* o 0 CHAPTER 18

Administering the Java Naming and Directory
Interface (JNDI) Service

The Java Naming and Directory Interface (JNDI) API is used for accessing different kinds of
naming and directory services. Java EE components locate objects by invoking the JNDI lookup
method.

The following topics are addressed here:
= “About JNDI” on page 21

= “Administering JNDI Resources” on page 23

Instructions for accomplishing the tasks in this chapter by using the Administration Console
are contained in the Administration Console online help.

About JNDI

By making calls to the JNDI API, applications locate resources and other program objects. A
resource is a program object that provides connections to systems, such as database servers and
messaging systems. A JDBC resource is sometimes referred to as a data source. Each resource
object is identified by a unique, people-friendly name, called the JNDI name. A resource object
and its JNDI name are bound together by the naming and directory service, which is included
with the GlassFish Server.

When a new name-object binding is entered into the JNDI, a new resource is created.

The following topics are addressed here:

= “Java EE Naming Environment” on page 22
= “How the Naming Environment and the Container Work Together” on page 22
= “Naming References and Binding Information” on page 23

21

About JNDI

22

Java EE Naming Environment

JNDI names are bound to their objects by the naming and directory service that is provided by a
Java EE server. Because Java EE components access this service through the JNDI API, the
object usually uses its JNDI name. For example, the JNDI name of the PointBase database is
jdbc/Pointbase. At startup, the GlassFish Server reads information from the configuration file
and automatically adds JNDI database names to the name space, one of which is
jdbc/Pointbase.

Java EE application clients, enterprise beans, and web components must have access to a JNDI
naming environment.

The application component's naming environment is the mechanism that allows customization
of the application component's business logic during deployment or assembly. This
environment allows you to customize the application component without needing to access or
change the source code off the component. A Java EE container implements the provides the
environment to the application component instance as a [NDI naming context.

How the Naming Environment and the Container
Work Together

The application component's environment is used as follows:

= The application component's business methods access the environment using the JNDI
interfaces. In the deployment descriptor, the application component provider declares all
the environment entries that the application component expects to be provided in its
environment at runtime.

= The container provides an implementation of the JNDI naming context that stores the
application component environment. The container also provides the tools that allow the
deployer to create and manage the environment of each application component.

= A deployer uses the tools provided by the container to initialize the environment entries that
are declared in the application component's deployment descriptor. The deployer sets and
modifies the values of the environment entries.

= The container makes the JNDI context available to the application component instances at
runtime. These instances use the JNDI interfaces to obtain the values of the environment
entries.

Each application component defines its own set of environment entries. All instances of an
application component within the same container share the same environment entries.
Application component instances are not allowed to modify the environment at runtime.

Oracle GlassFish Server 3.1 Administration Guide « December 2010

Administering JNDI Resources

Naming References and Binding Information

A resource reference is an element in a deployment descriptor that identifies the component’s
coded name for the resource. For example, jdbc/SavingsAccountDB. More specifically, the
coded name references a connection factory for the resource.

The JNDI name of a resource and the resource reference name are not the same. This approach
to naming requires that you map the two names before deployment, but it also decouples
components from resources. Because of this decoupling, if at a later time the component needs
to access a different resource, the name does not need to change. This flexibility makes it easier
for you to assemble Java EE applications from preexisting components.

The following table lists JNDI lookups and their associated resource references for the Java EE
resources used by the GlassFish Server.

TABLE 18-1 JNDI Lookup Names and Their Associated References

JNDI Lookup Name Associated Resource Reference

java:comp/env Application environment entries

java:comp/env/jdbc JDBC DataSource resource manager connection factories
java:comp/env/ejb EJB References

java:comp/UserTransaction UserTransaction references

java:comp/env/mail JavaMail Session Connection Factories
java:comp/env/url URL Connection Factories

java:comp/env/jms JMS Connection Factories and Destinations
java:comp/ORB ORB instance shared across application components

Administering JNDI Resources

Within GlassFish Server, you can configure your environment for custom and external JNDI
resources. A custom resource accesses a local JNDI repository; an external resource accesses an
external JNDI repository. Both types of resources need user-specified factory class elements,
JNDI name attributes, and so on.

® “Administering Custom JNDI Resources” on page 24
» “Administering External JNDI Resources” on page 26

Chapter 18 « Administering the Java Naming and Directory Interface (JNDI) Service 23

Administering JNDI Resources

Example 18-1

See Also

24

Administering Custom JNDI Resources

A custom resource specifies a custom server-wide resource object factory that implements the
javax.naming.spi.ObjectFactory interface.

The following topics are addressed here:

“To Create a Custom JNDI Resource” on page 24
“To List Custom JNDI Resources” on page 24
“To Update a Custom JNDI Resource” on page 25
“To Delete a Custom JNDI Resource” on page 25

To Create a Custom JNDI Resource

Use the create-custom-resource subcommand in remote mode to create a custom resource.

Ensure that the server is running.

Remote subcommands require a running server.

Create a custom resource by using the create-custom-resource(1) subcommand.

Information on properties for the subcommand is contained in this help page.

Restart GlassFish Server.

See “T'o Restart a Domain” on page
Creating a Custom Resource
This example creates a custom resource named sample-custom-resource.

asadmin> create-custom-resource --restype topic --factoryclass com.imq.topic
sample_custom_resource
Command create-custom-resource executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help
create-custom-resource at the command line.

To List Custom JNDI Resources

Use the list-custom-resources subcommand in remote mode to list the existing custom
resources.

Ensure that the server is running.

Remote subcommands require a running server.

List the custom resources by using the 1ist-custom-resources(1) subcommand.

Oracle GlassFish Server 3.1 Administration Guide « December 2010

Administering JNDI Resources

Example18-2 Listing Custom Resources

This example lists the existing custom resources.

asadmin> list-custom-resources

sample custom resource0l

sample custom resource02

Command list-custom-resources executed successfully

SeeAlso You can also view the full syntax and options of the subcommand by typing asadmin help
list-custom-resources at the command line.

¥ To Update a Custom JNDI Resource
1 List the custom resources by using the list-custom-resources(1) subcommand.
2 Usetheset(1) subcommand to modify a custom JNDI resource.
Example18-3 Updating a Custom JNDI Resource
This example modifies a custom resource.

asadmin> set server.resources.custom-resource.custom
/my-custom-resource.property.value=2010server.resources.custom-resource.custom
/my-custom-resource.property.value=2010

V¥ ToDelete a Custom JNDI Resource

Use the delete-custom- resource subcommand in remote mode to delete a custom resource.

1 Ensure thatthe serveris running.

Remote subcommands require a running server.
2 Listthe custom resources by using the list-custom-resources(1) subcommand.

3 Delete a custom resource by using the delete-custom-resource(1) subcommand.

Example18-4 Deleting a Custom Resource

This example deletes a custom resource named sample-custom-resource.

asadmin> delete-custom-resource sample_custom_resource
Command delete-custom-resource executed successfully.

SeeAlso You can also view the full syntax and options of the subcommand by typing asadmin help
delete-custom-resource at the command line.

Chapter 18 - Administering the Java Naming and Directory Interface (JNDI) Service 25

Administering JNDI Resources

Before You Begin

26

Example 18-5

See Also

Administering External JNDI Resources

Applications running on GlassFish Server often require access to resources stored in an external
JNDI repository. For example, generic Java objects might be stored in an LDAP server
according to the Java schema. External JNDI resource elements let you configure such external
resource repositories.

The following topics are addressed here:

“To Register an External JNDI Resource” on page 26

“To List External JNDI Resources” on page 27

“To List External JNDI Entries” on page 27

“To Update an External JNDI Resource” on page 28

“To Delete an External JNDI Resource” on page 28

“Example of Using an External JNDI Resource” on page 28

“To Disable GlassFish Server V2 Vendor-Specific JNDI Names” on page 29

To Register an External JNDI Resource

Use the create-jndi-resource subcommand in remote mode to register an external JNDI
resource.

The external JNDI factory must implement the javax.naming.spi.InitialContextFactory
interface.

Ensure that the server is running.

Remote subcommands require a running server.

Register an external JNDI resource by using the create-jndi-resource(1) subcommand.

Information on properties for the subcommand is contained in this help page.

Restart GlassFish Server.

See “To Restart a Domain” on page

Registering an External JNDI Resource

In This example sample_jndi_resource is registered.

asadmin> create-jndi-resource --jndilookupname sample_jndi

--restype queue --factoryclass sampleClass --description "this is a sample jndi
resource" sample_jndi_resource

Command create-jndi-resource executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help
create-jndi-resource at the command line.

Oracle GlassFish Server 3.1 Administration Guide « December 2010

Administering JNDI Resources

Example 18-6

SeeAlso

Example 18-7

SeeAlso

To List External JNDI Resources

Use the list-jndi-resources subcommand in remote mode to list all existing JNDI resources.

Ensure that the server is running.

Remote subcommands require a running server.

List the existing JNDI resources by using thelist-jndi-resources(1) subcommand.

Listing JNDI Resources

This example lists the JNDI resources.

asadmin> list-jndi-resources

jndi resourcel

jndi resource2

jndi resource3

Command list-jndi-resources executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help
list-jndi-resources at the command line.

To List External JNDI Entries

Use the list-jndi-entries subcommand in remote mode to browse and list the entries in the
JNDI tree. You can either list all entries, or you can specify the JNDI context or subcontext to
list specific entries.

Ensure that the server is running.

Remote subcommands require a running server.

List the JNDI entries for a configuration by using the list-jndi-entries(1) subcommand.

Listing JNDI Entries

This example lists all the JNDI entries for the naming service.

asadmin> list-jndi-entries

jndi _entry03

jndi _entry72

jndi entry76

Command list-jndi-resources executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help
list-jndi-entries at the command line.

Chapter 18 - Administering the Java Naming and Directory Interface (JNDI) Service 27

Administering JNDI Resources

Example 18-8

To Update an External JNDI Resource
List the existing JNDI resources by using thelist-jndi-resources(1) subcommand.
Use the set(1) subcommand to modify an external JNDI resource.

Updating an External JNDI Resource

This example modifies an external resource.

asadmin> set server.resources.external-jndi-resource.my-jndi-resource.
jndi-lookup-name=bar server.resources.external-jndi-resource.my-jndi-resource.jndi-lookup-name=bar

V To Delete an External JNDI Resource

Example 18-9

SeeAlso

28

Use the delete-jndi-resource subcommand in remote mode to remove a JNDI resource.

Ensure that the server is running.

Remote subcommands require a running server.

Remove an external JNDI entry by using the delete-jndi-resource(1) subcommand.

Deleting an External JNDI Resource

This example deletes an external JNDI resource:

asadmin> delete-jndi-resource jndi_resource2
Command delete-jndi-resource executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help
delete-jndi-resource at the command line.

Example of Using an External JNDI Resource

<resources>
<!l-- external-jndi-resource element specifies how to access Java EE resources
-- stored in an external JNDI repository. This example
-- illustrates how to access a java object stored in LDAP.
-- factory-class element specifies the JINDI InitialContext factory that
-- needs to be used to access the resource factory. property element
-- corresponds to the environment applicable to the external JNDI context
-- and jndi-lookup-name refers to the IJNDI name to lookup to fetch the
-- designated (in this case the java) object.

<external-jndi-resource jndi-name="test/myBean"

jndi-lookup-name="cn=myBean"
res-type="test.myBean"

Oracle GlassFish Server 3.1 Administration Guide « December 2010

Administering JNDI Resources

factory-class="com.sun.jndi.ldap.LdapCtxFactory">
<property name="PROVIDER-URL" value="ldap://ldapserver:389/0=myObjects" />
<property name="SECURITY AUTHENTICATION" value="simple" />
<property name="SECURITY PRINCIPAL", value="cn=joeSmith, o=Engineering" />
<property name="SECURITY CREDENTIALS" value="changeit" />
</external-jndi-resource>
</resources>

To Disable GlassFish Server V2 Vendor-Specific JNDI Names

The EJB 3.1 specification supported by GlassFish Server 3.1 defines portable EJB JNDI names.
Because of this, there is less need to continue to use older vendor-specific JNDI names.

By default, GlassFish Server V2-specific JNDI names are applied automatically by GlassFish
Server 3.1 for backward compatibility. However, this can lead to some ease-of-use issues. For
example, deploying two different applications containing a Remote EJB component that
exposes the same remote interface causes a conflict between the default JNDI names.

The default handling of V2-specific JNDI names in GlassFish Server 3.1 can be managed with
the asadmin command or with the disable-nonportable- jndi-names boolean property for
the ejb-container elementin glassfish-ejb-jar.xml.

Use the asadmin command or directly modify the glassfish-ejb-jar.xml file to set the
disable-nonportable-jndi-names property.

® Using the asadmin command:

asadmin> set server.ejb-container.property.disable-nonportable-jndi-names="true"

= Directly modifying the glassfish-ejb-jar.xml file.

a. AddThedisable-nonportable-jndi-names propertytotheejb-container elementin
glassfish-ejb-jar.xml.
b. Setthevalueofthedisable-nonportable-jndi-names boolean, as desired.

= false — Enables the automatic use of GlassFish Server V2-specific IJNDI names.
This is the default setting.

= true — Disables the automatic use of V2-specific IJNDI names. In all cases,
3.1-compatible JNDI names will be used.

c. Savetheglassfish-ejb-jar.xml file and restart the GlassFish Server domain.
This setting applies to all EJBs deployed to the server.

Chapter 18 - Administering the Java Naming and Directory Interface (JNDI) Service 29

