
07/11/11 22:32

Page 1 of 5http://wikis.sun.com/download/attachments/209654762/GFv3Prelude-OSGi-onepager-v0.2.txt

01234567890123456789012345678901234567890123456789012345678901234567890123456789
1. Introduction
 1.1. Project/Component Working Name:
 Modularization of GlassFish using OSGi

 1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
 Sahoo: Sahoo@Sun.COM

 1.3. Date of This Document:
 12 July 2008

2. Project Summary
 2.1. Project Description:
 OSGi [1] module system will be used to implement the primary features
 of GlassFish V3 release, such as: modularity, extensibility, and
 embeddability.

 2.2. Risks and Assumptions:
 Making the existing code base modular is the biggest risk, as it
 involves significant redesign of core functionality. Existing GlassFish
 implementation relies heavily on a single class loader hierarchy.
 OSGi hardly uses such parent delegation model for class loading.
 Adopting the new class loading scheme can be a challenge.
 More over, it can lead to some backward incompatibility. We will try
 to minimize incompatibility, if not completely avoid it. At this point,
 the only known incompatibility issue is with regards to support of
 "Classpath Prefix." This can't be supported.

3. Problem Summary
 3.1. Problem Area:
 Modularity, extensibility, and embeddability are the need of the hour.
 As Java EE stack matured over time, implementations that include
 the entire stack were perceived as heavy weight solutions. Not every
 application uses all the functionality offered by the stack. Users
 do not want to pay the runtime cost for features that they don't use.
 A modular application server based on OSGi addresses this as it can
 ensure that only required parts of the system are started.

 In order to cater to the needs of different classes of applications
 and their varying need for the stack, we have to come up
 with a solution that allows us to quickly build customized stack.

 We would like the implementation to be extensible so that
 capabilities of the system can be augmented after the system is
 shipped/installed. This is important for the targeted use case where
 user starts with a reduced set of requirement, and their requirements
 grows over time necessacitating installation of newer capabilities in
 the system. Such extensions does not have to be necessarily provided by
 GlassFish project team, so there is a need to expose well defined
 extension points as well.

 There is a need for embedding GlassFish in existing runtimes to augment
 their capabilities for greater adoption of GlassFish. There is
 often a need for an application server like GlassFish to be used in
 other self-contained application, but it has not been possible because
 of their size and difficulty involved in managing their lifecycle.

 A modular system should allow upgrading/patching of a subset of modules.
 It is expected that a modular system can be patched at runtime without
 requiring a complete restart of the system. Upgrading/patching and
 versioning go together. A complex product like GlassFish, which has so
 many modules developed by so many different groups, requires a well

07/11/11 22:32

Page 2 of 5http://wikis.sun.com/download/attachments/209654762/GFv3Prelude-OSGi-onepager-v0.2.txt

 defined versioning and patching policy.

 If GlassFish can benefit from OSGi, why not applications deployed
 in GlassFish? Application developers would like to use sophisticated
 versioning, class loading, dependency management and component model
 of OSGi. There is a growing demand for servers that expose such
 facilities to application developers. So, we shall investigate the
 use of OSGi by applications.

 There is a need for applications deployed in GlassFish to have
 controlled access to implementation classes. This is not only true
 for external GlassFish specific API classes, but also for various
 open source libraries, like Apache Commons, ASM, etc., that's used
 by GlassFish internally. Not only are these libraries often used
 by end user applications, they also have multiple versions out there.
 Our implementation can *not* be compatible with all versions of
 such libraries out there and we can not force applications to use
 any particular version of those libraries. So, as a work around,
 we have been forced to repackage such libraries into our private
 namespace like com.sun.org.apache. Not only repackaging has development
 and maintenance cost, it also had a runtime cost, for it has the
 undesirable side effect of not allowing applications to share one
 runtime instance of a library with implementation even when they
 intend to use the same version of the library.

 3.2. Justification:
 A modular application server is difficult to implement, but it has
 longer term benefits. It is definitely more maintainable. A modular
 application server based on OSGi will not only allow us to build
 different flavours/profiles of GlassFish, it will also make it easier
 to build new products based on GlassFish that target specific market
 segment. Substitutability of OSGi bundles opens the door for
 interesting mix-and-match type of distributions giving greater choice
 to users.

 OSGi has a pretty established versioning and update policy, which
 GlassFish can benefit from.

 So far, we have been exposing implementation classes to applications.
 There has been a long standing need to provide desired level of
 isolation between implementation and application class spaces on a
 per application basis. Use of OSGi addresses this need. It will also
 avoid the need to repackage libraries and thereby removing the
 short-comings associated with repackaging as mentioned in the previous
 section. A point worth noting here is that there were earlier proposals
 to address this issue by use of sophisticated class loader
 implementation, but they were not completely implemented as the change
 was considered too pervassive and risky at that point of time. OSGi
 makes it easier to implement this feature.

4. Technical Description:
 4.1. Details:
 We propose to implement GlassFish as a set of OSGi bundles. A bundle
 is a unit of deployment in OSGi. It is packaged as a Java ARchive (jar)
 with proper manifest entries. The manifest entries define the essential
 details about the module, e.g., name, version, its dependencies and
 capabilities. At the heart (core) of GlassFish, there will be an OSGi
 framework. Although we plan to use Apache Felix [6] as the default OSGi
 framework, we do not want to make any such assumption in our code. So,
 the core implementation only uses OSGi R4 API, which makes it
 possible to run with alternative OSGi runtimes by changing
 configuration. Whether alternative runtimes will be supported or not
 is not an engineering decision.

07/11/11 22:32

Page 3 of 5http://wikis.sun.com/download/attachments/209654762/GFv3Prelude-OSGi-onepager-v0.2.txt

 GlassFish developers can make use of HK2 component model, which
 substantially eases the development of Service oriented application.
 We shall provide bi-directional mapping between HK2 service and OSGi
 service [7].

 Since GlassFish will be implemented as a set of OSGi bundles,
 distributions of with different capabilities can be made by packaging
 suitable set of bundles. Once a particular distribution is installed,
 bundles can be added, removed or updated to add, remove or update
 system's capabilities.

 It will be possible to embed GlassFish in existing OSGi runtime. A
 typical example of taht would be embedding GlassFish in Eclipse IDE,
 which starts its own OSGi framework called Equinox.

 Now, a note about how traditional Java EE applications would run in
 the new runtime. There are two alternatives that come to my mind:
 A) Java EE applications runs outside of an OSGi bundle context,
 B) Java EE applications runs within an OSGi bundle context.
 Approach #B requires converting user supplied, non-OSGi applications
 to be converted to equivalent OSGi bundles at runtime. This is
 inherently a risky proposal, as the conversion is not always that
 straight forward and can require user intervention. More over, the
 Java EE class loading scheme may not fit well in this model. This
 will affect use of many existing libraries and frameworks that rely on
 Java EE class loading scheme. This severly impacts backward
 compatibility of the server. However, approach #A does not have
 most of these problems. So, we prefer approach #A.

 Having said that, we do want GlassFish to be able to accept OSGi-ed
 applications, irrespective of them being Java EE applications or not.

 4.2. Bug/RFE Number(s):

 4.3. In Scope:
 We will try to make the server compatible with other popular OSGi
 platforms. We will provide necessary maven plugins and build script
 support to help developers build OSGi bundles. We will make various
 Java EE APIs available with proper OSGi metadata.

 4.4. Out of Scope:
 OSGi facilities can't be made available to standard (non-OSGied)
 Java EE applications in this release. We will experiment with running
 OSGi-ed Java EE applications. We will not wrap commonly used libraries
 as OSGi bundles. Instead, we will encourage people to get such
 wrapped bundles from projects like "Apache Felix Commons [4]." This
 project team shall modularise the kernel, define extension points,
 provide infrastructure for modularising GlassFish and come up with
 best practices, but won't be responsible for actually modularising
 every functional area. That has to be done by owners of respective
 functional area. Patching/Upgrading at runtime is not going to
 be implemented in Prelude release.

 4.5. Interfaces:

 4.5.1 Exported Interfaces
 Interface: Felix remote shell
 Stability: External
 Comments: This is a simple command line shell to administer
 the OSGi framework remotely.

 Interface: asadmin GUI and CLI enhancements to administer OSGi
 framework
 Stability: Evolving

07/11/11 22:32

Page 4 of 5http://wikis.sun.com/download/attachments/209654762/GFv3Prelude-OSGi-onepager-v0.2.txt

 Stability: Evolving
 Comments: This will not be done as part of V3 Prelude release.

 Interface: HK2 Module API and component model
 Stability: Evolving

 4.5.2 Imported interfaces

 Interface: OSGi R4 API
 Stability: Standard
 Exporting Project: Felix (http://felix.apache.org)

 4.6. Doc Impact:
 We expect chnages to administration guide and classloader chapter
 of developers' guide and application development guide. We also expect
 new chapters to be written to explain how to develop plugins for
 GlassFish.

 4.7. Admin/Config Impact:
 In this release, we will provide administration commands for OSGi
 bundle lifecycle management. I expect commands to be very similar to
 what is available in Felix shell which look like the following:

 headers [<id> ...] - display bundle header properties.
 install <URL> [<URL> ...] - install bundle(s).
 packages [<id> ...] - list exported packages.
 ps [-l | -s | -u] - list installed bundles.
 refresh [<id> ...] - refresh packages.
 resolve [<id> ...] - attempt to resolve the specified bundles.
 services [-u] [-a] [<id> ...] - list registered or used services.
 start <id> [<id> <URL> ...] - start bundle(s).
 stop <id> [<id> ...] - stop bundle(s).
 uninstall <id> [<id> ...] - uninstall bundle(s).
 update <id> [<URL>] - update bundle.

 I am hoping Admin spec to provide further details. This need not be
 done for Prelude as we have an alternative solution available in the
 form of Felix shell. More over, this can always be done as an
 additional module and made available in UC. In a future release,
 we will allow user to configure the OSGi framework via GlassFish
 configuration management facilities. More over, the Admin/Config team
 should explore the use of OSGi facilities like "Configuration Admin
 Service" specification in V3.

 4.8. HA Impact:
 Not Applicable as of now, as V3 Prelude release does not have HA
 features.

 4.9. I18N/L10N Impact:
 Class loading restrictions in an OSGi environment applies to
 resource bundles as well. It requires changes to our code which has
 so far been assuming that all the necessary resource bundles are always
 available to all the implementation modules.
 In the past, we have been using Class-Path manifest headers in various
 jar files to specify jar files containing localized resources. e.g.,
 appserv-rt.jar in GlassFish V2 has the following entry:
 Class-Path: appserv-rt_ja.jar appserv-rt_zh.jar appserv-rt_fr.jar
 appserv-rt_de.jar appserv-rt_es.jar appserv-rt_it.jar ...

 In GlassFish V3, Class-Path manifest header has little use. It is
 recommended to use *fragement bundles* to provide localized content.

 4.10. Packaging & Delivery:
 To be discussed in packaging proposal[5].

07/11/11 22:32

Page 5 of 5http://wikis.sun.com/download/attachments/209654762/GFv3Prelude-OSGi-onepager-v0.2.txt

 4.11. Security Impact:
 The OSGi Security Layer is an optional layer that underlies
 the OSGi Service Platform. The layer is based on the Java 2 security
 architecture.

 4.12. Compatibility Impact
 Since the server would be using new class loading scheme, there will
 be some impact on backward compatibility. Details to be discussed soon.

 4.13. Dependencies:
 1. Felix OSGi framework:
 http://felix.apache.org
 2. Maven bundle plugin developed as part of Felix project:
 http://felix.apache.org/site/maven-bundle-plugin-bnd.html
 3. Felix shell service and remote shell

5. Reference Documents:
 1. OSGi Module System:
 http://osgi.org
 2. GlassFish V3 Overview Functional Specification:
 http://wiki.glassfish.java.net/Wiki.jsp?page=V3OverviewFunctionalSpec
 3. HK2 component model:
 https://hk2.dev.java.net/components.html
 4. Apache Felix Commons project:
 http://felix.apache.org/site/apache-felix-commons.html
 5. GlassFish V3 Packaging proposal:

http://wiki.glassfish.java.net/attach/V3FunctionalSpecs/V3PreludePackagingFileLayout.txt
 6. Apache Felix project:
 http://felix.apache.org
 7. Providing HK2 services on OSGi:
 http://wikihome.sfbay.sun.com/asarch/attach/Attachments%2FHK2OSGi.pdf

6. Schedule:
 6.1. Projected Availability:
 Same as GlassFish V3 release dates. Not everything proposed in this
 document can be implemented in one release. We plan to make the initial
 implementation ready by V3 Prelude release. The initial implementation
 would have the modular architecture in place allowing for extensions
 to be made on top it.

