* o 0 CHAPTER 3

Setting Up Clusters in GlassFish Server

This chapter describes how to use GlassFish Server clusters. It contains the following sections:

= “Overview of Clusters” on page 57
= “Group Management Service” on page 58
= “Working with Clusters” on page 65

Overview of Clusters

A cluster is a named collection of server instances that share the same applications, resources,
and configuration information. You can group server instances on different machines into one
logical cluster and administer them as one unit. You can easily control the lifecycle of a
multi-machine cluster with the DAS.

Instances can be grouped into clusters. You can distribute an application to all instances in the
cluster with a single deployment. Clusters are dynamic. When an instance is added or removed,
the changes are handled automatically.

Clusters enable horizontal scalability, load balancing, and failover protection. By definition, all
the instances in a cluster have the same resource and application configuration. When a server
instance or a machine in a cluster fails, the load balancer detects the failure, and redirects traffic
from the failed instance to other instances in the cluster. Since the same applications and
resources are on all instances in the cluster, an instance can failover to any other instance in the
cluster.

Each cluster member sends in-memory state data to another member. As state data is updated
in any member, it is replicated. Group Management Service (GMS) can recognize the failure of
a member. In that event, the replication framework retrieves the replicated data and notifies
members of the failure.

57

Group Management Service

Group Management Service

58

The Group Management Service (GMS) is an infrastructure component that is enabled for the
instances in a cluster. When GMS is enabled, if a clustered instance fails, the cluster and the
Domain Administration Server (DAS) are aware of the failure and can take action when failure
occurs. Many features of GlassFish Server depend upon GMS. For example, GMS is used by the
ITIOP failover, in-memory session replication, transaction service, and timer service features.

If server instances in a cluster are located on different machines, ensure that all the server
instance machines and the DAS machine are on the same subnet and that multicast is enabled
for the network. To test whether multicast is enabled, use the validate-multicast(1)
subcommand.

GMS is a core service of the Shoal framework. For more information about Shoal, visit the
Project Shoal home page (https://shoal.dev.java.net/).

The following topics are addressed here:

“GMS Settings” on page 58

“To Pre-configure Non-Default GMS Settings” on page 60

“To Configure GMS Cluster Settings During Cluster Creation” on page 60
“Configuring GMS Settings Using asadmin get and set” on page 61

“To Configure GMS Settings Using the Administration Console” on page 61
“To Check the Health of Instances in a Cluster” on page 62

“To Validate that Multicast Transport Is Available for a Cluster” on page 63
“Using the Multi-Homing Feature With GMS” on page 64

GMS Settings

Some GMS settings are determined during cluster creation. For more information about these
settings, see “To Configure GMS Cluster Settings During Cluster Creation” on page 60.

The following settings are used in GMS for group discovery and failure detection:

group-discovery-timeout-in-millis
Indicates the amount of time an instance's GMS module will wait during instance startup for
discovering other members of the group.

The group-discovery-timeout-in-millis timeout value should be set to the default or
higher. The default is 5000.

max-missed-heartbeats
Indicates the maximum number of missed heartbeats that the health monitor counts before
the instance can be marked as a suspected failure. GMS also tries to make a peer-to-peer
connection with the suspected member. If the maximum number of missed heartbeats is
exceeded and peer-to-peer connection fails, the member is marked as a suspected failure.
The default is 3.

Oracle GlassFish Server 3.1 High Availability Administration Guide « September 2009

Group Management Service

heartbeat-frequency-in-millis
Indicates the frequency (in milliseconds) at which a heartbeat is sent by each server instance
to the cluster.

The failure detection interval is the max-missed-heartbeats multiplied by the
heartbeat-frequency-in-millis. Therefore, the combination of defaults, 3 multiplied by
2000 milliseconds, results in a failure detection interval of 6 seconds.

Lowering the value of heartbeat- frequency-in-millis below the default would result in
more frequent heartbeat messages being sent out from each member. This could potentially
result in more heartbeat messages in the network than a system needs for triggering failure
detection protocols. The effect of this varies depending on how quickly the deployment
environment needs to have failure detection performed. That is, the (lower) number of
retries with a lower heartbeat interval would make it quicker to detect failures.

However, lowering this value could result in false positives because you could potentially
detect a member as failed when, in fact, the member's heartbeat is reflecting the network load
from other parts of the server. Conversely, a higher timeout interval results in fewer
heartbeats in the system because the time interval between heartbeats is longer. As a result,
failure detection would take a longer. In addition, a startup by a failed member during this
time results in a new join notification but no failure notification, because failure detection
and verification were not completed. The lack of a join notification without a preceding
failure notification is logged.

The default is 2000.

verify-failure-waittime-in-millis
Indicates the verify suspect protocol's timeout used by the health monitor. After a member is
marked as suspect based on missed heartbeats and a failed peer-to—peer connection check,
the verify suspect protocol is activated and waits for the specified timeout to check for any
further health state messages received in that time, and to see if a peer-to-peer connection
can be made with the suspect member. If not, then the member is marked as failed and a
failure notification is sent. The default is 1500.

verify-failure-connect-timeout-in-millis
Indicates the time it takes for the GMS to detect a hardware or network failure of a server
instance. Be careful not to set this value too low. The smaller this timeout value is, the greater
the chance of detecting false failures. That is, the instance has not failed but doesn't respond
within the short window of time. The default is 10000.

The heartbeat frequency, maximum missed heartbeats, peer-to-peer connection-based failure
detection, watchdog-based failure reporting, and the verify timeouts are all needed to ensure
that failure detection is robust and reliable in GlassFish Server.

Chapter3 - Setting Up Clusters in GlassFish Server 59

Group Management Service

v

2

To Pre-configure Non-Default GMS Settings

You can pre-configure GMS with values different than the defaults without requiring a restart
of the DAS and the cluster.

Create a configuration using the create-config(1) subcommand. For example:

asadmin> create-config mycfg

Set the values for the created configuration's GMS. For example:

asadmin > set configs.config.mycfg.group-management-service.group-discovery-timeout-in-millis=8000
asadmin> set configs.config.mycfg.group-management-service.failure-detection.max-missed-heartbeats=5

3

See Also

Example 3-1

SeeAlso

60

Create the cluster so it uses the previously created configuration. For example:

asadmin> create-cluster --config mycfg mycluster

You can also view the full syntax and options of a subcommand by typing asadmin - -help
subcommand at the command line.

To Configure GMS Cluster Settings During Cluster
Creation

Ensure that the DAS is running.

Remote subcommands require a running server.

Create a cluster by using the create-cluster(1) subcommand.

Use the - -gmsenabled, - -multicastport, - -multicastaddress,and - -bindaddress options
and the GMS_LISTENER PORT,GMS_LOOPBACK, and GMS_MULTICAST TIME TO LIVE properties to
configure GMS.

Creating a Cluster and Setting GMS Options

This example creates a cluster named clusterl and configures the gms-multicast-port and
gms-multicast-address settings.

asadmin> create-cluster --multicastport 2048 --multicastaddress 228.9.3.1
--config mycfg --properties GMS_LOOPBACK=true clusterl
Command create-cluster executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin - -help
create-cluster at the command line.

Oracle GlassFish Server 3.1 High Availability Administration Guide « September 2009

Group Management Service

asadmin>
clusters
clusters
clusters
clusters

asadmin>

cluster2.
cluster2.
cluster2.
.group-management-service.failure-detection.verify-failure-waittime-in-millis=1500
.group-management-service.group-discovery-timeout-in-millis=5000

cluster2
cluster2

Configuring GMS Settings Using asadmin get and set

Configure GMS for your environment by changing the settings that determine how frequently
GMS checks for failures. For example, you can change the heartbeat frequency, maximum
missed heartbeats, and so on.

Below are sample get(1) subcommands to get all the GMS attributes and properties associated
with a cluster named cluster2.

get "clusters.cluster.cluster2.gms*"

.cluster.
.cluster.
.cluster.
.cluster.

cluster2.gms-bind-interface-address=${GMS-BIND-INTERFACE-ADDRESS-cluster2}
cluster2.gms-enabled=true

cluster2.gms-multicast-address=228.9.245.47
cluster2.gms-multicast-port=9833

asadmin> get "clusters.cluster.cluster2.property.*"
clusters.cluster.cluster2.property.GMS LISTENER PORT=${GMS LISTENER PORT-cluster2}
clusters.cluster.cluster2.property.GMS MULTICAST TIME TO LIVE=4
clusters.cluster.cluster2.property.GMS LOOPBACK=false

get "cluster2.group-management-service.*"
group-management-service.failure-detection.heartbeat-frequency-in-millis=2000
group-management-service.failure-detection.max-missed-heartbeats=3
group-management-service.failure-detection.verify-failure-connect-timeout-in-millis=10000

2

To change a setting, use a set(1) subcommand. Below are sample set subcommands to set two
GMS attributes associated with a cluster named cluster2.

asadmin> set clusters.cluster.cluster2.gms-multicast-port=9855

asadmin> set cluster2.group-management-service.group-discovery-timeout-in-millis=6000

Configuring the GMS cluster settings during cluster creation is recommended, because
changing them using the set subcommand requires a DAS and cluster restart. To configure
GMS group discovery and failure detection settings without a restart, see “To Pre-configure
Non-Default GMS Settings” on page 60.

To Configure GMS Settings Using the Administration
Console

In the Administration Console, click Configurations —> New.
Type a name for the configuration and select OK.

Click Configurations —> config-name —> Group Management Service.

Chapter3 - Setting Up Clusters in GlassFish Server 61

Group Management Service

62

10

11

12

On the Edit Group Management Service page, configure GMS failure detection settings:

Maximum Missed Heartbeats
Heartbeat Frequency

Group Discovery Timeout
Failure Verification Wait Time

In the Administration Console, click Clusters —> New.
Type aname for the cluster.

Select the configuration you created previously from the drop-down list. You can either copy or
reference this configuration.

You can create server instances for the cluster as part of cluster creation or after cluster creation.
To create them as part of cluster creation, select New and type an instance name for each one.

Select OK.
Click Clusters —> cluster-name.

Under General Information, configure cluster-related GMS settings:

GMS Enabled
Multicast Port
Multicast Address
Bind Interface Address

Under Properties —> Cluster Properties, configure cluster-related GMS properties:

m GMS LISTENER PORT
" GMS MULTICAST TIME TO LIVE
= GMS_LOOPBACK

To Check the Health of Instances in a Cluster

The get-health subcommand only works when GMS is enabled. This is the quickest way to
evaluate the health of a cluster and to detect if cluster is properly operating; that is, all members
of the cluster are running and visible to DAS.

If multicast is not enabled for the network, all instances could be running (as shown by the
list-instances(1) subcommand), yetisolated from each other. The get-health
subcommand does not show the instances if they are running but cannot discover each other
due to multicast not being configured properly. See “To Validate that Multicast Transport Is
Available for a Cluster” on page 63.

Oracle GlassFish Server 3.1 High Availability Administration Guide « September 2009

Group Management Service

Example 3-2

See Also

Before You Begin

Ensure that the DAS and cluster are running.

Remote subcommands require a running server.

Check whether server instances in a cluster are running by using the get-health(1)
subcommand.

Checking the Health of Instances in a Cluster

This example checks the health of a cluster named clusterl.

asadmin> get-health clusterl

instancel started since Wed Sep 29 16:32:46 EDT 2010
instance2 started since Wed Sep 29 16:32:45 EDT 2010
Command get-health executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin - -help
get-health at the command line.

To Validate that Multicast Transport Is Available for a
Cluster

To test a specific multicast address, multicast port, or bind interface address, get this
information beforehand using the set subcommand. Use the following subcommand to get the
multicast address and port for a cluster named c1:

asadmin> get "clusters.cluster.cl.gms-multicast*"
clusters.cluster.cl.gms-multicast-address=228.9.174.162
clusters.cluster.cl.gms-multicast-port=5383

Use the following subcommand to get the bind interface address of a server instance named
ilthat belongs to a cluster named c1:

asadmin> get servers.server.il.system-property.GMS-BIND-INTERFACE-ADDRESS-cl
servers.server.il.system-property.GMS-BIND-INTERFACE-ADDRESS-c1l.name=GMS-BIND-INTERFACE-ADDRESS-cl
servers.server.il.system-property.GMS-BIND-INTERFACE-ADDRESS-cl.value=10.12.152.30

Example 3-3

Check whether multicast transport is available for a cluster by using the
validate-multicast(1) subcommand.

Validating that Multicast Transport Is Available for a Cluster

This example checks whether multicast transport is available for a cluster named c1.

asadmin> validate-multicast --multicastaddress=228.9.175.162 --multicastport=5383
Will use port 5,383
Will use address 228.9.175.162

Chapter3 - Setting Up Clusters in GlassFish Server 63

Group Management Service

Will use bind interface null
Will use wait period 2,000 (in milliseconds)

Listening for data...

Sending message with content "srl1" every 2,000 milliseconds

Received data from srl (loopback)

Exiting after 20 seconds. To change this timeout, use the --timeout command line option.
Command validate-multicast executed successfully.

See Also

64

You can also view the full syntax and options of the subcommand by typing asadmin - -help
get-health at the command line.

Using the Multi-Homing Feature With GMS

Multi-homing enables GlassFish Server clusters to be used in an environment that uses multiple
Network Interface Cards (NICs). A multi-homed host has multiple network connections, of
which the connections may or may not be the same network. Multi-homing provides the
following benefits:

= Provides redundant network connections within the same subnet. Having multiple NICs
ensures that one or more network connections are available for communication.

= Supports communication across two or more different subnets. The DAS and all server
instances in the same cluster must be on the same subnet for GMS communication,
however.

= Binds to a specific IPv4 address and receives GMS messages in a system that has multiple IP
addresses configured. The responses for GMS messages received on a particular interface
will also go out through that interface.

= Supports separation of external and internal traffic.

Traffic Separation Using Multi-Homing

You can separate the internal traffic resulting from GMS from the external traffic. Traffic
separation enables you plan a network better and augment certain parts of the network, as
required.

Consider a simple cluster, c1, with three instances, 1101, 1102, and 1103. Each instance runs on
a different machine. In order to separate the traffic, the multi-homed machine should have at
least two IP addresses belonging to different networks. The first IP as the external IP and the
second one as internal IP. The objective is to expose the external IP to user requests, so that all
the traffic from the user requests would be through them. The internal IP is used only by the
cluster instances for internal communication through GMS. The following procedure describes
how to set up traffic separation.

To configure multi-homed machines for GMS without traffic separation, skip the steps or
commands that configure the EXTERNAL - ADDR system property, but perform the others.

Oracle GlassFish Server 3.1 High Availability Administration Guide « September 2009

Working with Clusters

To avoid having to restart the DAS or cluster, perform the following steps in the specified order.

V¥ To Set Up Traffic Separation

1 Create the system properties EXTERNAL-ADDR and GMS -BIND-INTERFACE-ADDRESS-c1 for the
DAS.
B 3sadmin create-system-properties --target server EXTERNAL-ADDR=0.0.0.0

® asadmin create-system-properties --target server
GMS-BIND-INTERFACE-ADDRESS-c1=0.0.0.0

2 Create the cluster with the default settings.
Use the following command:
asadmin create-cluster cl
A reference to a system property for GMS traffic is already set up by default in the

gms-bind-interface-address cluster setting. The default value of this setting is
${GMS-BIND-INTERFACE - ADDRESS - cluster-name}.

3 When creating the clustered instances, configure the external and GMS IP addresses.
Use the following commands:

B asadmin create-instance --node localhost --cluster cl --systemproperties
EXTERNAL-ADDR=10.12.152.29:GMS-BIND-INTERFACE-ADDRESS-c1=10.12.152.30 il01

B asadmin create-instance --node localhost --cluster cl --systemproperties
EXTERNAL -ADDR=10.12.152.39:GMS-BIND-INTERFACE-ADDRESS-c1=10.12.152.40 i102

® asadmin create-instance --node localhost --cluster cl --systemproperties
EXTERNAL-ADDR=10.12.152.49:GMS-BIND-INTERFACE-ADDRESS-c1=10.12.152.50 i103

4 Settheaddress attribute of HTTP listeners to refer to the EXTERNAL - ADDR system properties.
Use the following commands:

asadmin set cl-config.network-config.network-listeners.network-listener.http-1.address=\${EXTERNAL-ADDR}
asadmin set cl-config.network-config.network-listeners.network-listener.http-2.address=\${EXTERNAL-ADDR}

Working with Clusters

“To Create a Cluster” on page 66

“To Add a GlassFish Server Instance to a Cluster” on page 66
“To Configure a Cluster” on page 66

“To Start, Stop, and Delete Clustered Instances” on page 66
“To Configure Server Instances in a Cluster” on page 66

“To Configure Applications for a Cluster” on page 66

“To Configure Resources for a Cluster” on page 67

Chapter3 - Setting Up Clusters in GlassFish Server 65

Working with Clusters

66

= “To Delete a Cluster” on page 67
= “To Migrate EJB Timers” on page 67

To Create a Cluster
TBD

TBD

To Add a GlassFish Server Instance to a Cluster
TBD

TBD

To Configure a Cluster
TBD

TBD

To Start, Stop, and Delete Clustered Instances
TBD

TBD

To Configure Server Instances in a Cluster
TBD

TBD

To Configure Applications for a Cluster
TBD

TBD

Oracle GlassFish Server 3.1 High Availability Administration Guide « September 2009

Working with Clusters

Before You Begin

To Configure Resources for a Cluster
TBD

TBD

To Delete a Cluster
TBD

TBD

To Migrate EJB Timers

If a GlassFish Server server instance stops or fails abnormally, it may be desirable to migrate the
EJB timers defined for that stopped server instance to a another running server instance.

The EJB timers can be migrated from the stopped source instance to a specified target instance.
If no target instance is specified, the DAS will attempt to find a suitable server instance or
multiple server instances. A migration notification will then be sent to the selected target server
instances.

Note the following restrictions:

= Ifthe source is a standalone instance, then the target must also be a standalone instance.

= Ifthe source instance is part of a cluster, then the target instance must also be part of that
same cluster.

= Jtis not possible to migrate timers from a standalone instance to a clustered instance, or
from one cluster to another cluster.

= Al EJB timers defined for a given instance are migrated with this procedure. It is not
possible to migrate individual timers.

The server instance from which the EJB timers are to be migrated should not be active during
the migration process.

Verify that the source server instance from which the EJB timers are to be migrated is not
currently running.

asadmin> list-instances source-instance

Stop the instance from which the timers are to be migrated, if that instance is still running.

asadmin> stop-instance source-instance

Chapter3 - Setting Up Clusters in GlassFish Server 67

Working with Clusters

68

Example 3-4

See Also

Note - The target instance to which the timers will be migrated does not need to be stopped.

(Optional) List the currently defined EJB timers on the source instance, if desired.

= [fthe sourceis a standalone instance:

asadmin> list-timers source-instance

= Ifthe sourceinstanceis part of a cluster:

asadmin> list-timers source-cluster

Migrate the timers from the stopped source instance to the target instance.

asadmin> migrate-timers --target farget-instance source-instance

Restart the target instance to which the EJB timers have been migrated.

Migrating an EJB Timer

The following example show how to migrate timers from a standalone source instance named
football to a standalone target instance named soccer.

asadmin> migrate-timers --target soccer football

list-timers(1l),migrate-timers(1l), list-instances(1l),stop-instance(l)

To Upgrade Components Without Loss of Service

In a clustered environment, a rolling upgrade redeploys an application with a minimal loss of
service and sessions. A session can be any replicable artifact, including:

HttpSession
SingleSignOn
ServletTimer
DialogFragment
stateful session bean

You can use the load balancer and multiple clusters to upgrade components within the
GlassFish Server without any loss of service. A component can, for example, be a JVM, the
GlassFish Server, or a web application.

A rolling upgrade can take place under light to moderate load conditions. The procedure
should be doable in a brief amount of time, about 10-15 minutes per server instance.

Oracle GlassFish Server 3.1 High Availability Administration Guide « September 2009

Working with Clusters

Applications must be compatible across the upgrade. They must work correctly during the
transition, when some server instances are running the old version and others the new one. The
old and new versions must have the same shape (for example, non-transient instance variables)
of Serializable classes that form object graphs stored in sessions. Or, if the shape of these
classes is changed, then the application developer must ensure that correct Serialization
behavior occurs. If the application is not compatible across the upgrade, the cluster must be
stopped for a full redeployment.

This approach is not possible if:

= You change the schema of the high-availability database (HADB). For more information,
see Broken Link (Target ID: ABDDS)

Note - The HADB software is supplied with the GlassFish Server standalone distribution of
Oracle GlassFish Server. For information about available distributions of Oracle GlassFish
Server, see “Distribution Types and Their Components” in Sun Java System Application
Server 9.1 Installation Guide. HADB features are available only in the enterprise profile. For
information about profiles, see “Usage Profiles” in Sun Java System Application Server 9.1
Administration Guide.

= You perform an application upgrade that involves a change to the application database
schema.

Caution - Upgrade all server instances in a cluster together. Otherwise, there is a risk of version
mismatch caused by a session failing over from one instance to another where the instances
have different versions of components running.

Stop one of the clusters using the Stop Cluster button on the General Information page for the
cluster.

Upgrade the component in that cluster.
Start the cluster using the Start Cluster button on the General Information page for the cluster.

Repeat the process with the other clusters, one by one.

Because sessions in one cluster will never fail over to sessions in another cluster, there is no risk
of version mismatch caused by a session’s failing over from a server instance that is running one
version of the component to another server instance (in a different cluster) that is running a
different version of the component. A cluster in this way acts as a safe boundary for session
failover for the server instances within it.

Chapter3 - Setting Up Clusters in GlassFish Server 69

70

