
Review Record
Document: FSD for Number Normalization and SIP URI Aliasing version 1.0.
Review Date: 2008-09-18

Reviewer Sreeram Duvur
Comment Can you document the syntax for the mapping rules more

formally? I am thinking of the end user documentation writer
who could simply borrow from this spec.

Response/Resolution I will clarify the syntax, but it is quite simple. The property file
declares the mappings in the order they shall be applied. Each
line in the property file specifies the mapping:

<regular expression>=<fully qualified class name of handler
plug-in class>

The regular expression will be according to the documentation of
the class of java.util.regex.Pattern, with the appropriate escaping
to be handled correctly as a resource bundle.
For example would the regexp for matching strings starting with
"+46" be \\+46.*. The first '\' is needed to escape the second '\' so
that the resource reader does not interpret it as a line
continuation. The second '\' is used to escape the '+' so that the
regexp matcher does not interpret the '+' as a quantifier.

Reviewer
Sreeram Duvur

Comment If you want mappings per application, why are they not in the application
archive itself? Inside the sar, war, ear?

Response/Resolution I do not mean that mapping rules are specified per application, mapping
rules are configured for the application server as a whole.
The plugins are most probably be provided by the application, but they
cannot be included in the application archive when deploying multiple
applications.
The reason for this is that for a given phone-context or SIP URI alias
pattern, each application might provide its own mapping rule
implementation. However, at the point in the request processing where the
mapping rules will be used (in the CLB) it is not known which
application(s) are going to handle the request and the application server
would not know which variant of the same mapping rule to use.
Consequently, for a given application combination each such clashing
mapping rule plug-in class must be combined into one single plug-
in class.
To make this possible the plug-ins and their mappings must be provided at
application server level (rather than on application level) so that it is

possible to create the appropriate combination for a given application
combination.

An example would be the implementation of the swedish number plan.
Each application would need to have an implementation (to be able
to work on its own in a single-application deployment), but when multiple
applications are deployed they would all use the same plug-in for the
swedish number plan. The worst situation that could occur is that they
have different implementations and application-specific features must be
supported. In that case a new plug-in must be implemented combining the
different features. This could of course be tricky since it requires
knowledge of the different implementations (in the worst case the rules are
exclusive and might not be possible to combine, but such situation cannot
be solved in another way than to make a compromise). However, these
situations should be quite rare, but at least it is possible solve then without
the need of rewriting the applications.

Reviewer Binod P.G
Comment Given the actual mapping is done by the plugin, it is possible (or quite

likely in case of aliases) that the plugin will do a DB access to complete
the mapping, right? Are there any guideline to avoid performance impact
due to the DB access? DB access may be required for all requests (Any
string can be alias for another string). That would affect the front end
performance a lot. As you said, it may be unavoidable

Response/Resolution This is a situation where the container must do a call into application code.
The application must try to write this code as efficient as possible
to minimize the performance impact. This must be emphasized in the CPI.
It can be limited somewhat by the regular expressions mapping it, so that
only certain alias patterns are handled. But it is correct that if one has an
alias pattern like "*" (i.e. all URI:s can be aliased in any way), then all
requests must be checked.
But I guess it might be required that the application do some caching in
certain situations. The container shall not try to do caching of the results
from the handlers (since we do not the dynamics of the application in this
area, e.g. the handler might come up with a different result at different
times on the day).

Reviewer Binod P.G
Comment Is there any reason, why we choose properties files for specifying the

mapping rules. Given that we already have configuration files for CLB
and DCR, yet another file may not be good. Cant we just put this into
domain.xml?

Response/Resolution I did this because it would be easy to pack the handler class files and the
mappings into the same jar-file, but we might as well put the mapping
rules into the domain.xml.

Decision: the mappings are specified as properties below the sip-service
element in the domain.xml

Reviewer Binod P.G
Comment Assuming that the plugins will need to implement a new java

interface, please add it under
sailfin/common/src/main/java/org/glassfish/comms/api

Response/Resolution Yes.

Reviewer Lars Andersson
Comment Must the server be restarted when adding a plugin class?
Response/Resolution Yes, the server must be restarted.

However, it is possible to update the mappings without restarting the
server.
A possible future enhancement could be to support installation of new
plugins without restart.

Reviewer Andreas Burmester
Comment It would be preferable if the plugin classes (jar-file) could be

deployed using an admin command rather than copying a jar to a
directory.

Response/Resolution OK. This will also be a future enhancement.

