
1. Introduction

1.1. Project/Component Working Name:
 Message Queue integration

1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
 Satish Kumar [sats@dev.java.net, satish.kumar@Sun.COM]
 [with inputs from Siva Kumar T., Ramesh Parthasarathy, Sanjeeb Sahoo].

1.3. Date of this Document:
 v 1.0 - Draft

2. Project Summary
2.1. Project Description:

To outline the new features and packaging changes required to modularize
SUN MQ and the glue code to enable integration of the JMS module with
GlassFish V3.

2.2. Risks and Assumptions:
The integration depends on timely delivery of binaries from the MQ team.

3. Problem Summary

3.1. Problem Area:

The modular architecture of V3 poses new requirements on the way modules
are packaged and integrated into it. To address these requirement, the JMS
module and the integration code would need changes in the way they are
packaging and delivered to GF. The MQ administration services would also
need to integrate into the new GF admin framework. This project aims to
integrate the latest version of the Message Queue product with the
Application Server.

3.2. Justification:
Plug-able integration of JMS services into GF without impacting
performance.

4. Technical Description:
4.1. Details:
Packaging: The MQ binaries are currently delivered to GlassFish as a file
archive (JAR). The broker lifecycle management (for embedded and local JMS
integration modes) is currently handled by the JMSRA that is shipped by SUN
MQ. by In conformance to the V3 theme of modularity, MQ would need to
package their module as an OSGi bundle. OSGi bundles are archives which
include metadata regarding their contents and information how they can be
run. Further details on OSGi are availability here ñ http://
wiki.glassfish.java.net/attach/V3FunctionalSpecs/GFv3Prelude-OSGi-onepager-

v0.2.txt. Details on how to add a new module in GF V3 are here - http://
wiki.glassfish.java.net/Wiki.jsp?page=AddingModule

Mode of delivery:
Currently the MQ binaries are manually staged in the GF java.net maven
repository. For V3, the plan is to explore the possibility of the MQ team
directly uploading the MQ bundles to the GlassFish Maven repository (in
download.java.net) so they can be consumed by GF.

JMS API ñ
The JMS API is currently duplicated in two locations ñ included with
javaee.jar and shipped with the MQ binaries. In V3, we intend to remove
this duplication and use the API provided by the MQ team and will be no
longer bundle with Javaee.jar

Separation of client and broker binaries -

IF a user is running GF V3 with MQ in the remote mode, only the client
libraries are required. Hence, in this scenario a user would only need to
download the client bundle(containing the client jars and the RA only).
Currently MQ does not provide separate client and broker bundles. The
bundles required would depend on the integration type configured for the
installation. GF would need to ensure that the appropriate libraries are
available for the particular installation type.

Port Unification -
Port unification is an important theme of GF V3 where by all services would
be accessible though a common port. We will need to explore the option of
unifying the JMS ports also and making it accessible though the unified
port. Currently, the JMS module is assigned two distinct ports ñ one for
the port mapper utility (7676 by default) and one RMI port. Port
unification in GF V3 is provided by Grizzly through filters that are part
of the request processing chain. This throws up two new requirements -
An API or algorithm provided by MQ to decipher if an incoming request,
based on it bytes is a MQ request.
A filter that would plug into the Grizzly framework and query the above API
to determine if the request is indeed meant for MQ.
Lockhard Integration / Admin console
GF V3 provides an extensible framework for plugging administration
components. MQ should be able to plugin its admin services to this
framework
MYSQL

GF V3 will support MYSQL for HA (this needs to be conformed. At this moment
we are not sure which profile this will be in). We would need to explore
the option of sharing drivers and resources.

RA Consolidation

There are currently three JCA 1.5 compliant Resource Adapters with a lot of
functional overlap from SUN. Two of these are java.net projects. There is
an effort to consolidate these three RA's into a single RA.

4.2. Bug/RFE Number(s):
 Need to be identified

4.3. In Scope:

4.4. Out of Scope:

4.5. Interfaces:

4.5.1 Exported Interfaces

4.5.2 Imported interfaces
This integration depends on the interfaces exposed by the Sun Java System
Message Queue Resource Adapter for broker lifecycle control, MQ "HA-
cluster" integration.

4.5.3 Other interfaces (Optional)

4.6. Doc Impact:
Application Server's Developer's Guide and Administration Guide.

4.7. Admin/Config Impact:
WIP

4.8. HA Impact:
None

4.9. I18N/L10N Impact:
None

4.10. Packaging & Delivery:
See above

4.11. Security Impact:
None

4.12. Compatibility Impact
None

4.13. Dependencies:
Dependent on Sun Java System Message Queue 4.x

5. Reference Documents:

6. Schedule:
6.1. Projected Availability:
Aligns with GlassFish V3 JavaOne 2009 release

