
Using the Java Naming andDirectory Interface

A naming servicemaintains a set of bindings, which relate names to objects. The Java EE
naming service is based on the Java Naming andDirectory Interface (JNDI) API. The JNDI API
allows application components and clients to look up distributed resources, services, and EJB
components. For general information about the JNDI API, see http://www.oracle.com/
technetwork/java/jndi/index.html. You can also see the JNDI tutorial at
http://download.oracle.com/javase/jndi/tutorial/.

The following topics are addressed here:

n “Accessing the Naming Context” on page 253
n “Con guring Resources” on page 256
n “Using a Custom jndi.properties File” on page 260
n “Mapping References” on page 260

Note –TheWeb Pro le of the GlassFish Server supports the EJB 3.1 Lite speci cation, which
allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 speci cation. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

Accessing theNamingContext
TheOracle GlassFish Server provides a naming environment, or context, which is compliant
with standard Java EE requirements. A Context object provides themethods for binding names
to objects, unbinding names from objects, renaming objects, and listing the bindings. The
InitialContext is the handle to the Java EE naming service that application components and
clients use for lookups.

The JNDI API also provides subcontext functionality. Much like a directory in a le system, a
subcontext is a context within a context. This hierarchical structure permits better organization

15C H A P T E R 1 5

253

of information. For naming services that support subcontexts, the Context class also provides
methods for creating and destroying subcontexts.

The following topics are addressed here:

n “Global JNDINames” on page 254
n “Accessing EJB Components Using the CosNamingNaming Context” on page 255
n “Accessing EJB Components in a Remote GlassFish Server” on page 255
n “Naming Environment for LifecycleModules” on page 256

Note – Each resource within a server instancemust have a unique name. However, two resources
in di!erent server instances or di!erent domains can have the same name.

Global JNDINames

Global JNDI names are assigned according to the following precedence rules:

1. A global JNDI name assigned in the glassfish-ejb-jar.xml, glassfish-web.xml, or
glassfish-application-client.xml deployment descriptor le has the highest
precedence. See “Mapping References” on page 260.

2. A global JNDI name assigned in a mapped-name element in the ejb-jar.xml, web.xml, or
application-client.xml deployment descriptor le has the second highest precedence.
The following elements have mapped-name subelements: resource-ref,
resource-env-ref, ejb-ref, message-destination, message-destination-ref,
session, message-driven, and entity.

3. A global JNDI name assigned in a mappedName attribute of an annotation has the third
highest precedence. The following annotations have mappedName attributes:
@javax.annotation.Resource, @javax.ejb.EJB, @javax.ejb.Stateless,
@javax.ejb.Singleton, @javax.ejb.Stateful, and @javax.ejb.MessageDriven.

4. A default global JNDI name is assigned in some cases if no name is assigned in deployment
descriptors or annotations.

n For an EJB 2.x dependency or a session or entity bean with a remote interface, the default
is the fully quali ed name of the home interface.

n For an EJB 3.0 dependency or a session bean with a remote interface, the default is the
fully quali ed name of the remote business interface.

n If both EJB 2.x and EJB 3.0 remote interfaces are speci ed, or if more than one 3.0
remote interface is speci ed, there is no default, and the global JNDI namemust be
speci ed.

n For all other component dependencies that must bemapped to global JNDI names, the
default is the name of the dependency relative to java:comp/env. For example, in the
@Resource(name="jdbc/Foo") DataSource ds; annotation, the global JNDI name is
jdbc/Foo.

Accessing theNaming Context

GlassFish Server Open Source Edition 3.1 ApplicationDevelopment Guide • February 2011254

Accessing EJBComponentsUsing the CosNaming
NamingContext

The preferred way of accessing the naming service, even in code that runs outside of a Java EE
container, is to use the no-argument InitialContext constructor. However, if EJB client code
explicitly instantiates an InitialContext that points to the CosNaming naming service, it is
necessary to set the java.naming.factory.initial property to
com.sun.jndi.cosnaming.CNCtxFactory in the client JVM software when accessing EJB
components. You can set this property as a command-line argument, as follows:

-Djava.naming.factory.initial=com.sun.jndi.cosnaming.CNCtxFactory

Or you can set this property in the code, as follows:

Properties properties = null;
try {

properties = new Properties();
properties.put("java.naming.factory.initial",

"com.sun.jndi.cosnaming.CNCtxFactory");
...

The java.naming.factory.initial property applies to only one instance. The property is not
cluster-aware.

Accessing EJBComponents in aRemoteGlassFish
Server

The recommended approach for looking up an EJB component in a remote GlassFish Server
from a client that is a servlet or EJB component is to use the Interoperable Naming Service
syntax. Host and port information is prepended to any global JNDI names and is automatically
resolved during the lookup. The syntax for an interoperable global name is as follows:

corbaname:iiop:host:port#a/b/name

Thismakes the programmingmodel for accessing EJB components in another GlassFish Server
exactly the same as accessing them in the same server. The deployer can change the way the EJB
components are physically distributed without having to change the code.

For Java EE components, the code still performs a java:comp/env lookup on an EJB reference.
The only di!erence is that the deployermaps the ejb-reference element to an interoperable
name in a GlassFish Server deployment descriptor le instead of to a simple global JNDI name.

For example, suppose a servlet looks up an EJB reference using java:comp/env/ejb/Foo, and
the target EJB component has a global JNDI name of a/b/Foo.

The ejb-ref element in glassfish-web.xml looks like this:

Accessing theNaming Context

Chapter 15 • Using the Java Naming andDirectory Interface 255

<ejb-ref>

<ejb-ref-name>ejb/Foo</ejb-ref-name>

<jndi-name>corbaname:iiop:host:port#a/b/Foo</jndi-name>
<ejb-ref>

The code looks like this:

Context ic = new InitialContext();

Object o = ic.lookup("java:comp/env/ejb/Foo");

For a client that doesn’t run within a Java EE container, the code just uses the interoperable

global name instead of the simple global JNDI name. For example:

Context ic = new InitialContext();

Object o = ic.lookup("corbaname:iiop:host:port#a/b/Foo");

Objects stored in the interoperable naming context and component-speci c (java:comp/env)

naming contexts are transient. On each server startup or application reloading, all relevant

objects are re-bound to the namespace.

NamingEnvironment for LifecycleModules

Lifecycle listenermodules provide ameans of running short or long duration tasks based on

Java technology within the GlassFish Server environment, such as instantiation of singletons or

RMI servers. Thesemodules are automatically initiated at server startup and are noti ed at

various phases of the server life cycle. For details about lifecycle modules, see Chapter 12,

“Developing Lifecycle Listeners.”

The con gured properties for a lifecycle module are passed as properties during server

initialization (the INIT_EVENT). The initial JNDI naming context is not available until server

initialization is complete. A lifecycle module can get the InitialContext for lookups using the

method LifecycleEventContext.getInitialContext() during, and only during, the

STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT server life cycle events.

Con guringResources

TheGlassFish Server exposes special resources in the naming environment.

n “External JNDI Resources” on page 257
n “CustomResources” on page 257
n “Built-in Factories for CustomResources” on page 257
n “Disabling GlassFish Server V2Vendor-Speci c JNDINames” on page 259
n “Using Application-Scoped Resources” on page 260

Con guring Resources

GlassFish Server Open Source Edition 3.1 ApplicationDevelopment Guide • February 2011256

External JNDI Resources

An external JNDI resource de nes custom JNDI contexts and implements the
javax.naming.spi.InitialContextFactory interface. There is no speci c JNDI parent context for
external JNDI resources, except for the standard java:comp/env/.

Create an external JNDI resource in one of these ways:

n To create an external JNDI resource using the Administration Console, open the Resources
component, open the JNDI component, and select External Resources. For details, click the
Help button in the Administration Console.

n To create an external JNDI resource, use the asadmin create-jndi-resource command.
For details, see theGlassFish Server Open Source Edition 3.1 ReferenceManual.

CustomResources

A custom resource speci es a custom server-wide resource object factory that implements the
javax.naming.spi.ObjectFactory interface. There is no speci c JNDI parent context for external
JNDI resources, except for the standard java:comp/env/.

Create a custom resource in one of these ways:

n To create a custom resource using the Administration Console, open the Resources
component, open the JNDI component, and select CustomResources. For details, click the
Help button in the Administration Console.

n To create a custom resource, use the asadmin create-custom-resource command. For
details, see theGlassFish Server Open Source Edition 3.1 ReferenceManual.

Built-in Factories for CustomResources

TheGlassFish Server provides built-in factories for the following types of custom resources:

n “JavaBeanFactory” on page 257
n “PropertiesFactory” on page 258
n “PrimitivesAndStringFactory” on page 258
n “URLFactory” on page 259

Template glassfish-resources.xml les for these built-in factories and a README le are
available at as-install/lib/install/templates/resources/custom/. Formore information
about the glassfish-resources.xml le, see theGlassFish Server Open Source Edition 3.1
Application Deployment Guide.

JavaBeanFactory

To create a custom resource that provides instances of a JavaBean class, follow these steps:

Con guring Resources

Chapter 15 • Using the Java Naming andDirectory Interface 257

1. Set the custom resource's factory class to
org.glassfish.resources.custom.factory.JavaBeanFactory.

2. Create a property in the custom resource for each setter method in the JavaBean class.

For example, if the JavaBean class has amethod named setAccount, specify a property
named account and give it a value.

3. Make sure the JavaBean class is accessible to the GlassFish Server.

For example, you can place the JavaBean class in the as-install/lib directory.

PropertiesFactory

To create a custom resource that provides properties to applications, set the custom resource's
factory class to org.glassfish.resources.custom.factory.PropertiesFactory, then
specify one or both of the following:

n Create a property in the custom resource named org.glassfish.resources.
custom.factory.PropertiesFactory.fileName and specify as its value the path to a
properties le or an XML le.

The path can be absolute or relative to as-install. The lemust be accessible to the GlassFish
Server.

If an XML le is speci ed, it must match the document type de nition (DTD) speci ed in
the API de nition of java.util.Properties (http://download.oracle.com/javase/6/docs/
api/java/util/Properties.html).

n Create the desired properties directly as properties of the custom resource.

If both the fileName property and other properties are speci ed, the resulting property set is
the union. If the same property is de ned in the le and directly in the custom resource, the
value of the latter takes precedence.

PrimitivesAndStringFactory

To create a custom resource that provides Java primitives to applications, follow these steps:

1. Set the custom resource's factory class to
org.glassfish.resources.custom.factory.PrimitivesAndStringFactory.

2. Set the custom resource's resource type to one of the following or its fully quali ed wrapper
class name equivalent:

n int

n long

n double

n float

n char

n short

n byte

Con guring Resources

GlassFish Server Open Source Edition 3.1 ApplicationDevelopment Guide • February 2011258

n boolean

n String

3. Create a property in the custom resource named value and give it the value needed by the
application.

For example, If the application requires a double of value 22.1, create a property with the
name value and the value 22.1.

URLFactory

To create a custom resource that provides URL instances to applications, follow these steps:

1. Set the custom resource's factory class to
org.glassfish.resources.custom.factory.URLObjectFactory.

2. Choose which of the following constructors to use:

n URL(protocol, host, port, file)

n URL(protocol, host, file)

n URL(spec)

3. De ne properties according to the chosen constructor.

For example, for the rst constructor, de ne properties named protocol, host, port, and
file. Example valuesmight be http, localhost, 8085, and index.html, respectively.

For the third constructor, de ne a property named spec and assign it the value of the entire
URL.

DisablingGlassFish ServerV2Vendor-Speci c JNDI
Names
The EJB 3.1 speci cation supported by GlassFish Server 3.1 de nes portable EJB JNDI names.
Because of this, there is less need to continue to use older vendor-speci c JNDI names.

By default, GlassFish Server V2–speci c JNDI names are applied automatically by GlassFish
Server 3.1 for backward compatibility. However, this can lead to some ease-of-use issues. For
example, deploying two di!erent applications containing a remote EJB component that exposes
the same remote interface causes a con"ict between the default JNDI names.

The default handling of V2–speci c JNDI names in GlassFish Server 3.1 can bemanaged by
using the asadmin command:

asadmin> set server.ejb-container.property.disable-nonportable-jndi-names="true"

disable-nonportable-jndi-names is a boolean property that can take the following values:

false

Enables the automatic use of GlassFish Server V2–speci c JNDI names. This is the default
setting.

Con guring Resources

Chapter 15 • Using the Java Naming andDirectory Interface 259

true

Disables the automatic use of V2–speci c JNDI names. In all cases, 3.1-compatible JNDI
names are used.

Note that this setting applies to all EJB components deployed to the server.

UsingApplication-ScopedResources

You can de ne an application-scoped JNDI or other resource for an enterprise application, web
module, EJBmodule, connectormodule, or application client module by supplying a
glassfish-resources.xml deployment descriptor le. For details, see “Application-Scoped
Resources” inGlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Using aCustom jndi.properties File
To use a custom jndi.properties le, place the le in the domain-dir/lib/classes directory
or JAR it and place it in the domain-dir/lib directory. This adds the custom jndi.properties
 le to the Common class loader. Formore information about class loading, see Chapter 2,
“Class Loaders.”

For each property found inmore than one jndi.properties le, the Java EE naming service
either uses the rst value found or concatenates all of the values, whichevermakes sense.

MappingReferences
The following XML elements in the GlassFish Server deployment descriptors map resource
references in application client, EJB, and web application components to JNDI names
con gured in the GlassFish Server:

n resource-env-ref -Maps the @Resource or @Resources annotation (or the
resource-env-ref element in the corresponding Java EE XML le) to the absolute JNDI
name con gured in the GlassFish Server.

n resource-ref -Maps the @Resource or @Resources annotation (or the resource-ref
element in the corresponding Java EE XML le) to the absolute JNDI name con gured in
the GlassFish Server.

n ejb-ref -Maps the @EJB annotation (or the ejb-ref element in the corresponding Java EE
XML le) to the absolute JNDI name con gured in the GlassFish Server.

JNDI names for EJB components must be unique. For example, appending the application
name and themodule name to the EJB name is one way to guarantee unique names. In this
case, mycompany.pkging.pkgingEJB.MyEJB would be the JNDI name for an EJB in the
module pkgingEJB.jar, which is packaged in the pkging.ear application.

Using a Custom jndi.properties File

GlassFish Server Open Source Edition 3.1 ApplicationDevelopment Guide • February 2011260

These elements are part of the glassfish-web.xml, glassfish-application-client.xml,
glassfish-ejb-jar.xml, and glassfish-application.xml deployment descriptor les. For
more information about how these elements behave in each of the deployment descriptor les,
see Appendix C, “Elements of the GlassFish Server Deployment Descriptors,” inGlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

The rest of this section uses an example of a JDBC resource lookup to describe how to reference
resource factories. The same principle is applicable to all resources (such as JMS destinations,
JavaMail sessions, and so on).

The @Resource annotation in the application code looks like this:

@Resource(name="jdbc/helloDbDs") javax.sql.DataSource ds;

This references a resource with the JNDI name of java:jdbc/helloDbDs. If this is the JNDI
name of the JDBC resource con gured in the GlassFish Server, the annotation alone is enough
to reference the resource.

However, you can use a GlassFish Server speci c deployment descriptor to override the
annotation. For example, the resource-ref element in the glassfish-web.xml lemaps the
res-ref-name (the name speci ed in the annotation) to the JNDI name of another JDBC
resource con gured in the GlassFish Server.

<resource-ref>
<res-ref-name>jdbc/helloDbDs</res-ref-name>

<jndi-name>jdbc/helloDbDataSource</jndi-name>
</resource-ref>

Mapping References

Chapter 15 • Using the Java Naming andDirectory Interface 261

