
Administering the Java Naming andDirectory
Interface (JNDI) Service

The Java Naming andDirectory Interface (JNDI) API is used for accessing di�erent kinds of

naming and directory services. Java EE components locate objects by invoking the JNDI lookup

method.

The following topics are addressed here:

n “About JNDI” on page 21
n “Administering JNDI Resources” on page 23

Instructions for accomplishing the tasks in this chapter by using the Administration Console

are contained in the Administration Console online help.

About JNDI

Bymaking calls to the JNDI API, applications locate resources and other program objects. A

resource is a program object that provides connections to systems, such as database servers and

messaging systems. A JDBC resource is sometimes referred to as a data source. Each resource

object is identi ed by a unique, people-friendly name, called the JNDI name. A resource object

and its JNDI name are bound together by the naming and directory service, which is included

with the GlassFish Server.

When a new name-object binding is entered into the JNDI, a new resource is created.

The following topics are addressed here:

n “Java EENaming Environment” on page 22
n “How the Naming Environment and the ContainerWork Together” on page 22
n “Naming References and Binding Information” on page 23

18C H A P T E R 1 8

21

Java EENamingEnvironment

JNDI names are bound to their objects by the naming and directory service that is provided by a

Java EE server. Because Java EE components access this service through the JNDI API, the

object usually uses its JNDI name. For example, the JNDI name of the PointBase database is

jdbc/Pointbase. At startup, the GlassFish Server reads information from the con guration le

and automatically adds JNDI database names to the name space, one of which is

jdbc/Pointbase.

Java EE application clients, enterprise beans, and web components must have access to a JNDI

naming environment.

The application component's naming environment is themechanism that allows customization

of the application component's business logic during deployment or assembly. This

environment allows you to customize the application component without needing to access or

change the source code o� the component. A Java EE container implements the provides the

environment to the application component instance as a JNDI naming context.

How theNamingEnvironment and theContainer
WorkTogether

The application component's environment is used as follows:

n The application component's business methods access the environment using the JNDI

interfaces. In the deployment descriptor, the application component provider declares all

the environment entries that the application component expects to be provided in its

environment at runtime.

n The container provides an implementation of the JNDI naming context that stores the

application component environment. The container also provides the tools that allow the

deployer to create andmanage the environment of each application component.

n Adeployer uses the tools provided by the container to initialize the environment entries that

are declared in the application component's deployment descriptor. The deployer sets and

modi es the values of the environment entries.

n The containermakes the JNDI context available to the application component instances at

runtime. These instances use the JNDI interfaces to obtain the values of the environment

entries.

Each application component de nes its own set of environment entries. All instances of an

application component within the same container share the same environment entries.

Application component instances are not allowed tomodify the environment at runtime.

About JNDI

Oracle GlassFish Server 3.1 Administration Guide • December 201022

NamingReferences andBinding Information

A resource reference is an element in a deployment descriptor that identi es the component’s

coded name for the resource. For example, jdbc/SavingsAccountDB. More speci cally, the

coded name references a connection factory for the resource.

The JNDI name of a resource and the resource reference name are not the same. This approach

to naming requires that youmap the two names before deployment, but it also decouples

components from resources. Because of this decoupling, if at a later time the component needs

to access a di�erent resource, the name does not need to change. This !exibility makes it easier

for you to assemble Java EE applications from preexisting components.

The following table lists JNDI lookups and their associated resource references for the Java EE

resources used by the GlassFish Server.

TABLE 18–1 JNDI LookupNames andTheir Associated References

JNDI LookupName Associated Resource Reference

java:comp/env Application environment entries

java:comp/env/jdbc JDBCDataSource resourcemanager connection factories

java:comp/env/ejb EJB References

java:comp/UserTransaction UserTransaction references

java:comp/env/mail JavaMail Session Connection Factories

java:comp/env/url URLConnection Factories

java:comp/env/jms JMS Connection Factories andDestinations

java:comp/ORB ORB instance shared across application components

Administering JNDI Resources

Within GlassFish Server, you can con gure your environment for custom and external JNDI

resources. A custom resource accesses a local JNDI repository; an external resource accesses an

external JNDI repository. Both types of resources need user-speci ed factory class elements,

JNDI name attributes, and so on.

n “Administering Custom JNDI Resources” on page 24
n “Administering External JNDI Resources” on page 26

Administering JNDI Resources

Chapter 18 • Administering the Java Naming andDirectory Interface (JNDI) Service 23

AdministeringCustomJNDI Resources

A custom resource speci es a custom server-wide resource object factory that implements the
javax.naming.spi.ObjectFactory interface.

The following topics are addressed here:

n “To Create a Custom JNDI Resource” on page 24
n “To List Custom JNDI Resources” on page 24
n “ToUpdate a Custom JNDI Resource” on page 25
n “ToDelete a Custom JNDI Resource” on page 25

t ToCreate aCustomJNDI Resource
Use the create-custom-resource subcommand in remotemode to create a custom resource.

Ensure that the server is running.

Remote subcommands require a running server.

Create a custom resource by using the create-custom-resource(1) subcommand.
Information on properties for the subcommand is contained in this help page.

Restart GlassFish Server.

See “To Restart a Domain” on page .

Creating a CustomResource

This example creates a custom resource named sample-custom-resource.

asadmin> create-custom-resource --restype topic --factoryclass com.imq.topic
sample_custom_resource
Command create-custom-resource executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help
create-custom-resource at the command line.

t To List CustomJNDI Resources
Use the list-custom-resources subcommand in remotemode to list the existing custom
resources.

Ensure that the server is running.

Remote subcommands require a running server.

List the custom resources by using the list-custom-resources(1) subcommand.

1

2

3

Example 18–1

SeeAlso

1

2

Administering JNDI Resources

Oracle GlassFish Server 3.1 Administration Guide • December 201024

Listing CustomResources

This example lists the existing custom resources.

asadmin> list-custom-resources
sample_custom_resource01
sample_custom_resource02
Command list-custom-resources executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help
list-custom-resources at the command line.

t ToUpdate aCustomJNDI Resource

List the custom resources by using the list-custom-resources(1) subcommand.

Use the set(1) subcommand tomodify a custom JNDI resource.

Updating a Custom JNDI Resource

This examplemodi es a custom resource.

asadmin> set server.resources.custom-resource.custom
/my-custom-resource.property.value=2010server.resources.custom-resource.custom
/my-custom-resource.property.value=2010

t ToDelete a CustomJNDI Resource
Use the delete-custom-resource subcommand in remotemode to delete a custom resource.

Ensure that the server is running.

Remote subcommands require a running server.

List the custom resources by using the list-custom-resources(1) subcommand.

Delete a custom resource by using the delete-custom-resource(1) subcommand.

Deleting a CustomResource

This example deletes a custom resource named sample-custom-resource.

asadmin> delete-custom-resource sample_custom_resource
Command delete-custom-resource executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help
delete-custom-resource at the command line.

Example 18–2

SeeAlso

1

2

Example 18–3

1

2

3

Example 18–4

SeeAlso

Administering JNDI Resources

Chapter 18 • Administering the Java Naming andDirectory Interface (JNDI) Service 25

Administering External JNDI Resources

Applications running onGlassFish Server often require access to resources stored in an external
JNDI repository. For example, generic Java objects might be stored in an LDAP server
according to the Java schema. External JNDI resource elements let you con gure such external
resource repositories.

The following topics are addressed here:

n “To Register an External JNDI Resource” on page 26
n “To List External JNDI Resources” on page 27
n “To List External JNDI Entries” on page 27
n “ToUpdate an External JNDI Resource” on page 28
n “ToDelete an External JNDI Resource” on page 28
n “Example of Using an External JNDI Resource” on page 28
n “ToDisable GlassFish Server V2Vendor-Speci c JNDINames” on page 29

t ToRegister an External JNDI Resource
Use the create-jndi-resource subcommand in remotemode to register an external JNDI
resource.

The external JNDI factorymust implement the javax.naming.spi.InitialContextFactory
interface.

Ensure that the server is running.

Remote subcommands require a running server.

Register an external JNDI resource by using the create-jndi-resource(1) subcommand.
Information on properties for the subcommand is contained in this help page.

Restart GlassFish Server.

See “To Restart a Domain” on page .

Registering an External JNDI Resource

In This example sample_jndi_resource is registered.

asadmin> create-jndi-resource --jndilookupname sample_jndi
--restype queue --factoryclass sampleClass --description "this is a sample jndi
resource" sample_jndi_resource
Command create-jndi-resource executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help
create-jndi-resource at the command line.

BeforeYouBegin

1

2

3

Example 18–5

SeeAlso

Administering JNDI Resources

Oracle GlassFish Server 3.1 Administration Guide • December 201026

t To List External JNDI Resources

Use the list-jndi-resources subcommand in remotemode to list all existing JNDI resources.

Ensure that the server is running.

Remote subcommands require a running server.

List the existing JNDI resources by using thelist-jndi-resources(1) subcommand.

Listing JNDI Resources

This example lists the JNDI resources.

asadmin> list-jndi-resources
jndi_resource1
jndi_resource2
jndi_resource3
Command list-jndi-resources executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help
list-jndi-resources at the command line.

t To List External JNDI Entries

Use the list-jndi-entries subcommand in remotemode to browse and list the entries in the
JNDI tree. You can either list all entries, or you can specify the JNDI context or subcontext to
list speci c entries.

Ensure that the server is running.

Remote subcommands require a running server.

List the JNDI entries for a con guration by using the list-jndi-entries(1) subcommand.

Listing JNDI Entries

This example lists all the JNDI entries for the naming service.

asadmin> list-jndi-entries
jndi_entry03
jndi_entry72
jndi_entry76
Command list-jndi-resources executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help
list-jndi-entries at the command line.

1

2

Example 18–6

SeeAlso

1

2

Example 18–7

SeeAlso

Administering JNDI Resources

Chapter 18 • Administering the Java Naming andDirectory Interface (JNDI) Service 27

t ToUpdate an External JNDI Resource

List the existing JNDI resources by using thelist-jndi-resources(1) subcommand.

Use the set(1) subcommand tomodify an external JNDI resource.

Updating an External JNDI Resource

This examplemodi es an external resource.

asadmin> set server.resources.external-jndi-resource.my-jndi-resource.
jndi-lookup-name=bar server.resources.external-jndi-resource.my-jndi-resource.jndi-lookup-name=bar

t ToDelete an External JNDI Resource

Use the delete-jndi-resource subcommand in remotemode to remove a JNDI resource.

Ensure that the server is running.

Remote subcommands require a running server.

Remove an external JNDI entry by using the delete-jndi-resource(1) subcommand.

Deleting an External JNDI Resource

This example deletes an external JNDI resource:

asadmin> delete-jndi-resource jndi_resource2
Command delete-jndi-resource executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help
delete-jndi-resource at the command line.

Example ofUsing anExternal JNDI Resource

<resources>
<!-- external-jndi-resource element specifies how to access Java EE resources
-- stored in an external JNDI repository. This example
-- illustrates how to access a java object stored in LDAP.
-- factory-class element specifies the JNDI InitialContext factory that
-- needs to be used to access the resource factory. property element
-- corresponds to the environment applicable to the external JNDI context
-- and jndi-lookup-name refers to the JNDI name to lookup to fetch the
-- designated (in this case the java) object.
-->
<external-jndi-resource jndi-name="test/myBean"
jndi-lookup-name="cn=myBean"
res-type="test.myBean"

1

2

Example 18–8

1

2

Example 18–9

SeeAlso

Administering JNDI Resources

Oracle GlassFish Server 3.1 Administration Guide • December 201028

factory-class="com.sun.jndi.ldap.LdapCtxFactory">
<property name="PROVIDER-URL" value="ldap://ldapserver:389/o=myObjects" />
<property name="SECURITY_AUTHENTICATION" value="simple" />
<property name="SECURITY_PRINCIPAL", value="cn=joeSmith, o=Engineering" />
<property name="SECURITY_CREDENTIALS" value="changeit" />
</external-jndi-resource>
</resources>

t ToDisableGlassFish ServerV2Vendor-Speci c JNDINames

The EJB 3.1 speci cation supported by GlassFish Server 3.1 de nes portable EJB JNDI names.
Because of this, there is less need to continue to use older vendor-speci c JNDI names.

By default, GlassFish Server V2–speci c JNDI names are applied automatically by GlassFish
Server 3.1 for backward compatibility. However, this can lead to some ease-of-use issues. For
example, deploying two di�erent applications containing a Remote EJB component that
exposes the same remote interface causes a con!ict between the default JNDI names.

The default handling of V2–speci c JNDI names in GlassFish Server 3.1 can bemanaged with
the asadmin command or with the disable-nonportable-jndi-names boolean property for
the ejb-container element in glassfish-ejb-jar.xml.

Use the asadmin commandor directlymodify the glassfish-ejb-jar.xml le to set the
disable-nonportable-jndi-names property.

n Using the asadmin command:
asadmin> set server.ejb-container.property.disable-nonportable-jndi-names="true"

n Directlymodifying the glassfish-ejb-jar.xml le.

a. AddThe disable-nonportable-jndi-names property to the ejb-container element in
glassfish-ejb-jar.xml.

b. Set the value of the disable-nonportable-jndi-names boolean, as desired.
n false—Enables the automatic use of GlassFish Server V2–speci c JNDI names.

This is the default setting.

n true—Disables the automatic use of V2–speci c JNDI names. In all cases,
3.1-compatible JNDI names will be used.

c. Save the glassfish-ejb-jar.xml le and restart theGlassFish Server domain.
This setting applies to all EJBs deployed to the server.

l

Administering JNDI Resources

Chapter 18 • Administering the Java Naming andDirectory Interface (JNDI) Service 29

