// Delete comments before final submission.

// make sure that the response fits within 80 columns
012345678901234567890123456789012345678901234567890123456789012345678901234
56789

One pager template version: 1.9

1. Introduction
1.1. Project/Component Working Name:
// Name of the Project or Component

1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
// The individual who are wrote this document
// Name: email address

1.3. Date of This Document:
// MM/DD/YY

2. Project Summary
2.1. Project Description:
// A SHORT description of this project suitable for use
// on dashboards and status rollups.
// See below for a longer, more detailed technical description

2.2. Risks and Assumptions:
// Note any risks and assumptions that must be considered along
// with the proposal. Include technical risks.

3. Problem Summary
3.1. Problem Area:
// What problem or need does this project solve?

3.2. Justification:
// Why is it important to do this project?

4. Technical Description:
4.1. Details:
// To the extent known, how is this project going to be done?
// This information is used by the reviewer to get a feel for the
// complexity and risk involved, and
// the architectural constraints that this project is working
// under. Try to present alternatives and show relationships to
// existing or proposed projects/standards.

4.2. Bug/RFE Number(s):
// List any Bug(s)/RFE(s) which will be addressed by this proposed
change.
// Provide links to the Bug(s)/RFE(s)where possible.
// RFE's must be trackable via an issue in Issue Tracker for
// features in the open source distro and in Bugster for value-add

// features to be released in the commercial distro.

4.3. In Scope:
// Aspects that are in scope of this proposal if not obvious from
above.

4.4. Out of Scope:
// Aspects that are out of scope if not obvious from above.

4.5. Interfaces:
// Interfaces may be commands, files, directory structure, ports,
// DTD/Schema, tools, APIs, CLIs, etc.
// Note: In lieu of listing the interfaces in the one pager,
providing
// a link to another specification which defines the interfaces
// 1is acceptable.

4.5.1. Public Interfaces:
// List new, public interfaces this project exports.

4.5.2. Private Interfaces:
// List private interfaces which are externally observable.

4.5.3. Deprecated/Removed Interfaces:
// List existing public interfaces which will be deprecated or
// removed by this project.

4.6. Doc Impact:
// List any Documentation (man pages, manuals, service guides...)
// that will be impacted by this proposal.

4.7. Admin/Config Impact:
// How will this change impact the administration of the product?
// Identify changes to GUIs, CLI, agents, plugins...

4.8. HA Impact:
// What new requirements does this proposal place on the High
// Availability or Clustering aspects of the component?

4.9. TI18N/L1ON Impact:
// Does this proposal impact internationalization or
// localization?

4.10. Packaging, Delivery & Upgrade:

4.10.1. Packaging
// What packages does this proposal impact? How will the
packages
// be impacted? Will new IPS/pkg(5) packages need to be

created?

4.10.2. Delivery

// What impact will this proposal have on product installation?

4.10.3. Upgrade and Migration:

or

4.11.
//
//
//
//
//

4.12.

//
//
//

//
//
//

4.13.

//
//
//
//

// What impact will this proposal have on product upgrade and/

// migration from prior releases? Enumerate requirements this
// project has on upgrade and migration.

Security Impact:

How does this proposal interact with security-related APIs
or interfaces? Does it rely on any Java policy or platform
user/permissions implication? If the feature exposes any
new ports, Or any similar communication points which may
have security implications, note these here.

Compatibility Impact

Incompatible changes to interfaces that others expect
to be stable may cause other parts of application server or
other dependent products to break.

Discuss changes to the imported or exported interfaces.
Describe how an older version of the interface would
be handled.

Dependencies:

An internal dependency is a dependency on a project, module,
component or product that is within the GlassFish project.

An external dependency is a dependency on a project, component
or product that resides outside of the GlassFish project.

4.13.1 Internal Dependencies

necessary.

// List all internal dependencies this proposal has on other
// software. Include component version requirements if

4.13.2 External Dependencies

4.14.
//

tested?
//

// List all external dependencies this proposal has on other

// software. Indicate if the software is open source, what

// license terms the software is released under and the version
// of the software that is being consumed by this project.

Testing Impact
How will the new feature(s) introduced by this project be

Do tests exist from prior releases (e.g. v2) that can be reused?

// Will new tests need to be written? Can they be automated?

5. Reference Documents:
// List of related documents, if any (BugID's, RFP's, papers).
// Explain how/where to obtain the documents, and what each
// contains, not just their titles.

6. Schedule:
6.1. Projected Availability:
// Indicate which milestone from the current schedule the project
// will be:
// * Initially integrated (may not be feature complete)
// * Feature complete (ready for handoff to QA)
// * At production quality level

