
07/11/11 22:32

Page 1 of 4http://wikis.sun.com/download/attachments/209654762/GFv3Prelude-OSGi-onepager-v0.1.txt

01234567890123456789012345678901234567890123456789012345678901234567890123456789
1. Introduction
 1.1. Project/Component Working Name:
 Modularization of GlassFish using OSGi

 1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
 Sahoo: Sahoo@Sun.COM

 1.3. Date of This Document:
 09 July 2008

2. Project Summary
 2.1. Project Description:
 OSGi [1] module system will be used to implement the primary features
 of GlassFish V3 release, such as: modularity, extensibility, and
 embeddability.

 2.2. Risks and Assumptions:
 Making the monolithic code modular is the biggest risk, as it involves
 significant redesign of core functionalities. Existing GlassFish
 implementation relies heavily on a single class loader hierarchy.
 OSGi hardly uses such parent delegation model for class loading.
 Adopting the new class loading scheme can be a challenge.
 More over, it can lead to some backward incompatibility. We will try
 to minimize incompatibility, if not completely avoid it.

3. Problem Summary
 3.1. Problem Area:
 Modularity, extensibility and embeddability are the need of the hour.
 As Java EE stack matured over time, implementations that include
 the entire stack were perceived as heavy weight solutions. Not every
 application uses all the functionalities offered by the stack.
 Users do not want to pay the runtime cost for features that they don't
 use. In order to cater to the needs of different classes of
 applications and their varying need for the stack, we have to come up
 with a solution that allows us to quickly build customized stack.
 Making it modular would also allow substitutability of parts of the
 stack as well giving greater flexibility to user.

 Secondly, we would like the implementation to be extensible so that
 capabilities of the system can be augmented after the system is
 shipped/installed. This is important for the targeted use case where
 user starts with a reduced set of requirement, and their requirements
 grows over time necessacitating installation of newer capabilities in
 the system. Such extensions does not have to be necessarily provided by
 GlassFish project team, so there is a need to expose well defined
 extension points as well.

 Thirdly, there is a need for embedding GlassFish in existing runtimes
 to augment their capabilities for greater adoption of GlassFish.

 We propose to use OSGi as the module system in GlassFish to achieve
 the aforementioned goals.

 In addition to these, we shall investigate the use of OSGi by
 applications deployed in GlassFish, as we think there is definite
 value addition for applications in this model.

 So far, we have been exposing implementation classes to applications.
 Use of OSGi will allow GlassFish to provide isolated class space
 for applications.

 3.2. Justification:

07/11/11 22:32

Page 2 of 4http://wikis.sun.com/download/attachments/209654762/GFv3Prelude-OSGi-onepager-v0.1.txt

 Please see the "GlassFish V3 Prelude Overview Functional Spec" [1] for
 justification.

4. Technical Description:
 4.1. Details:
 We propose to implement GlassFish as a set of OSGi bundles. A bundle
 is a unit of deployment in OSGi. It is packaged as a Java ARchive (jar)
 with proper manifest entries. The manifest entries define the essential
 details about the module, e.g., name, version, its dependencies and
 capabilities. At the heart (core) of GlassFish, there will be an OSGi
 framework. Although we plan to use Apache Felix [6] as the default OSGi
 framework, we do not want to make any such assumption in our code. So,
 the core implementation only uses OSGi R4 API, which makes it
 possible to run with alternative OSGi runtimes by changing
 configuration. Whether alternative runtimes will be supported or not
 is not an engineering decision.

 GlassFish developers can make use of HK2 component model, which
 substantially eases the development of Service oriented application.
 We shall provide bi-directional mapping between HK2 service and OSGi
 service [7].

 Since GlassFish will be implemented as a set of OSGi bundles,
 distributions of with different capabilities can be made by packaging
 suitable set of bundles. Once a particular distribution is installed,
 bundles can be added, removed or updated to add, remove or update
 system's capabilities.

 It will be possible to embed GlassFish in existing OSGi runtime. A
 typical example of taht would be embedding GlassFish in Eclipse IDE,
 which starts its own OSGi framework called Equinox.

 Now, a note about how traditional Java EE applications would run in
 the new runtime. There are two alternatives that come to my mind:
 A) Java EE applications runs outside of an OSGi bundle context,
 B) Java EE applications runs within an OSGi bundle context.
 Approach #B requires converting user supplied, non-OSGi applications
 to be converted to equivalent OSGi bundles at runtime. This is
 inherently a risky proposal, as the conversion is not always that
 straight forward and can require user intervention. More over, the
 Java EE class loading scheme may not fit well in this model. This
 will affect use of many existing libraries and frameworks that rely on
 Java EE class loading scheme. This severly impacts backward
 compatibility of the server. However, approach #A does not have
 most of these problems. So, we prefer approach #A.

 Having said that, we do want GlassFish to be able to accept OSGi-ed
 applications, irrespective of them being Java EE applications or not.

 4.2. Bug/RFE Number(s):

 4.3. In Scope:
 We will try to make the server compatible with other popular OSGi
 platforms. We will provide necessary maven plugins and build script
 support to help developers build OSGi bundles. We will make various
 Java EE APIs available with proper OSGi metadata.

 4.4. Out of Scope:
 OSGi facilities can't be made available to standard (non-OSGied)
 Java EE applications in this release. We will experiment with running
 OSGi-ed Java EE applications. We will not wrap commonly used libraries
 as OSGi bundles. Instead, we will encourage people to get such
 wrapped bundles from projects like "Apache Felix Commons [4]."

07/11/11 22:32

Page 3 of 4http://wikis.sun.com/download/attachments/209654762/GFv3Prelude-OSGi-onepager-v0.1.txt

 4.5. Interfaces:

 4.5.1 Exported Interfaces
 Interface: Felix remote shell
 Stability: External
 Comments: This is a simple command line shell to administer
 the OSGi framework remotely.

 Interface: asadmin GUI and CLI enhancements to administer OSGi
 framework
 Stability: Evolving
 Comments: This will not be done as part of V3 Prelude release.

 4.5.2 Imported interfaces

 Interface: OSGi R4 API
 Stability: Standard
 Exporting Project: Felix (http://felix.apache.org)

 4.6. Doc Impact:
 We expect chnages to administration guide and classloader chapter
 of developers' guide and application development guide.

 4.7. Admin/Config Impact:
 In this release, we will provide administration commands for OSGi
 bundle lifecycle management. In a future release, we will allow user
 to configure the OSGi framework via GlassFish configuration management
 facilities.

 4.8. HA Impact:
 Not Applicable as of now, as V3 Prelude release does not have HA
 features.

 4.9. I18N/L10N Impact:
 Class loading restrictions in an OSGi environment applies to
 resource bundles as well. It requires changes to our code which has
 so far been assuming that all the necessary resource bundles are always
 available to all the implementation modules.

 4.10. Packaging & Delivery:
 To be discussed in packaging proposal[5].

 4.11. Security Impact:
 The OSGi Security Layer is an optional layer that underlies
 the OSGi Service Platform. The layer is based on the Java 2 security
 architecture.

 4.12. Compatibility Impact
 Since the server would be using new class loading scheme, there will
 be some impact on backward compatibility. Details to be discussed soon.

 4.13. Dependencies:
 1. Felix OSGi framework:
 http://felix.apache.org
 2. Maven bundle plugin developed as part of Felix project:
 http://felix.apache.org/site/maven-bundle-plugin-bnd.html
 3. Felix shell service and remote shell

5. Reference Documents:
 1. OSGi Module System:
 http://osgi.org
 2. GlassFish V3 Overview Functional Specification:
 http://wiki.glassfish.java.net/Wiki.jsp?page=V3OverviewFunctionalSpec
 3. HK2 component model:

07/11/11 22:32

Page 4 of 4http://wikis.sun.com/download/attachments/209654762/GFv3Prelude-OSGi-onepager-v0.1.txt

 3. HK2 component model:
 https://hk2.dev.java.net/components.html
 4. Apache Felix Commons project:
 http://felix.apache.org/site/apache-felix-commons.html
 5. GlassFish V3 Packaging proposal:

http://wiki.glassfish.java.net/attach/V3FunctionalSpecs/V3PreludePackagingFileLayout.txt
 6. Apache Felix project:
 http://felix.apache.org
 7. Providing HK2 services on OSGi:
 http://wikihome.sfbay.sun.com/asarch/attach/Attachments%2FHK2OSGi.pdf

6. Schedule:
 6.1. Projected Availability:
 Same as GlassFish V3 release dates. Initial implementation will be
 ready by V3 Prelude release.

