
Sun GlassFish Enterprise Server
v3 Scripting Framework Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–7697–05
November 2009

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JRE, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing
SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2009 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Enterprise JavaBeans, EJB, GlassFish, J2EE, J2SE, Java Naming and
Directory Interface, JavaBeans, Javadoc, JDBC, JDK, JavaScript, JavaServer, JavaServer Pages, JMX, JRE, JSP, JVM, MySQL, NetBeans, OpenSolaris, SunSolve, Sun
GlassFish, Java et Solaris sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc., ou ses filiales, aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

091124@23031

Contents

Preface ...7

1 Using JRuby on Rails With Sun GlassFish Enterprise Server ...13
Introduction to JRuby and Rails on Sun GlassFish Enterprise Server .. 13

What is Ruby on Rails ? ... 14
What is JRuby? ... 14
JRuby on Rails, the Sun GlassFish Enterprise Server v3, and the GlassFish v3 Gem 14

Installing JRuby and Required Gems .. 15
▼ Installing JRuby and Rails from Update Center ... 15
▼ Downloading and Installing JRuby .. 16
▼ Installing Rails on JRuby ... 17
▼ Installing the GlassFish v3 Gem ... 17

Creating a Simple Rails Application .. 17
▼ Creating the hello Application ... 18
▼ Creating the Controller and View .. 18
▼ Passing Data From the Controller to the View ... 18
▼ Using Rails Without a Database ... 19

Deploying and Running a Rails Application .. 20
▼ Deploying a Rails Application as a Directory ... 20
▼ Deploying a Rails Application to the GlassFish v3 Gem ... 21

Accessing a Database From a Rails Application .. 21
▼ Setting Up the MySQL Database Server .. 21
▼ Creating a Database-Backed Rails Application .. 22
▼ Deploying and Running the Database-Backed Web Application .. 23

Accessing Java Libraries from a Rails Application ... 23
▼ Creating the Rails Application That Accesses Java Libraries .. 24
▼ Creating the Views That Display the Images Generated by Java2D Code 24
▼ Adding Java2D Code to a Rails Controller .. 25

3

▼ Running a Rails Application That Uses Java 2D Code .. 27
Configuring JRuby Container .. 27

Configuring JRuby Container through Asadmin CLI ... 27
Configuring JRuby Runtime Pool .. 28

Introduction to Warbler ... 29
What is Warbler ... 29

Creating and Deploying a Simple Rails Application with Warbler ... 29
▼ Creating a Rails application .. 29
▼ Deploying the war file .. 30

Further Information .. 30

2 Developing Grails Applications ...31
Introduction to Groovy and Grails .. 31
Installing Grails .. 31

▼ Installing the Grails Module ... 32
Creating a Simple Grails Application .. 32

▼ Creating the helloworld Application ... 33
▼ Creating the hello Controller .. 33

Deploying and Running a Grails Application .. 33
▼ Running a Grails Application Using run-app .. 33
▼ Running a Grails Application Using Standard Deployment .. 34

3 Jython on Django ..37
Overview ... 37
Installing Jython and Django ... 38

▼ To Install Jython ... 38
▼ To Install Django .. 38
▼ To Install Jython container forSun GlassFish Enterprise Server .. 39
▼ To Install Jython Support Libraries for Django .. 39

Creating and deploying a Simple Django Application .. 40
▼ To create a Simple Django application .. 40

To deploy a Django application from Command Line ... 40
Asadmin CLI for Jython .. 40

Further Information .. 41

Contents

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 20094

4 Scala and Lift ..43
Using Scala and Lift ... 43

5 PHP ...45
Enabling PHP on Sun GlassFishEnterprise Server .. 46

▼ To Deploy the Quercus PHP Interpreter to the Enterprise Server ... 46

6 Using Comet ...47
Introduction to Comet .. 47

The Grizzly Implementation of Comet ... 48
Client Technologies to Use With Comet .. 48
Kinds of Comet Connections ... 49

Grizzly Comet .. 50
The Grizzly Comet API ... 50
The Hidden Frame Example ... 51
Creating a Comet-Enabled Application .. 52
Developing the Web Component .. 52
Creating the Client Pages .. 55
Creating the Deployment Descriptor .. 58
Deploying and Running a Comet-Enabled Application ... 58

Bayeux Protocol ... 59
Enabling Comet ... 60

▼ Configuring the web.xml File ... 60
▼ Writing, Deploying, and Running the Client ... 61

Contents

5

6

Preface

Sun GlassFishTM Enterprise Server v3 Scripting Framework Guide explains how to develop
scripting applications in languages such as Ruby on Rails and Groovy on Grails for deployment
to Enterprise Server.

Enterprise Server v3 is developed through the GlassFish project open-source community at
https://glassfish.dev.java.net/. The GlassFish project provides a structured process for
developing the Enterprise Server platform that makes the new features of the Java EE platform
available faster, while maintaining the most important feature of Java EE: compatibility. It
enables Java developers to access the Enterprise Server source code and to contribute to the
development of the Enterprise Server. The GlassFish project is designed to encourage
communication between Sun engineers and the community.

This preface contains information about and conventions for the entire Sun GlassFish
Enterprise Server documentation set.

The following topics are addressed here:

■ “Enterprise Server Documentation Set” on page 7
■ “Related Documentation” on page 9
■ “Typographic Conventions” on page 9
■ “Symbol Conventions” on page 10
■ “Default Paths and File Names” on page 10
■ “Documentation, Support, and Training” on page 11
■ “Searching Sun Product Documentation” on page 11
■ “Third-Party Web Site References” on page 12
■ “Sun Welcomes Your Comments” on page 12

Enterprise Server Documentation Set
The Enterprise Server documentation set describes deployment planning and system
installation. The Uniform Resource Locator (URL) for Enterprise Server documentation is
http://docs.sun.com/coll/1343.9. For an introduction to Enterprise Server, refer to the
books in the order in which they are listed in the following table.

7

https://glassfish.dev.java.net/
http://docs.sun.com/coll/1343.9

TABLE P–1 Books in the Enterprise Server Documentation Set

Book Title Description

Release Notes Provides late-breaking information about the software and the
documentation. Includes a comprehensive, table-based summary of the
supported hardware, operating system, JavaTM Development Kit (JDKTM),
and database drivers.

Quick Start Guide Explains how to get started with the Enterprise Server product.

Installation Guide Explains how to install the software and its components.

Administration Guide Explains how to configure, monitor, and manage Enterprise Server
subsystems and components from the command line by using the
asadmin(1M) utility. Instructions for performing these tasks from the
Administration Console are provided in the Administration Console online
help.

Application Deployment Guide Explains how to assemble and deploy applications to the Enterprise Server
and provides information about deployment descriptors.

Your First Cup: An Introduction
to the Java EE Platform

Provides a short tutorial for beginning Java EE programmers that explains
the entire process for developing a simple enterprise application. The sample
application is a web application that consists of a component that is based on
the Enterprise JavaBeansTM specification, a JAX-RS web service, and a
JavaServerTM Faces component for the web front end.

Application Development Guide Explains how to create and implement Java Platform, Enterprise Edition
(Java EE platform) applications that are intended to run on the Enterprise
Server. These applications follow the open Java standards model for Java EE
components and APIs. This guide provides information about developer
tools, security, and debugging.

Add-On Component
Development Guide

Explains how to use published interfaces of Enterprise Server to develop
add-on components for Enterprise Server. This document explains how to
perform only those tasks that ensure that the add-on component is suitable
for Enterprise Server.

Scripting Framework Guide Explains how to develop scripting applications in languages such as Ruby on
Rails and Groovy on Grails for deployment to Enterprise Server.

Troubleshooting Guide Describes common problems that you might encounter when using
Enterprise Server and how to solve them.

Reference Manual Provides reference information in man page format for Enterprise Server
administration commands, utility commands, and related concepts.

Java EE 6 Tutorial, Volume I Explains how to use Java EE 6 platform technologies and APIs to develop
Java EE applications.

Message Queue Release Notes Describes new features, compatibility issues, and existing bugs for Sun
GlassFish Message Queue.

Preface

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 20098

http://docs.sun.com/doc/820-7688
http://docs.sun.com/doc/820-7689
http://docs.sun.com/doc/820-7690
http://docs.sun.com/doc/820-7692
http://docs.sun.com/doc/820-7701/asadmin-1m?a=view
http://docs.sun.com/doc/820-7693
http://docs.sun.com/doc/820-7759
http://docs.sun.com/doc/820-7759
http://docs.sun.com/doc/820-7695
http://docs.sun.com/doc/820-7727
http://docs.sun.com/doc/820-7727
http://docs.sun.com/doc/820-7697
http://docs.sun.com/doc/820-7699
http://docs.sun.com/doc/820-7701
http://docs.sun.com/doc/820-7627
http://docs.sun.com/doc/821-0025

TABLE P–1 Books in the Enterprise Server Documentation Set (Continued)
Book Title Description

Message Queue Developer's
Guide for JMX Clients

Describes the application programming interface in Sun GlassFish Message
Queue for programmatically configuring and monitoring Message Queue
resources in conformance with the Java Management Extensions (JMX).

System Virtualization Support
in Sun Java System Products

Summarizes Sun support for Sun Java System products when used in
conjunction with system virtualization products and features.

Related Documentation
A JavadocTM tool reference for packages that are provided with the Enterprise Server is located at
http://java.sun.com/javaee/6/docs/api/.

Additionally, the following resources might be useful:

■ The Java EE Specifications (http://java.sun.com/javaee/technologies/index.jsp)
■ The Java EE Blueprints (http://java.sun.com/reference/blueprints/index.html)

For information about creating enterprise applications in the NetBeansTM Integrated
Development Environment (IDE), see http://www.netbeans.org/kb/60/index.html.

For information about the Java DB for use with the Enterprise Server, see
http://developers.sun.com/javadb/.

The sample applications demonstrate a broad range of Java EE technologies. The samples are
bundled with the Java EE Software Development Kit (SDK).

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

Preface

9

http://docs.sun.com/doc/821-0031
http://docs.sun.com/doc/821-0031
http://docs.sun.com/doc/820-4651
http://docs.sun.com/doc/820-4651
http://java.sun.com/javaee/6/docs/api/
http://java.sun.com/javaee/technologies/index.jsp
http://java.sun.com/reference/blueprints/index.html
http://www.netbeans.org/kb/60/index.html
http://developers.sun.com/javadb/

TABLE P–2 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–3 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Default Paths and File Names
The following table describes the default paths and file names that are used in this book.

Preface

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200910

TABLE P–4 Default Paths and File Names

Placeholder Description Default Value

as-install Represents the base installation directory for
Enterprise Server.

In configuration files, as-install is represented
as follows:

${com.sun.aas.installRoot}

Installations on the SolarisTM operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfishv3/glassfish

Windows, all installations:

SystemDrive:\glassfishv3\glassfish

as-install-parent Represents the parent of the base installation
directory for Enterprise Server.

Installations on the Solaris operating system, Linux operating
system, and Mac operating system:

user’s-home-directory/glassfishv3

Windows, all installations:

SystemDrive:\glassfishv3

domain-root-dir Represents the directory in which a domain is
created by default.

as-install/domains/

domain-dir Represents the directory in which a domain's
configuration is stored.

In configuration files, domain-dir is
represented as follows:

${com.sun.aas.instanceRoot}

domain-root-dir/domain-name

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Searching Sun Product Documentation
Besides searching Sun product documentation from the docs.sun.comSM web site, you can use a
search engine by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for “broker,” type the following:

broker site:docs.sun.com

Preface

11

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

To include other Sun web sites in your search (for example, java.sun.com, www.sun.com, and
developers.sun.com), use sun.com in place of docs.sun.com in the search field.

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-7967.

Preface

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200912

http://java.sun.com
http://www.sun.com
http://developers.sun.com
http://docs.sun.com

Using JRuby on Rails With Sun GlassFishTM

Enterprise Server

This tutorial shows you how to get started using JRuby on Rails on the Sun GlassFish Enterprise
Server v3.

The following topics are addressed here:

■ “Introduction to JRuby and Rails on Sun GlassFish Enterprise Server” on page 13
■ “Installing JRuby and Required Gems” on page 15
■ “Creating a Simple Rails Application” on page 17
■ “Deploying and Running a Rails Application” on page 20
■ “Accessing a Database From a Rails Application” on page 21
■ “Accessing Java Libraries from a Rails Application” on page 23
■ “Configuring JRuby Container” on page 27
■ “Introduction to Warbler” on page 29
■ “Creating and Deploying a Simple Rails Application with Warbler” on page 29
■ “Further Information” on page 30

Introduction to JRuby and Rails on Sun GlassFish Enterprise
Server

This section gives you an overview of JRuby and Rails on the Sun GlassFish by explaining the
following concepts:

■ “What is Ruby on Rails ?” on page 14
■ “What is JRuby?” on page 14
■ “JRuby on Rails, the Sun GlassFish Enterprise Server v3, and the GlassFish v3 Gem” on

page 14

1C H A P T E R 1

13

What is Ruby on Rails ?
Ruby is an interpreted, dynamically-typed, object-oriented programming language. It has a
simple, natural syntax that enables developers to create applications quickly and easily. It also
includes the easy-to-use RubyGems packaging utility for customizing a Ruby installation with
additional plug-ins.

Rails is a web application framework that leverages the simplicity of Ruby and eliminates much
of the repetition and configuration required in other programming environments. With Rails,
you can create a database-backed web application, complete with models and tables, by running
a few one-line commands.

To learn more about Ruby on Rails, see Ruby on Rails.

What is JRuby?
JRuby is a JavaTM implementation of the Ruby interpreter. While retaining many of the popular
characteristics of Ruby, such as dynamic-typing, JRuby is integrated with the Java platform.
With JRuby on Rails, you get the simplicity and productivity offered by Ruby and Rails and the
power of the Java platform offered by JRuby, thereby giving you many benefits as a Rails
developer, including these:
■ You can access the rich set of Java libraries from your Rails application.
■ You can use the powerful and secure support of Java Unicode strings with your Rails

application.
■ Your JRuby on Rails application can spin off multiple threads because JRuby uses Java

threads, which map to native Ruby threads. Furthermore, you can pool these threads.

To learn more about JRuby, see JRuby.

JRuby on Rails, the Sun GlassFish Enterprise Server v3,
and the GlassFish v3 Gem
Developing and deploying your Rails application on the Sun GlassFish Enterprise Server gives
you the following advantages over using a typical web server used for running Rails
applications:
■ A simple, integrated deployment environment. In other words, you do not need one set of

software for developing the application and another set of software for deploying it.
■ The ability to deploy multiple Rails applications to a single GlassFish instance.
■ The ability of a Rails application to handle multiple requests.

For more details on these and other advantages of using the GlassFish for your JRuby on Rails
applications, see Advantages of JRuby-on-Rails with the GlassFish Application Server.

Introduction to JRuby and Rails on Sun GlassFish Enterprise Server

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200914

http://rubyonrails.org
http://www.jruby.org
http://developers.sun.com/appserver/reference/techart/rails_gf/#advantages

You have the following options for deploying a Rails application on the Sun GlassFish:

■ Deploy the application as a directory to the Sun GlassFish Enterprise Server v3 by using the
asadmin command.

■ Deploy the application as a war file to the Sun GlassFish Enterprise Server v3.
■ Deploy the application as a directory to the GlassFish v3 Gem installed on your JRuby

virtual machine.

A Gem is a Ruby package that contains a library or an application. In fact, Rails itself is a Gem
that you install on top of JRuby.

One way to work with JRuby on is to install the GlassFish v3 Gem on top of your JRuby
installation. The GlassFish v3 Gem is just a lightweight version of the Sun GlassFish Enterprise
Server v3 and a Grizzly connector for JRuby.

When you install the Gem, you have a Sun GlassFish instance embedded in the JRuby virtual
machine. This gives you a more complete development environment because you have
everything you need for JRuby on Rails applications running inside the JRuby virtual machine
in addition to everything you need from the Sun GlassFish to create web applications.

Installing JRuby and Required Gems
To develop and deploy Rails applications for the Sun GlassFish, you need to do the following:

1. Download and install JRuby .
2. Install Rails on top of your JRuby installation.
3. Install the GlassFish v3 Gem on JRuby if you want to deploy your application to a Sun

GlassFish instance running inside your JRuby virtual machine.

You can perform the above tasks either by installing JRuby on your Sun GlassFish server
instance in one of the following ways:

■ Installing JRuby and the required gems on your Sun GlassFish Enterprise Server from
Update Tool.

■ Installing JRuby, Rails
■ Installing GlassFish Gem on the JRuby installation

▼ Installing JRuby and Rails from Update Center
JRuby and other associated Gems are now available as IPS packages from Update Center. By
downloading them using Update Tool, you can install them directly on your GlassFish Server
instance.

Installing JRuby and Required Gems

Chapter 1 • Using JRuby on Rails With Sun GlassFishTM Enterprise Server 15

For information about the Update Tool, see the Sun GlassFish Enterprise Server v3 Installation
Guide.

Start the update tool:

<AS_INSTALL>/bin/updatetool

From the Update Tool, choose the following packages from Available Add-Ons:

■ JRuby on GlassFish which contains JRuby 1.3.1
■ JRuby Gems which contains Rails 2.3.2, Warbler, jdbc-mysql,

activerecord-jdbcmysql-adapter packages.

Select to install, which will install the packages on your Sun GlassFish Enterprise Server
installation.

Set your JRUBY_HOME environment variable to the location of your JRuby installation.

export JRUBY_HOME=/<install-location>

Add <JRUBY_HOME>/bin to your system path so that you can invoke JRuby from anywhere in
your directory tree.

export PATH=$PATH:$JRUBY_HOME/bin

▼ Downloading and Installing JRuby
In case you want to install your own JRuby instance as standalone, use the following procedure.

Go to the JRuby download site (http://dist.codehaus.org/jruby).

Download jruby-bin-1.3.1.zip or the latest version.

Unpack the zip file.

Set your JRUBY_HOME environment variable to the location of your JRuby installation.

export JRUBY_HOME=/<jruby-install-location>

Add <JRUBY_HOME>/bin to your system path so that you can invoke JRuby from anywhere in
your directory tree.

export PATH=$PATH:$JRUBY_HOME/bin

1

2

3

4

5

1

2

3

4

5

Installing JRuby and Required Gems

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200916

http://docs.sun.com/doc/820-7690
http://docs.sun.com/doc/820-7690
http://dist.codehaus.org/jruby

If you want to use this JRuby installation with your GlassFish installation, use the following step
to configure the installation:

a. Start your GlassFish installation:

asadmin start-domain

b. Set JRuby home:

asadmin create-jvm-options -Djruby.home=/<jruby-install-location>

▼ Installing Rails on JRuby
If you installed your JRuby as a standalone instance, you need to install the required packages
on it. Use the following procedure to do this:

Install the Rails Gem:
jruby —S gem install rails

The -S parameter that you used to run the command to install Rails tells JRuby to look for the
script anywhere in the <JRUBY_HOME> path.

▼ Installing the GlassFish v3 Gem
One of the ways to deploy a Rails application is to deploy it to the Sun GlassFish instance
running inside the JRuby virtual machine. To do this, you have to install the GlassFish v3 Gem
on top of your JRuby installation:

Run the Gem installer to install the GlassFish v3 Gem:
jruby -S gem install glassfish

Creating a Simple Rails Application
After completing your installations, you are ready to start coding. This section shows you how
to create a simple application that displays the following message:

Welcome to JRuby on Rails on the Sun GlassFish Enterprise Server!

6

●

●

Creating a Simple Rails Application

Chapter 1 • Using JRuby on Rails With Sun GlassFishTM Enterprise Server 17

▼ Creating the hello Application
Go to <JRUBY_HOME>/samples directory.

Create a Rails application called hello:
jruby -S rails hello

This command creates the hello directory, which contains a set of automatically-generated
files and directories.

The directories containing the files that you'll use the most are:

■ app: Contains your application code.
■ config: Contains configuration files, such as database.yml, which you use to configure a

database.
■ public: Contains files and resources that need to be accessed directly rather than accessed

through the Rails call stack. These include images and straight HTML files.

▼ Creating the Controller and View
By doing this task, you can create a controller and a default view for your application. The
controller handles requests, dispatches them to other parts of the application as necessary, and
determines which view to render. The view is the file that generates the output to the browser.
In Rails, views are typically written with ErB, a templating mechanism.

Go to the <JRUBY_HOME>/samples/hello directory you created in the previous task.

Create a controller and default view for your application:
jruby script/generate controller home index

You should see a controller called home_controller.rb in the hello/app/controllers
directory and a view called index.html.erb in the hello/app/views directory.

▼ Passing Data From the Controller to the View
Exchanging data between the controller and the views is a common task in web application
development. This task shows you how to set an instance variable in the controller and access its
value from the view.

Open <JRUBY_HOME>/samples/hello/app/controllers/home_controller.rb in a text editor.

1

2

1

2

1

Creating a Simple Rails Application

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200918

Add an instance variable called @hello_message to the action called index, so that the
controller looks like this:
class HomeController < ApplicationController

def index

@hello_message = "Welcome to JRuby on Rails on the Sun GlassFish Enterprise Server"
end

end

In Rails, the actions are supposed to map to views. So, when you access the index.html.erb file,
the index action executes. In this case, it makes the @hello_message variable available to
index.html.erb.

Save the file.

Open <JRUBY_HOME>/samples/hello/app/views/home/index.html.erb file in a text editor.

At the end of the file, add the following output block:
<%= @hello_message %>

This JRuby code embedded into the view, inserts the value of @hello_message into the page.
When you run the application, you can see “Welcome to JRuby on Rails on the GlassFish
Enterprise Server” in your browser.

Save the file.

▼ Using Rails Without a Database
Although Rails is intended for creating database-backed web applications, this example is
simple enough that it doesn't require one. In this case, you need to edit the enviroment.rb
configuration file to indicate that your application does not use a database.

Open <JRUBY_HOME>/samples/hello/config/environment.rb file in a text editor.

Remove the pound character (#) in front of line 21 to uncomment it so that it reads as follows:
config.frameworks -= [:active_record, :active_resource, :action_mailer]

ActiveRecord supports database access for Rails applications. When you create model objects,
you will most likely base them on ActiveRecord::Base.

Save the file.

2

3

4

5

6

1

2

3

Creating a Simple Rails Application

Chapter 1 • Using JRuby on Rails With Sun GlassFishTM Enterprise Server 19

Deploying and Running a Rails Application
As described in “JRuby on Rails, the Sun GlassFish Enterprise Server v3, and the GlassFish v3
Gem” on page 14, you have two ways to deploy your Rails application on the Sun GlassFish:

■ Deploy it natively as a directory using the asadmin command.
■ Deploy it using the GlassFish v3 Gem.

This section shows you how to deploy the hello application you created in the previous section
natively and with the GlassFish v3 Gem and how to run the application in your web browser.
You can also use these same instructions to deploy a legacy Rails application.

▼ Deploying a Rails Application as a Directory
You can use directory-based deployment to deploy any Rails application natively to the Sun
GlassFish Enterprise Server. To natively deploy the hello application to the Enterprise Server:

Set JRUBY_HOMEproperty value to the path to your JRuby installation as the last line in one of
the following files, located in the configdirectory of Enterprise Server your installation:

■ For Windows systems: asenv.bat

■ For UNIX systems: asenv.conf

Save the file.

Edit <AS_INSTALL>/domains/domain1/config/domain.xmland add this entry inside element:
<java-config>

...

<jvm-options>-Djruby.home=<JRUBY_HOME></jvm-options>

...

</java-config>

Note – If GlassFish v3 JRuby IPS package was installed using update tool, then there is no need to
set the jruby.home system property

Start the server.

Go to <JRUBY_HOME>/samples.

Deploy the hello application with asadmin command from your Enterprise Server installation:
<AS_INSTALL>/bin/asadmin deploy hello

1

2

3

4

5

6

Deploying and Running a Rails Application

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200920

Run the hello application using the following URL in your browser:
http://localhost:8080/hello/home/index

▼ Deploying a Rails Application to the GlassFish v3 Gem
Go to <JRUBY_HOME>/samples.

Deploy the hello application:
jruby -S glassfish_rails helloV3

When the GlassFish instance is finished launching, you should see output similar to the
following:

INFO: Rails instance instantiation took : 37754ms

Run the application using the following URL in your web browser:
http://localhost:3000/home/index

You should now see the following message in your browser window:

Welcome to JRuby on Rails on the Sun GlassFish Enterprise Server!

Notice that the GlassFish v3 Gem runs on port 3000, not 8080.

Accessing a Database From a Rails Application
One of the main functions of Rails is to make a quick-and-easy task of creating an application
that accesses a database. This section shows you the steps to create a simple application that
accesses a book database using MySQLTM. It is assumed that you have already installed JRuby,
Rails, and the required Gems.

▼ Setting Up the MySQL Database Server
Download and install the MySQL 5.0 Community Server (http://dev.mysql.com/downloads/
mysql/5.0.html#downloads)

Configure the server according to the MySQL documentation, including entering a root
password.

Start the server.

7

1

2

3

1

2

3

Accessing a Database From a Rails Application

Chapter 1 • Using JRuby on Rails With Sun GlassFishTM Enterprise Server 21

http://dev.mysql.com/downloads/mysql/5.0.html#downloads
http://dev.mysql.com/downloads/mysql/5.0.html#downloads

▼ Creating a Database-Backed Rails Application
Go to the <JRUBY_HOME>/samples directory of your JRuby installation.

Create the books application template so that it is configured to use the MySQL database:
jruby -S rails books -d mysql

Go to the booksdirectory you just created.

Open the config/database.yml file in a text editor.

When prompted, enter your MySQL root password under the development heading in the
database.yml file.

Go back to the booksdirectory if you are not already there.

Create the database by running the following command:
jruby -S rake db:create

After the database creation is complete, you should see output similar to the following:

** Execute db:create

The rake command invokes the Rake tool. The Rake tool builds applications by running Rake
files, which are written in Ruby and provide instructions for building applications.

Create the scaffold and the Bookmodel for the application:
jruby script/generate scaffold book title:string

author:string isbn:string description:text

When you run the script/generate command you specify the name of the model, the names
of the columns, and the types for the data contained in the columns.

A scaffold is the set of code that Rails generates to handle database operations for a model
object, which is Book in this case. The scaffold consists of a controller and some views that allow
users to perform the basic operations on a database, such as viewing the data, adding new
records, and editing records. Rails also creates the model object when generating the scaffold.

Create the database tables:
jruby -S rake db:migrate

When Rails is finished creating the tables, you should see output similar to the following:

CreateBooks: migrated (0.1322ms) =========

1

2

3

4

5

6

7

8

9

Accessing a Database From a Rails Application

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200922

If you need to reset the database later, you can run:

jruby —S rake db:reset

▼ Deploying and Running the Database-Backed Web
Application
With this task, you will deploy the books application to the GlassFish v3 Gem. You can
alternatively deploy it to your regular Enterprise Server using directory-based deployment, as
described in “Deploying a Rails Application as a Directory” on page 20.

Go to <JRUBY_HOME>/samples/books.

Deploy the application to the GlassFish v3 Gem by running the following command:
jruby -S glassfish_rails books

Run the application in your web browser using the following URL:
http://localhost:3000/books

The opening page says “Listing books” and has an empty table, meaning that there are no book
records in the database yet. To add book records to the table, do the next step.

Add records to the table by clicking the New book link on the index.htmlpage.

Enter the data for book on the new.htmlpage and click Create.

Accessing Java Libraries from a Rails Application
The primary advantage of developing with JRuby is that you have access to Java libraries from a
Rails application. For example, say you might want to create an image database and a web
application that allows processing of the images. You can use Rails to set up the
database-backed web application and use the powerful Java 2DTM API for processing the images
on the server-side.

This section shows you how to get started using Java libraries in a Rails application while
stepping you through building a simple Rails application that does basic image processing with
the Java 2D API.

This application demonstrates the following concepts involved in using Java libraries in a Rails
application:
■ Giving your controller access to Java libraries.
■ Creating constants to refer to Java classes.

1

2

3

4

5

Accessing Java Libraries from a Rails Application

Chapter 1 • Using JRuby on Rails With Sun GlassFishTM Enterprise Server 23

■ Performing file input and output using the java.io and javax.imageio packages.
■ Assigning Java objects to Ruby objects.
■ Calling Java methods and using variables.
■ Converting arrays from Java language arrays to Ruby arrays.
■ Streaming files to the client.

For simplicity's sake, this application does not use a database. You will need a JPEG file to run
this application.

▼ Creating the Rails Application That Accesses Java
Libraries
Go to <JRUBY_HOME>/samples.

Create an application by running this command:
jruby -S rails imageprocess

Open the <JRUBY_HOME>/samples/imageprocess/config/environment.rb file in a text editor.

Follow steps 2 and 3 from the instructions in section, “Using Rails Without a Database”on
page 19.

Go to the <JRUBY_HOME>/samples/imageprocess directory you just created.

Create a controller and default view for the application by running this command:
jruby script/generate controller home index

Go to the <JRUBY_HOME>/samples/imageprocess/app/views/home directory.

Create a second view by copying the default view into a view called seeimage.html.erb:
cp index.html.erb seeimage.html.erb

▼ Creating the Views That Display the Images Generated
by Java2D Code
With this task, you will perform the following actions:
■ Load an image on which you want to perform image processing with Java2D.
■ Make the initial view show the original image and provide a link that the user clicks to

perform the ColorConvertOp image processing operation on it.
■ Make the other view display the processed image.

1

2

3

4

5

6

7

8

Accessing Java Libraries from a Rails Application

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200924

Find a JPEG image that you can use with this application.

Add the image to <JRUBY_HOME>/samples/imageprocess/public/image file.

Go to <JRUBY_HOME>/samples/imageprocess/app/views/home file.

Open the index.html.erb file in a text editor.

Replace the contents of this file with the following HTML markup:
<html>

<body>

<p>
<%= link_to "Perform a ColorConvertOp on this image", :action => "seeimage" %>

</body>

</html>

This page loads an image from <JRUBY_HOME>/samples/imageprocess/public/images and
provides a link that references the seeimage action. The seeimage action maps to the seeimage
view, which shows the processed image.

Replace kids.jpg from line 3 of index.html.erbwith the name of your image that you saved
from step 3 of this procedure.

Save index.html.erb file.

Open seeimage.html.erb file in a text editor.

Replace the contents of this file with the following HTML markup:
<html>

<body>

<p>
<%= link_to "Back", :action => "index" %>

</body>

</html>

The img tag on this page accesses the processimage action in HomeController. The
processimage action is where you will put the Java2D code to process the image you loaded
into index.html.erb.

▼ Adding Java2D Code to a Rails Controller
With this task, you will add the code to process your JPEG image.

Add the following line to HomeController, right after the class declaration:
include Java

1

2

3

4

5

6

7

8

9

1

Accessing Java Libraries from a Rails Application

Chapter 1 • Using JRuby on Rails With Sun GlassFishTM Enterprise Server 25

This line is necessary for you to access any Java libraries from your controller.

Create a constant for the BufferedImage class so that you can refer to it by the shorter name:
BI = java.awt.image.BufferedImage

Add an empty action, called seeimage, at the end of the controller:
def seeimage

end

This action is mapped to the seeimage.html.erb view.

Give controller access to your image file using java.io.File, making sure to use the name of
your image in the path to the image file. Place the following line inside the seeimage action:
filename = "#{RAILS_ROOT}/public/images/kids.jpg"
imagefile = java.io.File.new(filename)

Notice that you don't need to declare the types of the variables, filename or imagefile. JRuby
can tell that filename is a String and imagefile is a java.io.File instance because that's
what you assigned them to be.

Read the file into a BufferedImage object and create a Graphics2D object from it so that you
can perform the image processing on it. Add these lines directly after the previous two lines:
bi = javax.imageio.ImageIO.read(imagefile)

w = bi.getWidth()

h = bi.getHeight()

bi2 = BI.new(w, h, BI::TYPE_INT_RGB)

big = bi2.getGraphics()

big.drawImage(bi, 0, 0, nil)

bi = bi2

biFiltered = bi

Refer to The Java Tutorial for more information on the Java 2D API.

The important points are :

■ You can call Java methods in pretty much the same way in JRuby as you do in Java code.
■ You don't have to initialize any variables.
■ You can just create a variable and assign anything to it. You don't need to give it a type.

Add the following code to convert the image to gray scale:
colorSpace = java.awt.color.ColorSpace.getInstance(

java.awt.color.ColorSpace::CS_GRAY)

op = java.awt.image.ColorConvertOp.new(colorSpace, nil)

dest = op.filter(biFiltered, nil)

big.drawImage(dest, 0, 0, nil);

2

3

4

5

6

Accessing Java Libraries from a Rails Application

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200926

http://java.sun.com/docs/books/tutorial/index.html

Stream the file to the browser:
os = java.io.ByteArrayOutputStream.new

javax.imageio.ImageIO.write(biFiltered, "jpeg", os)

string = String.from_java_bytes(os.toByteArray)

send_data string, :type => "image/jpeg", :disposition => "inline",
:filename => "newkids.jpg"

Sometimes you need to convert arrays from Ruby to Java code or from Java code to Ruby. In this
case, you need to use the from_java_bytes routine to convert the bytes in the output stream to
a Ruby string so that you can use it with send_data to stream the image to the browser. JRuby
provides some other routines for converting types, such as to_java to convert from a Ruby
Array to a Java String. See Conversion of Types.

▼ Running a Rails Application That Uses Java 2D Code
Deploy the application on the GlassFish v3 Gem:
jruby -S glassfish_rails imageprocess

Run the application by entering the following URL into your browser:
http://localhost:3000/home/index

You should now see an image and a link that says, “Perform a ColorConvertOp on this image.”

Click the link.
You should now see a grayscale version of the image from the previous page.

Configuring JRuby Container
The Sun GlassFish Enterprise Server Asadmin CLI now provides options to configure the JRuby
container. The command execution will be reflect in changes to the JRuby container
configuration section of the domain.xml file which makes them persistent.

Configuring JRuby Container through Asadmin CLI
The following JRuby container properties can be configured through asdmin command.

configure-jruby-container [--help]

[--monitoring={false|true}]

[--jruby-home jruby-home]

[--jruby-runtime jruby-runtime]

[--jruby-runtime-min jruby-runtime-min]

[--jruby-runtime-max jruby-runtime-max]

[--show={true|false}]

7

1

2

3

Configuring JRuby Container

Chapter 1 • Using JRuby on Rails With Sun GlassFishTM Enterprise Server 27

http://kenai.com/projects/jruby/pages/CallingJavaFromJRuby#Conversion_of_Types

Use the following Asadmin CLI commands to configure these values:

asadmin configure-jruby-container --jruby.<property>=<value>

For example the following command is used to set the JRuby home:

asadmin configure-jruby-container --jruby.home=/<jruby-install-location>

You also change the deployment specific options to the JRuby application through the
following command syntax:

asadmin deploy --property jruby.<property>=<value> --force=true|false

For example consider the following command to change the runtime pool:

asadmin deploy --property jruby.runtime=2 --force=true

For a detailed description of these options, see Sun GlassFish Enterprise Server v3 Reference
Manual. The JRuby container runtime pool options are discussed in the next section.

Configuring JRuby Runtime Pool
The Sun GlassFish Enterprise Server v3 provides a JRuby runtime pool to allow servicing of
multiple concurrent requests. However Rails is not currently thread-safe, and while JRuby is
able to take advantage of Java's native threading, Rails cannot benefit from it. Each JRuby
runtime runs a single instance of Rails, and requests are handed off to whichever instance
happens to be available at the time of the request.

JRuby runtime pool is configured in <AS_INSTALL>/domains/<domain1>/config/domain.xml

file.Consider the following sample configuration for the JRuby container:

<jruby-container>

<property name="jruby.home" value=""/>
<property name="jruby.rackEnv" value="development">
<property name="jruby.runtime" value="1">
<property name="jruby.runtime.min" value="1">
<property name="jruby.runtime.max" value="2">

</jruby-container>

The JRuby properties in the above configuration are explained as follows:
■ jruby.runtime property sets the initial number of JRuby runtimes that GlassFish starts with.

The default value is one. This represents the highest value that GlassFish accepts as
minimum runtimes, and the lowest value that GlassFish uses as maximum runtimes.

■ jruby.runtime.min property sets the minimum number of JRuby runtimes that will be
available in the pool. The default value is one. The pool will always be at least this large, but
can be larger than this.

Configuring JRuby Container

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200928

■ jruby.runtime.max property sets the maximum number of JRuby runtimes that might be
available in the pool. For this element, too high values might result in OutOfMemory errors,
either in the heap or in the PermGen.

The dynamic runtime pool maintains itself with the minimum number of runtimes possible, to
allow consistent and fast runtime access for the requesting application. The pool may take a
initial runtime value, but that value is not used after pool creation.

Introduction to Warbler
In “Deploying and Running a Rails Application” on page 20, direct deployment of a rails
application to Enterprise Serverhas been described. Warbler provides an easier way to deploy a
rails application to a Java application server.

What is Warbler
Warbler is a gem that makes .war file out of a Rails, Merb, or Rack-based application. Warbler
provides a minimal, flexible, ruby-like way to bundle application files for deployment to a java
application server.

Warbler provides a set of out-of-the box defaults to allow most Rails applications to assemble
and work without external gem dependencies.

Warbler bundles JRuby and the JRuby-Rack servlet adapter for dispatching requests to the
application inside the java application server, and assembles all jar files in
<WARBLER_HOME>/lib/ directory into the application.

To learn more about Warbler, see Warbler.

Creating and Deploying a Simple Rails Application with
Warbler

The procedure for creating a simple Rails application for Warbler, is similar to the procedure
described in “Creating a Simple Rails Application” on page 17.

▼ Creating a Rails application
Create a new directory under <JRUBY_HOME>/samples directory called rails-warbler.1

Creating and Deploying a Simple Rails Application with Warbler

Chapter 1 • Using JRuby on Rails With Sun GlassFishTM Enterprise Server 29

http://caldersphere.rubyforge.org/warbler/

Go to <JRUBY_HOME>/samples/rails-warbler directory and create a sample application called
hello:
jruby -S rails hello

Edit the enviroment.rb file to indicate that your application does not use a database:
Open <JRUBY_HOME>/samples/rails-warbler/hello/config/environment.rb in a text
editor.

Remove the pound character (#) in front of line 21 to uncomment it so that it reads as follows
and save:
config.frameworks -= [:active_record, :active_resource, :action_mailer]

Use Warbler to create a war file in <JRUBY_HOME>/samples/rails-warbler/hello application
directory:
jruby -S warble

This creates a hello.war file in the directory.

▼ Deploying the war file
Go to the application directory <JRUBY_HOME>/samples/rails-warbler/hello.

Deploy the application war file to the Enterprise Server by running the asadmin command:
<AS_INSTALL>/bin/asadmin deploy hello.war

Run the hello application by using the following URL in your browser:
http://<hostname>:<port>/hello

Further Information
For more information on Ruby-on-Rails, JRuby, JRuby on Sun GlassFish and Warbler, see the
following resources.

■ Ruby-on-Rails
■ JRuby
■ Everything on Scripting in Glassfish
■ Warbler

2

3

4

5

1

2

3

Further Information

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200930

http://rubyonrails.org
http://www.jruby.org
https://glassfish-scripting.dev.java.net/
http://caldersphere.rubyforge.org/warbler/

Developing Grails Applications

This chapter introduces Groovy and Grails, a Java based alternative to scripting.

The following topics are addressed here:

■ “Introduction to Groovy and Grails” on page 31
■ “Installing Grails” on page 31
■ “Creating a Simple Grails Application” on page 32
■ “Deploying and Running a Grails Application” on page 33

Introduction to Groovy and Grails
Groovy is a dynamic, object-oriented language for the Java Virtual Machine, which builds on
the strengths of Java but has additional features inspired by languages such as Python, Ruby,
and Smalltalk. For more information about Groovy, see Groovy (http://
groovy.codehaus.org).

Grails is an open-source web application framework that leverages the Groovy language and
complements Java web development. Grails is a standalone development environment that can
hide all configuration details or allow integration of Java business logic. It provides easy-to-use
tools to build web applications in Groovy. For more information about Grails, see Grails
(http://www.grails.org).

Installing Grails
Grails is available as an IPS package from GlassFish Update Tool. To develop and deploy Grails
applications on the Enterprise Server, first install the Grails module.

2C H A P T E R 2

31

http://groovy.codehaus.org
http://groovy.codehaus.org
http://www.grails.org
http://www.grails.org

▼ Installing the Grails Module
Install the Grails add-on component that is available from the Update Tool.

For information about the Update Tool, see the Sun GlassFish Enterprise Server v3 Installation
Guide.

Create a GRAILS_HOME environment variable that points to the Grails directory,
as-install/grails.

Add the as-install/grails/bindirectory to the PATH environment variable.

Setting UNIX Environment Variables

On Solaris, Linux, and other operating systems related to UNIX, use the following commands
for steps 2 and 3:

set GRAILS_HOME=as-install/glassfish/grails

export GRAILS_HOME

cd $GRAILS_HOME

set PATH=$GRAILS_HOME/bin:$PATH

export PATH

chmod a+x $GRAILS_HOME/bin/*

Setting Windows Environment Variables

On the Windows operating system, use the following commands for steps 2 and 3:

set GRAILS_HOME=C:\GlassFish\grails

set PATH=%GRAILS_HOME%\bin;%PATH%

Creating a Simple Grails Application
To create the helloworld application, perform the following tasks:

■ “Creating the helloworld Application” on page 33
■ “Creating the hello Controller” on page 33

For more information on creating Grails applications, see the Grails Quick Start
(http://grails.org/Quick+Start).

1

2

3

Example 2–1

Example 2–2

Creating a Simple Grails Application

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200932

http://docs.sun.com/doc/820-7690
http://docs.sun.com/doc/820-7690
http://grails.org/Quick+Start
http://grails.org/Quick+Start

▼ Creating the helloworldApplication
Go to the as-install/grails/samples directory.

Run the grails create-app helloworld command.
The grails create-app command creates a helloworld application that you can modify.

▼ Creating the helloController
Go to the as-install/grails/samples/helloworld directory.

Run the grails create-controller hello command.
The grails create-controller command creates a controller file that you can modify in the
/grails/samples/helloworld/grails-app/controllers directory:

Edit the generated HelloController.groovy file so it looks like this:
class HelloController {

def world = {

render "Hello World!"
}

//def index = { }

}

Deploying and Running a Grails Application
To deploy and run your application, perform one of these tasks:

■ “Running a Grails Application Using run-app” on page 33
■ “Running a Grails Application Using Standard Deployment” on page 34

▼ Running a Grails Application Using run-app

Go to the application directory.
For example, go to the as-install/grails/samples/helloworld directory.

Run the following command:
grails run-app

1

2

1

2

3

1

2

Deploying and Running a Grails Application

Chapter 2 • Developing Grails Applications 33

The grails run-app command starts the Enterprise Server in the background and runs the
application in one step. You don't need to create a WAR file or deploy your application in the
development stage.

To test your application, point your browser to http://host:port/app-dir-name.

For example, point to http://localhost:8080/helloworld. You should see a screen that
begins, “Welcome to Grails.” Selecting the HelloController link should change the display to,
“Hello World!”

For details about the grails run-app command, see the Sun GlassFish Enterprise Server v3
Reference Manual.

▼ Running a Grails Application Using Standard
Deployment

Go to the application directory.

For example, go to the as-install/grails/samples/helloworld directory.

Create the WAR file in one of the following ways:

■ Run the grails war command.

This command creates a large WAR file containing all the application's dependencies,
various jar files.

■ Run the grails war --nojars command.

This command creates a small WAR file without , but requires referencing of the Grails
library JAR at deployment.

In the helloworld application, this step creates the helloworld-0.1.war file.

Deploy the WAR file in one of the following ways:

■ In the Administration Console, open the Applications component, go to the Web
Applications page, select the Deploy button, and type the path to the WAR file.

The path to the helloworld WAR file is
as-install/grails/samples/helloworld/helloworld-0.1.war.

If you used the grails shared-war command, specify the
as-install/grails/lib/glassfish-grails.jar file in the Libraries field.

3

See Also

1

2

3

Deploying and Running a Grails Application

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200934

http://docs.sun.com/doc/820-7701
http://docs.sun.com/doc/820-7701

■ On the command line, use the asadmin deploy command and specify the WAR file. For
example:
asadmin deploy helloworld-0.1.war

Note – If configured, you may be prompted for asadmin password at this time.

To test your application, point your browser to http://host:port/war-file-name. Do not include
the .war extension.
For example, point to http://localhost:8080/helloworld-0.1. You should see a screen that
begins, “Welcome to Grails.” Selecting the HelloController link should change the display to,
“Hello World!”

For details about the Administration Console, see the online help.

For details about the asadmin deploy command, see the Sun GlassFish Enterprise Server v3
Reference Manual.

For details about the grails war and grails shared-war commands, see the Grails Quick
Start (http://grails.org/Quick+Start).

For general information about deployment, see the Sun GlassFish Enterprise Server v3
Application Deployment Guide.

4

See Also

Deploying and Running a Grails Application

Chapter 2 • Developing Grails Applications 35

http://docs.sun.com/doc/820-7701
http://docs.sun.com/doc/820-7701
http://grails.org/Quick+Start
http://grails.org/Quick+Start
http://docs.sun.com/doc/820-7693
http://docs.sun.com/doc/820-7693

36

Jython on Django

This section of the tutorial provides an overview of Jython and Django and how to get started
with using them on Sun GlassFish Enterprise Server.

The following topics are addressed here:

■ “Overview ” on page 37
■ “Installing Jython and Django ” on page 38
■ “Creating and deploying a Simple Django Application” on page 40
■ “Further Information” on page 41

Overview
Jython is JavaTM implementation of the Python language. Jython is integrated with Java Platform
and generates the code that runs on Java. Jython implements almost all modules of Python,
except those written in C. Jython programs can import and uses Java classes effortlessly. Jython
provides the following advantages:

■ Provides the advantages of easy and powerful Python syntax
■ Allows import of Java Classes and their extension
■ Provides the ability to compile programs to Java bytecode

To learn more about Jython, see Jython.

Django is a web framework for Python and implementations of Python such as Jython. Django
allows quick and easy creation of high-performance web applications. Django provides the
following advantages:

■ Provides an automatic administrative interface to web applications
■ Provides an extensible and powerful templating system
■ Allows to build data models that can access databases quickly

To learn more about Django, see Django.

3C H A P T E R 3

37

http://www.jython.org
http://www.djangoproject.com

You have the advantages of both Jython and Django when you build web applications using
Jython on Django for Sun GlassFish Enterprise Server. GlassFish users can deploy Django
applications with directory deployment method.

Installing Jython and Django
To develop Jython on Django applications for GlassFish, you need to do the following :

■ Install Jython
■ Install Django
■ Install Jython container for Sun GlassFish Enterprise Server

The following sections explain these tasks in more detail.

▼ To Install Jython
Go the Jython download site,https://sourceforge.net/
projects/jython/files/jython/2.5.1/jython_installer-2.5.1.jar.

Download Jython.

Run the installer as follows:
java -jar jython_installer-2.5.1.jar

Set the following environmental variables:
export JYTHON_HOME=/<jython-install-location>

export PATH=$JYTHON_HOME/bin:$PATH

You should now be able to invoke Jython from command line as follows:

jython

▼ To Install Django
Go to Django download site, http://media.djangoproject.com/releases/1.1.1/
Django-1.1.1.tar.gz.

Extract the tar file:
gunzip Django-1.1.1.tar.gz

tar -xvf Django-1.1.1.tar

1

2

3

4

1

2

Installing Jython and Django

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200938

https://sourceforge.net/projects/jython/files/jython/2.5.1/jython_installer-2.5.1.jar
https://sourceforge.net/projects/jython/files/jython/2.5.1/jython_installer-2.5.1.jar
http://media.djangoproject.com/releases/1.1.1/Django-1.1.1.tar.gz
http://media.djangoproject.com/releases/1.1.1/Django-1.1.1.tar.gz

cd Django-1.1.1

jython setup.py install

▼ To Install Jython container forSun GlassFish Enterprise
Server
This would install Jython Container module and Grizzly adapter jars in
$AS_INSTALL/glassfish/modules directory and enables deployment of Jython/Django
applications on Sun GlassFish Enterprise Server.

Note – Make sure asadmin command is available from the PATH variable. Alternately you can
use $AS_INSTALL/bin/asadmin command.

Invoke the Update Center tool.
<as-install-location>/bin/updatetool

Choose Jython Container from Available Add-ons and select to install:
GlassFish V3 Jython Container

This completes the installation of the container.

Start the Sun GlassFish Enterprise Server:
asadmin start-domain -v

Add Jython to JVM options:
asadmin create-jvm-options -Djython.home=/<jython-install-location>

This step tells the container where to find the Jython installation.

▼ To Install Jython Support Libraries for Django
The django-jython project contains database back-ends and management commands for
Django and Jython development. To download django-jython packages, go to
http://code.google.com/p/django-jython/and download django-jython-1.0.0.tar.gz.

Open django-jython-1.0.0.tar.gz
gunzip django-jython-1.0.0.tar.gz

Extract the tar file
tar -xvf django-jython-1.0.0.tar

1

2

3

4

1

2

Installing Jython and Django

Chapter 3 • Jython on Django 39

http://code.google.com/p/django-jython/

Go to the directory and install the packages
cd django-jython-1.0.0

jython setup.py install

Creating and deploying a Simple Django Application
After completing the software installations, you are ready to create Jython applications using
Django. This section explains how to create a simple application.

▼ To create a Simple Django application
Django comes with a built-in administration utility. We can enable it to make the process of
creating projects easier.

Use the following command to enable the Django administration utility:
alias django–admin-jy="jython <jython-install-location>/bin/django-admin.py"

Go to Django install location.

Use the following command to create a project:
django-admin-jy startproject myproject

To deploy a Django application from Command Line
To deploy a Django application from command line using asadmin command, do the
following:

1. Make sure JYTHON_HOME and PATH environmental variables are set.
2. Go to the directory containing the project. For example:

cd /tools/jython/projects

Where /tools/jython/projects contains different projects such as myproject.
3. Use the following command to deploy the application:

asadmin deploy myproject/

Asadmin CLI for Jython
The asadmin deploy command also allows the user to set deployment specific properties for
the Jython applications. The following table lists these properties.

3

1

2

3

Creating and deploying a Simple Django Application

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200940

TABLE 3–1 Jython Properties

Property Default Value Possible Value Description

jython.home None Path to a directory Path to a Jython
installation. Error if not
present.

jython.mediaRoot None Path to a directory Optional parameter
containing the path to the
location for server to
serve the static files.

jython.frameworkRoot None Path to a directory Optional parameter
containing the path of
framework bring used.
Currently supports
Django.

jython.applicationType None String representing
application type such as
Django

Optional parameter to
specify the framework
including non-Django
applications.

Use the following syntax to set these properties:

asadmin -deploy --property jython.<property>=<value> --force=true|false

For example you can set the jython.frameworkRoot property to Django directory as under:

asadmin -deploy --property jython.frameworkRoot=/tools/django --force=true

These values are persistent in the domain.xml file.

Further Information
The previous sections discussed Jython on Django installation and configuration for Sun
GlassFish Enterprise Server. To utilize the Django administration utility for creating
applications based on a database, you need a database and the JDBC drivers for Jython to
connect to that database. The following steps briefly describe the tasks involved:

1. Install a database such as PostgreSQL.
2. Create a database instance.
3. Install django–jython packages for the database connectors, if not installed previously.
4. Edit settings.py and configure the database.
5. Edit settings.py and configure the administration utility.
6. Add the database drivers to the class path to allow Jython to access the database.

Further Information

Chapter 3 • Jython on Django 41

7. Sync the database with the following command:
jython manage.py syncdb

8. Edit urls.py file and uncomment the lines pertaining to admin utility.
9. Make the stylesheets available to the Jython container:

asadmin deploy --property

jython.mediaRoot=/tools/jython/Lib/site-packages/django/contrib/admin/

--force=true

You can obtain more information on how to install and use the databases with Django
administration from the following tutorial:

http://weblogs.java.net/blog/vivekp/archive/2009/06/run_django_appl_1.html

The following links provide more details on the information provided in this chapter.

http://docs.djangoproject.com/en/dev/howto/jython/#howto-jython

http://wiki.python.org/jython/DjangoOnJython

Further Information

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200942

http://weblogs.java.net/blog/vivekp/archive/2009/06/run_django_appl_1.html
http://docs.djangoproject.com/en/dev/howto/jython/#howto-jython
http://wiki.python.org/jython/DjangoOnJython

Scala and Lift

Scala is a general purpose programming language designed to express common programming
patterns in a concise, elegant, and type-safe way. It smoothly integrates features of
object-oriented and functional languages. It is also fully interoperable with Java. For details, see
http://www.scala-lang.org/.

Lift is an expressive and elegant framework for writing web applications using Scala. Lift
stresses the importance of security, maintainability, scalability and performance, while allowing
for high levels of developer productivity. For details, see http://liftweb.net/.

The following topics are addressed here:
■ “Using Scala and Lift” on page 43

Using Scala and Lift
It is common practice to start a Lift web application using Maven. Maven is a software project
management and comprehension tool. Based on the concept of a project object model (POM),
Maven can manage a project's build, reporting and documentation from a central piece of
information. For details, see http://maven.apache.org/.

To create a new Lift project, use Maven interactively in one of these ways:

mvn archetype:generate -DarchetypeCatalog=http://scala-tools.org/

Or:

mvn org.apache.maven.plugins:maven-archetype-plugin:1.0-alpha-7:create \

-DarchetypeGroupId=net.liftweb \

-DarchetypeArtifactId=lift-archetype-blank \

-DarchetypeVersion=0.7.1 \

-DremoteRepositories=http://scala-tools.org/repo-releases \

-DgroupId=__my.liftapp__ -DartifactId=__liftapp__

4C H A P T E R 4

43

http://www.scala-lang.org/
http://liftweb.net/
http://maven.apache.org/

Or:

mvn org.apache.maven.plugins:maven-archetype-plugin:1.0-alpha-7:create \

-DarchetypeGroupId=net.liftweb \

-DarchetypeArtifactId=lift-archetype-basic \

-DarchetypeVersion=0.7.1 \

-DremoteRepositories=http://scala-tools.org/repo-releases \

-DgroupId=__my.liftapp__ -DartifactId=__liftapp__

After coding your application, build the WAR file using the mvn package command. Then
deploy the WAR file to the Enterprise Server as you would any other web application.

Using Scala and Lift

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200944

PHP

PHP is a popular scripting language that is used mainly for generating dynamic web pages. It
takes PHP code as input and produces web pages as output. It can be used as standalone but
more often than not, deployed on a server.

5C H A P T E R 5

45

The following topics are addressed here:

■ “Enabling PHP on Sun GlassFishEnterprise Server” on page 46

Enabling PHP on Sun GlassFishTMEnterprise Server
To enable PHP, deploy the Quercus PHP interpreter to the Enterprise Server as a web module.

▼ To Deploy the Quercus PHP Interpreter to the
Enterprise Server

Download the Quercus PHP interpreter from http://quercus.caucho.com/.

Deploy the WAR file you downloaded to the Enterprise Server.

To verify that your PHP engine is working, point your browser to the default PHP script that
comes with the Quercus interpreter, which is http://localhost:8080/quercus-4.0.1/.

Place your PHP application in a subdirectory of the Quercus directory, for example
domain-dir/applications/quercus-4.0.1/myapp/.
The Quercus application directory is located at domain-dir/applications/quercus-4.0.1/.

To point your browser to the PHP application, enter
http://localhost:8080/quercus-4.0.1/myapp/.

For more information, documentation and examples see the Quercus PHP interpreter
(http://quercus.caucho.com/quercus-3.1/index.xtp).

1

2

3

4

5

See Also

Enabling PHP on Sun GlassFishTMEnterprise Server

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200946

http://quercus.caucho.com/
http://quercus.caucho.com/quercus-3.1/index.xtp
http://quercus.caucho.com/quercus-3.1/index.xtp

Using Comet

This chapter explains the Comet programming technique and how to create and deploy a
Comet-enabled application with the Sun GlassFish Enterprise Server.

The following topics are addressed here:

■ “Introduction to Comet” on page 47
■ “Grizzly Comet” on page 50
■ “Bayeux Protocol” on page 59

Introduction to Comet
Comet is a programming technique that allows a web server to send updates to clients without
requiring the clients to explicitly request them.

This kind of programming technique is called server push, which means that the server pushes
data to the client. The opposite style is client pull, which means that the client must pull the data
from the server, usually through a user-initiated event, such as a button click.

Web applications that use the Comet technique can deliver updates to clients in a more timely
manner than those that use the client-pull style while avoiding the latency that results from
clients frequently polling the server.

One of the many use cases for Comet is a chat room application. When the server receives a
message from one of the chat clients, it needs to send the message to the other clients without
requiring them to ask for it. With Comet, the server can deliver messages to the clients as they
are posted rather than expecting the clients to poll the server for new messages.

To accomplish this scenario, a Comet application establishes a long-lived HTTP connection.
This connection is suspended on the server side, waiting for an event to happens before being
resumed. This kind of connection remains open, allowing an application that uses the Comet
technique to send updates to clients when they are available rather than expecting clients to
reopen the connection to poll the server for updates.

6C H A P T E R 6

47

The Grizzly Implementation of Comet
One limitation of the Comet technique is that you must use it with a web server that supports
non-blocking connections in order to avoid poor performance. Non-blocking connections are
those that do not need to allocate one thread for each request. If the web server were to use
blocking connections then it might end up holding many thousands of threads, thereby
hindering its scalability.

The GlassFish server includes the Grizzly HTTP Engine, which enables asynchronous request
processing (ARP) by avoiding blocking connections. Grizzly's ARP implementation
accomplishes this by using the Java NIO API.

With Java NIO, Grizzly enables greater performance and scalability by avoiding the limitations
experienced by traditional web servers that must run a thread for each request. Instead,
Grizzly's ARP mechanism makes efficient use of a thread pool system and also keeps the state of
requests so that it can keep requests alive without holding a single thread for each of them.

Grizzly supports two different implementations of Comet:

■ “Grizzly Comet” on page 50 — Based on ARP, this includes a set of APIs that you use from a
web component to enable Comet functionality in your web application. Grizzly Comet is
specific to the Sun GlassFish Enterprise Server.

■ “Bayeux Protocol” on page 59 — Often referred to as Cometd, it consists of the JSON-based
Bayeux message protocol, a set of Dojo or Ajax libraries, and an event handler. The Bayeux
protocol uses a publish/subscribe model for server/client communication. The Bayeux
protocol is portable, but it is container dependent if you want to invoke it from an EJB
component. The Grizzly implementation of Cometd consists of a servlet that you reference
from your web application.

Client Technologies to Use With Comet
In addition to creating a web component that uses the Comet APIs, you need to enable your
client to accept asynchronous updates from the web component. To accomplish this, you can
use JavaScript, IFrames, or a framework, such as Dojo.

An IFrame is an HTML element that allows you to include other content in an HTML page. As
a result, the client can embed updated content in the IFrame without having to reload the page.

The example explained in this tutorial employs a combination of JavaScript and IFrames to
allow the client to accept asynchronous updates. A servlet included in the example writes out
JavaScript code to one of the IFrames. The JavaScript code contains the updated content and
invokes a function in the page that updates the appropriate elements in the page with the new
content.

Introduction to Comet

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200948

http://dojotoolkit.org

The next section explains the two kinds of connections that you can make to the server. While
you can use any of the client technologies listed in this section with either kind of connection, it
is more difficult to use JavaScript with an HTTP-streaming connection.

Kinds of Comet Connections
When working with Comet, as implemented in Grizzly, you have two different ways to handle
client connections to the server:

■ HTTP Streaming
■ Long-polling

HTTP Streaming
The HTTP Streaming technique keeps a connection open indefinitely. It never closes, even after
the server pushes data to the client.

In the case of HTTP streaming, the application sends a single request and receives responses as
they come, reusing the same connection forever. This technique significantly reduces the
network latency because the client and the server don't need to open and close the connection.

The basic life cycle of an application using HTTP-streaming is:

request --> suspend --> data available --> write response --> data available --> write response

The client makes an initial request and then suspends the request, meaning that it waits for a
response. Whenever data is available, the server writes it to the response.

Long Polling
The long-polling technique is a combination of server-push and client-pull because the client
needs to resume the connection after a certain amount of time or after the server pushes an
update to the client.

The basic life cycle of an application using long-polling is:

request -> suspend --> data available --> write response --> resume

The client makes an initial request and then suspends the request. When an update is available,
the server writes it to the response. The connection closes, and the client optionally resumes the
connection.

How to Choose the Kind of Connection
If you anticipate that your web application will need to send frequent updates to the client, you
should use the HTTP-streaming connection so that the client does not have to frequently
reestablish a connection. If you anticipate less frequent updates, you should use the long-polling

Introduction to Comet

Chapter 6 • Using Comet 49

connection so that the web server does not need to keep a connection open when no updates are
occurring. One caveat to using the HTTP-streaming connection is that if you are streaming
through a proxy, the proxy can buffer the response from the server. So, be sure to test your
application if you plan to use HTTP-streaming behind a proxy.

Grizzly Comet
The following sections describe how to use Grizzly Comet.
■ “The Grizzly Comet API” on page 50
■ “The Hidden Frame Example” on page 51
■ “Creating a Comet-Enabled Application” on page 52
■ “Developing the Web Component” on page 52
■ “Creating the Client Pages” on page 55
■ “Creating the Deployment Descriptor” on page 58
■ “Deploying and Running a Comet-Enabled Application” on page 58

The Grizzly Comet API
Grizzly's support for Comet includes a small set of APIs that make it easy to add Comet
functionality to your web applications. The Grizzly Comet APIs that developers will use most
often are the following:
■ CometContext: A Comet context, which is a shareable space to which applications subscribe

in order to receive updates.
■ CometEngine: The entry point to any component using Comet. Components can be servlets,

JavaServer PagesTM (JSPTM), JavaServerTM Faces components, or pure Java classes.
■ CometEvent: Contains the state of the CometContext object
■ CometHandler: The interface an application implements to be part of one or more Comet

contexts.

The way a developer would use this API in a web component is to perform the following tasks:

1. Register the context path of the application with the CometContext object:

CometEngine cometEngine =

CometEngine.getEngine();

CometContext cometContext =

cometEngine.register(contextPath)

2. Register the CometHandler implementation with the CometContext object:

cometContext.addCometHandler(handler)

3. Notify one or more CometHandler implementations when an event happens:

cometContext.notify((Object)(handler))

Grizzly Comet

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200950

The Hidden Frame Example
This rest of this tutorial uses the Hidden Frame example to explain how to develop
Comet-enabled web applications. You can download the example from
grizzly.dev.java.net at Hidden example download. From there, you can download a
prebuilt WAR file as well as a JAR file containing the servlet code.

The Hidden Frame example is so called because it uses hidden IFrames. What the example does
is it allows multiple clients to increment a counter on the server. When a client increments the
counter, the server broadcasts the new count to the clients using the Comet technique.

The Hidden Frame example uses the long-polling technique, but you can easily modify it to use
HTTP-streaming by removing two lines. See “Notifying the Comet Handler of an Event” on
page 54 and “Creating the HTML Page That Updates and Displays the Content” on page 56
for more information on converting the example to use the HTTP-streaming technique.

The client side of the example uses hidden IFrames with embedded JavaScript tags to connect to
the server and to asynchronously post content to and accept updates from the server.

The server side of the example consists of a single servlet that listens for updates from clients,
updates the counter, and writes JavaScript code to the client that allows it to update the counter
on its page.

See “Deploying and Running a Comet-Enabled Application” on page 58 for instructions on
how to deploy and run the example.

When you run the example, the following happens:

1. The index.html page opens.

2. The browser loads three frames: the first one accesses the servlet using an HTTP GET; the
second one loads the count.html page, which displays the current count; and the third one
loads the button.html page, which is used to send the POST request.

3. After clicking the button on the button.html page, the page submits a POST request to the
servlet.

4. The doPost method calls the onEvent method of the Comet handler and redirects the
incremented count along with some JavaScript to the count.html page on the client.

5. The updateCount JavaScript function on the count.html page updates the counter on the
page.

6. Because this example uses long-polling, the JavaScript code on count.html calls doGet
again to resume the connection after the servlet pushes the update.

Grizzly Comet

Chapter 6 • Using Comet 51

http://download.java.net/maven/2/com/sun/grizzly/samples/grizzly-comet-hidden/1.7.3.1/

Creating a Comet-Enabled Application
This section uses the Hidden Frame example application to demonstrate how to develop a
Comet application. The main tasks for creating a simple Comet-enabled application are the
following:

Developing the Web Component
This section shows you how to create a Comet-enabled web component by giving you
instructions for creating the servlet in the Hidden Frame example.

Developing the web component involves performing the following steps:

1. Create a web component to support Comet requests.
2. Register the component with the Comet engine.
3. Define a Comet handler that sends updates to the client.
4. Add the Comet handler to the Comet context.
5. Notify the Comet handler of an event using the Comet context.

▼ Creating a Web Component to Support Comet

Create an empty servlet class, like the following:
import javax.servlet.*;

public class HiddenCometServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

private String contextPath = null;

@Override

public void init(ServletConfig config) throws ServletException {}

@Override

protected void doGet(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {}

@Override

protected void doPost(HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {);

}

Import the following Comet packages into the servlet class:
import com.sun.grizzly.comet.CometContext;

import com.sun.grizzly.comet.CometEngine;

import com.sun.grizzly.comet.CometEvent;

import com.sun.grizzly.comet.CometHandler;

1

2

Grizzly Comet

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200952

Import these additional classes that you need for incrementing a counter and writing output to
the clients:
import java.io.IOException;

import java.io.PrintWriter;

import java.util.concurrent.atomic.AtomicInteger;

Add a private variable for the counter:
private final AtomicInteger counter = new AtomicInteger();

▼ Registering the Servlet with the Comet Engine

In the servlet's initmethod, add the following code to get the component's context path:
ServletContext context = config.getServletContext();

contextPath = context.getContextPath() + "/hidden_comet";

Get an instance of the Comet engine by adding this line after the lines from step 1:
CometEngine engine = CometEngine.getEngine();

Register the component with the Comet engine by adding the following lines after those from
step 2:
CometContext cometContext = engine.register(contextPath);

cometContext.setExpirationDelay(30 * 1000);

▼ Defining a Comet Handler to Send Updates to the Client

Create a private class that implements CometHandler and add it to the servlet class:
private class CounterHandler

implements CometHandler<HttpServletResponse> {

private HttpServletResponse response;

}

Add the following methods to the class:
public void onInitialize(CometEvent event)

throws IOException {}

public void onInterrupt(CometEvent event)

throws IOException {

removeThisFromContext();

}

public void onTerminate(CometEvent event)

throws IOException {

removeThisFromContext();

3

4

1

2

3

1

2

Grizzly Comet

Chapter 6 • Using Comet 53

}

public void attach(HttpServletResponse attachment) {

this.response = attachment;

}

private void removeThisFromContext() throws IOException {

response.getWriter().close();

CometContext context =

CometEngine.getEngine().getCometContext(contextPath);

context.removeCometHandler(this);

}

You need to provide implementations of these methods when implementing CometHandler.
The onInterrupt and onTerminate methods execute when certain changes occur in the status
of the underlying TCP communication. The onInterrupt method executes when
communication is resumed. The onTerminate method executes when communication is
closed. Both methods call removeThisFromContext, which removes the CometHandler object
from the CometContext object.

▼ Adding the Comet Handler to the Comet Context

Get an instance of the Comet handler and attach the response to it by adding the following lines
to the doGetmethod:
CounterHandler handler = new CounterHandler();

handler.attach(res);

Get the Comet context by adding the following lines to doGet:
CometEngine engine = CometEngine.getEngine();

CometContext context = engine.getCometContext(contextPath);

Add the Comet handler to the Comet context by adding this line to doGet:
context.addCometHandler(handler);

▼ Notifying the Comet Handler of an Event

Add an onEventmethod to the CometHandler class to define what happens when an event
occurs:
public void onEvent(CometEvent event)

throws IOException {

if (CometEvent.NOTIFY == event.getType()) {

int count = counter.get();

PrintWriter writer = response.getWriter();

writer.write("<script type=’text/javascript’>" +

"parent.counter.updateCount(’" + count + "’)" +

1

2

3

1

Grizzly Comet

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200954

"</script>\n");
writer.flush();

event.getCometContext().resumeCometHandler(this);

}

}

This method first checks if the event type is NOTIFY, which means that the web component is
notifying the CometHandler object that a client has incremented the count. If the event type is
NOTIFY, the onEvent method gets the updated count, and writes out JavaScript to the client. The
JavaScript includes a call to the updateCount function, which will update the count on the
clients' pages.

The last line resumes the Comet request and removes it from the list of active CometHandler
objects. By this line, you can tell that this application uses the long-polling technique. If you
were to delete this line, the application would use the HTTP-Streaming technique.

■ For HTTP-Streaming:
Add the same code as for long-polling, except do not include the following line:
event.getCometContext().resumeCometHandler(this);

You don't include this line because you do not want to resume the request. Instead, you want
the connection to remain open.

Increment the counter and forward the response by adding the following lines to the doPost
method:
counter.incrementAndGet();

CometEngine engine = CometEngine.getEngine();

CometContext<?> context =

engine.getCometContext(contextPath);

context.notify(null);

req.getRequestDispatcher("count.html").forward(req, res);

When a user clicks the button, the doPost method is called. The doPost method increments the
counter. It then obtains the current CometContext object and calls its notify method. By calling
context.notify, the doPost method triggers the onEvent method you created in the previous
step. After onEvent executes, doPost forwards the response to the clients.

Creating the Client Pages
Developing the HTML pages for the client involves performing these steps:

1. Create a welcome HTML page, called index.html, that contains: one hidden frame for
connecting to the servlet through an HTTP GET; one IFrame that embeds the count.html
page, which contains the updated content; and one IFrame that embeds the button.html
page, which is used for posting updates using HTTP POST.

2

Grizzly Comet

Chapter 6 • Using Comet 55

2. Create the count.html page that contains an HTML element that displays the current count
and the JavaScript for updating the HTML element with the new count.

3. Create the button.html page that contains a button for the users to submit updates.

▼ Creating a Welcome HTML Page That Contains IFrames for Receiving
and Sending Updates

Create an HTML page called index.html.

Add the following content to the page:
<html>

<head>

<title>Comet Example: Counter with Hidden Frame</title>

</head>

<body>

</body>

</html>

Add IFrames for connecting to the server and receiving and sending updates to index.html in
between the body tags:

<frameset>

<iframe name="hidden" src="hidden_comet"
frameborder="0" height="0" width="100%"></iframe>

<iframe name="counter" src="count.html"
frameborder="0" height="100%" width="100%"></iframe>

<iframe name="button" src="button.html" frameborder="0" height="30%" widget="100%"></iframe>
</frameset>

The first frame, which is hidden, points to the servlet by referencing its context path. The
second frame displays the content from count.html, which displays the current count. The
second frame displays the content from button.html, which contains the submit button for
incrementing the counter.

▼ Creating the HTML Page That Updates and Displays the Content

Create an HTML page called count.html and add the following content to it:
<html>

<head>

</head>

<body>

<center>

<h3>Comet Example: Counter with Hidden Frame</h3>

<p>

<b id="count">

1

2

3

1

Grizzly Comet

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200956

<p>

</center>

</body>

</html>

This page displays the current count.

Add JavaScript code that updates the count in the page . Add the following lines in between the
head tags of count.html:
<script type=’text/javascript’>

function updateCount(c) {

document.getElementById(’count’).innerHTML = c;

parent.hidden.location.href = "hidden_comet";
};

</script>

The JavaScript takes the updated count it receives from the servlet and updates the count
element in the page. The last line in the updateCount function invokes the servlet's doGet
method again to reestablish the connection.

■ For HTTP-Streaming:

Add the same code as for long-polling, except for the following line:
parent.hidden.location.href = “hidden_comet”

This line invokes the doGet method of CometServlet again, which would reestablish the
connection. In the case of HTTP-Streaming, you want the connection to remain open.
Therefore, you don't include this line of code.

▼ Creating the HTML Page That Allows Submitting Updates

Create an HTML page called button.html and add the following content to it:
<html>

<head>

</head>

<body>

<center>

<form method="post" action="hidden_comet">
<input type="submit" value="Click">

</form>

</center>

</body>

</html>

This page displays a form with a button that allows a user to update the count on the server. The
servlet will then broadcast the updated count to all clients.

2

●

Grizzly Comet

Chapter 6 • Using Comet 57

Creating the Deployment Descriptor
This section describes how to create a deployment descriptor to specify how your
Comet-enabled web application should be deployed.

▼ Creating the Deployment Descriptor

Create a file called web.xml and put the following contents in it:
<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd ">

<servlet>

<servlet-name>HiddenCometServlet</servlet-name>

<servlet-class>

com.sun.grizzly.samples.comet.HiddenCometServlet

</servlet-class>

<load-on-startup>0</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>HiddenCometServlet</servlet-name>

<url-pattern>/hidden_comet</url-pattern>

</servlet-mapping>

</web-app>

This deployment descriptor contains a servlet declaration and mapping for
HiddenCometServlet. The load-on-startup attribute must be set to 0 so that the
Comet-enabled servlet will not load until the client makes a request to it.

Deploying and Running a Comet-Enabled Application
Before running a Comet-enabled application in the Enterprise Server, you need to enable
Comet in the server. Then you can deploy the application just as you would any other web
application.

When running the application, you need to connect to it from at least two different browsers to
experience the effect of the servlet updating all clients in response to one client posting an
update to the server.

●

Grizzly Comet

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200958

Enabling Comet in the Enterprise Server
Before running a Comet-enabled application, you need to enable Comet in the HTTP listener
for your application by adding a special property to the associated protocol configuration. Here
is an example asadmin set command that adds this property:

asadmin set server-config.network-config.protocols.protocol.http-1.http.enable-comet-support="true"

Substitute the name of the protocol for http-1.

▼ Deploying the Example
These instructions tell you how to deploy the Hidden Frame example.

Download grizzly-comet-hidden-1.7.3.1.war.

Run the following command to deploy the example:
as-install/bin/asadmin deploy grizzly-comet-hidden-1.7.3.1.war

▼ Running the Example
These instructions tell you how to run the Hidden Frame example.

Open two web browsers, preferably two different brands of web browser.

Enter the following URL in both browsers:
http://localhost:8080/grizzly-comet-hidden/index.html

When the first page loads in both browsers, click the button in one of the browsers and watch
the count change in the other browser window.

BayeuxProtocol
The Bayeux protocol, often referred to as Cometd, greatly simplifies the use of Comet. No
server-side coding is needed for servers such as Enterprise Server that support the Bayeux
protocol. Just enable Comet and the Bayeux protocol, then write and deploy the client as
described in the following tasks:

■ “Enabling Comet” on page 60
■ “Configuring the web.xml File” on page 60
■ “Writing, Deploying, and Running the Client” on page 61

1

2

1

2

3

Bayeux Protocol

Chapter 6 • Using Comet 59

http://download.java.net/maven/2/com/sun/grizzly/samples/grizzly-comet-hidden/1.7.3.1/

Enabling Comet
Before running a Comet-enabled application, you need to enable Comet in the HTTP listener
for your application by adding a special property to the associated protocol configuration. Here
is an example asadmin set command that adds this property:

asadmin set server-config.network-config.protocols.protocol.http-1.http.enable-comet-support="true"

Substitute the name of the protocol for http-1.

▼ Configuring the web.xml File
To enable the Bayeux protocol on the Enterprise Server, you must reference the CometdServlet
in your web application's web.xml file. In addition, if your web application includes a servlet, set
the load-on-startup value for your servlet to 0 (zero) so that it will not load until the client
makes a request to it.

Open the web.xmlfile for your web application in a text editor.

Add the following XML code to the web.xmlfile:
<servlet>

<servlet-name>Grizzly Cometd Servlet</servlet-name>

<servlet-class>

com.sun.grizzly.cometd.servlet.CometdServlet

</servlet-class>

<init-param>

<description>

expirationDelay is the long delay before a request is

resumed. -1 means never.

</description>

<param-name>expirationDelay</param-name>

<param-value>-1</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>Grizzly Cometd Servlet</servlet-name>

<url-pattern>/cometd/*</url-pattern>

</servlet-mapping>

Note that the load-on-startup value for the CometdServlet is 1.

1

2

Bayeux Protocol

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200960

If your web application includes a servlet, set the load-on-startup value to 0 for your servlet
(not the CometdServlet) as follows:
<servlet>

...

<load-on-startup>0</load-on-startup>

</servlet>

Save the web.xmlfile.

▼ Writing, Deploying, and Running the Client
The examples in this task are taken from the example chat application posted and discussed at
http://weblogs.java.net/blog/jfarcand/archive/2007/02/gcometd_introdu_1.html.

Add script tags to the HTML page. For example:
<script type="text/javascript" src="chat.js"></script>

In the script, call the needed libraries. For example:
dojo.require("dojo.io.cometd");

In the script, use publish and subscribe methods to send and receive messages. For example:
cometd.subscribe("/chat/demo", false, room, "_chat");
cometd.publish("/chat/demo", { user: room._username, chat: text});

Deploy the web application as you would any other web application. For example:
asadmin deploy cometd-example.war

Run the application as you would any other web application.
The context root for the example chat application is /cometd and the HTML page is
index.html. So the URL might look like this:
http://localhost:8080/cometd/index.html

For more information about deployment in the Enterprise Server, see the Sun GlassFish
Enterprise Server v3 Application Deployment Guide.

For more information about the Bayeux protocol, see Bayeux Protocol (http://
svn.xantus.org/shortbus/trunk/bayeux/bayeux.html).

For more information about the Dojo toolkit, see http://dojotoolkit.org/.

For information about pushing data from an external component such as an EJB module, see
the example at http://blogs.sun.com/swchan/entry/java_api_for_cometd. Using this
Grizzly Java API for Cometd makes your web application non-portable. Running your
application on a server that doesn't support Grizzly Comet will not work.

3

4

1

2

3

4

5

See Also

Bayeux Protocol

Chapter 6 • Using Comet 61

http://weblogs.java.net/blog/jfarcand/archive/2007/02/gcometd_introdu_1.html
http://docs.sun.com/doc/820-7693
http://docs.sun.com/doc/820-7693
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html
http://dojotoolkit.org/
http://blogs.sun.com/swchan/entry/java_api_for_cometd

For information about RESTful (REpresentational State Transfer) web services and Comet, see
RESTful Web Services and Comet (http://developers.sun.com/appserver/reference/
techart/cometslideshow.html).

Bayeux Protocol

Sun GlassFish Enterprise Server v3 Scripting Framework Guide • November 200962

http://developers.sun.com/appserver/reference/techart/cometslideshow.html
http://developers.sun.com/appserver/reference/techart/cometslideshow.html

	Sun GlassFish Enterprise Server v3 Scripting Framework Guide
	Preface
	Enterprise Server Documentation Set
	Related Documentation
	Typographic Conventions
	Symbol Conventions
	Default Paths and File Names
	Documentation, Support, and Training
	Searching Sun Product Documentation
	Third-Party Web Site References
	Sun Welcomes Your Comments

	Using JRuby on Rails With Sun GlassFishTM Enterprise Server
	Introduction to JRuby and Rails on Sun GlassFish Enterprise Server
	What is Ruby on Rails ?
	What is JRuby?
	JRuby on Rails, the Sun GlassFish Enterprise Server v3, and the GlassFish v3 Gem

	Installing JRuby and Required Gems
	Installing JRuby and Rails from Update Center
	Downloading and Installing JRuby
	Installing Rails on JRuby
	Installing the GlassFish v3 Gem

	Creating a Simple Rails Application
	Creating the hello Application
	Creating the Controller and View
	Passing Data From the Controller to the View
	Using Rails Without a Database

	Deploying and Running a Rails Application
	Deploying a Rails Application as a Directory
	Deploying a Rails Application to the GlassFish v3 Gem

	Accessing a Database From a Rails Application
	Setting Up the MySQL Database Server
	Creating a Database-Backed Rails Application
	Deploying and Running the Database-Backed Web Application

	Accessing Java Libraries from a Rails Application
	Creating the Rails Application That Accesses Java Libraries
	Creating the Views That Display the Images Generated by Java2D Code
	Adding Java2D Code to a Rails Controller
	Running a Rails Application That Uses Java 2D Code

	Configuring JRuby Container
	Configuring JRuby Container through Asadmin CLI
	Configuring JRuby Runtime Pool

	Introduction to Warbler
	What is Warbler

	Creating and Deploying a Simple Rails Application with Warbler
	Creating a Rails application
	Deploying the war file

	Further Information

	Developing Grails Applications
	Introduction to Groovy and Grails
	Installing Grails
	Installing the Grails Module

	Creating a Simple Grails Application
	Creating the helloworld Application
	Creating the hello Controller

	Deploying and Running a Grails Application
	Running a Grails Application Using run-app
	Running a Grails Application Using Standard Deployment

	Jython on Django
	Overview
	Installing Jython and Django
	To Install Jython
	To Install Django
	To Install Jython container forSun GlassFish Enterprise Server
	To Install Jython Support Libraries for Django

	Creating and deploying a Simple Django Application
	To create a Simple Django application
	To deploy a Django application from Command Line
	Asadmin CLI for Jython

	Further Information

	Scala and Lift
	Using Scala and Lift

	PHP
	Enabling PHP on Sun GlassFishTMEnterprise Server
	To Deploy the Quercus PHP Interpreter to the Enterprise Server

	Using Comet
	Introduction to Comet
	The Grizzly Implementation of Comet
	Client Technologies to Use With Comet
	Kinds of Comet Connections
	HTTP Streaming
	Long Polling
	How to Choose the Kind of Connection

	Grizzly Comet
	The Grizzly Comet API
	The Hidden Frame Example
	Creating a Comet-Enabled Application
	Developing the Web Component
	Creating a Web Component to Support Comet
	Registering the Servlet with the Comet Engine
	Defining a Comet Handler to Send Updates to the Client
	Adding the Comet Handler to the Comet Context
	Notifying the Comet Handler of an Event

	Creating the Client Pages
	Creating a Welcome HTML Page That Contains IFrames for Receiving and Sending Updates
	Creating the HTML Page That Updates and Displays the Content
	Creating the HTML Page That Allows Submitting Updates

	Creating the Deployment Descriptor
	Creating the Deployment Descriptor

	Deploying and Running a Comet-Enabled Application
	Enabling Comet in the Enterprise Server
	Deploying the Example
	Running the Example

	Bayeux Protocol
	Enabling Comet
	Configuring the web.xml File
	Writing, Deploying, and Running the Client

