
GMS Watchdog Capability: Enhancing GMS Failure Detection One Pager

1. Introduction

1.1. Project/Component Working Name:
 GMS Watchdog capability

1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
Joseph Fialli: joe.fialli@sun.com

1.3. Date of This Document:
18 Feb 2009

2. Project Summary

2.1. Project Description:
In this document, we introduce a new GMS functionality that enables
an external entity or an in-process GMS client to report a member
failure to GMS. This functionality addresses an incompatibility
between GMS and other external processes(NA, potentially SAF/AMF)
that monitor and restart a GMS member faster than GMS heartbeat-
based failure detection is capable of detecting failure. Currently,
GMS misses reporting failure of a member when a Glassfish NodeAgent
detects and restarts a server instance in a shorter period of time
than GMS failure detection can verify that the server instance has
failed.

The Glassfish NodeAgent would need to become a GMS WatchDog member
to notify GMS cluster that a server instance has failed. GMS
subsystem, specifically the GMS Master node of the cluster, would
then notify all members of the cluster that the instance has failed.
The GMS WatchDog functionality enables external entities using more
efficient failure detection to enhance overall GMS failure detection
time and accuracy.

Faster and accurate failure reporting such as Node Agent's process
monitoring based approach helps GMS clients such as SGCS 1.5's
ConvergedLoadBalancer to failover faster and thus reject lower
number of incoming calls/requests than at present. Additionally,
this will benefit the Replication module by providing a more
predictable state transition machinery than at present helping it
become more efficient in managing replication partner connections.

2.2. Risks and Assumptions
− Assume that SGCS/SAF integration[1] will allow Glassfish

NodeAgent to run in a GMS watchdog mode. GMS watchdog only
requires detection of failed server instance by the NA, it does
not require that the NA restart the server instance. Of course,
for this proposal to work, NA must detect failure before SAF
does. Since SAF is using heartbeat failure detection, it is
probably a safe assumption that it will not detect and restart
the server instance before NA is able to report that the server
instance has failed to GMS subsystem. (See Section 3.1 for

Default SGCS Group Management Service failure detection times and
observed NA failure detection times.)

− Node Agent's memory footprint would increase marginally. A
prototype must be built to get a good estimate of how much the
Node Agent footprint is currently and to what extent it would
increase with GMS integration. We will consider ways to turn off
any unnecessary Shoal feature that is irrelevant to Node Agent
such as initializing and participating in the shared Distributed
Cache.

− Node Agent will need to initialize a GroupManagementService
instance (and resulting threads) for each cluster to which
instances it is managing belong. This will have a marginal impact
on footprint as well. This should be measured as part of the
prototype exercise.

3. Problem Summary

3.1. Problem Area:

The Glassfish NodeAgent daemon is able to detect that a server
instance, that is also a GMS cluster member, has failed quicker than
GMS. The NodeAgent restarts the failed instance sooner than GMS
heartbeat based failure detection is able to detect the failure.
This only became a more pronounced problem recently due to some
combination of faster machine speeds and Glassfish optimizations
that enable a SGCS/Glassfish app server to restart quicker than the
default SGCS/Glassfish Group Management Service defaults for
detecting failure.

Current SGCS/Glassfish Group Management Service defaults are:
 Heartbeat frequency: 2000 ms (2 seconds)
 Max Missed Heartbeats: 3
 Validate Failure: 1500 ms. (1.5 seconds)

GMS default configuration settings from SGCS domain.xml:

 <group-management-service fd-protocol-max-tries="3"
 fd-protocol-timeout-in-millis="2000"
 vs-protocol-timeout-in-millis="1500">

Given the above default configurations, it takes GMS minimally 6
seconds to suspect a server instance to have failed and a further
1.5 – 3 seconds to verify that a server instance has failed. Once
the server instance has restarted, the failure verification step
will fail and GMS has missed its chance to send out a FAILURE
notification. GMS does detect that a server instance has been
restarted before it detected failure with following ShoalLogger
events that are sent to SGCS server log of DAS (or if DAS is down,
which ever member of the GMS cluster is the master node.)

 [#|...|WARNING|sun-glassfish-comms-server1.5|ShoalLogger|...;
Instance n2c1m4 was restarted at 4:13:19 PM PST on Feb 4, 2009.|#]

[#|...|WARNING|sun-glassfish-comms-server1.5|ShoalLogger|...;

Note that there was no Failure notification sent out for this
instance that was previously started at 4:11:31 PM PST on Feb 4,
2009|#]

However, it is too late to report a FAILURE_NOTIFICATION when GMS
detects that the instance has already been restarted.

Given that a Glassfish NodeAgent is always co-located on the same
machine as the server instance that it manages, the NodeAgent can
use a more efficient and less reliable technique (based on network
reachability) to detect that a server instance has failed. With
current Sailfin testing configurations, the Glassfish NA is being
observed to detect and restart the server instance in less than 7.5
seconds, but not quicker than 6 seconds. GMS sends out the failure
suspected notification after max missed heartbeats. Given that GMS
relies on heartbeats and not necessarily being co-located with other
members of the GMS cluster, its technique for detecting failure must
balance waiting a certain amount of time before declaring that an
instance has failed; otherwise, GMS runs the risk of falsely
declaring a server instance as failed due to network congestion/slow
server instance response.

This proposal enables GMS to leverage already existing efficient
server instance failure detection of the Node Agent by bringing the
Node Agent into GMS member state tracking and reporting.

3.2. Justification:
 Functional:

GMS will no longer miss sending out FAILURE notifications for failed
members that restart in a shorter period than GMS heartbeat failure
detection is capable of detecting.

Given that NodeAgent detects FAILURE much quicker than GMS does,
this optimization will result in GMS clients receiving FAILURE
notification far quicker than the minimum of 7.5 seconds that it
takes for GMS heartbeat based notification to detect failure.

The enhanced FAILURE notification times could benefit Sailfin CLB,
DCU and SSR, all subsystems that handled GMS notifications.
For instance, at current call rates, we estimate that the CLB will
be able to save a minimum of 1200 calls (with replication enabled)
and a maximum of 3600 calls (without replication enabled) due to the
faster failure reporting capability.

4. Technical Description:

4.1.
1) Shoal Modifications

 Provide a WatchDog capability (Member Type definition and API extension) to
allow for notification of failed members.

2) Glassfish NodeAgent Modifications
 - Become a GMS WatchDog – requires a minimal lines of code to integrate
and an api call to report failure.

 Report server instance failure via GMS WatchDog capability. The server
instance name should be sufficient for GMS.

4.2. Details:

 Strawman:
- Add WATCHDOG enumerator to GMS GroupManagementService.MemberType.

− For each cluster defined in domain.xml, NA joins the cluster as a watchdog
during its startup or during its lifetime, when it determines that it is
managing one or more clustered instance(s).

import com.sun.enterprise.ee.cms.core.GMSFactory;

GroupManagementService gmsModule =
GMSFactory.startGMSModule(“GlassfishNodeAgentName”,

clusterName, MemberType.WATCHDOG, props);

Place each gmsModule in a hashmap mapping clustername to gmsModule.

 - When NA detects that a server instance has failed, determine the server
instance's cluster that it belongs to and lookup gmsModule reference for the
cluster. Call the following new method on this reference to signal that the
server instance as failed.

 gmsModule.broadcastFailure(String serverInstanceName);

 (Quick inspection of Server info in nodeagent did not look like it was
tracking which cluster an instance belonged to. This could easily be taken
care of using ConfigAPI.)

 - The GMS call above will broadcast that serverInstanceName has been
observed to fail by the WATCHDOG. The GMS MasterNode will discontinue
outstanding efforts to validate that this server instance has failed and will
send the FAILURE notification to all instances in the cluster. If there is no
MASTER node for cluster at the time this method is called, all instances will
record the WATCHDOG report (in HealthMonitor cache) and when a MasterNode is
elected subsequently, it will see the outstanding WATCHDOG event and send
failure event view change to all instances in the cluster and clear the
outstanding WATCHDOG event.

4.3. Bug/RFE Number(s):
None that I am aware of.

SSR, CLB and DCU are aware that FAILURE notifications may be missed
when Glassfish NodeAgent is running. SSR relies on GMS Join
notification to trigger reshape. I believe that the result of the
missed/non-timely FAILURE notification for CLB and DCU is SIP
clients receiving a 503 error. As soon as CLB and DCU are aware of
failure, they transfer traffic to other instances in the cluster
that are up. Quicker notification will result in less 503 errors.

4.4. In Scope:

4.5. Out of Scope:
−

4.6. Interfaces:
4.6.1. Exported Interfaces

- GMS Interface to export to service instance monitors
(specifically NA)
TBD

4.6.2. Imported interfaces
-

4.6.3. Other interfaces (Optional)
-

4.7. Doc Impact:

4.8. Admin/Config Impact:

4.9. HA Impact:
Only beneficial. It would receive FAILURE notifications that GMS
was missing when NodeAgent restarted failed instance in shorter
period of time than GMS could detect failure in.

4.10. I18N/L10N Impact:
NONE

4.11. Packaging & Delivery:
-

4.12. Security Impact:
NONE

4.13. Compatibility Impact
NONE

4.14. Dependencies:
-External processes that monitor services:
 Glassfish NA
 MMAS SAF/AMF

5. Reference Documents:

[1] SGCS/SAF Improved Integration One Pager, 19 Jan
2009,olivier.corbun@ericsson.com

mailto:olivier.corbun@ericsson.com

6. Schedule:

6.1. Projected Availability:

	1. Introduction
	1.1. Project/Component Working Name:
	1.2. Name(s) and e-mail address of Document Author(s)/Supplier:
	1.3. Date of This Document:

	2. Project Summary
	2.1. Project Description:
	2.2. Risks and Assumptions

	3. Problem Summary
	3.1. Problem Area:
	3.2. Justification:

	4. Technical Description:
	4.2. Details:
	4.3. Bug/RFE Number(s):
	4.4. In Scope:
	4.5. Out of Scope:
	4.6. Interfaces:
	4.6.1. Exported Interfaces
	4.6.2. Imported interfaces
	4.6.3. Other interfaces (Optional)

	4.7. Doc Impact:
	4.8. Admin/Config Impact:
	4.9. HA Impact:
	4.10. I18N/L10N Impact:
	4.11. Packaging & Delivery:
	4.12. Security Impact:
	4.13. Compatibility Impact
	4.14. Dependencies:

	5. Reference Documents:
	6. Schedule:
	6.1. Projected Availability:

