Project SailFin

DCR Plug-in Support One Pager
1 Introduction

1.1 Project/Component Working Name
Sailfin 2.0 / Converged Load Balancer

1.2 Name(s) and e-mail address of Document Author(s)/Supplier

Joel Binnquist : joel.xc.binnquist@ericsson.com

Change log:
Version Date Comments Author
0.1 2009-01-26 First version Joel Binnquist
0.2 2009-02-04 Added reference to | Joel Binnquist
requirements and
specified
HttpServletReques
t as external
interface.
0.3 2009-02-09 Added reference to | Joel Binnquist
requirement 105
65-0192/03445

1.3 Date of This Document
2009-02-09

2 Project Summary

2.1 Project Description
The Data Centric Rules (DCR) is a part of the Converged Load Balancer making it
possible to configure how the key, used as input to the consistent hash, is extracted
from a request.
The rules for a specific CLB configuration can currently be specified using a

proprietary language in XML. However, this language is somewhat limited, and
moreover, it is hard to understand.

http://sailfin.dev.java.net


mailto:joel.xc.binnquist@ericsson.com

Project SailFin

This one pager describes the enhancement, proposed to CLB, that would make it
possible to configure the DCR using a plug-in in the form of a Java class.

2.2 Risks and Assumptions

Problem Summary
Problem Area

One of the requirements (105 65-0192/03443) of the Ericsson applications is that
Sailfin shall support the ability to specify DCR rules where one can write a condition
on a specific SIP method. Something like:

if req.method equals REGISTER then
extract key from req.uri

else
extract key from req.myheader

Today one cannot specify a comparison condition on a request method; the only
entity that one can express a comparison condition on is the session case. This
could be solved by enhancing the existing language.

Another of the requirements (105 65-0192/03444) states that it should be possible
to strip parameters from the request-URI in case it is used as hash key.

While analyzing these requirements it was suggested that applications should be
able to configure DCR via plug-ins (written in Java) rather than enhancing the
proprietary language. Thus when the CLB needs to extract the hash key from a
request it calls the currently installed plug-in. This is suggested in the requirement
105 65-0192/03445.

It is important that Sailfin supports dynamic reconfiguration of the rules, which
requires that the plug-in classes can be unloaded or reloaded.

It shall be possible to install/download a new plug-in via the CLI and Admin GUI
without having to manually copy it to the file system of Application Server (in a
manner similar to deploying applications).

If possible it should be possible to install the plug-in in the form of Java source code
that is compiled by the container.

The old solution with the XML-based language should be deprecated or
discontinued, to minimize future costs for maintenance.

3.2 Justification

http://sailfin.dev.java.net



Project SailFin

The advantages with a plug-in solution would be:

* The language is well-known, which makes it easier for the application developer,
who shall write the rules.

» The solution will be easier to maintain for the Sailfin development organization
compared to a proprietary XML based language

» The solution will be much more flexible for the applications; the applications will
be able to use the full power of the Java language when expressing the rules.

» It will be possible for the applications to verify and debug the rules using
standard tools; today this is not possible.

» There will be no need to spend design hours for enhancement of a proprietary
the language in the future.

Technical Description
Details

The solution re-uses the existing configuration interface for setting the DCR file by
allowing the DCR file to be a jar-file containing an implementation of a DCR plugin-
interface.

Optionally, the solution could also allow the file to be a java source code file that will
be compiled in run-time (when setting the DCR file) by the container.

To configure the Data Centric function of the CLB a plug-in that extracts the hash
key from a SIP/HTTP request is implemented and installed into the application
server.

The class would be instantiated and then used by the CLB when extracting the
hash key, used for consistent hash lookup, when routing requests (i.e. in exactly the
same manner as the XLM-based DCR file is used).

The solution also allows for the plug-in developer to access some artifacts that are
normally accessible in a servlet, via annotated resource injections:

» DataCentricUtil
e TelUrlResolver
e UriTools

» SipFactory

4.2 Bug/RFE Number(s)

4.2.1 Bug/RFE Numbers from Issue Tracker

http://sailfin.dev.java.net



Project SailFin

4.2.2 Requirement Ids that are being addressed as a part of this proposal.

4.3 In Scope

4.4 Out of Scope
4.5 Interfaces
4.5.1 Exported Interfaces

No changes to existing interface (uses the existing interfaces for configuration of
DCR).

4.5.2 Imported interfaces
javax.servlet.http.HttpServietRequest
javax.servlet.sip.SipServietRequest

4.5.3 Other interfaces (Optional)

4.6 Doc Impact
HA Admin Guide.

Administration Reference.

4.7 Admin/Config Impact

No changes to existing interface (uses the existing interfaces for configuration of
DCR).

4.7.1 Configuration changes needed

4.7.2 CLI/ GUI impact if any

http://sailfin.dev.java.net



Project SailFin

4.8 HA Impact

4.9 I18N/L10N Impact

4.10 Packaging & Delivery

4.10.1 Binaries in which the code is delivered

4.11 Security Impact

4.12 Compatibility Impact
4.13 Dependencies

If run-time compilation shall be supported the tools.jar of the JDK must be included
in the Sailfin installation.

4.13.1 Changes required in GlassFish

4.13.2 Third Party APIs

4.14 Miscellaneous
5 Open Issues
Shall run-time compilation be supported?

6 Reference Documents

http://sailfin.dev.java.net



Project SailFin

7 Schedule
7.1 Projected Availability
Sailfin 2.0

http://sailfin.dev.java.net



	1Introduction 
	1.1Project/Component Working Name
	1.2Name(s) and e-mail address of Document Author(s)/Supplier 
	1.3Date of This Document 

	2Project Summary 
	2.1Project Description
	2.2Risks and Assumptions 

	3Problem Summary 
	3.1Problem Area
	3.2Justification 

	4Technical Description 
	4.1Details 
	4.2Bug/RFE Number(s) 
	4.2.1Bug/RFE Numbers from Issue Tracker 
	4.2.2Requirement Ids that are being addressed as a part of this proposal. 

	4.3In Scope 
	4.4Out of Scope 
	4.5Interfaces 
	4.5.1Exported Interfaces
	4.5.2Imported interfaces 
	4.5.3Other interfaces (Optional) 

	4.6Doc Impact 
	4.7Admin/Config Impact
	4.7.1Configuration changes needed 
	4.7.2CLI / GUI impact if any 

	4.8HA Impact 
	4.9I18N/L10N Impact 
	4.10Packaging & Delivery
	4.10.1Binaries in which the code is delivered

	4.11Security Impact 
	4.12Compatibility Impact 
	4.13Dependencies 
	4.13.1Changes required in GlassFish 
	4.13.2Third Party APIs 

	4.14Miscellaneous 

	5Open Issues 
	6Reference Documents 
	7Schedule 
	7.1Projected Availability 


