
theWeb Server andGlassFish Server. See “Con guring GlassFish Server with ApacheHTTP
Server and mod_jk” on page 126 formore information.

HighAvailability SessionPersistence

GlassFish Server provides high availability of HTTP requests and session data (bothHTTP
session data and stateful session bean data).

Java EE applications typically have signi cant amounts of session state data. A web shopping
cart is the classic example of a session state. Also, an application can cache frequently-needed
data in the session object. In fact, almost all applications with signi cant user interactions need
tomaintain session state. BothHTTP sessions and stateful session beans (SFSBs) have session
state data.

Preserving session state across server failures can be important to end users. If the GlassFish
Server instance hosting the user session experiences a failure, the session state can be recovered,
and the session can continue without loss of information. High availability is implemented in
GlassFish Server bymeans of in-memory session replication onGlassFish Server instances
running in a cluster.

Formore information about in-memory session replication in GlassFish Server, see “How
GlassFish Server Provides High Availability” on page 19. For detailed instructions on
con guring high availability session persistence, see Chapter 9, “Con guringHigh Availability
Session Persistence and Failover.”

HighAvailability JavaMessage Service

GlassFish Server supports the JavaMessage Service (JMS) API and JMSmessaging through its
built-in jmsra resource adapter communicating with OpenMessage Queue as the JMS provider.
This combination is often called the JMS Service.

The JMS servicemakes JMSmessaging highly available as follows:

Connection Pooling and Failover

The JMS service pools JMS connections automatically.

By default, the JMS service selects the primary JMS host (Message Queue broker) randomly
from the speci ed JMS host list.When failover occurs, MQ transparently transfers the load
to another JMS host in the list, maintains JMS semantics.

Formore information about JMS connection pooling and failover, see “Connection Pooling
and Failover” on page 147.

Overview of High Availability

GlassFish Server Open Source Edition 3.1 High Availability Administration Guide • February 201118

MessageQueue Broker Clusters

By default, when a GlassFish cluster is created, the JMS service automatically con gures a
Message Queue broker cluster to provide JMSmessaging services, with one clustered broker
assigned to each cluster instance. This automatically created broker cluster is con gurable to
take advantage of the di!erent types of broker clusters supported byMessage Queue.

Additionally, Message Queue broker clusters created andmanaged usingMessage Queue
itself can be used as external, or remote, JMS hosts to provide JMSmessaging high
availability to both GlassFish standalone instances and clusters.

Formore information aboutMessage Queue clustering, see “UsingMessage Queue Broker
Clusters with GlassFish Server” on page 149.

RMI-IIOP LoadBalancing andFailover

With RMI-IIOP load balancing, IIOP client requests are distributed to di!erent server instances
or name servers, which spreads the load evenly across the cluster, providing scalability. IIOP
load balancing combined with EJB clustering and availability also provides EJB failover.

When a client performs a JNDI lookup for an object, the Naming Service essentially binds the
request to a particular server instance. From then on, all lookup requests made from that client
are sent to the same server instance, and thus all EJBHome objects will be hosted on the same
target server. Any bean references obtained henceforth are also created on the same target host.
This e!ectively provides load balancing, since all clients randomize the list of target servers
when performing JNDI lookups. If the target server instance goes down, the lookup or EJB
method invocation will failover to another server instance.

IIOP Load balancing and failover happens transparently. No special steps are needed during
application deployment. If the GlassFish Server instance on which the application client is
deployed participates in a cluster, the GlassFish Server nds all currently active IIOP endpoints
in the cluster automatically. However, a client should have at least two endpoints speci ed for
bootstrapping purposes, in case one of the endpoints has failed.

Formore information on RMI-IIOP load balancing and failover, see Chapter 11, “RMI-IIOP
Load Balancing and Failover.”

HowGlassFish Server ProvidesHighAvailability

GlassFish Server provides high availability through the following subcomponents and features:

n “Storage for Session State Data” on page 20
n “Highly Available Clusters” on page 20

HowGlassFish Server Provides High Availability

Chapter 1 • High Availability in GlassFish Server 19

Storage for Session StateData

Storing session state data enables the session state to be recovered after the failover of a server
instance in a cluster. Recovering the session state enables the session to continue without loss of
information. GlassFish Server supports in-memory session replication on other servers in the
cluster formaintainingHTTP session and stateful session bean data.

In-memory session replication is implemented in GlassFish Server 3.1 as OSGimodule.
Internally, the replicationmodule uses a consistent hash algorithm to pick a replica server
instance within a cluster of instances. This allows the replicationmodule to easily locate the
replica or replicated data when a container needs to retrieve the data.

The use of in-memory replication requires the GroupManagement Service (GMS) to be
enabled. Formore information about GMS, see “GroupManagement Service” on page 64.

If server instances in a cluster are located on di!erent hosts, ensure that the following
prerequisites aremet:

n To ensure that GMS and in-memory replication function correctly, the hosts must be on the
same subnet.

n To ensure that in-memory replication functions correctly, the system clocks on all hosts in
the cluster must be synchronized as closely as possible.

HighlyAvailable Clusters

A highly available cluster integrates a state replication service with clusters and load balancer.

Clusters, Instances, Sessions, and LoadBalancing

Clusters, server instances, load balancers, and sessions are related as follows:

n A server instance is not required to be part of a cluster. However, an instance that is not part
of a cluster cannot take advantage of high availability through transfer of session state from
one instance to other instances.

n The server instances within a cluster can be hosted on one ormultiple hosts. You can group
server instances across di!erent hosts into a cluster.

n Aparticular load balancer can forward requests to server instances onmultiple clusters. You
can use this ability of the load balancer to perform an online upgrade without loss of service.
Formore information, see “Upgrading inMultiple Clusters” on page 132.

n A single cluster can receive requests frommultiple load balancers. If a cluster is served by
more than one load balancer, youmust con gure the cluster in exactly the same way on each
load balancer.

n Each session is tied to a particular cluster. Therefore, although you can deploy an
application onmultiple clusters, session failover will occur only within a single cluster.

HowGlassFish Server Provides High Availability

GlassFish Server Open Source Edition 3.1 High Availability Administration Guide • February 201120

