
Project SailFin

Functional Specification for DCR Plug-in Support
Author(s): joel.binnquist.xc@ericsson.com

Version: 1.3

Version Date Comment

0.1 2009-01-20 First version

1.0 2009-04-02 Updated after review.

- Removed support for annotations

- Removed support for runtime compilation

1.1 2009-04-02 Updated API section.

1.2 2009-04-03 Removed paragraph mentioned java source
code.

1.3 2009-04-02 Added link to FSD for number normalization.

1 Introduction

The Data Centric Rules (DCR) is a part of the Converged Load Balancer making it
possible to configure how the key, used as input to the consistent hash, is extracted
from a request.

The rules for a specific CLB configuration can currently be specified using a
proprietary language in XML. However, this language is somewhat limited, and
moreover, it is hard to understand.

The Presence and Group Management application (PGM) has put on a requirement
that Sailfin shall support the ability to specify DCR rules where one can write a
condition on a specific SIP method. Something like:

if req.method equals REGISTER then
 extract key from req.uri
else
 extract key from req.myheader

Today one cannot specify a comparison condition on a request method; the only
entity that one can express a comparison condition on is the session case. This
could be solved by enhancing the existing language.

http://sailfin.dev.java.net

Project SailFin
While analyzing this it was suggested that applications should be able to configure
DCR via plug-ins (written in Java) rather than enhancing the proprietary language.
Thus when the CLB needs to extract the hash key from a request it calls the
currently installed plug-in.

The advantages with a plug-in solution would be:

The language is well-known, which makes it easier for the application developer,
who shall write the rules.

The solution will be easier to maintain for the Sailfin development organization
compared to a proprietary XML based language

The solution will be much more flexible for the applications; the applications will be
able to use the full power of the Java language when expressing the rules.

It will be possible for the applications to verify and debug the rules using standard
tools; today this is not possible.

There will be no need to spend design hours for enhancement of a proprietary the
language in the future.

One important constraint is that Sailfin supports dynamic reconfiguration of the
rules, which requires that the plug-in classes can be unloaded or reloaded.

It shall be possible to install/download a new plug-in via the CLI and Admin GUI
without having to copy it to the file system of Application Server (in a manner similar
to deploying applications).

The old solution with the XML-based language should be deprecated or
discontinued, to minimize future costs for maintenance.

2 Function

2.1 Overview

2.1.1 Configuration

The Data Centric Rules of the Converged Load Balancer will be configurable using
an implementation of the interface org.glassfish.comms.api.datacentric.DcrPlugin,
which is supplied as a precompiled Java class packaged in a jar-file or. The
application server determines how to interpret the file based on the file extension.

The user provides the file using the existing interfaces for DCR configuration
(Admin GUI and CLI). The execution of a “set DCR file” command (GUI or CLI)
causes the admin framework to upload the file to an internal directory in the
application server. (This mechanism is already implemented for the DCR XML.).

http://sailfin.dev.java.net

Project SailFin
The admin framework generates an admin event into the CLB where the file name
is supplied as an argument (note that the admin framework does not care about
what kind of file this is, it is up to the CLB to decide how to process the file). The
CLB then selects how to process the file based on file extension (case-insensitive):

• If it is a .xml file, then it is processed as a DCR XML file (the existing solution).

• If it is a .jar file, it is expected to be a jar-file containing a compiled
implementation of the plugin interface (and perhaps other application specific
helper classes) and where the manifest specifies the class name of this class.
The CLB then loads the plugin class and creates on instance.

2.1.2 Message Routing

When routing a request, the CLB calls the instantiated plug-in to extract the key
from initial1 SIP and HTTP requests. The CLB uses the result returned from the
plug-in, to lookup the serving instance in the consistent hash.

Note, if required the plug-in is responsible for resolving Tel-URI:s, normalize
numbers and canonicalize URI:s (see Functional Specification for Number
Normalization and URICanonicalization). The API:s required for this are provided
as arguments on the method call to the plug-in (see 2.4.1).

1 A request is initial if it is not part of an ongoing session/dialog.
http://sailfin.dev.java.net

http://wiki.glassfish.java.net/attach/FunctionalSpecsOnePagers/NumberNormalization-FSD.pdf?version=7
http://wiki.glassfish.java.net/attach/FunctionalSpecsOnePagers/NumberNormalization-FSD.pdf?version=7

Project SailFin
2.2 Configuration Interface

The file is supplied either via the CLI commands: create-converged-lb, create-
converged-lb-config or set-dcr-file or via Converged Load Balancer configuration
interface in the Admin GUI:

2.3 Configuration

2.4 API

2.4.1 DcrPlugin

The org.glassfish.comms.api.datacentric.DcrPlugin specifies two methods:
• String getKey(javax.servlet.sip.SipServletRequest request, javax.servlet.sip.SipFactory

sipFactory, org.glassfish.comms.api.uriutils.UriTools uriTools,
org.glassfish.comms.api.telurl.TelUrlResolver telUrlResolver)

• String getKey(javax.servlet.http.HttpServletRequest request,
javax.servlet.sip.SipFactory sipFactory, org.glassfish.comms.api.uriutils.UriTools
uriTools, org.glassfish.comms.api.telurl.TelUrlResolver telUrlResolver)

http://sailfin.dev.java.net

Project SailFin
The implementor shall implement these to extract the key to be used for lookup in
the consistent hash in the CLB, for initial requests. (If null is returned the CLB will
fall back to the default behavior, i.e. create a key from the call-id and from-tag of the
request).

In order to facilitate implementation of the DcrPlugin the following entities are
provided as method arguments:

• TelUrlResolver (to be able to resolve Tel-URI:s)
• UriTools (to be able to normalize and canonicalize URI:s)
• SipFactory (to be able to convert header values to URI:s and extract the various

components from such a URI)

2.4.2 JAR-file

The jar-file shall contain the plug-in-class and possibly other classes as needed by
the plug-in-class. Note, that the class is loaded by a separate class loader which
has the container classloader as parent, thus classes that are not part of the
container, needed by the plug-in, must be provided in the jar-file.

The manifest shall specify the plug-in-class using the attribute Dcr-Plugin-Class, as
below:

Manifest-Version: 1.0
Dcr-Plugin-Class: com.example.dcrplugin.ExampleDcrPlugin

2.5 Constraints

http://sailfin.dev.java.net

Project SailFin
3 Design Overview

3.1 Class Diagram

Each time the configuration changes and the DCR-file changes the
ConsistentHashRouter is triggered to re-configure.

The ConsistentHashRouter reads the name of the DCR-file and instantiates a
DcrPlugin using the DcrPluginLoader. The ConsistentHashRouter pushes the
instantiated DcrPlugin onto the set of hashKeyExtractors)

The DcrPluginLoader handle loading of the DCR-plugin which is a jar-fil.

4 Quality and Availability
N/A

http://sailfin.dev.java.net

Project SailFin
5 Performance

-

6 Management and Monitoring

6.1 Formal Interfaces

See API Interfaces.

7 Packaging, Files, and Location

8 Documentation Requirements

A user guide how to write a handler class, declare mappings and install the plug-ins
is required.

9 Open Issues

None.

http://sailfin.dev.java.net

Project SailFin

10 API Interfaces

10.1 DcrPlugin

package org.glassfish.comms.api.datacentric;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipFactory;

import org.glassfish.comms.api.datacentric.DcrPlugin;
import org.glassfish.comms.api.telurl.TelUrlResolver;
import org.glassfish.comms.api.uriutils.UriTools;

public interface DcrPlugin {
 String getKey(SipServletRequest request, SipFactory sipFactory,
UriTools uriTools, TelUrlResolver telUrlResolver);
 String getKey(HttpServletRequest request, SipFactory sipFactory,
UriTools uriTools, TelUrlResolver telUrlResolver);
}

11 Example Plug-in

The following is an example of a plug-in implementation:

package com.example.dcrplugin;

import org.glassfish.comms.api.datacentric.DcrPlugin;
import org.glassfish.comms.api.telurl.TelUrlResolver;
import org.glassfish.comms.api.telurl.TelUrlResolverException;
import org.glassfish.comms.api.uriutils.UriTools;

import java.io.IOException;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.sip.ServletParseException;
import javax.servlet.sip.SipFactory;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipURI;
import javax.servlet.sip.URI;

public class ExampleDcrPlugin implements DcrPlugin {
 @Override
 public String getKey(SipServletRequest request, SipFactory sipFactory,
UriTools uriTools, TelUrlResolver telUrlResolver) {
 URI uri;

 if (request.getMethod().toUpperCase().equals("REGISTER")) {
 String header = request.getHeader("My-Header");

 try {
 uri = sipFactory.createURI(header);
 } catch (ServletParseException e) {
 uri = request.getRequestURI();
 }

http://sailfin.dev.java.net

Project SailFin
 } else {
 uri = request.getRequestURI();
 }

 URI canonicalizedUri = uriTools.canonicalize(uri);

 if (canonicalizedUri.isSipURI()) {
 SipURI resolvedUri;

 try {
 resolvedUri = telUrlResolver.lookupSipURI(canonicalizedUri);
 } catch (IOException e) {
 return null;
 } catch (TelUrlResolverException e) {
 return null;
 }

 return resolvedUri.getUser() + "@" + resolvedUri.getHost();
 } else {
 return canonicalizedUri.toString();
 }
 }

 @Override
 public String getKey(HttpServletRequest request, SipFactory sipFactory,
UriTools uriTools, TelUrlResolver telUrlResolver) {
 return request.getRequestURL().toString();
 }
}

http://sailfin.dev.java.net

	1Introduction
	2Function
	2.1Overview
	2.1.1Configuration
	2.1.2Message Routing

	2.2Configuration Interface
	2.3Configuration
	2.4API
	2.4.1DcrPlugin
	2.4.2JAR-file

	2.5Constraints

	3Design Overview
	3.1Class Diagram

	4Quality and Availability
	5Performance
	6Management and Monitoring
	6.1Formal Interfaces

	7Packaging, Files, and Location
	8Documentation Requirements
	9Open Issues
	10API Interfaces
	10.1DcrPlugin

	11Example Plug-in

