
Project SailFin

Functional Specification for Sip Application Routing
Author(s): yvo.bogers@ericsson.com

1 Introduction

1.1 Revision history
Revision Date Author Comments
0.1 2007-09-25 Yvo First draft based on mail

discussions with Per and
Kristoffer

0.2 2007-10-01 Yvo Processed comments Prasad,
Kristoffer, Binod and Martien.

0.3
0.4 2007-10-17 Yvo Updated after phone conference

and some deployment
prototyping.

0.5 2007-10-31 Yvo Updated after mails Roman
0.6 2007-11-12 Yvo Distributing for review.

1.2 Terminology
The following table lists the most important terms and abbrevations used in this document.

Term Explanation
AR Application Router
DAR Default Application Router
EDR Early Draft
GUI Graphical User Interface
Hot
deployment

Refers to the process of putting a new application router into
service in a running system.

In-flight
request

An initial request which has been routed by the application
router, but which has not yet completed the total application
path yet.

JSR Java Specification Request
SIP Session Initiation Protocol
SPI Service Provider Interface
TCK Technology Compatibility Kit

2 Design Overview

2.1 Assumptions
At any point in time, a JSR289 compliant application server will contain one running
(active) application router. This could either be the Default Application Router (DAR) or a
third party Application Router (AR).

Note: this assumption contradicts earlier EDR consolidated feedback, which stated that

Page 1 of 15
http://sailfin.dev.java.net

Project SailFin

multiple ARs could be loaded via some kind of DriverManager mechanism.

The DAR will be packaged with the SIP container, as a .jar archive similar to other
application routers. It is deployed at server startup.

2.2 Use Cases
Application routing use cases can be divided into the following categories: packaging,
deployment and configuration.

2.2.1 Packaging
The packager is the person responsible for packaging the application router software. He
is the main actor involved in these use cases.

2.2.1.1 Use Case: package new AR version

An existing version of a particular AR is running on the server. Due to some bugfixes a
new version of an AR needs to be deployed on a target system. The packager packages
the new application router into a .jar archive and places it onto a location accessible by the
deployer.

2.2.1.2 Use Case: package entirely new AR

An existing AR is running on the server. Due to a change in required functionality or
business logic, an entirely new AR needs to be deployed on a target system.

From a packager point of view, this use case is no different from 2.2.1.1.

2.2.2 Deployment
The deployer is the main actor involved in these use cases. Deployment use cases are
related to the process of installing new applications on the system or installing a new
application router. Pluggable Application Routers could be supported by

 Update the dispatcher.xml file inside the sip-stack.jar file with a new classname for
Application Router class, and restart.

 Support pluggable Application Router by implementing a Glassfish lifecycle module
that would create an instance the ApplicationRouter and call
ApplicationDispatcher.getInstance().setApplicationRouter(….). Both
ApplicationRouter and ApplicationDispatcher are singletons.

 (preferred) Implement a new archive type for Application Router, and create a new
deployer for the archive (through the deployment SPI). In deployment SPI
terminology this is called ‘adding an Extension Module’.
The deployer creates an instance of the ApplicationRouter and calls
ApplicationDispatcher.getInstance().setApplicationRouter(….). Both
ApplicationRouter and ApplicationDispatcher are singletons.

The following classes are added to handle AR deployment.
com.sun.enterprise.deployment.backend.extensions.sip.ArArchiveDeployer
com.sun.enterprise.deployment.backend.extensions.sip.ArArchiveLoader
com.sun.enterprise.deployment.backend.extensions.sip.ArArchiveDescriptor

Page 2 of 15
http://sailfin.dev.java.net

Project SailFin

and the following code is updated to register the new Extension Module

org.jvnet.glassfish.comms.startup.lifecycle.SipContainerLifecycle.register
ExtensionDeployer()

The management GUI should be updated to support deployment of this new
archive.

2.2.2.1 Use Case: start GlassFish server with default AR

Startup the server with only the DAR in place. The server creates the DAR instance. The
DAR reads its initial configuration by reading the file pointed to by the system property
javax.servlet.sip.dar.configuration. The configuration is cached in memory
and is lost when the server is started.

TODO: which are allowed locations of the properties file? Will it be replicated? Should it be
replicated?

2.2.2.2 Use Case: deploy functionally different AR

This use case takes place when an operator wishes to install an AR from a different
vendor, or when a different solution is deployed on the server. A solution consists of a
chain of applications and a new chain may require a new AR.

Startup the server with the existing AR in place. The server starts up and instantiates the
(old) AR. Deploy a different AR into the system, using standard application server
procedures. On GlassFish, this would mean dropping the AR.jar file in the autodeploy
directory or using the commandline asadmin interface. The application server will
instantiate the new AR and, from there on, use it for routing SIP traffic.

TODO: upgrade currently not supported. Server needs to be taken out of the cluster
before upgrading the AR.

2.2.2.3 Use Case: undeploy AR

Take a running AR out of operation. The server will fallback to its default application router.

2.2.2.4 Use Case: upgrade AR version

Introduce a new version of AR into the system e.g. due to bugfixes. All new SIP traffic
should be handled by new version. All existing traffic should be handled by new version as
well. Same as 2.2.2.1.

2.2.3 Configuration
JSR289 only specifies how to configure a default application router, by defining a rather
exotic file format for the dar.properties file (JSR289, appx. C). Configuration of any other
AR is left up to the specific vendor.

Configuration use cases are related to the process of changing something in the
application router configuration. These use cases can be closely related to deployment
use cases. For example, when a new application is deployed on the system, the

Page 3 of 15
http://sailfin.dev.java.net

Project SailFin

application router should typically be reconfigured to include this new application in the
chain.

Several options exist for configuring an application router.

2.2.3.1 DAR properties on external location

This is what JSR289 currently specifies. Use a dar.properties file located elsewhere and
point to it using a system property. Reconfiguration is possible by updating the
dar.properties file and restarting the server.

2.2.3.2 AR and properties file packaged together as .jar archive

AR packaged as separate archive and properties file contained in it.

This could work, and the ar.properties file could be proprietary. Reconfiguration of the AR
means unpacking the archive, updating the ar.properties and redeploying the AR archive.

2.2.3.3 AR packaged as .jar archive, configuration exposed in Admin console

AR packaged as separate archive and AR configuration exposed via Mbean in the Admin
console.

Page 4 of 15
http://sailfin.dev.java.net

Project SailFin

This solution offers the additional advantage of being able to visualize the AR
configuration in the admin console. For example, deployed applications could be added
visually to the AR configuration.

2.3 Package overview
The following picture illustrates some important interfaces and classes which are
responsible for application router deployment.

The following picture shows the classes involved in the application routing process.

Page 5 of 15
http://sailfin.dev.java.net

Project SailFin

2.4 Dynamic behaviour
This chapter describes application router deployment and configuration in terms of their
dynamic behaviour.

2.4.1 Application Deployment
When a new application is deployed (or undeployed, for that matter), the application server
will do two things:

 fire a containerEvent. This event arrives at the ApplicationDispatcher. Currently this
does nothing.

 fire a lifecycleEvent. This event arrives at the ConvergedContextConfig, which will
install a new ServletDispatcher, resulting eventually in a call to
ApplicationRouter.applicationDeployed(). This sequence is illustrated in the figure
below.

Page 6 of 15
http://sailfin.dev.java.net

Project SailFin

In either case the ApplicationRouter should refresh its configuration data.

TODO what to do with ongoing sessions? Subsequent requests or reponses within the
dialog will not be able to follow same application path, if an application was undeployed
somewhere in between.

2.4.2 Application Router deployment
A deployment listener will listen for the application router to be deployed. A new
ArArchiveDeployer and ArArchiveLoader is introduced into the GlassFish deployment
framework. Whenever a .jar file is deployed, it will examine the contents of the jar and
check the META-INF/Manifest.MF for the Application-Router-Class attribute. This
attribute should list a fully qualified classname, for example:

Application-Router-Class: com.ericsson.servicelayer.applicationrouter.AlphabeticalRouter

Page 7 of 15
http://sailfin.dev.java.net

Project SailFin

During deployment of any application, the application server traverses a number of
phases. As shown in the figure above, archive expansion and preparation happens during
the J2EECPhase by calling the appropriate ArArchiveDeployer methods.

The actual loading of the ApplicationRouter class happens next, during the
ApplicationStartupPhase. More details are shown in the figure below.

Page 8 of 15
http://sailfin.dev.java.net

Project SailFin

2.4.2.1 ClassLoading

The new ArArchiveDeployer will create an ArArchiveDescriptor during its prepare()
method, to hold the classloader which is to be used to load the ApplicationRouter.

There may be classloading issues when an AR needs to access EJBs or SipServlets. This
is not supported in the current version of the JSR289 specification.

2.4.3 Application Router rollover procedure
When deploying a new AR in a running system, an existing AR will always be present in
the system (because each JSR289 compliant application server should package a DAR).
The picture illustrates this situation with an example.

The SIP container was invoked for an initial request, in this case an INVITE. The request is
being routed by AR1 to App1. Now a new AR2 is deployed. After App1 has dealt with the
request the SIP container should call AR1 again to continue with the request. However,
new initial requests arriving at the container should be routed to AR2. How will the
ApplicationDispatcher know which AR to invoke? Several options exist to answer this
question:

1. (Preferred) Don’t support hot deployment. A domain.xml entry will instruct the SIP
container which application router class to load. After deploying AR2, stop the
container, update domain.xml and start the container. This may mean traffic loss.

It was stated during last meeting that a rolling upgrade will require a server restart
anyway. By hooking the AR deployment into the deployment framework, AR
deployment will not differ much from the deployment of any other regular (e.g.
converged) application.

2. Support hot deployment and maintain two AR references in the
ApplicationDispatcher (old and new). The ApplicationDispatcher examines the
stateInfo before calling ApplicationDispatcher.getNextApplication(). If stateInfo is
null, this request originated from outside the container. In that case the new AR is
called. Otherwise call the old AR.

TODO when to unload AR1? Manually?

Page 9 of 15
http://sailfin.dev.java.net

Project SailFin

3. Similar to option 2, but don’t call AR1 anymore. As soon as AR2 is deployed, it will
be used for all new SIP traffic. If stateInfo != null, send a SIP 480 Temporary
Unavailable back up the application path and include a Retry-After header.

A way to achieve this could be to set an ‘upgradeServlet’ in the config chain of the
existing approuter as soon as a new Application Router is deployed. Some lifecycle
module is listening for applications being deployed anyway, and translates this into
a call towards the ApplicationRouter appDeployed() method.

The ArArchiveDeployer is listening for new Application Routers being deployed. If
this happens, a call towards the existing ApplicationRouter could be placed
instructing it to “shutdown” or place a ‘upgradeServlet’ in its servlet chain. This
upgradeServlet’s only job would be to respond with a 480.

TODO stateInfo inspection is not enough for this. How will the SIP application
server know that a request with stateInfo != null was routed by AR1 and not AR2?
Once AR2 has been invoked to handle an initial request with stateInfo==null, it will
fill stateInfo with some new state. At that point, AR1 would be invoked again and
we do not want that. Maybe we should include a reference to the handling
applicationRouter instance in the request object, or in the SipSession ? What does
that mean for memory usage and replication ?

2.4.4 Application Router Undeployment
Suppose an application router has been successfully upgraded and introduced into the
system. Once all SIP traffic is being handled by the new application router, the old
application router can be undeployed. The ArArchiveLoader will be called by the

Page 10 of 15
http://sailfin.dev.java.net

Project SailFin

deployment framework to unload() the application router. It will tell the
ApplicationDispatcher to remove any references to the loaded application router.

The application dispatcher removes any references and falls back to the usage ot the DAR
instead.

2.4.5 Configuration
Regardless of the type of Application Router (default or third-party), we should be able to
tell it to refresh its configuration. It was suggested to add a method in the
SipApplicationRouter interface configurationChangedEvent which passes the new
configuration as a parameter, e.g. as an InputStream object. This suggestion did not make
it to the JSR289 specification, but we could still add it as a proprietary method.

public interface GFApplicationRouter extends SipApplicationRouter
{

void init(List<String> applications, InputStream initialConfig);

void configurationChangeEvent(InputStream newConf);
}

How the InputStream object springs into existence is left up to the JSR289 compliant
application server, i.e. it won’t be standardized.

One default suggestion would be to include a configuration file in the META-INF directory
inside the AR.jar . When the AR is deployed, the initial configuration is read, the
InputStream constructed and passed as an argument to the GFApplicationRouter
constructor. To reconfigure the AR, the config file would have to be changed, repackaged
and redeployed to the server. A monitor, packaged with the AR.jar, would pickup the new
config file and inform the ApplicationRouter.

Another option is to include a nofitication listener in the AR.jar which could prepare the
InputStream for the ApplicationRouter. The notification listener would be listening to some
proprietary AR configuration framework; this could be a simple MBean, or some other
external system.

Page 11 of 15
http://sailfin.dev.java.net

Project SailFin

2.4.6 Proxy AR
This originally was an idea by Roman Levenshteyn:

Great idea, just specify proxyAR in dispatcher.xml . Deployment of a new AR then boils
down to setting a system property and placing the new AR.jar in de GF lib directory.

Page 12 of 15
http://sailfin.dev.java.net

I have implemented something called ProxyAR. This one does nothing
on its own. Instead it reads the system property with the name of the
real class implementing the real AR and creates a real AR. Then all
ProxyAR invokations are delegated to the real AR invocations. This
approach has some nice features:

no need to update the standard JAR289 implementation files every time
you introduce a new AR, as it is required now
ability to change the AR on the fly, since only ProxyAR does exist from
GF's point of view
ProxyAR can be extended to delegate to different underlying ARs
depending on the request or some sort of policy

The problem so far is that the real AR class is supposed also to be
placed in the GF/lib, because otherwise the classloader cannot find it. I'd
like to have the ability to put the AR implementation at least into
domains/domainX/lib. But for that the classloader issue should be
solved somehow. Once it is possible, we can have a per domain AR.

Project SailFin

2.4.7 Food for thought...
This section is intended to get an idea about ApplicationRouterState. If an initial request
enters the container, it will be routed by the Application Router to the first application in the
configured chain. At this point, any number of situations could occur:

Application acts as UAS
Application chain is terminated, application path established so far is used to route
responses and subsequent requests.

Application acts as a non-forking Proxy
The application chain continues. The Application Router is invoked again to determine the
next application to invoke.

Application acts as a forking Proxy
The application chain continues. Let's say the application sets up only two forks. The
Application Router getNextApplication() is called twice. How does the application router
know which is the first fork and which the second? What if the first fork requires a need for
a different application chain than the second.
It is most clear in this scenario that there is a need for ApplicationRouterState. The AR
should know “where in the chain are we”.

Application acts as a B2BUA
Application chain selection starts anew. However, the Application Router is not in the same
state it was in when the initial request came in.

Generally speaking, each application in a chain may traverse any number of states,
choose a certain outlet when it has finished processing the request (or response), and
produce a certain amount of output data for the next application in the chain.

An application router should be responsible for investigating which outlet a previously
selected application has chosen, and tell the container which application to invoke next
based on that information. It should also instruct the next application where to store its
output data.

Example:
Application 1 is a presence application, application 2 is a call diversion application,
application 3 is a call setup application, application 4 is a charging application.

Application 1 is able to produce output data based on incoming SIP request and some
proprietary subscriber database.

Application 2 will divert a call, based on the presence of the called party and some
proprietary subscriber data.

Application 3 will just proxy a call to any number it is instructed to proxy to.

Application 4 will write a call detail record which contains the postal address of the charged
party and the duration of the call.

Page 13 of 15
http://sailfin.dev.java.net

Project SailFin

This example requires that the application router :

is invoked when an initial SIP request comes in;
prepares some kind of ApplicationChainContext object / EJB
points the input for the Presence application to “request.ToAddress”
points the input for the Call Diversion application to the “context.PresenceOutput” and
points the output for the Call Diversion application to “context.BNumber”
points the input for the Call Setup forking application to “context.BNumber”
points the input for the Charging application to “request.FromAddress”
returns the Presence application as the next app to invoke. stateInfo contains.... what
does it contain?

We also require some terminology that all constituent services should be able to use, e.g.
“calling party” , “number” , “URI”, “busy”, “location”, “time”, “greeting” , etc.

We want the constituent services to be loosely coupled, i.e. not be aware of eachothers
internal workings, but it should be ok to implement the logic “if calling party is in meeting,
divert to this number” within a component. Even though the latter suggests a coupling of
presence and call diversion, it in fact decouples them.

3 Quality and Availability
-

4 Performance
The important thing is that an AR does not become a performance drain. Actually the
throughput performance of the entire SIP container depends to a large extent on how fast
the AR will cough up the next application to invoke.

It is therefore recommended that every AR refreshes its router info whenever a notification
about change in configuration occurs. It should not have to retrieve this information from a
file at call setup for example.

5 Management and Monitoring
Admin GUI extensions needed? Currently: no, since AR configuration is not standardized.

6 Formal Interfaces
Dar.properties (see JSR289 appendix C) needs to be available, and a system property
needs to be added to the domain.xml as specified in JSR289:

javax.servlet.sip.dar.configuration

7 Packaging, Files, and Location
The Default Application Router code will be checked into CVS with the SipContainer. It
should automatically be deployed by the container at startup. To configure the DAR, a
properties file is used as defined in the JSR 289 spec.

Page 14 of 15
http://sailfin.dev.java.net

Project SailFin

Any other application router which is to be deployed later should be packaged as a .jar
archive. The .jar archive contains the class implementing the SipApplicationRouter
interface, as well as a properties-file in the META-INF directory, with some proprietary
format. An example of such a application router will be stored in CVS under the sample
applications directory.

Furthermore, a scanner should be included within the application router archive to monitor
those files. This could perhaps be the ArArchiveLoader itself, or otherwise some dedicated
monitor object. As soon as the timestamp of these config files changes due to editing, this
monitor would read the new file and call configurationChanged() on the ApplicationRouter,
passing in the config file.

TODO: Any configuration GUI needed for configuring the DAR properties?

TODO: TCK contains a set of applications and the DAR. What exactly does that imply for
Glassfish?

8 Documentation Requirements

This FSD, javadoc, and probably some kind of programmer’s guide.

9 References

1 Functional Specification for Proxy (Converged LoadBalancer)

2 JSR 289 EDR

3 JSR 289 Consolidated feedback

4 Functional Specification Description for Deployment SPI

10 Open Issues
Sailfin issues #123, #154, #158, #177

Classloading of the Application Router class. is it done correctly?

Scan this document for TODO tags ;)

Page 15 of 15
http://sailfin.dev.java.net

	1Introduction
	1.1Revision history
	1.2Terminology

	2Design Overview
	2.1Assumptions
	2.2Use Cases
	2.2.1Packaging
	2.2.1.1Use Case: package new AR version
	2.2.1.2Use Case: package entirely new AR

	2.2.2Deployment
	2.2.2.1Use Case: start GlassFish server with default AR
	2.2.2.2Use Case: deploy functionally different AR
	2.2.2.3Use Case: undeploy AR
	2.2.2.4Use Case: upgrade AR version

	2.2.3Configuration
	2.2.3.1DAR properties on external location
	2.2.3.2AR and properties file packaged together as .jar archive
	2.2.3.3AR packaged as .jar archive, configuration exposed in Admin console

	2.3Package overview
	2.4Dynamic behaviour
	2.4.1Application Deployment
	2.4.2Application Router deployment
	2.4.2.1ClassLoading

	2.4.3Application Router rollover procedure
	2.4.4Application Router Undeployment
	2.4.5Configuration
	2.4.6Proxy AR
	2.4.7Food for thought...

	3Quality and Availability
	4Performance
	5Management and Monitoring
	6Formal Interfaces
	7Packaging, Files, and Location
	8Documentation Requirements
	9References
	10Open Issues

