
Upgrading Applications Without Loss of
Availability

Upgrading an application to a new version without loss of availability to users is called a rolling
upgrade. Carefully managing the two versions of the application across the upgrade ensures that
current users of the application complete their tasks without interruption, while new users
transparently get the new version of the application. With a rolling upgrade, users are unaware
that the upgrade occurs.

For more information about application versions and how they are identified, see “Module and
Application Versions” in GlassFish Server Open Source Edition 3.1 Application Deployment
Guide.

In a clustered environment, a rolling upgrade redeploys an application with a minimal loss of
service and sessions. A session is any artifact that can be replicated, for example:

■ HttpSession

■ SingleSignOn

■ ServletTimer

■ DialogFragment

■ Stateful session bean

A rolling upgrade can take place under light to moderate loads. The procedure requires about
10-15 minutes for each GlassFish Server instance.

Caution – To prevent the risk of version mismatch when a session fails over, upgrade all instances
in a cluster at the same time. Otherwise a session might fail over to an instance where different
versions of components are running.

Perform this task on each cluster separately. A cluster acts as a safe boundary for session failover
for instances in the cluster. Sessions in one cluster can never fail over to sessions in another
cluster. Therefore, the risk of version mismatch is avoided.

7C H A P T E R 7

13



Application Compatibility
Rolling upgrades pose varying degrees of difficulty depending on the magnitude of changes
between the two application versions.

If the changes are superficial, for example, changes to static text and images, the two versions of
the application are compatible and can both run at once in the same cluster.

Compatible applications must:

■ Use the same session information
■ Use compatible database schemas
■ Have generally compatible application-level business logic
■ Use the same physical data source

You can perform a rolling upgrade of a compatible application in either a single cluster or
multiple clusters. For more information, see “Upgrading In a Single Cluster” on page 14.

If the two versions of an application do not meet all the above criteria, then the applications are
considered incompatible. Executing incompatible versions of an application in one cluster can
corrupt application data and cause session failover to not function correctly. The problems
depend on the type and extent of the incompatibility. It is good practice to upgrade an
incompatible application by creating a “shadow cluster” to which to deploy the new version and
slowly quiesce the old cluster and application. For more information, see “Upgrading
Incompatible Applications” on page 17.

The application developer and administrator are the best people to determine whether
application versions are compatible. If in doubt, assume that the versions are incompatible,
since this is the safest approach.

Upgrading In a Single Cluster
You can perform a rolling upgrade of an application deployed to a single cluster, providing the
cluster’s configuration is not shared with any other cluster.

▼ To upgrade an application in a single cluster
Deploy the upgraded application to the cluster in a disabled state and with a new version
identifier.
For example:
asadmin> asadmin deploy --enabled=false --target myCluster myApp:1.1

Enable the upgraded application for the instances using asadmin

enable-http-lb-application.

1

2

Application Compatibility

GlassFish Server Open Source Edition 3.1 High Availability Administration Guide • September 200914



Quiesce one server instance in the cluster from the load balancer.

Follow these steps:

a. Disable the server instance using asadmin disable-http-lb-server.

b. Export the load balancer configuration file using asadmin export-http-lb-config.

c. Copy the exported configuration file to the web server instance’s configuration directory.

For example, for Sun Java System Web Server, the location is
web-server-install-dir/https-host-name/config/loadbalancer.xml.

d. Wait until the timeout has expired.

Monitor the load balancer’s log file.

Enable the upgraded application version on the quiesced server instance.

For example:
asadmin> asadmin enable --target instance01 myApp:1.1

Enabling the upgraded application version automatically disables the previous version.

Test the upgraded application on the server instance to make sure it runs correctly.

Re-enable the server instance in load balancer.

Follow these steps:

a. Enable the server instance using asadmin enable-http-lb-server.

b. Export the load balancer configuration file using asadmin export-http-lb-config.

c. Copy the configuration file to the web server’s configuration directory.

Repeat steps 3 through 6 for each instance in the cluster.

3

4

5

6

7

Upgrading In a Single Cluster

Chapter 7 • Upgrading Applications Without Loss of Availability 15



Upgrading in Multiple Clusters

▼ To Upgrade a Compatible Application in Two or More
Clusters:

Deploy the upgraded application to one cluster in a disabled state and with a new version
identifier.
For example:
asadmin> asadmin deploy --enabled=false --target myCluster myApp:1.1

Enable the upgraded application for the cluster using asadmin enable-http-lb-application.

Quiesce the cluster with the upgraded application from the load balancer.

a. Disable the cluster using asadmin disable-http-lb-server.

b. Export the load balancer configuration file using asadmin export-http-lb-config.

c. Copy the exported configuration file to the web server instance’s configuration directory.
For example, for Sun Java System Web Server, the location is
web-server-install-dir/https-host-name/config/loadbalancer.xml.

d. Wait until the timeout has expired.
Monitor the load balancer’s log file.

Enable the upgraded application version on the quiesced cluster.
For example:
asadmin> asadmin enable --target myCluster myApp:1.1

Enabling the upgraded application version automatically disables the previous version.

Test the upgraded application on the cluster to make sure it runs correctly.

Enable the cluster in the load balancer:

a. Enable the cluster using asadmin enable-http-lb-server.

b. Export the load balancer configuration file using asadmin export-http-lb-config.

c. Copy the configuration file to the web server’s configuration directory.

1

2

3

4

5

6

Upgrading in Multiple Clusters

GlassFish Server Open Source Edition 3.1 High Availability Administration Guide • September 200916



Repeat steps 1 through 6 for the other clusters.

Upgrading Incompatible Applications
If the new version of the application is incompatible with the old version, use the following
procedure. For information on what makes applications compatible, see “Application
Compatibility” on page 14. Also, you must upgrade incompatible application in two or more
clusters. If you have only one cluster, create a “shadow cluster” for the upgrade, as described
below.

When upgrading an incompatible application:
■ Give the new version of the application a different version identifier from the old version of

the application. The steps below assume that the application has a new version identifier.
■ If the data schemas are incompatible, use different physical data sources after planning for

data migration.
■ Deploy the new version to a different cluster from the cluster where the old version is

deployed.
■ Set an appropriately long timeout for the cluster running the old application before you take

it offline, because the requests for the application won’t fail over to the new cluster. These
user sessions will simply fail.

▼ To Upgrade an Incompatible Application by Creating a
Second Cluster
Create a“shadow cluster”on the same or a different set of machines as the existing cluster. If you
already have a second cluster, skip this step.

a. Use the Admin Console to create the new cluster and reference the existing cluster’s named
configuration.
Customize the ports for the new instances on each machine to avoid conflict with existing
active ports.

b. For all resources associated with the cluster, add a resource reference to the newly created
cluster using asadmin create-resource-ref.

c. Create a reference to all other applications deployed to the cluster (except the current
upgraded application) from the newly created cluster using asadmin

create-application-ref.

d. Configure the cluster to be highly available using asadmin configure-ha-cluster.

7

1

Upgrading Incompatible Applications

Chapter 7 • Upgrading Applications Without Loss of Availability 17



e. Create reference to the newly-created cluster in the load balancer configuration file using
asadmin create-http-lb-ref.

Give the new version of the application a different version identifier from the old version.

Deploy the new application version with the new cluster as the target. Use a different context
root or roots.

Enable the deployed new application for the clusters using asadmin

enable-http-lb-application.

Start the new cluster while the other cluster is still running.
The start causes the cluster to synchronize with the domain and be updated with the new
application.

Test the application on the new cluster to make sure it runs correctly.

Disable the old cluster from the load balancer using asadmin disable-http-lb-server.

Set a timeout for how long lingering sessions survive.

Enable the new cluster from the load balancer using asadmin enable-http-lb-server.

Export the load balancer configuration file using asadmin export-http-lb-config.

Copy the exported configuration file to the web server instance’s configuration directory.
For example, for Sun Java System Web Server, the location is
web-server-install-dir/https-host-name/config/loadbalancer.xml.

After the timeout period expires or after all users of the old application have exited, stop the old
cluster and undeploy the old application version.

2

3

4

5

6

7

8

9

10

11

12

Upgrading Incompatible Applications

GlassFish Server Open Source Edition 3.1 High Availability Administration Guide • September 200918


