
Project SailFin

http://sailfin.dev.java.net

Functional Specification for Container Integration
Author(s): Peter.Danielsson@ericsson.com, Eltjo.Boersma@ericsson.com

Version: prel A4

1 Introduction
<List proposed feature(s). Introduce the basic vocabulary. Why is this interesting? List capabilities
that may be normally expected, but are not being supported. Are there any limitations and caveats
that need to be disclosed?>

1.1 Structure
This document is part of a the overall function specification OFS:

1. Functional Specification for SailFin Administration
Author(s): yamini@sun.com
Contributors: Irfan A, Vijay G
Version:0.5

1.2 Features
<List all requirements and features you are implementing. List those which may be normally
expected to be implemented but are not.>

1.2.1 Internationalized Logging
All logging in the SEVERE and WARNING level should be
Internationalized. The actual log-messages should be stored in a
properties-file.

1.2.2 Call Flow and SIP Message Inspection
Call Flow can be seen as detailed logging of all the transactions going in
and out of the container. This includes the SIP Messages, that has to be
parsed and the important information in all messages logged as well.

1.2.3 Monitoring
Statistics collected in the Saifin code has to be reported using the same or
similar mechanisms as for the rest of Glassfish.

1.2.4 Configuration
Configuration should be dynamic and allow (most) changes without having
to restart the server.

1.2.5 Application Verifier
Support for SIP applications (.sar-files) has to be added to the application
verifier

Project SailFin

http://sailfin.dev.java.net

2 Design Overview
2.1 General design concerns

Container integration is to integrate the sip container with (mostly cross
cutting functionality) Glassfish frameworks such as Config and Monitoring.
The intention is to do so without introducing dependencies between Glassfish
and Sailfin. However also the reverse is not wanted, that is no direct
dependencies. Therefore the integration module will deal with all direct
dependencies with Glassfish as depicted in the diagram below (Figure 1).
(Note that the admin module is extension code to glassfish to introduce
Sailfin to Glassfish and obviously also depends on Glassfish.)

admin

integration

sip-stack

sip stack extention

core

extentions

integration

<<optional>>

Glassfish Module

Figure 1: Dependencies between the modules, integration is to resolve dependency with Glassfish.

The integration module will strive to us the same pattern to resolve this
dependency issue. The pattern is to use dependency injection to infuse by
integration implemented realizations of interfaces that are specified by the
sip-stack module. The dependency injection is applied to factories that are
used within the sip-stack to obtain an instance implementing a certain
interface. Although the infused realization of the interface depends on
Glassfish the user of the interface does not. See the diagram below for the
pattern (Figure 2).

Project SailFin

http://sailfin.dev.java.net

SipServiceListener
GlassfishModuleClass

IntegrationInterfaceRealization

IntegrationInterfaceFactory

+regsiter(interface: IntegrationInterface)
IntegrationInterface

register

Figure 2: Integration pattern, realizations are injected into factories to resolve dependency issues.

2.2 Internationalized logging

This part does not really require any new design. The design already
available in Glassfish is sufficient. It just has to be applied to the Sailfin code.

The issues needed to be documented are what log messages should be
used and what keys are used in the code.

We need to follow the logging guidelines of GF: GlassFish Log guidelines
This explains:

• General logging rules to follow.
• When to apply localization (for what log levels).
• Log resource bundle generation tool for exception logging.

Unclear is the usage of the message-catalog, seems that it is not used yet or
is out dated.

2.2.1 Message id convention

The sip-container in total should get a message id prefix:

Project SailFin

http://sailfin.dev.java.net

• sip

Within this scope we can define a own naming hierarchy. Suggestion us to
have the following:

• sip.<module><short message description>
• sip.stack.<layer><short message description>

This may be a bid too fine grained. Other domains use <prefix>.<short
message description>.

2.2.2 Logger name convention

Logger names should be sensible.

If we follow other GF containers we get the following:

• javax.enterprise.system.container.sip

See for this the following file com.sun.logging.LogDomain (the base logger
with in GF is somehow javax). Currently SipContainer is used in the sip
container.

Decided on logger name:
javax.enterprise.system.container.sip.

2.3 Call Flow and SIP Message Inspection

2.3.1 Reporters
Call Flow reporting and SIP Message Inspection is handled by classes
implementing the Reporter interface. Currently the reporter-classes
are being called with the instance of the current Layer in the SIP stack
and the current SIP request or SIP response. The reporters can be
attached to any layer in the SIP stack and will be called before control is
transferred to that layer.

2.3.2 Extensions to the Layers
To handle the reporters the Layer interface has been modified to include
the registering of the reporter and to access the registered reporters.

2.3.3 Registering the reporters
Reporters are initialized at the same time as the SIP stack. An extra
argument (reporters) to the layer in the dispatcher.xml tells what
reporters will be called for that layer. It is possible to add new reporters if
they are put in the package

Project SailFin

http://sailfin.dev.java.net

org.jvnet.glassfish.comms.admin.callflow.reporter and
implements the Reporter interface.

2.3.4 Call Flow Reporting
Currently call flow is only reported at the incoming calls. This is handled by
the CallFlowReporter and to enable reporting the CallFlowAgent must
be enabled.

2.3.5 SIP Message Inspection
A simple inspection is being done by the reporter SipMessageReporter.
This reporter simply logs the requests and responses passing through a
layer to the log file using LogLevel.FINE.

2.4 Monitoring

2.4.1 Monitoring Managers
Monitoring of the SIP stack is handled by separate monitoring managers
that corresponds to different layers in the stack. The monitoring managers
collects statistics from the layers and presents them to the Glassfish
monitoring framework. The available monitors are network, manager,
session manager, transaction manager and overload protection manager.

2.4.2 Registering the Monitoring Managers
When the monitoring framework in Glassfish is initialized the monitoring
managers for the SIP stack is being registered as well. This is handled by
a call to SipMonitoringManagerImpl.registerAllStats().Due
to the startup order the SIP stack is not yet initialized when the Monitoring
Managers are registered so after initialization the layers in the SIP stack is
being inspected and connected to corresponding monitoring managers.

2.4.3 New MonitoringObjectTypes
To register the different Monitoring Managers in the Glassfish monitoring
framework the class MonitoriedObjectType has been extended to
allow more types. This is utilized when registering a monitoring Manager
by generating a new type based on the name of the manager.

2.4.4 Collected statistics in the Sip Container

Project SailFin

http://sailfin.dev.java.net

2.4.4.1 NetworkManager
• Invalid Sip Messages
• Received Sip Requests
• Received Sip Responses
• Sent Sip Requests
• Sent Sip Responses

2.4.4.2 OverloadProtectionManager
• Overload Rejected Sip Responses
• Overload Rejected Http Responses

2.4.4.3 SessionManager:
• Failed Sip Dialogs
• Expires Sip Dialogs
• Successful Sip Dialogs
• Total Sip Dialog Count
• Total Sip Dialog Life Time
• Concurrent Sip Dialogs

2.4.4.4 TransactionManager:
• Sip Client Counters
• Sip Server Transactions
• Total Sip Transaction Time
• Total Sip Transaction Count

2.5 Configuration

2.5.1 Deployables
2.5.1.1 Application Router

See deployment module function specification.

2.5.1.2 Sip stack extensions
The sip stack extension plugins jars go on the classpath.

Sip stack layer configuration will be refactored to allow an overriding
mechanism on how the sip-stack layers are configured. In the current
implementation the LayerHandler class has several responsibilities among
which; maintaining the Layer model, parsing the layer configuration
(dispatcher.xml).

Project SailFin

http://sailfin.dev.java.net

The picture below shows how the sip stack layer configuration will be
refactored:

LayerHandler

+init(lcp: LayerConfigProvider)

LayerModel

+addLayer(layer: Layer)

LayerConfigProvider

+configure(layerModel: LayerModel)

LayerRule

DispatcherXMLParser

SipServiceListener

+default

Module sip-stack

Module glassfish-linkage

Pale/light colors are existing classes / interfaces
bright/dark are new.

Figure 3: Class diagram depicting the refactoring of the LayerHandler to provide means to
override the layer configuration (dispatcher.xml) that is necessary to allow extensibility of the
sip-stack.

The LayerHandler still exist but its parser responsibility will be factored out as
the default implementation of a LayerConfigProvider. To allow proper
dependency between the LayerConfigProvider and the LayerHandler it
implements a LayerModel interface.

The default LayerConfigProvider can be overridden by setting a property on
the sip-container:

• sip.extention.layer.config.provider

The default LayerConfigProvider ‘DispatcherXMLParser’ can be redirected to
read a non pre-packaged dispatcher.xml by setting the following property on
the sip-container:

• sip.extention.default.layer.config.provider.dispatc
her.xml.location

2.5.2 Configurables
2.5.2.1 Domain xml elements

The new sip related elements of the domain.xml as described in the
domain.dtd. Will result among others into new ConfigBeans,
ElementChangeEvents and ElementChangeEventListeners as a result of an
generation process using the domain.dtd as input. The sip containers’ current

Project SailFin

http://sailfin.dev.java.net

way of configuring has to be adjusted to couple it to the Glassfish Config
model. See Figure 4.

ConfigFactoryConfigBean

AdminEventListener

ElementChangeEvent

Config

ConfigStartup

ConfigValidator

ConfigAdhoc

reads

+source

+event

reads ConfigUpdateListener

SipServiceListener

Module sip-stack

Module glassfish-linkage

Pale/light colors are existing classes / interfaces
bright/dark are new.

Module admin

Module admin (generated)

ConfigAdapter

Figure 4: Class diagram depicting how the Glassfish Config Model is coupled to sip container
configuration and the changes to the sip container configuration (not completely depicted).

Therefore the current sip-container configuration has to be updated to allow
this to work. The refactoring mainly strips the old JMX based administering
support and the runtime polling mechanism that accompanies it. See Figure
5 for more details on the refactoring. After refactoring remains an internal
interface is used by the Sailfin admin module to realize the coupling. This
also makes sure that the proper dependencies are honored (the admin
depends on the sip-stack not the other way around.)

Two phases can be distinguished. There is a startup phase; where the
ConfigBeans have to read and the sip-stack (container in general) has to be
configured /initialized accordingly. The realization of the ConfigStartup takes
care of this for this phase.

After the startup phase the sip-container is fully configured and initialized and
enters the active state. Admin users may change the Configuration at the
Console or issue CLI command that update the ConfigBean.
AdminEventListerners will be triggered on each server instance. The
ConfigAdhoc realization also implements the AdminEventListener and listens
for ElementChangeEvents specific for the elements that concern the sip-
container. This ConfigAdhoc realization will interact with the ConfigFactory or
the Config to make sure that the changes are taken into effect.
The ConfigAdapter realizes the ConfigStartup and ConfigAdhoc tasks.

Project SailFin

http://sailfin.dev.java.net

ConfigValidator

ConfigUpdateListener

Config

ConfigFactory

SimpleConfig

Config User

reads

Module sip-stack

Pale/light colors are existing classes / interfaces
bright/dark are new.

Internal parts of the sip-container
 that use configuration.

InvalidConfigException

Figure 5: Class diagram depicting the details refactoring details of the configuration mechanism
in the sip-container.

Figure 5 shows the participants that take part in such an interaction. The
ConfigFactory supplies the Config to Config Users. To allow Config updates
in a controlled manner. Each request will be screened by a
ConfigurationValidator implementation. In the case that the configuration item
to update proofs to be invalid an InvalidConfigException is thrown. Minimally
a SEVERE message is logged, but the intention is to allow other means of
reporting to be realized as well, such as raising an Alarm by interaction with a
FaultManager. Note that this Configuration Validation is to be considered in a
latter stage. The initial implementation will not validate yet.

The ConfigFactory keeps a Config which is the embodiment of a
Configuration store. Currently this Config is implemented using the java
Preferences. A new ‘simple’ implementation will be provided that just keeps
track of the configuration items in memory. The eventual realization may very
well consider interacting with the ConfigBeans as the ‘storage’, but not
necessarily.

In plain cases of configuration usage by a Config User the Config is read on
a need basis and the latest update of the ConfigBeans is used by the Config
User. This works well for the cases where a config setting is used i.e. when a
new session is created. However there are cases when external interactions
can’t trigger reading latest updates. For these cases the Config User
implements an ConfigChangeListener and registers it at the ConfigFactory /
Config releazation. The ConfigFactory / Config will make sure that the Config
User is notified of the changes so it can take the necessary measures to
dynamically reconfigure it self.

TODO More on what the refactoring of the sip-stack module will imply.

Refactory of the sip-stack module considering Config will imply that the
RuntimeConfig will be remove and most of the mbean usage aswell. All

Project SailFin

http://sailfin.dev.java.net

direct usages of Preferences will be removed and System properties won’t
be allowed any more except for temporary optional settings, in frequent used
configuration setting (such as the 503disabled) are to be realized using sip-
container.properties.

2.5.2.2 Sip stack extensions
General
Using sip-container.properties
Following the following naming convention:

• sip.extention.<plugin_name>.<plugin_parameter>

load balancer
Suggested plugin name for the load balancer is load-balancer
(alternative could be user-centric).

• sip.extention.load-balancer.external.port (example)

Note that the default load balancer most likely will come with an own domain
xml element and will not make use of sip-container.properties.

overload protection
Suggested plugin name is overload-protection. Here is the list of all
properties applicable for the overload-protection plugin.

• sip.extention.overload-protection.HttpThreshold
• sip.extention.overload-protection.ItThreshold
• sip.extention.overload-protection.MmThreshold
• sip.extention.overload-protection.NumberOfSamples
• sip.extention.overload-

protection.OverLoadRegulation
• sip.extention.overload-protection.SampleRate
• sip.extention.overload-protection.SrThreshold

2.5.2.3 dns-agent
dns-java specified in OFS.

2.6 Application Verifier
Editor note: planning steps.
-structure of .sar-files
-parsing sip.xml
-glassfish\avk\src\tools\com\sun\enterprise\tools\verifier
-depend on jsr289
-clone tests for web-applications, remove and modify

Project SailFin

http://sailfin.dev.java.net

3 Performance
<How do you want performance team to measure this sub-system? Any micro benchmarks
necessary?Any goals? Anticipated scalability limits or goals?>

4 Management
4.1 Interfaces

4.1.1 Exported Interfaces

Interface Proposed Stability
Classification

Specified in Comments

Sip-container
extension

EVOLVING This document Extension mechanism for the Sip-container.
Allows layers to be added to the sip stack, by
configuring plugin jars.

4.1.2 Deployables
The get/set commands of asadmin can be used to manipulate the following
SIP parameters to facilitate the deployment of the listed deployables.

Sip stack extensions
A sip stack extension can be deployed using the get/set commands for the element
attributes indicated.
Attribute Value Definition Default

server.java-config.classpath-prefix or
server.java-config.classpath-suffix

Path to jar of
sip-container
extension

The sip container can be extended by adding
the extension classes to the classpath. Note that
the extension needs to be declared as part of the
sip-stack as defined by the
LayerConfigProvider. (using the default
LayerConfigProvider one needs to override the
default dispatcher.xml file with one that
contains the extension. See sip-container
extension configuration properties.)

(optional)

4.1.3 Configurables
The get/set commands of asadmin can be used to manipulate the following
SIP parameters.

Sip stack extensions
Sip stack extension configuration properties can be set using the get/set commands for
the element indicated.
Element Property Definition Default

server.sip-
container.properties

sip.extention.layer.config.
provider

Property indicating a class to override the
default LayerConfigProvider.

com.ericsson.ssa.
config.Dispatcher
XMLParser

sip.extention.default.layer
.config.provider.dispatcher
.xml.location

Property indicating a resource location to
override the default dispatcher.xml file. Only
applicable with the default
LayerConfigProvider.

dispatcher.xml

Project SailFin

http://sailfin.dev.java.net

 sip.extention.<plugin_name>
.<plugin_parameter>

Free purpose properties. Plugin defines these.
Refer to plugin specification for specific
property definitions.

(Depends on
plugin)

5 Packaging, Files, and Location
<Does this feature add new jar files or extend existing ones? Where are they located?>

6 Quality
For the overall Quality approach see OFS.
Positive test:
Run FT test case with changed but correct configuration.

Negative test:
Run FT test case with changed but incorrect configuration.

7 Documentation Requirements
See OFS.

8 Open Issues

