
10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 1 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

One Pager: Scripting support in GlassFish v3

Table of Contents
1. Introduction

1.1 Project/Component Working Name
1.2 Name(s) and e-mail address of Document Author(s)/Supplier
1.3. Date of This Document

2. Project Summary

2.1 Project Description
2.2 Risks and Assumptions

3. Problem Summary

3.1 Problem Area
3.2 Justification

4. Technical Description

4.1 Details
4.2 Bugs/RFE's
4.3 Scope
4.4 Out-of-scope
4.5 Interfaces
4.6 Documentation Impact
4.7 Configuration/administration Impact
4.8 High Availability Impact
4.9 Internationalization
4.10 Packaging
4.11 Security Impact
4.12 Compatibility
4.13 Dependencies
4.14 Architecture Review comments

5. References
6. Schedule

1. Introduction

Scripting languages and the associated frameworks, such as Ruby on Rails, Grails are growing in popularity. This
one pager describes Ruby on Rails and Grails application support in GlassFish v3.

1.1. Project/Component Working Name

Scripting Support for GlassFish(TM) Application Server https://glassfish-scripting.dev.java.net

1.2. Name(s) and e-mail address of Document Author(s)/Supplier

Vivek Pandey, vivek.pandey@sun.com

1.3. Date of This Document
10/03/2008

2. Project Summary

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 2 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

2.1. Project Description

This project enables deployment, administration and monitoring of scripting applications, namely JRuby on Rails
and Grails.

2.2. Risks and Assumptions

JRuby runtime jar is an external jar and it is used by the JRuby connector to invoke the Rails application which
involves compilation of Rails libraries, Rails application code and it eventually sets some global state in the JRuby
runtime and makes it non-sharable across different Rails applications deployed on GlassFish v3. Due to this
limitation, the JRuby connector creates a new JRuby runtime for the each deployed Rails application.

JRuby runtime uses through JSR-223 need investigation. It needs to be seen whether JRuby runtime (without Rails)
can be shared across multiple JRuby scripts using the JRuby engine through JSR-223 API. This investigation will
be completed after Glassfish v3 prelude release.

3. Problem Summary

3.1. Problem Area

Deployment, administration and monitoring, HA and clustering of scripting applications , namely JRuby on Rails
and Grails.

3.2. Justification

There are growing number of web applications/web-sites that are developed using scripting web frameworks such
as Rails, Grails. It is good opportunity to position GlassFish v3 as a deployment platform for not only Java
language but also for the web applications developed using scripting languages and associated framework. This also
aligns with extensibility theme of v3.

4. Technical Description

4.1. Details

The following scripting web frameworks are supported through this project for v3 Prelude release:

4.1.1 Rails

JRuby v3 module is provided to enable JRuby on Rails application deployment. A Rails application can be
deployed using two approaches – directory based deployment or deploying as a WAR file.

Directory based Deployment

In directory based deployment, a pure Rails application is simply deployed using v3's directory based
deployment.

asadmin deploy myRailsApp/

The deployment and Rails request processing happens through integration of JRuby/Rails and v3. Rails
connector code, which involves Rails Sniffer, Container, Deployer and a GrizzlyAdapter.

WAR based deployment

For WAR based deployment there is extra work needs to be done in v3. A Rails application WAR is created
using Warbler. Warbler is a tool available as Ruby gem. It consists of a servlet filter and uses JRuby APIs to
integrate JRuby runtime and serves the Rails application request/response.

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 3 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

A Rails application has a defined directory structures such as app, config, lib, log, vendor, tmp. Warbler puts
all of these inside WEB-INF directory of the war file. It also packages any jar files inside the rails
application's lib sub-directory at WEB-INF/lib. It also puts files inside the public subdirectory of the rails
application at the root directory of .war file. Details on Warbler can be found at
http://caldersphere.rubyforge.org/warbler/.

WAR directory based deployment

Warbler creates a WAR layout directory during WAR file creation. Users during development can deployed
the WAR layout directory at tmp/war.

These are the main components for implementing Rails directory based deployment:

GlassFish v3 Sniffer and connector

Provides the JRuby on Rails container, deploys and serves the request

Rails Grizzly adapter

Receives requests/response from Grizzly layer directly and delegates these to Rails framework.

JRuby/Rails IPS package for GlassFish Updatecenter

The JRuby IPS package will contain only JRuby bundle. The Rails and other useful gems such as JDBC-
MySQL gem will be available as a separate IPS package. See 4.10 for details on packaging.

GlassFish gem

GlassFish gem is v3 nucleus and some ruby code that bootstraps and deploys Rails application on GlassFish
v3. GlassFish gem also packages asadmin command. Gem users can use asadmin command to create JDBC
connection pool and JDBC resources

4.1.2 Grails

Grails application is basically a servlet application. So for deployment there is no extra work required, all it needs is
the web-tier (servlet container) from inside GlassFish v3.

Grails release is bundled as IPS package and hosted at contrib repository. It can be installed on GlassFish using
update center tool. Once installed, Grails IPS package is installed inside glassfish install directory.

Grails IPS package includes GlassFish embedded API to allow a rapid application development experience through
a groovy script. This groovy/gant script (RunApp.groovy) calls in to GlassFish embedded APIs to construct a
distributed WAR and deploy/un-deploy dynamically when Grails framework requires, such as when a gsp file is
modified.

Grails programming model defines two ways to develop and deploy the Grails applications.

4.1.2.1 Development

During development a grails application can be run in place using run-app command, which deploys the grails
application on a jetty web server using jetty APIs.

The way to run a grails application on (embedded jetty) is:

grails run-app

The Grails update center bundle provides a similar script RunApp.groovy, which translates to the same grails
command run-app which can be used to run the grails application during development. The application will be
deployed and run in place and subsequent changes in the grails files such as groovy code or gsp files will be loaded

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 4 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

deployed and run in place and subsequent changes in the grails files such as groovy code or gsp files will be loaded
dynamically. The reloading or re-deployment of application happens through checking if recompile is required by
calling back into Grails framework. Since we are replacing the Jetty based run-app script by the one for GlassFish,
shipping jetty jars with the bundle is not required. For this reason, the bundle does not contain Jetty jars.

Following command will be used to run Grails application in embedded mode from inside Grails application
directory:

grails run-app

RunAppGf.groovy uses GlassFish embedded APIs (org.glassfish.api.*) as defined in sec 4.5.2.

4.1.2.2 Production deployment

For production deployment, a war file is created by running the following command in the grails application
directory:

grails war

The above command will create a WAR file and this can be deployed simply by using 'asadmin deploy' command
or using admin console's web application deployment option. The Grails war file generated this way is packaged
with all the grails dependent jar files – 49 to be exact in Grails 1.0.3. The prominent ones are – Hibernate, Spring,
Grails and Groovy jars.

Grails IPS package provide scripts (SharedWar.groovy) to create a smaller WAR file, it does not package any
Grails dependencies. The Grails IPS package contains a wrapper jar - glassfish-grails.jar, which references all the
Grails dependent jars in its manifest. To package the small jar or shared jar use grails shared-war command. At
the time of deployment --libraries option is needed with the deploy command. If a user does not provide --library
option to indicate where the wrapper jar (glassfish-grails.jar) is, in that case error message is printed to tell users the
correct command to type. Here is the deploy command that user would need to type:

Ideally we would not need specifying --libraries and expect the Grails connector to set the glassfish-grails.jar in to
the classloader delegation chain or add to the DeploymentContext properties and that gets used by the web
container, remember Grails application is a web web application. However this does not work currently, because
there is no way to do such a thing in the current v3 infrastructure. It is expected that post GlassFish v3 prelude
release, v3 infrastructure would provide some mechanism and then we would not need users to specify --libraries
option during deployment.

asadmin deploy $GRAILS_HOME/lib/glassfish-grails.jar MyGrailsApp.war

Here are the main components we deliver with Grails binary distribution

RunApp.groovy

Used to run grails application during development using GlassFish embedded API.
grails run-app

glassfish-embedded-api.jar

Glassfish embedded API. Available thru GlassFish v3.

SharedWar.groovy

Used to create smaller Grails application WAR file without any Grails dependent jars.

grails shared-war

glassfish-grails.jar

Packaged inside $GRAILS_HOME/lib. This is a wrapper jar file that references all the Grails dependencies
from it's manifest.

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 5 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

from it's manifest.

gf-grails-connector.jar

Grails connector code.

4.1.3 Alignment with JavaEE 6

JavaEE 6 would propose a way in which a JavaEE application can be composed of a non-java web application such
as a Rails application. The details of what it will be and how it will be done is not known yet and will be provided
when more information available. This feature is targeted for v3 Final and JavaEE6.

4.1.4 Framework to write JavaEE components using scripts

JSR-223 provides a way to execute scripts from inside Java programs. Given it is not that user friendly, a
framework will be provided which will be support writing JavaEE components using the supported scripting
languages such as Ruby, Groovy, Python. This feature is targeted for v3 Final or FCS.

4.2. Bug/RFE Number(s)

https://glassfish.dev.java.net/servlets/ProjectIssues, select jruby category

4.3. In Scope

Deployment of Ruby and Rails application, deployment of Grails applications, RAD support for Grails application
development

4.4. Out of Scope

4.5. Interfaces

4.5.1 Exported Interfaces

Interface Stability
Former
Stability
(if
changing)

Comments

 Warbler External

Warbler is an external tool that is used to
package a Rails application as WAR file and
deploy it on any servlet container. The details of

Warbler can be found here.
RunApp.groovy Evolving Runs a grails application on GlassFish v3.

SharedWar.groovy Evolving Creates Grails application WAR file without
packaging the Grails dependent Jars.

asadmin Evolving

asadmin command will be used by the GlassFish
v3 gem users to create JDBC resources or to
create JDBC connection pool. asadmin is an
exported interface in Admin infrastructure
onepager

glassfish_rails Evolving

Glassfish v3 launcher ruby script. It launches
GlassFish v3 using
com.sun.enterprise.glassfish.bootstrap.ASMain().
The import dependency is mentioned in sec
4.5.2.

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 6 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

4.5.2 Imported interfaces

Interface Stability
Exporting
Project: Name,
Specification or
other Link.

Comments

org.glassfish.api.*
Contracted
Project
Private

GlassFish Everything from
this package

com.sun.enterprise.glassfish.bootstrap.*
Contracted
Project
Private

GlassFish Everything from
this package

org.jvnet.hk2.*
Contracted
Project
Private

HK2 Everything from
this package

com.sun.enterprise.module.bootstrap.*
Contracted
Project
Private

HK2 Everything from
this package

org.glassfish.embed.*
Contracted
Project
Private

GlassFish Everything from
this package

com.sun.grizzly.tcp.*
Contracted
Project
Private

Project Grizzly.
Java doc can be
found here

Everything from
this package

org.jruby.* Committed JRuby

Everything from
this package.
JRuby lead,
Charles Nutter
confirmed through
email exchange
that org.jruby.* is
committed.

4.5.3 Other interfaces (Optional)

// Any private interfaces that may be of interest?

Interface Stability
Exporting Project:
Name, Specification or
other Link.

Comments

4.6. Doc Impact

JRuby on Rails deployment on GlassFish v3 tutorial. Grails on GlassFish v3 tutorial.

4.7. Admin/Config Impact

Deploy/Un-deploy, configuration of JRuby installation, configuration of JRuby runtime pool using admin CLI as

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 7 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

Deploy/Un-deploy, configuration of JRuby installation, configuration of JRuby runtime pool using admin CLI as
well as using admingui. Following are the requirements for rails applications administration/configuration.

4.7.1. Admin console

Admingui should provide the user interface to configure Rails applications specific properties, such as jruby
installation directory, jruby runtime pool (min, max) values, RAILS_ENV value. Once user enters the specific
values in the user interface, these values need to be persisted inside domain.xml and also make these available to
the RailsContainer so that it can configure itself correctly. On the server restart, the v3 runtime system should make
these values available to ApplicationContainer.start() or Deployer.load() methods so that the RailsContainer
configures itself correctly.

Following are the configuration properties and the related details as how they would appear inside domain.xml.

Setting JRuby install location.

This is the entire container level property and needs to be available to all the Rails applications during
deployment. RailsApplication(Container) expects a java system property: jruby-home

Possible values
It is Rails application directory
Needs to be persisted in domain.xml as <jvm-options> inside <java-config> element
For example <jvm-options>-Djruby-home=/tools/jruby</jvm-options>

Setting RAILS_ENV (per deployed application)

RAILS_ENV defines the environment (development, test, production) that the rails application needs to be
invoked. During deployment RailsApplicationContainer sets RAILS_ENV variable for Rails framework to
use and run the Rails application.

Possible values
production or development or test. development is the default value.
rails-env is the name of the property
Needs to be persisted in domain.xml as

<applications>

 <application directory-deployed="true"
 object-type="user" enabled="true"
 location="file:/myhome/vivekmz/dev/rails/uploader/"
 name="uploader">

 <engine sniffer="jruby"/>

 <property name="rails-env" value="production">
 </application>

</applications>

Runtime pool (per deployed application)
jruby-runtime-min >0 (default 1)
jruby-runtime-max >=jruby-runtime-min (default 2)
jruby-runtime >0 (default 1). Initial number of runtimes to start
Needs to be persisted in domain.xml

<applications>

 <application directory-deployed="true"
 object-type="user" enabled="true"
 location="file:/myhome/vivekmz/dev/rails/uploader/"
 name="uploader">

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 8 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

 <engine sniffer="jruby"/>

 <property name="jruby-runtime" value="1">
 <property name="jruby-runtime-min" value="2">
 <property name="jruby-runtime-max" value="3">
 </application>

</applications>

4.7.2. Admin CLI

There is support needed from Admin CLI to allow providing container specific options and also ways for the
container to make entries in the domain.xml, for example:

asadmin start-domain -Djruby-home=/tools/jruby
The above command will result into the an entry of -Djruby-home=/tools/jruby inside jvm-options element.
For example& <jvm-options>-Djruby-home=/tools/jruby</jvm-options>
CLI deployer (asadmin deploy) should allow container specific deployment options to be passed as name
value properties entries inside domain.xml, for example:
asadmin deploy --container-properties=name:value. This syntax is just an idea. It should be defined by the
admin infrastructure. These properties will be persisted inside <applications><application> element that
corresponds to the Rails application being deployed as described in 4.7.1

4.8. HA Impact

Rails application HA using HADB, Im-memory replication with/without memcached.

This task will be evaluated post GlassFish v3 prelude release.

4.9. I18N/L10N Impact

4.10. Packaging & Delivery

JRuby IPS package

The package name is jruby. It will be hosted at Glassfish v3 dev or final repository. It will only contain
JRuby released bundle packaged as IPS bundle. JRuby IPS package will depend on Jruby-Gems IPS package.
The details are below:

Rails IPS package

The package name is jruby-gems. It will be hosted at contrib repository. This IPS package will contain
the minimum set of gems required to develop a Rails application. The gems are: Rails, ActiveRecord-
JDBC and JDBC-MySQL.

Grails IPS package

The Grails IPS package name is: grails. It will be hosted at contrib repository.

GlassFish gem

It is delivered to RubyForge as Ruby gem package. It is not a deliverable for GlassFish v3 prelude.

4.11. Security Impact

4.12. Compatibility Impact

No requirements.

4.13. Dependencies

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 9 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

4.13. Dependencies

GlassFish API, GlassFish Embedded API, HK2 API, Grizzly API, JRuby API

4.14 Architecture Review Comments

Following comments are from the arch review dated: 9/15/2008

Section Review comments Evaluation/Resolution

Section
2.2

JRuby runtime global state
changes when compiling
Rails application, what
would it mean to using
JRuby through JSR-223
APIs, can JRuby JSR 223
engine be shared across
different applications
accessing it through JSR
223 APIs..

This will be investigated post Glassfish v3 prelude.

Section
3.1

HA and clustering appears
in the '4.8 HA Impact' but
not in the 'Problem
summary'.

Fixed. HA and clustering added to 3.1.

Section
4.1.1

Using Warbler, can user
do directory based WAR
deployment?

Yes, they can. A separate bullet is added in 4.1.1 to explain how to do it.

Section
4.1.1

How to enable uses of
JDBC connection pool,
JDBC resources for
GlassFish gem users?

GlassFish gem ships with asadmin command available through nucleus.
asadmin can be used to create the JDBC resources and JDBC connection
pool.

Section
4.1.1

At present, GlassFish gem
does not work as felix
cache is created and if the
JRuby and GlassFish gem
is installed as root then
users with lesser privilege
can not start the gem as
the install directory does
not have the write
permission.

Jerome is going to provide a fix

Section
4.1.1

JRuby IPS package should
be split in to two.

JRuby IPS package
(only JRuby no
Rails or extra gems)
needs to be hosted
on either dev or
final repository.
JRuby gems, such as
Rails,
ActiveRecord-
JDBC, JDBC-
MySQL gems will
have a separate IPS
package called

Open: Barbara to provide info to Nazrul on whether JRuby IPS package will
be hosted at dev or final

Open: Across repository dependency and install of packages needs to be
tested. JRuby IPS package installation should result into install of jruby-gems
IPS package too.

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 10 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

package called
jruby-gems and
these will be hosted
at the contrib
repository.

Section
4.1.2.1

RunApp.groovy script
uses Embedded API to
programmatically
start,stop, deploy,undeploy
GlassFish. It depends on
the web container.
Currently Grails IPS
package contains a uber
jar that contains all the v3
jars. It should not be doing
it. Instead it should do one
of these:

1. Either try to resolve
classes from the jars

available in
GlassFish
installation.

2. Jerome suggested
using the same
bootstrap
mechanism
ASMain.main() that
is used by Glassfish
gem.

Option 2 will not work due to the fact that Grails application does not have
WAR directory layout, it is really scattered WAR. The other problem using
Option 2 is that it does not provide programmatic way to deploy, undeploy to
enable Grails iterative development.

Option 1 works by resolving jars from GlassFish modules directory, hence no
need to ship web-all.jar, all the classes are resolved from the GlassFish
installation. Also in Option 1, Embedded API is used to create ScatteredWar

and AppServer.deploy()/AppServer.undeploy() work just fine.

Resolution: Option 1 works and will be used to support Grails application
iterative development using embedded GlassFish v3

Section
4.1.2.2

1. All the Grails
application
dependent Jars
should be created in
to one OSGi bundle
and installed at
glassfish/applibs
location.

Comment#1 needs v3 to provide applibs feature that makes the Grails OSGi
jar to be available to all the deployed applications. Issue 6133 is reported to
track it. Sahoo thinks this issue is invalid because there is glassfish/lib that
does the same and he does not think this is any different than applibs.
Assuming this is true current resolution is to install Grails OSGi jar bundle to
install at glassfish/lib.

Resolution:Creating OSGi bundle from the 49 jars is found too complext and
doing it in time was risky. What was agreed on during discussion with Sahoo
and Jerome that a wrapper jar that references all the Grails dependet jars thru
manifest is provided and made available thru Grails connector. The web
container when finally deploys the applications it finds this wrapper jar and
resolves all the classes required during deployment. It was found during
investigation that there is no mechanism currently in GlassFish v3 that lets
you do that - either add the wrapper jar to the classloader delegation chain or
add --libraries deploy option to DeploymentContext so that web container can
load it. The option we provide to the users is that they provide --libraries
option during deployment. Post GlassFish v3 prelude when GlassFish v3
infrastructure provides such feature then there will be no need to specify --
libraries option.

Section
4.1.2.2

Grails IPS package should
be hosted at contrib
repository

Resolved.

Section Stability level does not
Warbler is marked 'External' as it comes from external source and we
don't contribute or create it.

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 11 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

Section
4.5.1

Stability level does not
appear correct

don't contribute or create it.
domain.xml dependency removed. It is not exposed to the users.

Section
4.5.2

Correct the stability levels.
For external libraries, such
as jruby confirmation from
authors should be ok.

All the imported dependencies (except jruby.org) comes directly from
GlassFish v3, hence these dependencies are marked Contracted Project
Private. JRuby API dependency is marked committed after confirming this
stability with Charlie.

Section
4.7.2

1. To set jruby-home
system property,
admin CLI will
provide a -D option
with start-domain
that can be used to
set Java system
properties in the
domain.xml as well
as make this system
property available to
the jvm.

2. JRuby container
needs deployment
time properties to be
passed to
RailsDeployer
through
DeploymentContext.
RailsDeployer
would then persists
these properties in
domain.xml.

asadmin deploy
will provide an
option to pass
container specific
properties as key
value pairs.

Comment#1 needs to be implemented and the name of the option, whether it
is -D or -J which can be followed by any JVM specific settings. Latter is a
convention among many java based tools to set JVM specific properties.

Open: Kedar is going to provide ability to set JVM system property while
doing asadmin start-domain

comment#2

Open: Kedar/Jerome will provide implementation of asadmin deploy option
that takes name:value system property. and also the name

OpenJRuby connector needs to persist the properties it receives from
DeploymentContext into domain.xml.

Section
4.7.1

admin gui is going to
provide the properties set
in the Admin Console and
these properties will be
made available to
RailsDeployer via
DeploymentContext. It
will be responsibility of
the RailsDeployer to
persist these properties at
the right place.

Open: Needs to be implemented.

Section
4.10

Provide name of the IPS
packages Fixed.

5. Reference Documents

GlassFish project

10/11/11 16:08One Pager for: Scripting support in GlassFish v3

Page 12 of 12file:///Users/AlexisMP/Desktop/WikiMigration/docs/Scripting-one-pager-v1.1.html

HK2
GlassFish Embedded API
GlassFish-Scripting project
Grizzly
JRuby

Grails

6. Schedule

Already integrated in to GlassFish v3. GlassFish v3 gem, JRuby IPS package, Grails IPS package releases will be
aligned with v3 Prelude.
6.1. Projected Availability

Aligned with v3 Prelude.

