
Functional Specification
Converged Load Balancer

Author(s): pankaj.jairath@sun.com joel.xc.binnquist@ericsson.com
Version: 1.3

Change Log
Version Comments Date Author

0.1 First cut of FS covering the overall scope. 07/03/07 Pankaj Jairath

0.2 Updated 2.4.1: Added information about
ucr.xml,
2.4.2: modified description of SIP load
balancing
and 2.5.2: updated description of SIP
container changes

07-08-21 Joel Binnquist

0.3 Included use cases and pseudo code 07-08-23 Joel Binnquist

0.4 Updated based on Ramesh P and Kshitiz S
review comments

08/24/07 Pankaj Jairath

0.5 Updated based on changes due 0.2 08/27/07 Pankaj Jairath

1.0 Draft 08/27/07 Pankaj Jairath

1.1 Added Appendix section 8.3 09/10/07 Pankaj Jairath

1.2 Updated based on the review comments
received.

10/01/2007 Pankaj Jairath

1.3 Updated with modifications done during
development

5/13/2008 Joel Binnquist

1 Introduction
<List proposed feature(s). Introduce the basic vocabulary. Why is this interesting? List capabilities that may
be normally expected, but are not being supported. Are there any limitations and caveats that need to be
disclosed?>

The Converged Load Balancer (CLB) is responsible for forwarding SIP/SIPS//HTTP/HTTPS
requests to a set of “SailFin instances” belonging to one or more clusters. The CLB uses
proxy API [6] to forward requests to instances such that sticky requests for a particular
session are delivered to the same instance that serviced the first request for that session.
The CLB also supports SIP/HTTP session failover. What this implies is that the CLB has the
ability to forward a SIP/SIPS/HTTP/HTTPS request to a healthy instance, if it detects that the
target instance for a given request is unavailable.

It is delivered as a pluggable component into the SailFin request processing stack; on top of
Grizzly proxy connector. While the Grizzly provides request forwarding, proxy'ing, across
multiple instances, the CLB will provide high availability by supporting forwarding of requests
to instances in a cluster, using health check mechanisms for determining the availability of
instances and providing support for graceful termination (or quiescing) of instances to
support online upgrade.

1.1 Reference Documents

Reference Document Location (URL)
[1] SailFin Architectural
Overview Document

http://wiki.glassfish.java.net/attach/FunctionalSpecsOne
Pagers/sailfin_umbrella.pdf

[2] SailFin
Requirement
Document

TDB

[3] DTD for converged-
loadbalancer.xml

This Document

[4] Converged HTTP http://wiki.glassfish.java.net/PageInfo.jsp?
page=FunctionalSpecsOnePagers/ConvergedHttpSessio
n_FunctionalSpec.doc

[5] SIP Servlet
Container

URL not available

[6] Proxy functional
specification

http://wiki.glassfish.java.net/PageInfo.jsp?
page=FunctionalSpecsOnePagers/lb_proxy_fsd.doc

[7] Session Initiation
Protocol

http://www.ietf.org/rfc/rfc3261.txt

[8] Domain DTD https://sailfin.dev.java.net/documents/sun-
domain_1_4.dtd

[9] TCP Protocol http://www.ietf.org/rfc/rfc675.txt
[10] UDP Protocol http://www.ietf.org/rfc/rfc768.txt
[11] Grizzly 1.0 API https://grizzly.dev.java.net/nonav/apidocs/index.html
[12] Grizzly 1.5 API URL not available
[13] Shoal / GMS API https://shoal.dev.java.net/nonav/docs/api/
[14] Administration FS http://wiki.glassfish.java.net/PageInfo.jsp?

page=FunctionalSpecsOnePagers/sailfin_admin.doc

[15] HTTP 1.0/1.1 http://www.w3.org/Protocols/rfc2616/rfc2616.html
[16] Java SE 5.0 API
java.util.regex

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/pac
kage-summary.html

1.2 Glossary

In order to make concepts discussed easy to understand, this section provides a brief
description of the terminology used in this document.

1 Converged Load Balancer (CLB)

Software load balancing component, that facilitates high availability of
converged applications [17], by distributing the application requests in a
cluster of SailFin instances. While distributing the incoming requests, it also
provides for failing over sticky requests, owing to dynamic membership
changes in the cluster. SIP and HTTP are the application protocols over
which the requests are serviced.

2 Cluster

A group of SailFin instances, which have a homogeneous configuration. A
cluster could be configured to act as both the load balancing and application
serving tier or either a pure load balancing or pure application serving tier.
The deployment topology defines the role of the cluster. The terms servers,
instances are used interchangeably when referring to instances of the cluster,
in this document.

3 Self Load Balancing Cluster

Deployment topolgy, in which each instance in the cluster serves as an
CLB and an application instance. In a self load balancing cluster, each
instance would load balance the incoming request or response to other
instances in the cluster based on the load balancing policy. This document
would commonly refer to such a deployment as a self-loadbalancing cluster.

4 Sticky Request

A request that belongs to a Session. The first / initial request serviced by the
application usually results in establishing a Session. CLB would ensure that
such requests are routed to the instance which hosts the session.

5 Proxy

Component [6] responsible of proxying the request to another SailFin
instance other than the one which received the request. CLB would identify
the server to which the request needs to be dispatched / load balanced to
based upon its load balancing policy. In case the selected server is same the
server on which the request is first received, it would be processed locally.
This component is hosted within the connector.

In general, reference to documents mentioned under section 1.1 would be specified by using
[Number] notation. This document might articulate concepts, mechanisms which have been

http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/package-summary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/package-summary.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html

captured as part approach of defining CLB architecture and functionality; however would not
be supported / implemented for the first release of SailFin. These sections would be colored
code in RED .

1.3 Supported Features

The following features will be supported by the Converged LB in the first release of SailFin:

· Setup and configure the Converged Load Balancer.

· Forward SIP(S) and HTTP(S) requests to a cluster of SailFin instances.

· Load Balance requests using consistent hashing/round-robin policy, while
maintaining stickiness.

· Enable and disable server instances in a cluster.

· Monitor health of server instances.

1.4 Features Not Supported

1.5 Differentiation

There exist no prior version of converged Load Balancer for SIP applications deployed on
SaiFin cluster.

2 Design Overview
<Discuss the core concepts and design. Provide conceptual diagrams, if they would be helpful. Show how this
sub-system/feature co-exists with other sub-systems. You may write 1-4 pages (can be shorter or longer). This
section is should be a map to navigate well documented code!>

2.1 Principles of Operation

In the context of this document, it is very important for reviewers to read the SailFin
architectural document [1]. This document defines the key high-level concepts for SailFin –
the Communication Application Server. So it is recommended that reviewers read this
document prior to reviewing this document.

Figure 1. Functional Overview for the Converged LB

The various components that interact to deliver the load balancing feature are shown in
Figure 1. They are:

1 Sip application clients over HTTP and SIP protocols

2 SailFin instances configured as converged Load Balancer

3 Cluster of SailFin instances which serve the requests

SailFin instance acting as the CLB receives the SIP clients requests. For each incoming
HTTP request, the CLB matches the request URL with context roots of the applications for
which the CLB is configured to do load balancing. In the case of SIP requests, there is no
such check. Thereafter CLB identifies the list of instances that can service the request. The

Clients
SIP + HTTP

LB

LB

LB

Cluster 1

SailFin_1_1

SailFin_1_3

SailFin_1_2

Cluster 2

SailFin_2_1

SailFin_2_3

SailFin_2_2

CLB selects one server instance from this list based on its load balancing algorithm. Once an
instance is selected, the underlaying proxy [6] forwards the request to that instance. In the
event that the CLB detects that the selected instance for a sticky request is unhealthy, it
selects a healthy instance from the same cluster and forwards the request to the selected
instance.

These different components can be deployed in variety of ways depending on the customer's
needs. A description of the typical deployment scenarios is provided in Section <TBD> of the
SailFin Application Server Architectural Overview [1]. The typical deployment scenarios are
illustrated to provide an understanding of the deployment issues at a broader level, rather
than providing exhaustive list of possible deployments. Though CLB will be architectured and
designed to support the two-tier deployment, where the first tier is the dedicated CLB, and
the second tier being the pure application cluster(s), for SailFin release the single tier topolgy
- self-loadbalancing cluster, would be supported.

2.2 Architectural Overview

This conceptual model of the CLB is presented below. The conceptual model identifies the
important concepts that influence the CLB functionality. The concepts and their associations
are depicted in an UML Collaboration Diagram in Figure 2. We would like to emphasize that
the entities depicted in the diagram are “concepts” and not actual classes or components.
The description of these concepts is presented below:

Figure 2. The Conceptual Overview for the Converged Load Balancer System

1 A SailFin Cluster can be comprised of one or more instances and one or more
Converged Load Balancers. Instances receive requests on Listeners. A listener
is specified as a combination of the I/P address of the machine on which the
instance is running and the Port on which incoming requests are received.
Each instance has one or more Listeners configured to receive incoming
requests.

2 Applications are deployed on instances. One Application can be deployed on
multiple clusters and a cluster can have multiple applications deployed. A
cluster has homogeneous application deployment, i.e., any application
deployed on a cluster is deployed on every instance of the cluster.

There is an exception to homogeneity of application, where in it would be
possible to deploy an application such that it is disabled in only one instance
and enabled in others.

3 Applications are serviced by SIP/SIPS/HTTP/HTTPS Requests. In the case of HTTP,
each request can be identified by a URL Pattern, for example,
/SailFin/TelcoApp/conference.jsp or /SailFin/TelcoApp/main.jsp. The common root of all
URL Patterns for a particular application is called the Context-Root for that Application.
For example, /SailFin would be the Context-Root for the URL Patterns described above.
A SIP request does not have a Context-Root associated with it.

4 Each request may belong to a Session. A request that is attached to a session
is called a sticky request. The request is forwarded by the CLB to a listener on
a instance.

5 A particular CLB can forward requests to instances on multiple clusters and a
single cluster can receive requests from multiple CLB's.

6 Each session is tied to a particular cluster. What this implies is that though an
application can be deployed on multiple clusters, sessions will only be failed
over to instances within the same cluster. In other words, no failover across
clusters will be supported by the CLB. Failover occurs when an instance is not
available. The GMS associated with the cluster determines whether the
instances in the cluster are healthy or not.

2.3 Subsystem Overview

The interface overview diagram (Figure 3) depicts the interactions between the CLB and
external subsystems. The various association lines are labeled with interface numbers that
match the particular entries in the interface table described in Interfaces section. Association
line pointing into a subsystem indicate an import into the subsystem whereas an association
line pointing out indicate an export out of the subsystem. The dotted line between the
subsystem highlights that the two are integral to each other. There are three main
subsystems that are part of the CLB:

1 Grizzly - The transport layer and the components that are exported and
imported from it are shown in light gray color. This subsystem is already
implemented and will be evolved to support UDP as transport layer protocol.

2 Proxy - The reverse-proxy and the components that are exported and
imported from it are shown in dark gray color. Grizzly would be evolved to
support the proxying of requests to remote instances. This is a new
deliverable for SailFin

3 Converged Load Balancer - The converged telco CLB and the components
that are exported and imported from it are shown in white color. This is a
new deliverable for SailFin.

Figure 3. Interface Overview for the Converged LB

2.4 Converged LB Operational Details

The Actors that interact with the LB are:

 The Administrator: who configures and manages the SailFin system.

 The network clients, for SIP and HTTP: that sends requests to the SaiFin
system.

In this section, we describe the operation details of the CLB that are triggered by the Actors.
There are 2 principal phases in the operational life-cycle of the CLB:

1. CLB Configuration – In this phase, the administrator creates the CLB configuration
information that is used in the Runtime phase.

IF11

2. CLB Runtime – The runtime phase is when the CLB receives SIP / HTTP requests
and forwards it to the appropriate instance in the cluster based on the configuration
(done in steps 2 and 3) and its internal load balancing algorithm.

The details of each of the operational phases are described below.

2.4.1 CLB Configuration

2.4.1.1 Configuration Process

The Administrator uses the administration infrastructure – the CLI / GUI – interface to
configure SailFin cluster and set it up for Load Balancing. Subsequently, in the Runtime
phase, the CLB loads the configuration information. The contents of XML file and the DTD
are described in detail below but to set the context for the next section, we briefly describe
the important settings that the Administrator makes in this phase:

1. The Administrator specifies the cluster that needs to be setup for load
balancing.

2. While specifying a cluster configuration, the Administrator specifies whether
the instances in the cluster can function as a Converged Load Balancer.

3. The Administrator specifies whether the cluster load balances itself or load
balances to backend application cluster.

4. The Administrator specifies whether an instance is enabled or disabled. If the
Administrator disables an instance, while the cluster is operational, it
triggers the quiescence operation in the LB. Once an instance is disabled
(quiescence period is over), the LB will not send any requests to this instance
but instead send the requests to another instance in the cluster. However,
when the instance is enabled, the LB would resume sending requests to the
instance.

5. An Administrator specifies converged load balancing policy; whether a hash
key shall be extracted from specific headers or if Data Centric Rules shall be
used to extract the hash key from the incoming requests. In case Data Centric
Rules shall be used the administrator specifies the location of the Data
Centric Rule file.

2.4.1.2 CLB Configuration File

This file filters out the cluster deployment topology for which CLB has been configured.
Domain administration framework [14] provides CLI and GUI interfaces to support automatic
generation of this file. Section 4.1.4 of Admin Functional Specification [14] illustrates CLB
specific changes to domain DTD.

CLB uses this file to configure its runtime to provide for high availability of the incoming
requests and responses of the deployed converged applications.

2.4.1.2.1 sun-converged-loadbalancer_1_0.dtd

The sun-converged-loadbalancer_1_0.dtd file describes the DTD for converged-loadbalancer.xml. The
supporting domain/server DTD changes are described in [14]. A hierarchical view of CLB DTD is
shown below in Figure 5.

Figure 5. Hierarchical View of sun-converged-loadbalancer_1_0.dtd

A detailed description of for each element/subelement in the DTD is provided below.

loadbalancer

Defines a CLB configuration. This is the root element; there can only be one loadbalancer
element in a converged-loadbalancer.xml file.

Attributes

The following table describes attributes of the loadbalancer element.

Attribute Default Description
http-policy IMPLED

having default value
of “round-robin”

Specifies the load balancing policy used for the
http requests. The default implied value is round-
robin.

sip-policy IMPLIED having
default value of

Specifies the parameters on which consistent
hashing policy is applied to obtain the hash key.

“From-tag,To-
tag,Call-id”

This can be specified as comma separated values
of parameter names to hash on.

dcr-file "" Empty string The data centric rules file name. In case this is
specified, http-policy and sip-policy would be
overridden.

Subelements

The following table describes subelements for the loadbalancer element. The left column lists
the subelement name, the middle column indicates the requirement rule, and the right
column describes what the element does.

loadbalancer subelements

Element Required Description
cluster zero or more Defines the cluster(s) that the CLB caters to.
property zero or more CLB specific configuration properties.

cluster

Defines the clusters associated with a particular CLB. This is a subelement of loadbalancer.

Attributes

The following table describes attributes for the cluster element.

cluster attributes

Attribute Default Description
name none Required attribute that defines the name of the cluster.

self-loadbalance Default value
of “true”

Specifies whether configured cluster self load balances
incoming requests to itself. If its configured to do so,
load balancer is an intrinsic component of the
participating server instances in the cluster.

Subelements

The following table describes subelements for the cluster element. This is a subelement of
loadbalancer.

cluster subelements

Element Required Description
instance zero or more Describes the instances in the cluster.

web-module zero or more Defines the attributes for the web modules (applications)
that are serviced by the LB.

instance

Defines the instances associated with the cluster. This is a subelement of cluster.

Attributes

The following table describes attributes for the instance element.

instance attributes

Attribute Default Description
name None Required attribute that defines the name of the instance.

enabled “true” Indicates if the instance is enabled or disabled.

disable-
timeout-in-
minutes

31
minutes

Specifies the quiescing time out interval in minutes after which the
load balancer no further requests would be forwarded to the
instance.

listeners None Required attribute that specifies the SIP and HTTP listeners for
the instance. This attribute can be used to specify multiple listeners
for a instance delimited with a space. For example,
"sip://server1:5060 http://server1:8080”

Subelements - None

web-module

Defines the web-module. This is a subelement of cluster.

Attributes

The following table describes attributes for the web-module element.

web-module attributes

Attribute Default Description
context-
root

None Required attribute that defines the the context-root URI for the
web module. Web modules are accessed via URIs, for example
/SailFin/TelcoApp/conference.jsp or /SailFin/TelcoApp/main.jsp
The pattern common to all URIs for an application is called its
context-root. For example, /SailFin would be the context root for
the URIs described above.

Subelements - None

property
We have decided to use the following properties for the loadbalancer element.

Property Default Description
reload-poll-
interval-in-seconds

Default value of "0"
which means that no
polling will be done

Time interval in seconds at which load balancer
would detect if
convergerd-loadbalancer.xml timestamp has
changed. If it has changed, the CLB would
reload it.

2.4.1.2.2 Location of converged-loadbalancer.xml

The default location of converged-loadbalancer.xml is the config directory of the instance.

2.4.1.3 Data Centric Rule (DCR)

The selection of the server instance to forward the request, is based on a hash key. The key
is extracted from incoming SIP and HTTP requests according to suitable rules.

All applications share the same rules defined in a common rule file. The rules can be
changed during operation. The Data Centric Rule language is defined in XML and similar to
the triggering language for mapping requests to servlets [7]. The rule language consists of
conditions and variables supporting SIP and HTTP key extraction. In contrast to the servlet
mapping language DCR needs to return a value.

Each incoming SIP and HTTP request is matched with the current rule set.The first rule that
matches is used for key extraction.

2.4.1.3.1 Data Centric Rule DTD
<?xml version="1.0" encoding="UTF-8"?>
<!-- DTD for Data Centric Rules, DCR -->
<!ELEMENT user-centric-rules (sip-rules,http-rules)>

<!ELEMENT sip-rules (operator-condition)*>
<!ELEMENT http-rules (operator-condition)*>
<!ELEMENT operator-condition (operator|condition)>
<!ELEMENT operator (or|and|if)>
<!ELEMENT condition (header|request-uri|session-case|cookie) >

<!ELEMENT or (operator-condition)*>
<!ELEMENT and (operator-condition)*>
<!ELEMENT if (operator-condition,else?)*>

<!ELEMENT else EMPTY>

<!ATTLIST else return NMTOKEN #REQUIRED>

<!ELEMENT header (exist|notexist)>
<!ATTLIST header
 name NMTOKEN #REQUIRED
 return NMTOKEN #REQUIRED >

<!ELEMENT request-uri (exist|notexist|match)>
<!ATTLIST request-uri
 parameter NMTOKEN #IMPLIED
 return NMTOKEN #IMPLIED >

<!ELEMENT session-case (equal,session-case-type)>
<!ELEMENT session-case-type (INTERNAL|EXTERNAL|ORIGINATING|TERMINATING|
 TERMINATING_UNREGISTERED) >

<!ELEMENT cookie (exist|notexist)>
<!ATTLIST cookie
 name NMTOKEN #REQUIRED
 return NMTOKEN #REQUIRED>

<!ELEMENT equal (#PCDATA)>
<!ELEMENT exist EMPTY>
<!ELEMENT notexist EMPTY>
<!ELEMENT match (#PCDATA)>

2.4.1.3.2 Location of the Data Centric Rule File

The DCR file location is the config directory of the server instance.

2.4.2 CLB Runtime

The runtime phase comes into play when the CLB receives the SIP and or HTTP client
requests. For the case of SIP, CLB can also receive SIP responses. The CLB has a load
balancing algorithm that is used to decide to which instance the request has to be forwarded.
The CLB supports the following runtime functionality These are:

1 Request matching for HTTP/SIP requests

2 Forwarding of new requests

3 Forwarding of subsequent requests

4 Monitors the health of the server instances

5 Performing dynamic reconfiguration.

6 Logging of Messages.

7 Handling server/instance quiescing – online upgrade

The following sections, where necessary for highlighting the difference between handling of
HTTP and SIP request would categorize them.

Figure 6 below presents a composite, for both SIP and HTTP request processing, functional
view of the CLB Runtime phase. Please note that the internal subsystems of the CLB
illustrated in this figure are purely with the intent of explaining the functional aspects of the
CLB Runtime and not so much to prescribe the design. For HTTP and SIP requests the
illustrated subsystems would be work differently at lower levels of their respective request
processing stack.

2.4.2.1 Deciding if CLB should do the processing

When the “converged-loadbalancer” element is passed in the availability-service,[8] , it
would imply that the server is being configured to run with CLB. While specifying this it would
pass an attribute “config-file”; which specifies the location of CLB configuration file
converged-loadbalancer.xml.

The Converged Load Balancer internally has two components :-

1 HTTP component

Clients
SIP + HTTP

Cluster 1

SailFin_1

SailFin_2

Request
Handler

Health
Monitor

Failover
Manager

SRR

CRR

NRR

Router

Active List for Cluster 1

Active List for Cluster 2

SRR – Sticky Request RouterNRR – New Request Router CRR – Cluster Request
Router

Requests and Responses

Interactions between components

Conventions and Abbreviations

This caters to load balancing HTTP / HTTPS requests based on the feature set
mentioned in Suppotrted Features section.

2 SIP component

This caters to load balancing the SIP / SIPS requests based on the feature set
mentioned in Supported Features section.

2.4.2.2 Request matching
2.4.2.2.1 HTTP Requests

The following activities happen in this step:

The CLB Request Handler gets request from the Grizzly connector [6] and it tries to match
the request URL with context roots of the deployed applications.

1 If a match is not found, then it detects this as a non-CLB request. In this case the
Request Handler returns control back to the connector.

2 If a match is found, the Request Handler then ascertains if the request is a new
request or a sticky request. The load balancer determines a request is sticky by
looking for routing information stored in either the cookie or the URL. If the
information is found, then it is identified as a sticky request, else as a new request.
If it is a new request, then the Request Handler delivers this request to the New
Request Router. If it is a sticky request, then the Request Handler delivers this
request to the Sticky Request Router.

2.4.2.2.2 SIP Requests

For SIP requests there is no way to identify for which application they relate to. In this case
following activities happen in this step:

1 Request Handler ascertains if the request is a new request or a sticky request. The
load balancer determines a request is sticky by looking for routing information
stored in either SIP header “Route” or in the SIP URI of the request-line. If the
information is found, then it's identified as a sticky request; else it is identified as a
new request. If it is a new request, then the Request Handler delivers this request
to the New Request Router. If it is a sticky request, then the Request Handler
delivers this request to the Sticky Request Router

2.4.2.2.3 SIP Responses

For SIP responses the following activities happen in this step:

1 Request Handler always forward responses to the Sticky Request Router

2.4.2.3 Forwarding a New Request

2.4.2.3.1 HTTP Request

Depending on configuration the New Request Router either uses consistent hash or Round
Robin to select an instance to serve the request.

Round Robin

The New Request Router delivers the request to the next healthy instance from the list of all
instances belonging to all clusters that are serviced by the LB for a given application.

Consistent Hash

The New Request Router, extracts a hash key from the request based on the rules specified
in the Data Centric Rules file. The hash key is used to look up an instance using a consistent
hash function, which maps the hash key to one of the instances from all clusters that are
serviced by the LB. The New Request Router delivers the request to the selected instance.

Determination of an healthy instance is made by excluding all instances that have been
marked as unhealthy. Instances that are disabled are also considered “unhealthy” and
hence are unavailable for selection. While actually forwarding the request, if the Router
detects that the instance has turned unhealthy, the Router picks the next healthy instance.

2.4.2.3.2 SIP Request

For SIP requests received by LB, there is no way for it to determine to which application
deployed for the cluster(s) it belongs to. The New Request Router, extracts a hash key from
the request based on the rules specified in the Data Centric Rules file. The hash key is used
to look up an instance using a consistent hash function, which maps the hash key to one of
the instances belonging to all clusters that are serviced by the LB. The New Request Router
delivers the request to the selected instance.

Determination of the healthy instances is made by excluding all instances that have been
marked as unhealthy. Instances that are marked “disabled” are also considered unhealthy
and hence are unavailable for selection.

2.4.2.4 Forwarding a Sticky Request/Response

The mechanism used to determine sticky attribute of a received request differs between
HTTP and SIP requests. The following section details the approach taken for each of these
application protocols.

In general the following activities occur during this step :

1 The Sticky Request Router, retrieves the sticky information. From the sticky
information, it first determines the instance to which the request was previously
forwarded. The sticky information can either be the hash key used for the initial
request “BEKey” or the identity of the serving instance “BERoute”.

2 It checks if the instance to which the request is sticky is marked as healthy. If the
instance is healthy, it forwards the request to the specific instance.

3 If the instance is unhealthy, then Sticky Request Router delegates the request to
the Failover Manager.

2.4.2.4.1 Strategy for Detecting HTTP Session Stickiness

Following two mechanism are used to determine the stickiness in this case :

· HTTP Cookie

In this approach, HTTP request headers are checked for presence of a Cookie
added by the serving SailFin instance. This HTTP Cookie, “BERoute” or
“BEKey” (depending on whether round robin or consistent hash policy is used)
contains an encoded value that LB uses to determine the instance which has
serviced the established session.

· HTTP URL

This approach works even if the browser does not support cookies. Here the sticky
information, HTTP Cookie, presence is checked in the HTTP request URL

2.4.2.4.2 Strategy for Detecting SIP Session Stickiness

Following mechanisms are used to determine the stickiness in this case :

SIP requests

· SIP Header based (Route)

In this approach; SIP request header, Route, is checked for presence of
a tracking parameter added by the serving SailFin instance. This
parameter is identified with the name “BEKey” and the its value is used
by LB to determine the instance to forward the request to.

· SIP URI

In this case, the SIP URI of the request line is checked for presence of
“BEKey” parameter added by the serving SailFin instance. LB uses the
value encoded in this to determine the instance to forward the request to.

SIP responses

· SIP Via header

For SIP responses the topmost Via, is checked for presence of a tracking
parameter added by the serving SailFin instance. This parameter is
identified with the name “BERoute” and the its value is used by LB to
determine the instance to forward the request to.

2.4.2.5 Failing over sticky requests

As the dynamic membership of cluster changes either due to controlled failure or
uncontrolled failure of participating instances, LB would need to fail over requests to
established sessions to another instance in the cluster. Online upgrade and erratic loss of
instance are examples of controlled and uncontrolled failures.

Following sections details how fail-over of sticky HTTP and SIP requests are handled.

2.4.2.5.1 Fail over of HTTP Request

The following occurs in this step:

1 The Failover Manager identifies the cluster to which the failed instance belongs.
For each cluster, there is a Cluster Request Router that handles the routing of

failed over sticky requests for that cluster. The Failover Manager delegates the
request to the Cluster Request Router.

2 The Cluster Request Router selects the next healthy instance from its list of
instances belonging to the same cluster and forwards the request to that instance.
For selecting the next healthy instance, the Cluster Request Router either applies the
Round Robin or the Consistent hash policy, depending on configuration. In case the
Consistent Hash policy is applied the hash key is retrieved from the “BEKey” cookie.

3 If there is no healthy instance found in the cluster, the Failover Manager would
finally delegate the request to New Request Router to select a healthy instance.
The New Request Router would select the next healthy instance from its list of
instances belonging to all the participating clusters over which the application is
deployed. If there exist more than one cluster, this would result in fail-over of the
request to another cluster. However, since sessions are not replicated between
clusters, any existing sessions are lost.

2.4.2.5.2 Failover of SIP Request

1 The following occurs in this step :

2 The Failover Manager identifies the cluster to which the instance belongs. For
each cluster there is a Cluster Request Router that handles the routing of failed
over sticky SIP requests for that cluster. The Failover Manager delegates requests
Cluster Request Router.

3 The Cluster Request Router selects the next healthy instance from its list of
instances belonging to the same cluster and forwards the request to that instance.
While selecting the next healthy instance, the router would re-apply consistent
hashing policy on the SIP request, using the value in “BEKey”, over the new set of
instances available.

4 If there is no healthy instance found in the cluster, the Failover Manager would
finally delegate the request to New Request Router to select a healthy instance. If
there exist more than one cluster in the deployment of converged applications, this
would result in failover of the request to another cluster. However, since sessions
are not replicated between clusters, any existing sessions are lost.

2.4.2.6 Monitoring the Health of Instances in a Cluster

CLB uses the Shoal / GMS APIs [13] to monitor the health of instances in a cluster. Following
two approaches are used :

· Spectator to Remote Application Deployment Cluster

In this case, CLB would use the cluster name to attach itself as a Spectator to
events occurring in the GMS group identified by the cluster name. These events
relate to loss and joining of instances. CLB would instantiate the peer GMSService
in the local VM via call to GMSFactory.startGMSModule(remoteClusterName).

· Join as Core member, for same instance deployment of CLB and Application

In this case, CLB is part of a self load balancing cluster; and it would use the GMS
client API's to source the GMS events occurring within it's cluster that would signal
the loss or joining of instances. In this case GMSLifeCycle would take care of
instantiating the GMSService and CLB would simply get the reference to the
service started in the local VM via GMSFactory.getGMSModule(clusterName).

Events that CLB needs to source from GMS -

1. Failure

When an instance is not accessible. The turnaround time to its detect should be least
over a given system, hardware configuration. CLB would internally mark the instance
as unhealthy and would no longer be used for active load balancing; till it joins back
the cluster.

2. Join

When an instance joins the cluster. This should signal to CLB that an instance is
available to service the requests. There are two possibilities for such an event -

 GMS dispatches the event upon server start-up; rather than early in the start-up
cycle.

 CLB upon receiving the signal, can send a dummy HTTP request to server such
that a successful response would imply instance ready to service the request.
Consequently CLB would internally mark the instance as healthy and available
for load balancing.

2.4.2.7 Instance Quiescing – Online Upgrade

Instance quiescing is activated by setting the “lb-enabled” attribute of the server to false and
setting an appropriate value to the “disable-timeout” [8]. The time out represents the elapse
time after which the CLB will disable that particular instance. In this case, the CLB uses the
following policy for quiescing:

1 If an instance is disabled, and the time out has not expired, then any sticky
requests will be still delivered to the instances. However, any new requests will not
be sent to the instance and will be diverted to another healthy instance in the
cluster.

2 Once the time out has expired, the instance is disabled. The CLB will not send any
requests to this instance, instead CLB will fail-over sticky requests to another
healthy instance in the same cluster.

An instance that has been quiesced to it's disable timeout period, would not be able to take
part in load balancing, till it is "enabled" again by marking the "lb-enabled" attribute of the
server to "true". Session replication functional specification [4] would articulate details on
how it uses this feature to carry out the rolling upgrade of the servers in a SailFin cluster.

2.5 Supporting Container Changes

Marking a request as sticky would be taken care by the Web and SIP container for HTTP and
SIP request respectively.

2.5.1 Web Container

If the incoming HTTP request results in session establishment, then the container would
added the sticky information, depending on whether the Round Robin or Consistent Hash
policy is applied:

Round Robin

“BERoute”, either as an HTTP cookie or in the request URL

In the case of request failover, the container would re-stamp the request with “BERoute”,
with the value indicating it as the serving instance.

Details pertaining to this functionality are described in [4].

Consistent Hash

“BEKey”, either as an HTTP cookie or in the request URL.

2.5.2 SIP Container

If an incoming SIP request results in SIP session establishment where the container is the
callee, the SIP container will stamp the Contact header in the response with “BEKey”
parameter. In this way it is ensured that the “BEKey” is included in the request-line of
subsequent requests sent by the caller.

If an incoming SIP request is proxied by the SIP container will stamp the Record-Route
header in the response with “BEKey” parameter. In this way it is ensured that the “BEKey”
is stored in the endpoints and that is included in the Route header of subsequent requests
sent by the caller.

SIP Header Example: Record-Route: <sip:sailfin-server1.biloxi.com;BEKey=encoded-value;lr>

SIP URI Example: sip:alice@atlana.com;BEKey=encoded-value

In outgoing requests the topmost Via is stamped with the “BERoute” parameter. This
ensures that the response is returned to the instance where the transaction exists. In case
that instance has gone off-line the response is dropped (the transaction is lost anyway). If the
outgoing request is initiating a dialog (e.g an initial INVITE), the Contact header in the
response is stamped with “BEKey” parameter. In this way it is ensured that the “BEKey” is
included in the request-line of subsequent requests sent by the caller.

Details pertaining to this functionality are described in [5] and [16].

2.5.3 BERoute Sticky Information

The route information saved in “BERoute” is derived using the host/port information that is
part of each listener associated with an instance. The following is the process by which the
“BERoute” cookie is generated:

1 Take the host/port information associated with every listener.

2 Use a one-way hash function to obfuscate it.

3 Convert the obfuscated information to a 32 bit integration.

4 Encode it into 4 bytes using base-64 encoding.

2.5.4 BEKey Sticky Information

The “BEKey” contains the hash key that was used to route the first incoming request
of a dialog, or in case the first request was sent from the container, from that
message. The hash key is extracted from the message using a function called Data
Centric Rules. This function parses the message and extracts the hash key from the
message according to configurable rules set up in an XML-file.

2.6 Interfaces

This section documents the interfaces for the LB. When reading the interface table, the
“Specified in Document” column refers to document links specified under Reference
Documents.

2.6.1 Exported Programmatic Interfaces

Interface Name Specified in Document Comments
IF7: CLB API [6] The API provided by the

connector over which CLB is
invoked passing the request
and response artifacts.

IF8: proxy-*
(Proxy Headers)

 This Document Protocol headers added to a
passthrough / proxied request.

2.6.2 Exported Configuration files Interface

Interface Name Specified in Document Comments
IF9: converged-
loadbalancer_0_1.dtd

[14] DTD; it contains the CLB
runtime configuration
information.

IF5 : data-centric-rule_1_0.dtd This Document Data centric rules

2.6.3 Exported Sticky / Routing Interfaces

Interface Name Specified in Document Comments
IF10: BERoute This Document Sticky information used by the LB to

save routing information.
IF15: BEKey This Document Used by CLB to store the consistent

Hashkey value. This is used by CLB
as part of consistent hashing policy to
route the converged application
requests to same backend based. The
value is obtained by applying
consistent hashing policy based on Data
Centric rules.

2.6.4 Imported SIP Header Interfaces

Interface Name Specified in Document Comments
IF11: Route [7] SIP Request header used by CLB to

determine the route information
parameter – BEKey

IF16: Via [7] SIP Request header used by CLB to
determine the route information
parameter - BERoute

2.6.5 Imported Programmatic Interfaces

Interface Name Specified in Document Comments
IF1 : Grizzly 1.0 [11] API used by the Proxy for handling

HTTP requests
IF2 : Grizzly 1.5 [12] API used by the Proxy for handling SIP

requests
IF6 : GMS [13] Shoal APIs used by LB to monitor the

health of instances in a cluster.

2.6.6 Imported Configuration files Interface

Interface Name Specified in Document Comments
IF12 : sun-domain_1_4.dtd [8] Domain.xml specifies the domain/server

configuration

2.6.7 Imported Protocols

Interface Name Specified in What
Document?

Comments

IF13 : HTTP 1.0/1.1 [15] HTTP Protocol
IF14 : SIP 1.0 [7] SIP Protocol
IF3 : TCP Protocol [9] Grizzly supports TCP as transport

protocol
IF4 : UDP [10] Grizzly supports UDP as the transport

layer protocol.

3 Quality and Availability
<How do you handle availability concerns? Does this feature introduce any new failure modes? List testing
and failure scenarios that quality team needs to worry about.>

3.1 Availability

In general CLB facilitates increased availability of the deployed applications in a
cluster. This is achieved by load balancing and failing over requests upon dynamic
cluster membership changes.

SailFin cluster can act as either a self load balancing cluster or be a dedicated LB
cluster fronting an application serving cluster. In either case more the number of
participating instances greater is the Converged LB availability.

SailFin cluster would provide support for SNMP traps, which can be sourced by a
fronting network entity – IP sprayer; to detect the membership changes in the load
balancing layer of the deployment topology.

3.2 Quality
The operational scenarios mentioned in section 2.4 need to be covered for testing.

4 Performance
<How do you want performance team to measure this sub-system? Any micro benchmarks necessary?Any
goals? Anticipated scalability limits or goals?>

4.1 Vertical Scalability

SailFin instance configured to act as CLB, would limit the vertical scalability of the
instance with its various subsystems providing the high availability of the overall
system deployment.

4.2 Horizontal Scalability

If SailFin deployment tier acting as the CLB hits vertical scalability, it can be
overcome by adding more instances in this tier to increase the horizontal
scalability.

5 Management and Monitoring
<Describe how performance, management status, and diagnostic information is exposed. How does this
feature handle dynamic configuration changes?>

5.1 Formal Interfaces
<How is this feature(s) configured by administrator? Does it introduce new commands or modify existing
ones? Show syntax of expected administrative commands and response codes. What is the schema/syntax
for new configuration in domain.xml? Show the DTD snippets later in this section. What are their default
values? What are the validation rules? Think about the stability level for each of the above. Are you
expecting that the proposed design will change?]

When a SailFin instance starts ups with CLB, the load balancer uses converged-
loadbalancer.xml file to configure itself. Section 2.4.1 provides details pertaining to the
CLB's configuration file. The DAS based administration functionality is covered by [14]

5.2 Dynamic Reconfiguration

CLB would source the Admin config change event from DAS whenever converged-
loadbalancer.xml or dcr.xml gets updated. It would implement listeners for such event
such that upon receiving the event, CLB would try pulling the updated converged-
loadbalancer.xml / dcr.xml from the DAS and reconfigure itself using the updated
configuration file.

Synchronization framework of DAS would take care of synchronizing the local CLB
configuration of an instance as part of server start-up rendezvous with DAS. This would
take of updating the CLB configuration on an instance, in case that instance was offline
when an update took place.

CLB will poll the converged-loadbalancer.xml at an Administrator specified time interval
to check if the file has been updated. If it detects that the file has been updated, it will

reload the file. The reload-poll-interval property of the converged-loadabalancer.xml
specifies this poll interval value.

Also it would be possible to send the xml configuration file over an HTTPS request to
CLB from DAS. Following activities occur in such a scenario -

1 If CLB, during instance start-up could not locate its configuration file, it would
create a new file and initialize itself.

2 If CLB was already configured during instance start-up from its configuration file, it
would over-write the existing file. Before doing so it would ensure that the contents
are successfully parsed. This path of invocation would override, the reload-poll-
interval, such that:-

· If reload-poll-interval was set to zero, it would still cause CLB to
reconfigure.

· If reload-poll-interval was set to non-zero, it would cause CLB to
reconfigure immediately upon receipt of this request and mask the poll
for the subsequent poll check.

6 Packaging, Files, and Location
<Does this feature add new jar files or extend existing ones? Where are they located?>

Converged LB would be bundled into a SailFin HA jar distributable. This jar would be
available, along with rest of SailFin jars, under the lib directory of the installation root.

7 Documentation Requirements
<List the required documentation to support this product feature.>

Following lists down the documentation need of this feature :

1 High Availability administration guide
This scope out the steps required to configure the Converged Load
Balancer. It should also describe the CLB configuration file

2 Domain DTD Changes
The configuration elements catering to CLB need to be described.

3 Online Help
The supporting GUI constructs need the contextual help.

8 Appendix

8.1 Use Cases

The following use cases illustrates various scenarios when load balancing is performed
by all members in the cluster (each instance acts both as FE and BE). It is assumed that
an IP sprayer is placed in front of the cluster. The IP sprayer is a
simple device with no intelligence that just spreads traffic over the AS instances using
some simple algorithm (e.g, round-robin).

Figure 1: Example Cluster

Figure 1 Illustrates the cluster used in the example. In the example the cluster consists of
three AS instances: AS1..AS2 (with the IP addresses as1, as2 and as3, respectively).
Moreover, there is an IP sprayer in front of the cluster which exposes the public interface
of the TS and it has the public host name and port ts:5060.

8.1.1 Typical SIP Session; External Party is the Initiator

 Figure 2

Figure 2 illustrates a typical SIP session (establish dialog, re-invite and close) when an
external party is the initiator and an application on the TS acts as endpoint (initially
UAS). In the the scenario the IP sprayer dispatches responses and subsequent requests
to different AS:es in the cluster so that the FE in each AS needs to re-route or proxy.

1 Caller sends an INVITE request to ts:5060:
INVITE sip:app1@ts SIP/2.0
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Contact: <sip:caller@pc33.alpha>
:

2 The IP sprayer selects as1 to process the request.
3 The LBM at as1 processes the request according to 8.2.1.1 and finds that the

request should served locally. The LBM sends the request upwards in the stack.
The application processes the request and issues a 200 OK response which is
dispatched down through the SIP stack:
SIP/2.0 200 OK
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Contact: <sip:app1@ts:5060>
:

On the way down the LBM processes the response according to 8.2.2.2.

SIP/2.0 200 OK
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Contact: <sip:app1@ts:5060;bekey=hashkey>
:
Then the response is sent back to the IP sprayer via the original connection.

4 The response is sent back to Caller.
5 Caller issues an ACK and sends it to the IP sprayer with the URI specified in

Contact as the request-URI, this including the bekey.
ACK sip:app1@ts:5060;bekey=hashkey SIP/2.0
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

6 The IP sprayer selects as2 to process the request.
7 The LBM at as2 processes the request according to 8.2.1.1 and finds that it must

proxy the request as1. The LBM of as2 pushes the Via of the FE onto the request and
adds temporary headers1 to transfer information between the FE and BE:

ACK sip:app1@ts:5060;bekey=hashkey SIP/2.0
Via: SIP/2.0/TCP
hostport_of_as2;branch=z9h...;connid=connection_to_caller;felb;
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Proxy-Remote: hostport to remote
Proxy-Bekey: hashkey
Proxy-Auth-Cert: client certificate
:

The LBM at as1 processes the request according to 8.2.1.1 and finds that it shall
serve the request. The LBM strips the temporary headers and sends the request
upwards in the stack:
ACK sip:app1@ts:5060;bekey=hashkey SIP/2.0
Via: SIP/2.0/TCP
hostport_of_as2;branch=z9h...;connid=connection_to_caller;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

Since it is and ACK no response is sent.

<< Media session is ongoing...>>

8 Caller sends re-INVITE to the IP sprayer with the URI specified in Contact as
request-URI:
INVITE sip:app1@ts:5060;bekey=hashkey SIP/2.0
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

9 IP sprayer selects as3 to process the request.
10 The LBM at as3 processes the request according to 8.2.1.1 and finds that it must

proxy the request to as1. The Via of the FE and temporary headers are pushed onto

1 Note, the Proxy-Auth-Cert is optional and will only be transferred if the incoming request was
received via TLS.

the request:
INVITE sip:app1@ts:5060;bekey=hashkey SIP/2.0
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h..;connid=connection_to_caller;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Proxy-Remote: hostport to remote
Proxy-Bekey: hashkey
Proxy-Auth-Cert: client certificate
:

11 The LBM of as1 processes the request according to 8.2.1.1 and finds that it shall
serve the request. The LBM strips the temporary headers and then sends the request
upwards in the stack and when the application has processed the request, as1 sends
a 200 OK response:
SIP/2.0 200 OK
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_caller;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:
to as3 using the the connection of the incoming response1:

12 The LBM of as3 processes the response according to 41 and finds that it acted as an
FE and that the response has been received from a BE. as3 pops the Via and sends
the response back to the IP sprayer using the connection specified in connid:
SIP/2.0 200 OK
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

13 The IP sprayer forwards the response to caller
14 The application decides to close the call and sends BYE:

BYE sip:caller@pc33.alpha SIP/2.0
Via: SIP/2.0/TCP ts:5060; branch=z9h...
:

The LBM processes the request according to 8.2.2.1.
BYE sip:caller@pc33.alpha SIP/2.0
Via: SIP/2.0/TCP ts:5060; branch=z9h...;beroute=as1
:

15 The request is sent to Caller
16 Caller sends a 200 OK to the BYE:

SIP/2.0 200 OK
Via: SIP/2.0/TCP ts:5060; branch=z9h...;beroute=as1
:

17 The IP sprayer selects as2 to process the response.
18 The LBM at as2 processes the response according to 41 and finds that it must re-

route the response to as1.
The LBM at as1 the LBM processes the request according to 41 and finds that it shall
serve the response and thus sends it up to the application which processes it and
does nothing more.

1 Note that in case the connection is broken the sent-by value of the Via is used.

8.1.2 Typical SIP Session; An Application in TS is the Initiatior; UDP or TCP with
Broken Connection

 Figure 3

Figure 3 illustrates a typical SIP session (establish dialog, re-invite and close) when an
application on the TS is the initiator (thus initially UAC). In the the scenario the IP
sprayer dispatches responses and subsequent requests to different AS:es in the cluster
so that the FE in each AS needs to re-route or proxy.

The scenario illustrates the case when communication is carried out via UDP or when the
TCP connection to the callee is broken for some reason1, so that callee must send the
response via a new connection established using the information in the Contact header.

1 An application app1 on as1 sends an INVITE request to callee down the stack:
INVITE sip:callee@ceasar.com SIP/2.0
Via: SIP/2.0/TCP ts:5060;branch=z9h...
Contact: <sip:app1@ts>
:
The LBM processes the request according to 8.2.2.1 and since it is an initial request a
hash key is generated and set in the bekey parameter added to Contact; beroute
is set in Via:
INVITE sip:callee@ceasar.com SIP/2.0
Via: SIP/2.0/TCP ts:5060;branch=z9h...;beroute=as1
Contact: <sip:app1@ts;bekey=hashkey>
:

2 Callee sends a 200 OK:
SIP/2.0 200 OK
Via: SIP/2.0/TCP ts:5060;branch=z9h...;beroute=as1
Contact: <sip:callee@pc44.beta>
:

3 The IP sprayer selects as2 to process the response.
4 The LBM at as2 processes the response according to 41 and finds (from the value of
beroute) that the response should served by as1; the LBM of as2 re-routes the
response to as1 without altering anything in the response.

5 The LBM at as2 processes the response according to 41
and finds that it shall serve the response and thus sends it up to the application.
The application processes the response and sends an ACK:
ACK sip:callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP ts:5060;branch=z9h...
:

LBM processes the request according to 8.2.2.1:
ACK sip:callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP ts:5060;branch=z9h...;beroute=as1
:

and sends it to the callee.

<< Media session is ongoing...>>

6 Callee decides to hang up and sends a BYE using URI specified in initial Contact
header:
BYE sip:app1@ts:5060;bekey=hashkey SIP/2.0
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
:

7 IP sprayer selects as3 to process the request.

1 In the normal TCP case the response travels through the same connection as the request, and
consequently the response will arrive at the serving BE directly.

8 The LBM at as3 processes the request according to 8.2.1.1 and finds that it must
proxy the request to as1. The Via to as2 is pushed onto the request:
BYE sip:app1@ts:5060;bekey=hashkey SIP/2.0
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_callee;felb
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
Proxy-Remote: hostport to remote
Proxy-Bekey: hashkey
Proxy-Auth-Cert: client certificate
:

9 The LBM at as1 processes the request according to 8.2.1.1 and finds that it shall
serve the request and sends the request upwards in the stack. When the application
has processed the request as1 sends 200 OK response downwards in the stack.
The LBM processes it according to 8.2.2.2:
SIP/2.0 200 OK
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h..;connid=connection_to_callee;felb
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
:

The response is sent back to as3 on the incoming connection.
10LBM of as3 processes the response according to 41 and finds that it has acted as an

FE and that the response has been received from a BE. The LBM pops the Via to itself
and sends the response to the IP sprayer via the original connection to the IP sprayer
obtained from connid:
SIP/2.0 200 OK
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
:

11The IP sprayer forwards the response to caller.

8.1.3 Typical SIP Session; TS is Proxy (UDP or broken connection TCP)

Figure 4

Figure 4 illustrates the case when an applications app1 on the TS acts as a proxy
between caller and callee. The scenario illustrates the case when communication is

carried out via UDP or when the TCP connection to the callee is broken for some
reason1, so that callee must send the response via a new connection established using
the information in the Contact header.

1 Caller sends an INVITE request to ts:5060:
INVITE sip:callee@ceasar.com SIP/2.0
Via: SIP/2.0/TCP caller@pc33.alpha;branch=z9h...
Contact: <sip:caller@pc33.alpha>
:

2 The IP sprayer selects as1 to process the request.
3 The LBM at as1 processes the request according to 8.2.1.1 and finds that the request

shall be served by as1 and sends the request upwards in the stack. The application
decides to proxy the request and record-route:
INVITE sip:callee@ceasar.com SIP/2.0
Via: SIP/2.0/TCP app1@ts;branch=z9h...
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Contact: <sip:caller@pc33.alpha>
Record-Route: <sip:app1@ts>
:

The LBM processes it according to 8.2.2.1:
INVITE sip:callee@ceasar.com SIP/2.0
Via: SIP/2.0/TCP
app1@ts;branch=z9h...;beroute=as1;connid=connection_to_caller
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Contact: <sip:caller@pc33.alpha>
Record-Route: <sip:app1@ts;bekey=hashkey>
:
Finally the request is sent to the callee.

4 The callee stores the Record-Route and sends a 200 OK:
SIP/2.0 200 OK
Via: SIP/2.0/TCP
app1@ts;branch=z9h...;beroute=as1;connid=connection_to_ips
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Contact: <sip:callee@pc44.beta>
Record-Route: <sip:ts;bekey=hashkey>
:

5 The IP sprayer selects as2 to process the response.
6 The LBM of as2 processes the response according to 41 and finds that that the

response should served by as1; the LBM of as2 re-routes the response to as1 without
altering anything in the response.

7 The LBM of as1 processes the response according to 41 and finds that the response
has arrived to the correct BE; the response is sent upwards in the stack, but before
doing this the connection ID is stored temporarily in a response attribute.
The application processes the response (which implies that the top Via is popped)
and then it is dispatched down the SIP stack again.
The LBM processes the response according to 8.2.2.2 and retrieves the connection
ID of the incoming request from the response attribute. The response is sent back to

1 In the normal TCP case the response travels through the same connection as the request, and
consequently the response will arrive at the serving BE directly.

the IP sprayer via the retrieved connection:
SIP/2.0 200 OK
Via: SIP/2.0/TCP caller@alpha;branch=z9h...
Contact: <sip:callee@pc44.beta>
Record-Route: <sip:ts;bekey=hashkey>
:

8 The IP sprayer sends the response back to caller, which will store the Record-
Route.

9 The caller sends an ACK:
ACK sip:callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Route: <sip:ts;bekey=hashkey>
:

10 The IP sprayer select as3 to serve the request.
11 The LBM of as3 processes the request according to 8.2.1.1 and proxies the request

to as1, but first it pushes itself on the Via:
ACK sip: callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connectionto_ips;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Route: <sip:ts;bekey=hashkey>
Proxy-Remote: hostport to remote
Proxy-Bekey: hashkey
Proxy-Auth-Cert: client certificate
:

12 The LBM of as1 processes the request according to 8.2.1.1 and finds that it shall
serve the request. The application proxies the ACK to callee and sends it downwards
in the stack. During this the stack pops the Route and pushes the Via:
ACK callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP app1@ts;branch=z9h...
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

The LBM processes the request according to 8.2.2.1 and extracts incoming
connection from the request object and sets them in topmost Via:
ACK callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP
app1@ts;branch=z9h...;beroute=as1;connid=connection_to_as3
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

Finally the request is sent to the callee.

<< Media session is ongoing...>>

13 The caller send a (re-)INVITE:
INVITE sip:callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Route: <sip:ts;bekey=hashkey>
:

14 The IP sprayer selects as2 to serve the request.
15 The LBM of as2 processes the request according to 8.2.1.1 and proxies the request

to as1, but first it pushes itself on the Via:
INVITE sip: callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP
hostport_of_as2;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Route: <sip:ts;beey=hashkey>
Proxy-Remote: hostport to remote
Proxy-Bekey: hashkey
Proxy-Auth-Cert: client certificate
:

16 The LBM on as1 processes the request according to 8.2.1.1 and finds that it shall
serve the request:
INVITE sip: callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP
hostport_of_as2;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
Route: <sip:ts;bekey=hashkey>
:

The application proxies and parameter are set in the request in the same manner as
described in step 12 and finally the request is sent to the callee:
INVITE sip: callee@pc44.beta SIP/2.0
Via: SIP/2.0/TCP
sip:app1@ts;branch=z9h...;beroute=as1;connid=connection_to_as2
Via: SIP/2.0/TCP
hostport_of_as2;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

17 The callee sends a 200 OK:
SIP/2.0 200 OK
Via: SIP/2.0/TCP
sip:app1@ts;branch=z9h...;beroute=as1;connid=connection_to_as2
Via: SIP/2.0/TCP
hostport_of_as2;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

18 The IP sprayer selects as3 to process the response.
19 The LBM on as3 re-routes the response to as1 according to 41.
20 The LBM on as1 processes the response according to 41 and saves the connid in a

response attribute and sends the response upwards in the stack.
The application forwards the response (the stack pops the topmost Via) by
dispatching it down the stack.
The LBM processes the response according to 8.2.2.2 and sends it back to as2
using the connection using the value of the response attribute:
SIP/2.0 200 OK
Via: SIP/2.0/TCP
hostport_of_as2;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

21 The LBM on as2 processes the response according to 41 and sees that it was an FE
and pops Via and sends response to IP sprayer:
SIP/2.0 200 OK
Via: SIP/2.0/TCP pc33.alpha;branch=z9h...
:

22 The IP sprayer sends response to the caller.
23 The callee decides to hang-up and sends a BYE:

BYE sip: caller@alpha SIP/2.0
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
Route: <sip:ts;bekey=hashkey>
:

24 The IP sprayer selects as3 to process the request.
25 The LBM at as3 processes the request according to 8.2.1.1 and proxies to as1.

BYE sip: caller@alpha SIP/2.0
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
Route: <sip:ts;bekey=hashkey>
:

26 The LBM at as1 processes the request according to 8.2.1.1 and sends it upwards in
the stack:
BYE sip: caller@alpha SIP/2.0
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
Route: <sip:ts;bekey=hashkey>
:

The application proxies (Via is pushed) and dispatches down the stack:
BYE sip: caller@alpha SIP/2.0
Via: SIP/2.0/TCP sip:app1@ts;branch=z9h...
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
:

and LBM sets parameters in the same manner as described in step 12 :
BYE sip: caller@alpha SIP/2.0
Via: SIP/2.0/TCP
sip:app1@ts;branch=z9h...;beroute=as1;connid=connection_to_as3
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
:

and sends to the caller.
27 The caller sends a 200 OK:

SIP/2.0 200 OK
Via: SIP/2.0/TCP
sip:app1@ts;branch=z9h...;beroute=as1;connid=connection_as3
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
:

28 The IP sprayer selects as2 to process the response.
29 The LBM at as2 re-routes to as1.

30 The LBM at as1 saves parameters as in step 20 and sends the response upwards in
the stack.
The application proxies response (Via is popped) and LBM processes it as in step 20
and finally the response is sent back to as2 via connection retrieved from the value of
the response attribute:
SIP/2.0 200 OK
Via: SIP/2.0/TCP
hostport_of_as3;branch=z9h...;connid=connection_to_ips;felb
Via: SIP/2.0/TCP pc44.beta;branch=z9h...
:

31 The LBM at as2 sees that it was an FE, as in step 21, pops the Via and sends
response to the IP sprayer via the connection in connid.

32 The IP sprayer sends the response to the callee.

8.2 Pseudo-code for LBM

8.2.1 Front-End and Back-End

8.2.1.1 Incoming Request
The LBM does the following when it receives an outgoing response (in
next(SipServletRequestImpl)), i.e, a request has been received by NM and has
been sent up through the stack.

1 If Proxy-Bekey header exists:
1.1 The hash key is extracted from Proxy-Bekey. The Proxy-Bekey header

is removed.
2 Otherwise If Route exists:
2.1 The hash key is extracted from the bekey parameter of the Route.
3 Otherwise If request-URI contains bekey:
3.1 The hash key is extracted from the bekey parameter of the request-URI.
4 Otherwise If request method = ACK:
4.1 The hash key is extracted from the bekey parameter of To.
5 If hash key has not been found above:
5.1 generate the hash key from various fields in the request via a configurable

algorithm.
6 Save hash key as an member variable "bekey" of SipServletRequest.
7 Use hash key to lookup serving backend via consistent hash.
8 If serving backend points at this AS (i.e, the request has arrived at the correct

AS and processing shall continue in this AS):
8.1 Extract remote connection from Proxy-Remote and set on request object.
8.2 Extract client certificate from Proxy-Auth-Cert and set on request object.
8.3 Save the incoming connection as a request attribute, “connid”.
8.4 Send the request up to the next layer above.
9 Otherwise (i.e, serving backend points at another AS)
9.1 The current AS is the FE and must proxy to the BE specified in serving

backend: Push Via (pointing to this FE) with the parameters, connid,
containing connection ID of the incoming connection and felb indicating
that this is the Via of the FE that did load balancing.

9.2 If protocol via which request was received != UDP:
9.2.1 Add the parameter connid, containing connection ID of the incoming

connection, to the Via (pointing to this FE).
9.3 Get remote connection and set in a Proxy-Remote header, which is added

to the request.
9.4 Get client certificate and set in a Proxy-Auth-Cert header, which is

added to the request.
9.5 Set hash key in a Proxy-Bekey header, which is added to the request.
9.6 Send request to BE.

8.2.1.2 Incoming Response
The LBM does the following when it receives an incoming response (in
next(SipServletResponseImpl)), i.e, a response that has been received by NM
and has been sent up through the stack.

1 If the topmost Via contains the parameter felb (i.e, this is the FE that has
performed load balancing and the response has been received from the BE.):

1.1 Pop the Via
1.2 If connid parameter exists:
1.2.1 Forward the response using the connection identified by the parameter

connid.
1.3 Otherwise (This will be the case when the request was received via UDP)
1.3.1 Forward the response using the resolved Via.
2 Otherwise
2.1 If topmost Via contains the parameter beroute (i.e, a dialog exists and

route to BE has been established.):
2.1.1 Extract serving backend from beroute.
2.2 Otherwise
2.2.1 This should never happen: Error.
2.3 If serving backend is this AS (i.e, The response has arrived at the serving

AS and processing shall continue on this AS):
2.3.1 If connid parameter exists:
2.3.1.1 Extract remote connection from the connection identified by the

parameter connid.
2.3.2 Otherwise (This will be the case when the request was received via

UDP)
2.3.2.1 Extract remote connection from the response using the resolved Via.
2.3.3 Save connection to remote party in “connid” attribute of response (to be

retrieved in outgoing response if the response is forwarded by
application that acts as proxy).

2.3.4 Send the response up to the next layer above.
2.4 Otherwise (i.e., the response came from the outside world and the IP

sprayer has sent it to wrong AS.)
2.4.1 Re-route (do not proxy!) the response to that AS.

8.2.2 Back-End Only

8.2.2.1 Outgoing Request
The LBM does the following when it receives an outgoing request (in
dispatch(SipServletRequestImpl)), i.e, a request that has been generated by
higher layers and sent down through the stack.

1 If SipApplicationSession of request contains attribute "bekey":
2.5 Retrieve hash key from that attribute.
3 Otherwise
3.1 generate the hash key from various fields in the request via a configurable

algorithm
3.2 Save hash key in attribute "bekey" of the SipSession.
4 Add address of current instance in parameter beroute to the topmost Via.
5 If the contact is set by this container AND request is initial:
5.1 Add the parameter bekey=hash key to Contact.
6 Otherwise If application has Record-Routed:
6.1 Add connid, containing the connection ID of the connection of the

incoming request, to the topmost Via (so that it can be retrieved when the
response shall be proxied later on).

6.2 Add bekey with the value of hash key (retrieved above) on the Record-
Route added by the application(s).

8.2.2.2 Outgoing Response
The LBM does the following when it receives an outgoing response (in
dispatch(SipServletResponseImpl)), i.e, a response that has been generated by
higher layers and sent down through the stack.

1 If SipApplicationSession of response contains attribute "bekey":
6.3 Retrieve hash key from that attribute
7 Otherwise
7.1 If request associated with response contains attribute "bekey":
7.1.1 Retrieve hash key from that attribute
7.1.2 Add attribute "bekey" with hash key as value, to SipApplicationSession
8 If container has set Contact:
8.1 Add the hash key value in the parameter bekey on the Contact.
9 Otherwise If response method = INVITE AND status >= 300:
9.1 Add the hash key value in the parameter bekey on the To.
10 If SipSession of response contains attribute "connid":
10.1 Get attribute value and send the response on the connection identified by it.

8.3 Headers added by CLB

CLB would add the following headers to the request received, to support the changes
enlisted in section 2.5 . These are added while forwarding / proxying the request to a
selected server instance, which can be local or remote. At reception they are removed.

8.3.1 proxy-beroute
This is added for the HTTP request being load balanced; when the configured load balancing
policy for HTTP is round-robin. CLB, upon selection of the server instance to which the
request needs to be forwarded, would add this header. The value of which is the BERoute
sticky information .
For the case of failover, it's value is the value of the selected server instance's BERoute.

8.3.2 proxy-bekey
This is added for HTTP and SIP (in SIP it is named Proxy-Bekey to be a well-formed SIP
header) requests being serviced. It would be added for HTTP request, in case the configured
load balancing policy for HTTP requests is consistent hashing. The value of this header is
the BEKey sticky information.
The value of this; remains same in case of failover of the request.
In SIP it is only kept in the hop between the front-end and the back-end, i.e. the CLB at the
back-end removes it

8.3.3 Proxy-Remote
This is added for the SIP request being load balanced in the hop between the front-end and
the back-end, i.e, the back-end removes it. It is used to transfer information (host and port)
for the remote socket, so that it can be made available for the application at the back-end

8.3.4 Proxy-Remote
This is added for the SIP request being load balanced in the hop between the front-end and
the back-end, i.e, the back-end removes it. It is used to transfer the client certificate (if
existing), so that it can be made available for the application at the back-end

8.4 DCR Schematic Description

8.4.1 Operators

The following logical operators are supported in DCR:

If: contains a condition which is evaluated. If the condition evaluates to a value which is not
null the evaluation continues in the if-branch. If the condition evaluates to null the evaluation
continues in the optional elsebranch.

and: contains a number of conditions and evaluates to true if and only if all contained
conditions evaluate to a value which is not null.

or: contains a number of conditions and evaluates to true if and only if at least one contained
condition evaluates to a value which is not null.

8.4.2 Conditions

The following conditions are supported by DCR:

request-uri: is a condition containing the request URI and its parameters.

header: is a condition handling headers.

session-case: determines SIP session cases.

cookie: a condition based on HTTP cookies

8.4.3 Condition Types

A condition contains a condition type. All types are not valid for all conditions:

equal: compares the value of a variable with a literal value and evaluates totrue if the
variable is defined and its value equals that of the literal. Otherwise,the result is false.

exist: takes a variable name and evaluates to true if the variable is defined,and false
otherwise.

notexist: takes a variable name and evaluates to true if the variable is notdefined, and false
otherwise.

match: evaluates a regular expression. The return value is ‘Group 1’, which is the pattern
within the first pair of ellipsis [16].

All operations are case sensitive.

8.4.4 Variables

A number of variables are defined in DCR, see 8.4.5 and 8.4.6. Variables containing resolve performs
ENUM lookup of TelURI’s.

Variables can be used in conditions and for return values. The syntax formatch of HTTP requests is
slightly different.

The <…> below indicates strings that can be chosen freely when designing a ruleset. E.g. request.P-
Asserted-Identity refers to the header ‘P-Asserted-Identity’.

The HTTP variable Â“parameter.<parameter>.uri.resolve.userÂ” is resolved in anelaborate way. The
variable matches a parameter value in a HTTP request, and this value may be a single name-addr or a
comma-separated sequenceof such. The name-addr elements are resolved until a usable Data Centric
hashkey is found. The order of resolution is the following: First all name-addrsthat contain a SIP URI
are considered from left to right. In case a SIP URI contains a user=phone parameter it is resolved as a
TEL URL, otherwise the user part of the URI is extracted. Resolution of a SIP URI may thus fail if it
specifies a telephone number entity that cannot be resolved by ENUM, or else because there is no user
part present in the SIP URI. If all SIP URIs have been considered a second attempt is made, this time
considering TEL URLs from left to right. Evaluation stops as soon as a usable Data Centric key has
been found. If every resolution attempt fails, resulting no Data Centric key being found; if the context is
a return value then the default rule of computing the Data Centric key from the Call-ID, From tag and
To tag is used. In this case the values of these would concatenated to represent the key.

For example, if the variable is “parameter.from.uri.resolve.user” and the HTTP

request is

GET ...?...&from=...&... HTTP/1.1

the outcome may be according to the table below. Note that some of the characters in the example
below may in reality need to be URL-encoded (‘<’ would appear as %3C etc).

value of “from” parameter Data Centric key

<sip:server.xx.yy> none

<sip:alice@server.xx.yy> alice alice

<tel:+1-333-555>,<sip:+1-22-22@server.xx.yy;user=phone> from ENUM

8.4.5 SIP Variables

request.uri
request.uri.scheme
request.uri.user
request.uri.host
request.uri.port
request.method

request.uri.resolve
request.uri.resolve.user
request.uri.resolve.host

request.<header>
request.<header>.uri
request.<header>.uri.scheme
request.<header>.uri.user
request.<header>.uri.host
request.<header>.uri.port
request.<header>.uri.display-name

request.<header>.uri.resolve
request.<header>.uri.resolve.user
request.<header>.uri.resolve.host

8.4.6 HTTP Variables

request.<header>
request.<header>.uri
request.<header>.uri.user
request.<header>.uri.host
request.<header>.uri.resolve
request.<header>.uri.resolve.user
request.<header>.uri.resolve.host

parameter.<parameter>
parameter.<parameter>.uri
parameter.<parameter>.uri.user
parameter.<parameter>.uri.host
parameter.<parameter>.uri.resolve
parameter.<parameter>.uri.resolve.user
parameter.<parameter>.uri.resolve.host

match
match.resolve.user

cookie.<cookieName>

8.5 DCR Example
<?xml version="1.0" encoding="ISO-8859-1"?>

<user-centric-rules>
 <sip-rules>
 <if>
 <session-case>
 <equal>ORIGINATING</equal>
 <if>
 <header name="P-Asserted-Identity"
 return="request.P-Asserted-Identity.uri.resolve.user">
 <exist/>
 </header>
 <if>
 <header name="P-Asserted-Identity"
 return="request.from.uri.resolve.user">
 <notexist/>
 </header>
 <if>
 <header name="P-Asserted-Identity"
 return="request.to.uri.resolve.user">
 <notexist/>
 </header>
 </if>
 </if>
 </if>
 </session-case>
 <else return="request.uri.resolve.user" />
 </if>
 </sip-rules>
 <http-rules>
 <or>
 <request-uri return="match.resolve.user">
 <match>/users/([^/]+)</match>
 </request-uri>
 <and>
 <request-uri>
 <match>^/css/</match>
 </request-uri>
 <or>
 <request-uri parameter="referredBy" return="parameter.requestUri.uri.resolve.user">
 <exist/>
 </request-uri>
 <request-uri parameter="referredBy" return="parameter.from.uri.resolve.user">
 <notexist/>
 </request-uri>
 </or>
 </and>
 </or>
 </http-rules>
</user-centric-rules>

	1Introduction
	1.1Reference Documents
	1.2Glossary
	1.3Supported Features
	1.4Features Not Supported
	1.5Differentiation

	2Design Overview
	2.1Principles of Operation
	2.2Architectural Overview
	2.3Subsystem Overview
	2.4Converged LB Operational Details
	2.4.1CLB Configuration
	2.4.1.1Configuration Process
	2.4.1.2CLB Configuration File
	2.4.1.2.1sun-converged-loadbalancer_1_0.dtd
	2.4.1.2.2Location of converged-loadbalancer.xml

	2.4.1.3Data Centric Rule (DCR)
	2.4.1.3.1Data Centric Rule DTD
	2.4.1.3.2Location of the Data Centric Rule File

	2.4.2CLB Runtime
	2.4.2.1Deciding if CLB should do the processing
	2.4.2.2Request matching
	2.4.2.2.1HTTP Requests
	2.4.2.2.2SIP Requests
	2.4.2.2.3SIP Responses

	2.4.2.3Forwarding a New Request
	2.4.2.3.1HTTP Request
	2.4.2.3.2SIP Request

	2.4.2.4Forwarding a Sticky Request/Response
	2.4.2.4.1Strategy for Detecting HTTP Session Stickiness
	2.4.2.4.2Strategy for Detecting SIP Session Stickiness

	2.4.2.5Failing over sticky requests
	2.4.2.5.1Fail over of HTTP Request
	2.4.2.5.2Failover of SIP Request

	2.4.2.6Monitoring the Health of Instances in a Cluster
	2.4.2.7Instance Quiescing – Online Upgrade

	2.5Supporting Container Changes
	2.5.1Web Container
	2.5.2SIP Container
	2.5.3BERoute Sticky Information
	2.5.4BEKey Sticky Information

	2.6Interfaces
	2.6.1Exported Programmatic Interfaces
	2.6.2Exported Configuration files Interface
	2.6.3Exported Sticky / Routing Interfaces
	2.6.4Imported SIP Header Interfaces	
	2.6.5Imported Programmatic Interfaces
	2.6.6Imported Configuration files Interface
	2.6.7Imported Protocols

	3Quality and Availability
	3.1Availability
	3.2Quality

	4Performance
	4.1Vertical Scalability
	4.2Horizontal Scalability

	5Management and Monitoring
	5.1Formal Interfaces
	5.2Dynamic Reconfiguration

	6Packaging, Files, and Location
	7Documentation Requirements
	8Appendix
	8.1Use Cases
	8.1.1Typical SIP Session; External Party is the Initiator
	8.1.2Typical SIP Session; An Application in TS is the Initiatior; UDP or TCP with Broken Connection
	8.1.3Typical SIP Session; TS is Proxy (UDP or broken connection TCP)

	8.2Pseudo-code for LBM
	8.2.1Front-End and Back-End
	8.2.1.1 Incoming Request
	8.2.1.2Incoming Response

	8.2.2Back-End Only
	8.2.2.1Outgoing Request
	8.2.2.2Outgoing Response

	8.3Headers added by CLB
	8.3.1proxy-beroute
	8.3.2proxy-bekey
	8.3.3Proxy-Remote
	8.3.4Proxy-Remote

	8.4DCR Schematic Description
	8.4.1Operators
	8.4.2Conditions
	8.4.3Condition Types
	8.4.4Variables
	8.4.5SIP Variables
	8.4.6HTTP Variables

	8.5DCR Example

