
Using the Java Persistence API

Oracle GlassFish Server support for the Java Persistence API includes all required features
described in the Java Persistence Specification, also known as JSR 317 (http://jcp.org/en/
jsr/detail?id=317). The Java Persistence API can be used with non-EJB components outside
the EJB container.

The Java Persistence API provides an object/relational mapping facility to Java developers for
managing relational data in Java applications. For basic information about the Java Persistence
API, see Part VI, “Persistence,” in The Java EE 6 Tutorial.

This chapter contains GlassFish Server specific information on using the Java Persistence API in
the following topics:

■ “Specifying the Database” on page 18
■ “Additional Database Properties” on page 20
■ “Configuring the Cache” on page 20
■ “Setting the Logging Level” on page 20
■ “Using Lazy Loading” on page 20
■ “Primary Key Generation Defaults” on page 21
■ “Automatic Schema Generation” on page 21
■ “Query Hints” on page 24
■ “Changing the Persistence Provider” on page 24
■ “Restrictions and Optimizations” on page 25

Note – The default persistence provider in the GlassFish Server is based on the EclipseLink Java
Persistence API implementation. All configuration options in EclipseLink are available to
applications that use the GlassFish Server's default persistence provider.

7C H A P T E R 7

17

Note – The Web Profile of the GlassFish Server supports the EJB 3.1 Lite specification, which
allows enterprise beans within web applications, among other features. The full GlassFish
Server supports the entire EJB 3.1 specification. For details, see JSR 318 (http://jcp.org/en/
jsr/detail?id=318).

Specifying the Database
The GlassFish Server uses the bundled Java DB (Derby) database by default, named
jdbc/__default. If the transaction-type element is omitted or specified as JTA and both the
jta-data-source and non-jta-data-source elements are omitted in the persistence.xml
file, Java DB is used as a JTA data source. If transaction-type is specified as RESOURCE_LOCAL
and both jta-data-source and non-jta-data-source are omitted, Java DB is used as a
non-JTA data source.

To use a non-default database, either specify a value for the jta-data-source element, or set
the transaction-type element to RESOURCE_LOCAL and specify a value for the
non-jta-data-source element.

If you are using the default persistence provider, the provider attempts to automatically detect
the database type based on the connection metadata. This database type is used to issue SQL
statements specific to the detected database type's dialect. You can specify the optional
eclipselink.target-database property to guarantee that the database type is correct. For
example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name ="em1">
<jta-data-source>jdbc/MyDB2DB</jta-data-source>

<properties>

<property name="eclipselink.target-database"
value="DB2"/>

</properties>

</persistence-unit>

</persistence>

The following eclipselink.target-database property values are allowed. Supported
platforms have been tested with the GlassFish Server and are found to be Java EE compatible.

//Supported platforms

JavaDB

Derby

Oracle

MySQL4

//Others available

SQLServer

DB2

Sybase

Specifying the Database

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201018

PostgreSQL

Informix

TimesTen

Attunity

HSQL

SQLAnyWhere

DBase

DB2Mainframe

Cloudscape

PointBase

For more information about the eclipselink.target-database property, see Using
EclipseLink JPA Extensions for Session, Target Database and Target Application Server.

To use the Java Persistence API outside the EJB container (in Java SE mode), do not specify the
jta-data-source or non-jta-data-source elements. Instead, specify the provider element
and any additional properties required by the JDBC driver or the database. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence" version="1.0">

<persistence-unit name ="em2">
<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

<class>ejb3.war.servlet.JpaBean</class>

<properties>

<property name="eclipselink.target-database"
value="Derby"/>

<!-- JDBC connection properties -->

<property name="eclipselink.jdbc.driver" value="org.apache.derby.jdbc.ClientDriver"/>
<property name="eclipselink.jdbc.url"

value="jdbc:derby://localhost:1527/testdb;retrieveMessagesFromServerOnGetMessage=true;create=true;"/>
<property name="eclipselink.jdbc.user" value="APP"/>
<property name="eclipselink.jdbc.password" value="APP"/>

</properties>

</persistence-unit>

</persistence>

For more information about eclipselink properties, see “Additional Database Properties” on
page 20.

For a list of the JDBC drivers currently supported by the GlassFish Server, see the GlassFish
Server Open Source Edition 3.1 Release Notes. For configurations of supported and other drivers,
see “Configuration Specifics for JDBC Drivers” in GlassFish Server Open Source Edition 3.1
Administration Guide.

To change the persistence provider, see “Changing the Persistence Provider” on page 24.

Specifying the Database

Chapter 7 • Using the Java Persistence API 19

Additional Database Properties
If you are using the default persistence provider, you can specify in the persistence.xml file
the database properties listed at How to Use EclipseLink JPA Extensions for JDBC Connection
Communication.

For schema generation properties, see “Generation Options” on page 22. For query hints, see
“Query Hints” on page 24.

Configuring the Cache
If you are using the default persistence provider, you can configure whether caching occurs, the
type of caching, the size of the cache, and whether client sessions share the cache. Caching
properties for the default persistence provider are described in detail at Using EclipseLink JPA
Extensions for Entity Caching.

Setting the Logging Level
One of the default persistence provider's properties that you can set in the persistence.xml file
is eclipselink.logging.level. For example, setting the logging level to FINE or higher logs all
SQL statements. For details about this property, see Using EclipseLink JPA Extensions for
Logging.

You can also set the EclipseLink logging level globally in the GlassFish Server by setting a JVM
option using the asadmin create-jvm-options command. For example:

asadmin create-jvm-options -Declipselink.logging.level=FINE

Setting the logging level to OFF disables EclipseLink logging. A logging level set in the
persistence.xml file takes precedence over the global logging level.

Using Lazy Loading
OneToMany and ManyToMany mappings are loaded lazily by default in compliance with the Java
Persistence Specification. OneToOne and ManyToOne mappings are loaded eagerly by default.

For basic information about lazy loading, see What You May Need to Know About EclipseLink
JPA Lazy Loading.

Additional Database Properties

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201020

Primary Key Generation Defaults
In the descriptions of the @GeneratedValue, @SequenceGenerator, and @TableGenerator

annotations in the Java Persistence Specification, certain defaults are noted as specific to the
persistence provider. The default persistence provider's primary key generation defaults are
listed here.

@GeneratedValue defaults are as follows:
■ Using strategy=AUTO (or no strategy) creates a @TableGenerator named SEQ_GEN with

default settings. Specifying a generator has no effect.
■ Using strategy=TABLE without specifying a generator creates a @TableGenerator named

SEQ_GEN_TABLE with default settings. Specifying a generator but no @TableGenerator

creates and names a @TableGenerator with default settings.
■ Using strategy=IDENTITY or strategy=SEQUENCE produces the same results, which are

database-specific.
■ For Oracle databases, not specifying a generator creates a @SequenceGenerator named

SEQ_GEN_SEQUENCE with default settings. Specifying a generator but no
@SequenceGenerator creates and names a @SequenceGenerator with default settings.

■ For PostgreSQL databases, a SERIAL column named entity-table_pk-column_SEQ is
created.

■ For MySQL databases, an AUTO_INCREMENT column is created.
■ For other supported databases, an IDENTITY column is created.

The @SequenceGenerator annotation has one default specific to the default provider. The
default sequenceName is the specified name.

@TableGenerator defaults are as follows:
■ The default table is SEQUENCE.
■ The default pkColumnName is SEQ_NAME.
■ The default valueColumnName is SEQ_COUNT.
■ The default pkColumnValue is the specified name, or the default name if no name is specified.

Automatic Schema Generation
The automatic schema generation feature of the GlassFish Server defines database tables based
on the fields or properties in entities and the relationships between the fields or properties. This
insulates developers from many of the database related aspects of development, allowing them
to focus on entity development. The resulting schema is usable as-is or can be given to a
database administrator for tuning with respect to performance, security, and so on. This section
covers the following topics:

Automatic Schema Generation

Chapter 7 • Using the Java Persistence API 21

■ “Annotations” on page 22
■ “Generation Options” on page 22

Note – Automatic schema generation is supported on an all-or-none basis: it expects that no
tables exist in the database before it is executed. It is not intended to be used as a tool to generate
extra tables or constraints.

Deployment won't fail if all tables are not created, and undeployment won't fail if not all tables
are dropped. Instead, an error is written to the server log. This is done to allow you to
investigate the problem and fix it manually. You should not rely on the partially created
database schema to be correct for running the application.

Annotations
The following annotations are used in automatic schema generation: @AssociationOverride,
@AssociationOverrides, @AttributeOverride, @AttributeOverrides, @Column,
@DiscriminatorColumn, @DiscriminatorValue, @Embedded, @EmbeddedId, @GeneratedValue,
@Id, @IdClass, @JoinColumn, @JoinColumns, @JoinTable, @Lob, @ManyToMany, @ManyToOne,
@OneToMany, @OneToOne, @PrimaryKeyJoinColumn, @PrimaryKeyJoinColumns,
@SecondaryTable, @SecondaryTables, @SequenceGenerator, @Table, @TableGenerator,
@UniqueConstraint, and @Version. For information about these annotations, see the Java
Persistence Specification.

For @Column annotations, the insertable and updatable elements are not used in automatic
schema generation.

For @OneToMany and @ManyToOne annotations, no ForeignKeyConstraint is created in the
resulting DDL files.

Generation Options
Schema generation properties or asadmin command line options can control automatic schema
generation by the following:

■ Creating tables during deployment
■ Dropping tables during undeployment
■ Dropping and creating tables during redeployment
■ Generating the DDL files

Note – Before using these options, make sure you have a properly configured database. See
“Specifying the Database” on page 18.

Automatic Schema Generation

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201022

Optional schema generation properties control the automatic creation of database tables. You
can specify them in the persistence.xml file. For more information, see Using EclipseLink JPA
Extensions for Schema Generation.

The following options of the asadmin deploy or asadmin deploydir command control the
automatic creation of database tables at deployment.

TABLE 7–1 The asadmin deploy and asadmin deploydir Generation Options

Option Default Description

--createtables none If true, causes database tables to be created for entities that need them. No unique
constraints are created. If false, does not create tables. If not specified, the value of
the eclipselink.ddl-generation property in persistence.xml is used.

--dropandcreatetables none If true, and if tables were automatically created when this application was last
deployed, tables from the earlier deployment are dropped and fresh ones are
created.

If true, and if tables were not automatically created when this application was last
deployed, no attempt is made to drop any tables. If tables with the same names as
those that would have been automatically created are found, the deployment
proceeds, but a warning is thrown to indicate that tables could not be created.

If false, the eclipselink.ddl-generation property setting in persistence.xml

is overridden.

The following options of the asadmin undeploy command control the automatic removal of
database tables at undeployment.

TABLE 7–2 The asadmin undeploy Generation Options

Option Default Description

--droptables none If true, causes database tables that were automatically created when the entities were last
deployed to be dropped when the entities are undeployed. If false, does not drop tables.

If not specified, tables are dropped only if the eclipselink.ddl-generation property setting in
persistence.xml is drop-and-create-tables.

For more information about the asadmin deploy, asadmin deploydir, and asadmin undeploy

commands, see the GlassFish Server Open Source Edition 3.1 Reference Manual.

When asadmin deployment options and persistence.xml options are both specified, the
asadmin deployment options take precedence.

Automatic Schema Generation

Chapter 7 • Using the Java Persistence API 23

Query Hints
Query hints are additional, implementation-specific configuration settings. You can use hints
in your queries in the following format:

setHint("hint-name", hint-value)

For example:

Customer customer = (Customer)entityMgr.

createNamedQuery("findCustomerBySSN").
setParameter("SSN", "123-12-1234").
setHint("eclipselink.refresh", true).

getSingleResult();

For more information about the query hints available with the default provider, see How to Use
EclipseLink JPA Query Hints.

Changing the Persistence Provider

Note – The previous sections in this chapter apply only to the default persistence provider. If you
change the provider for a module or application, the provider-specific database properties,
query hints, and schema generation features described in this chapter do not apply.

You can change the persistence provider for an application in the manner described in the Java
Persistence API Specification.

First, install the provider. Copy the provider JAR files to the domain-dir/lib directory, and
restart the GlassFish Server. For more information about the domain-dir/lib directory, see
“Using the Common Class Loader” on page . The new persistence provider is now available
to all modules and applications deployed on servers that share the same configuration.
However, the default provider remains the same.

In your persistence unit, specify the provider and any properties the provider requires in the
persistence.xml file. For example:

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name ="em3">
<provider>com.company22.persistence.PersistenceProviderImpl</provider>

<properties>

<property name="company22.database.name" value="MyDB"/>
</properties>

</persistence-unit>

</persistence>

Query Hints

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201024

To migrate from Oracle TopLink to EclipseLink, see Migrating from Oracle TopLink to
EclipseLink (http://wiki.eclipse.org/EclipseLink/Examples/
MigratingFromOracleTopLink).

Restrictions and Optimizations
This section discusses restrictions and performance optimizations that affect using the Java
Persistence API.

■ “Oracle Database Enhancements” on page 25
■ “Extended Persistence Context” on page 25
■ “Using @OrderBy with a Shared Session Cache” on page 26
■ “Using BLOB or CLOB Types with the Inet Oraxo JDBC Driver” on page 26
■ “Database Case Sensitivity” on page 26
■ “Sybase Finder Limitation” on page 27
■ “MySQL Database Restrictions” on page 28

Oracle Database Enhancements
EclipseLink features a number of enhancements for use with Oracle databases. These
enhancements require classes from the Oracle JDBC driver JAR files to be visible to EclipseLink
at runtime. If you place the JDBC driver JAR files in domain-dir/lib, the classes are not visible
to GlassFish Server components, including EclipseLink.

If you are using an Oracle database, put JDBC driver JAR files in domain-dir/lib/ext instead.
This ensures that the JDBC driver classes are visible to EclipseLink.

If you do not want to take advantage of Oracle-specific extensions from EclipseLink or you
cannot put JDBC driver JAR files in domain-dir/lib/ext, set the
eclipselink.target-database property to the value
org.eclipse.persistence.platform.database.OraclePlatform. For more information
about the eclipselink.target-database property, see “Specifying the Database” on page 18.

Extended Persistence Context
The Java Persistence API specification does not specify how the container and persistence
provider should work together to serialize an extended persistence context. This also prevents
successful serialization of a reference to an extended persistence context in a stateful session
bean.

Even in a single-instance environment, if a stateful session bean is passivated, its extended
persistence context could be lost when the stateful session bean is activated.

Restrictions and Optimizations

Chapter 7 • Using the Java Persistence API 25

Therefore, in GlassFish Server, a stateful session bean with an extended persistence context is
never passivated and cannot be failed over.

Using @OrderBy with a Shared Session Cache
Setting @OrderBy on a ManyToMany or OneToMany relationship field in which a List represents
the Many side doesn't work if the session cache is shared. Use one of the following
workarounds:
■ Have the application maintain the order so the List is cached properly.
■ Refresh the session cache using EntityManager.refresh() if you don't want to maintain

the order during creation or modification of the List.
■ Disable session cache sharing in persistence.xml as follows:

<property name="eclipselink.cache.shared.default" value="false"/>

Using BLOB or CLOB Types with the Inet Oraxo JDBC
Driver
To use BLOB or CLOB data types larger than 4 KB for persistence using the Inet Oraxo JDBC
Driver for Oracle Databases, you must set the database's streamstolob property value to true.

Database Case Sensitivity
Mapping references to column or table names must be in accordance with the expected column
or table name case, and ensuring this is the programmer's responsibility. If column or table
names are not explicitly specified for a field or entity, the GlassFish Server uses upper case
column names by default, so any mapping references to the column or table names must be in
upper case. If column or table names are explicitly specified, the case of all mapping references
to the column or table names must be in accordance with the case used in the specified names.

The following are examples of how case sensitivity affects mapping elements that refer to
columns or tables. Programmers must keep case sensitivity in mind when writing these
mappings.

Unique Constraints
If column names are not explicitly specified on a field, unique constraints and foreign key
mappings must be specified using uppercase references. For example:

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "DEPTNAME" }) })

The other way to handle this is by specifying explicit column names for each field with the
required case. For example:

Restrictions and Optimizations

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201026

@Table(name="Department", uniqueConstraints={ @UniqueConstraint (columnNames= { "deptName" }) })

public class Department{ @Column(name="deptName") private String deptName; }

Otherwise, the ALTER TABLE statement generated by the GlassFish Server uses the incorrect
case, and the creation of the unique constraint fails.

Foreign Key Mapping
Use @OneToMany(mappedBy="COMPANY") or specify an explicit column name for the Company
field on the Many side of the relationship.

SQL Result Set Mapping
Use the following elements:

<sql-result-set-mapping name="SRSMName" >

<entity-result entity-class="entities.someEntity" />

<column-result name="UPPERCASECOLUMNNAME" />

</sql-result-set-mapping>

Or specify an explicit column name for the upperCaseColumnName field.

Named Native Queries and JDBC Queries
Column or table names specified in SQL queries must be in accordance with the expected case.
For example, MySQL requires column names in the SELECT clause of JDBC queries to be
uppercase, while PostgreSQL and Sybase require table names to be uppercase in all JDBC
queries.

PostgreSQL Case Sensitivity
PostgreSQL stores column and table names in lower case. JDBC queries on PostgreSQL retrieve
column or table names in lowercase unless the names are quoted. For example:

use aliases Select m.ID AS \"ID\" from Department m

Use the backslash as an escape character in the class file, but not in the persistence.xml file.

Sybase Finder Limitation
If a finder method with an input greater than 255 characters is executed and the primary key
column is mapped to a VARCHAR column, Sybase attempts to convert type VARCHAR to type
TEXT and generates the following error:

com.sybase.jdbc2.jdbc.SybSQLException: Implicit conversion from datatype

’TEXT’ to ’VARCHAR’ is not allowed. Use the CONVERT function to run this

query.

Restrictions and Optimizations

Chapter 7 • Using the Java Persistence API 27

To avoid this error, make sure the finder method input is less than 255 characters.

MySQL Database Restrictions
The following restrictions apply when you use a MySQL database with the GlassFish Server for
persistence.
■ MySQL treats int1 and int2 as reserved words. If you want to define int1 and int2 as fields

in your table, use ‘int1‘ and ‘int2‘ field names in your SQL file.
■ When VARCHAR fields get truncated, a warning is displayed instead of an error. To get an

error message, start the MySQL database in strict SQL mode.
■ The order of fields in a foreign key index must match the order in the explicitly created

index on the primary table.
■ The CREATE TABLE syntax in the SQL file must end with the following line.

) Engine=InnoDB;

InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine having
commit, rollback, and crash recovery capabilities.

■ For a FLOAT type field, the correct precision must be defined. By default, MySQL uses four
bytes to store a FLOAT type that does not have an explicit precision definition. For example,
this causes a number such as 12345.67890123 to be rounded off to 12345.7 during an
INSERT. To prevent this, specify FLOAT(10,2) in the DDL file, which forces the database to
use an eight-byte double-precision column. For more information, see
http://dev.mysql.com/doc/mysql/en/numeric-types.html.

■ To use || as the string concatenation symbol, start the MySQL server with the
--sql-mode="PIPES_AS_CONCAT" option. For more information, see
http://dev.mysql.com/doc/refman/5.0/en/server-sql-mode.html and
http://dev.mysql.com/doc/mysql/en/ansi-mode.html.

■ MySQL always starts a new connection when autoCommit==true is set. This ensures that
each SQL statement forms a single transaction on its own. If you try to rollback or commit
an SQL statement, you get an error message.

javax.transaction.SystemException: java.sql.SQLException:

Can’t call rollback when autocommit=true

javax.transaction.SystemException: java.sql.SQLException:

Error open transaction is not closed

To resolve this issue, add relaxAutoCommit=true to the JDBC URL. For more information,
see http://forums.mysql.com/read.php?39,31326,31404.

■ MySQL does not allow a DELETE on a row that contains a reference to itself. Here is an
example that illustrates the issue.

create table EMPLOYEE (

empId int NOT NULL,

Restrictions and Optimizations

GlassFish Server Open Source Edition 3.1 Application Development Guide • June 201028

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This example fails with the following error message.

ERROR 1217 (23000): Cannot delete or update a parent row:

a foreign key constraint fails

To resolve this issue, change the table creation script to the following:

create table EMPLOYEE (

empId int NOT NULL,

salary float(25,2) NULL,

mgrId int NULL,

PRIMARY KEY (empId),

FOREIGN KEY (mgrId) REFERENCES EMPLOYEE (empId)

ON DELETE SET NULL

) ENGINE=InnoDB;

insert into Employee values (1, 1234.34, 1);

delete from Employee where empId = 1;

This can be done only if the foreign key field is allowed to be null. For more information, see
http://bugs.mysql.com/bug.php?id=12449 and http://dev.mysql.com/doc/mysql/

en/innodb-foreign-key-constraints.html.

Restrictions and Optimizations

Chapter 7 • Using the Java Persistence API 29

