
07/11/11 22:33

Page 1 of 4http://wikis.sun.com/download/attachments/209654762/GFv3-OSGi-onepager-v0.2.txt

1. Introduction
 1.1. Project/Component Working Name:
 OSGi and GlassFish

 1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
 Sahoo: Sahoo@Sun.COM
 Richard Hall: heavy@sun.com

 1.3. Date of This Document:
 06 Jan 2009

2. Project Summary
 2.1. Project Description:
 In this document, we describe OSGi [1] related features supported in
 GlassFish application server version 3.0. This is a continuation of
 our effort which began during GlassFish V3 Prelude release. Please
 refer to our earlier proposal [2] for a background to the problem.

 2.2. Risks and Assumptions:
 Some of the features proposed here are not standardised anywhere. e.g.,
 we propose to allow Java EE applications to be packaged and deployed
 as OSGi bundles. Since this is the first time any Java EE platform
 is implementing such an extension, we don't yet know all the
 challenges involved. SO, we may not be able to provide all kinds of
 features of the Java EE platforms to OSGi enabled Java EE applications.
 The assumption here is that supporting OSGi enabled Java EE applications
 is not a violation of any of the Java EE platform rules. We would like
 to mention here that we will continue to support standard compliant,
 non-OSGi Java EE applications in the server without any change in
 behavior.

3. Problem Summary
 3.1. Problem Area:
 As stated in our earlier proposal [2], OSGi module system is used to
 implement the primary features of GlassFish V3 release, such as:
 modularity, extensibility, and embeddability. Since OSGi framework
 is the kernel of the application server, there is a need to have
 better administration support for the framework.

 Today's enterprise Java applications have a growing need for
 sophisticated dependency management, better life cycle management and
 a dynamic service platform. Hence applications would like to use OSGi
 to meet some of these requirements.

 3.2. Justification:
 We need to provide a platform that meets requirements of new
 generation of enterprise applications.

4. Technical Description:
 4.1. Details:
 The features proposed in this document fall into following categories:
 a) Administration of OSGi runtime:
 For the former one, we shall enhance GlassFish CLI command sets and
 admin console. It will allow users to install, uninstall OSGi bundles,
 browse currently installed bundles, query their status and manage their
 lifecycle. More details on this is available in section #4.7.

 b) Support for OSGi enabled Java EE applications:
 As discussed in the prelude one-pager [2], Java EE applications
 typically run outside of OSGi context. Going forward, we shall allow
 Java EE applications to be deployed as OSGi bundles so that at runtime
 they have OSGi BundleContext available to them. To begin with, we shall
 not automatically wrap Java EE applications as OSGi bundles although

07/11/11 22:33

Page 2 of 4http://wikis.sun.com/download/attachments/209654762/GFv3-OSGi-onepager-v0.2.txt

 such wrapping is possible in most cases, but we shall expect user to
 package their application as OSGi bundle. The existing deploy command
 will be modified to accept such artifacts. Such a hybrid application
 can leverage functionality provided by OSGi as well as Java EE
 platform. Existing Java EE archive formats except "EAR" format fit
 nicely with OSGi bundle format. So, user just has to add OSGi metadata
 in their Java EE archive to convert into an OSGi bundle. Please refer
 to OSGi specification for details about OSGi manifest headers. For
 bundles packaged as .war or .rar files, it is easy to figure out the
 Java EE application type, but an application packaged as .jar file must
 contain the following proprietary manifest header to indicate that
 it is a Java EE application type:
 GlassFish-Application-Type: EJB
 An OSGi enables Java EE application can even use Export-Package header
 to export some packages to be used by other deployed applications.
 Please note this is different from the encapsulation model of ordinary
 Java EE applications.

 c) Implementation of standard OSGi services:
 We shall implement the following standard OSGi services:
 OSGi HTTP Service: This is described at [4].
 Transactions in OSGi (OSGi EEG RFC 0098): This is nothing but
 Java Transaction API with the added requirement that UserTransaction,
 TransactionManager and TransactionSynchronizationRegistry objects be
 made available in OSGi service registry under
 javax.transaction.UserTransaction,
 javax.transaction.TransactionManager and
 javax.transaction.TransactionSynchronisationRegistry names respectively.
 d) Exporting Java EE services to OSGi service registry:
 Applications can choose to export the following services to OSGi
 service registry:
 EJBs, Resources (JDBC DataSource, JavaMail resource, JMS resource) and
 JPA EntityManagerFactories. Although we have not decided yet, but
 we are thinking of having an annotation which programmers can use to
 export EJBs to service registry. We shall enhance the admin commands
 and console to allow users to export resources to service registry.

 4.2. Bug/RFE Number(s):
 https://glassfish.dev.java.net/issues/show_bug.cgi?id=6848
 http://forums.java.net/jive/thread.jspa?messageID=320807
 http://forums.java.net/jive/thread.jspa?messageID=318199

 4.3. In Scope:

 4.4. Out of Scope:
 Patching/Upgrading at runtime is not going to be implemented in this
 release. We will not automatically wrap non-OSGi libraries installed
 in library directories as OSGi bundles. We will not automatically
 convert non-OSGi applications to OSGi applications. We will not
 provide any tools to package Java EE applications as OSGi bundles.
 Users should use existing tools like bnd [6] to achieve the same. bnd
 can be used from command line as well as from Ant and Maven.
 We will not support an ear file to be deployed as an OSGi bundle in
 this release.

 4.5. Interfaces:
 4.5.1 Exported Interfaces
 Interface: org.osgi.framework, version=4.0
 Stability: Standard
 Comments: Applications deployed as OSGi bundles can use this API.

 Interface: org.osgi.service.http, version=4.1
 Stability: Standard
 Comments: For use by OSGi applications

07/11/11 22:33

Page 3 of 4http://wikis.sun.com/download/attachments/209654762/GFv3-OSGi-onepager-v0.2.txt

 4.5.2 Imported interfaces
 Interface: org.apache.felix
 Stability: Evolving
 Exporting Project: Apache Felix (http://felix.apache.org)

 Interface: org.glassfish.api
 Stability: Evolving

 4.5.3 Other interfaces (Optional)

 4.6. Doc Impact:
 New chapter needed in developer guide documenting how to develop
 OSGi enabled Java EE applications. GlassFish administration document
 needs to be updated with new CLI and GUI functionality.

 4.7. Admin/Config Impact:
 We will introduce the following CLIs:
 (id refers to the unique bundle id assigned by OSGi framework to every
 bundle. It is a strictly increasing number persistence across
 framework restart.)

 install-bundle <URL> # Install a bundle
 uninstall-bundle <id> # Uninstall the bundle
 list-bundles # List all installed bundles
 list-headers <id> [<id>...] # Display header of given bundle
 resolve-bundle <id> [<id>...] # Resolve bundle(s)
 start-bundle <id> [<id>...] # Start bundle(s)
 stop-bundle <id> [<id>...] # Stop bundle(s)
 packages <id> [<id>...] # List exported packages

 We will provide commands to export resources to OSGi service registry.
 It will be achieved either by extending existing commands or adding new
 commands. It is not decided yet.

 We will also enhance the implementation of deploy command to accept
 OSGi enabled applications.

 All the above tasks should be possible using the Admin Console as well.
 All of them require a running server.

 We also need support from config module. A newly installed bundle may
 need to add default configuration information in domain.xml. So, we
 depend on "configuration pluggability" feature in GlassFish.
 [TODO: insert link to config pluggability one-pager]

 4.8. HA Impact:
 We need support for distribution of OSGi bundles from DAS to remote
 instances when such bundles are installed using
 "asadmin install-bundle" command with a target specified as either
 a cluster or a remote instance.

 4.9. I18N/L10N Impact:
 New resource bundles will be introduced which need to be localized
 as per GlassFish requirement. The localized content will be made
 available as OSGi bundle fragments just like any other localized
 content in GlassFish v3.

 4.10. Packaging & Delivery:
 Most of the functionality will be implemented in separate OSGi bundles,
 so that we can decide to make them part of default distribution or
 make them available via update centre.

 4.11. Security Impact:

07/11/11 22:33

Page 4 of 4http://wikis.sun.com/download/attachments/209654762/GFv3-OSGi-onepager-v0.2.txt

 4.11. Security Impact:
 In the developer profile of GlassFish, we would like to enable
 Felix remote shell [3] which accepts connections over telnet protocol.
 It can be configured to bind to 127.0.0.1 only so that it accepts
 connections from the host only reducing the security vulnerability.

 By default, bundles installed via install-bundle command
 have same privileges as any other bundle in glassfish/modules dir.
 Bundles deployed as applications will be less privileged. e.g., they
 would not be allowed to override or export APIs that are part of the
 Java EE platform. Similarly, they will not be allowed to export
 standard services like TransactionManager. [TODO: discuss with Richard]

 4.12. Compatibility Impact
 NONE

 4.13. Dependencies:
 1. Felix to support Java class transformation in order to run
 JPA in OSGi context.

 2. Configuration Pluggability support in GlassFish.

5. Reference Documents:

 1. OSGi Module System:
 http://osgi.org

 2. Modularisation of GlassFish using OSGi
 http://wiki.glassfish.java.net/attach/V3FunctionalSpecs/GFv3Prelude-OSGi-
onepager-v0.2.txt

 3. Felix Remote Shell:
 http://felix.apache.org/site/apache-felix-remote-shell.html

 4. OSGi HTTP Service:
 http://www.osgi.org/javadoc/r4v41/org/osgi/service/http/HttpService.html
 5. Apache Felix project:
 http://felix.apache.org

 6. Bnd Bundle Tool:
 http://www.aqute.biz/Code/Bnd

 7. Providing HK2 services on OSGi:
 http://wikihome.sfbay.sun.com/asarch/attach/Attachments%2FHK2OSGi.pdf

6. Schedule:
 6.1. Projected Availability:
 Same schedule as GlassFish v3.0

