
Using the Transaction Service

The Java EE platform provides several abstractions that simplify development of dependable
transaction processing for applications. This chapter discusses Java EE transactions and
transaction support in the Oracle GlassFish Server.

This chapter contains the following sections:

■ “Handling Transactions with Databases” on page 19
■ “Handling Transactions with Enterprise Beans” on page 22
■ “Handling Transactions with the Java Message Service” on page 24
■ “The Transaction Manager, the Transaction Synchronization Registry, and

UserTransaction” on page 25

For more information about the Java Transaction API (JTA) and Java Transaction Service
(JTS), see Chapter 18, “Administering Transactions,” in GlassFish Server Open Source
Edition 3.1 Administration Guide and the following sites: http://java.sun.com/javaee/
technologies/jta/index.jsp and http://java.sun.com/javaee/technologies/jts/

index.jsp.

You might also want to read Chapter 28, “Transactions,” in The Java EE 6 Tutorial.

Handling Transactions with Databases
The following JDBC features pertain to transactions:

■ “Using JDBC Transaction Isolation Levels” on page 20
■ “Using Non-Transactional Connections” on page 21

15C H A P T E R 1 5

19



Using JDBC Transaction Isolation Levels
Not all database vendors support all transaction isolation levels available in the JDBC API. The
GlassFish Server permits specifying any isolation level your database supports. The following
table defines transaction isolation levels.

TABLE 15–1 Transaction Isolation Levels

Transaction Isolation Level getTransactionIsolation Return Value Description

read-uncommitted 1 Dirty reads, non-repeatable reads, and phantom reads can
occur.

read-committed 2 Dirty reads are prevented; non-repeatable reads and
phantom reads can occur.

repeatable-read 4 Dirty reads and non-repeatable reads are prevented;
phantom reads can occur.

serializable 8 Dirty reads, non-repeatable reads and phantom reads are
prevented.

By default, the transaction isolation level is undefined (empty), and the JDBC driver's default
isolation level is used. You can specify the transaction isolation level in the following ways:

■ Select the value from the Transaction Isolation drop-down list on the New JDBC
Connection Pool or Edit Connection Pool page in the Administration Console. For more
information, click the Help button in the Administration Console.

■ Specify the --isolationlevel option in the asadmin create-jdbc-connection-pool
command. For more information, see the GlassFish Server Open Source Edition 3.1 Reference
Manual.

■ Specify the transaction-isolation-level option in the asadmin set command. For
example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.transaction-isolation-level=serializable

For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

Note that you cannot call setTransactionIsolation during a transaction.

You can set the default transaction isolation level for a JDBC connection pool. For details, see
Creating a JDBC Connection Pool.

To verify that a level is supported by your database management system, test your database
programmatically using the supportsTransactionIsolationLevel method in
java.sql.DatabaseMetaData, as shown in the following example:

Handling Transactions with Databases

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201020



InitialContext ctx = new InitialContext();

DataSource ds = (DataSource)

ctx.lookup("jdbc/MyBase");
Connection con = ds.getConnection();

DatabaseMetaData dbmd = con.getMetaData();

if (dbmd.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)

{ Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE); }

For more information about these isolation levels and what they mean, see the JDBC API
specification.

Setting or resetting the transaction isolation level for every getConnection call can degrade
performance. So by default the isolation level is not guaranteed.

Applications that change the transaction isolation level on a pooled connection
programmatically risk polluting the JDBC connection pool, which can lead to errors. If an
application changes the isolation level, enabling the is-isolation-level-guaranteed setting
in the pool can minimize such errors.

You can guarantee the transaction isolation level in the following ways:

■ Check the Isolation Level Guaranteed box on the New JDBC Connection Pool or Edit
Connection Pool page in the Administration Console. For more information, click the Help
button in the Administration Console.

■ Specify the --isisolationguaranteed option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish Server
Open Source Edition 3.1 Reference Manual.

■ Specify the is-isolation-level-guaranteed option in the asadmin set command. For
example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.is-isolation-level-guaranteed=true

For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

Using Non-Transactional Connections
You can specify a non-transactional database connection in any of these ways:

■ Check the Non-Transactional Connections box on the New JDBC Connection Pool or Edit
Connection Pool page in the Administration Console. The default is unchecked. For more
information, click the Help button in the Administration Console.

■ Specify the ----nontransactionalconnections option in the asadmin
create-jdbc-connection-pool command. For more information, see the GlassFish Server
Open Source Edition 3.1 Reference Manual.

■ Specify the non-transactional-connections option in the asadmin set command. For
example:

asadmin set domain1.resources.jdbc-connection-pool.DerbyPool.non-transactional-connections=true

Handling Transactions with Databases

Chapter 15 • Using the Transaction Service 21



For more information, see the GlassFish Server Open Source Edition 3.1 Reference Manual.
■ Use the DataSource implementation in the GlassFish Server, which provides a

getNonTxConnection method. This method retrieves a JDBC connection that is not in the
scope of any transaction. There are two variants.

public java.sql.Connection getNonTxConnection() throws java.sql.SQLException

public java.sql.Connection getNonTxConnection(String user, String password)

throws java.sql.SQLException

■ Create a resource with the JNDI name ending in __nontx. This forces all connections looked
up using this resource to be non transactional.

Typically, a connection is enlisted in the context of the transaction in which a getConnection
call is invoked. However, a non-transactional connection is not enlisted in a transaction context
even if a transaction is in progress.

The main advantage of using non-transactional connections is that the overhead incurred in
enlisting and delisting connections in transaction contexts is avoided. However, use such
connections carefully. For example, if a non-transactional connection is used to query the
database while a transaction is in progress that modifies the database, the query retrieves the
unmodified data in the database. This is because the in-progress transaction hasn’t committed.
For another example, if a non-transactional connection modifies the database and a transaction
that is running simultaneously rolls back, the changes made by the non-transactional
connection are not rolled back.

Here is a typical use case for a non-transactional connection: a component that is updating a
database in a transaction context spanning over several iterations of a loop can refresh cached
data by using a non-transactional connection to read data before the transaction commits.

Handling Transactions with Enterprise Beans
This section describes the transaction support built into the Enterprise JavaBeans programming
model for the GlassFish Server.

As a developer, you can write an application that updates data in multiple databases distributed
across multiple sites. The site might use EJB servers from different vendors. This section
provides overview information on the following topics:

■ “Flat Transactions” on page 23
■ “Global and Local Transactions” on page 23
■ “Commit Options” on page 23
■ “Bean-Level Container-Managed Transaction Timeouts” on page 24

Handling Transactions with Enterprise Beans

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201022



Flat Transactions
The Enterprise JavaBeans Specification, v3.0 requires support for flat (as opposed to nested)
transactions. In a flat transaction, each transaction is decoupled from and independent of other
transactions in the system. Another transaction cannot start in the same thread until the
current transaction ends.

Flat transactions are the most prevalent model and are supported by most commercial database
systems. Although nested transactions offer a finer granularity of control over transactions, they
are supported by far fewer commercial database systems.

Global and Local Transactions
Both local and global transactions are demarcated using the javax.transaction.UserTransaction
interface, which the client must use. Local transactions bypass the XA commit protocol and are
faster. For more information, see “The Transaction Manager, the Transaction Synchronization
Registry, and UserTransaction” on page 25.

Commit Options
The EJB protocol is designed to give the container the flexibility to select the disposition of the
instance state at the time a transaction is committed. This allows the container to best manage
caching an entity object’s state and associating an entity object identity with the EJB instances.

There are three commit-time options:

■ Option A – The container caches a ready instance between transactions. The container
ensures that the instance has exclusive access to the state of the object in persistent storage.
In this case, the container does not have to synchronize the instance’s state from the
persistent storage at the beginning of the next transaction.

Note – Commit option A is not supported for this GlassFish Server release.

■ Option B – The container caches a ready instance between transactions, but the container
does not ensure that the instance has exclusive access to the state of the object in persistent
storage. This is the default.
In this case, the container must synchronize the instance’s state by invoking ejbLoad from
persistent storage at the beginning of the next transaction.

■ Option C – The container does not cache a ready instance between transactions, but instead
returns the instance to the pool of available instances after a transaction has completed.
The life cycle for every business method invocation under commit option C looks like this.

Handling Transactions with Enterprise Beans

Chapter 15 • Using the Transaction Service 23



ejbActivate ejbLoad business method ejbStore ejbPassivate

If there is more than one transactional client concurrently accessing the same entity, the first
client gets the ready instance and subsequent concurrent clients get new instances from the
pool.

The glassfish-ejb-jar.xml deployment descriptor has an element, commit-option, that
specifies the commit option to be used. Based on the specified commit option, the appropriate
handler is instantiated.

Bean-Level Container-Managed Transaction Timeouts
The transaction timeout for the domain is specified using the Transaction Timeout setting of
the Transaction Service. A transaction started by the container must commit (or rollback)
within this time, regardless of whether the transaction is suspended (and resumed), or the
transaction is marked for rollback. The default value, 0, specifies that the server waits
indefinitely for a transaction to complete.

To override this timeout for an individual bean, use the optional cmt-timeout-in-seconds
element in glassfish-ejb-jar.xml. The default value, 0, specifies that the Transaction Service
timeout is used. The value of cmt-timeout-in-seconds is used for all methods in the bean that
start a new container-managed transaction. This value is not used if the bean joins a client
transaction.

Handling Transactions with the Java Message Service
The following JMS features pertain to transactions:
■ “Transactions and Non-Persistent Messages” on page 24
■ “Using the ConfigurableTransactionSupport Interface” on page 24

Transactions and Non-Persistent Messages
During transaction recovery, non-persistent messages might be lost. If the broker fails between
the transaction manager’s prepare and commit operations, any non-persistent message in the
transaction is lost and cannot be delivered. A message that is not saved to a persistent store is
not available for transaction recovery.

Using the ConfigurableTransactionSupport Interface
The Java EE Connector 1.6 specification allows a resource adapter to use the
transaction-support attribute to specify the level of transaction support that the resource

Handling Transactions with the Java Message Service

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201024



adapter handles. However, the resource adapter vendor does not have a mechanism to figure
out the current transactional context in which a ManagedConnectionFactory is used.

If a ManagedConnectionFactory implements an optional interface called com.sun.appserv.
connectors.spi.ConfigurableTransactionSupport, the GlassFish Server notifies the
ManagedConnectionFactory of the transaction-support configured for the connector
connection pool when the ManagedConnectionFactory instance is created for the pool.
Connections obtained from the pool can then be used with a transaction level at or lower than
the configured value. For example, a connection obtained from a pool that is set to
XA_TRANSACTION could be used as a LOCAL resource in a last-agent-optimized transaction or in
a non-transactional context.

The Transaction Manager, the Transaction Synchronization
Registry, and UserTransaction

To access a UserTransaction instance, you can either look it up using the java:comp/
UserTransaction JNDI name or inject it using the @Resource annotation.

Accessing a DataSource using the Synchronization.beforeCompletion() method requires
setting Allow Non Component Callers to true. The default is false. For more information
about non-component callers, see “Allowing Non-Component Callers” on page .

If possible, you should use the javax.transaction.TransactionSynchronizationRegistry interface
instead of javax.transaction.TransactionManager, for portability. You can look up the
implementation of this interface by using the JNDI name java:comp/
TransactionSynchronizationRegistry. For details, see the Javadoc page for Interface
TransactionSynchronizationRegistry (http://java.sun.com/
javaee/5/docs/api/javax/transaction/TransactionSynchronizationRegistry.html)
and Java Specification Request (JSR) 907 (http://www.jcp.org/en/jsr/detail?id=907).

If accessing the javax.transaction.TransactionManager implementation is absolutely necessary,
you can look up the GlassFish Server implementation of this interface using the JNDI name
java:appserver/TransactionManager. This lookup should not be used by the application code.

The Transaction Manager, the Transaction Synchronization Registry, and UserTransaction

Chapter 15 • Using the Transaction Service 25


