
Note –Make sure the delete option is set in the server.policy le, or expired le-based
sessionsmight not be deleted properly. Formore information about server.policy, see “The
server.policy File” on page 56.

The Session Store Location setting also determines where the session state is persisted if it is not
highly available; see “Choosing a Persistence Store” on page 155.

Stateful SessionBeanFailover
An SFSB’s state can be saved in a persistent store in case a server instance fails. The state of an
SFSB is saved to the persistent store at prede ned points in its life cycle. This is called
checkpointing. If SFSB checkpointing is enabled, checkpointing generally occurs after any
transaction involving the SFSB is completed, even if the transaction rolls back.

However, if an SFSB participates in a bean-managed transaction, the transactionmight be
committed in themiddle of the execution of a beanmethod. Since the bean’s state might be
undergoing transition as a result of themethod invocation, this is not an appropriate instant to
checkpoint the bean’s state. In this case, the EJB container checkpoints the bean’s state at the end
of the correspondingmethod, provided the bean is not in the scope of another transaction when
that method ends. If a bean-managed transaction spans across multiple methods,
checkpointing is delayed until there is no active transaction at the end of a subsequentmethod.

The state of an SFSB is not necessarily transactional andmight be signi cantlymodi ed as a
result of non-transactional business methods. If this is the case for an SFSB, you can specify a list
of checkpointedmethods. If SFSB checkpointing is enabled, checkpointing occurs after any
checkpointedmethods are completed.

The following table lists the types of references that SFSB failover supports. All objects bound
into an SFSBmust be one of the supported types. In the table,No indicates that failover for the
object typemight not work in all cases and that no failover support is provided. However,
failovermight work in some cases for that object type. For example, failovermight work
because the class implementing that type is serializable.

TABLE 8–1 Object Types Supported for Java EE Stateful Session Bean State Failover

JavaObjectType Failover Support

Colocated or distributed stateless session, stateful

session, or entity bean reference

Yes

JNDI context Yes, InitialContext and java:comp/env

UserTransaction Yes, but if the instance that fails is never restarted, any

prepared global transactions are lost andmight not be

correctly rolled back or committed.

Using Session Beans

Chapter 8 • Using Enterprise JavaBeansTechnology 153

TABLE 8–1 Object Types Supported for Java EE Stateful Session Bean State Failover (Continued)

JavaObjectType Failover Support

JDBCDataSource No

JavaMessage Service (JMS) ConnectionFactory,

Destination

No

JavaMail Session No

Connection Factory No

AdministeredObject No

Web service reference No

Serializable Java types Yes

Extended persistence context No

Formore information about the InitialContext, see “Accessing the Naming Context” on
page 253. Formore information about transaction recovery, see Chapter 14, “Using the
Transaction Service.” Formore information about AdministeredObjects, see “Administering
JMS Physical Destinations” inGlassFish Server Open Source Edition 3.1 Administration Guide.

Note – Idempotent URLs are supported along theHTTP path, but not the RMI-IIOP path. For
more information, see “Con guring Idempotent URL Requests” on page 136.

If a server instance to which an RMI-IIOP client request is sent crashes during the request
processing (before the response is prepared and sent back to the client), an error is sent to the
client. The client must retry the request explicitly.When the client retries the request, the
request is sent to another server instance in the cluster, which retrieves session state
information for this client.

HTTP sessions can also be saved in a persistent store in case a server instance fails. In addition,
if a distributable web application references an SFSB, and the web application’s session fails
over, the EJB reference is also failed over. Formore information, see “Distributed Sessions and
Persistence” on page 114.

If an SFSB that uses session persistence is undeployed while the GlassFish Server instance is
stopped, the session data in the persistence storemight not be cleared. To prevent this,
undeploy the SFSBwhile the GlassFish Server instance is running.

Con gure SFSB failover by:

n “Choosing a Persistence Store” on page 155
n “Enabling Checkpointing” on page 156
n “SpecifyingMethods to Be Checkpointed” on page 157

Using Session Beans

GlassFish Server Open Source Edition 3.1 ApplicationDevelopment Guide • February 2011154

Choosing aPersistence Store

The following types of persistent storage are supported for passivation and checkpointing of the
SFSB state:

n The local �le system - Allows a single server instance to recover the SFSB state after a failure
and restart. This store also provides passivation and activation of the state to help control
the amount of memory used. This option is not supported in a production environment that
requires SFSB state persistence. This is the default storagemechanism if availability is not
enabled.

n Other servers - Uses other server instances in the cluster for session persistence. Clustered
server instances replicate session state. Each backup instance stores the replicated data in
memory. This is the default storagemechanism if availability is enabled.

Choose the persistence store in one of the following ways:

n To use the local le system, rst disable availability. Select the Availability Service
component under the relevant con guration in the Administration Console. Uncheck the
Availability Service box. Then select the EJB Container component and edit the Session
Store Location value. The default is domain-dir/session-store.

n To use other servers, select the Availability Service component under the relevant
con guration in the Administration Console. Check the Availability Service box. To enable
availability for the EJB container, select the EJB Container Availability tab, then check the
Availability Service box. All instances in an GlassFish Server cluster should have the same
availability settings to ensure consistent behavior.

Formore information about SFSB state persistence, see theGlassFish Server Open Source
Edition 3.1 High Availability Administration Guide.

Using the --keepstateOption

If you are using the le system for persistence, you can use the --keepstate option of the
asadmin redeploy command to retain the SFSB state between redeployments.

The default for --keepstate is false. This option is supported only on the default server
instance, named server. It is not supported and ignored for any other target.

Some changes to an application between redeployments prevent this feature fromworking
properly. For example, do not change the set of instance variables in the SFSB bean class.

If any active SFSB instance fails to be preserved or restored, none of the SFSB instances will be
available when the redeployment is complete. However, the redeployment continues and a
warning is logged.

To preserve active state data, GlassFish Server serializes the data and saves it inmemory. To
restore the data, the class loader of the newly redeployed application deserializes the data that
was previously saved.

Using Session Beans

Chapter 8 • Using Enterprise JavaBeansTechnology 155

For more information about the asadmin redeploy command, see theGlassFish Server Open
Source Edition 3.1 ReferenceManual.

Using the --asyncreplicationOption

If you are using replication on other servers for persistence, you can use the
--asyncreplication option of the asadmin deploy command to specify that SFSB states are
 rst bu!ered and then replicated using a separate asynchronous thread. If
--asyncreplication is set to true (default), performance is improved but availability is
reduced. If the instance where states are bu!ered but not yet replicated fails, the states are lost. If
set to false, performance is reduced but availability is guaranteed. States are not bu!ered but
immediately transmitted to other instances in the cluster.

For more information about the asadmin deploy command, see theGlassFish Server Open
Source Edition 3.1 ReferenceManual.

EnablingCheckpointing

The following sections describe how to enable SFSB checkpointing:

n “Server Instance and EJB Container Levels” on page 156
n “Application and EJBModule Levels” on page 156
n “SFSB Level” on page 156

Server Instance and EJB Container Levels

To enable SFSB checkpointing at the server instance or EJB container level, see “Choosing a
Persistence Store” on page 155.

Application and EJBModule Levels

To enable SFSB checkpointing at the application or EJBmodule level during deployment, use
the asadmin deploy or asadmin deploydir command with the --availabilityenabled
option set to true. For details, see theGlassFish Server Open Source Edition 3.1 Reference
Manual.

SFSB Level

To enable SFSB checkpointing at the SFSB level, set availability-enabled="true" in the ejb
element of the SFSB’s glassfish-ejb-jar.xml le as follows:

<glassfish-ejb-jar>

...

<enterprise-beans>

...

<ejb availability-enabled="true">

Using Session Beans

GlassFish Server Open Source Edition 3.1 ApplicationDevelopment Guide • February 2011156

<ejb-name>MySFSB</ejb-name>

</ejb>

...

</enterprise-beans>

</glassfish-ejb-jar>

SpecifyingMethods toBeCheckpointed

If SFSB checkpointing is enabled, checkpointing generally occurs after any transaction

involving the SFSB is completed, even if the transaction rolls back.

To specify additional optional checkpointing of SFSBs at the end of non-transactional business

methods that cause importantmodi cations to the bean’s state, use the

checkpoint-at-end-of-method element within the ejb element in glassfish-ejb-jar.xml.

For example:

<glassfish-ejb-jar>

...

<enterprise-beans>

...

<ejb availability-enabled="true">

<ejb-name>ShoppingCartEJB</ejb-name>

<checkpoint-at-end-of-method>

<method>

<method-name>addToCart</method-name>

</method>

</checkpoint-at-end-of-method>

</ejb>

...

</enterprise-beans>

</glassfish-ejb-jar>

For details, see “checkpoint-at-end-of-method” inGlassFish Server Open Source Edition 3.1

Application Deployment Guide.

The non-transactional methods in the checkpoint-at-end-of-method element can be the

following:

n createmethods de ned in the home or business interface of the SFSB, if you want to

checkpoint the initial state of the SFSB immediately after creation

n For SFSBs using containermanaged transactions only, methods in the remote interface of

the beanmarked with the transaction attribute TX_NOT_SUPPORTED or TX_NEVER

n For SFSBs using beanmanaged transactions only, methods in which a beanmanaged

transaction is neither started nor committed

Any othermethodsmentioned in this list are ignored. At the end of invocation of each of these

methods, the EJB container saves the state of the SFSB to persistent store.

Using Session Beans

Chapter 8 • Using Enterprise JavaBeansTechnology 157

Note – If an SFSB does not participate in any transaction, and if none of its methods are explicitly
speci ed in the checkpoint-at-end-of-method element, the bean’s state is not checkpointed at
all even if availability-enabled="true" for this bean.

For better performance, specify a small subset of methods. Themethods chosen should
accomplish a signi cant amount of work in the context of the Java EE application or should
result in some importantmodi cation to the bean’s state.

SessionBeanRestrictions andOptimizations

This section discusses restrictions on developing session beans and provides some optimization
guidelines.

n “Optimizing Session Bean Performance” on page 158
n “Restricting Transactions” on page 158

Optimizing SessionBeanPerformance

For stateful session beans, colocating the stateful beans with their clients so that the client and
bean are executing in the same process address space improves performance.

RestrictingTransactions

The following restrictions on transactions are enforced by the container andmust be observed
as session beans are developed:

n A session bean can participate in, at most, a single transaction at a time.

n If a session bean is participating in a transaction, a client cannot invoke amethod on the
bean such that the trans-attribute element (or @TransactionAttribute annotation) in
the ejb-jar.xml le would cause the container to execute themethod in a di!erent or
unspeci ed transaction context or an exception is thrown.

n If a session bean instance is participating in a transaction, a client cannot invoke the remove
method on the session object’s home or business interface object, or an exception is thrown.

UsingRead-OnlyBeans
A read-only bean is an EJB 2.1 entity bean that is nevermodi ed by an EJB client. The data that a
read-only bean represents can be updated externally by other enterprise beans, or by other
means, such as direct database updates.

Using Read-Only Beans

GlassFish Server Open Source Edition 3.1 ApplicationDevelopment Guide • February 2011158

