
Administering System Security

This chapter describes general information about administering system security.

The following topics are addressed here:

■ “About System Security in GlassFish Server” on page 13
■ “Administering Passwords” on page 31
■ “Administering Audit Modules” on page 40
■ “Administering JSSE Certificates” on page 42
■ “Administering JACC Providers” on page 47

Instructions for accomplishing many of these tasks by using the Administration Console are
contained in the Administration Console online help.

Information on application security is contained in Chapter 4, “Securing Applications,” in
Oracle GlassFish Server 3.1 Application Development Guide.

About System Security in GlassFish Server
Security is about protecting data, that is, how to prevent unauthorized access or damage to data
that is in storage or in transit. The GlassFish Server is built on the Java security model, which
uses a sandbox where applications can run safely, without potential risk to systems or users.
System security affects all the applications in the GlassFish Server environment.

System security features include the following:

■ “Authentication” on page 14
■ “Authorization” on page 18
■ “Auditing” on page 23
■ “Firewalls” on page 23
■ “Certificates and SSL” on page 24
■ “Tools for Managing System Security” on page 30

1C H A P T E R 1

13

Composed February 22, 2011

Authentication
Authentication is the way in which an entity (a user, an application, or a component)
determines that another entity is who it claims to be. An entity uses security credentials to
authenticate itself. The credentials might be a user name and password, a digital certificate, or
something else. Usually, servers or applications require clients to authenticate themselves.
Additionally, clients might require servers to authenticate themselves. When authentication is
bidirectional, it is called mutual authentication.

When an entity tries to access a protected resource, GlassFish Server uses the authentication
mechanism configured for that resource to determine whether to grant access. For example, a
user can enter a user name and password in a web browser, and if the application verifies those
credentials, the user is authenticated. The user is associated with this authenticated security
identity for the remainder of the session.

Authentication Types
Within its deployment descriptors, an application specifies the type of authentication that it
uses. GlassFish Server supports the following types of authentication:

BASIC Uses the server's built-in login dialog box. The communication protocol is
HTTP (SSL optional). There is no user-credentialed encryption unless
using SSL. This type is not considered to be a secure method of user
authentication unless used in conjunction with some external secure
system such as SSL.

FORM The application provides its own custom login and error pages. The
communication protocol is HTTP (SSL optional). There is no
user-credentialed encryption unless using SSL.

CLIENT-CERT The server authenticates the client using a public key certificate. The
communication protocol is HTTPS (HTTP over SSL). User-credentialed
encryption is SSL.

DIGEST The server authenticates a user based on a user name and a password.
Unlike BASIC authentication, the password is never sent over the network.
The use of SSL with HTTP Digest is optional.

JSR 196 Server Authentication Modules
GlassFish Server implements the Servlet Container Profile of JSR 196 Java Authentication
Service Provider Interface for Containers (http://www.jcp.org/en/jsr/detail?id=196)
specification.

JSR 196 defines a standard service-provider interface (SPI) for integrating authentication
mechanism implementations in message processing runtimes. JSR 196 extends the concepts of
the Java Authentication and Authorization Service (JAAS) to enable pluggability of message

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • February 201114

Composed February 22, 2011

authentication modules in message processing runtimes. The standard defines profiles that
establish contracts for the use of the SPI in specific contexts.

Passwords
Passwords are your first line of defense against unauthorized access to the components and data
of GlassFish Server. For Information about how to use passwords for GlassFish Server, see
“Administering Passwords” on page 31.

Master Password and Keystores

The master password is not tied to a user account and it is not used for authentication. Instead,
GlassFish Server uses the master password only to encrypt the keystore and truststore for the
DAS and instances.

When you create a new GlassFish Server domain, a new self-signed certificate is generated and
stored in the domain keystore and truststore. The DAS needs the master password to open these
stores at startup. Similarly, the associated server instances need the master password to open
their copy of these stores at startup.

If you use a utility such as keytool to modify the keystore or truststore, you must provide the
master password in that case as well.

The master password is a shared password and must be the same for the DAS and all instances
in the domain in order to manage the instances from the DAS. However, because GlassFish
Server never transmits the master password over the network, it is up to you to keep the master
password in sync between the DAS and instances.

If you change the master password, you can choose to enter the master password manually
when required, or save it in a file.

Understanding Master Password Synchronization

The master password is used encrypt the keystore and truststore for the DAS and instances. The
DAS needs the master password to open these stores at startup. Similarly, the associated server
instances need the master password to open their copy of these stores at startup.

GlassFish Server keeps the keystore and truststore for the DAS and instances in sync, which
guarantees that all copies of the stores are encrypted with the same master password at any
given time.

However, GlassFish Server does not synchronize the master password itself, and it is possible
that the DAS and instances might attempt to use different master passwords.

Consider the following potential scenario:

About System Security in GlassFish Server

Chapter 1 • Administering System Security 15

Composed February 22, 2011

1. You create a domain and instances, using the default master password (changeit). As a
result, the DAS and instances have keystores and truststores encrypted using changeit.

2. You use the change-master-password subcommand on the DAS to change the master
password to ichangedit. As a result, the DAS and instance keystores and truststores are
encrypted using ichangedit.

3. Access to the keystore and truststore from an instance now requires the master password
ichangedit. You are responsible for changing the master password as needed.

If you do not use a master password file, you assume the responsibility for using the
change-master-password subcommand on the DAS and instances to keep the master
passwords in sync. Be aware that not using a master password file has additional considerations
for the start-instance and start-cluster subcommands, as described in “Additional
Considerations for the start-instance and start-cluster Subcommands” on page 33.

If you do use a master password file, you assume the responsibility for using the
change-master-password subcommand on the DAS and instances to keep the master
password file in sync.

Using the Default Master Password

GlassFish Server uses the known phrase "changeit" as the default master password. This master
password is not stored in a file. The default password is a convenience feature and provides no
additional security because it is assumed to be widely known.

All GlassFish Server subcommands work as expected with the default master password and
there are no synchronization issues.

Saving the Master Password to a File

The change-master-password --savemasterpassword option indicates whether the master
password should be written to the file system in the master-password file for the DAS or a
node. The default is false.

For a domain, the master password is kept in domains/domain-name/master-password.

For a node, the master-password file is kept in nodes/node-name/agent/master-password.
You can set a master password at the node level and all instances created on that node will use
that master-password file. To do this, use the --nodedir option and provide a node name.

You might want to save the master password to the file so that the start-domain subcommand
can start the server without having to prompt the user. There are additional considerations for
using a master password with the start-instance and start-cluster subcommands, as
described in “Additional Considerations for the start-instance and start-cluster

Subcommands” on page 33.

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • February 201116

Composed February 22, 2011

The master-password file is encoded, not encrypted. You must use filesystem permissions to
protect the file.

Using the Master Password When Creating a Domain

The create-domain --usemasterpassword option specifies whether the keystore is encrypted
with a master password that is built into the system, or by a user-defined master password.

■ If false (default), the keystore is encrypted with a well-known password (changeit) that is
built into GlassFish Server.

■ If true, the subcommand obtains the master password from the AS_ADMIN_MASTERPASSWORD
entry in the password file you specified in the --passwordfile option of the asadmin utility.
Or, if none is defined, --usemasterpassword prompts the user for the master password.

Administration Password

An administration password, also known as the admin password, is used to invoke the
Administration Console and the asadmin utility. As with the default admin username, the
default admin password is usually set during installation but it can be changed. For instructions,
see “To Change an Administration Password” on page 35.

Encoded Passwords

Files that contain encoded passwords need to be protected using file system permissions. These
files include the following:

■ domain-dir/master-password
This file contains the encoded master password and should be protected with file system
permissions 600.

■ Any password file created to pass as an argument by using the --passwordfile argument to
the asadmin utility should be protected with file system permissions.

For instructions, see “To Set a Password From a File” on page 36.

Web Browsers and Password Storage

Most web browsers can save login credentials entered through HTML forms. This function can
be configured by the user and also by applications that employ user credentials. If the function
is enabled, then credentials entered by the user are stored on their local computer and retrieved
by the browser on future visits to the same application. This function is convenient for users,
but can also be a security risk. The stored credentials can be captured by an attacker who gains
access to the computer, either locally or through some remote compromise. Further, methods

About System Security in GlassFish Server

Chapter 1 • Administering System Security 17

Composed February 22, 2011

have existed whereby a malicious web site can retrieve the stored credentials for other
applications, by exploiting browser vulnerabilities or through application-level cross-domain
attacks.

To prevent your web browser from saving login credentials for the GlassFish Server
Administration Console, choose “No” or “Never for this page” when prompted by the browser
during login.

Password Aliases
To avoid storing passwords in the domain configuration file in clear text, you can create an alias
for a password. This process is also known as encrypting a password. For more information, see
“Administering Password Aliases” on page 37.

Single Sign-on
With single sign-on, a user who logs in to one application becomes implicitly logged in to other
applications that require the same authentication information. Single sign-on is based on
groups. Single sign-on applies to web applications configured for the same realm and virtual
server. The realm is defined by the realm-name element in the web.xml file.

On GlassFish Server, single sign-on behavior can be inherited from the HTTP Service, enabled,
or disabled. By default, it is inherited from the HTTP Service. If enabled, single sign-on is
enabled for web applications on this virtual server that are configured for the same realm. If
disabled, single sign-on is disabled for this virtual server, and users must authenticate separately
to every application on the virtual server.

Authorization
Authorization, also known as access control, is the means by which users are granted
permission to access data or perform operations. After a user is authenticated, the user's level of
authorization determines what operations the owner can perform. A user's authorization is
based on the user's role.

Roles
A role defines which applications and what parts of each application users can access and what
those users or groups can do with the applications. For example, in a personnel application, all
employees might be able to see phone numbers and email addresses, but only managers have
access to salary information. This application would define at least two roles: employee and
manager. Only users in the manager role are allowed to view salary information.

A role is different from a group in that a role defines a function in an application, while a group
is a set of users who are related in some way. For example, the personnel application specify

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • February 201118

Composed February 22, 2011

groups such as full-time, part-time, and on-leave. Users in these groups are all employees
(the employee role). In addition, each user has its own designation that defines an additional
level of employment.

Roles are defined in the deployment descriptor for the application. The application developer or
deployer maps roles to one or more groups in the deployment descriptor for each application.
When the application is being packaged and deployed, the application specifies mappings
between users, groups, and roles, as illustrated in the following figure.

Java Authorization Contract for Containers
Java Authorization Contract for Containers (JACC) is the part of the Java EE specification that
defines an interface for pluggable authorization providers. This enables you to set up
third-party plug-in modules to perform authorization. By default, the GlassFish Server provides
a simple, file-based authorization engine that complies with the JACC specification.

FIGURE 1–1 Role Mapping

Role 1

Role 1

Role 1

Role 1

Create users
and/or groups

Define roles
in application

Map roles to users
and/or groups

Application

Group 1

User 1

User 2

User 3

Group 1

User 1

User 2

User 3

User 1

User 2

User 3

User 1

User 2

User 3

Application

About System Security in GlassFish Server

Chapter 1 • Administering System Security 19

Composed February 22, 2011

This release includes Administration Console support and CLI subcommands to create
(create-jacc-provider), delete (delete-jacc-provider), and list (list-jacc-providers)
JACC providers. “Administering JACC Providers” on page 47 for additional information.

You can also specify additional third-party JACC providers.

Working With the server.policy Policy File
Each GlassFish Server domain has its own global Java SE policy file, located in
domain-dir/config. The file is named server.policy.

This section covers the following topics:

■ “Contents of server.policy” on page 20
■ “Changing the Default Permissions” on page 22

Contents of server.policy

A sample server.policy file is as follows. Comments in the file describe why various permissions
are granted. These permissions are described in more detail in the next section.

Note – This server.policy file is presented for example purposes only and is subject to change.

// classes in lib get all permissions by default

grant codeBase "file:${com.sun.aas.installRoot}/lib/-" {

permission java.security.AllPermission;

};

// Core server classes get all permissions by default

grant codeBase "file:${com.sun.aas.installRoot}/modules/-" {

permission java.security.AllPermission;

};

// Felix classes get all permissions by default

grant codeBase "file:${com.sun.aas.installRoot}/osgi/felix/bin/-" {

permission java.security.AllPermission;

};

// iMQ classes get all permissions by default

grant codeBase "file:${com.sun.aas.imqLib}/-" {

permission java.security.AllPermission;

};

// Derby driver classes get all permissions by default

grant codeBase "file:${com.sun.aas.derbyRoot}/lib/-" {

permission java.security.AllPermission;

};

// permission for JDK’s tools.jar to enable webservice annotation processing

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • February 201120

Composed February 22, 2011

// at runtime by wsgen tool:

// permission java.lang.RuntimePermission "createClassLoader";
//

// permission for JDK’s tools.jar to sign JARs at runtime for

// Java Web Start support:

// permissions java.security.AllPermission;

// on the advice of the JDK tools folks. Should be refined later.

grant codeBase "file:${com.sun.aas.javaRoot}/lib/tools.jar" {

permission java.security.AllPermission;

};

//Loading MBeans from anywhere, to take care of side effects of 6235678.

grant {

permission javax.management.MBeanTrustPermission "register" ;

};

//Loading MBeans from anywhere, to take care of side effects of 6235678.

// Basic set of required permissions granted to all remaining code

// The permission FilePermission "<<ALL FILES>>", "read,write"
// allows all applications to read and write any file in the filesystem.

// It should be changed based on real deployment needs. If you know your

// applications just need to read/write a few directories consider removing

// this permission and adding grants indicating those specific directories.

// against the codebase of your application(s).

grant {

//Workaround for bugs #6484935, 6513799

permission java.lang.RuntimePermission "getProtectionDomain";
permission com.sun.corba.ee.impl.presentation.rmi.DynamicAccessPermission "access";
permission java.util.PropertyPermission "*", "read,write";

permission java.lang.RuntimePermission "loadLibrary.*";
permission java.lang.RuntimePermission "queuePrintJob";
permission java.net.SocketPermission "*", "connect";
permission java.io.FilePermission "<<ALL FILES>>", "read,write";

// work-around for pointbase bug 4864405

permission java.io.FilePermission

"${com.sun.aas.instanceRoot}${/}lib${/}databases${/}-",
"delete";

permission java.io.FilePermission "${java.io.tmpdir}${/}-", "delete";

permission java.util.PropertyPermission "*", "read";

permission java.lang.RuntimePermission "modifyThreadGroup";
permission java.lang.RuntimePermission "getClassLoader";
permission java.lang.RuntimePermission "setContextClassLoader";

permission javax.management.MBeanPermission

"[com.sun.messaging.jms.*:*]", "*";
};

// Following grant block is only required by Connectors. If Connectors

// are not in use the recommendation is to remove this grant.

grant {

permission javax.security.auth.PrivateCredentialPermission

"javax.resource.spi.security.PasswordCredential * \"*\"","read";
};

About System Security in GlassFish Server

Chapter 1 • Administering System Security 21

Composed February 22, 2011

// Following grant block is only required for Reflection. If Reflection

// is not in use the recommendation is to remove this section.

grant {

permission java.lang.RuntimePermission "accessDeclaredMembers";
};

// Permissions to invoke CORBA objects in server

grant {

permission com.sun.enterprise.security.CORBAObjectPermission "*", "*";
};

Changing the Default Permissions

The GlassFish Server internal server code is granted all permissions. These grants are covered
by the AllPermission grant blocks to various parts of the server infrastructure code. Do not
modify these entries.

Application permissions are granted in the default grant block. These permissions apply to all
code not part of the internal server code listed previously.

The last section, beginning with the comment “Basic set of required permissions...” provides the
basic set of permissions granted to all remaining code.

Depending on your GlassFish Server implementation, deleting or modifying these permissions
might be appropriate.

Specifically, the following permission allows all applications to read and write all properties and
read and write all files on the filesystem.

permission java.util.PropertyPermission "*", "read,write";
permission java.io.FilePermission "<<ALL FILES\>>", "read,write";

While this grant provides optimum flexibility, it is inherently unsecure. For enhanced security,
change this permission based on your real deployment needs.

For example, consider removing this permission and assign default read and write permissions
only to the application's install directory (context-root). (This example uses
com.sun.aas.instanceRoot, which specifies the top level directory for a server instance.)

grant codeBase "file:${com.sun.aas.instanceRoot}/applications/MyApp/-"
{

permission java.io.FilePermission "file:${com.sun.aas.instanceRoot}
/applications/MyApp/-", "read,write";
}

For any application that needs to read and write additional directories, you would then have to
explicitly allow such permissions by adding specific grants. In general, you should add extra
permissions only to the applications or modules that require them, not to all applications
deployed to a domain.

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • February 201122

Composed February 22, 2011

Additional permissions (see the embedded comments in server.policy) are granted
specifically for using connectors and reflection. If connectors or reflection are not used in a
particular domain, you should remove these permissions, because they are otherwise
unnecessary.

Auditing
Auditing is the means used to capture security-related events for the purpose of evaluating the
effectiveness of security measures. GlassFish Server uses audit modules to capture audit trails of
all authentication and authorization decisions. GlassFish Server provides a default audit
module, as well as the ability to plug in custom audit modules. The scope of the audit module is
the entire server, which means that all the applications on the server will use the same audit
module.

For administration instructions, see “Administering Audit Modules” on page 40.

Firewalls
A firewall controls the flow of data between two or more networks, and manages the links
between the networks. A firewall can consist of both hardware and software elements. The
following guidelines pertain primarily to GlassFish Server:

■ In general, firewalls should be configured so that clients can access the necessary TCP/IP
ports.
For example, if the HTTP listener is operating on port 8080, configure the firewall to allow
HTTP requests on port 8080 only. Likewise, if HTTPS requests are set up for port 8081, you
must configure the firewalls to allow HTTPS requests on port 8081.

■ If direct Remote Method Invocations over Internet Inter-ORB Protocol (RMI-IIOP) access
from the Internet to EJB modules is required, open the RMI-IIOP listener port as well.

Note – Opening the RMI-IIOP listener port is strongly discouraged because it creates
security risks.

■ In double firewall architecture, you must configure the outer firewall to allow for HTTP and
HTTPS transactions. You must configure the inner firewall to allow the HTTP server
plug-in to communicate with GlassFish Server behind the firewall.

About System Security in GlassFish Server

Chapter 1 • Administering System Security 23

Composed February 22, 2011

Certificates and SSL
The following topics are addressed here:

■ “Certificates” on page 24
■ “Certificate Chains” on page 25
■ “Certificate Files” on page 25
■ “Secure Sockets Layer” on page 26
■ “Custom Authentication of Client Certificate in SSL Mutual Authentication” on page 27

For administration instructions, see “Administering JSSE Certificates” on page 42.

Certificates
Certificates, also called digital certificates, are electronic files that uniquely identify people and
resources on the Internet. Certificates also enable secure, confidential communication between
two entities. There are different kinds of certificates:

■ Personal certificates are used by individuals.
■ Server certificates are used to establish secure sessions between the server and clients

through secure sockets layer (SSL) technology.

Certificates are based on public key cryptography, which uses pairs of digital keys (very long
numbers) to encrypt, or encode, information so the information can be read only by its
intended recipient. The recipient then decrypts (decodes) the information to read it. A key pair
contains a public key and a private key. The owner distributes the public key and makes it
available to anyone. But the owner never distributes the private key, which is always kept secret.
Because the keys are mathematically related, data encrypted with one key can only be decrypted
with the other key in the pair.

Certificates are issued by a trusted third party called a Certification Authority (CA). The CA is
analogous to a passport office: it validates the certificate holder's identity and signs the
certificate so that it cannot be forged or tampered with. After a CA has signed a certificate, the
holder can present it as proof of identity and to establish encrypted, confidential
communications. Most importantly, a certificate binds the owner's public key to the owner's
identity.

In addition to the public key, a certificate typically includes information such as the following:

■ The name of the holder and other identification, such as the URL of the web server using the
certificate, or an individual's email address

■ The name of the CA that issued the certificate
■ An expiration date

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • February 201124

Composed February 22, 2011

Certificates are governed by the technical specifications of the X.509 format. To verify the
identity of a user in the certificate realm, the authentication service verifies an X.509
certificate, using the common name field of the X.509 certificate as the principal name.

Certificate Chains
A certificate chain is a series of certificates issued by successive CA certificates, eventually
ending in a root CA certificate.

Web browsers are preconfigured with a set of root CA certificates that the browser
automatically trusts. Any certificates from elsewhere must come with a certificate chain to
verify their validity.

When a certificate is first generated, it is a self-signed certificate. A self-signed certificate is one
for which the issuer (signer) is the same as the subject (the entity whose public key is being
authenticated by the certificate). When the owner sends a certificate signing request (CSR) to a
CA, then imports the response, the self-signed certificate is replaced by a chain of certificates. At
the bottom of the chain is the certificate (reply) issued by the CA authenticating the subject's
public key. The next certificate in the chain is one that authenticates the CA's public key.
Usually, this is a self-signed certificate (that is, a certificate from the CA authenticating its own
public key) and the last certificate in the chain.

In other cases, the CA can return a chain of certificates. In this situation, the bottom certificate
in the chain is the same (a certificate signed by the CA, authenticating the public key of the key
entry), but the second certificate in the chain is a certificate signed by a different CA,
authenticating the public key of the CA to which you sent the CSR. Then, the next certificate in
the chain is a certificate authenticating the second CA's key, and so on, until a self-signed root
certificate is reached. Each certificate in the chain (after the first) thus authenticates the public
key of the signer of the previous certificate in the chain.

Certificate Files
During GlassFish Server installation, a certificate is generated in Java Secure Socket Extension
(JSSE) format suitable for internal testing. (The certificate is self-signed.) By default, GlassFish
Server stores its certificate information in certificate databases in the domain-dir/config
directory:

Keystore file The keystore.jks file contains GlassFish Server certificate, including its
private key. The keystore file is protected with a password.

Each keystore entry has a unique alias. After installation, the GlassFish
Server keystore has a single entry with an alias of s1as.

Truststore file The cacerts.jks file contains the GlassFish Server trusted certificates,
including public keys for other entities. For a trusted certificate, the server
has confirmed that the public key in the certificate belongs to the certificate's

About System Security in GlassFish Server

Chapter 1 • Administering System Security 25

Composed February 22, 2011

owner. Trusted certificates generally include those of CAs.

By default, GlassFish Server is configured with a keystore and truststore that will work with the
example applications and for development purposes.

Secure Sockets Layer
Secure Sockets Layer (SSL) is the most popular standard for securing Internet communications
and transactions. Secure web applications use HTTPS (HTTP over SSL). The HTTPS protocol
uses certificates to ensure confidential and secure communications between server and clients.
In an SSL connection, both the client and the server encrypt data before sending it. Data is
decrypted upon receipt.

When a Web browser (client) wants to connect to a secure site, an SSL handshake happens, like
this:

1. The browser sends a message over the network requesting a secure session (typically, by
requesting a URL that begins with https instead of http).

2. The server responds by sending its certificate (including its public key).
3. The browser verifies that the server's certificate is valid and is signed by a CA whose

certificate is in the browser's database (and who is trusted). It also verifies that the CA
certificate has not expired.

4. If the certificate is valid, the browser generates a one time, unique session key and encrypts it
with the server's public key. The browser then sends the encrypted session key to the server
so that they both have a copy.

5. The server decrypts the message using its private key and recovers the session key.

After the handshake, the client has verified the identity of the Web site, and only the client and
the Web server have a copy of the session key. From this point forward, the client and the server
use the session key to encrypt all their communications with each other. Thus, their
communications are ensured to be secure.

The newest version of the SSL standard is called Transport Layer Security (TLS). The GlassFish
Server supports the SSL 3.0 and the TLS 1.0 encryption protocols.

To use SSL, GlassFish Server must have a certificate for each external interface or IP address that
accepts secure connections. The HTTPS service of most web servers will not run unless a
certificate has been installed. For instructions on applying SSL to HTTP listeners, see “To
Configure an HTTP Listener for SSL” in Oracle GlassFish Server 3.1 Administration Guide.

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • February 201126

Composed February 22, 2011

Ciphers

A cipher is a cryptographic algorithm used for encryption or decryption. SSL and TLS protocols
support a variety of ciphers used to authenticate the server and client to each other, transmit
certificates, and establish session keys.

Some ciphers are stronger and more secure than others. Clients and servers can support
different cipher suites. During a secure connection, the client and the server agree to use the
strongest cipher that they both have enabled for communication, so it is usually sufficient to
enable all ciphers.

Name-based Virtual Hosts

Using name-based virtual hosts for a secure application can be problematic. This is a design
limitation of the SSL protocol itself. The SSL handshake, where the client browser accepts the
server certificate, must occur before the HTTP request is accessed. As a result, the request
information containing the virtual host name cannot be determined prior to authentication,
and it is therefore not possible to assign multiple certificates to a single IP address.

If all virtual hosts on a single IP address need to authenticate against the same certificate, the
addition of multiple virtual hosts probably will not interfere with normal SSL operations on the
server. Be aware, however, that most browsers will compare the server's domain name against
the domain name listed in the certificate, if any (applicable primarily to official, CA-signed
certificates). If the domain names do not match, these browsers display a warning. In general,
only address-based virtual hosts are commonly used with SSL in a production environment.

Custom Authentication of Client Certificate in SSL Mutual
Authentication
Release 3.1 of GlassFish Server extends the Certificate realm to allow custom authentication and
group assignment based on the client certificate received as part of SSL mutual (two-way)
authentication.

As in previous releases, you can create only one certificate realm. However, you can now use a
convenient abstract base class to configure a JAAS LoginModule for the Certificate realm.
Specifically, your LoginModule can now extend
com.sun.appserv.security.AppservCertificateLoginModule. When you do this, you need
to implement only the authenticateUser method and call the commitUserAuthentication
method to signify success.

This section describes the following topics:

■ “Understanding the AppservCertificateLoginModule Class” on page 28
■ “Example AppservCertificateLoginModule Code” on page 28
■ “Setting the JAAS Context” on page 29

About System Security in GlassFish Server

Chapter 1 • Administering System Security 27

Composed February 22, 2011

Understanding the AppservCertificateLoginModule Class

The AppservCertificateLoginModule class provides some convenience methods for accessing
the certificates, the application name and so forth, and for adding the group principals to the
subject. The convenience methods include the following:

getAppName()

Returns the name of the application to be authenticated. This may be useful when a single
LoginModule has to handle multiple applications that use certificates.

getCerts()

Returns the certificate chain as an array of java.security.cert.X509Certificate
certificates.

getX500Principal()

Returns the Distinguished principal from the first certificate in the chain.

getSubject()

Returns the subject that is being authenticated.

commitUserAuthentication(final String[] groups)

This method sets the authentication status to success if the groups parameter is non-null.
Note that this method is called after the authentication has succeeded. If authentication
failed, do not call this method.

See the Javadoc at AppservCertificateLoginModule (http://javadoc.glassfish.org/
v3/apidoc/com/sun/appserv/security/AppservCertificateLoginModule.html) for
complete information.

Note – You do not have to extend the convenience base class, you can extend the JAAS
LoginModule javax.security.auth.spi.LoginModule instead if you so choose. (See
Implement the Abstract LoginModule Methods (http://download.oracle.com/
javase/6/docs/technotes/guides/security/jaas/JAASLMDevGuide.html#Step%203) for
additional information.)

Example AppservCertificateLoginModule Code

“Example AppservCertificateLoginModule Code” on page 28 shows a sample instance of the
AppservCertificateLoginModule class.

Note – This sample code is part of a sample AppservCertificateLoginModule project
(http://blogs.sun.com/nasradu8/resource/certRealm/certificateLM.zip). See the
complete sample project for information on how to build and run the sample.

Take note of the following points from the example:

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • February 201128

Composed February 22, 2011

■ The getX500Principal() method returns the subject (subject distinguished name) value
from the first certificate in the client certificate chain as an X500Principal.

■ From that X500Principal, the getName() method then returns a string representation of
the X.500 distinguished name using the format defined in RFC 2253.

■ The example uses the getAppName() method to determine the application name. It also
determines the organizational unit (OU) from the distinguished name.

■ The example concatenates the application name with the value of OU, and uses it as the group
name in the commitUserAuthentication method.

EXAMPLE 1–1 Sample AppservCertificateLoginModule Code

/**

*

* @author nasradu8

*/

public class CertificateLM extends AppservCertificateLoginModule {

@Override

protected void authenticateUser() throws LoginException {

// Get the distinguished name from the X500Principal.

String dname = getX500Principal().getName();

StringTokenizer st = new StringTokenizer(dname, "B \t\n\r\f,");
while (st.hasMoreTokens()) {

String next = st.nextToken();

// Set the appname:OU as the group.

// At this point, one has the application name and the DN of

// the certificate. A suitable login decision can be made here.

if (next.startsWith("OU=")) {

commitUserAuthentication(new String[]{getAppName()

+ ":" + next.substring(3)});

return;

}

}

throw new LoginException("No OU found.");
}

}

Setting the JAAS Context

After you create your LoginModule, you must plug it in to a jaas-context, which you then
specify as a parameter to the certificate realm in GlassFish Server.

To do this, perform the following steps:

1. Specify a new jaas-context for the Certificate realm in the file
<domain-dir>/config/login.conf. For example, using the CertificateLM class from
“Example AppservCertificateLoginModule Code” on page 28:

certRealm {

com.sun.blogs.certificate.login.CertificateLM required;

};

About System Security in GlassFish Server

Chapter 1 • Administering System Security 29

Composed February 22, 2011

2. Specify this jaas-context as a parameter to the set subcommand in the
configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context=<jaas-context-name> property. For example:
asadmin> set

configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context=certRealm

configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context=certRealm

Command set executed successfully.

3. Optionally, get the value you just set to make sure that it is correct.
asadmin> get

configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context

configs.config.server-config.security-service.auth-realm.certificate.property.

jaas-context=certRealm

Command get executed successfully.

Tools for Managing System Security
GlassFish Server provides the following tools for managing system security:

Administration Console The Administration Console is a browser-based utility used to
configure security for the entire server. Tasks include managing
certificates, users, groups, and realms, and performing other
system-wide security tasks. For a general introduction to the
Administration Console, see “Administration Console” in Oracle
GlassFish Server 3.1 Administration Guide.

The asadmin utility The asadmin command-line utility performs many of the same
tasks as the Administration Console. You might be able to do
some things with the asadmin utility that you cannot do with the
Administration Console. For a general introduction to asadmin,
see “asadmin Utility” in Oracle GlassFish Server 3.1
Administration Guide.

The keytool utility The keytool Java Platform, Standard Edition (Java SE)
command-line utility is used for managing digital certificates and
key pairs. For more information, see “Administering JSSE
Certificates” on page 42.

The policytool utility The policytool Java SE graphical utility is used for managing
system-wide Java security policies. As an administrator, you rarely
use policytool.

About System Security in GlassFish Server

GlassFish Server Open Source Edition 3.1 Security Guide • February 201130

Composed February 22, 2011

For more information about using keytool, policytool, and other Java security tools, see
Summary of Tools for Java Platform Security (http://download.oracle.com/
docs/cd/E17409_01/javase/6/docs/technotes/guides/security/

SecurityToolsSummary.html).

Administering Passwords
There are multiple ways to administer passwords. You can rely on administrators to keep
passwords secret and change the passwords regularly. You can set up files for storing passwords
so that asadmin subcommands can access these files rather than having users type the
commands. You can encrypt passwords by setting up aliases so that sensitive passwords are not
visible in the domain.xml file.

The following topics are addressed here:

■ “To Change the Master Password” on page 31
■ “Additional Considerations for the start-instance and start-cluster Subcommands” on

page 33
■ “Using start-instance and start-cluster With a Password File” on page 34
■ “To Change an Administration Password” on page 35
■ “To Set a Password From a File” on page 36
■ “Administering Password Aliases” on page 37

▼ To Change the Master Password
The master password gives access to the keystore used with the domain. This password is not
tied to a UNIX user. You should treat this overall shared password as sensitive data. GlassFish
Server never uses it for authentication and never transmits it over the network.

You can choose to type the password manually when required, or to obscure the password in a
password file. If there is no password file, you are prompted for the master password. If there is a
password file, but you want to change access to require prompting, remove the file. The default
master password is changeit.

When changing the master password, it has to be changed on all nodes as well as on the DAS.
The master password on nodes is only stored once in the node, for all instances that are on that
node.

Use the change-master-password subcommand in local mode to modify the master password.

Administering Passwords

Chapter 1 • Administering System Security 31

Composed February 22, 2011

Note – If you change the master password and are not using a master password file, the
start-instance and start-cluster subcommands are not able to determine the master
password. In this case, you must start those instances locally by using start-local-instance.

When the master password is saved, it is saved in the master-password file.

This subcommand will not work unless the domain is stopped.

Stop the domain whose password you are changing.
See “To Stop a Domain” in Oracle GlassFish Server 3.1 Administration Guide.

Change the master password for the domain by using the change-master-password(1)
subcommand.
You are prompted for the old and new passwords. All dependent items are re-encrypted.

Start the domain.
See “To Start a Domain” in Oracle GlassFish Server 3.1 Administration Guide.

Changing the Master Password

The change-master-password subcommand is interactive in that you are prompted for the old
master password as well as the new master password. This example changes the master
password for domain44ps:

asadmin> change-master-password domain44ps

If you have already logged into the domain using the login login(1) subcommand, you are
prompted for the new master password:

Please enter the new master password>

Please enter the new master password again>

If you are not logged into the domain, you are prompted for both the old and the new master
passwords:

Please enter the master password>

Please enter the new master password>

Please enter the new master password again>

Information similar to the following is displayed:

Master password changed for domain44ps

Before You Begin

1

2

3

Example 1–2

Administering Passwords

GlassFish Server Open Source Edition 3.1 Security Guide • February 201132

Composed February 22, 2011

You can also view the full syntax and options of the subcommand by typing asadmin --help

change-master-password at the command line.

Additional Considerations for the start-instance
and start-cluster Subcommands
If you change the master password for DAS, the start-domain and start-local-instance

subcommands allow you to provide it during domain or instance startup in one of three ways:

■ Via the master-password file
■ By entering it interactively
■ Via the asadmin passwordfile

The start-instance and start-cluster subcommands are more problematic. If you create a
domain with a master password other than the default, an associated remote instance or cluster
must have access to the master password in order to start. However, for security reasons
GlassFish Server never transmits the master password or the master password file over the
network.

Consider the following scenario:

1. Change the master password on the DAS and save it with -–savemasterpassword.
2. Create an instance on another host using the subcommand create-instance. GlassFish

Server copies the keystore and truststore from the DAS to the instance, but it does not copy
the master password file.

3. Try to start the instance using the start-instance subcommand. An error results.

The start-instance command is looking for the file master-password in the node directory on
the instance machine, and it is not there by default. Therefore, the subcommand fails.

You can use the change-master-password subcommand to make sure the correct password is
used in this password file, as described in “Using start-instance and start-cluster With a
Password File” on page 34.

Note – The start-instance and start-cluster subcommands do not include any other way
for you to provide the password. If you change the master password and are not using a master
password file, the start-instance and start-cluster subcommands are not able to
determine the master password. In this case, you must start the instances locally by using
start-local-instance.

See Also

Administering Passwords

Chapter 1 • Administering System Security 33

Composed February 22, 2011

▼ Using start-instance and start-clusterWith a
Password File
Assume that you have changed the master password on the DAS and you want to make the
same change for all instances.

The start-instance and start-cluster subcommands automatically use the master
password file if it exists in the instance filesystem. You can use the change-master-password
subcommand to make sure the password file exists and that the correct password is used.

From the DAS, create a domain and set the master password.
asadmin> create-domain --savemasterpassword true domain-name

Start the domain.
asadmin> start-domain domain-name

Create a node that is enabled for communication over secure shell (SSH).
asadmin> create-node-ssh --nodehost host-name --installdir /some-dir node-name

Create an instance on the node.
asadmin> create-instance --node node-name instance-name

Before you start the instance, on the instance machine run change-master-passwordwith the
---savemasterpassword option to create a file called master-password in the agents directory
to access the keystores. (The start-instance subcommand is looking for a file called
master-password in the agents directory to access the stores.)
asadmin> change-master-password --savemasterpassword true --nodedir /some-dir
node-name

You are prompted to enter the current and new master password:

Enter the current master password>

Enter the new master password>

Enter the new master password again>

Command change-master-password executed successfully.

Remember that when you created the domain you specified a new master password. This
master password was then used to encrypt the keystore and truststore for the DAS, and these
stores were copied to the instance as a result of the create-instance subcommand.

1

2

3

4

5

Administering Passwords

GlassFish Server Open Source Edition 3.1 Security Guide • February 201134

Composed February 22, 2011

Therefore, enter the master password you set when you created the domain as both the current
master password and again as the new master password. You enter it as the new master
password because you do not want to change the master password for the instance and make it
out of sync with the DAS.

Run start-instance from the DAS.
asadmin> start-instance instance-name

The master password file is associated with the node and not with an instance. After the master
password file exists in the node directory on the instance machine, additional instances can be
created, started and stopped from the DAS.

▼ To Change an Administration Password
Use the change-admin-password subcommand in remote mode to change an administration
password. The default administration password is admin. You are prompted for the old and new
admin passwords, with confirmation. The passwords are not echoed to the display.

Note – If you accepted the default admin user with no password during zip installation, you can
add a password to this user. If there is a single user called admin that does not have a password,
you are not prompted for login information. Any other situation requires login.

Encrypting the admin password is strongly encouraged.

If you want to change the admin password before creating an alias for the password
(encrypting), you can use the set subcommand with syntax similar to the following:

asadmin set --user admin server.jms-service.jms-host.default_JMS_host.admin-password=

new_pwd

Ensure that the server is running.
Remote subcommands require a running server.

Change the admin password by using the change-admin-password(1) subcommand.

Enter the old and new admin passwords when prompted.

Restart GlassFish Server.
See “To Restart a Domain” in Oracle GlassFish Server 3.1 Administration Guide.

6

Before You Begin

1

2

3

4

Administering Passwords

Chapter 1 • Administering System Security 35

Composed February 22, 2011

Changing the Admin Password

This example changes the admin password for user anonymous from adminadmin to newadmin:

asadmin> change-admin-password --username anonymous

You are prompted to enter the old and the new admin passwords:

Enter admin password>adminadmin

Enter new admin password>newadmin

Enter new admin password again>newadmin

Information similar to the following is displayed:

Command change-admin-password executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

change-admin-password at the command line.

▼ To Set a Password From a File
Instead of typing the password at the command line, you can access the password for a
command from a file such as passwords.txt. The --passwordfile option of the asadmin
utility takes the name of the file that contains the passwords. The entry for a password in the file
must have the AS_ADMIN_ prefix followed by the password name in uppercase letters.

The following other types of passwords can be specified:

AS_ADMIN_MASTERPASSWORD

AS_ADMIN_USERPASSWORD

AS_ADMIN_ALIASPASSWORD

Edit the password file.
For example, to specify the password for the domain administration server (DAS), add an entry
similar to the following to the password file, where adminadmin is the administrator password:
AS_ADMIN_PASSWORD=adminadmin

Save the password file.
You can now specify the password file in an asadmin subcommand. In this example,
passwords.txt is the file that contains the password:
asadmin>delete-jdbc-resource --user admin --password passwords.txt jdbc/DerbyPool

Example 1–3

See Also

1

2

Administering Passwords

GlassFish Server Open Source Edition 3.1 Security Guide • February 201136

Composed February 22, 2011

If AS_ADMIN_PASSWORD has been exported to the global environment, specifying the
--passwordfile option will produce a warning about using the --passwordfile option. To
prevent this warning situation from happening, unset AS_ADMIN_PASSWORD.

Administering Password Aliases
A password alias is used to indirectly access a password so that the password itself does not
appear in cleartext in the domain's domain.xml configuration file.

Storing passwords in cleartext format in system configuration files is common in many open
source projects. In addition to GlassFish Server, Apache Tomcat, Maven, and Subversion,
among others, store and pass passwords in cleartext format. However, storing and passing
passwords in cleartext can be a security risk, and may violate some corporate security policies.
In such cases, you can use password aliases.

The following topics are addressed here:

■ “To Create a Password Alias” on page 37
■ “To List Password Aliases” on page 38
■ “To Delete a Password Alias” on page 39
■ “To Update a Password Alias” on page 39

▼ To Create a Password Alias
Use the create-password-alias subcommand in remote mode to create an alias for a
password in the domain's keystore. The password corresponding to the alias name is stored in
an encrypted form in the domain configuration file. The create-password-alias
subcommand takes both a secure interactive form, in which users are prompted for all
information, and a more script-friendly form, in which the password is propagated on the
command line.

You can also use the set(1) subcommand to remove and replace the password in the
configuration file. For example:

asadmin set --user admin server.jms-service.jms-host.default_JMS_host.

admin-password=’${ALIAS=jms-password}’

Ensure that the server is running.
Remote subcommands require a running server.

Go to the directory where the configuration file resides.
By default, the configuration file is located in domain-dir/config.

Create the password alias by using the create-password-alias(1) subcommand.

Troubleshooting

1

2

3

Administering Passwords

Chapter 1 • Administering System Security 37

Composed February 22, 2011

Type the password for the alias when prompted.

Add the alias to a password file.
In the password file, for example, passwords.txt, add the following line:
AS_ADMIN_PASSWORD=${ALIAS=admin-password-alias}, where admin-password-alias is the new
password alias.

Stop the GlassFish Server domain.
See “To Stop a Domain” in Oracle GlassFish Server 3.1 Administration Guide.

Start the domain specifying the file that contains the alias.
Use the following syntax:
start-domain --user admin --passwordfile /path-to/passwords.txt domain1

Creating a Password Alias

This example creates the new jms-password alias for the admin user:

asadmin> create-password-alias --user admin jms-password

You are prompted to type the password for the alias:

Please enter the alias password>secret-password

Please enter the alias password again>secret-password

Command create-password-alias executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

create-password-alias at the command line.

▼ To List Password Aliases
Use the list-password-aliases subcommand in remote mode to list existing the password
aliases.

Ensure that the server is running.
Remote subcommands require a running server.

List password aliases by using the list-password-aliases(1) subcommand.

Listing Password Aliases

This example lists the existing password aliases:

4

5

6

7

Example 1–4

See Also

1

2

Example 1–5

Administering Passwords

GlassFish Server Open Source Edition 3.1 Security Guide • February 201138

Composed February 22, 2011

asadmin> list-password aliases

jmspassword-alias

Command list-password-aliases executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

list-password-aliases at the command line.

▼ To Delete a Password Alias
Use the delete-password-alias subcommand in remote mode to delete an existing password
alias.

Ensure that the server is running.
Remote subcommands require a running server.

List all aliases by using the list-password-aliases(1) subcommand.

Delete a password alias by using the list-password-aliases(1) subcommand.

Deleting a Password Alias

This example deletes the password alias jmspassword-alias:

asadmin> delete-password-alias jmspassword-alias

Command list-password-aliases executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

delete-password-alias at the command line.

▼ To Update a Password Alias
Use the update-password-alias subcommand in remote mode to change the password for an
existing password alias. The update-password-alias subcommand takes both a secure
interactive form, in which the user is prompted for all information, and a more script-friendly
form, in which the password is propagated on the command line.

Ensure that the server is running.
Remote subcommands require a running server.

Update an alias by using the update-password-alias(1) subcommand.

Type the password when prompted.

See Also

1

2

3

Example 1–6

See Also

1

2

3

Administering Passwords

Chapter 1 • Administering System Security 39

Composed February 22, 2011

Updating a Password Alias

This example updates the password for the jmspassword-alias alias:

asadmin> update-password-alias jsmpassword-alias

You are prompted to type the new password for the alias:

Please enter the alias password>new-secret-password

Please enter the alias password again>new-secret-password

Command update-password-alias executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

update-password-alias at the command line.

Administering Audit Modules
The following topics are addressed here:

■ “To Create an Audit Module” on page 40
■ “To List Audit Modules” on page 41
■ “To Delete an Audit Module” on page 41

▼ To Create an Audit Module
Use the create-audit-module subcommand in remote mode to create an audit module for the
add-on component that implements the audit capabilities.

Ensure that the server is running.
Remote subcommands require a running server.

Create an audit module by using the create-audit-module(1) subcommand.
Information about properties for this subcommand is included in this help page.

Creating an Audit Module

This example creates an audit module named sampleAuditModule:

asadmin> create-audit-module

--classname com.sun.appserv.auditmodule --property defaultuser=

admin:Password=admin sampleAuditModule

Command create-audit-module executed successfully.

Example 1–7

See Also

1

2

Example 1–8

Administering Audit Modules

GlassFish Server Open Source Edition 3.1 Security Guide • February 201140

Composed February 22, 2011

You can also view the full syntax and options of the subcommand by typing asadmin help

create-audit-module at the command line.

▼ To List Audit Modules
Use the list-audit-modules subcommand in remote mode to list the audit modules on one of
the following targets:

■ Server instance, server (the default)
■ Specified server instance
■ Specified configuration

Ensure that the server is running.
Remote subcommands require a running server.

List the audit modules by using the list-audit-modules(1) subcommand.

Listing Audit Modules

This example lists the audit modules on localhost:

asadmin> list-audit-modules

audit-module : default

audit-module : sampleAuditModule

Command list-audit-modules executed successfully.

You can also view the full syntax and options of the subcommand by typing asadmin help

list-audit-modules at the command line.

▼ To Delete an Audit Module
Use the delete-audit-module subcommand in remote mode to delete an existing audit
module.

Ensure that the server is running.
Remote subcommands require a running server.

List the audit modules by using the list-audit-modules(1) subcommand.

Delete an audit module by using the delete-audit-module(1) subcommand.

See Also

1

2

Example 1–9

See Also

1

2

3

Administering Audit Modules

Chapter 1 • Administering System Security 41

Composed February 22, 2011

Deleting an Audit Module

This example deletes sampleAuditModule:

asadmin> delete-audit-module sampleAuditModule

Command delete-audit-module executed successfully.

Administering JSSE Certificates
In the developer profile, the GlassFish Server 3.1 uses the JSSE format on the server side to
manage certificates and key stores. In all profiles, the client side (appclient or stand-alone) uses
the JSSE format.

The Java SE SDK ships with the keytool utility, which enables you to set up and work with Java
Secure Socket Extension (JSSE) digital certificates. You can administer public/private key pairs
and associated certificates, and cache the public keys (in the form of certificates) of their
communicating peers.

The following topics are addressed here:

■ “To Generate a Certificate by Using keytool” on page 42
■ “To Sign a Certificate by Using keytool” on page 44
■ “To Delete a Certificate by Using keytool” on page 47

▼ To Generate a Certificate by Using keytool

By default, the keytool utility creates a keystore file in the directory where the utility is run.

To run the keytool utility, your shell environment must be configured so that the Java SE /bin

directory is in the path, otherwise the full path to the utility must be present on the command
line.

Change to the directory that contains the keystore and truststore files.
Always generate the certificate in the directory containing the keystore and truststore files. The
default is domain-dir/config.

Generate the certificate in the keystore file, keystore.jks, using the following command
format:
keytool -genkey -alias keyAlias-keyalg RSA

-keypass changeit

-storepass changeit

keystore keystore.jks

Example 1–10

Before You Begin

1

2

Administering JSSE Certificates

GlassFish Server Open Source Edition 3.1 Security Guide • February 201142

Composed February 22, 2011

Use any unique name as your keyAlias. If you have changed the keystore or private key
password from the default (changeit), substitute the new password for changeit. The default
key password alias is s1as.

A prompt appears that asks for your name, organization, and other information.

Export the generated certificate to the server.cerfile (or client.cer if you prefer), using the
following command format:
keytool -export -alias keyAlias-storepass changeit

-file server.cer

-keystore keystore.jks

If a certificate signed by a certificate authority is required, see “To Sign a Certificate by Using
keytool”on page 44.

Create the cacerts.jks truststore file and add the certificate to the truststore, using the
following command format:
keytool -import -v -trustcacerts

-alias keyAlias
-file server.cer

-keystore cacerts.jks

-keypass changeit

If you have changed the keystore or private key password from the default (changeit),
substitute the new password.

Information about the certificate is displayed and a prompt appears asking if you want to trust
the certificate.

Type yes, then press Enter.
Information similar to the following is displayed:
Certificate was added to keystore

[Saving cacerts.jks]

To apply your changes, restart GlassFish Server. See “To Restart a Domain”in Oracle GlassFish
Server 3.1 Administration Guide.

Creating a Self-Signed Certificate in a JKS Keystore by Using an RSA Key Algorithm

RSA is public-key encryption technology developed by RSA Data Security, Inc.

keytool -genkey -noprompt -trustcacerts -keyalg RSA -alias ${cert.alias}

-dname ${dn.name} -keypass ${key.pass} -keystore ${keystore.file}

-storepass ${keystore.pass}

3

4

5

6

7

Example 1–11

Administering JSSE Certificates

Chapter 1 • Administering System Security 43

Composed February 22, 2011

Creating a Self-Signed Certificate in a JKS Keystore by Using a Default Key Algorithm

keytool -genkey -noprompt -trustcacerts -alias ${cert.alias} -dname

${dn.name} -keypass ${key.pass} -keystore ${keystore.file} -storepass

${keystore.pass}

Displaying Available Certificates From a JKS Keystore

keytool -list -v -keystore ${keystore.file} -storepass ${keystore.pass}

Displaying Certificate information From a JKS Keystore

keytool -list -v -alias ${cert.alias} -keystore ${keystore.file}

-storepass ${keystore.pass}

For more information about keytool, see the keytool reference page (http://
download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html).

▼ To Sign a Certificate by Using keytool

After creating a certificate, the owner must sign the certificate to prevent forgery. E-commerce
sites, or those for which authentication of identity is important, can purchase a certificate from
a well-known Certificate Authority (CA).

Note – If authentication is not a concern, for example if private secure communications are all
that is required, you can save the time and expense involved in obtaining a CA certificate by
using a self-signed certificate.

Delete the default self-signed certificate:
keytool -delete -alias s1as -keystore keystore.jks -storepass <store_passwd>

where <store_passwd> is the password for the keystore. For example, "mypass". Note that s1as
is the default alias of the GlassFish Server keystore.

Generate a new key pair for the application server:
keytool -genkeypair -keyalg <key_alg> -keystore keystore.jks

-validity <val_days> -alias s1as

where <key_alg> is the algorithm to be used for generating the key pair, for example RSA, and
<val_days> is the number of days that the certificate should be considered valid. For example,
365.

Example 1–12

Example 1–13

Example 1–14

See Also

1

2

Administering JSSE Certificates

GlassFish Server Open Source Edition 3.1 Security Guide • February 201144

Composed February 22, 2011

In addition to generating a key pair, the command wraps the public key into a self-signed
certificate and stores the certificate and the private key in a new keystore entry identified by the
alias.

For HTTPS hostname verification, it is important to ensure that the name of the certificate
(CN) matches the fully-qualified hostname of your site (fully-qualified domain name). If the
names do not match, clients connecting to the server will see a security alert stating that the
name of the certificate does not match the name of the site.

Generate a Certificate Signing Request (CSR):
keytool -certreq -alias s1as -file <certreq_file> -keystore keystore.jks

-storepass <store_passwd>

where <certreq_file> is the file in which the CSR is stored (for example, s1as.csr) and
<store_passwd> is the password for the keystore. For example, changeit.

Submit the CSR to a Certificate Authority such as VeriSign http://www.verisign.com/ssl/
buy-ssl-certificates/index.html (http://www.verisign.com/ssl/buy-ssl-certificates/
index.html). In response, you should receive a signed server certificate. Make sure to import
into your browser the CA certificate of the CA (if not already present) and any intermediate
certificates indicated by the CA in the reply.

Store the signed server certificate from the CA, including the markers -----BEGIN
CERTIFICATE----- and -----END CERTIFICATE-----, into a file such as s1as.cert. Download
the CA certificate and any intermediate CA certificates and store them in local files.

Import the CA certificate (if not already present) and any intermediate CA certificates (if not
already present) indicated by the CA into the truststore cacerts.jks:
keytool -import -v -trustcacerts -alias <CA-Name> -file ca.cert

-keystore cacerts.jks -storepass <store_passwd>

Replace the original self-signed certificate with the certificate you obtained from the CA, as
stored in a file such as s1as.cert:
keytool -import -v -trustcacerts -alias s1as -file s1as.cert

-keystore keystore.jks -storepass <store_passwd>

When you import the certificate using the same original alias s1as, keytool treats it as a
command to replace the original certificate with the certificate obtained as a reply to a CSR.

After running the command, you should see that the certificate s1as in the keystore is no longer
the original self-signed certificate, but is now the response certificate from the CA.

Consider the following example that compares an original s1as certificate with a new s1as

certificate obtained from VeriSign:

Original s1as (self-signed):

3

4

5

6

7

Administering JSSE Certificates

Chapter 1 • Administering System Security 45

Composed February 22, 2011

Owner: CN=FQDN, OU=Sun Java System Application Server, O=Sun

Microsystems, L=Santa Clara, ST=California, C=US

Issuer: CN=KUMAR, OU=Sun Java System Application Server, O=Su

n Microsystems, L=Santa Clara, ST=California, C=US

Serial number: 472acd34

Valid from: Fri Nov 02 12:39:40 GMT+05:30 2007 until: Mon Oct

30 12:39:40 GMT+05:30 2017

New s1as (contains signed cert from CA):

Owner: CN=FQDN, OU=Terms of use at www.verisign.com/cps/test

ca (c)05, OU=Sun Java System Application Server, O=Sun Micros

ystems, L=Santa Clara, ST=California, C=US

Issuer: CN=VeriSign Trial Secure Server Test CA, OU=Terms of

use at https://www.verisign.com/cps/testca (c)05, OU="For Test

Purposes Only. No assurances.", O="VeriSign, Inc.", C=US

Serial number: 1375de18b223508c2cb0123059d5c440

Valid from: Sun Nov 11 05:30:00 GMT+05:30 2007 until: Mon Nov

26 05:29:59 GMT+05:30 2007

To apply your changes, restart GlassFish Server.
See “To Restart a Domain” in Oracle GlassFish Server 3.1 Administration Guide.

Importing an RFC/Text-Formatted Certificate Into a JKS Keystore

Certificates are often stored using the printable encoding format defined by the Internet
Request for Comments (RFC) 1421 standard instead of their binary encoding. This certificate
format, also known as Base 64 encoding, facilitates exporting certificates to other applications
by email or through some other mechanism.

keytool -import -noprompt -trustcacerts -alias ${cert.alias} -file

${cert.file} -keystore ${keystore.file} -storepass ${keystore.pass}

Exporting a Certificate From a JKS Keystore in PKCS7 Format

The reply format defined by the Public Key Cryptography Standards #7, Cryptographic
Message Syntax Standard, includes the supporting certificate chain in addition to the issued
certificate.

keytool -export -noprompt -alias ${cert.alias} -file ${cert.file}

-keystore ${keystore.file} -storepass ${keystore.pass}

Exporting a Certificate From a JKS Keystore in RFC/Text Format

keytool -export -noprompt -rfc -alias ${cert.alias} -file

${cert.file} -keystore ${keystore.file} -storepass ${keystore.pass}

8

Example 1–15

Example 1–16

Example 1–17

Administering JSSE Certificates

GlassFish Server Open Source Edition 3.1 Security Guide • February 201146

Composed February 22, 2011

For more information about keytool, see the keytool reference page (http://
download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html).

▼ To Delete a Certificate by Using keytool

Use the keytool -delete command to delete an existing certificate.

Delete a certificate using the following command format:
keytool -delete

-alias keyAlias
-keystore keystore-name
-storepass password

Deleting a Certificate From a JKS Keystore

keytool -delete -noprompt -alias ${cert.alias} -keystore ${keystore.file}

-storepass ${keystore.pass}

For more information about keytool, see the keytool reference page (http://
download.oracle.com/

docs/cd/E17409_01/javase/6/docs/technotes/tools/solaris/keytool.html).

Administering JACC Providers
The Java Authorization Contract for Containers (JACC) is part of the J2EE 1.4 specification that
defines an interface for pluggable authorization providers. This enables the administrator to set
up third-party plug-in modules to perform authorization.

GlassFish Server includes Administration Console support and subcommands to support JACC
providers, as follows:

■ create create-jacc-provider
■ delete delete-jacc-provider
■ list list-jacc-providers

The default GlassFish Server installation includes two JACC providers, named default and
simple. You should not delete these default providers. Any JACC providers you create with the
create-jacc-provider subcommand are in addition to these two default providers.

See Also

●

Example 1–18

See Also

Administering JACC Providers

Chapter 1 • Administering System Security 47

Composed February 22, 2011

The GlassFish Server creates a JSR-115-compliant JACC provider that you can use with
third-party authorization modules for applications running in GlassFish Server. The JACC
provider is created as a jacc-provider element within the security-service element in the
domain's domain.xml file.

▼ Administering JACC Providers From the
Administration Console
To use the Administration Console to administer JACC providers, perform the following steps:

Select Configurations and expand the entry.

Select the server configuration for which you want to administer JACC providers and expand the
entry.

Select Security and expand the entry.

Select JACC Providers. The JACC Providers page is displayed. The existing JACC providers are
shown on this page.

1

2

3

4

Administering JACC Providers

GlassFish Server Open Source Edition 3.1 Security Guide • February 201148

Composed February 22, 2011

To create a new provider, click New.
Enter the Name, Policy Configuration (the class that implements the policy configuration
factory) and the Policy Provider (the class that implements the policy factory) for the new JACC
provider. You can also enter optional properties (name/value) for the provider.

To delete an existing JACC provider, select that provider and click Delete.

▼ Administering JACC Providers from the Command
Line
To use the command line to administer JACC providers, perform the following steps:

To create a JACC provider, use the create-jacc-provider subcommand. The following
example shows how to create a JACC provider named testJACC on the default server target.
asadmin> create-jacc-provider

--policyproviderclass com.sun.enterprise.security.provider.PolicyWrapper

--policyconfigfactoryclass com.sun.enterprise.security.provider.PolicyCon

figurationFactoryImpl

testJACC

To delete a JACC provider, use the create-jacc-provider subcommand. The following
example shows how to delete a JACC provider named testJACC from the default domain:
asadmin> delete-jacc-provider testJACC

To list the available providers, use the list-jacc-providers subcommand. The following
example shows how to list JACC providers for the default domain:
asadmin> list-jacc-providers

default

simple

Command list-jacc-providers executed successfully.

5

6

1

2

3

Administering JACC Providers

Chapter 1 • Administering System Security 49

Composed February 22, 2011

50

Composed February 22, 2011

