
Developing Java Clients

This chapter describes how to develop, assemble, and deploy Java clients in the following
sections:

■ “Introducing the Application Client Container” on page 17
■ “Developing Clients Using the ACC” on page 19

Note – The Web Profile of the OracleGlassFish Server supports the EJB 3.1 Lite specification,
which allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

Accordingly, the Application Client Container is supported only in the full GlassFish Server,
not in the Web Profile.

JMS resources are supported only in the full GlassFish Server, not in the Web Profile. See
Chapter 17, “Using the Java Message Service.”

Introducing the Application Client Container
The Application Client Container (ACC) includes a set of Java classes, libraries, and other files
that are required for and distributed with Java client programs that execute in their own Java
Virtual Machine (JVM). The ACC manages the execution of Java EE application client
components (application clients), which are used to access a variety of Java EE services (such as
JMS resources, EJB components, web services, security, and so on.) from a JVM outside the
Oracle GlassFish Server.

The ACC communicates with the GlassFish Server using RMI-IIOP protocol and manages the
details of RMI-IIOP communication using the client ORB that is bundled with it. Compared to
other Java EE containers, the ACC is lightweight.

11C H A P T E R 1 1

17



For information about debugging application clients, see “Application Client Debugging” on
page .

Note – Interoperability between application clients and GlassFish Servers running under
different major versions is not supported.

ACC Security
The ACC determines when authentication is needed. This typically occurs when the client
refers to an EJB component that requires authorization or when annotations in the client's main
class trigger injection which, in turn, requires contact with the GlassFish Server's naming
service. To authenticate the end user, the ACC prompts for any required information, such as a
username and password. The ACC itself provides a very simple dialog box to prompt for and
read these values.

The ACC integrates with the GlassFish Server’s authentication system. It also supports SSL
(Secure Socket Layer)/IIOP if configured and when necessary; see “Using RMI/IIOP Over SSL”
on page 34.

You can provide an alternate implementation to gather authentication information, tailored to
the needs of the application client. To do so, include the class to perform these duties in the
application client and identify the fully-qualified name of this class in the callback-handler
element of the application-client.xml descriptor for the client. The ACC uses this class
instead of its default class for asking for and reading the authentication information. The class
must implement the javax.security.auth.callback.CallbackHandler interface. See the Java EE
specification, section 9.2, Application Clients: Security, for more details.

Application clients can use “Programmatic Login” on page .

ACC Naming
The client container enables the application clients to use the Java Naming and Directory
Interface (JNDI) to look up Java EE services (such as JMS resources, EJB components, web
services, security, and so on.) and to reference configurable parameters set at the time of
deployment.

Application Client Annotation
Annotation is supported for the main class and the optional callback handler class in
application clients. For more information, see “Deployment Descriptors and Annotations” in
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

Introducing the Application Client Container

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201018



Java Web Start
Java Web Start allows your application client to be easily launched and automatically
downloaded and updated. It is enabled for all application clients by default. For more
information, see “Using Java Web Start” on page 22.

Application Client JAR File
In GlassFish Server 3.1, the downloaded appclient JAR file is smaller than in previous releases,
with dependent classes in separate JAR files. When copying the downloaded appclient to
another location, make sure to include the JAR files containing the dependent classes as well.
You can also use the asadmin get-client-stubs command to retrieve the appclient and all
associated application JAR files and place them in another location.

Developing Clients Using the ACC
This section describes the procedure to develop, assemble, and deploy client applications using
the ACC. This section describes the following topics:

■ “To Access an EJB Component From an Application Client” on page 19
■ “To Access a JMS Resource From an Application Client” on page 21
■ “Using Java Web Start” on page 22
■ “Using the Embeddable ACC” on page 32
■ “Running an Application Client Using the appclient Script” on page 33
■ “Using the package-appclient Script” on page 33
■ “The client.policy File” on page 34
■ “Using RMI/IIOP Over SSL” on page 34
■ “Connecting to a Remote EJB Module Through a Firewall” on page 35
■ “Specifying a Splash Screen” on page 36
■ “Setting Login Retries” on page 37
■ “Using Libraries with Application Clients” on page 37

▼ To Access an EJB Component From an Application
Client

In your client code, reference the EJB component by using an @EJB annotation or by looking up
the JNDI name as defined in the ejb-jar.xml file.
For more information about naming and lookups, see “Accessing the Naming Context” on
page .

1

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 19



If load balancing is enabled as in Step 7 and the EJB components being accessed are in a
different cluster, the endpoint list must be included in the lookup, as follows:
corbaname:host1:port1,host2:port2,.../NameService#ejb/jndi-name

Define the @EJB annotations or the ejb-ref elements in the application-client.xml file.
Define the corresponding ejb-ref elements in the glassfish-application-client.xml file.
For more information on the glassfish-application-client.xml file, see “The
glassfish-application-client.xml file” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide. For a general explanation of how to map JNDI names using reference
elements, see “Mapping References” on page .

Deploy the application client and EJB component together in an application.
For more information on deployment, see the GlassFish Server Open Source Edition 3.1
Application Deployment Guide. To get the client JAR file, use the --retrieve option of the
asadmin deploy command.

To retrieve the stubs and ties generated during deployment, use the asadmin
get-client-stubs command. For details, see the GlassFish Server Open Source Edition 3.1
Reference Manual.

Ensure that the client JAR file includes the following files:

■ A Java class to access the bean.
■ application-client.xml - (optional) Java EE application client deployment descriptor.
■ glassfish-application-client.xml - (optional) GlassFish Server specific client

deployment descriptor. For information on the glassfish-application-client.xml file,
see “The glassfish-application-client.xml file” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

■ The MANIFEST.MF file. This file contains a reference to the main class, which states the
complete package prefix and class name of the Java client.

Prepare the client machine.
This step is not needed for Java Web Start. This step is not needed if the client and server
machines are the same.

If you are using the appclient script, package the GlassFish Server system files required to
launch application clients on remote systems using the package-appclient script, then retrieve
the application client itself using the asadmin get-client-stubs command.

For more information, see “Using the package-appclient Script” on page 33 and the
GlassFish Server Open Source Edition 3.1 Reference Manual.

To access EJB components that are residing in a remote system, make the following changes to
the sun-acc.xml file or the appclient script. This step is not needed for Java Web Start.

2

3

4

5

6

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201020



■ Define the target-server element’s address and port attributes to reference the remote
server machine and its ORB port. See “target-server” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

■ Use the -targetserver option of the appclient script to reference the remote server
machine and its ORB port. For more information, see “Running an Application Client
Using the appclient Script” on page 33.

To determine the ORB port on the remote server, use the asadmin get command. For example:

asadmin --host rmtsrv get server-config.iiop-service.iiop-listener.iiop-listener1.port

For more information about the asadmin get command, see the GlassFish Server Open Source
Edition 3.1 Reference Manual.

To set up load balancing and failover of remote EJB references, define at least two
target-server elements in the sun-acc.xml file or the appclient script. This step is not
needed for Java Web Start.
If the GlassFish Server instance on which the application client is deployed participates in a
cluster, the ACC finds all currently active IIOP endpoints in the cluster automatically. However,
a client should have at least two endpoints specified for bootstrapping purposes, in case one of
the endpoints has failed.

The target-server elements in the sun-acc.xml file specify one or more IIOP endpoints used
for load balancing. The address attribute is an IPv4 address or host name, and the port
attribute specifies the port number. See “client-container” in GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

The --targetserver option of the appclient script specifies one or more IIOP endpoints used
for load balancing. For more information, see “Running an Application Client Using the
appclient Script” on page 33.

Run the application client.
See “Using Java Web Start” on page 22 or “Running an Application Client Using the appclient
Script” on page 33.

▼ To Access a JMS Resource From an Application Client
Create a JMS client.
For detailed instructions on developing a JMS client, see “Chapter 33: The Java Message Service
API” in the The Java EE 6 Tutorial.

Next, configure a JMS resource on the GlassFish Server.
For information on configuring JMS resources, see Broken Link (Target ID: BEAOK).

7

8

1

2

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 21



Define the @Resource or @Resources annotations or the resource-ref elements in the
application-client.xml file. Define the corresponding resource-ref elements in the
glassfish-application-client.xml file.
For more information on the glassfish-application-client.xml file, see “The
glassfish-application-client.xml file” in GlassFish Server Open Source Edition 3.1 Application
Deployment Guide. For a general explanation of how to map JNDI names using reference
elements, see “Mapping References” on page .

Ensure that the client JAR file includes the following files:

■ A Java class to access the resource.
■ application-client.xml - (optional) Java EE application client deployment descriptor.
■ glassfish-application-client.xml - (optional) GlassFish Server specific client

deployment descriptor. For information on the glassfish-application-client.xml file,
see “The glassfish-application-client.xml file” in GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

■ The MANIFEST.MF file. This file contains a reference to the main class, which states the
complete package prefix and class name of the Java client.

Prepare the client machine.
This step is not needed for Java Web Start. This step is not needed if the client and server
machines are the same.

If you are using the appclient script, package the GlassFish Server system files required to
launch application clients on remote systems using the package-appclient script, then retrieve
the application client itself using the asadmin get-client-stubs command.

For more information, see “Using the package-appclient Script” on page 33 and the
GlassFish Server Open Source Edition 3.1 Reference Manual.

Run the application client.
See “Using Java Web Start” on page 22 or “Running an Application Client Using the appclient
Script” on page 33.

Using Java Web Start
Java Web Start allows your application client to be easily launched and automatically
downloaded and updated. General information about Java Web Start is available at
http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp.

Java Web Start is discussed in the following topics:
■ “Enabling and Disabling Java Web Start” on page 23
■ “Downloading and Launching an Application Client” on page 23

3

4

5

6

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201022



■ “The Application Client URL” on page 24
■ “Signing JAR Files Used in Java Web Start” on page 25
■ “Error Handling” on page 27
■ “Vendor Icon, Splash Screen, and Text” on page 27
■ “Creating a Custom JNLP File” on page 27

Enabling and Disabling Java Web Start
Java Web Start is enabled for all application clients by default.

The application developer or deployer can specify that Java Web Start is always disabled for an
application client by setting the value of the eligible element to false in the
glassfish-application-client.xml file. See the GlassFish Server Open Source Edition 3.1
Application Deployment Guide.

The GlassFish Server administrator can disable Java Web Start for a previously deployed eligible
application client using the asadmin set command.

To disable Java Web Start for all eligible application clients in an application, use the following
command:

asadmin set applications.application.app-name.property.java-web-start-enabled="false"

To disable Java Web Start for a stand-alone eligible application client, use the following
command:

asadmin set applications.application.module-name.property.java-web-start-enabled="false"

Setting java-web-start-enabled="true" re-enables Java Web Start for an eligible application
client. For more information about the asadmin set command, see the GlassFish Server Open
Source Edition 3.1 Reference Manual.

Downloading and Launching an Application Client
If Java Web Start is enabled for your deployed application client, you can launch it for testing.
Simply click on the Launch button next to the application client or application's listing on the
App Client Modules page in the Administration Console.

On other machines, you can download and launch the application client using Java Web Start in
the following ways:
■ Using a web browser, directly enter the URL for the application client. See “The Application

Client URL” on page 24.
■ Click on a link to the application client from a web page.
■ Use the Java Web Start command javaws, specifying the URL of the application client as a

command line argument.
■ If the application has previously been downloaded using Java Web Start, you have

additional alternatives.

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 23



■ Use the desktop icon that Java Web Start created for the application client. When Java
Web Start downloads an application client for the first time it asks you if such an icon
should be created.

■ Use the Java Web Start control panel to launch the application client.

When you launch an application client, Java Web Start contacts the server to see if a newer
client version is available. This means you can redeploy an application client without having to
worry about whether client machines have the latest version.

The Application Client URL
The default URL for an application or module generally is as follows:

http://host:port/context-root

The default URL for a stand-alone application client module is as follows:

http://host:port/appclient-module-id

The default URL for an application client module embedded within an application is as follows.
Note that the relative path to the application client JAR file is included.

http://host:port/application-id/appclient-path

If the context-root, appclient-module-id, or application-id is not specified during deployment,
the name of the JAR or EAR file without the extension is used. If the application client module
or application is not in JAR or EAR file format, an appclient-module-id or application-id is
generated.

Regardless of how the context-root or id is determined, it is written to the server log when you
deploy the application. For details about naming, see “Naming Standards” in GlassFish Server
Open Source Edition 3.1 Application Deployment Guide.

To set a different URL for an application client, use the context-root subelement of the
java-web-start-access element in the glassfish-application-client.xml file. This
overrides the appclient-module-id or application-id. See GlassFish Server Open Source
Edition 3.1 Application Deployment Guide.

You can also pass arguments to the ACC or to the application client's main method as query
parameters in the URL. If multiple application client arguments are specified, they are passed in
the order specified.

A question mark separates the context root from the arguments. Ampersands (&) separate the
arguments and their values. Each argument and each value must begin with arg=. Here is an
example URL with a -color argument for a stand-alone application client. The -color
argument is passed to the application client's main method.

http://localhost:8080/testClient?arg=-color&arg=red

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201024



Note – If you are using the javaws URL command to launch Java Web Start with a URL that
contains arguments, enclose the URL in double quotes (") to avoid breaking the URL at the
ampersand (&) symbol.

Ideally, you should build your production application clients with user-friendly interfaces that
collect information which might otherwise be gathered as command-line arguments. This
minimizes the degree to which users must customize the URLs that launch application clients
using Java Web Start. Command-line argument support is useful in a development
environment and for existing application clients that depend on it.

Signing JAR Files Used in Java Web Start
Java Web Start enforces a security sandbox. By default it grants any application, including
application clients, only minimal privileges. Because Java Web Start applications can be so
easily downloaded, Java Web Start provides protection from potentially harmful programs that
might be accessible over the network. If an application requires a higher privilege level than the
sandbox permits, the code that needs privileges must be in a JAR file that was signed.

When Java Web Start downloads such a signed JAR file, it displays information about the
certificate that was used to sign the JAR if that certificate is not trusted. It then asks you whether
you want to trust that signed code. If you agree, the code receives elevated permissions and
runs. If you reject the signed code, Java Web Start does not start the downloaded application.

Your first Java Web Start launch of an application client is likely to involve this prompting
because by default GlassFish Server uses a self-signed certificate that is not linked to a trusted
authority.

The GlassFish Server serves two types of signed JAR files in response to Java Web Start requests.
One type is a JAR file installed as part of the GlassFish Server, which starts an application client
during a Java Web Start launch: as-install/lib/gf-client.jar.

The other type is a generated application client JAR file. As part of deployment, the GlassFish
Server generates a new application client JAR file that contains classes, resources, and
descriptors needed to run the application client on end-user systems. When you deploy an
application with the asadmin deploy command's --retrieve option, use the asadmin
get-client-stubs command, or select the Generate RMIStubs option from the EJB Modules
deployment page in the Administration Console, this is one of the JAR files retrieved to your
system. Because application clients need access beyond the minimal sandbox permissions to
work in the Java Web Start environment, the generated application client JAR file must be
signed before it can be downloaded to and executed on an end-user system.

A JAR file can be signed automatically or manually. The following sections describe the ways of
signing JAR files.
■ “Automatically Signing JAR Files” on page 26

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 25



■ “Using the jar-signing-alias Deployment Property” on page 26

Automatically Signing JAR Files

The GlassFish Server automatically creates a signed version of the required JAR file if none
exists. When a Java Web Start request for the gf-client.jar file arrives, the GlassFish Server
looks for domain-dir/java-web-start/gf-client.jar. When a request for an application's
generated application client JAR file arrives, the GlassFish Server looks in the directory
domain-dir/java-web-start/app-name for a file with the same name as the generated JAR file
created during deployment.

In either case, if the requested signed JAR file is absent or older than its unsigned counterpart,
the GlassFish Server creates a signed version of the JAR file automatically and deposits it in the
relevant directory. Whether the GlassFish Server just signed the JAR file or not, it serves the file
from the domain-dir/java-web-start directory tree in response to the Java Web Start request.

To sign these JAR files, by default the GlassFish Server uses its self-signed certificate. When you
create a new domain, either by installing the GlassFish Server or by using the asadmin
create-domain command, the GlassFish Server creates a self-signed certificate and adds it to
the domain's key store.

A self-signed certificate is generally untrustworthy because no certification authority vouches
for its authenticity. The automatic signing feature uses the same certificate to create all required
signed JAR files.

Using the jar-signing-alias Deployment Property

The asadmin deploy command property jar-signing-alias specifies the alias for the security
certificate with which the application client container JAR file is signed.

Java Web Start won't execute code requiring elevated permissions unless it resides in a JAR file
signed with a certificate that the user's system trusts. For your convenience, GlassFish Server
signs the JAR file automatically using the self-signed certificate from the domain, s1as. Java
Web Start then asks the user whether to trust the code and displays the GlassFish Server
certificate information.

To sign this JAR file with a different certificate, first add the certificate to the domain keystore.
You can use a certificate from a trusted authority, which avoids the Java Web Start prompt. To
add a certificate to the domain keystore, see “Administering JSSE Certificates ” in Oracle
GlassFish Server 3.0.1 Administration Guide.

Next, deploy your application using the jar-signing-alias property. For example:

asadmin deploy --property jar-signing-alias=MyAlias MyApp.ear

For more information about the asadmin deploy command, see the GlassFish Server Open
Source Edition 3.1 Reference Manual.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201026



Error Handling
When an application client is launched using Java Web Start, any error that the application
client logic does not catch and handle is written to System.err and displayed in a dialog box.
This display appears if an error occurs even before the application client logic receives control.
It also appears if the application client code does not catch and handle errors itself.

Vendor Icon, Splash Screen, and Text
To specify a vendor-specific icon, splash screen, text string, or a combination of these for Java
Web Start download and launch screens, use the vendor element in the
glassfish-application-client.xml file. The complete format of this element's data is as
follows:

<vendor>icon-image-URI::splash-screen-image-URI::vendor-text</vendor>

The following example vendor element contains an icon, a splash screen, and a text string:

<vendor>images/icon.jpg::otherDir/splash.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains an icon and a text string:

<vendor>images/icon.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains a splash screen and a text string; note the initial
double colon:

<vendor>::otherDir/splash.jpg::MyCorp, Inc.</vendor>

The following example vendor element contains only a text string:

<vendor>MyCorp, Inc.</vendor>

The default value is the text string Application Client.

For more information about the glassfish-application-client.xml file, see the GlassFish
Server Open Source Edition 3.1 Application Deployment Guide.

You can also specify a vendor-specific icon, splash screen, text string, or a combination by using
a custom JNLP file; see “Creating a Custom JNLP File” on page 27.

Creating a Custom JNLP File
You can partially customize the Java Network Launching Protocol (JNLP) file that GlassFish
Server uses for Java Web Start.

Custom JNLP files are discussed in the following topics:
■ “Specifying the JNLP File in the Deployment Descriptor” on page 28

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 27



■ “Referring to JAR Files from the JNLP File” on page 28
■ “Referring to Other JNLP Files” on page 29
■ “Combining Custom and Automatically Generated Content” on page 29

For more information about JNLP, see the Java Web Start Architecture JNLP Specification and
API Documentation (http://java.sun.com/
javase/technologies/desktop/javawebstart/download-spec.html).

Specifying the JNLP File in the Deployment Descriptor

To specify a custom JNLP file for Java Web Start, use the jnlp-doc element in the
glassfish-application-client.xml file. If none is specified, a default JNLP file is generated.

The value of the jnlp-doc element is a relative path with the following format:

[path-to-JAR-in-EAR!]path-to-JNLP-in-JAR

The default path-to-JAR-in-EAR is the current application client JAR file. For example, if the
JNLP file is in the application client JAR file at custom/myInfo.jnlp, the element value would
look like this:

<java-web-start-access>

<jnlp-doc>custom/myInfo.jnlp</jnlp-doc>

</java-web-start-access>

If the application client is inside an EAR file, you can place the custom JNLP file inside another
JAR file in the EAR. For example, if the JNLP file is in a JAR file at other/myLib.jar, the
element value would look like this, with an exclamation point (!) separating the path to the JAR
from the path in the JAR:

<java-web-start-access>

<jnlp-doc>other/myLib.jar!custom/myInfo.jnlp</jnlp-doc>

</java-web-start-access>

For more information about the glassfish-application-client.xml file, see the Oracle
GlassFish Server 3.0.1 Application Deployment Guide.

Referring to JAR Files from the JNLP File

As with any JNLP document, the custom JNLP file can refer to JAR files the application client
requires.

Do not specify every JAR on which the client depends. GlassFish Server automatically handles
JAR files that the Java EE specification requires to be available to the application client. This
includes JAR files listed in the application client JAR file's manifest Class-Path and JAR files in
the EAR file's library directory (if any) and their transitive closures. The custom JNLP file
should specify only those JAR files the client needs that GlassFish Server would not otherwise
include.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201028



Package these JAR files in the EAR file, as with any JAR file required by an application client.
Use relative URIs in the <jar href="..."> and <nativelib href="..."> elements to point to
the JAR files. The codebase that GlassFish Server assigns for the final client JNLP file
corresponds to the top level of the EAR file. Therefore, relative href references correspond
directly to the relative path to the JAR files within the EAR file.

Neither the Java EE specification nor GlassFish Server supports packaging JAR files inside the
application client JAR file itself. Nothing prevents this, but GlassFish Server does no special
processing of such JAR files. They do not appear in the runtime class path and they cannot be
referenced from the custom JNLP file.

Referring to Other JNLP Files

The JNLP file can also refer to other custom JNLP files using <extension href="..."/>
elements. To be consistent with relative href references to JAR files, the relative href references
to JNLP files are resolved within the EAR file. You can place these JNLP files directly in the EAR
file or inside JAR files that the EAR file contains. Use one of these formats for these href
references:

[path-to-JAR-in-EAR!]path-to-JNLP-in-JAR

path-to-JNLP-in-EAR

Note that these formats are not equivalent to the format of the jnlp-doc element in the
glassfish-application-client.xml file.

These formats follow the standard entry-within-a-JAR URI syntax and semantics. Support for
this syntax comes from the automated Java Web Start support in GlassFish Server. This is not a
feature of Java Web Start or the JNLP standard.

Combining Custom and Automatically Generated Content

GlassFish Server recognizes these types of content in the JNLP file:
■ Owned — GlassFish Server owns the content and ignores any custom content
■ Merged — Automatically generated content and custom content are merged
■ Defaulted — Custom content is used if present, otherwise default content is provided

You can compose a complete JNLP file and package it with the application client. GlassFish
Server then combines it with its automatically generated JNLP file. You can also provide
content that only adds to or replaces what GlassFish Server generates. The custom content must
conform to the general structure of the JNLP format so that GlassFish Server can properly place
it in the final JNLP file.

For example, to specify a single native library to be included only for Windows systems, the new
element to add might be as follows:

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 29



<nativelib href="windows/myLib.jar"/>

However, you must indicate where in the overall document this element belongs. The actual
custom JNLP file should look like this:

<jnlp>

<resources os="Windows">
<nativelib href="windows/myLib.jar"/>

</resources>

</jnlp>

GlassFish Server provides default <information> and <resources> elements, without
specifying attributes such as os, arch, platform, or locale. GlassFish Server merges its own
content within those elements with custom content under those elements. Further, you can
provide your own <information> and <resources> elements (and fragments within them)
that specify at least one of these attributes.

In general, you can perform the following customizations:

■ Override the GlassFish Server defaults for the child elements of <information> elements
that have no attribute settings for os, arch, platform, and locale. Among these child
elements are <title>, <vendor>, <description>, <icon>, and so on.

■ Add <information> elements with os, arch, platform, or locale settings. You can also add
child elements.

■ Add child elements of <resources> elements that have no attribute settings for os, arch, or
locale. Among these child elements are <jar>, <property>, <nativelib>, and so on. You
can also customize attributes of the <java> child element.

■ Add <resources> elements that specify at least one of os, arch, or locale. You can also add
child elements.

This flexibility allows you to add JAR files to the application (including platform-specific native
libraries) and set properties to control the behavior of your application clients.

The following tables provide more detail about what parts of the JNLP file you can add to and
modify.

TABLE 11–1 Owned JNLP File Content

JNLP File Fragment Description

<jnlp codebase="xxx" ...> GlassFish Server controls this content for application clients
packaged in EAR files. The developer controls this content for
application clients packaged in WAR files.

<jnlp href="xxx" ...> GlassFish Server controls this content for application clients
packaged in EAR files. The developer controls this content for
application clients packaged in WAR files.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201030



TABLE 11–1 Owned JNLP File Content (Continued)
JNLP File Fragment Description

<jnlp>

<security>

GlassFish Server must control the permissions requested for
each JNLP file. All permissions are needed for the main file,
which launches the ACC. The permissions requested for other
JNLP documents depend on whether the JAR files referenced in
those documents are signed.

<jnlp>

<application-desc>

<argument> ...

GlassFish Server sets the main-class and the arguments to be
passed to the client.

TABLE 11–2 Defaulted JNLP File Content

JNLP File Fragment Description

<jnlp spec="xxx" ...> Specifies the JNLP specification version.

<jnlp>

<information [no-attributes]>

Specifies the application title, vendor, home page, various
description text values, icon images, and whether offline
execution is allowed.

<jnlp>

<resources [no-attributes]>

<java version="xxx"
java-vm-args="yyy" ...>

Specifies the Java SE version or selected VM parameter settings.

TABLE 11–3 Merged JNLP File Content

JNLP File Fragment Description

<jnlp>

<information [attributes]>

You can specify one or more of the os, arch, platform, and
locale attributes for the <information> element. You can also
specify child elements; GlassFish Server provides no default
children.

<jnlp>

<resources [attributes]>

You can specify one or more of the os, arch, platform, and
locale attributes for the <resources> element. You can also
specify child elements; GlassFish Server provides no default
children.

<jnlp>

<resources [no-attributes]>

<jar ...>

Adds JAR files to be included in the application to the JAR files
provided by GlassFish Server.

<jnlp>

<resources [no-attributes]>

<nativelib ...>

Adds native libraries to be included in the application. Each
entry in a JAR listed in a <nativelib> element must be a native
library for the correct platform. The full syntax of the
<nativelib> element lets the developer specify the platform for
that native library.

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 31



TABLE 11–3 Merged JNLP File Content (Continued)
JNLP File Fragment Description

<jnlp>

<resources [no-attributes]>

<property ...>

Adds system properties to be included in the application to the
system properties defined by GlassFish Server.

<jnlp>

<resources [no-attributes]>

<extension ...>

Specifies another custom JNLP file.

<jnlp>

<component-desc ...>

Includes another custom JNLP file that specifies a component
extension.

<jnlp>

<installer-desc ...>

Includes another custom JNLP file that specifies an installer
extension.

Using the Embeddable ACC
You can embed the ACC into your application client. If you place the
as-install/lib/gf-client.jar file in your runtime classpath, your application creates the ACC
after your application code has started, then requests that the ACC start the application client
portion. The basic model for coding is as follows:

1. Create a builder object.
2. Operate on the builder to configure the ACC.
3. Obtain a new ACC instance from the builder.
4. Present a client archive or class to the ACC instance.
5. Start the client running within the newly created ACC instance.

Your code should follow this general pattern:

// one TargetServer for each ORB endpoint for bootstrapping

TargetServer[] servers = ...;

// Get a builder to set up the ACC

AppClientContainer.Builder builder = AppClientContainer.newBuilder(servers);

// Fine-tune the ACC’s configuration. Note ability to "chain" invocations.

builder.callbackHandler("com.acme.MyHandler").authRealm("myRealm"); // Modify config

// Get a container for a client.

URI clientURI = ...; // URI to the client JAR

AppClientContainer acc = builder.newContainer(clientURI);

or

Class mainClass = ...;

AppClientContainer acc = builder.newContainer(mainClass);

// In either case, start the client running.

String[] appArgs = ...;

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201032



acc.startClient(appArgs); // Start the client

...

acc.close(); // close the ACC(optional)

The ACC loads the application client's main class, performs any required injection, and
transfers control to the static main method. The ACC's run method returns to the calling
application as soon as the client's main method returns to the ACC.

If the application client's main method starts any asynchronous activity, that work continues
after the ACC returns. The ACC has no knowledge of whether the client's main method triggers
asynchronous work. Therefore, if the client causes work on threads other than the calling
thread, and if the embedding application needs to know when the client's asynchronous work
completes, the embedding application and the client must agree on how this happens.

The ACC's shutdown handling is invoked from the ACC's close method. The calling
application can invoke acc.close() to close down any services started by the ACC. If the
application client code started any asynchronous activity that might still depend on ACC
services, invoking close before that asynchronous activity completes could cause unpredictable
and undesirable results. The shutdown handling is also run automatically at VM shutdown if
the code has not invoked close before then.

The ACC does not prevent the calling application from creating or running more than one ACC
instance during a single execution of the application either serially or concurrently. However,
other services used by the ACC (transaction manager, security, ORB, and so on) might or might
not support such serial or concurrent reuse.

Running an Application Client Using the appclient
Script
To run an application client, you can launch the ACC using the appclient script, whether or
not Java Web Start is enabled. This is optional. This script is located in the as-install/bin
directory. For details, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

Using the package-appclient Script
You can package the GlassFish Server system files required to launch application clients on
remote systems into a single JAR file using the package-appclient script. This is optional. This
script is located in the as-install/bin directory. For details, see the GlassFish Server Open Source
Edition 3.1 Reference Manual.

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 33



The client.policy File
The client.policy file is the J2SE policy file used by the application client. Each application
client has a client.policy file. The default policy file limits the permissions of Java EE
deployed application clients to the minimal set of permissions required for these applications to
operate correctly. If an application client requires more than this default set of permissions, edit
the client.policy file to add the custom permissions that your application client needs. Use
the J2SE standard policy tool or any text editor to edit this file.

For more information on using the J2SE policy tool, see http://java.sun.com/docs/books/
tutorial/security/tour2/index.html.

For more information about the permissions you can set in the client.policy file, see
http://java.sun.com/javase/6/docs/technotes/guides/security/permissions.html.

Using RMI/IIOP Over SSL
You can configure RMI/IIOP over SSL in two ways: using a username and password, or using a
client certificate.

To use a username and password, configure the ior-security-config element in the
glassfish-ejb-jar.xml file. The following configuration establishes SSL between an
application client and an EJB component using a username and password. The user has to login
to the ACC using either the sun-acc.xml mechanism or the “Programmatic Login” on page
mechanism.

<ior-security-config>

<transport-config>

<integrity>required</integrity>

<confidentiality>required</confidentiality>

<establish-trust-in-target>supported</establish-trust-in-target>

<establish-trust-in-client>none</establish-trust-in-client>

</transport-config>

<as-context>

<auth-method>username_password</auth-method>

<realm>default</realm>

<required>true</required>

</as-context>

<sas-context>

<caller-propagation>none</caller-propagation>

</sas-context>

</ior-security-config>

For more information about the glassfish-ejb-jar.xml and sun-acc.xml files, see the
GlassFish Server Open Source Edition 3.1 Application Deployment Guide.

To use a client certificate, configure the ior-security-config element in the
glassfish-ejb-jar.xml file. The following configuration establishes SSL between an
application client and an EJB component using a client certificate.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201034



<ior-security-config>

<transport-config>

<integrity>required</integrity>

<confidentiality>required</confidentiality>

<establish-trust-in-target>supported</establish-trust-in-target>

<establish-trust-in-client>required</establish-trust-in-client>

</transport-config>

<as-context>

<auth-method>none</auth-method>

<realm>default</realm>

<required>false</required>

</as-context>

<sas-context>

<caller-propagation>none</caller-propagation>

</sas-context>

</ior-security-config>

To use a client certificate, you must also specify the system properties for the keystore and
truststore to be used in establishing SSL. To use SSL with the Application Client Container
(ACC), you need to set these system properties in one of the following ways:
■ Use the new syntax of the appclient script and specify the system properties as JVM

options. See “Running an Application Client Using the appclient Script” on page 33.
■ Set the environment variable VMARGS in the shell. For example, in the ksh or bash shell, the

command to set this environment variable would be as follows:

export VMARGS="-Djavax.net.ssl.keyStore=${keystore.db.file}
-Djavax.net.ssl.trustStore=${truststore.db.file}

-Djavax.net.ssl.keyStorePass word=${ssl.password}

-Djavax.net.ssl.trustStorePassword=${ssl.password}"
■ Optionally, you can set the env element using Ant. For example:

<target name="runclient">
<exec executable="${S1AS_HOME}/bin/appclient">
<env key="VMARGS" value=" -Djavax.net.ssl.keyStore=${keystore.db.file}

-Djavax.net.ssl.trustStore=${truststore.db.file}

-Djavax.net.ssl.keyStorePasword=${ssl.password}

-Djavax.net.ssl.trustStorePassword=${ssl.password}"/>
<arg value="-client"/>
<arg value="${appClient.jar}"/>

</exec>

</target>

Connecting to a Remote EJB Module Through a
Firewall
To deploy and run an application client that connects to an EJB module on a GlassFish Server
instance that is behind a firewall, you must set ORB Virtual Address Agent Implementation
(ORBVAA) options. Use the asadmin create-jvm-options command as follows:

asadmin create-jvm-options -Dcom.sun.corba.ee.ORBVAAHost=public-IP-adress
asadmin create-jvm-options -Dcom.sun.corba.ee.ORBVAAPort=public-port

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 35



asadmin create-jvm-options

-Dcom.sun.corba.ee.ORBUserConfigurators.com.sun.corba.ee.impl.plugin.hwlb.VirtualAddressAgentImpl=x

Set the ORBVAAHost and ORBVAAPort options to the host and port of the public address. The
ORBUserConfigurators option tells the ORB to create an instance of the
VirtualAddressAgentImpl class and invoke the configure method on the resulting object,
which must implement the com.sun.corba.ee.spi.orb.ORBConfigurator interface. The
ORBUserConfigurators value doesn't matter. Together, these options create an ORB that in
turn creates Object references (the underlying implementation of remote EJB references)
containing the public address, while the ORB listens on the private address specified for the
IIOP port in the GlassFish Server configuration.

Specifying a Splash Screen
Java SE 6 offers splash screen support, either through a Java command-line option or a manifest
entry in the application's JAR file. To take advantage of this Java SE feature in your application
client, you can do one of the following:

■ Create the appclient JAR file so that its manifest contains a SplashScreen-Image entry that
specifies the path to the image in the client. The java command displays the splash screen
before starting the ACC or your client, just as with any Java application.

■ Use the new appclient ... -jar launch format, using the -splash command-line option
at runtime or the SplashScreen-Image manifest entry at development time. See “Running
an Application Client Using the appclient Script” on page 33.

■ In the environment that runs the appclient script, set the VMOPTS environment variable to
include the -splash option before invoking the appclient script to launch the client.

■ Build an application client that uses the embeddable ACC feature and specify the splash
screen image using one of the following:
■ The -splash option of the java command
■ SplashScreen-Image in the manifest for your program (not the manifest for the

application client)

See “Using the Embeddable ACC” on page 32.

During application (EAR file) deployment, the GlassFish Server generates façade JAR files, one
for the application and one for each application client in the application. During application
client module deployment, the GlassFish Server generates a single facade JAR for the
application client. The appclient script supports splash screens inside the application client
JAR only if you launch an application client facade or appclient client JAR. If you launch the
facade for an application or the undeployed application itself, the appclient script cannot take
advantage of the Java SE 6 splash screen feature.

Developing Clients Using the ACC

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201036



Setting Login Retries
You can set a JVM option using the appclient script that determines the number of login
retries allowed. This option is -Dorg.glassfish.appclient.acc.maxLoginRetries=n where
n is a positive integer. The default number of retries is 3.

This retry loop happens when the ACC attempts to perform injection if you annotated the
client's main class (for example, using @Resource). If instead of annotations your client uses the
InitialContext explicitly to look up remote resources, the retry loop does not apply. In this
case, you could write logic to catch an exception around the lookup and retry explicitly.

For details about the appclient script syntax, see the GlassFish Server Open Source Edition 3.1
Reference Manual.

Using Libraries with Application Clients
The Libraries field in the Administration Console's deployment page and the --libraries
option of the asadmin deploy command do not apply to application clients. Neither do the
as-install/lib, domain-dir/lib, and domain-dir/lib/classes directories comprising the
Common Class Loader. These apply only to applications and modules deployed to the server.
For more information, see Chapter 2, “Class Loaders.”

To use libraries with an application client, package the application client in an application (EAR
file). Then, either place the libraries in the /lib directory of the EAR file or specify their location
in the application client JAR file's manifest Class-Path.

Developing Clients Using the ACC

Chapter 11 • Developing Java Clients 37


