
openInstaller Developer Tools 
Detailed Design Document

v0.2
Sept. 10, 2007

Vadiraj Deshpande



Document History
Draft version Date Author Summary of changes
0.1 August 27th Vadiraj Deshpande First draft version
0.2 September 10th Vadiraj Deshpande Added new features and updated few 

TODOs



Table of Contents
Introduction................................................................................................................................................4
Document conventions...............................................................................................................................4
Design Details............................................................................................................................................5

 1  1 Feature : Tool distribution and deployments ................................................................................5
 1.1  1.1 Plug-in version....................................................................................................................5
 1.2  1.2 Stand alone version ............................................................................................................5
 1.3  1.3 Update Center ....................................................................................................................5
 1.4  1.4 Tool Updates.......................................................................................................................5

 2  2 Feature : User experience of the tool.............................................................................................6
 2.1  2.1 Plug-in version....................................................................................................................6
 2.2  2.2 Stand alone version.............................................................................................................6

Welcome screen ..........................................................................................................................6
Application appearance ...............................................................................................................6

 3  3 Feature : Create/Edit Installer Projects..........................................................................................7
 3.1  3.1 Creation of Installer Project................................................................................................7
 3.2  3.2 Files created during the new installer project creation.......................................................8
 3.3  3.3 Installer Project types.........................................................................................................9
 3.4  3.4 Storing the changes.............................................................................................................9
 3.5  3.5 Opening the existing Installer Project.................................................................................9

Project Logical View..................................................................................................................10
Config Profiles...........................................................................................................................11
Pop up menus.............................................................................................................................12

 4  4 Feature : Create New / Edit Component ....................................................................................14
 4.1  4.1 Create New Component  ..................................................................................................14
 4.2  4.2 Editing the components....................................................................................................19

 5  5 Feature : Three click Installer .....................................................................................................23
 5.1  5.1  Introduction......................................................................................................................23
 5.2  5.2 Why we need it.................................................................................................................23
 5.3  5.3 How it works....................................................................................................................24

 6  6 Feature : Assembling Installer ....................................................................................................25
 6.1  6.1 Inputs assumed for this feature.........................................................................................25
 6.2  6.2 How it works....................................................................................................................25
 6.3  6.3 Adding JNLP to assembly.................................................................................................25

 7  7 Feature : Installer Integrity check................................................................................................25
 7.1  7.1 How it works....................................................................................................................26
 7.2  7.2 Current state......................................................................................................................26

Appendix .................................................................................................................................................28
 1  1 Netbeans Wizards in this project.................................................................................................28
 2  2 XML Multiview API in this project............................................................................................28
 3  3 Netbeans Visual Library 2.0 in the project..................................................................................29

Glossary...................................................................................................................................................29



  Introduction
openInstaller Framework1 is a generic framework for developing installers mainly targeted 

for middleware products and product stacks such as Java ES. The openInstaller Developer Tools is a 
sub project, which aims at simplifying overall installer development experience and is targeted for 
product teams and installer developers who want to build installers on top of openInstaller 
Framework.

The scope of the current document is to define a detailed design of the openInstaller 
Developer Tools (a.k.a., openInstaller IDE) based upon the use cases derived.2 The design of each 
use cases (and thus features of the tool) contain technical information.

  Document conventions
Throughout the document the following conventions apply.

1. When there is a mention of the word 'Netbeans', it represents both Netbeans IDE and 
Netbeans platform. 

2. When referring to the word 'user' or 'tool user', its assumed that both the words refer to 
Installer Developer. 



  Design Details

 1 Feature : Tool distribution and deployments 
The tool is distributed in two types : as Netbeans IDE plug-in and as a stand-alone Java 

Desktop application. 

 1.1 Plug-in version
The users of Netbeans IDE can connect to the update center (which hosts the plug-in) and 

can download and install the tool in their IDE along with other existing and built-in plug-ins. This 
tool will add a new global menu for all the tool specific operations and will add the support for 
creating new installer project type(s) among other features. Installer Developers will be using these 
two features (mainly) to build installers using the tool. 

 1.2 Stand alone version
The stand-alone version of the tool will be available for download from the same external 

website (openInstaller.dev.java.net). The stand-alone application can be distributed as a zip (bundle) 
archive, as JNLP hosted/downloadable application or as a product bundle installer created using 
openInstaller itself! The zip bundle requires the developer to unzip it in an empty directory. By 
default, the stand-alone will be a single instance application. That means, one user can run only one 
instance of the tool. We do not think that there could be requirements to run multiple instances of the 
tool. This behavior is because of the underlying Netbeans platform. 

The stand-alone application bundles only required modules from the whole Netbeans 
platform and Netbeans IDE cluster1. (For example, the application does not need any J2EE modules) 
Hence it is expected to have lesser footprint than these two combined. The stand-alone application is 
branded as required, while the plug-in is not. The branding includes a special splash screen, About 
box, wizard background, custom icons and main window title among few other customizations. 

 1.3 Update Center
The update center will be hosted on the external site (openInstaller.dev.java.net) and the tool 

modules are pushed regularly. There can be a possibility that there would be multiple update centers 
for  multiple versions of Netbeans IDE and J2SE. This tool bundles the openInstaller runtime from 
the framework, so that installer developers have to only download the tool to get started with 
Installer Development on openInstaller Installer Framework. 

 1.4 Tool Updates
The plug-in can be automatically (or manually) updated using the same update center that is 

used to download it. The updates are posted onto the same update center regularly based on the 
future development schedule. The update experience is similar to other module updates in the 
Netbeans IDE. The update center for the tool can be configured when the tool is downloaded and 
installed for the first time. User can also manually setup and configure update center, if required. 

1 In Netbeans world, a cluster is a bundle of related modules which work as monolithic application. Existing cluster 
examples are, Netbeans IDE, Netbeans Enterprise Pack and Netbeans Mobility Pack.



The stand alone application can also be updated using the in built update capabilities of the 
openInstaller in case, we decide to install the stand-alone version of the tool using openInstaller 
itself. Otherwise, the update experience would be same as that of the plug-in.

 2 Feature : User experience of the tool

 2.1 Plug-in version
The plug-in version adds a new global menu in the existing Netbeans IDE which houses the 

important operations pertaining to creating and updating installers. Also, a new custom project 
support is added to the existing IDE. A new update center is also added and registered as part of the 
plug-in installation. This update center will be used to update the plug-in after its installation in the 
IDE. We might plan to add a new toolbar and some buttons for few features on it, but its TBD as of 
now. For most of the part, the plug-in interaction and operates like any other Netbeans plug-in 
general interaction and has the similar user experience. 

 2.2 Stand alone version

  Welcome screen
When the stand alone version is executed, the tool will display a screen similar to the 

Netbeans IDE welcome screen, with some content. The Welcome screen is planned to have 
following items:

1. The screen is divided into three sections : Projects section, Help section and Project news 
section. 

2. The Projects section has and has links to the recently opened Installer Projects (if any).

3. The Help section as links to the online tutorials, guides and project wiki pages.

4. And finally the Project news section will have news and articles hosted on the project 
website. (RSS syndication) 

This screen can be turned off using a setting, else this screen will always popup when the tool is 
started.  

  Application appearance 
The tool will have a similar appearance as of the Netbeans IDE with notable exceptions. It 

does not have all the menus from the IDE. It does not have all the windows from the IDE. The 
following image (Fig. 1) shows the bare minimum Netbeans platform as a reference. The stand 
alone tool will have additional menus and functionality added to this platform. 



Fig.1 Netbeans platform

 3 Feature : Create/Edit Installer Projects
Once installed, the tool enables creating and editing Installer Projects. These 'Installer 

Project's are custom Netbeans projects designed to house all the necessary installer files together and 
adds the support for adding and editing those files. 

Installer Developer can create a new Installer Project in several ways. The welcome screen 
will have an option to create a new installer project. The global menu will have one menu item and 
the context menu of the Project window will have a menu item. 

 3.1 Creation of Installer Project
All the above option will open the 'New Project' wizard. This wizard will allow the developer 

to choose the openInstaller Installer Project type in the first wizard panel. On the second panel, the 



developer is required to select/choose the location for the new project and a name for the project. In 
the 'Expert' mode, the developer has options of customizing the project layout by specifying the sub 
folders  inside the project folder. The developer will also get to specify other advanced options here. 
(TBD).

The tool will validate all the user inputs on this 'New Project' wizard and displays the 
validation error messages, if any on the wizard itself. Netbeans wizards are capable of displaying in 
line validation messages at the bottom without much extra effort and at the same time, they have the 
capabilities to disable wizard navigation until the error is corrected. These validation include, valid 
path for the installer project (i.e., the user entered path should exists before), Apart from semantic 
validations, the actual validation include checking for the write permission of the user specified 
folder for the project and checking for sufficient disk space to create the project. The actual 
validations are done on the finish panel of the wizard by marking that panel as 'Validating Panel'. 
(see API documentation)

 3.2 Files created during the new installer project creation
When the wizard terminates with proper user inputs, it creates a new installer project in the 

specified location with the specified name. By default, the newly created installer project will have 
the following folders/files already created under the project folder: 

1. installerProject (folder)

2. installerProject/installerProject.properties (file)

The above two are used as 'markers' by Netbeans platform, while identification of Installer 
Project during opening.

3. metadata (folder)

4. metadata/descriptor (folder)

5. metadata/model (folder)

6. metadata/view (folder)

7. metadata/view/splash.jpg (file)

8. metadata/view/splash.properties (file)

9. metadata/templates (folder)

10.metadata/pagesequence.xml (file)

11. metadata/pagesequence.properties (file)

12.scripts (folder)

13.scripts/unix (folder)

14.scripts/windows (folder)

15.scripts/unix/product-installer.sh (file)

16.scripts/unix/product-uninstaller.sh (file)

17.scripts/unix/install.properties (file)

18.scripts/windows/product-installer.vbs (file)



19.scripts/windows/product-uninstaller.vbs (file)

20.scripts/windows/install.properties. (file)

All of the above, expect the first and second (marker items) can be configurable in 'Expert' mode. 
The installer project records these paths and filenames in 'installerProject.properties file to allow 
customization. The installer project refers these files using the 'installerProject.properties' file. 

This customization takes precedence if there is a strong push towards it. 

 3.3 Installer Project types
There are at least two main types of installer projects available for creation. One is a blank 

project which does not have any components and another, a sample installer project which has few 
sample components and enable user to quickly prototype his/her installer based on these 
components. 

We plan to use the sample installer project from the openInstaller source base and bundle the 
built version with the tool. We will maintain a separate copy in the tools source base for this sample 
project. 

Installer project, once created, supports creation and editing of many files of different types 
that constitute the installer. The creation and editing of the files can be using several menus under 
different options. 

TODO --- bring in the platform dependent and platform independent project types here.

 3.4 Storing the changes
All the changes for the installer project files are stored onto the disk automatically or 

manually (when clicking on 'Save' button or using the keyboard accelerator). The project metadata 
(mainly the contents of installerProject.properties file) are also updated as required.

 3.5 Opening the existing Installer Project
Netbeans recognizes custom projects by two markers : 1. A folder which is usually used to 

store project metadata and 2. A project file, which again usually used to store the project metadata 
contents. This is just a convention and we can have multiple markers here. The Installer Project uses 
a marker folder called 'installerProject' and a marker file called 'installerProject.properties' under that 
folder for recognition. 

If these marker folder and/or files are lost, there is no in-built way to regenerate them and 
Netbeans cannot recognize Installer Project without these folder and file in place. 

While displaying the files and folders in 'Open Project' dialog, Netbeans examines each of 
the folder and tries to detect the known projects. If there are any known projects, it marks them with 
a special icon to show them that the folders are in fact Netbeans recognized projects and users can 
select and open them. 

Each Installer Project will have a logical view in the 'Project' window, which displays the 
project files in a tree with nodes for each of them.  The tree nodes themselves are grouped in 
different levels. The following figure (Figure 2) shows the current status of the project logical view. 



Figure 2 : Proposed (by UI experts) Project logical view

  Project Logical View
The project logical view shows the project contents in a more intuitive way. There are 

context menus attached to some of the tree nodes that allow Installer Developer to perform project 
related tasks. 

There are two top nodes under the project node. Components node holds (or groups) 
information about individual components in the installer project. It has context sensitive tasks to 
create new components and edit existing ones. The other top node is Common node, which includes 
the files that belong to the installer and not to any component. For example, panel sequence files 
(also called page sequence) which stores the order of installer panels. These two top nodes will have 
several sub nodes. 

The Components node will have a sub node for each component in the installer. Generally 
components are top level entities in the installer. Each component is described by its identification 



information (viz., name, version etc..), its install bits (also called as installation units) and its 
dependent components. Optionally each component also has install-time configuration information. 
All this information is displayed in a group under the tree node named after the component.

The Common node will have sub nodes for each common installer files. Splash image for 
the installer, common configuration information, panel sequence files and installer launcher script 
are grouped here. Optionally there can be sub nodes representing the advanced features of the 
installer like, installer layout files. These layout files will help in customization of installer layout 
properties. 

Each component node will have sub nodes which represents the component contents as 
shown in the following figure Fig. 3.

          

Figure 3. Component sub nodes.
The top node in this figure represents the component node for the component itself 

('MyComponent' in this case). The 'Description' node contains the component identification 
information, its install unit information and its dependency information. 

  Config Profiles
The 'ConfigProfile' node contains the configuration information for the component 

collectively. More than one configuration profiles can be created as required. Each 'ConfigProfile' 
represents a logical group of configuration, which is based on the same set of install units (the actual 
bits that this component is made up of). Each 'ConfigProfile' can contain different configuration 
information for the same component to configure the component in different ways as required. For 
example is Sun Java Application Server 8.X. This component has two flavors : Personal Edition 
(PE) and Enterprise Edition (EE). Both contains the same install units but they differ in the way they 
are configured and the configuration information is different for these two flavors. This 
'ConfigProfile' notion enables this feature. Note that this feature, is in fact provided by this 
openInstaller Developer Tool only. This feature is not provided by the underlying openInstaller 

MyComponent

Description

Config Profile

Personal 
Edition

Data Model

Panel View

Default

Data Model

Panel View



Framework. So this information about 'ConfigProfile's are stored in the installer metadata and not in 
any installer files. 

For every component created or included in the tool, there will always be a default 
'ConfigProfile' which holds the configuration information. 

Each 'ConfigProfile' holds configuration information in 'data models' and 'panel views'. A 
data model is a file (represented as a sub tree node under the ConfigProfile node) which holds the 
configuration entities. These entities describe the configuration data and its properties. The Panel 
View or just View describes the page view of the installer. These views are mapped to a single data 
model or multiple data models. Each UI field on the page can be mapped to a configuration data in 
the data model. For more information please refer the Developer workflow document here3.

  Pop up menus
There will be pop up menus for many tree nodes and the pop up menus in all cases contain 

the context sensitive menu items. 

Project node menu
The top project node will have the following as menu items.

1. Project related menus

1. Close project

2. Delete project

3. Rename project

4. 'Set as Main' project

5. Save project

2. Project level menus

1. Create new component.

2. Create new files. (configuration information files, common installer files)

3. Import files (from other installer projects)

4. Include files (from other installer projects)

5. Build the installer

6. Verify the installer (Runs the integrity check)

7. Test run the installer

Components Node menu
The Components node will have the following as menu items.

1. Project level menus

1. Create new component.

2. Create new files. (configuration information files, common installer files)

3. Import files (from other installer projects)



4. Include files (from other installer projects)

2. All components related tasks

1. View Dependency tree for the installer.

2. Verify Installer (TBD, do we need this here?)

Component Node menu
Each component will have the following as menu items.

1. Edit component (will allow editing of identification, dependency and install unit 
information)

2. New Data Model

3. New Panel View

4. Copy component 

5. Paste component 

6. Delete Component 

Config Profile Node Menu
The 'Config Profile' will have the following menu items.

1. Create Config Profile

2. Delete Config Profile

Config Profiles Node Menu
Each 'Config Profile' node will have the following menu items.

1. Rename

2. Delete

Data Model Node Menu 
Each Data Model node will have the following menu items.

1. Edit

2. Rename

3. Delete

4. Create View

View Node Menu
Each View node will have the following menu items.

1. Edit

2. Rename



3. Delete

4. View Mockup (Preview panel)

Common Node Menu
The 'Common' Node will have the following menu items.

1. New Data Model

2. New View

3. Edit Panel Sequence

4. Edit Panel Sequence Properties

5. Edit Install layout (advanced option)

6. Edit Install Launcher (advanced option)

 4 Feature : Create New / Edit Component 
Every Installer Project supports creating new components and editing them. The creation of 

the components is possible using more than one option. This is done for convenience. In all cases, a 
wizard will guide the user and at the end of wizard completion, the new component is created and it 
is opened in the visual editor for further editing. 

Installer developer can create a new component either using global menu or the tool bar 
button for 'New File' option. Installer developer can also create new component using the pop up 
menu item on the project node or 'Components' node.

 4.1 Create New Component 
The wizard used in creation of a new component will have several panels. On the first panel, 

the basic identification details of the component viz., component name, component version, vendor 
information and the component description will be recorded. (see Appendix chapter on how wizard 
API is extended for this tool)

The following screen shot shows this first panel as per the current implementation. 

Identification wizard panel
Netbeans wizard provides in place validation and this aspect is shown in the screen shot below in 
figure 4.. Apart from this 'in-place' validation, the wizard API also provides the functionality 
validation that would get triggered when the user clicks on the 'Next' button on the wizard panel. 
Both types of validations will be used to validate the user data appropriately. 

Following will be some of the validation checks (both 'in-place' and functional)

1. In an Installer project, there can be no two components with the same name (i.e., the 
component name is unique to the installer project). 

2. Component name and version cannot be empty.



3. The description is a free form string.

4. All fields accept alpha-numeric characters, but few special characters.

The 'Next' button will be disabled until all validation checks are passed. ( see Appendix chapter on 
how wizard API is extended for this tool)

Figure 4. First wizard panel of New component wizard.

OS Info. Panel
This panel allows the user to select operating systems that the installer should support. This 

is done by selecting operating system name, its version and the architecture. 

The figure 5 shown above has the screen shot of the current implementation for this OS info wizard 
panel. In this, the first list on the left contains the list of operating systems and architectures that the 
underlying openInstaller Installer Framework supports for building installers. The list in the middle 
shows the supported versions of the selected operating system on the left list. Finally the right most 
list collects the user selections of the OS, its version and the architecture. 

The list of supported operating systems, their versions and architectures are derived from a 
fixed list stored in Platform.java (which belongs to the openInstaller Framework source code).  The 
only validation check on this panel is 'user should select at least one combination of OS, version and 
architecture that the current component is intended to support. 

The checkbox at the bottom enables user to decide when they want to provide the actual 
install units information for each of the OS.version and architecture combination. If they select this 
option (i.e., they select the checkbox) then, on the next panel, users can enter information about the 
install units, else they can enter this information in future after the component is created. This option 



helps the user to quickly create a new component in the installer with minimal data at hand. Later, 
user can edit the component information anytime by opening it in the editor. 

Figure 5. Second panel of the New Component wizard

Install Unit Panel
This panel is the third panel in the new component wizard. This panel allows the user to 

provide information about install units for each of the OS,version and architecture combination.

On this panel(shown below), user can select the install units in a separate tabs for each of the OS, 
version and architecture combination. Platform specific checks are made here to identify the install 
unit and read its metadata, if its possible. For example, for solaris, the user selects a SVR4 package 
for addition, the tool can read the 'pkginfo' file to get the attributes of the package automatically. 

The following are the validation checks on this panel.

1. Make sure user selects at least one install unit per OS, version and architecture combination 

2. The RAM and DISK fields should not be empty and should contain a valid data.

(TBD – are these hard rules? We can relax these, if we want provide flexibility to the user)



Figure 6. Third panel in New component wizard.

Dependency Panel
This panel allows the user to add new dependencies for this new component. The UI experts 

recommendation is we should avoid errors in the user input and hence, adding a new dependency by 
typing its name and version has been removed. As user is allowed to choose a new dependency for 
the new component which exists already in the project, we can provide a list to the user to select it 
rather than allowing the user to type it. The following figure 7, shows the screen shot of the current 
UI design mockup screen. Please note that the current implementation of the wizard panels is 
subject to change in future. 

In the panel below, the list on the left contains the list of components from the current installer 
project. These components include the imported components too. On the right, the list will collect 
the user selections. Note that the 'Add New Dependency' button has been removed.

There can be no validation checks for this panel or can be one to check whether user has selected at 
least one dependency. This is TBD.

TODO – handle the JDK component dependency separately here. 



Figure 7. Fourth panel in New component wizard.

Finish Panel
This is the last panel in the new component wizard. This shows a completion message to the 

user that the new component would be created. It also provides optional features to create a new 
data model and/or new panel view for the new component just created. These optional features will 
automatically start the new data model wizard and new panel view wizard (one after another) when 
the new component wizard completes. Please note that this is 'nice to have' and if there is a pressing 
demand for this, we can implement this fully. This can help the user to follow a definite path in 
creation of new installer. 

The following figure 8 shows the screen shots of the current implementation of this final 
panel. There are two optional features represented by two check boxes. The second check box is 
disabled because, when creating a panel view openInstaller requires that there should be a data 
model to back it up. This check box will be enabled when the user selects the first option of creating 
data model.

After the New component wizard completes successfully, the component descriptor file is 
created on the disk with all the user inputs included. The component file is also opened 
automatically in the editor for further editing. The project logical view gets refreshed to show the 
newly created component under the Components tree node. 



Figure 8. Fifth and final panel of New component wizard.

 4.2 Editing the components
Editing of the component is done using a customized editor. This customized editor is 

implemented using XML multiview API of Netbeans IDE. For more information on this API, please 
refer to the appendix section on the same. For all XML files, this type of customized editor will be 
implemented in the tool. 

The component editor is split into different groups. (see Figure 9 below) There's 
'Identification' group, there's 'Dependencies' group and there's 'Payload' group. Each group allow 
editing of the respective sections in the underlying descriptor XML. The current version of the 
component editor is as shown in the following figure 10. 

The identification group allows editing of the component identification information such as 
component name, its version, its vendor and so on. As described in the Appendix section for XML 
Multiview API, the valid-ness of the user data entered on these editors are always checked against 
the XML schema constraints. Also using API we can easily implement the custom validations for the 
user entered data using in-line validation scheme for all the required fields. XML multiview API is 
quick enough to show the errors on the focus lost event of each of the field for which the in-line 
validation is written.  



Figure 9 : Component Editor

Figure 10 : Component Identification Editor



The following figure 11, shows how in-line validation in action as per the current implementation.

Figure 11 : In-line validation showing the error message in the status bar and a popup dialog.

The above figure 11, shows how the errors are handled in default way. (provided by the API) we 
need to extend the API and provide custom messages for each of the custom validation that we 
implement using the API. The error dialog is automatic and it pops up when the user goes away 
(focus lost) from the editor. This will prevent the user making any more errors and he cannot 
continue without fixing this error. This kind of error notification is used for mandatory fields such as 
component name as shown in the above figure 11. 

The next group allows 'Dependency editing' for the component. The current implementation 
shows the component dependencies in a graphical way as shown in the figure 12 below. This is done 
using the Netbeans Visual Library 2.0 API. For more information on this API please refer to the 
Appendix section on the same. 

The dependencies can be added or removed from the editor and can be dragged from the 
project view on the left and dropped into the editor area to create a new dependency. We can edit the 
dependencies by directly double clicking on them. This will open the component editor for that 
dependency. 

The third group allows editing of the payload section in the component descriptor. This has 
the information about the Operating system, architecture support and individual OS related Install 
units that contain the product binaries. This editor part is shown in the following figure 13 below. 



Figure 12 : Component editor showing dependencies



Figure 13 : Component editor showing Payload section
Finally each XML multiview editor comes by default with the file view which allows raw file 
editing. For component editor, this view is as shown in the figure 14 below:

Figure 14 : Component editor showing the default XML file editor
This file view editor gets synchronized automatically with the visual editors for each XML section. 

 5 Feature : Three click Installer 

 5.1 Introduction
This feature describes how to generate an Installer based on openInstaller for any Java based 

stand alone Netbeans project from within Netbeans IDE itself. This is a quick way to automatically 
create deployable installers for Netbeans projects. 

 5.2 Why we need it
The Netbeans IDE and platform support al most all aspects of stand alone application 

development except creating an installer distro for the application. This is a win win opportunity for 
both openInstaller and Netbeans community. 



 5.3 How it works
Its simple extension to the developer tools. The netbeans plug in designed for developer tools 

extend little to support this feature. 

In this, a global option, in the form of a tool bar button and a menu item in the 'Build' global 
menu is added. Also a context-sensitive pop up menu item is added in the pop up menus of 
supported Netbeans projects. All options invoke the same function : Generate installer.

Initially, we will support Netbeans module suite applications. (ant based or otherwise), who 
generate a jar based or zip based release bundle as part of their build process inside the IDE. Later 
the support is extended for other types of projects. 

The developer tools plug in when invoked through one of the options stated above, examines 
the selected Netbeans project metadata and attempts to gather information about the project. The 
information gathered include (but not limited to), project name, location of the built release bundle. 
If these information is not available or the developer tool plug in could not determine them for some 
reasons, the information is gathered with the help of user. 

The developer tools plug in presents a wizard that collects answers to simple questions as 
follows:

1. On  the first screen the wizard collects the project identification information such as its name 
and version. It also helps users to provide license text on the wizard panel. There can be one 
more question on the path to place the generated installer (TODO), but can be same as 
release folder of this Netbeans project.

2. If the developer tool not able to detect the release bundle for some reason, the second wizard 
panel will be provided to collect and record the path of the same. If  this data is already 
collected automatically then this panel is not shown and the first panel exits the wizard.

3. On completing the wizard, the developer tools create the required files that make up the 
installer and bundles everything and creates the distributable zip archive. What actually 
happens here is as follows:

This option creates an empty Installer Project on the disk and creates and updates the 
required files and calls the assembly process to create the installer. The outcome will be a zip 
archive with all the necessary openInstaller runtime included in it. This archive will be self 
ready to install the Netbeans platform based installer on any system. 

4. Currently Netbeans IDE provides ways of generating a zip archive for the module suite 
within the IDE itself. We need to hook it up with generating the installer after the zip archive 
is prepared using the IDE in built functions. This requires defining a new dependency on the 
'Netbeans Module Projects' API (which is non-public and hence we need to depend upon 
implementation version). 

5. User/Netbeans developer will have to host this zip archive as a downloadable bundle (or any 
other means of getting the download bundle) and anyone who wants to install the 
application, he needs to download, unzip and launch the installer.



 6 Feature : Assembling Installer 
This feature takes all contents of installer project and creates a distributable installer. This is 

usually the final phase in writing an installer. This feature gets called after the 'Integrity check' 
feature when its implemented and included in the tool. 

 6.1 Inputs assumed for this feature
This feature needs an Installer Project already created and available in the Netbeans IDE. 

The installer project should be complete in all respects in the sense that it should have all the files 
with all relevant data filled in. The 'Integrity check' feature, when included in the tool will check for 
any validation/functional errors in the installer files and will report to the user about any errors. So 
the assembly process assumes that the installer project as a whole is in valid state to build the 
installer. 

 6.2 How it works
The assembly is being written as an ant build script for two reasons :

1. Its efficient to call/maintain from the Netbeans IDE.

2. It can be integrated easily to the existing module suite build script to combine the zip archive 
generation with the assembly process. This is for the 3 click generate installer feature. 

3. It can be easily scriptable outside the IDE if required in future. 

The build script reads the project properties (installerProject.properties) to find out the project layout 
details. We would like to maintain this interface for the assembly because, in future, we would be 
adding support for installer project customization and that includes changing some parts of installer 
project layout. But all the project layout changes are recorded in the project properties file. So its 
safe to assume that this file contains the actual layout settings. 

The assembly at a high level creates what is known as the 'media layout' on the disk. This 
media layout will be the final installer image layout. (this is how the user sees the installer when 
they unzip the installer bundle). We initially decided to follow what openInstaller sample product 
installers have. Later we might want to change this. The build script copies/creates layout folders 
and files as required and prepares the media layout. 

When the assembly is done, what we will have is the distributable installer bundle. 

 6.3 Adding JNLP to assembly
When we add the JNLP support for the installer project (the feature that makes generation of 

JNLP descriptor for installer so that it can be used to distribute the product installer through web) the 
assembly process will include the generation of the JNLP descriptor in the build script. User will 
just choose whether they also want to generate JNLP descriptor when they choose to generate 
installer. 

 7 Feature : Installer Integrity check
This feature will allow validation and integrity of the installer that would be generated out of 

an Installer project. There would be various checks (in terms of rules, for example) that are executed 



on the installer project files to determine at any point of the development time, whether the installer 
(to be generated) is valid or it has errors. 

 7.1 How it works
These checks take off where the in-line validation (attached to the new file wizards and file 

editors) stop. The in-line validations basically catch the syntax errors and usually are driven by the 
XML schema constraints. But the integrity checks look for semantics and other features that make 
up the installer. One good example is : Looking for missing files when they are specified somewhere 
else, like a view file refers to a data model file but the data model file isn't exist in the installer 
project. Another example would be to look for valid data paths.

The mechanism to define and execute checks is still TBD. Mostly it would be like an Expert 
system and rule engine based, with rules defined for each checks. The integration of such 
mechanism to Netbeans is also still TBD. 

 7.2 Current state
The UI expert recommendation for how this integrity check display errors is shown below. 

We can display the errors (with clickable links, as shown in the below UI design, figure 15) in the 
Netbeans output window to align with how Netbeans IDE does display compilation errors for Java 
files. 

All the clickable links when clicked, open up the required files in the editors possibly 
highlighting the error location/field and may provide a hint to correct the error where its possible to 
include the hint. 

Installer developer can use this integrity check to verify the installer they are building at any 
time during their development cycle and correct/rectify the errors as they go forward. If there are 
errors reported in the final integrity verification before the generation of the installer, then the 
installer generation will be abandoned and user will be presented with the error display and help 
them to correct/rectify the errors. Unless there are errors found, the installer generation would 
continue to generate the installer.  



Figure 15 : Installer Integrity check results UI design



  Appendix 

 1 Netbeans Wizards in this project
This chapter has information about using Netbeans wizards in this openInstaller Developer 

Tools project. The Netbeans wizards have sophisticated APIs that helps to create wizards very 
quickly. There are lot of useful methods for controlling the flow of the wizard panels and providing 
validation. As the wizards are used in many places, it makes sense to abstract the API in a single 
place and customize. 

There is a delegation mechanism used to abstract the common functionality into base classes. 
These classes include common functions like creation of the files using the user input data, opening 
of the newly created file in the editor and refreshing the project logical view to show the newly 
created file under the project node as required. 

The base classes are included in a separate helper Netbeans module. These classes implement 
the basic validation mechanism using the Netbeans Wizard API and provide a simple interface to the 
New file creation wizards in the project. All New file creation wizards (for example, new component 
wizard, new data model wizard etc) extend these base classes.   

 2 XML Multiview API in this project
This project uses this API to implement various editors for different types of XML files. The 

API is used in implementing many editors in J2EE cluster of Netbeans IDE. Examples of these are 
the editor for web.xml, editor for ejb xml and editor for WSDL files. 

This API allows to build a highly customizable and robust editors for any well defined 
schema or DTD based XML files. Although this API is extensively used in J2EE cluster, the API is 
not yet declared as public. This XML Multiview API is currently defined as 'friendly' API5. There is 
an issue to make this API public (Issue No. 107858), but there are not enough votes to resolve this 
issue at this time. In future it is expected that, this API would become public. For the tool, we think 
that the current features and sufficient to implement the editors required for all XML files in the 
installer project. 

The API provides robust two way synchronization of the data between the visual editor and 
the file view. It also provides APIs for handling validation errors based on the schema constraints. 
There is a standard error notification and correction mechanism in-built into the API. At any point of 
time, the XML file wont be saved to disk with semantic errors, always the XML file is checked for 
its well-formedness and validness based on the schema before the user changes are saved.

Initially when we started looking at this API, there were very few help and documentation 

5  In Netbeans, there are three different types of APIs depending on the access type. Some are 
public and any module developer can use them freely and those API come with assurance that all 
future revisions to the APIs are compatible. Some are defined as friendly APIs, which of course 
module developers can use them but however, the future modifications to the APIs are not 
guaranteed to be compatible. And finally there are some APIs which are private and no external 
module developer can use or depend on them. 



available. Now there is some considerable help in my blog and in Geertjan's blog.

 3 Netbeans Visual Library 2.0 in the project
This API is a public API (refer the footnote in previous section for what this means) in 

Netbeans 6.0 IDE. This API allows to create any shape or type of graphs and tree structures easily in 
Java. The API also provides easy ways of adding motion, selection, zooming and animations to the 
graph/tree elements. 

This API is extensively used in many Netbeans platform based applications and as well as in 
Visual Web Development cluster which is part of Netbeans Enterprise cluster distribution and allows 
creation of page flows for JSF pages in a web application. 

As this API is not yet made available for Netbeans 5.5.x, we are carrying our own copy of 
the API along with our module suite.

  Glossary
This section lists out (with definitions and explanations) the important terms used in the document.

1. openInstaller : is an Installer framework that help to build installers for individual products 
or group of products or product stacks. It is an open source project on the java.net and part of 
the glashfish community. The home page is here : www.openInstaller.org

2. Component : A single product that is included in the installer based on openInstaller. 

3. Descriptor : The file which stores component information like its name, version, OS support 
and install units.

4. Model (a.k.a. Data model): The file which stores the configuration variables information for 
a component.

5. View (a.k.a. Panel or page view): The file which stores the installer panel information for a 
component. This view is connected to a model file and the panel fields map to individual 
configuration variables.

6. Page sequence : The file which stores the installer panel sequence (or order) and has the 
information about when to show/skip the panels depending upon conditions.

7. Launcher Scripts : Platform specific binaries which run the installer.

8. Installer Layout settings : A set of files which store the customization made to the installer 
wizard layout.

9. User preferences : A set of files that store the user preferences for the installer. This file 
currently also stores the license information for the installer. 



1 www.openInstaller.org
2 Developer Tools Use case Document : 

http://wiki.glassfish.java.net/attach/OpenInstallerDeveloperTools/oiDev.ToolsUsecaseDocument.odt
3 https://openinstaller.dev.java.net/files/documents/6533/57967/openInstaller_Developer_Workflow_V1.0.odt


