selects the appropriate handler class by applying the regular
expressions (in the order specified by the suffix described above) on the incoming
phone-context (number normalization) or URI (URI canonicalization). The
application server then invokes a method on the handler class to do the translation.

Mappings can be changed at any time without the need for restart, but when
adding/replacing/removing the jar-files, the application server must be restarted in
order for it to take effect.

1 See http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
2 See http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html
http://sailfin.dev.java.net

Project SailFin

2.2 Converged Load Balancer
The application server performs URI canonicalization and number normalization in
the data centric hash key extraction in of the Converged Load Balancer. This is
done in the following order:
Canonicalize the URI
IF the URI is a Tel-URI (tel: or sip: with user=phone):

IF number is local:
Normalize the number

Do ENUM lookup

2.3 DNS resolver
The application server performs number normalization (only), when resolving the IP
address of a request to be sent. This is done in the following order:

IF the URI is a Tel-URI (tel: or sip: with user=phone):
IF number is local:

Normalize the number
Do ENUM lookup

2.4 API
The plug-ins shall implement either:
− org.glassfish.comms.api.telurl.PhoneContextHandler, to implement a number

normalization plug-in, or
− org.glassfish.comms.api.uriutils.UriAliasHandler, to implement a URI

canonicalizer.

It is possible for an application to naormalize a number/canonicalize an URI using
the following API:s:
− The number normalization is available in the

org.glassfish.comms.api.telurl.TelUrlResolver which can be accessed as a
servlet context attribute named with the name as specified in
TelUrlResolver.CONTEXT_ATTRIBUTE_NAME.

− The URI canonicalization is available in the
org.glassfish.comms.api.uriutils.UriTools which can be accessed as a servlet
context attribute with the name as specified in
UriTools.CONTEXT_ATTRIBUTE_NAME.

2.5 Constraints
Since number normalization and canonicalization is done in the Converged Load
Balancer, which is long before the serving application(s) has been determined, it is
not possible to specify translation rules per application but must be common for the
entire application server.

http://sailfin.dev.java.net

Project SailFin
However, the rules governing the translation may differ from application to
application. But since rules must be configured for the application server as a
whole, it may be required that rules are shared or modified/combined when several
applications are deployed on the same application server, since different
applications may have different rule implementations for the same phone-
context/alias pattern.

The application server assumes that the result of a DNS lookup is always a global
number or a canonical URI. Thus it will not do canonicalization/number
normalization on the result from such a lookup.

3 Design Overview
3.1 Class Diagram

The entities that are encircled by the dashed line are those are new or being
modified when implementing this function.

At startup the Translator reads the configuration and instantiates one object of each
of the specified handler classes. Each handler object is registered into a list (there

http://sailfin.dev.java.net

DnsResolver

jar-file w. class-files for
plug-ins

<read>

UriAliasHandler

* *

Application

TelUrlResolver UriTools

Pattern

PatternMapping

PhoneContextHandlerPattern

PatternMapping

DCR framework

Translator Admin
Framework

<read & listen>

NetworkManager

TargetResolver

Configuration
Handler

<configure>

Project SailFin
is one list for number normalization handlers and one for URI canonicalization
handlers) together with the regular expression selecting it.

The Translator also adds itself as a listener for configuration changes.

When the CLB processes extracts the hash key using DCR it uses the API:s:
UriTools (new) and TelUrlResolver in order to canonicalize URI:s and resolve Tel-
URI:s. These API:s are also available to the application.

When a request is sent the ResolverManager will do normalization via the
DnsResolver.

4 Quality and Availability
N/A

5 Performance
It could be good to measure the performance impact when having long lists of
mappings.

6 Management and Monitoring
6.1 Formal Interfaces
See Packaging, Files, and Location.

7 Packaging, Files, and Location
The plug-ins are packed into a .jar file. The .jar file is placed into lib directory of the
application server and is then added to the Classpath Sufffix of the application
server, for example via the web GUI:

http://sailfin.dev.java.net

Project SailFin

The mappings are specified as properties in the sip-service, for example via the
web GUI:

When configuring the properties it is important that configuration was successful by
investigating the logs. If the configuration was successful the following is logged:

“Added URI-alias handler: <plugin-class> for regular expression: <regular
expression>”

or

http://sailfin.dev.java.net

Project SailFin
“Added Phone context handler: <plugin-class> for regular expression:
<regular expression>”

Otherwise a warning is logged.

8 Documentation Requirements
Some user guide how to write a handler class, declare mappings and install the
plug-ins is required.

9 Open Issues
None.

http://sailfin.dev.java.net

	1Introduction
	2Function
	2.1Configuration
	2.2Converged Load Balancer
	2.3DNS resolver
	2.4API
	2.5Constraints

	3Design Overview
	3.1Class Diagram

	4Quality and Availability
	5Performance
	6Management and Monitoring
	6.1Formal Interfaces

	7Packaging, Files, and Location
	8Documentation Requirements
	9Open Issues

