
Administering Transactions

This chapter discusses how to manage the transaction service for the GlassFish Server Open
Source Edition environment by using the asadmin command-line utility. Instructions for
manually recovering transactions are also included.

The following topics are addressed here:
■ “About Transactions” on page 21
■ “Configuring the Transaction Service” on page 24
■ “Managing the Transaction Service for Rollbacks” on page 25
■ “Recovering Transactions” on page 28
■ “Transaction Logging” on page 31

Instructions for accomplishing the tasks in this chapter by using the Administration Console
are contained in the Administration Console online help.

For more information about the Java Transaction API (JTA) and Java Transaction Service
(JTS), see the following sites: http://java.sun.com/javaee/technologies/jta/index.jsp
and http://java.sun.com/javaee/technologies/jts/index.jsp.

You might also want to read Chapter 28, “Transactions,” in The Java EE 6 Tutorial.

About Transactions
A transaction is a series of discreet actions in an application that must all complete successfully.
By enclosing one or more actions in an indivisible unit of work, a transaction ensures data
integrity and consistency. If all actions do not complete, the changes are rolled back.

For example, to transfer funds from a checking account to a savings account, the following steps
typically occur:

1. Check to see if the checking account has enough money to cover the transfer.
2. Debit the amount from the checking account.

18C H A P T E R 1 8

21

3. Credit the amount to the savings account.
4. Record the transfer to the checking account log.
5. Record the transfer to the savings account log.

These steps together are considered a single transaction.

If all the steps complete successfully, the transaction is committed. If any step fails, all changes
from the preceding steps are rolled back, and the checking account and savings account are
returned to the states they were in before the transaction started. This type of event is called a
rollback. A normal transaction ends in either a committed state or a rolled back state.

The following elements contribute to reliable transaction processing by implementing various
APIs and functionalities:

■ Transaction Manager. Provides the services and management functions required to
support transaction demarcation, transactional resource management, synchronization,
and transaction context propagation.

■ GlassFish Server. Provides the infrastructure required to support the application runtime
environment that includes transaction state management.

■ Resource Manager. Through a resource adapter, the resource manager provides the
application access to resources. The resource manager participates in distributed
transactions by implementing a transaction resource interface used by the transaction
manager to communicate transaction association, transaction completion, and recovery
work. An example of such a resource manager is a relational database server.

■ Resource Adapter. A system-level software library is used by GlassFish Server or a client to
connect to a resource manager. A resource adapter is typically specific to a resource
manager. The resource adapter is available as a library and is used within the address space
of the client using it. An example of such a resource adapter is a Java Database Connectivity
(JDBC) driver. For information on supported JDBC drivers, see “Configuration Specifics for
JDBC Drivers” on page .

■ Transactional User Application. In the GlassFish Server environment, the transactional
user application uses Java Naming and Directory Interface (JNDI) to look up transactional
data sources and, optionally, the user transaction). The application might use declarative
transaction attribute settings for enterprise beans, or explicit programmatic transaction
demarcation. For more information, see “The Transaction Manager, the Transaction
Synchronization Registry, and UserTransaction” in GlassFish Server Open Source
Edition 3.1 Application Development Guide.

The following topics are addressed here:

■ “Transaction Resource Managers” on page 23
■ “Transaction Scope” on page 23

About Transactions

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201022

Transaction Resource Managers
There are three types of transaction resource managers:
■ Databases - Use of transactions prevents databases from being left in inconsistent states due

to incomplete updates. For information about JDBC transaction isolation levels, see “Using
JDBC Transaction Isolation Levels” in GlassFish Server Open Source Edition 3.1 Application
Development Guide.
The GlassFish Server supports a variety of JDBC XA drivers. For a list of the JDBC drivers
currently supported by the GlassFish Server, see the GlassFish Server Open Source
Edition 3.1 Release Notes. For configurations of supported and other drivers, see
“Configuration Specifics for JDBC Drivers” on page .

■ Java Message Service (JMS) Providers - Use of transactions ensures that messages are
reliably delivered. The GlassFish Server is integrated with Open Message Queue, a fully
capable JMS provider. For more information about transactions and the JMS API, see
Chapter 16, “Administering the Java Message Service (JMS).”

■ J2EE Connector Architecture (CA) components - Use of transactions prevents legacy EIS
systems from being left in inconsistent states due to incomplete updates. For more
information about connectors, see Chapter 12, “Administering EIS Connectivity.”

Transaction Scope
A local transaction involves only one non-XA resource and requires that all participating
application components execute within one process. Local transaction optimization is specific
to the resource manager and is transparent to the Java EE application.

In the GlassFish Server, a JDBC resource is non-XA if it meets either of the following criteria:
■ In the JDBC connection pool configuration, the DataSource class does not implement the

javax.sql.XADataSource interface.
■ The Resource Type setting is not set to javax.sql.XADataSource.

A transaction remains local if the following conditions remain true:
■ One and only one non-XA resource is used. If any additional non-XA resource is used, the

transaction is aborted, because the transaction manager must use XA protocol to commit
two or more resources.

■ No transaction importing or exporting occurs.

Transactions that involve multiple resources or multiple participant processes are distributed or
global transactions. A global transaction can involve one non-XA resource if last agent
optimization is enabled. Otherwise, all resourced must be XA. The
use-last-agent-optimization property is set to true by default. For details about how to set
this property, see “Configuring the Transaction Service” on page 24.

About Transactions

Chapter 18 • Administering Transactions 23

If only one XA resource is used in a transaction, one-phase commit occurs, otherwise the
transaction is coordinated with a two-phase commit protocol.

A two-phase commit protocol between the transaction manager and all the resources enlisted
for a transaction ensures that either all the resource managers commit the transaction or they all
abort. When the application requests the commitment of a transaction, the transaction
manager issues a PREPARE_TO_COMMIT request to all the resource managers involved. Each of
these resources can in turn send a reply indicating whether it is ready for commit (PREPARED) or
not (NO). Only when all the resource managers are ready for a commit does the transaction
manager issue a commit request (COMMIT) to all the resource managers. Otherwise, the
transaction manager issues a rollback request (ABORT) and the transaction is rolled back.

Configuring the Transaction Service
You can configure the transaction service in the GlassFish Server in the following ways:

■ To configure the transaction service using the Administration Console, open the
Transaction Service component under the relevant configuration. For details, click the Help
button in the Administration Console.

■ To configure the transaction service, use the set(1) subcommand to set the following
attributes.
The following examples show the server-config configuration, but values for any
configuration can be set. For example, if you create a cluster named cluster1 and a
configuration named cluster1-config is automatically created for it, you can use
cluster1-config in the set subcommand to get the transaction service settings for that
cluster.

server-config.transaction-service.automatic-recovery = false

server-config.transaction-service.heuristic-decision = rollback

server-config.transaction-service.keypoint-interval = 2048

server-config.transaction-service.retry-timeout-in-seconds = 600

server-config.transaction-service.timeout-in-seconds = 0

server-config.transaction-service.tx-log-dir = domain-dir/logs

You can also set these properties:

server-config.transaction-service.property.oracle-xa-recovery-workaround = true

server-config.transaction-service.property.sybase-xa-recovery-workaround = false

server-config.transaction-service.property.disable-distributed-transaction-logging = false

server-config.transaction-service.property.xaresource-txn-timeout = 0

server-config.transaction-service.property.pending-txn-cleanup-interval = -1

server-config.transaction-service.property.use-last-agent-optimization = true

server-config.transaction-service.property.delegated-recovery = false

server-config.transaction-service.property.wait-time-before-recovery-insec = 60

server-config.transaction-service.property.purge-cancelled-transactions-after = 0

server-config.transaction-service.property.commit-one-phase-during-recovery = false

server-config.transaction-service.property.add-wait-point-during-recovery = 0

server-config.transaction-service.property.db-logging-resource = jdbc/TxnDS

server-config.transaction-service.property.xa-servername = myserver

Configuring the Transaction Service

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201024

Default property values are shown where they exist. For db-logging-resource and
xa-servername, typical values are shown. Values that are not self-explanatory are as follows:
■ The xaresource-txn-timeout default of 0 means there is no timeout. The units are

seconds.
■ The pending-txn-cleanup-interval default of -1 means the periodic recovery thread

doesn't run. The units are seconds.
■ The purge-cancelled-transactions-after default of 0 means cancelled transactions

are not purged. The units are the number of cancellations in between purging attempts.
■ The add-wait-point-during-recovery property does not have a default value. If this

property is unset, recovery does not wait. The units are seconds.
■ The db-logging-resource property does not have a default value. It is unset by default.

However, if you set db-logging-resource to an empty value, the value used is
jdbc/TxnDS.

■ The xa-servername property does not have a default value. Use this property to override
server names that can cause errors.

You can use the get(1) subcommand to list all the transaction service attributes and the
properties that have been set. For details, see the GlassFish Server Open Source Edition 3.1
Reference Manual.

Changing keypoint-interval, retry-timeout-in-seconds, or timeout-in-seconds does
not require a server restart. Changing other attributes or properties requires a server restart.

■ You can also set the following system properties:

ALLOW_MULTIPLE_ENLISTS_DELISTS=false

JTA_RESOURCE_TABLE_MAX_ENTRIES=8192

JTA_RESOURCE_TABLE_DEFAULT_LOAD_FACTOR=0.75f

The JTA_RESOURCE_TABLE_DEFAULT_LOAD_FACTOR default is the default Map resizing value.

Managing the Transaction Service for Rollbacks
You can roll back a single transaction by using the asadmin subcommands described in this
section. To do so, the transaction service must be stopped (and later restarted), allowing you to
see the active transactions and correctly identify the one that needs to be rolled back.

The following topics are addressed here:

■ “To Stop the Transaction Service” on page 26
■ “To Roll Back a Transaction” on page 26
■ “To Restart the Transaction Service” on page 27
■ “Determining Local Transaction Completion at Shutdown” on page 28

Managing the Transaction Service for Rollbacks

Chapter 18 • Administering Transactions 25

▼ To Stop the Transaction Service
Use the freeze-transaction-service subcommand in remote mode to stop the transaction
service. When the transaction service is stopped, all in-flight transactions are immediately
suspended. You must stop the transaction service before rolling back any in-flight transactions.

Running this subcommand on a stopped transaction subsystem has no effect. The transaction
service remains suspended until you restart it by using the unfreeze-transaction-service
subcommand.

Ensure that the server is running.

Remote subcommands require a running server.

Stop the transaction service by using the freeze-transaction-service(1) subcommand.

Stopping the Transaction Service

This example stops the transaction service.

asadmin> freeze-transaction-service

Command freeze-transaction-service executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

freeze-transaction-service at the command line.

▼ To Roll Back a Transaction
In some situations, you might want to roll back a particular transaction. Before you can roll
back a transaction, you must first stop the transaction service so that transaction operations are
suspended. Use the rollback-transaction subcommand in remote mode to roll back a
specific transaction.

Ensure that the server is running.

Remote subcommands require a running server.

Enable monitoring using the set subcommand. For example:
asadmin> set clstr1-config.monitoring-service.module-monitoring-levels.transaction-service=HIGH

Use the freeze-transaction-service subcommand to halt in-process transactions. See “To
Stop the Transaction Service”on page 26.

1

2

Example 18–1

See Also

1

2

3

Managing the Transaction Service for Rollbacks

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201026

Identify the ID of the transaction you want to roll back.
To see a list of IDs of active transactions, use the get subcommand with the --monitor option
to get the monitoring data for the activeids statistic. See “Transaction Service Statistics” on
page . For example:
asadmin> get --monitor inst1.server.transaction-service.activeids-current

Roll back the transaction by using the rollback-transaction(1) subcommand.
The transaction is not rolled back at the time of this command's execution, but only marked for
rollback. The transaction is rolled back when it is completed.

Rolling Back a Transaction

This example rolls back the transaction with transaction ID 0000000000000001_00.

asadmin> rollback-transaction 0000000000000001_00

Command rollback-transaction executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

rollback-transaction at the command line.

▼ To Restart the Transaction Service
Use the unfreeze-transaction-service subcommand in remote mote to resume all the
suspended in-flight transactions. Run this subcommand to restart the transaction service after
it has been frozen.

Ensure that the server is running.
Remote subcommands require a running server.

Restart the suspended transaction service by using the unfreeze-transaction-service(1)
subcommand.

Restarting the Transaction Service

This example restarts the transaction service after it has been frozen.

asadmin> unfreeze-transaction-service

Command unfreeze-transaction-service executed successfully

You can also view the full syntax and options of the subcommand by typing asadmin help

unfreeze-transaction-service at the command line.

4

5

Example 18–2

See Also

1

2

Example 18–3

See Also

Managing the Transaction Service for Rollbacks

Chapter 18 • Administering Transactions 27

Determining Local Transaction Completion at
Shutdown
When you shut down a GlassFish Server instance, all database connections are closed. When an
Oracle JDBC driver-based database connection is closed in the middle of a non-XA transaction,
all pending changes are committed. Other databases usually roll back pending changes when a
connection is closed without being explicitly committed. To determine the exact behavior for
your database, refer to the documentation from your JDBC driver vendor.

To explicitly specify whether GlassFish Server commits or rolls back non-XA transactions at
server shutdown, set the
com.sun.enterprise.in-progress-local-transaction.completion-mode JVM option to
either commit or rollback using the create-jvm-options(1) subcommand. For example:

asadmin> create-jvm-options -Dcom.sun.enterprise.in-progress-local-transaction.completion-mode=rollback

Recovering Transactions
There are some situations where the commit or rollback operations might be interrupted,
typically because the server crashed or a resource manager crashed. Crash situations can leave
some transactions stranded between steps. GlassFish Server is designed to recover from these
failures. If the failed transaction spans multiple servers, the server that started the transaction
can contact the other servers to get the outcome of the transaction. If the other servers are
unreachable, the transaction uses heuristic decision information to determine the outcome.

The following topics are addressed here:

■ “Automatic Transaction Recovery” on page 28
■ “To Manually Recover Transactions” on page 29
■ “Distributed Transaction Recovery” on page 30
■ “Recovery Workarounds and Limitations” on page 30

Automatic Transaction Recovery
GlassFish Server can perform automatic recovery in these ways:

■ Pending transactions are completed upon server startup if automatic-recovery is set to
true.

■ Periodic automatic recovery is performed by a background thread if the
pending-txn-cleanup-interval property is set to a positive value.

Changing these settings requires a server restart. For more information about how to change
these settings, see “Configuring the Transaction Service” on page 24.

Recovering Transactions

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201028

If commit fails during recovery, a message is written to the server log.

▼ To Manually Recover Transactions
Use the recover-transactions subcommand in remote mode to manually recover
transactions that were pending when a resource or a server instance failed.

For a standalone server, do not use manual transaction recovery to recover transactions after a
server failure. For a standalone server, manual transaction recovery can recover transactions
only when a resource fails, but the server is still running. If a standalone server fails, only the full
startup recovery process can recover transactions that were pending when the server failed.

For an installation of multiple server instances, you can use manual transaction recovery from a
surviving server instance to recover transactions after a server failure. For manual transaction
recovery to work properly, transaction logs must be stored on a shared file system that is
accessible to all server instances. See “Transaction Logging” on page 31.

When you execute recover-transactions in non-delegated mode, you can recover
transactions that didn't complete two-phase commit because of a resource crash. To use manual
transaction recovery in this way, the following conditions must be met:

■ The recover-transactions command should be executed after the resource is restarted.
■ Connection validation should be enabled so the connection pool is refreshed when the

resource is accessed after the recovery. For more information, see “Configuring the
Transaction Service” on page 24.

If commit fails during recovery, a message is written to the server log.

Note –

A JMS resource crash is handled the same way as any other resource.

You can list in-doubt Open Message Queue transactions using the imqcmd list txn
subcommand. For more information, see “Managing Transactions” in Open Message Queue 4.5
Administration Guide.

Ensure that the server is running.
Remote subcommands require a running server.

Manually recover transactions by using the recover-transactions(1) subcommand.

Manually Recovering Transactions

This example performs manual recovery of transactions on sampleserver.

1

2

Example 18–4

Recovering Transactions

Chapter 18 • Administering Transactions 29

asadmin recover-transactions sampleserver

Transaction recovered.

You can also view the full syntax and options of the subcommand by typing asadmin help

recover-transactions at the command line.

Distributed Transaction Recovery
To enable cluster-wide automatic recovery, you must first facilitate storing of transaction logs
in a shared file system. See “Transaction Logging” on page 31.

Next, you must set the transaction service's delegated-recovery property to true (the default
is false). For information about setting tx-log-dir and delegated-recovery, see
“Configuring the Transaction Service” on page 24.

Recovery Workarounds and Limitations
The GlassFish Server provides workarounds for some known issues with transaction recovery
implementations.

Note – These workarounds do not imply support for any particular JDBC driver.

General Recovery Limitations
The following general limitations apply to transaction recovery:

■ Recovery succeeds if there are no exceptions during the process. This is independent of the
number of transactions that need to be recovered.

■ Only transactions that did not complete the two-phase commit can be recovered (one of the
XA resources failed or GlassFish Server crashed after resources were prepared).

■ Manual transaction recovery cannot recover transactions after a server crash on a
stand-alone server instance. Manual operations are intended for cases when a resource dies
unexpectedly while the server is running. In case of a server crash, only startup recovery can
recover in-doubt transactions.

■ It is not possible to list transaction IDs for in-doubt transactions.
■ Delegated transaction recovery (by a different server instance in a cluster) is not possible if

the failed instance used an EMBEDDED Message Queue broker, or if it used a LOCAL or REMOTE
Message Queue broker and the broker also failed. In this case, only automatic recovery on
server instance restart is possible. This is because for conventional Message Queue
clustering, state information in a failed broker is not available until the broker restarts.

See Also

Recovering Transactions

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201030

Oracle Setup for Transaction Recovery
You must configure the following grant statements in your Oracle database to set up
transaction recovery:

grant select on SYS.DBA_PENDING_TRANSACTIONS to user;
grant execute on SYS.DBMS_SYSTEM to user;
grant select on SYS.PENDING_TRANS$ to user;
grant select on SYS.DBA_2PC_NEIGHBORS to user;
grant execute on SYS.DBMS_XA to user;
grant select on SYS.DBA_2PC_PENDING to user;

The user is the database administrator. On some versions of the Oracle driver the last grant
execute fails. You can ignore this.

Oracle Thin Driver
In the Oracle thin driver, the XAResource.recover method repeatedly returns the same set of
in-doubt Xids regardless of the input flag. According to the XA specifications, the Transaction
Manager initially calls this method with TMSTARTSCAN and then with TMNOFLAGS
repeatedly until no Xids are returned. The XAResource.commit method also has some issues.

To disable the GlassFish Server workaround, set the oracle-xa-recovery-workaround
property value to false. For details about how to set this property, see “Configuring the
Transaction Service” on page 24. This workaround is used unless explicitly disabled.

Delegated Recovery After Server Crash Doesn't Work on MySQL
The MySQL database supports XA transaction recovery only when the database crashes. When
a GlassFish Server instance crashes, MySQL rolls back prepared transactions.

Transaction Logging
The transaction service writes transactional activity into transaction logs so that transactions
can be recovered. You can control transaction logging in these ways:
■ Set the location of the transaction log files in one of these ways:

■ Set the GlassFish Server's log-root setting to a shared file system base directory and set
the transaction service's tx-log-dir attribute to a relative path.

■ Set tx-log-dir to an absolute path to a shared file system directory, in which case
log-root is ignored for transaction logs.

■ Set a system property called TX-LOG-DIR to a shared file system directory. For example:

asadmin> create-system-properties --target server TX-LOG-DIR=/inst1/logs

For information about setting log-root and other general logging settings, see Chapter 7,
“Administering the Logging Service.”

Transaction Logging

Chapter 18 • Administering Transactions 31

■ Turn off transaction logging by setting the disable-distributed-transaction-logging
property to true and the automatic-recovery attribute to false. Do this only if
performance is more important than transaction recovery.

Note – All instances in a cluster must be owned by the same user (uid), and read/write
permissions for that user must be set on the transaction log directories.

Transaction logs should be stored in a high-availability network file system (NFS) to avoid a
single point of failure.

▼ To Store Transaction Logs in a Database
For multi-core machines, logging transactions to a database may be more efficient.

This feature is intended for resource recovery on a stand-alone server instance while the
instance is healthy, not for a server crash. It is not intended for use on a cluster.

Create a JDBC connection Pool, and set the non-transactional-connections attribute to
true.

Create a JDBC resource that uses the connection pool and note the JNDI name of the JDBC
resource.

Create a table named txn_log_tablewith the following schema:

Column Name JDBC Type

LOCALTID BIGINT

SERVERNAME VARCHAR(n)

GTRID VARBINARY

The size of the SERVERNAME column should be at least the length of the GlassFish Server host
name plus 10 characters.

The size of the GTRID column should be at least 64 bytes.

Add the db-logging-resource property to the transaction service. For example:
asadmin set server-config.transaction-service.property.db-logging-resource="jdbc/TxnDS"

The property's value should be the JNDI name of the JDBC resource configured previously.

To disable file synchronization, use the following asadmin create-jvm-options command:
asadmin create-jvm-options -Dcom.sun.appserv.transaction.nofdsync

1

2

3

4

5

Transaction Logging

GlassFish Server Open Source Edition 3.1 Administration Guide • July 201032

Restart the server.

To define the SQL used by the transaction manager when it is storing its transaction logs in the
database, use the following flags:

-Dcom.sun.jts.dblogging.insertquery=sql statement

-Dcom.sun.jts.dblogging.deletequery=sql statement

The default statements are as follows:

-Dcom.sun.jts.dblogging.insertquery=insert into txn_log_table values (?, ?, ?)

-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where localtid =

? and servername = ?

To set one of these flags using the asadmin create-jvm-options command, you must quote
the statement. For example:

create-jvm-options ’-Dcom.sun.jts.dblogging.deletequery=delete from

txn_log_table where gtrid = ?’

You can also set JVM options in the Administration Console. Select the JVM Settings
component under the relevant configuration. These flags and their statements must also be
quoted in the Administration Console. For example:

’-Dcom.sun.jts.dblogging.deletequery=delete from txn_log_table where gtrid = ?’

For information about JDBC connection pools and resources, see Chapter 11, “Administering
Database Connectivity.” For more information about the asadmin create-jvm-options
command, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

6

Next Steps

See Also

Transaction Logging

Chapter 18 • Administering Transactions 33

