
Enhancements to SMI and Access logging One
Pager

1. Introduction
1.1. Project/Component Working Name:
1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
1.3. Date of This Document:

2. Project Summary
2.1. Project Description:
2.2. Risks and Assumptions:

3. Problem Summary
3.1. Problem Area:
3.2. Justification:

4. Technical Description:
4.1. Details:
4.2. Bug/RFE Number(s):

4.2.1 Bug/RFE Numbers from Issue Tracker
4.2.2 Requirememt Ids that are being addressed as a part of this
proposal.

4.3. In Scope:
4.4. Out of Scope:
4.5. Interfaces:

4.5.1 Exported Interfaces
4.5.2 Imported interfaces
4.5.3 Other interfaces (Optional)

4.6. Doc Impact:
4.7. Admin/Config Impact:

4.7.1 Configuration changes needed
4.7.2 CLI / GUI impact if any
4.7.3 Plugin impact

4.8. HA Impact:
4.9. I18N/L10N Impact:
4.10. Packaging & Delivery:

4.10.1 Binaries in which the code is delivered
4.11. Security Impact:
4.12. Compatibility Impact
4.13. Dependencies:

4.13.1 Changes required in GlassFish

4.13.2 Third Party APIs
4.14 Miscellaneous

5. Open Issues
6. Reference Documents:
7. Schedule:
7.1. Projected Availability:

1. Introduction
1.1. Project/Component Working Name

SailFin 2.0 / Reporter framework

1.2. Name(s) and e-mail address of Document Author(s)/Supplier:

Peter Strand: peter.strand@ericsson.com

1.3. Date of This Document:

Version Date Comments Author

0.1 2009-02-27 First version Peter Strand

0.2 2009-03-09 Added toc Peter Strand

1.0 2009-04-15 Updated w.r.t
implemntation Peter Strand

2. Project Summary
2.1. Project Description:

This document describes some enhancements of the current Reporter framework (Details
specific to the SipMessageInspection feature is described in a separate document named
"Sip Message Inspection Adapter One Pager").

The implementation classes of the current features CallFlow, AccessLog and
SipMessageInspection implements the com.ericsson.ssa.container.callflow.Reporter

SipMessageInspection implements the com.ericsson.ssa.container.callflow.Reporter
interface. However the current implementation only fully intercepts incoming initial
requests/responses and it does not have support to intercept outgoing Sip Requests or Sip
Responses.

See below for a more detailed technical description.

2.2. Risks and Assumptions:

N/A

3. Problem Summary
3.1. Problem Area:

The current Reporter framework does not support interceptions of outgoing Sip Requests
or Sip Responses.

3.2. Justification:

The following problems exist with the current implementation:

The current Sip Message Inspection feature does not log outgoing
requests/responses (which limits its purpose)
Interceptions on Servlet level does not work for subsequent requests (This affects
CallFlow and SipMessageInspection)
The current AccessLog implementation for SIP does not show the response code
in the log record
AccessLog implementation for SIP does not log outgoing messages (To be defined
if this is required)

4. Technical Description:
4.1. Details:

The implementation classes of current features CallFlow, AccessLog and
SipMessageInspection implements the com.ericsson.ssa.container.callflow.Reporter
interface. However the current implementation only intercepts incoming
requests/responses, it does not have support to intercept outgoing Sip Requests or Sip
Responses.

In the Code examples section below the proposed refined Reporter interface is shown.
The implementation of the changed Reporter framework involves a significant number of
classes including minor impact on each Layer implementation but the "core" sip stack
functionality is not affected.

An alternative implementation to the proposed refined Reporter interface would be to
"simply add additional methods" for outgoing requests/responses into the existing
interface. However the assumption is that it would not be a clean and distinct solution as
it would require at least additionally four new methods (reportPreOutgoing(req),
reportPreOutgoing(resp), reportPreOutgoing(SipServletFacade servlet, req),
reportPreOutgoing(SipServletFacade servlet, resp). It would also affect the framework
and the existing reporters to a significant extent.

The interceptions of incoming requests/responses is proposed to be maintained via the
LayerHelper.next() methods. However the interceptions of outgoing messages cannot
easily be implemented in a generic way at least not without major impact of the existing
core sip stack. Therefore it is proposed to implement interceptions by selecting the
appropriate places in a non-generic way. For the first release it is proposed to only
intercept outgoing messages where it is needed for the features/reporters which are
delivered by default (Sip Message Inspection (SMI) and AccessLog):

ApplicationDispatcher layer (InspectionType: SERVLET) (i.e. intercept calls to
request.send() and response.send() done from Servlet code)
GrizzlyNetworkManager layer (InspectionType: LAYER) (i.e. intercept dispatch()
calls in GrizzlyNetworkManager and ResponseDispatcher)

If it would be proven necessary interceptions for outgoing messages in other layers can
be added later on.

4.1.1 Code examples

4.1.1.1 Interface

The current interface which is implemented by the CallFlow, AccessLog and
SipMessageInspection features lacks support to intercept outgoing Sip Requests and Sip
Responses looks like this:

package com.ericsson.ssa.container.callflow;
public interface Reporter {

 void reportPre(Layer l, SipServletRequest r);
 void reportPost(Layer l, SipServletRequest r);

 void reportPre(Layer l, SipServletResponse r);
 void reportPost(Layer l, SipServletResponse r);

 void reportPost(SipServletFacade servlet, SipServletRequest request);
 void reportPre(SipServletFacade servlet, SipServletRequest request);

 void reportPost(SipServletFacade servlet, SipServletRequest request, Exception e);
}

The refined interface including support for outgoing messages:

package com.ericsson.ssa.container.reporter;

public interface Reporter {
 enum InterceptionType { LAYER, SERVLET, ALL };
 InterceptionType getSupportedInterception();

 void logIncomingRequest(InterceptionType interceptType, SipServletRequest req, String interceptedAt);
 void logOutgoingRequest(InterceptionType interceptType, SipServletRequest req, String interceptedAt);
 void logIncomingResponse(InterceptionType interceptType, SipServletResponse resp, String interceptedAt);
 void logOutgoingResponse(InterceptionType interceptType, SipServletResponse resp, String interceptedAt);

 void logPostIncomingRequest(InterceptionType interceptType, SipServletRequest req, String interceptedAt, Exception exceptionInCaseOfException); }
 void logPostIncomingResponse(InterceptionType interceptType, SipServletResponse resp, String interceptedAt, Exception exceptionInCaseOfException); }
}

The new Reporter interface and framework classes should reside in a new package
"com.ericsson.ssa.container.reporter". A class which implements the Reporter interface
should return its supported invocation type. E.g. A reporter which is configured for the
ApplicationDispatcher layer may be valid for both LAYER and SERVLET interception
but a reporter class must select which one of interception types it supports.

4.1.1.2 Interceptions to be added

The proposal is to implement outgoing interception points for

ApplicationDispatcher/SipServletWrapper (InspectionType: SERVLET) (When
sending requests/responses from within Servlet)
GrizzlyNetworkManager (InspectionType: LAYER)

Besides adding outgoing interceptions it is proposed to add missing interceptions on
Servlet level:

Subsequent requests including Ack and Cancel (Cancel has to be intercepted in
InviteServerTransaction)

4.1.1.2 Interception example

Example of interception implementation (in this case for an incoming request):

public final class LayerHelper {
 public static void next(SipServletRequestImpl req, Layer layer,
 Layer nextLayer) {
 if (nextLayer == null) {
 layer.dispatch(req);
 } else {
 Reporter reporter = nextLayer.getReporter();
 if(reporter != null) {
 reporter.logIncomingRequest(Reporter.InterceptionType.LAYER, req, layer.getClass().getSimpleName());
 }

 nextLayer.next(req);

 if(reporter != null) {
 reporter.logPostIncomingRequest(Reporter.InterceptionType.LAYER, req, layer.getClass().getSimpleName(), null);
 }
 }
 }
....

4.2. Bug/RFE Number(s):

4.2.1 Bug/RFE Numbers from Issue Tracker

4.2.2 Requirememt Ids that are being addressed as a part of this proposal.

N/A

4.3. In Scope:

N/A

4.4. Out of Scope:

In this proposed that only selected layers will do the interception of outgoing Sip
request/responses (In this release: NetworkManager and ApplicationDispatcher)

The details of AccessLogReporter implementation are left out of this proposal (changes
may be needed in AccesLog GUI and/or AccessLog file format depending on solution).

4.5. Interfaces:

4.5.1 Exported Interfaces

N/A

4.5.2 Imported interfaces

N/A

4.5.3 Other interfaces

N/A (this proposal only affects the Reporter interface which is internal to the container)

4.6. Doc Impact:

N/A (Assume this OnePager is sufficient)

4.7. Admin/Config Impact:

4.7.1 Configuration changes needed

No changes needed in dtd for domain.xml

4.7.2 CLI / GUI impact if any

No changes needed for the modified Reporter framework. (AccessLog details excluded
in this document)

4.7.3 Plugin impact

The classes which are implementing the Reporter interface need to be re-implemented
w.r.t. new Reporter interface (i.e. CallFlowReporter, SipMessageReporter,
AccessLogReporter)

4.8. HA Impact:

4.9. I18N/L10N Impact:

4.10. Packaging & Delivery:

4.10.1 Binaries in which the code are delivered

The modified reporter framework interfaces and classes are part of building sailfin/sip-
stack (ends up in comms-appserv-rt.jar).

The modified reporter classes should remain under sailfin/integration (ends up in comms-
appserv-rt.jar).

4.11. Security Impact:

N/A

4.12. Compatibility Impact

4.13. Dependencies:

N/A

4.13.1 Changes required in GlassFish

No.

4.13.2 Third Party APIs

N/A

4.14 Miscellaneous

Will this component work with Ipv6 addresses Yes
Will this component work with JDK 64bit Yes
Will this component require configuration using a sun-specific deployment
descriptor.If yes, please specify below that configuration elements needed No

5. Open Issues
Issue No Description Comments Resolution

6. Reference Documents:
7. Schedule:

7.1. Projected Availability:

SGCS 2.0

