
Project SailFin

http://sailfin.dev.java.net

Functional Specification for ConvergedHttpSession
Author: jan.luehe@sun.com

Version: 0.1

1 Introduction
<List proposed feature(s). Introduce the basic vocabulary. Why is this interesting? List capabilities
that may be normally expected, but are not being supported. Are there any limitations and caveats
that need to be disclosed?>

In a converged, JSR 289 compliant container, HTTP sessions are exposed to
servlet code as instances of the javax.servlet.sip.ConvergedHttpSession
("ConvergedHttpSession") interface, which extends the
javax.servlet.http.HttpSession ("HttpSession") interface defined by the
Servlet specification.

Through its ConvergedHttpSession interface, an HttpSession may be
associted with (that is, added as a child protocol session to) a
javax.servlet.sip.SipApplicationSession ("SipApplicationSession").
Once this type of association has occurred, the ConvergedHttpSession interface
allows navigation from the HttpSession to its SipApplicationSession parent.

Features
<List all requirements and features you are implementing. List those which may be normally
expected to be implemented but are not.>

All methods of the javax.servlet.sip.ConvergedHttpSession interface are
implemented.

2 Design Overview
<Discuss the core concepts of the design. Provide diagrams. Show how this sub-system interacts
with other features and sub-systems. You may write as much as you consider as useful for other
developers to understand the basic design. Insert scenarios, use cases that will help the reader
understand how the system will behave under various conditions.You can also look at this section as
a map to navigate documented code! >

2.1 ConvergedHttpSession facade class

For any implementation object that needs to be exposed to application code using a
standard interface, the web container in GlassFish defines a corresponding facade
class which
● wraps the implementation object.
● implements the standard interface (thus hiding any implementation details), and
● delegates its method invocations to the nested implementation object.

Project SailFin

http://sailfin.dev.java.net

For example, in GlassFish, an HttpSession is implemented as an instance of
org.apache.catalina.session.StandardSession ("StandardSession).
Before a StandardSession object is returned to the servlet code that requested it,
the StandardSession object wraps itself inside an instance of
org.apache.catalina.session.StandardSessionFacade
("StandardSessionFacade"), as follows:

 public HttpSession getSession() {

 if (facade == null){
 facade = new StandardSessionFacade(this);
 }
 return (facade);
 }

StandardSessionFacade implements the HttpSession interface by delegating
to the encapsulated StandardSession object.

SailFin follows the session facade paradigm established by the GlassFish web
container, by exposing converged HTTP sessions as instances of
com.ericsson.ssa.sip.ConvergedHttpSessionFacade
("ConvergedHttpSessionFacade") , which extends StandardSessionFacade
and implements the ConvergedHttpSession standard interface:

While ConvergedHttpSessionFacade implements any HttpSession methods
by delegating to the nested StandardSession for which it is acting as a facade,

Project SailFin

http://sailfin.dev.java.net

ConvergedHttpSessionFacade itself is responsible for implementing any of the
extra methods defined by the ConvergedHttpSession interface.

2.2 Exposing the right kind of session

In SailFin, the web container must expose HTTP sessions as instances of
HttpSession to the servlets of a pure web application, and as instances of
ConvergedHttpSession to the servlets of a converged application. This means
that the type of application (pure vs converged) determines the type of session
facade to be exposed.

In SailFin, a pure web application is represented by an instance of
org.apache.catalina.core.StandardContext ("StandardContext"),
which implements the org.apache.catalina.Context ("Context") interface,
whereas a converged application is represented by an instance of
com.ericsson.ssa.config.ConvergedContextImpl
("ConvergedContextImpl"), which extends StandardContext and implements
com.ericsson.ssa.config.ConvergedContext ("ConvergedContext"),
which in turn extends Context:

Project SailFin

http://sailfin.dev.java.net

SailFin delegates the creation of the appropriate session facade for a given
StandardSession instance to the underlying application context. For this, a new
method createSessionFacade() has been added to StandardContext, which
wraps its argument (of type StandardSession) as a StandardSessionFacade,
as follows:

 public StandardSessionFacade createSessionFacade(
 StandardSession session) {
 return new StandardSessionFacade(session);
 }

This method is overridden by the ConvergedContextImpl subclass to wrap the
StandardSession argument as a ConvergedHttpSessionFacade, as follows:

 public StandardSessionFacade createSessionFacade(
 StandardSession session) {
 return new ConvergedHttpSessionFacade(session);

 }

When asked to create a session facade of itself, StandardSession now leverages
this new factory method by passing itself ("this") as an argument to it, so the new
implementation of its getSession() method now looks as follows:

 public HttpSession getSession() {

 if (facade == null){

 StandardContext ctx = (StandardContext) manager.getContainer();
 if (ctx == null) {
 throw new IllegalStateException("No context");
 }
 facade = ctx.createSessionFacade(this);
 }

 return (facade);
 }

2.3 Replicating a ConvergedHttpSession's association with its parent
SipApplicationSession

SailFin adds a new instance variable sipAppSessionId (of type String) to
StandardSession, which stores the id of the HTTP session's parent
SipApplicationSession (if any), along with corresponding getter and setter
methods:

 public String getSipApplicationSessionId()

 public void setSipApplicationSessionId(String id)

Project SailFin

http://sailfin.dev.java.net

If present, a StandardSession's sipAppSessionId will be automatically
included in the session's serialized representation, and as such will be replicated
and restored along with all the other session data.

If a call to ConvergedHttpSession.getApplicationSession() causes a
new SipApplicationSession to be created, the id of the new
SipApplicationSession is passed as an argument to the
setSipApplicationSessionId() method of the StandardSession
instance that is nested inside the ConvergedHttpSessionFacade.

Likewise, if ConvergedHttpSession.getApplicationSession() is called,
and the ConvergedHttpSessionFacade's nested StandardSession object
already has a SipApplicationSession associated with it, the
SipApplicationSession's id is retrieved from the StandardSession by
calling its getSipApplicationSessionId() method, and the corresponding
SipApplicationSession is looked up and returned.

2.4 Use cases

The following examples illustrate the various use cases of
ConvergedHttpSession.

In the absence of any standard name, sasID is used as the name of the URL
parameter that carries an encoded SipApplicationSession id.

Use Case 1:

The HTTP request URL does not contain any encoded jsessionid or sasID.

The following HTTP servlet code:

 ConvergedHttpSession chs = httpReq.getSession();
 SipApplicationSession sas = chs.getApplicationSession();

causes the container to create brand new ConvergedHttpSession ("chs") and
SipApplicationSession ("sas") objects, and to connect "chs" with "sas".

Use Case 2:

Assume a conference manager application, which stores the id of every ongoing
application instance (i.e., conference) as an attribute in its ServletContext.
Each conference id identifies an ongoing SipApplicationSession, and

Project SailFin

http://sailfin.dev.java.net

therefore may be interpreted as a sasID. The conference manager application
contains a servlet or JSP which retrieves this ServletContext attribute and
populates a FORM page with the sasID of every ongoing conference. The
FORM is returned to the client, for the client to pick the sasID of the conference
she would like to join. The selected sasID is submitted as a query parameter
named conferenceID. The servlet (of the conference manager application) that
is supposed to process the submitted FORM retrieves the value of the
conferenceID query parameter, and looks up the corresponding
SipApplicationSession.

In this case, the HTTP request URL does not contain any encoded jsessionid
or sasID (it contains a query parameter named conferenceID, though).

The following HTTP servlet code:

 // Look up existing SAS
 String confID = request.getParameter(“conferenceID”);
 SipApplicationSession sas = SipSessionsUtil.getAppSession(confID);
 // Create new HTTP session. Assume its id is "1234"
 ConvergedHttpSession chs = httpReq.getSession();
 String jencoded = chs.encodeURL("http://myserver:8080");
 URL jAndSasId = sas.encodeURL(new URL(jencoded));

causes a new ConvergedHttpSession "chs" to be created, which has not yet
been connected to any SipApplicationSession.

The printable representation of the jAndSasId URL, which has both the
jsessionid and sasID encoded in it:

 http://myserver:8080/jsessionid=1234;sasID=xyz

is returned to the client in a 302 HTTP response. A subsequent request with this
URL will cause the ConvergedHttpSession with id "1234" to be connected to
the SipApplicationSession with id “xyz” (see Use Case 3).

Use Case 3:

HTTP request URL:

 http://myserver:8080/jsessionid=1234;sasID=xyz

The following HTTP servlet code:

 ConvergedHttpSession chs = httpReq.getSession();

Project SailFin

http://sailfin.dev.java.net

 SipApplicationSession sas = chs.getApplicationSession();

causes the ConvergedHttpSession "chs" with id "1234" to be resumed. In
addition, "chs" will be connected to the SipApplicationSession "sas" with id
"xyz".

Use Case 4:

HTTP request URL:

 http://myserver:8080/sasID=xyz

The following HTTP servlet code:

 ConvergedHttpSession chs = httpReq.getSession();
 SipApplicationSession sas = chs.getApplicationSession();

causes the container to create a brand new ConvergedHttpSession "chs" and
to connect it to the SipApplicationSession "sas" with id "xyz".

3 Performance
<How do you want performance team to measure this sub-system? Any micro benchmarks
necessary?Any goals? Anticipated scalability limits or goals?>

The checking for the possible presence of an encoded SipApplicationSession
id in a request URL, and its parsing from the request URL, have been moved into
ConvergedHttpSessionFacade, to avoid any negative performance impact on
pure web applications.

4 Management
<Describe how performance, management status, and diagnostic information is exposed. How does
this feature handle dynamic configuration changes?>

Interfaces
<How is this feature(s) configured by administrator? Does it introduce new commands or modify
existing ones? Show syntax of expected administrative commands and response codes. What is the
schema for new configuration? Show the DTD snippets. What are their default values? What are the
validation rules? List stability level for each of the above [committed|evolving|unstable|standard].
Does it consume interfaces from other projects or sub-systems (imported) or produce interfaces for
consumption (exported).

javax.servlet.sip.ConvergedHttpSession is a standard interface defined
by JSR 289.

5 Packaging, Files, and Location

Project SailFin

http://sailfin.dev.java.net

<Does this feature add new jar files or extend existing ones? Where are they located?>

This feature does not add any new JAR files.

6 Quality
<Guidelines you wish to provide on how this feature is tested. Scenarios that must be tested.>

The scenarios tested must cover those listed in Section 2.3.

7 Documentation Requirements
<List the required documentation to support this product feature.>

There are no documentation requirements for this feature, which will be enabled
automatically.

8 Open Issues
1. Need to come up with (proprietary?) name for the URL parameter that carries the

SipApplicationSession id

2. Need to follow up with JSR 289 EG to have Section 13.4 ("Encoding URLs") of
the spec clarified, which currently reads as follows:

When the HTTP Request comes back to the converged container with this
URL, the container MUST associate the new HttpSession with the encoded
Application Session. In case the HTTP request is not a new request but
a follow-on request already associated with a HTTP Session then the
converged containers MUST use the HTTP session association mechanism
described in the HTTP Servlet specification, to route the request to
the right HTTP Session and MUST NOT use the encoded SipApplicationSession.

The current wording may be misinterpreted to conflict with Use Case 3 in Section
2.3 of this Functional Specification, in which the requested
ConvergedHttpSession is resumed and connected to the
SipApplicationSession whose id is encoded in the request URL.

Section 13.4 of the JSR 289 specification should be clarified to say that any
SipApplicationSession id encoded in the request URL must be ignored
only if the resumed ConvergedHttpSession already has a
SipApplicationSession associated with it.

