
POC DESIGN DOCUMENT

Glassfsh application versioning

Romain GRECOURT romain.grecourt@serli.com
Hervé SOUCHAUD herve.souchaud@serli.com
Mathieu ANCELIN Mathieu.ancelin@serli.com

Pierre Henri DEZANNEAU pierrehenri.dezanneau@serli.com

10 March 2010

mailto:romain.grecourt@serli.com
mailto:pierrehenri.dezanneau@serli.com
mailto:Mathieu.ancelin@serli.com
mailto:herve.souchaud@serli.com

POC Design Document Glassfsh application versioning

 1 Summary
 1 Summary.. 2
 2 Introduction.. 3

 2.1 Glassfsh deployment..3
 2.2 Application versioning...3

 3 Serli's Proof of Concept.. 4
 3.1 Versions storage..4
 3.2 Versioning service... 5
 3.3 Impact on existing administration commands.. 5
 3.4 New administration commands...6

 4 Current status...7
 5 Diferences with functional specifcation document...8

2 / 8

POC Design Document Glassfsh application versioning

 2 Introduction

 2.1 Glassfsh deployment

Currently, the Glassfsh deployment system allow only one version of an application
to exist at a time in a domain. So, if a user wants to deploy new versions of a deployed
application, he needs to undeploy the old one frst, and then deploy the new version in its
domain. If the user wants to switch back to the old application, he needs to do the same
process.

In the case of a 24/7 service, this kind of operation can be problematic because the
application will be unavailable for some time and the service will be interrupted.

 2.2 Application versioning

An application versioning service will allow multiple versions of the same application
to exist in a Glassfsh domain and only one of these versions to be enabled. This service
will provide facilities to switch between application versions and to avoid interruption of
service during switches.

This system will be administrable from every administration client (CLI, GUI, etc …),
easy to use and virtually transparent for the user.

3 / 8

POC Design Document Glassfsh application versioning

 3 Serli's Proof of Concept

After reading the ticket about applications versioning in the Glassfsh bug tracker
(https://glassfsh.dev.java.net/issues/show_bug.cgi?id=4100) we started to think about a
proof of concept to show how it can be done in Glassfsh V3.

The following points are proposal on how the things can be done to implement a
versioning service in glassfsh.

 3.1 Versions storage

The frst thing to consider in a versioning system is how to store diferent versions of
applications in a Glassfsh domain.

We chose to create an alternate fle tree inside the domain to store each version of a
deployed app. We decided to add “version folders” inside applications folders to store each
version of a particular app as showed in illustration 1.

From here, the versioning system and administration commands will use these folders
to manage (deploy, undeploy, enable, disable, switch, rollback, etc …) applications versions.

This tree will further be defned as “versioning repository” or “versioning flesystem”
in this document.

4 / 8

Illustration 1: Versioning
flesystem inside a domain

https://glassfish.dev.java.net/issues/show_bug.cgi?id=4100

POC Design Document Glassfsh application versioning

 3.2 Versioning service

The versioning service is a new module in Glassfsh deployment. The aim of this
module is to manage a registry of applications with its associated versions. This module
collaborate closely with administration commands to manage its applications versions
registry and to refer to the actual deployed version of a particular application.

The service also provides information from its registry to let other services know the
versioning status of a particular application.

The illustration below describes how a versioned deployment works using the
versioning service.

 3.3 Impact on existing administration
commands

Adding a versioning service in Glassfsh deployment impacts the related
administration commands.

The basic operations for a versioning system are to deploy and undeploy a version
of an application. As these operations already exist in administration commands, there is no
reason to create new commands.

The deploy command is modifed to check if the application can be versioned and to
deploy it using the process described in point 3.2.

The undeploy command undeploys the actual version of the app and deletes it from
the versioning repository. It's also possible to add an option to delete all versions of the
app in the versioning repository.

5 / 8

Illustration 2: Deploying a new application version

POC Design Document Glassfsh application versioning

There are other commands that need to be modifed. For instance enable and
disable commands needs to be modifed to know which version is actually targeted by the
versioning system.

 3.4 New administration commands

One of the main feature of application versioning is the switch between several
versions of the same application at runtime. As this feature has no equivalent in the
current administration command, we thought that the best way to do it easily is to add a
new administration command named “SWITCH”.

We can easily imagine to use the “SWITCH” command this way :

asadmin switch –-targetVersion=v3RC1 myGreatApp

In this case, the “targetVersion” argument is a version of “myGreatApp.ear” present
in the versioning repository (as describe in point 3.1).

This command will undeploys the actual version of myGreatApp.ear and
automatically deploys the “targetVersion” version of the application as described in 3.2
process.

Another possible use case is the rollback command. We considere this command as
a transaction rollback. The typical scenario for this use case would be :

A versioned application is deployed but unfortunately a regression is observed which
wasn't diagnosed by unit tests or integration tests. So, the application is dysfunctional and
users can't access the app correctly. In this case, the administrator will use the rollback
command like this :

asadmin rollback myGreatApp

This command will undeploy the current (dysfunctional) version of the app, delete it
and deploy the last stable version. This command uses the “SWITCH” command, because
the rollback is nothing more than a switch and a delete.

6 / 8

Illustration 3: Basic switch version command

POC Design Document Glassfsh application versioning

 4 Current status

POC features :

• Manage diferent versions of the same application at runtime

• Add / remove version at runtime

• Switch application version at runtime

• Auto-versioning

• Version name auto-generation

Not implemented at the time of writing this document :

• Enable / disable command support

• Version rollback

• Confguration from fle (maybe domain.xml)

• Custom version names

7 / 8

POC Design Document Glassfsh application versioning

 5 Diferences with functional
specifcation document

We didn't check V2 backward compatibility so maybe our versioning repository isn't
really adapted to drop a V3 domain in a V2 app server.

Advanced version name management. We didn't introduce notions of version
expression and version identifer used in administration commands.

Also, we didn't use concepts of current and default version.

8 / 8

	 1 Summary
	 2 Introduction
	 2.1 Glassfish deployment
	 2.2 Application versioning

	 3 Serli's Proof of Concept
	 3.1 Versions storage
	 3.2 Versioning service
	 3.3 Impact on existing administration commands
	 3.4 New administration commands

	 4 Current status
	 5 Differences with functional specification document

